Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 13#include <linux/mm.h>
 14#include <linux/delay.h>
 15#include <linux/smp.h>
 16#include <linux/interrupt.h>
 17#include <linux/spinlock.h>
 18#include <linux/cpu.h>
 19#include <linux/cpumask.h>
 20#include <linux/reboot.h>
 21#include <linux/io.h>
 22#include <linux/compiler.h>
 23#include <linux/linkage.h>
 24#include <linux/bug.h>
 25#include <linux/kernel.h>
 26
 27#include <asm/time.h>
 28#include <asm/pgtable.h>
 29#include <asm/processor.h>
 30#include <asm/bootinfo.h>
 31#include <asm/pmon.h>
 32#include <asm/cacheflush.h>
 33#include <asm/tlbflush.h>
 34#include <asm/mipsregs.h>
 35#include <asm/bmips.h>
 36#include <asm/traps.h>
 37#include <asm/barrier.h>
 38
 39static int __maybe_unused max_cpus = 1;
 40
 41/* these may be configured by the platform code */
 42int bmips_smp_enabled = 1;
 43int bmips_cpu_offset;
 44cpumask_t bmips_booted_mask;
 45
 46#ifdef CONFIG_SMP
 47
 48/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 49unsigned long bmips_smp_boot_sp;
 50unsigned long bmips_smp_boot_gp;
 51
 52static void bmips_send_ipi_single(int cpu, unsigned int action);
 53static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id);
 
 
 54
 55/* SW interrupts 0,1 are used for interprocessor signaling */
 56#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 57#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 58
 59#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 60#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 61#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 62#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 63
 64static void __init bmips_smp_setup(void)
 65{
 66	int i;
 
 67
 68#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
 69	/* arbitration priority */
 70	clear_c0_brcm_cmt_ctrl(0x30);
 71
 72	/* NBK and weak order flags */
 73	set_c0_brcm_config_0(0x30000);
 74
 75	/*
 76	 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other thread
 77	 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 78	 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 79	 */
 80	change_c0_brcm_cmt_intr(0xf8018000,
 81		(0x02 << 27) | (0x03 << 15));
 82
 83	/* single core, 2 threads (2 pipelines) */
 84	max_cpus = 2;
 85#elif defined(CONFIG_CPU_BMIPS5000)
 86	/* enable raceless SW interrupts */
 87	set_c0_brcm_config(0x03 << 22);
 88
 89	/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
 90	change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
 91
 92	/* N cores, 2 threads per core */
 93	max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 94
 95	/* clear any pending SW interrupts */
 96	for (i = 0; i < max_cpus; i++) {
 97		write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
 98		write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
 99	}
100#endif
101
102	if (!bmips_smp_enabled)
103		max_cpus = 1;
104
105	/* this can be overridden by the BSP */
106	if (!board_ebase_setup)
107		board_ebase_setup = &bmips_ebase_setup;
108
 
 
 
109	for (i = 0; i < max_cpus; i++) {
110		__cpu_number_map[i] = 1;
111		__cpu_logical_map[i] = 1;
 
 
 
112		set_cpu_possible(i, 1);
113		set_cpu_present(i, 1);
114	}
115}
116
117/*
118 * IPI IRQ setup - runs on CPU0
119 */
120static void bmips_prepare_cpus(unsigned int max_cpus)
121{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
123			"smp_ipi0", NULL))
124		panic("Can't request IPI0 interrupt\n");
125	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
126			"smp_ipi1", NULL))
127		panic("Can't request IPI1 interrupt\n");
128}
129
130/*
131 * Tell the hardware to boot CPUx - runs on CPU0
132 */
133static void bmips_boot_secondary(int cpu, struct task_struct *idle)
134{
135	bmips_smp_boot_sp = __KSTK_TOS(idle);
136	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
137	mb();
138
139	/*
140	 * Initial boot sequence for secondary CPU:
141	 *   bmips_reset_nmi_vec @ a000_0000 ->
142	 *   bmips_smp_entry ->
143	 *   plat_wired_tlb_setup (cached function call; optional) ->
144	 *   start_secondary (cached jump)
145	 *
146	 * Warm restart sequence:
147	 *   play_dead WAIT loop ->
148	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
149	 *   eret to play_dead ->
150	 *   bmips_secondary_reentry ->
151	 *   start_secondary
152	 */
153
154	pr_info("SMP: Booting CPU%d...\n", cpu);
155
156	if (cpumask_test_cpu(cpu, &bmips_booted_mask))
157		bmips_send_ipi_single(cpu, 0);
 
