Loading...
1/*
2 * arch/arm/include/asm/cacheflush.h
3 *
4 * Copyright (C) 1999-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASMARM_CACHEFLUSH_H
11#define _ASMARM_CACHEFLUSH_H
12
13#include <linux/mm.h>
14
15#include <asm/glue-cache.h>
16#include <asm/shmparam.h>
17#include <asm/cachetype.h>
18#include <asm/outercache.h>
19
20#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
21
22/*
23 * This flag is used to indicate that the page pointed to by a pte is clean
24 * and does not require cleaning before returning it to the user.
25 */
26#define PG_dcache_clean PG_arch_1
27
28/*
29 * MM Cache Management
30 * ===================
31 *
32 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
33 * implement these methods.
34 *
35 * Start addresses are inclusive and end addresses are exclusive;
36 * start addresses should be rounded down, end addresses up.
37 *
38 * See Documentation/cachetlb.txt for more information.
39 * Please note that the implementation of these, and the required
40 * effects are cache-type (VIVT/VIPT/PIPT) specific.
41 *
42 * flush_icache_all()
43 *
44 * Unconditionally clean and invalidate the entire icache.
45 * Currently only needed for cache-v6.S and cache-v7.S, see
46 * __flush_icache_all for the generic implementation.
47 *
48 * flush_kern_all()
49 *
50 * Unconditionally clean and invalidate the entire cache.
51 *
52 * flush_user_all()
53 *
54 * Clean and invalidate all user space cache entries
55 * before a change of page tables.
56 *
57 * flush_user_range(start, end, flags)
58 *
59 * Clean and invalidate a range of cache entries in the
60 * specified address space before a change of page tables.
61 * - start - user start address (inclusive, page aligned)
62 * - end - user end address (exclusive, page aligned)
63 * - flags - vma->vm_flags field
64 *
65 * coherent_kern_range(start, end)
66 *
67 * Ensure coherency between the Icache and the Dcache in the
68 * region described by start, end. If you have non-snooping
69 * Harvard caches, you need to implement this function.
70 * - start - virtual start address
71 * - end - virtual end address
72 *
73 * coherent_user_range(start, end)
74 *
75 * Ensure coherency between the Icache and the Dcache in the
76 * region described by start, end. If you have non-snooping
77 * Harvard caches, you need to implement this function.
78 * - start - virtual start address
79 * - end - virtual end address
80 *
81 * flush_kern_dcache_area(kaddr, size)
82 *
83 * Ensure that the data held in page is written back.
84 * - kaddr - page address
85 * - size - region size
86 *
87 * DMA Cache Coherency
88 * ===================
89 *
90 * dma_flush_range(start, end)
91 *
92 * Clean and invalidate the specified virtual address range.
93 * - start - virtual start address
94 * - end - virtual end address
95 */
96
97struct cpu_cache_fns {
98 void (*flush_icache_all)(void);
99 void (*flush_kern_all)(void);
100 void (*flush_user_all)(void);
101 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
102
103 void (*coherent_kern_range)(unsigned long, unsigned long);
104 int (*coherent_user_range)(unsigned long, unsigned long);
105 void (*flush_kern_dcache_area)(void *, size_t);
106
107 void (*dma_map_area)(const void *, size_t, int);
108 void (*dma_unmap_area)(const void *, size_t, int);
109
110 void (*dma_flush_range)(const void *, const void *);
111};
112
113/*
114 * Select the calling method
115 */
116#ifdef MULTI_CACHE
117
118extern struct cpu_cache_fns cpu_cache;
119
120#define __cpuc_flush_icache_all cpu_cache.flush_icache_all
121#define __cpuc_flush_kern_all cpu_cache.flush_kern_all
122#define __cpuc_flush_user_all cpu_cache.flush_user_all
123#define __cpuc_flush_user_range cpu_cache.flush_user_range
124#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
125#define __cpuc_coherent_user_range cpu_cache.coherent_user_range
126#define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area
127
128/*
129 * These are private to the dma-mapping API. Do not use directly.
130 * Their sole purpose is to ensure that data held in the cache
131 * is visible to DMA, or data written by DMA to system memory is
132 * visible to the CPU.
