Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 *  arch/arm/include/asm/cacheflush.h
  3 *
  4 *  Copyright (C) 1999-2002 Russell King
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#ifndef _ASMARM_CACHEFLUSH_H
 11#define _ASMARM_CACHEFLUSH_H
 12
 13#include <linux/mm.h>
 14
 15#include <asm/glue-cache.h>
 16#include <asm/shmparam.h>
 17#include <asm/cachetype.h>
 18#include <asm/outercache.h>
 19
 20#define CACHE_COLOUR(vaddr)	((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
 21
 22/*
 23 * This flag is used to indicate that the page pointed to by a pte is clean
 24 * and does not require cleaning before returning it to the user.
 25 */
 26#define PG_dcache_clean PG_arch_1
 27
 28/*
 29 *	MM Cache Management
 30 *	===================
 31 *
 32 *	The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
 33 *	implement these methods.
 34 *
 35 *	Start addresses are inclusive and end addresses are exclusive;
 36 *	start addresses should be rounded down, end addresses up.
 37 *
 38 *	See Documentation/cachetlb.txt for more information.
 39 *	Please note that the implementation of these, and the required
 40 *	effects are cache-type (VIVT/VIPT/PIPT) specific.
 41 *
 42 *	flush_icache_all()
 43 *
 44 *		Unconditionally clean and invalidate the entire icache.
 45 *		Currently only needed for cache-v6.S and cache-v7.S, see
 46 *		__flush_icache_all for the generic implementation.
 47 *
 48 *	flush_kern_all()
 49 *
 50 *		Unconditionally clean and invalidate the entire cache.
 51 *
 
 
 
 
 
 
 
 52 *	flush_user_all()
 53 *
 54 *		Clean and invalidate all user space cache entries
 55 *		before a change of page tables.
 56 *
 57 *	flush_user_range(start, end, flags)
 58 *
 59 *		Clean and invalidate a range of cache entries in the
 60 *		specified address space before a change of page tables.
 61 *		- start - user start address (inclusive, page aligned)
 62 *		- end   - user end address   (exclusive, page aligned)
 63 *		- flags - vma->vm_flags field
 64 *
 65 *	coherent_kern_range(start, end)
 66 *
 67 *		Ensure coherency between the Icache and the Dcache in the
 68 *		region described by start, end.  If you have non-snooping
 69 *		Harvard caches, you need to implement this function.
 70 *		- start  - virtual start address
 71 *		- end    - virtual end address
 72 *
 73 *	coherent_user_range(start, end)
 74 *
 75 *		Ensure coherency between the Icache and the Dcache in the
 76 *		region described by start, end.  If you have non-snooping
 77 *		Harvard caches, you need to implement this function.
 78 *		- start  - virtual start address
 79 *		- end    - virtual end address
 80 *
 81 *	flush_kern_dcache_area(kaddr, size)
 82 *
 83 *		Ensure that the data held in page is written back.
 84 *		- kaddr  - page address
 85 *		- size   - region size
 86 *
 87 *	DMA Cache Coherency
 88 *	===================
 89 *
 90 *	dma_flush_range(start, end)
 91 *
 92 *		Clean and invalidate the specified virtual address range.
 93 *		- start  - virtual start address
 94 *		- end    - virtual end address
 95 */
 96
 97struct cpu_cache_fns {
 98	void (*flush_icache_all)(void);
 99	void (*flush_kern_all)(void);
 
100	void (*flush_user_all)(void);
101	void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
102
103	void (*coherent_kern_range)(unsigned long, unsigned long);
104	int  (*coherent_user_range)(unsigned long, unsigned long);
105	void (*flush_kern_dcache_area)(void *, size_t);
106
107	void (*dma_map_area)(const void *, size_t, int);
108	void (*dma_unmap_area)(const void *, size_t, int);
109
110	void (*dma_flush_range)(const void *, const void *);
111};
112
113/*
114 * Select the calling method
115 */
116#ifdef MULTI_CACHE
117
118extern struct cpu_cache_fns cpu_cache;
119
120#define __cpuc_flush_icache_all		cpu_cache.flush_icache_all
121#define __cpuc_flush_kern_all		cpu_cache.flush_kern_all
 
