Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
  3 *
  4 * (C) Copyright 2008-2010 Intel Corporation
  5 * Author: Sreedhara DS (sreedhara.ds@intel.com)
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 *
 12 * SCU running in ARC processor communicates with other entity running in IA
 13 * core through IPC mechanism which in turn messaging between IA core ad SCU.
 14 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
 15 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
 16 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
 17 * along with other APIs.
 18 */
 19#include <linux/delay.h>
 20#include <linux/errno.h>
 21#include <linux/init.h>
 22#include <linux/device.h>
 23#include <linux/pm.h>
 24#include <linux/pci.h>
 25#include <linux/interrupt.h>
 26#include <linux/sfi.h>
 27#include <linux/module.h>
 28#include <asm/mrst.h>
 29#include <asm/intel_scu_ipc.h>
 30
 31/* IPC defines the following message types */
 32#define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
 33#define IPCMSG_BATTERY        0xEF /* Coulomb Counter Accumulator */
 34#define IPCMSG_FW_UPDATE      0xFE /* Firmware update */
 35#define IPCMSG_PCNTRL         0xFF /* Power controller unit read/write */
 36#define IPCMSG_FW_REVISION    0xF4 /* Get firmware revision */
 37
 38/* Command id associated with message IPCMSG_PCNTRL */
 39#define IPC_CMD_PCNTRL_W      0 /* Register write */
 40#define IPC_CMD_PCNTRL_R      1 /* Register read */
 41#define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */
 42
 43/*
 44 * IPC register summary
 45 *
 46 * IPC register blocks are memory mapped at fixed address of 0xFF11C000
 47 * To read or write information to the SCU, driver writes to IPC-1 memory
 48 * mapped registers (base address 0xFF11C000). The following is the IPC
 49 * mechanism
 50 *
 51 * 1. IA core cDMI interface claims this transaction and converts it to a
 52 *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
 53 *
 54 * 2. South Complex cDMI block receives this message and writes it to
 55 *    the IPC-1 register block, causing an interrupt to the SCU
 56 *
 57 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
 58 *    message handler is called within firmware.
 59 */
 60
 61#define IPC_BASE_ADDR     0xFF11C000	/* IPC1 base register address */
 62#define IPC_MAX_ADDR      0x100		/* Maximum IPC regisers */
 63#define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
 64#define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
 65#define IPC_I2C_BASE      0xFF12B000	/* I2C control register base address */
 66#define IPC_I2C_MAX_ADDR  0x10		/* Maximum I2C regisers */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67
 68static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id);
 69static void ipc_remove(struct pci_dev *pdev);
 70
 71struct intel_scu_ipc_dev {
 72	struct pci_dev *pdev;
 73	void __iomem *ipc_base;
 74	void __iomem *i2c_base;
 
 
 75};
 76
 77static struct intel_scu_ipc_dev  ipcdev; /* Only one for now */
 78
 79static int platform;		/* Platform type */
 80
 81/*
 82 * IPC Read Buffer (Read Only):
 83 * 16 byte buffer for receiving data from SCU, if IPC command
 84 * processing results in response data
 85 */
 86#define IPC_READ_BUFFER		0x90
 87
 88#define IPC_I2C_CNTRL_ADDR	0
 89#define I2C_DATA_ADDR		0x04
 90
 91static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
 92
 93/*
 94 * Command Register (Write Only):
 95 * A write to this register results in an interrupt to the SCU core processor
 96 * Format:
 97 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
 98 */
 99static inline void ipc_command(u32 cmd) /* Send ipc command */
100{
 
 
 