133 */
134#define dmac_map_area cpu_cache.dma_map_area
135#define dmac_unmap_area cpu_cache.dma_unmap_area
136#define dmac_flush_range cpu_cache.dma_flush_range
137
138#else
139
140extern void __cpuc_flush_icache_all(void);
141extern void __cpuc_flush_kern_all(void);
142extern void __cpuc_flush_user_all(void);
143extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
144extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
145extern int __cpuc_coherent_user_range(unsigned long, unsigned long);
146extern void __cpuc_flush_dcache_area(void *, size_t);
147
148/*
149 * These are private to the dma-mapping API. Do not use directly.
150 * Their sole purpose is to ensure that data held in the cache
151 * is visible to DMA, or data written by DMA to system memory is
152 * visible to the CPU.
153 */
154extern void dmac_map_area(const void *, size_t, int);
155extern void dmac_unmap_area(const void *, size_t, int);
156extern void dmac_flush_range(const void *, const void *);
157
158#endif
159
160/*
161 * Copy user data from/to a page which is mapped into a different
162 * processes address space. Really, we want to allow our "user
163 * space" model to handle this.
164 */
165extern void copy_to_user_page(struct vm_area_struct *, struct page *,
166 unsigned long, void *, const void *, unsigned long);
167#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
168 do { \
169 memcpy(dst, src, len); \
170 } while (0)
171
172/*
173 * Convert calls to our calling convention.
174 */
175
176/* Invalidate I-cache */
177#define __flush_icache_all_generic() \
178 asm("mcr p15, 0, %0, c7, c5, 0" \
179 : : "r" (0));
180
181/* Invalidate I-cache inner shareable */
182#define __flush_icache_all_v7_smp() \
183 asm("mcr p15, 0, %0, c7, c1, 0" \
184 : : "r" (0));
185
186/*
187 * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
188 * will fall through to use __flush_icache_all_generic.
189 */
190#if (defined(CONFIG_CPU_V7) && \
191 (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
192 defined(CONFIG_SMP_ON_UP)
193#define __flush_icache_preferred __cpuc_flush_icache_all
194#elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
195#define __flush_icache_preferred __flush_icache_all_v7_smp
196#elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
197#define __flush_icache_preferred __cpuc_flush_icache_all
198#else
199#define __flush_icache_preferred __flush_icache_all_generic
200#endif
201
202static inline void __flush_icache_all(void)
203{
204 __flush_icache_preferred();
205}
206
207#define flush_cache_all() __cpuc_flush_kern_all()
208
209static inline void vivt_flush_cache_mm(struct mm_struct *mm)
210{
211 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
212 __cpuc_flush_user_all();
213}
214
215static inline void
216vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
217{
218 struct mm_struct *mm = vma->vm_mm;
219
220 if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
221 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
222 vma->vm_flags);
223}
224
225static inline void
226vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
227{
228 struct mm_struct *mm = vma->vm_mm;
229
230 if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
231 unsigned long addr = user_addr & PAGE_MASK;
232 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
233 }
234}
235
236#ifndef CONFIG_CPU_CACHE_VIPT
237#define flush_cache_mm(mm) \
238 vivt_flush_cache_mm(mm)
239#define flush_cache_range(vma,start,end) \
240 vivt_flush_cache_range(vma,start,end)
241#define flush_cache_page(vma,addr,pfn) \
242 vivt_flush_cache_page(vma,addr,pfn)
243#else
244extern void flush_cache_mm(struct mm_struct *mm);
245extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
246extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
247#endif
248
249#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
250
251/*
252 * flush_cache_user_range is used when we want to ensure that the
253 * Harvard caches are synchronised for the user space address range.
254 * This is used for the ARM private sys_cacheflush system call.
255 */
256#define flush_cache_user_range(start,end) \
257 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
258
259/*
260 * Perform necessary cache operations to ensure that data previously
261 * stored within this range of addresses can be executed by the CPU.
262 */
263#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
264
265/*
266 * Perform necessary cache operations to ensure that the TLB will
267 * see data written in the specified area.
268 */
269#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
270
271/*
272 * flush_dcache_page is used when the kernel has written to the page
273 * cache page at virtual address page->virtual.
274 *
275 * If this page isn't mapped (ie, page_mapping == NULL), or it might
276 * have userspace mappings, then we _must_ always clean + invalidate
277 * the dcache entries associated with the kernel mapping.
278 *
279 * Otherwise we can defer the operation, and clean the cache when we are
280 * about to change to user space. This is the same method as used on SPARC64.
281 * See update_mmu_cache for the user space part.