122#define __cpuc_flush_user_all		cpu_cache.flush_user_all
123#define __cpuc_flush_user_range		cpu_cache.flush_user_range
124#define __cpuc_coherent_kern_range	cpu_cache.coherent_kern_range
125#define __cpuc_coherent_user_range	cpu_cache.coherent_user_range
126#define __cpuc_flush_dcache_area	cpu_cache.flush_kern_dcache_area
127
128/*
129 * These are private to the dma-mapping API.  Do not use directly.
130 * Their sole purpose is to ensure that data held in the cache
131 * is visible to DMA, or data written by DMA to system memory is
132 * visible to the CPU.
133 */
134#define dmac_map_area			cpu_cache.dma_map_area
135#define dmac_unmap_area			cpu_cache.dma_unmap_area
136#define dmac_flush_range		cpu_cache.dma_flush_range
137
138#else
139
140extern void __cpuc_flush_icache_all(void);
141extern void __cpuc_flush_kern_all(void);
 
142extern void __cpuc_flush_user_all(void);
143extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
144extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
145extern int  __cpuc_coherent_user_range(unsigned long, unsigned long);
146extern void __cpuc_flush_dcache_area(void *, size_t);
147
148/*
149 * These are private to the dma-mapping API.  Do not use directly.
150 * Their sole purpose is to ensure that data held in the cache
151 * is visible to DMA, or data written by DMA to system memory is
152 * visible to the CPU.
153 */
154extern void dmac_map_area(const void *, size_t, int);
155extern void dmac_unmap_area(const void *, size_t, int);
156extern void dmac_flush_range(const void *, const void *);
157
158#endif
159
160/*
161 * Copy user data from/to a page which is mapped into a different
162 * processes address space.  Really, we want to allow our "user
163 * space" model to handle this.
164 */
165extern void copy_to_user_page(struct vm_area_struct *, struct page *,
166	unsigned long, void *, const void *, unsigned long);
167#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
168	do {							\
169		memcpy(dst, src, len);				\
170	} while (0)
171
172/*
173 * Convert calls to our calling convention.
174 */
175
176/* Invalidate I-cache */
177#define __flush_icache_all_generic()					\
178	asm("mcr	p15, 0, %0, c7, c5, 0"				\
179	    : : "r" (0));
180
181/* Invalidate I-cache inner shareable */
182#define __flush_icache_all_v7_smp()					\
183	asm("mcr	p15, 0, %0, c7, c1, 0"				\
184	    : : "r" (0));
185
186/*
187 * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
188 * will fall through to use __flush_icache_all_generic.
189 */
190#if (defined(CONFIG_CPU_V7) && \
191     (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
192	defined(CONFIG_SMP_ON_UP)
193#define __flush_icache_preferred	__cpuc_flush_icache_all
194#elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
195#define __flush_icache_preferred	__flush_icache_all_v7_smp
196#elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
197#define __flush_icache_preferred	__cpuc_flush_icache_all
198#else
199#define __flush_icache_preferred	__flush_icache_all_generic
200#endif
201
202static inline void __flush_icache_all(void)
203{
204	__flush_icache_preferred();
 
205}
206
 
 
 
 
 