 
 
 
 
 
 
 
 
158	else {
159#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
160		set_c0_brcm_cmt_ctrl(0x01);
161#elif defined(CONFIG_CPU_BMIPS5000)
162		if (cpu & 0x01)
163			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
164		else {
165			/*
166			 * core N thread 0 was already booted; just
167			 * pulse the NMI line
168			 */
169			bmips_write_zscm_reg(0x210, 0xc0000000);
170			udelay(10);
171			bmips_write_zscm_reg(0x210, 0x00);
 
 
 
 
 
 
 
172		}
173#endif
174		cpumask_set_cpu(cpu, &bmips_booted_mask);
175	}
176}
177
178/*
179 * Early setup - runs on secondary CPU after cache probe
180 */
181static void bmips_init_secondary(void)
182{
183	/* move NMI vector to kseg0, in case XKS01 is enabled */
184
185#if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
186	void __iomem *cbr = BMIPS_GET_CBR();
187	unsigned long old_vec;
 
 
188
189	old_vec = __raw_readl(cbr + BMIPS_RELO_VECTOR_CONTROL_1);
190	__raw_writel(old_vec & ~0x20000000, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
191
192	clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
193#elif defined(CONFIG_CPU_BMIPS5000)
194	write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
195		(smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
 
 
 
 
 
 
 
 
 
 
196
197	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
198#endif
 
199}
200
201/*
202 * Late setup - runs on secondary CPU before entering the idle loop
203 */
204static void bmips_smp_finish(void)
205{
206	pr_info("SMP: CPU%d is running\n", smp_processor_id());
207
208	/* make sure there won't be a timer interrupt for a little while */
209	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
210
211	irq_enable_hazard();
212	set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
213	irq_enable_hazard();
214}
215
216/*
217 * Runs on CPU0 after all CPUs have been booted
218 */
219static void bmips_cpus_done(void)
220{
221}
222
223#if defined(CONFIG_CPU_BMIPS5000)
224
225/*
226 * BMIPS5000 raceless IPIs
227 *
228 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
229 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
230 * IPI1 is used for SMP_CALL_FUNCTION
231 */
232
233static void bmips_send_ipi_single(int cpu, unsigned int action)
234{
235	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
236}
237
238static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
239{
240	int action = irq - IPI0_IRQ;
241
242	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
243
244	if (action == 0)
245		scheduler_ipi();
246	else
247		smp_call_function_interrupt();
248
249	return IRQ_HANDLED;
250}
251
252#else
 
 
 
 
 
 
 