 
101	writel(cmd, ipcdev.ipc_base);
102}
103
104/*
105 * IPC Write Buffer (Write Only):
106 * 16-byte buffer for sending data associated with IPC command to
107 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
108 */
109static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */
110{
111	writel(data, ipcdev.ipc_base + 0x80 + offset);
112}
113
114/*
115 * Status Register (Read Only):
116 * Driver will read this register to get the ready/busy status of the IPC
117 * block and error status of the IPC command that was just processed by SCU
118 * Format:
119 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
120 */
121
122static inline u8 ipc_read_status(void)
123{
124	return __raw_readl(ipcdev.ipc_base + 0x04);
125}
126
127static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */
128{
129	return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
130}
131
132static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */
133{
134	return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
135}
136
137static inline int busy_loop(void) /* Wait till scu status is busy */
138{
139	u32 status = 0;
140	u32 loop_count = 0;
141
142	status = ipc_read_status();
143	while (status & 1) {
144		udelay(1); /* scu processing time is in few u secods */
145		status = ipc_read_status();
146		loop_count++;
147		/* break if scu doesn't reset busy bit after huge retry */
148		if (loop_count > 100000) {
149			dev_err(&ipcdev.pdev->dev, "IPC timed out");
150			return -ETIMEDOUT;
151		}
152	}
153	if ((status >> 1) & 1)
154		return -EIO;
155
156	return 0;
157}
158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159/* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
160static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
161{
162	int nc;
163	u32 offset = 0;
164	int err;
165	u8 cbuf[IPC_WWBUF_SIZE] = { };
166	u32 *wbuf = (u32 *)&cbuf;
167
168	mutex_lock(&ipclock);
169
170	memset(cbuf, 0, sizeof(cbuf));
171
172	if (ipcdev.pdev == NULL) {
173		mutex_unlock(&ipclock);
174		return -ENODEV;
175	}
176
177	for (nc = 0; nc < count; nc++, offset += 2) {
178		cbuf[offset] = addr[nc];
179		cbuf[offset + 1] = addr[nc] >> 8;
180	}
181
182	if (id == IPC_CMD_PCNTRL_R) {
183		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
184			ipc_data_writel(wbuf[nc], offset);
185		ipc_command((count*2) << 16 |  id << 12 | 0 << 8 | op);
186	} else if (id == IPC_CMD_PCNTRL_W) {
187		for (nc = 0; nc < count; nc++, offset += 1)
188			cbuf[offset] = data[nc];
189		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
190			ipc_data_writel(wbuf[nc], offset);
191		ipc_command((count*3) << 16 |  id << 12 | 0 << 8 | op);
192	} else if (id == IPC_CMD_PCNTRL_M) {
193		cbuf[offset] = data[0];
194		cbuf[offset + 1] = data[1];
195		ipc_data_writel(wbuf[0], 0); /* Write wbuff */
196		ipc_command(4 << 16 |  id << 12 | 0 << 8 | op);
197	}
198
199	err = busy_loop();
200	if (id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
201		/* Workaround: values are read as 0 without memcpy_fromio */
202		memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16);
203		for (nc = 0; nc < count; nc++)
204			data[nc] = ipc_data_readb(nc);
205	}
206	mutex_unlock(&ipclock);
207	return err;
208}
209
210/**
211 *	intel_scu_ipc_ioread8		-	read a word via the SCU
212 *	@addr: register on SCU
213 *	@data: return pointer for read byte
214 *
215 *	Read a single register. Returns 0 on success or an error code. All
216 *	locking between SCU accesses is handled for the caller.
217 *
218 *	This function may sleep.
219 */
220int intel_scu_ipc_ioread8(u16 addr, u8 *data)
221{
222	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
223}
224EXPORT_SYMBOL(intel_scu_ipc_ioread8);
225
226/**
227 *	intel_scu_ipc_ioread16		-	read a word via the SCU
228 *	@addr: register on SCU
229 *	@data: return pointer for read word
230 *
231 *	Read a register pair. Returns 0 on success or an error code. All
232 *	locking between SCU accesses is handled for the caller.
233 *
234 *	This function may sleep.
235 */
236int intel_scu_ipc_ioread16(u16 addr, u16 *data)
237{
238	u16 x[2] = {addr, addr + 1 };
239	return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
240}
241EXPORT_SYMBOL(intel_scu_ipc_ioread16);
242
243/**
244 *	intel_scu_ipc_ioread32		-	read a dword via the SCU
245 *	@addr: register on SCU
246 *	@data: return pointer for read dword
247 *
248 *	Read four registers. Returns 0 on success or an error code. All
249 *	locking between SCU accesses is handled for the caller.
250 *
251 *	This function may sleep.
252 */
253int intel_scu_ipc_ioread32(u16 addr, u32 *data)
254{
255	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
256	return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
257}
258EXPORT_SYMBOL(intel_scu_ipc_ioread32);
259
260/**
261 *	intel_scu_ipc_iowrite8		-	write a byte via the SCU
262 *	@addr: register on SCU
263 *	@data: byte to write
264 *
265 *	Write a single register. Returns 0 on success or an error code. All