207#define flush_cache_all()		__cpuc_flush_kern_all()
208
209static inline void vivt_flush_cache_mm(struct mm_struct *mm)
210{
211	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
212		__cpuc_flush_user_all();
213}
214
215static inline void
216vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
217{
218	struct mm_struct *mm = vma->vm_mm;
219
220	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
221		__cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
222					vma->vm_flags);
223}
224
225static inline void
226vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
227{
228	struct mm_struct *mm = vma->vm_mm;
229
230	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
231		unsigned long addr = user_addr & PAGE_MASK;
232		__cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
233	}
234}
235
236#ifndef CONFIG_CPU_CACHE_VIPT
237#define flush_cache_mm(mm) \
238		vivt_flush_cache_mm(mm)
239#define flush_cache_range(vma,start,end) \
240		vivt_flush_cache_range(vma,start,end)
241#define flush_cache_page(vma,addr,pfn) \
242		vivt_flush_cache_page(vma,addr,pfn)
243#else
244extern void flush_cache_mm(struct mm_struct *mm);
245extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
246extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
247#endif
248
249#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
250
251/*
252 * flush_cache_user_range is used when we want to ensure that the
253 * Harvard caches are synchronised for the user space address range.
254 * This is used for the ARM private sys_cacheflush system call.
255 */
256#define flush_cache_user_range(start,end) \
257	__cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
258
259/*
260 * Perform necessary cache operations to ensure that data previously
261 * stored within this range of addresses can be executed by the CPU.
262 */
263#define flush_icache_range(s,e)		__cpuc_coherent_kern_range(s,e)
264
265/*
266 * Perform necessary cache operations to ensure that the TLB will
267 * see data written in the specified area.
268 */
269#define clean_dcache_area(start,size)	cpu_dcache_clean_area(start, size)
270
271/*
272 * flush_dcache_page is used when the kernel has written to the page
273 * cache page at virtual address page->virtual.
274 *
275 * If this page isn't mapped (ie, page_mapping == NULL), or it might
276 * have userspace mappings, then we _must_ always clean + invalidate
277 * the dcache entries associated with the kernel mapping.
278 *
279 * Otherwise we can defer the operation, and clean the cache when we are
280 * about to change to user space.  This is the same method as used on SPARC64.
281 * See update_mmu_cache for the user space part.
282 */
283#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
284extern void flush_dcache_page(struct page *);
285
286static inline void flush_kernel_vmap_range(void *addr, int size)
287{
288	if ((cache_is_vivt() || cache_is_vipt_aliasing()))
289	  __cpuc_flush_dcache_area(addr, (size_t)size);
290}
291static inline void invalidate_kernel_vmap_range(void *addr, int size)
292{
293	if ((cache_is_vivt() || cache_is_vipt_aliasing()))
294	  __cpuc_flush_dcache_area(addr, (size_t)size);
295}
296
297#define ARCH_HAS_FLUSH_ANON_PAGE
298static inline void flush_anon_page(struct vm_area_struct *vma,
299			 struct page *page, unsigned long vmaddr)
300{
301	extern void __flush_anon_page(struct vm_area_struct *vma,
302				struct page *, unsigned long);
303	if (PageAnon(page))
304		__flush_anon_page(vma, page, vmaddr);
305}
306
307#define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
308static inline void flush_kernel_dcache_page(struct page *page)
309{
310}
311
312#define flush_dcache_mmap_lock(mapping) \
313	spin_lock_irq(&(mapping)->tree_lock)
314#define flush_dcache_mmap_unlock(mapping) \
315	spin_unlock_irq(&(mapping)->tree_lock)
316
317#define flush_icache_user_range(vma,page,addr,len) \
318	flush_dcache_page(page)
319
320/*
321 * We don't appear to need to do anything here.  In fact, if we did, we'd
322 * duplicate cache flushing elsewhere performed by flush_dcache_page().
323 */
324#define flush_icache_page(vma,page)	do { } while (0)
325
326/*
327 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
328 * vmalloc, ioremap etc) in kernel space for pages.  On non-VIPT
329 * caches, since the direct-mappings of these pages may contain cached
330 * data, we need to do a full cache flush to ensure that writebacks
331 * don't corrupt data placed into these pages via the new mappings.
332 */
333static inline void flush_cache_vmap(unsigned long start, unsigned long end)
334{
335	if (!cache_is_vipt_nonaliasing())
336		flush_cache_all();
337	else
338		/*
339		 * set_pte_at() called from vmap_pte_range() does not