253
254/*
255 * BMIPS43xx racey IPIs
256 *
257 * We use one inbound SW IRQ for each CPU.
258 *
259 * A spinlock must be held in order to keep CPUx from accidentally clearing
260 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
261 * same spinlock is used to protect the action masks.
262 */
263
264static DEFINE_SPINLOCK(ipi_lock);
265static DEFINE_PER_CPU(int, ipi_action_mask);
266
267static void bmips_send_ipi_single(int cpu, unsigned int action)
268{
269	unsigned long flags;
270
271	spin_lock_irqsave(&ipi_lock, flags);
272	set_c0_cause(cpu ? C_SW1 : C_SW0);
273	per_cpu(ipi_action_mask, cpu) |= action;
274	irq_enable_hazard();
275	spin_unlock_irqrestore(&ipi_lock, flags);
276}
277
278static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
279{
280	unsigned long flags;
281	int action, cpu = irq - IPI0_IRQ;
282
283	spin_lock_irqsave(&ipi_lock, flags);
284	action = __get_cpu_var(ipi_action_mask);
285	per_cpu(ipi_action_mask, cpu) = 0;
286	clear_c0_cause(cpu ? C_SW1 : C_SW0);
287	spin_unlock_irqrestore(&ipi_lock, flags);
288
289	if (action & SMP_RESCHEDULE_YOURSELF)
290		scheduler_ipi();
291	if (action & SMP_CALL_FUNCTION)
292		smp_call_function_interrupt();
293
294	return IRQ_HANDLED;
295}
296
297#endif /* BMIPS type */
298
299static void bmips_send_ipi_mask(const struct cpumask *mask,
300	unsigned int action)
301{
302	unsigned int i;
303
304	for_each_cpu(i, mask)
305		bmips_send_ipi_single(i, action);
306}
307
308#ifdef CONFIG_HOTPLUG_CPU
309
310static int bmips_cpu_disable(void)
311{
312	unsigned int cpu = smp_processor_id();
313
314	if (cpu == 0)
315		return -EBUSY;
316
317	pr_info("SMP: CPU%d is offline\n", cpu);
318
319	set_cpu_online(cpu, false);
320	cpu_clear(cpu, cpu_callin_map);
321
322	local_flush_tlb_all();
323	local_flush_icache_range(0, ~0);
324
325	return 0;
326}
327
328static void bmips_cpu_die(unsigned int cpu)
329{
330}
331
332void __ref play_dead(void)
333{
334	idle_task_exit();
335
336	/* flush data cache */
337	_dma_cache_wback_inv(0, ~0);
338
339	/*
340	 * Wakeup is on SW0 or SW1; disable everything else
341	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
342	 * IRQ handlers; this clears ST0_IE and returns immediately.
343	 */
344	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
345	change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
346		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
347	irq_disable_hazard();
348
349	/*
350	 * wait for SW interrupt from bmips_boot_secondary(), then jump
351	 * back to start_secondary()
352	 */
353	__asm__ __volatile__(
354	"	wait\n"
355	"	j	bmips_secondary_reentry\n"
356	: : : "memory");
357}
358
359#endif /* CONFIG_HOTPLUG_CPU */
360
361struct plat_smp_ops bmips_smp_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362	.smp_setup		= bmips_smp_setup,
363	.prepare_cpus		= bmips_prepare_cpus,
364	.boot_secondary		= bmips_boot_secondary,
365	.smp_finish		= bmips_smp_finish,
366	.init_secondary		= bmips_init_secondary,
367	.cpus_done		= bmips_cpus_done,
368	.send_ipi_single	= bmips_send_ipi_single,
369	.send_ipi_mask		= bmips_send_ipi_mask,
370#ifdef CONFIG_HOTPLUG_CPU
371	.cpu_disable		= bmips_cpu_disable,
372	.cpu_die		= bmips_cpu_die,
373#endif
374};
375
376#endif /* CONFIG_SMP */
377
378/***********************************************************************
379 * BMIPS vector relocation
380 * This is primarily used for SMP boot, but it is applicable to some
381 * UP BMIPS systems as well.
382 ***********************************************************************/
383
384static void __cpuinit bmips_wr_vec(unsigned long dst, char *start, char *end)
385{
386	memcpy((void *)dst, start, end - start);
387	dma_cache_wback((unsigned long)start, end - start);
388	local_flush_icache_range(dst, dst + (end - start));
389	instruction_hazard();
390}
391
392static inline void __cpuinit bmips_nmi_handler_setup(void)
393{
394	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
395		&bmips_reset_nmi_vec_end);
396	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
397		&bmips_smp_int_vec_end);
398}
399
400void __cpuinit bmips_ebase_setup(void)
401{
402	unsigned long new_ebase = ebase;
403	void __iomem __maybe_unused *cbr;
404
405	BUG_ON(ebase != CKSEG0);
406
407#if defined(CONFIG_CPU_BMIPS4350)
408	/*
409	 * BMIPS4350 cannot relocate the normal vectors, but it
410	 * can relocate the BEV=1 vectors.  So CPU1 starts up at
411	 * the relocated BEV=1, IV=0 general exception vector @
412	 * 0xa000_0380.
413	 *
414	 * set_uncached_handler() is used here because:
415	 *  - CPU1 will run this from uncached space
416	 *  - None of the cacheflush functions are set up yet
417	 */
418	set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
419		&bmips_smp_int_vec, 0x80);
420	__sync();
421	return;
422#elif defined(CONFIG_CPU_BMIPS4380)
423	/*
424	 * 0x8000_0000: reset/NMI (initially in kseg1)
425	 * 0x8000_0400: normal vectors
426	 */
427	new_ebase = 0x80000400;
428	cbr = BMIPS_GET_CBR();
429	__raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
430	__raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
431#elif defined(CONFIG_CPU_BMIPS5000)
432	/*
433	 * 0x8000_0000: reset/NMI (initially in kseg1)
434	 * 0x8000_1000: normal vectors
435	 */
436	new_ebase = 0x80001000;
437	write_c0_brcm_bootvec(0xa0088008);
438	write_c0_ebase(new_ebase);
439	if (max_cpus > 2)
440		bmips_write_zscm_reg(0xa0, 0xa008a008);
441#else
442	return;
443#endif
 