266 *	locking between SCU accesses is handled for the caller.
267 *
268 *	This function may sleep.
269 */
270int intel_scu_ipc_iowrite8(u16 addr, u8 data)
271{
272	return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
273}
274EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
275
276/**
277 *	intel_scu_ipc_iowrite16		-	write a word via the SCU
278 *	@addr: register on SCU
279 *	@data: word to write
280 *
281 *	Write two registers. Returns 0 on success or an error code. All
282 *	locking between SCU accesses is handled for the caller.
283 *
284 *	This function may sleep.
285 */
286int intel_scu_ipc_iowrite16(u16 addr, u16 data)
287{
288	u16 x[2] = {addr, addr + 1 };
289	return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
290}
291EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
292
293/**
294 *	intel_scu_ipc_iowrite32		-	write a dword via the SCU
295 *	@addr: register on SCU
296 *	@data: dword to write
297 *
298 *	Write four registers. Returns 0 on success or an error code. All
299 *	locking between SCU accesses is handled for the caller.
300 *
301 *	This function may sleep.
302 */
303int intel_scu_ipc_iowrite32(u16 addr, u32 data)
304{
305	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
306	return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
307}
308EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
309
310/**
311 *	intel_scu_ipc_readvv		-	read a set of registers
312 *	@addr: register list
313 *	@data: bytes to return
314 *	@len: length of array
315 *
316 *	Read registers. Returns 0 on success or an error code. All
317 *	locking between SCU accesses is handled for the caller.
318 *
319 *	The largest array length permitted by the hardware is 5 items.
320 *
321 *	This function may sleep.
322 */
323int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
324{
325	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
326}
327EXPORT_SYMBOL(intel_scu_ipc_readv);
328
329/**
330 *	intel_scu_ipc_writev		-	write a set of registers
331 *	@addr: register list
332 *	@data: bytes to write
333 *	@len: length of array
334 *
335 *	Write registers. Returns 0 on success or an error code. All
336 *	locking between SCU accesses is handled for the caller.
337 *
338 *	The largest array length permitted by the hardware is 5 items.
339 *
340 *	This function may sleep.
341 *
342 */
343int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
344{
345	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
346}
347EXPORT_SYMBOL(intel_scu_ipc_writev);
348
349
350/**
351 *	intel_scu_ipc_update_register	-	r/m/w a register
352 *	@addr: register address
353 *	@bits: bits to update
354 *	@mask: mask of bits to update
355 *
356 *	Read-modify-write power control unit register. The first data argument
357 *	must be register value and second is mask value
358 *	mask is a bitmap that indicates which bits to update.
359 *	0 = masked. Don't modify this bit, 1 = modify this bit.
360 *	returns 0 on success or an error code.
361 *
362 *	This function may sleep. Locking between SCU accesses is handled
363 *	for the caller.
364 */
365int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
366{
367	u8 data[2] = { bits, mask };
368	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
369}
370EXPORT_SYMBOL(intel_scu_ipc_update_register);
371
372/**
373 *	intel_scu_ipc_simple_command	-	send a simple command
374 *	@cmd: command
375 *	@sub: sub type
376 *
377 *	Issue a simple command to the SCU. Do not use this interface if
378 *	you must then access data as any data values may be overwritten
379 *	by another SCU access by the time this function returns.
380 *
381 *	This function may sleep. Locking for SCU accesses is handled for
382 *	the caller.
383 */
384int intel_scu_ipc_simple_command(int cmd, int sub)
385{
386	int err;
387
388	mutex_lock(&ipclock);
389	if (ipcdev.pdev == NULL) {
390		mutex_unlock(&ipclock);
391		return -ENODEV;
392	}
393	ipc_command(sub << 12 | cmd);
394	err = busy_loop();
395	mutex_unlock(&ipclock);
396	return err;
397}
398EXPORT_SYMBOL(intel_scu_ipc_simple_command);
399
400/**
401 *	intel_scu_ipc_command	-	command with data
402 *	@cmd: command
403 *	@sub: sub type
404 *	@in: input data
405 *	@inlen: input length in dwords
406 *	@out: output data
407 *	@outlein: output length in dwords
408 *
409 *	Issue a command to the SCU which involves data transfers. Do the
410 *	data copies under the lock but leave it for the caller to interpret
411 */
412
413int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
414							u32 *out, int outlen)
415{
416	int i, err;
417
418	mutex_lock(&ipclock);
419	if (ipcdev.pdev == NULL) {
420		mutex_unlock(&ipclock);
421		return -ENODEV;
422	}
423
424	for (i = 0; i < inlen; i++)
425		ipc_data_writel(*in++, 4 * i);
426
427	ipc_command((inlen << 16) | (sub << 12) | cmd);
428	err = busy_loop();
429
430	for (i = 0; i < outlen; i++)
431		*out++ = ipc_data_readl(4 * i);
 