340		 * have a DSB after cleaning the cache line.
341		 */
342		dsb();
343}
344
345static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
346{
347	if (!cache_is_vipt_nonaliasing())
348		flush_cache_all();
349}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350
351#endif
v3.15
  1/*
  2 *  arch/arm/include/asm/cacheflush.h
  3 *
  4 *  Copyright (C) 1999-2002 Russell King
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#ifndef _ASMARM_CACHEFLUSH_H
 11#define _ASMARM_CACHEFLUSH_H
 12
 13#include <linux/mm.h>
 14
 15#include <asm/glue-cache.h>
 16#include <asm/shmparam.h>
 17#include <asm/cachetype.h>
 18#include <asm/outercache.h>
 19
 20#define CACHE_COLOUR(vaddr)	((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
 21
 22/*
 23 * This flag is used to indicate that the page pointed to by a pte is clean
 24 * and does not require cleaning before returning it to the user.
 25 */
 26#define PG_dcache_clean PG_arch_1
 27
 28/*
 29 *	MM Cache Management
 30 *	===================
 31 *
 32 *	The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
 33 *	implement these methods.
 34 *
 35 *	Start addresses are inclusive and end addresses are exclusive;
 36 *	start addresses should be rounded down, end addresses up.
 37 *
 38 *	See Documentation/cachetlb.txt for more information.
 39 *	Please note that the implementation of these, and the required
 40 *	effects are cache-type (VIVT/VIPT/PIPT) specific.
 41 *
 42 *	flush_icache_all()
 43 *
 44 *		Unconditionally clean and invalidate the entire icache.
 45 *		Currently only needed for cache-v6.S and cache-v7.S, see
 46 *		__flush_icache_all for the generic implementation.
 47 *
 48 *	flush_kern_all()
 49 *
 50 *		Unconditionally clean and invalidate the entire cache.
 51 *
 52 *     flush_kern_louis()
 53 *
 54 *             Flush data cache levels up to the level of unification
 55 *             inner shareable and invalidate the I-cache.
 56 *             Only needed from v7 onwards, falls back to flush_cache_all()
 57 *             for all other processor versions.
 58 *
 59 *	flush_user_all()
 60 *
 61 *		Clean and invalidate all user space cache entries
 62 *		before a change of page tables.
 63 *
 64 *	flush_user_range(start, end, flags)
 65 *
 66 *		Clean and invalidate a range of cache entries in the
 67 *		specified address space before a change of page tables.
 68 *		- start - user start address (inclusive, page aligned)
 69 *		- end   - user end address   (exclusive, page aligned)
 70 *		- flags - vma->vm_flags field
 71 *
 72 *	coherent_kern_range(start, end)
 73 *
 74 *		Ensure coherency between the Icache and the Dcache in the
 75 *		region described by start, end.  If you have non-snooping
 76 *		Harvard caches, you need to implement this function.
 77 *		- start  - virtual start address
 78 *		- end    - virtual end address
 79 *
 80 *	coherent_user_range(start, end)
 81 *
 82 *		Ensure coherency between the Icache and the Dcache in the
 83 *		region described by start, end.  If you have non-snooping
 84 *		Harvard caches, you need to implement this function.
 85 *		- start  - virtual start address
 86 *		- end    - virtual end address
 87 *
 88 *	flush_kern_dcache_area(kaddr, size)
 89 *
 90 *		Ensure that the data held in page is written back.
 91 *		- kaddr  - page address
 92 *		- size   - region size
 93 *
 94 *	DMA Cache Coherency
 95 *	===================
 96 *
 97 *	dma_flush_range(start, end)
 98 *
 99 *		Clean and invalidate the specified virtual address range.
100 *		- start  - virtual start address
101 *		- end    - virtual end address
102 */
103
104struct cpu_cache_fns {
105	void (*flush_icache_all)(void);
106	void (*flush_kern_all)(void);
107	void (*flush_kern_louis)(void);
108	void (*flush_user_all)(void);
109	void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
110
111	void (*coherent_kern_range)(unsigned long, unsigned long);
112	int  (*coherent_user_range)(unsigned long, unsigned long);
113	void (*flush_kern_dcache_area)(void *, size_t);
114
115	void (*dma_map_area)(const void *, size_t, int);
116	void (*dma_unmap_area)(const void *, size_t, int);
117
118	void (*dma_flush_range)(const void *, const void *);
119};
120
121/*
122 * Select the calling method
123 */
124#ifdef MULTI_CACHE
125
126extern struct cpu_cache_fns cpu_cache;
127
128#define __cpuc_flush_icache_all		cpu_cache.flush_icache_all
129#define __cpuc_flush_kern_all		cpu_cache.flush_kern_all
130#define __cpuc_flush_kern_louis		cpu_cache.flush_kern_louis
131#define __cpuc_flush_user_all		cpu_cache.flush_user_all
132#define __cpuc_flush_user_range		cpu_cache.flush_user_range
133#define __cpuc_coherent_kern_range	cpu_cache.coherent_kern_range
134#define __cpuc_coherent_user_range	cpu_cache.coherent_user_range