 
 
 
444	board_nmi_handler_setup = &bmips_nmi_handler_setup;
445	ebase = new_ebase;
446}
447
448asmlinkage void __weak plat_wired_tlb_setup(void)
449{
450	/*
451	 * Called when starting/restarting a secondary CPU.
452	 * Kernel stacks and other important data might only be accessible
453	 * once the wired entries are present.
454	 */
455}
v3.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 13#include <linux/mm.h>
 14#include <linux/delay.h>
 15#include <linux/smp.h>
 16#include <linux/interrupt.h>
 17#include <linux/spinlock.h>
 18#include <linux/cpu.h>
 19#include <linux/cpumask.h>
 20#include <linux/reboot.h>
 21#include <linux/io.h>
 22#include <linux/compiler.h>
 23#include <linux/linkage.h>
 24#include <linux/bug.h>
 25#include <linux/kernel.h>
 26
 27#include <asm/time.h>
 28#include <asm/pgtable.h>
 29#include <asm/processor.h>
 30#include <asm/bootinfo.h>
 31#include <asm/pmon.h>
 32#include <asm/cacheflush.h>
 33#include <asm/tlbflush.h>
 34#include <asm/mipsregs.h>
 35#include <asm/bmips.h>
 36#include <asm/traps.h>
 37#include <asm/barrier.h>
 38
 39static int __maybe_unused max_cpus = 1;
 40
 41/* these may be configured by the platform code */
 42int bmips_smp_enabled = 1;
 43int bmips_cpu_offset;
 44cpumask_t bmips_booted_mask;
 45
 46#ifdef CONFIG_SMP
 47
 48/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 49unsigned long bmips_smp_boot_sp;
 50unsigned long bmips_smp_boot_gp;
 51
 52static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 53static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 54static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 55static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 56
 57/* SW interrupts 0,1 are used for interprocessor signaling */
 58#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 59#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 60
 61#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 62#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 63#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 64#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 65
 66static void __init bmips_smp_setup(void)
 67{
 68	int i, cpu = 1, boot_cpu = 0;
 69	int cpu_hw_intr;
 70
 71	switch (current_cpu_type()) {
 72	case CPU_BMIPS4350:
 73	case CPU_BMIPS4380:
 74		/* arbitration priority */
 75		clear_c0_brcm_cmt_ctrl(0x30);
 76
 77		/* NBK and weak order flags */
 78		set_c0_brcm_config_0(0x30000);
 79
 80		/* Find out if we are running on TP0 or TP1 */
 81		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 82
 83		/*
 84		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 85		 * thread
 86		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 87		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 88		 */
 89		if (boot_cpu == 0)
 90			cpu_hw_intr = 0x02;
 91		else
 92			cpu_hw_intr = 0x1d;
 93
 94		change_c0_brcm_cmt_intr(0xf8018000,
 95					(cpu_hw_intr << 27) | (0x03 << 15));
 96
 97		/* single core, 2 threads (2 pipelines) */
 98		max_cpus = 2;
 99
100		break;
101	case CPU_BMIPS5000:
102		/* enable raceless SW interrupts */
103		set_c0_brcm_config(0x03 << 22);
104
105		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
106		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
107
108		/* N cores, 2 threads per core */
109		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
110
111		/* clear any pending SW interrupts */
112		for (i = 0; i < max_cpus; i++) {
113			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
114			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
115		}
116
117		break;
118	default:
119		max_cpus = 1;
 