 
432
433	mutex_unlock(&ipclock);
434	return err;
435}
436EXPORT_SYMBOL(intel_scu_ipc_command);
437
438/*I2C commands */
439#define IPC_I2C_WRITE 1 /* I2C Write command */
440#define IPC_I2C_READ  2 /* I2C Read command */
441
442/**
443 *	intel_scu_ipc_i2c_cntrl		-	I2C read/write operations
444 *	@addr: I2C address + command bits
445 *	@data: data to read/write
446 *
447 *	Perform an an I2C read/write operation via the SCU. All locking is
448 *	handled for the caller. This function may sleep.
449 *
450 *	Returns an error code or 0 on success.
451 *
452 *	This has to be in the IPC driver for the locking.
453 */
454int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
455{
456	u32 cmd = 0;
457
458	mutex_lock(&ipclock);
459	if (ipcdev.pdev == NULL) {
460		mutex_unlock(&ipclock);
461		return -ENODEV;
462	}
463	cmd = (addr >> 24) & 0xFF;
464	if (cmd == IPC_I2C_READ) {
465		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
466		/* Write not getting updated without delay */
467		mdelay(1);
468		*data = readl(ipcdev.i2c_base + I2C_DATA_ADDR);
469	} else if (cmd == IPC_I2C_WRITE) {
470		writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR);
471		mdelay(1);
472		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
473	} else {
474		dev_err(&ipcdev.pdev->dev,
475			"intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
476
477		mutex_unlock(&ipclock);
478		return -EIO;
479	}
480	mutex_unlock(&ipclock);
481	return 0;
482}
483EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
484
485/*
486 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
487 * When ioc bit is set to 1, caller api must wait for interrupt handler called
488 * which in turn unlocks the caller api. Currently this is not used
489 *
490 * This is edge triggered so we need take no action to clear anything
491 */
492static irqreturn_t ioc(int irq, void *dev_id)
493{
 