282 */
283#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
284extern void flush_dcache_page(struct page *);
285
286static inline void flush_kernel_vmap_range(void *addr, int size)
287{
288 if ((cache_is_vivt() || cache_is_vipt_aliasing()))
289 __cpuc_flush_dcache_area(addr, (size_t)size);
290}
291static inline void invalidate_kernel_vmap_range(void *addr, int size)
292{
293 if ((cache_is_vivt() || cache_is_vipt_aliasing()))
294 __cpuc_flush_dcache_area(addr, (size_t)size);
295}
296
297#define ARCH_HAS_FLUSH_ANON_PAGE
298static inline void flush_anon_page(struct vm_area_struct *vma,
299 struct page *page, unsigned long vmaddr)
300{
301 extern void __flush_anon_page(struct vm_area_struct *vma,
302 struct page *, unsigned long);
303 if (PageAnon(page))
304 __flush_anon_page(vma, page, vmaddr);
305}
306
307#define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
308static inline void flush_kernel_dcache_page(struct page *page)
309{
310}
311
312#define flush_dcache_mmap_lock(mapping) \
313 spin_lock_irq(&(mapping)->tree_lock)
314#define flush_dcache_mmap_unlock(mapping) \
315 spin_unlock_irq(&(mapping)->tree_lock)
316
317#define flush_icache_user_range(vma,page,addr,len) \
318 flush_dcache_page(page)
319
320/*
321 * We don't appear to need to do anything here. In fact, if we did, we'd
322 * duplicate cache flushing elsewhere performed by flush_dcache_page().
323 */
324#define flush_icache_page(vma,page) do { } while (0)
325
326/*
327 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
328 * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
329 * caches, since the direct-mappings of these pages may contain cached
330 * data, we need to do a full cache flush to ensure that writebacks
331 * don't corrupt data placed into these pages via the new mappings.
332 */
333static inline void flush_cache_vmap(unsigned long start, unsigned long end)
334{
335 if (!cache_is_vipt_nonaliasing())
336 flush_cache_all();
337 else
338 /*
339 * set_pte_at() called from vmap_pte_range() does not
340 * have a DSB after cleaning the cache line.
341 */
342 dsb();
343}
344
345static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
346{
347 if (!cache_is_vipt_nonaliasing())
348 flush_cache_all();
349}
350
351#endif
1/*
2 * arch/arm/include/asm/cacheflush.h
3 *
4 * Copyright (C) 1999-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASMARM_CACHEFLUSH_H
11#define _ASMARM_CACHEFLUSH_H
12
13#include <linux/mm.h>
14
15#include <asm/glue-cache.h>
16#include <asm/shmparam.h>
17#include <asm/cachetype.h>
18#include <asm/outercache.h>
19
20#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
21
22/*
23 * This flag is used to indicate that the page pointed to by a pte is clean
24 * and does not require cleaning before returning it to the user.
25 */
26#define PG_dcache_clean PG_arch_1
27
28/*
29 * MM Cache Management
30 * ===================
31 *
32 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
33 * implement these methods.
34 *
35 * Start addresses are inclusive and end addresses are exclusive;
36 * start addresses should be rounded down, end addresses up.
37 *
38 * See Documentation/cachetlb.txt for more information.
39 * Please note that the implementation of these, and the required
40 * effects are cache-type (VIVT/VIPT/PIPT) specific.
41 *
42 * flush_icache_all()
43 *
44 * Unconditionally clean and invalidate the entire icache.
45 * Currently only needed for cache-v6.S and cache-v7.S, see
46 * __flush_icache_all for the generic implementation.
47 *
48 * flush_kern_all()
49 *
50 * Unconditionally clean and invalidate the entire cache.
51 *
52 * flush_user_all()
53 *
54 * Clean and invalidate all user space cache entries
55 * before a change of page tables.
56 *
57 * flush_user_range(start, end, flags)
58 *
59 * Clean and invalidate a range of cache entries in the
60 * specified address space before a change of page tables.
61 * - start - user start address (inclusive, page aligned)
62 * - end - user end address (exclusive, page aligned)
63 * - flags - vma->vm_flags field
64 *
65 * coherent_kern_range(start, end)
66 *
67 * Ensure coherency between the Icache and the Dcache in the
68 * region described by start, end. If you have non-snooping
69 * Harvard caches, you need to implement this function.
70 * - start - virtual start address
71 * - end - virtual end address
72 *
73 * coherent_user_range(start, end)
74 *
75 * Ensure coherency between the Icache and the Dcache in the
76 * region described by start, end. If you have non-snooping
77 * Harvard caches, you need to implement this function.