135#define __cpuc_flush_dcache_area	cpu_cache.flush_kern_dcache_area
136
137/*
138 * These are private to the dma-mapping API.  Do not use directly.
139 * Their sole purpose is to ensure that data held in the cache
140 * is visible to DMA, or data written by DMA to system memory is
141 * visible to the CPU.
142 */
143#define dmac_map_area			cpu_cache.dma_map_area
144#define dmac_unmap_area			cpu_cache.dma_unmap_area
145#define dmac_flush_range		cpu_cache.dma_flush_range
146
147#else
148
149extern void __cpuc_flush_icache_all(void);
150extern void __cpuc_flush_kern_all(void);
151extern void __cpuc_flush_kern_louis(void);
152extern void __cpuc_flush_user_all(void);
153extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
154extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
155extern int  __cpuc_coherent_user_range(unsigned long, unsigned long);
156extern void __cpuc_flush_dcache_area(void *, size_t);
157
158/*
159 * These are private to the dma-mapping API.  Do not use directly.
160 * Their sole purpose is to ensure that data held in the cache
161 * is visible to DMA, or data written by DMA to system memory is
162 * visible to the CPU.
163 */
164extern void dmac_map_area(const void *, size_t, int);
165extern void dmac_unmap_area(const void *, size_t, int);
166extern void dmac_flush_range(const void *, const void *);
167
168#endif
169
170/*
171 * Copy user data from/to a page which is mapped into a different
172 * processes address space.  Really, we want to allow our "user
173 * space" model to handle this.
174 */
175extern void copy_to_user_page(struct vm_area_struct *, struct page *,
176	unsigned long, void *, const void *, unsigned long);
177#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
178	do {							\
179		memcpy(dst, src, len);				\
180	} while (0)
181
182/*
183 * Convert calls to our calling convention.
184 */
185
186/* Invalidate I-cache */
187#define __flush_icache_all_generic()					\
188	asm("mcr	p15, 0, %0, c7, c5, 0"				\
189	    : : "r" (0));
190
191/* Invalidate I-cache inner shareable */
192#define __flush_icache_all_v7_smp()					\
193	asm("mcr	p15, 0, %0, c7, c1, 0"				\
194	    : : "r" (0));
195
196/*
197 * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
198 * will fall through to use __flush_icache_all_generic.
199 */
200#if (defined(CONFIG_CPU_V7) && \
201     (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
202	defined(CONFIG_SMP_ON_UP)
203#define __flush_icache_preferred	__cpuc_flush_icache_all
204#elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
205#define __flush_icache_preferred	__flush_icache_all_v7_smp
206#elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
207#define __flush_icache_preferred	__cpuc_flush_icache_all
208#else
209#define __flush_icache_preferred	__flush_icache_all_generic
210#endif
211
212static inline void __flush_icache_all(void)
213{
214	__flush_icache_preferred();
215	dsb();
216}
217
218/*
219 * Flush caches up to Level of Unification Inner Shareable
220 */
221#define flush_cache_louis()		__cpuc_flush_kern_louis()
222
223#define flush_cache_all()		__cpuc_flush_kern_all()
224
225static inline void vivt_flush_cache_mm(struct mm_struct *mm)
226{
227	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
228		__cpuc_flush_user_all();
229}
230
231static inline void
232vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
233{
234	struct mm_struct *mm = vma->vm_mm;
235
236	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
237		__cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
238					vma->vm_flags);
239}
240
241static inline void
242vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
243{
244	struct mm_struct *mm = vma->vm_mm;
245
246	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
247		unsigned long addr = user_addr & PAGE_MASK;
248		__cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
249	}
250}
251
252#ifndef CONFIG_CPU_CACHE_VIPT
253#define flush_cache_mm(mm) \
254		vivt_flush_cache_mm(mm)
255#define flush_cache_range(vma,start,end) \
256		vivt_flush_cache_range(vma,start,end)
257#define flush_cache_page(vma,addr,pfn) \
258		vivt_flush_cache_page(vma,addr,pfn)
259#else
260extern void flush_cache_mm(struct mm_struct *mm);
261extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
262extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
263#endif
264
265#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
266
267/*
268 * flush_cache_user_range is used when we want to ensure that the
269 * Harvard caches are synchronised for the user space address range.
270 * This is used for the ARM private sys_cacheflush system call.
271 */
272#define flush_cache_user_range(s,e)	__cpuc_coherent_user_range(s,e)
 