 
 
494	return IRQ_HANDLED;
495}
496
497/**
498 *	ipc_probe	-	probe an Intel SCU IPC
499 *	@dev: the PCI device matching
500 *	@id: entry in the match table
501 *
502 *	Enable and install an intel SCU IPC. This appears in the PCI space
503 *	but uses some hard coded addresses as well.
504 */
505static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id)
506{
507	int err;
 
508	resource_size_t pci_resource;
509
510	if (ipcdev.pdev)		/* We support only one SCU */
511		return -EBUSY;
512
 
 
513	ipcdev.pdev = pci_dev_get(dev);
 
514
515	err = pci_enable_device(dev);
516	if (err)
517		return err;
518
519	err = pci_request_regions(dev, "intel_scu_ipc");
520	if (err)
521		return err;
522
523	pci_resource = pci_resource_start(dev, 0);
524	if (!pci_resource)
525		return -ENOMEM;
526
 
 
527	if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev))
528		return -EBUSY;
529
530	ipcdev.ipc_base = ioremap_nocache(IPC_BASE_ADDR, IPC_MAX_ADDR);
531	if (!ipcdev.ipc_base)
532		return -ENOMEM;
533
534	ipcdev.i2c_base = ioremap_nocache(IPC_I2C_BASE, IPC_I2C_MAX_ADDR);
535	if (!ipcdev.i2c_base) {
536		iounmap(ipcdev.ipc_base);
537		return -ENOMEM;
538	}
539
540	intel_scu_devices_create();
541
542	return 0;
543}
544
545/**
546 *	ipc_remove	-	remove a bound IPC device
547 *	@pdev: PCI device
548 *
549 *	In practice the SCU is not removable but this function is also
550 *	called for each device on a module unload or cleanup which is the
551 *	path that will get used.
552 *
553 *	Free up the mappings and release the PCI resources
554 */
555static void ipc_remove(struct pci_dev *pdev)
556{
557	free_irq(pdev->irq, &ipcdev);
558	pci_release_regions(pdev);
559	pci_dev_put(ipcdev.pdev);
560	iounmap(ipcdev.ipc_base);
561	iounmap(ipcdev.i2c_base);
562	ipcdev.pdev = NULL;
563	intel_scu_devices_destroy();
564}
565
566static DEFINE_PCI_DEVICE_TABLE(pci_ids) = {
567	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x082a)},
568	{ 0,}
 
 
 
 
 
 
 
 
 
 
 
 
 
569};
570MODULE_DEVICE_TABLE(pci, pci_ids);
571
572static struct pci_driver ipc_driver = {
573	.name = "intel_scu_ipc",
574	.id_table = pci_ids,
575	.probe = ipc_probe,
576	.remove = ipc_remove,
577};
578
579
580static int __init intel_scu_ipc_init(void)
581{
582	platform = mrst_identify_cpu();
583	if (platform == 0)
584		return -ENODEV;
585	return  pci_register_driver(&ipc_driver);
586}
587
588static void __exit intel_scu_ipc_exit(void)
589{
590	pci_unregister_driver(&ipc_driver);
591}
592
593MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>");
594MODULE_DESCRIPTION("Intel SCU IPC driver");
595MODULE_LICENSE("GPL");
596
597module_init(intel_scu_ipc_init);
598module_exit(intel_scu_ipc_exit);
v3.15
  1/*
  2 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
  3 *
  4 * (C) Copyright 2008-2010 Intel Corporation
  5 * Author: Sreedhara DS (sreedhara.ds@intel.com)
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 *
 12 * SCU running in ARC processor communicates with other entity running in IA
 13 * core through IPC mechanism which in turn messaging between IA core ad SCU.
 14 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
 15 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
 16 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
 17 * along with other APIs.
 18 */
 19#include <linux/delay.h>
 20#include <linux/errno.h>
 21#include <linux/init.h>
 22#include <linux/device.h>
 23#include <linux/pm.h>
 24#include <linux/pci.h>
 25#include <linux/interrupt.h>
 26#include <linux/sfi.h>
 27#include <linux/module.h>
 28#include <asm/intel-mid.h>
 29#include <asm/intel_scu_ipc.h>
 30
 31/* IPC defines the following message types */
 32#define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
 33#define IPCMSG_BATTERY        0xEF /* Coulomb Counter Accumulator */
 34#define IPCMSG_FW_UPDATE      0xFE /* Firmware update */
 35#define IPCMSG_PCNTRL         0xFF /* Power controller unit read/write */
 36#define IPCMSG_FW_REVISION    0xF4 /* Get firmware revision */
 37
 38/* Command id associated with message IPCMSG_PCNTRL */
 39#define IPC_CMD_PCNTRL_W      0 /* Register write */
 40#define IPC_CMD_PCNTRL_R      1 /* Register read */
 41#define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */
 42
 43/*
 44 * IPC register summary
 45 *
 46 * IPC register blocks are memory mapped at fixed address of 0xFF11C000
 47 * To read or write information to the SCU, driver writes to IPC-1 memory
 48 * mapped registers (base address 0xFF11C000). The following is the IPC
 49 * mechanism
 50 *
 51 * 1. IA core cDMI interface claims this transaction and converts it to a
 52 *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
 53 *
 54 * 2. South Complex cDMI block receives this message and writes it to
 55 *    the IPC-1 register block, causing an interrupt to the SCU
 56 *
 57 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
 58 *    message handler is called within firmware.
 59 */
 60
 