120	}
 
121
122	if (!bmips_smp_enabled)
123		max_cpus = 1;
124
125	/* this can be overridden by the BSP */
126	if (!board_ebase_setup)
127		board_ebase_setup = &bmips_ebase_setup;
128
129	__cpu_number_map[boot_cpu] = 0;
130	__cpu_logical_map[0] = boot_cpu;
131
132	for (i = 0; i < max_cpus; i++) {
133		if (i != boot_cpu) {
134			__cpu_number_map[i] = cpu;
135			__cpu_logical_map[cpu] = i;
136			cpu++;
137		}
138		set_cpu_possible(i, 1);
139		set_cpu_present(i, 1);
140	}
141}
142
143/*
144 * IPI IRQ setup - runs on CPU0
145 */
146static void bmips_prepare_cpus(unsigned int max_cpus)
147{
148	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
149
150	switch (current_cpu_type()) {
151	case CPU_BMIPS4350:
152	case CPU_BMIPS4380:
153		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
154		break;
155	case CPU_BMIPS5000:
156		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
157		break;
158	default:
159		return;
160	}
161
162	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
163			"smp_ipi0", NULL))
164		panic("Can't request IPI0 interrupt");
165	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
166			"smp_ipi1", NULL))
167		panic("Can't request IPI1 interrupt");
168}
169
170/*
171 * Tell the hardware to boot CPUx - runs on CPU0
172 */
173static void bmips_boot_secondary(int cpu, struct task_struct *idle)
174{
175	bmips_smp_boot_sp = __KSTK_TOS(idle);
176	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
177	mb();
178
179	/*
180	 * Initial boot sequence for secondary CPU:
181	 *   bmips_reset_nmi_vec @ a000_0000 ->
182	 *   bmips_smp_entry ->
183	 *   plat_wired_tlb_setup (cached function call; optional) ->
184	 *   start_secondary (cached jump)
185	 *
186	 * Warm restart sequence:
187	 *   play_dead WAIT loop ->
188	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
189	 *   eret to play_dead ->
190	 *   bmips_secondary_reentry ->
191	 *   start_secondary
192	 */
193
194	pr_info("SMP: Booting CPU%d...\n", cpu);
195
196	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
197		switch (current_cpu_type()) {
198		case CPU_BMIPS4350:
199		case CPU_BMIPS4380:
200			bmips43xx_send_ipi_single(cpu, 0);
201			break;
202		case CPU_BMIPS5000:
203			bmips5000_send_ipi_single(cpu, 0);
204			break;
205		}
206	}
207	else {
208		switch (current_cpu_type()) {
209		case CPU_BMIPS4350:
210		case CPU_BMIPS4380:
211			/* Reset slave TP1 if booting from TP0 */
212			if (cpu_logical_map(cpu) == 1)
213				set_c0_brcm_cmt_ctrl(0x01);
214			break;
215		case CPU_BMIPS5000:
216			if (cpu & 0x01)
217				write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
218			else {
219				/*
220				 * core N thread 0 was already booted; just
221				 * pulse the NMI line
222				 */
223				bmips_write_zscm_reg(0x210, 0xc0000000);
224				udelay(10);
225				bmips_write_zscm_reg(0x210, 0x00);
226			}
227			break;
228		}
 
229		cpumask_set_cpu(cpu, &bmips_booted_mask);
230	}
231}
232
233/*
234 * Early setup - runs on secondary CPU after cache probe
235 */
236static void bmips_init_secondary(void)
237{
238	/* move NMI vector to kseg0, in case XKS01 is enabled */
239
240	void __iomem *cbr;
 
241	unsigned long old_vec;
242	unsigned long relo_vector;
243	int boot_cpu;
244
245	switch (current_cpu_type()) {
246	case CPU_BMIPS4350:
247	case CPU_BMIPS4380:
248		cbr = BMIPS_GET_CBR();
249
250		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
251		relo_vector = boot_cpu ? BMIPS_RELO_VECTOR_CONTROL_0 :
252				  BMIPS_RELO_VECTOR_CONTROL_1;
253
254		old_vec = __raw_readl(cbr + relo_vector);
255		__raw_writel(old_vec & ~0x20000000, cbr + relo_vector);
256
257		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
258		break;
259	case CPU_BMIPS5000:
260		write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
261			(smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
262
263		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
264		break;
265	}
266}
267
268/*
269 * Late setup - runs on secondary CPU before entering the idle loop
270 */
271static void bmips_smp_finish(void)
272{
273	pr_info("SMP: CPU%d is running\n", smp_processor_id());
274
275	/* make sure there won't be a timer interrupt for a little while */
276	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
277
278	irq_enable_hazard();
279	set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
280	irq_enable_hazard();
281}
282
283/*
284 * Runs on CPU0 after all CPUs have been booted
285 */
286static void bmips_cpus_done(void)
287{
288}
289
 