273
274/*
275 * Perform necessary cache operations to ensure that data previously
276 * stored within this range of addresses can be executed by the CPU.
277 */
278#define flush_icache_range(s,e)		__cpuc_coherent_kern_range(s,e)
279
280/*
281 * Perform necessary cache operations to ensure that the TLB will
282 * see data written in the specified area.
283 */
284#define clean_dcache_area(start,size)	cpu_dcache_clean_area(start, size)
285
286/*
287 * flush_dcache_page is used when the kernel has written to the page
288 * cache page at virtual address page->virtual.
289 *
290 * If this page isn't mapped (ie, page_mapping == NULL), or it might
291 * have userspace mappings, then we _must_ always clean + invalidate
292 * the dcache entries associated with the kernel mapping.
293 *
294 * Otherwise we can defer the operation, and clean the cache when we are
295 * about to change to user space.  This is the same method as used on SPARC64.
296 * See update_mmu_cache for the user space part.
297 */
298#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
299extern void flush_dcache_page(struct page *);
300
301static inline void flush_kernel_vmap_range(void *addr, int size)
302{
303	if ((cache_is_vivt() || cache_is_vipt_aliasing()))
304	  __cpuc_flush_dcache_area(addr, (size_t)size);
305}
306static inline void invalidate_kernel_vmap_range(void *addr, int size)
307{
308	if ((cache_is_vivt() || cache_is_vipt_aliasing()))
309	  __cpuc_flush_dcache_area(addr, (size_t)size);
310}
311
312#define ARCH_HAS_FLUSH_ANON_PAGE
313static inline void flush_anon_page(struct vm_area_struct *vma,
314			 struct page *page, unsigned long vmaddr)
315{
316	extern void __flush_anon_page(struct vm_area_struct *vma,
317				struct page *, unsigned long);
318	if (PageAnon(page))
319		__flush_anon_page(vma, page, vmaddr);
320}
321
322#define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
323extern void flush_kernel_dcache_page(struct page *);
 