 
 61#define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
 62#define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
 63#define IPC_IOC	          0x100		/* IPC command register IOC bit */
 64
 65#define PCI_DEVICE_ID_LINCROFT		0x082a
 66#define PCI_DEVICE_ID_PENWELL		0x080e
 67#define PCI_DEVICE_ID_CLOVERVIEW	0x08ea
 68#define PCI_DEVICE_ID_TANGIER		0x11a0
 69
 70/* intel scu ipc driver data*/
 71struct intel_scu_ipc_pdata_t {
 72	u32 ipc_base;
 73	u32 i2c_base;
 74	u32 ipc_len;
 75	u32 i2c_len;
 76	u8 irq_mode;
 77};
 78
 79static struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = {
 80	.ipc_base = 0xff11c000,
 81	.i2c_base = 0xff12b000,
 82	.ipc_len = 0x100,
 83	.i2c_len = 0x10,
 84	.irq_mode = 0,
 85};
 86
 87/* Penwell and Cloverview */
 88static struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = {
 89	.ipc_base = 0xff11c000,
 90	.i2c_base = 0xff12b000,
 91	.ipc_len = 0x100,
 92	.i2c_len = 0x10,
 93	.irq_mode = 1,
 94};
 95
 96static struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = {
 97	.ipc_base = 0xff009000,
 98	.i2c_base  = 0xff00d000,
 99	.ipc_len  = 0x100,
100	.i2c_len = 0x10,
101	.irq_mode = 0,
102};
103
104static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id);
105static void ipc_remove(struct pci_dev *pdev);
106
107struct intel_scu_ipc_dev {
108	struct pci_dev *pdev;
109	void __iomem *ipc_base;
110	void __iomem *i2c_base;
111	struct completion cmd_complete;
112	u8 irq_mode;
113};
114
115static struct intel_scu_ipc_dev  ipcdev; /* Only one for now */
116
117static int platform;		/* Platform type */
118
119/*
120 * IPC Read Buffer (Read Only):
121 * 16 byte buffer for receiving data from SCU, if IPC command
122 * processing results in response data
123 */
124#define IPC_READ_BUFFER		0x90
125
126#define IPC_I2C_CNTRL_ADDR	0
127#define I2C_DATA_ADDR		0x04
128
129static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
130
131/*
132 * Command Register (Write Only):
133 * A write to this register results in an interrupt to the SCU core processor
134 * Format:
135 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
136 */
137static inline void ipc_command(u32 cmd) /* Send ipc command */
138{
139	if (ipcdev.irq_mode) {
140		reinit_completion(&ipcdev.cmd_complete);
141		writel(cmd | IPC_IOC, ipcdev.ipc_base);
142	}
143	writel(cmd, ipcdev.ipc_base);
144}
145
146/*
147 * IPC Write Buffer (Write Only):
148 * 16-byte buffer for sending data associated with IPC command to
149 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
150 */
151static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */
152{
153	writel(data, ipcdev.ipc_base + 0x80 + offset);
154}
155
156/*
157 * Status Register (Read Only):
158 * Driver will read this register to get the ready/busy status of the IPC
159 * block and error status of the IPC command that was just processed by SCU
160 * Format:
161 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
162 */
163
164static inline u8 ipc_read_status(void)
165{
166	return __raw_readl(ipcdev.ipc_base + 0x04);
167}
168
169static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */
170{
171	return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
172}
173
174static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */
175{
176	return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
177}
178
179static inline int busy_loop(void) /* Wait till scu status is busy */
180{
181	u32 status = 0;
182	u32 loop_count = 0;
183
184	status = ipc_read_status();
185	while (status & 1) {
186		udelay(1); /* scu processing time is in few u secods */
187		status = ipc_read_status();
188		loop_count++;
189		/* break if scu doesn't reset busy bit after huge retry */
190		if (loop_count > 100000) {
191			dev_err(&ipcdev.pdev->dev, "IPC timed out");
192			return -ETIMEDOUT;
193		}
194	}
195	if ((status >> 1) & 1)
196		return -EIO;
197
198	return 0;
199}
200
201/* Wait till ipc ioc interrupt is received or timeout in 3 HZ */
202static inline int ipc_wait_for_interrupt(void)
203{
204	int status;
205
206	if (!wait_for_completion_timeout(&ipcdev.cmd_complete, 3 * HZ)) {
207		struct device *dev = &ipcdev.pdev->dev;
208		dev_err(dev, "IPC timed out\n");
209		return -ETIMEDOUT;
210	}
211
212	status = ipc_read_status();
213
214	if ((status >> 1) & 1)
215		return -EIO;
216
217	return 0;
218}
219
220int intel_scu_ipc_check_status(void)
221{
222	return ipcdev.irq_mode ? ipc_wait_for_interrupt() : busy_loop();
223}
224
225/* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
226static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
227{
228	int nc;
229	u32 offset = 0;
230	int err;
231	u8 cbuf[IPC_WWBUF_SIZE] = { };
232	u32 *wbuf = (u32 *)&cbuf;
233
234	mutex_lock(&ipclock);
235
236	memset(cbuf, 0, sizeof(cbuf));
237
238	if (ipcdev.pdev == NULL) {
239		mutex_unlock(&ipclock);
240		return -ENODEV;
241	}
242
243	for (nc = 0; nc < count; nc++, offset += 2) {
244		cbuf[offset] = addr[nc];
245		cbuf[offset + 1] = addr[nc] >> 8;
246	}
247
248	if (id == IPC_CMD_PCNTRL_R) {
249		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
250			ipc_data_writel(wbuf[nc], offset);
251		ipc_command((count*2) << 16 |  id << 12 | 0 << 8 | op);
252	} else if (id == IPC_CMD_PCNTRL_W) {
253		for (nc = 0; nc < count; nc++, offset += 1)
254			cbuf[offset] = data[nc];
255		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
256			ipc_data_writel(wbuf[nc], offset);
257		ipc_command((count*3) << 16 |  id << 12 | 0 << 8 | op);
258	} else if (id == IPC_CMD_PCNTRL_M) {
259		cbuf[offset] = data[0];
260		cbuf[offset + 1] = data[1];
261		ipc_data_writel(wbuf[0], 0); /* Write wbuff */
262		ipc_command(4 << 16 |  id << 12 | 0 << 8 | op);
263	}
264
265	err = intel_scu_ipc_check_status();
266	if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
267		/* Workaround: values are read as 0 without memcpy_fromio */
268		memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16);