78 * - start - virtual start address
79 * - end - virtual end address
80 *
81 * flush_kern_dcache_area(kaddr, size)
82 *
83 * Ensure that the data held in page is written back.
84 * - kaddr - page address
85 * - size - region size
86 *
87 * DMA Cache Coherency
88 * ===================
89 *
90 * dma_flush_range(start, end)
91 *
92 * Clean and invalidate the specified virtual address range.
93 * - start - virtual start address
94 * - end - virtual end address
95 */
96
97struct cpu_cache_fns {
98 void (*flush_icache_all)(void);
99 void (*flush_kern_all)(void);
100 void (*flush_user_all)(void);
101 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
102
103 void (*coherent_kern_range)(unsigned long, unsigned long);
104 int (*coherent_user_range)(unsigned long, unsigned long);
105 void (*flush_kern_dcache_area)(void *, size_t);
106
107 void (*dma_map_area)(const void *, size_t, int);
108 void (*dma_unmap_area)(const void *, size_t, int);
109
110 void (*dma_flush_range)(const void *, const void *);
111};
112
113/*
114 * Select the calling method
115 */
116#ifdef MULTI_CACHE
117
118extern struct cpu_cache_fns cpu_cache;
119
120#define __cpuc_flush_icache_all cpu_cache.flush_icache_all
121#define __cpuc_flush_kern_all cpu_cache.flush_kern_all
122#define __cpuc_flush_user_all cpu_cache.flush_user_all
123#define __cpuc_flush_user_range cpu_cache.flush_user_range
124#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
125#define __cpuc_coherent_user_range cpu_cache.coherent_user_range
126#define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area
127
128/*
129 * These are private to the dma-mapping API. Do not use directly.
130 * Their sole purpose is to ensure that data held in the cache
131 * is visible to DMA, or data written by DMA to system memory is
132 * visible to the CPU.
133 */
134#define dmac_map_area cpu_cache.dma_map_area
135#define dmac_unmap_area cpu_cache.dma_unmap_area
136#define dmac_flush_range cpu_cache.dma_flush_range
137
138#else
139
140extern void __cpuc_flush_icache_all(void);
141extern void __cpuc_flush_kern_all(void);
142extern void __cpuc_flush_user_all(void);
143extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
144extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
145extern int __cpuc_coherent_user_range(unsigned long, unsigned long);
146extern void __cpuc_flush_dcache_area(void *, size_t);
147
148/*
149 * These are private to the dma-mapping API. Do not use directly.
150 * Their sole purpose is to ensure that data held in the cache
151 * is visible to DMA, or data written by DMA to system memory is
152 * visible to the CPU.
153 */
154extern void dmac_map_area(const void *, size_t, int);
155extern void dmac_unmap_area(const void *, size_t, int);
156extern void dmac_flush_range(const void *, const void *);
157
158#endif
159
160/*
161 * Copy user data from/to a page which is mapped into a different
162 * processes address space. Really, we want to allow our "user
163 * space" model to handle this.
164 */
165extern void copy_to_user_page(struct vm_area_struct *, struct page *,
166 unsigned long, void *, const void *, unsigned long);
167#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
168 do { \
169 memcpy(dst, src, len); \
170 } while (0)
171
172/*
173 * Convert calls to our calling convention.
174 */
175
176/* Invalidate I-cache */
177#define __flush_icache_all_generic() \
178 asm("mcr p15, 0, %0, c7, c5, 0" \
179 : : "r" (0));
180
181/* Invalidate I-cache inner shareable */
182#define __flush_icache_all_v7_smp() \
183 asm("mcr p15, 0, %0, c7, c1, 0" \
184 : : "r" (0));
185
186/*
187 * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
188 * will fall through to use __flush_icache_all_generic.