 
290/*
291 * BMIPS5000 raceless IPIs
292 *
293 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
294 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
295 * IPI1 is used for SMP_CALL_FUNCTION
296 */
297
298static void bmips5000_send_ipi_single(int cpu, unsigned int action)
299{
300	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
301}
302
303static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
304{
305	int action = irq - IPI0_IRQ;
306
307	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
308
309	if (action == 0)
310		scheduler_ipi();
311	else
312		smp_call_function_interrupt();
313
314	return IRQ_HANDLED;
315}
316
317static void bmips5000_send_ipi_mask(const struct cpumask *mask,
318	unsigned int action)
319{
320	unsigned int i;
321
322	for_each_cpu(i, mask)
323		bmips5000_send_ipi_single(i, action);
324}
325
326/*
327 * BMIPS43xx racey IPIs
328 *
329 * We use one inbound SW IRQ for each CPU.
330 *
331 * A spinlock must be held in order to keep CPUx from accidentally clearing
332 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
333 * same spinlock is used to protect the action masks.
334 */
335
336static DEFINE_SPINLOCK(ipi_lock);
337static DEFINE_PER_CPU(int, ipi_action_mask);
338
339static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
340{
341	unsigned long flags;
342
343	spin_lock_irqsave(&ipi_lock, flags);
344	set_c0_cause(cpu ? C_SW1 : C_SW0);
345	per_cpu(ipi_action_mask, cpu) |= action;
346	irq_enable_hazard();
347	spin_unlock_irqrestore(&ipi_lock, flags);
348}
349
350static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
351{
352	unsigned long flags;
353	int action, cpu = irq - IPI0_IRQ;
354
355	spin_lock_irqsave(&ipi_lock, flags);
356	action = __get_cpu_var(ipi_action_mask);
357	per_cpu(ipi_action_mask, cpu) = 0;
358	clear_c0_cause(cpu ? C_SW1 : C_SW0);
359	spin_unlock_irqrestore(&ipi_lock, flags);
360
361	if (action & SMP_RESCHEDULE_YOURSELF)
362		scheduler_ipi();
363	if (action & SMP_CALL_FUNCTION)
364		smp_call_function_interrupt();
365
366	return IRQ_HANDLED;
367}
368
369static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
 