269		for (nc = 0; nc < count; nc++)
270			data[nc] = ipc_data_readb(nc);
271	}
272	mutex_unlock(&ipclock);
273	return err;
274}
275
276/**
277 *	intel_scu_ipc_ioread8		-	read a word via the SCU
278 *	@addr: register on SCU
279 *	@data: return pointer for read byte
280 *
281 *	Read a single register. Returns 0 on success or an error code. All
282 *	locking between SCU accesses is handled for the caller.
283 *
284 *	This function may sleep.
285 */
286int intel_scu_ipc_ioread8(u16 addr, u8 *data)
287{
288	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
289}
290EXPORT_SYMBOL(intel_scu_ipc_ioread8);
291
292/**
293 *	intel_scu_ipc_ioread16		-	read a word via the SCU
294 *	@addr: register on SCU
295 *	@data: return pointer for read word
296 *
297 *	Read a register pair. Returns 0 on success or an error code. All
298 *	locking between SCU accesses is handled for the caller.
299 *
300 *	This function may sleep.
301 */
302int intel_scu_ipc_ioread16(u16 addr, u16 *data)
303{
304	u16 x[2] = {addr, addr + 1 };
305	return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
306}
307EXPORT_SYMBOL(intel_scu_ipc_ioread16);
308
309/**
310 *	intel_scu_ipc_ioread32		-	read a dword via the SCU
311 *	@addr: register on SCU
312 *	@data: return pointer for read dword
313 *
314 *	Read four registers. Returns 0 on success or an error code. All
315 *	locking between SCU accesses is handled for the caller.
316 *
317 *	This function may sleep.
318 */
319int intel_scu_ipc_ioread32(u16 addr, u32 *data)
320{
321	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
322	return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
323}
324EXPORT_SYMBOL(intel_scu_ipc_ioread32);
325
326/**
327 *	intel_scu_ipc_iowrite8		-	write a byte via the SCU
328 *	@addr: register on SCU
329 *	@data: byte to write
330 *
331 *	Write a single register. Returns 0 on success or an error code. All
332 *	locking between SCU accesses is handled for the caller.
333 *
334 *	This function may sleep.
335 */
336int intel_scu_ipc_iowrite8(u16 addr, u8 data)
337{
338	return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
339}
340EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
341
342/**
343 *	intel_scu_ipc_iowrite16		-	write a word via the SCU
344 *	@addr: register on SCU
345 *	@data: word to write
346 *
347 *	Write two registers. Returns 0 on success or an error code. All
348 *	locking between SCU accesses is handled for the caller.
349 *
350 *	This function may sleep.
351 */
352int intel_scu_ipc_iowrite16(u16 addr, u16 data)
353{
354	u16 x[2] = {addr, addr + 1 };
355	return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
356}
357EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
358
359/**
360 *	intel_scu_ipc_iowrite32		-	write a dword via the SCU
361 *	@addr: register on SCU
362 *	@data: dword to write
363 *
364 *	Write four registers. Returns 0 on success or an error code. All
365 *	locking between SCU accesses is handled for the caller.
366 *
367 *	This function may sleep.
368 */
369int intel_scu_ipc_iowrite32(u16 addr, u32 data)
370{
371	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
372	return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
373}
374EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
375
376/**
377 *	intel_scu_ipc_readvv		-	read a set of registers
378 *	@addr: register list
379 *	@data: bytes to return
380 *	@len: length of array
381 *
382 *	Read registers. Returns 0 on success or an error code. All
383 *	locking between SCU accesses is handled for the caller.
384 *
385 *	The largest array length permitted by the hardware is 5 items.
386 *
387 *	This function may sleep.
388 */
389int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
390{
391	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
392}
393EXPORT_SYMBOL(intel_scu_ipc_readv);
394
395/**
396 *	intel_scu_ipc_writev		-	write a set of registers
397 *	@addr: register list
398 *	@data: bytes to write
399 *	@len: length of array
400 *
401 *	Write registers. Returns 0 on success or an error code. All
402 *	locking between SCU accesses is handled for the caller.
403 *
404 *	The largest array length permitted by the hardware is 5 items.
405 *
406 *	This function may sleep.
407 *
408 */
409int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
410{
411	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
412}
413EXPORT_SYMBOL(intel_scu_ipc_writev);
414
415
416/**
417 *	intel_scu_ipc_update_register	-	r/m/w a register
418 *	@addr: register address
419 *	@bits: bits to update
420 *	@mask: mask of bits to update
421 *
422 *	Read-modify-write power control unit register. The first data argument
423 *	must be register value and second is mask value
424 *	mask is a bitmap that indicates which bits to update.
425 *	0 = masked. Don't modify this bit, 1 = modify this bit.
426 *	returns 0 on success or an error code.
427 *
428 *	This function may sleep. Locking between SCU accesses is handled
429 *	for the caller.
430 */
431int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
432{
433	u8 data[2] = { bits, mask };
434	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
435}
436EXPORT_SYMBOL(intel_scu_ipc_update_register);
437
438/**
439 *	intel_scu_ipc_simple_command	-	send a simple command
440 *	@cmd: command
441 *	@sub: sub type
442 *
443 *	Issue a simple command to the SCU. Do not use this interface if
444 *	you must then access data as any data values may be overwritten
445 *	by another SCU access by the time this function returns.
446 *
447 *	This function may sleep. Locking for SCU accesses is handled for
448 *	the caller.
449 */
450int intel_scu_ipc_simple_command(int cmd, int sub)
451{
452	int err;
453
454	mutex_lock(&ipclock);
455	if (ipcdev.pdev == NULL) {
456		mutex_unlock(&ipclock);
457		return -ENODEV;
458	}
459	ipc_command(sub << 12 | cmd);
460	err = intel_scu_ipc_check_status();
461	mutex_unlock(&ipclock);