 
324
325#define flush_dcache_mmap_lock(mapping) \
326	spin_lock_irq(&(mapping)->tree_lock)
327#define flush_dcache_mmap_unlock(mapping) \
328	spin_unlock_irq(&(mapping)->tree_lock)
329
330#define flush_icache_user_range(vma,page,addr,len) \
331	flush_dcache_page(page)
332
333/*
334 * We don't appear to need to do anything here.  In fact, if we did, we'd
335 * duplicate cache flushing elsewhere performed by flush_dcache_page().
336 */
337#define flush_icache_page(vma,page)	do { } while (0)
338
339/*
340 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
341 * vmalloc, ioremap etc) in kernel space for pages.  On non-VIPT
342 * caches, since the direct-mappings of these pages may contain cached
343 * data, we need to do a full cache flush to ensure that writebacks
344 * don't corrupt data placed into these pages via the new mappings.
345 */
346static inline void flush_cache_vmap(unsigned long start, unsigned long end)
347{
348	if (!cache_is_vipt_nonaliasing())
349		flush_cache_all();
350	else
351		/*
352		 * set_pte_at() called from vmap_pte_range() does not
353		 * have a DSB after cleaning the cache line.
354		 */
355		dsb(ishst);
356}
357
358static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
359{
360	if (!cache_is_vipt_nonaliasing())
361		flush_cache_all();
362}
363
364/*
365 * Memory synchronization helpers for mixed cached vs non cached accesses.
366 *
367 * Some synchronization algorithms have to set states in memory with the
368 * cache enabled or disabled depending on the code path.  It is crucial
369 * to always ensure proper cache maintenance to update main memory right
370 * away in that case.
371 *
372 * Any cached write must be followed by a cache clean operation.
373 * Any cached read must be preceded by a cache invalidate operation.
374 * Yet, in the read case, a cache flush i.e. atomic clean+invalidate
375 * operation is needed to avoid discarding possible concurrent writes to the
376 * accessed memory.
377 *
378 * Also, in order to prevent a cached writer from interfering with an
379 * adjacent non-cached writer, each state variable must be located to
380 * a separate cache line.
381 */
382
383/*
384 * This needs to be >= the max cache writeback size of all
385 * supported platforms included in the current kernel configuration.
386 * This is used to align state variables to their own cache lines.
387 */
388#define __CACHE_WRITEBACK_ORDER 6  /* guessed from existing platforms */
389#define __CACHE_WRITEBACK_GRANULE (1 << __CACHE_WRITEBACK_ORDER)
390
391/*
392 * There is no __cpuc_clean_dcache_area but we use it anyway for
393 * code intent clarity, and alias it to __cpuc_flush_dcache_area.
394 */
395#define __cpuc_clean_dcache_area __cpuc_flush_dcache_area
396
397/*
398 * Ensure preceding writes to *p by this CPU are visible to
399 * subsequent reads by other CPUs:
400 */
401static inline void __sync_cache_range_w(volatile void *p, size_t size)
402{
403	char *_p = (char *)p;
404
405	__cpuc_clean_dcache_area(_p, size);
406	outer_clean_range(__pa(_p), __pa(_p + size));
407}
408
409/*
410 * Ensure preceding writes to *p by other CPUs are visible to
411 * subsequent reads by this CPU.  We must be careful not to
412 * discard data simultaneously written by another CPU, hence the
413 * usage of flush rather than invalidate operations.
414 */
415static inline void __sync_cache_range_r(volatile void *p, size_t size)
416{
417	char *_p = (char *)p;
418
419#ifdef CONFIG_OUTER_CACHE
420	if (outer_cache.flush_range) {
421		/*
422		 * Ensure dirty data migrated from other CPUs into our cache
423		 * are cleaned out safely before the outer cache is cleaned:
424		 */
425		__cpuc_clean_dcache_area(_p, size);
426
427		/* Clean and invalidate stale data for *p from outer ... */
428		outer_flush_range(__pa(_p), __pa(_p + size));
429	}
430#endif
431
432	/* ... and inner cache: */
433	__cpuc_flush_dcache_area(_p, size);
434}
435
436#define sync_cache_w(ptr) __sync_cache_range_w(ptr, sizeof *(ptr))
437#define sync_cache_r(ptr) __sync_cache_range_r(ptr, sizeof *(ptr))
438
439/*
440 * Disabling cache access for one CPU in an ARMv7 SMP system is tricky.
441 * To do so we must:
442 *
443 * - Clear the SCTLR.C bit to prevent further cache allocations
444 * - Flush the desired level of cache
445 * - Clear the ACTLR "SMP" bit to disable local coherency
446 *
447 * ... and so without any intervening memory access in between those steps,
448 * not even to the stack.
449 *
450 * WARNING -- After this has been called:
451 *
452 * - No ldrex/strex (and similar) instructions must be used.
453 * - The CPU is obviously no longer coherent with the other CPUs.
454 * - This is unlikely to work as expected if Linux is running non-secure.
455 *
456 * Note:
457 *
458 * - This is known to apply to several ARMv7 processor implementations,
459 *   however some exceptions may exist.  Caveat emptor.
460 *
461 * - The clobber list is dictated by the call to v7_flush_dcache_*.
462 *   fp is preserved to the stack explicitly prior disabling the cache
463 *   since adding it to the clobber list is incompatible with having
464 *   CONFIG_FRAME_POINTER=y.  ip is saved as well if ever r12-clobbering
465 *   trampoline are inserted by the linker and to keep sp 64-bit aligned.
466 */
467#define v7_exit_coherency_flush(level) \
468	asm volatile( \
469	"stmfd	sp!, {fp, ip} \n\t" \
470	"mrc	p15, 0, r0, c1, c0, 0	@ get SCTLR \n\t" \
471	"bic	r0, r0, #"__stringify(CR_C)" \n\t" \
472	"mcr	p15, 0, r0, c1, c0, 0	@ set SCTLR \n\t" \
473	"isb	\n\t" \
474	"bl	v7_flush_dcache_"__stringify(level)" \n\t" \
475	"clrex	\n\t" \
476	"mrc	p15, 0, r0, c1, c0, 1	@ get ACTLR \n\t" \
477	"bic	r0, r0, #(1 << 6)	@ disable local coherency \n\t" \
478	"mcr	p15, 0, r0, c1, c0, 1	@ set ACTLR \n\t" \
479	"isb	\n\t" \
480	"dsb	\n\t" \
481	"ldmfd	sp!, {fp, ip}" \
482	: : : "r0","r1","r2","r3","r4","r5","r6","r7", \
483	      "r9","r10","lr","memory" )
484
485int set_memory_ro(unsigned long addr, int numpages);
486int set_memory_rw(unsigned long addr, int numpages);
487int set_memory_x(unsigned long addr, int numpages);
488int set_memory_nx(unsigned long addr, int numpages);
489
490#endif