 
370	unsigned int action)
371{
372	unsigned int i;
373
374	for_each_cpu(i, mask)
375		bmips43xx_send_ipi_single(i, action);
376}
377
378#ifdef CONFIG_HOTPLUG_CPU
379
380static int bmips_cpu_disable(void)
381{
382	unsigned int cpu = smp_processor_id();
383
384	if (cpu == 0)
385		return -EBUSY;
386
387	pr_info("SMP: CPU%d is offline\n", cpu);
388
389	set_cpu_online(cpu, false);
390	cpu_clear(cpu, cpu_callin_map);
391
392	local_flush_tlb_all();
393	local_flush_icache_range(0, ~0);
394
395	return 0;
396}
397
398static void bmips_cpu_die(unsigned int cpu)
399{
400}
401
402void __ref play_dead(void)
403{
404	idle_task_exit();
405
406	/* flush data cache */
407	_dma_cache_wback_inv(0, ~0);
408
409	/*
410	 * Wakeup is on SW0 or SW1; disable everything else
411	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
412	 * IRQ handlers; this clears ST0_IE and returns immediately.
413	 */
414	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
415	change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
416		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
417	irq_disable_hazard();
418
419	/*
420	 * wait for SW interrupt from bmips_boot_secondary(), then jump
421	 * back to start_secondary()
422	 */
423	__asm__ __volatile__(
424	"	wait\n"
425	"	j	bmips_secondary_reentry\n"
426	: : : "memory");
427}
428
429#endif /* CONFIG_HOTPLUG_CPU */
430
431struct plat_smp_ops bmips43xx_smp_ops = {
432	.smp_setup		= bmips_smp_setup,
433	.prepare_cpus		= bmips_prepare_cpus,
434	.boot_secondary		= bmips_boot_secondary,
435	.smp_finish		= bmips_smp_finish,
436	.init_secondary		= bmips_init_secondary,
437	.cpus_done		= bmips_cpus_done,
438	.send_ipi_single	= bmips43xx_send_ipi_single,
439	.send_ipi_mask		= bmips43xx_send_ipi_mask,
440#ifdef CONFIG_HOTPLUG_CPU
441	.cpu_disable		= bmips_cpu_disable,
442	.cpu_die		= bmips_cpu_die,
443#endif
444};
445
446struct plat_smp_ops bmips5000_smp_ops = {
447	.smp_setup		= bmips_smp_setup,
448	.prepare_cpus		= bmips_prepare_cpus,
449	.boot_secondary		= bmips_boot_secondary,
450	.smp_finish		= bmips_smp_finish,
451	.init_secondary		= bmips_init_secondary,
452	.cpus_done		= bmips_cpus_done,
453	.send_ipi_single	= bmips5000_send_ipi_single,
454	.send_ipi_mask		= bmips5000_send_ipi_mask,
455#ifdef CONFIG_HOTPLUG_CPU
456	.cpu_disable		= bmips_cpu_disable,
457	.cpu_die		= bmips_cpu_die,
458#endif
459};
460
461#endif /* CONFIG_SMP */
462
463/***********************************************************************
464 * BMIPS vector relocation
465 * This is primarily used for SMP boot, but it is applicable to some
466 * UP BMIPS systems as well.
467 ***********************************************************************/
468
469static void bmips_wr_vec(unsigned long dst, char *start, char *end)
470{
471	memcpy((void *)dst, start, end - start);
472	dma_cache_wback((unsigned long)start, end - start);
473	local_flush_icache_range(dst, dst + (end - start));
474	instruction_hazard();
475}
476
477static inline void bmips_nmi_handler_setup(void)
478{
479	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
480		&bmips_reset_nmi_vec_end);
481	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
482		&bmips_smp_int_vec_end);
483}
484
485void bmips_ebase_setup(void)
486{
487	unsigned long new_ebase = ebase;
488	void __iomem __maybe_unused *cbr;
489
490	BUG_ON(ebase != CKSEG0);
491
492	switch (current_cpu_type()) {
493	case CPU_BMIPS4350:
494		/*
495		 * BMIPS4350 cannot relocate the normal vectors, but it
496		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
497		 * the relocated BEV=1, IV=0 general exception vector @
498		 * 0xa000_0380.
499		 *
500		 * set_uncached_handler() is used here because:
501		 *  - CPU1 will run this from uncached space
502		 *  - None of the cacheflush functions are set up yet
503		 */
504		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
505			&bmips_smp_int_vec, 0x80);
506		__sync();
507		return;
508	case CPU_BMIPS4380:
509		/*
510		 * 0x8000_0000: reset/NMI (initially in kseg1)
511		 * 0x8000_0400: normal vectors
512		 */
513		new_ebase = 0x80000400;
514		cbr = BMIPS_GET_CBR();
515		__raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
516		__raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
517		break;
518	case CPU_BMIPS5000:
519		/*
520		 * 0x8000_0000: reset/NMI (initially in kseg1)
521		 * 0x8000_1000: normal vectors
522		 */
523		new_ebase = 0x80001000;
524		write_c0_brcm_bootvec(0xa0088008);
525		write_c0_ebase(new_ebase);
526		if (max_cpus > 2)
527			bmips_write_zscm_reg(0xa0, 0xa008a008);
528		break;
529	default:
530		return;
531	}
532
533	board_nmi_handler_setup = &bmips_nmi_handler_setup;
534	ebase = new_ebase;
535}
536
537asmlinkage void __weak plat_wired_tlb_setup(void)
538{
539	/*
540	 * Called when starting/restarting a secondary CPU.
541	 * Kernel stacks and other important data might only be accessible
542	 * once the wired entries are present.
543	 */
544}