189 */
190#if (defined(CONFIG_CPU_V7) && \
191 (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
192 defined(CONFIG_SMP_ON_UP)
193#define __flush_icache_preferred __cpuc_flush_icache_all
194#elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
195#define __flush_icache_preferred __flush_icache_all_v7_smp
196#elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
197#define __flush_icache_preferred __cpuc_flush_icache_all
198#else
199#define __flush_icache_preferred __flush_icache_all_generic
200#endif
201
202static inline void __flush_icache_all(void)
203{
204 __flush_icache_preferred();
205}
206
207#define flush_cache_all() __cpuc_flush_kern_all()
208
209static inline void vivt_flush_cache_mm(struct mm_struct *mm)
210{
211 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
212 __cpuc_flush_user_all();
213}
214
215static inline void
216vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
217{
218 struct mm_struct *mm = vma->vm_mm;
219
220 if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
221 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
222 vma->vm_flags);
223}
224
225static inline void
226vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
227{
228 struct mm_struct *mm = vma->vm_mm;
229
230 if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
231 unsigned long addr = user_addr & PAGE_MASK;
232 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
233 }
234}
235
236#ifndef CONFIG_CPU_CACHE_VIPT
237#define flush_cache_mm(mm) \
238 vivt_flush_cache_mm(mm)
239#define flush_cache_range(vma,start,end) \
240 vivt_flush_cache_range(vma,start,end)
241#define flush_cache_page(vma,addr,pfn) \
242 vivt_flush_cache_page(vma,addr,pfn)
243#else
244extern void flush_cache_mm(struct mm_struct *mm);
245extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
246extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
247#endif
248
249#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
250
251/*
252 * flush_cache_user_range is used when we want to ensure that the
253 * Harvard caches are synchronised for the user space address range.
254 * This is used for the ARM private sys_cacheflush system call.
255 */
256#define flush_cache_user_range(start,end) \
257 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
258
259/*
260 * Perform necessary cache operations to ensure that data previously
261 * stored within this range of addresses can be executed by the CPU.
262 */
263#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
264
265/*
266 * Perform necessary cache operations to ensure that the TLB will
267 * see data written in the specified area.
268 */
269#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
270
271/*
272 * flush_dcache_page is used when the kernel has written to the page
273 * cache page at virtual address page->virtual.
274 *
275 * If this page isn't mapped (ie, page_mapping == NULL), or it might
276 * have userspace mappings, then we _must_ always clean + invalidate
277 * the dcache entries associated with the kernel mapping.
278 *
279 * Otherwise we can defer the operation, and clean the cache when we are
280 * about to change to user space. This is the same method as used on SPARC64.
281 * See update_mmu_cache for the user space part.
282 */
283#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
284extern void flush_dcache_page(struct page *);
285
286static inline void flush_kernel_vmap_range(void *addr, int size)
287{
288 if ((cache_is_vivt() || cache_is_vipt_aliasing()))
289 __cpuc_flush_dcache_area(addr, (size_t)size);
290}
291static inline void invalidate_kernel_vmap_range(void *addr, int size)
292{
293 if ((cache_is_vivt() || cache_is_vipt_aliasing()))
294 __cpuc_flush_dcache_area(addr, (size_t)size);
295}
296
297#define ARCH_HAS_FLUSH_ANON_PAGE
298static inline void flush_anon_page(struct vm_area_struct *vma,
299 struct page *page, unsigned long vmaddr)
300{
301 extern void __flush_anon_page(struct vm_area_struct *vma,
302 struct page *, unsigned long);
303 if (PageAnon(page))
304 __flush_anon_page(vma, page, vmaddr);
305}
306
307#define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
308static inline void flush_kernel_dcache_page(struct page *page)
309{
310}
311
312#define flush_dcache_mmap_lock(mapping) \
313 spin_lock_irq(&(mapping)->tree_lock)
314#define flush_dcache_mmap_unlock(mapping) \
315 spin_unlock_irq(&(mapping)->tree_lock)
316
317#define flush_icache_user_range(vma,page,addr,len) \
318 flush_dcache_page(page)
319
320/*
321 * We don't appear to need to do anything here. In fact, if we did, we'd
322 * duplicate cache flushing elsewhere performed by flush_dcache_page().
323 */
324#define flush_icache_page(vma,page) do { } while (0)
325
326/*
327 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
328 * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
329 * caches, since the direct-mappings of these pages may contain cached
330 * data, we need to do a full cache flush to ensure that writebacks
331 * don't corrupt data placed into these pages via the new mappings.
332 */
333static inline void flush_cache_vmap(unsigned long start, unsigned long end)
334{
335 if (!cache_is_vipt_nonaliasing())
336 flush_cache_all();
337 else
338 /*
339 * set_pte_at() called from vmap_pte_range() does not
340 * have a DSB after cleaning the cache line.
341 */
342 dsb();
343}
344
345static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
346{
347 if (!cache_is_vipt_nonaliasing())
348 flush_cache_all();
349}
350
351#endif