462	return err;
463}
464EXPORT_SYMBOL(intel_scu_ipc_simple_command);
465
466/**
467 *	intel_scu_ipc_command	-	command with data
468 *	@cmd: command
469 *	@sub: sub type
470 *	@in: input data
471 *	@inlen: input length in dwords
472 *	@out: output data
473 *	@outlein: output length in dwords
474 *
475 *	Issue a command to the SCU which involves data transfers. Do the
476 *	data copies under the lock but leave it for the caller to interpret
477 */
478
479int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
480							u32 *out, int outlen)
481{
482	int i, err;
483
484	mutex_lock(&ipclock);
485	if (ipcdev.pdev == NULL) {
486		mutex_unlock(&ipclock);
487		return -ENODEV;
488	}
489
490	for (i = 0; i < inlen; i++)
491		ipc_data_writel(*in++, 4 * i);
492
493	ipc_command((inlen << 16) | (sub << 12) | cmd);
494	err = intel_scu_ipc_check_status();
495
496	if (!err) {
497		for (i = 0; i < outlen; i++)
498			*out++ = ipc_data_readl(4 * i);
499	}
500
501	mutex_unlock(&ipclock);
502	return err;
503}
504EXPORT_SYMBOL(intel_scu_ipc_command);
505
506/*I2C commands */
507#define IPC_I2C_WRITE 1 /* I2C Write command */
508#define IPC_I2C_READ  2 /* I2C Read command */
509
510/**
511 *	intel_scu_ipc_i2c_cntrl		-	I2C read/write operations
512 *	@addr: I2C address + command bits
513 *	@data: data to read/write
514 *
515 *	Perform an an I2C read/write operation via the SCU. All locking is
516 *	handled for the caller. This function may sleep.
517 *
518 *	Returns an error code or 0 on success.
519 *
520 *	This has to be in the IPC driver for the locking.
521 */
522int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
523{
524	u32 cmd = 0;
525
526	mutex_lock(&ipclock);
527	if (ipcdev.pdev == NULL) {
528		mutex_unlock(&ipclock);
529		return -ENODEV;
530	}
531	cmd = (addr >> 24) & 0xFF;
532	if (cmd == IPC_I2C_READ) {
533		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
534		/* Write not getting updated without delay */
535		mdelay(1);
536		*data = readl(ipcdev.i2c_base + I2C_DATA_ADDR);
537	} else if (cmd == IPC_I2C_WRITE) {
538		writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR);
539		mdelay(1);
540		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
541	} else {
542		dev_err(&ipcdev.pdev->dev,
543			"intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
544
545		mutex_unlock(&ipclock);
546		return -EIO;
547	}
548	mutex_unlock(&ipclock);
549	return 0;
550}
551EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
552
553/*
554 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
555 * When ioc bit is set to 1, caller api must wait for interrupt handler called
556 * which in turn unlocks the caller api. Currently this is not used
557 *
558 * This is edge triggered so we need take no action to clear anything
559 */
560static irqreturn_t ioc(int irq, void *dev_id)
561{
562	if (ipcdev.irq_mode)
563		complete(&ipcdev.cmd_complete);
564
565	return IRQ_HANDLED;
566}
567
568/**
569 *	ipc_probe	-	probe an Intel SCU IPC
570 *	@dev: the PCI device matching
571 *	@id: entry in the match table
572 *
573 *	Enable and install an intel SCU IPC. This appears in the PCI space
574 *	but uses some hard coded addresses as well.
575 */
576static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id)
577{
578	int err;
579	struct intel_scu_ipc_pdata_t *pdata;
580	resource_size_t pci_resource;
581
582	if (ipcdev.pdev)		/* We support only one SCU */
583		return -EBUSY;
584
585	pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data;
586
587	ipcdev.pdev = pci_dev_get(dev);
588	ipcdev.irq_mode = pdata->irq_mode;
589
590	err = pci_enable_device(dev);
591	if (err)
592		return err;
593
594	err = pci_request_regions(dev, "intel_scu_ipc");
595	if (err)
596		return err;
597
598	pci_resource = pci_resource_start(dev, 0);
599	if (!pci_resource)
600		return -ENOMEM;
601
602	init_completion(&ipcdev.cmd_complete);
603
604	if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev))
605		return -EBUSY;
606
607	ipcdev.ipc_base = ioremap_nocache(pdata->ipc_base, pdata->ipc_len);
608	if (!ipcdev.ipc_base)
609		return -ENOMEM;
610
611	ipcdev.i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len);
612	if (!ipcdev.i2c_base) {
613		iounmap(ipcdev.ipc_base);
614		return -ENOMEM;
615	}
616
617	intel_scu_devices_create();
618
619	return 0;
620}
621
622/**
623 *	ipc_remove	-	remove a bound IPC device
624 *	@pdev: PCI device
625 *
626 *	In practice the SCU is not removable but this function is also
627 *	called for each device on a module unload or cleanup which is the
628 *	path that will get used.
629 *
630 *	Free up the mappings and release the PCI resources
631 */
632static void ipc_remove(struct pci_dev *pdev)
633{
634	free_irq(pdev->irq, &ipcdev);
635	pci_release_regions(pdev);
636	pci_dev_put(ipcdev.pdev);
637	iounmap(ipcdev.ipc_base);
638	iounmap(ipcdev.i2c_base);
639	ipcdev.pdev = NULL;
640	intel_scu_devices_destroy();
641}
642
643static DEFINE_PCI_DEVICE_TABLE(pci_ids) = {
644	{
645		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_LINCROFT),
646		(kernel_ulong_t)&intel_scu_ipc_lincroft_pdata,
647	}, {
648		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PENWELL),
649		(kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
650	}, {
651		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_CLOVERVIEW),
652		(kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
653	}, {
654		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_TANGIER),
655		(kernel_ulong_t)&intel_scu_ipc_tangier_pdata,
656	}, {
657		0,
658	}
659};
660MODULE_DEVICE_TABLE(pci, pci_ids);
661
662static struct pci_driver ipc_driver = {
663	.name = "intel_scu_ipc",
664	.id_table = pci_ids,
665	.probe = ipc_probe,
666	.remove = ipc_remove,
667};
668
669
670static int __init intel_scu_ipc_init(void)
671{
672	platform = intel_mid_identify_cpu();
673	if (platform == 0)
674		return -ENODEV;
675	return  pci_register_driver(&ipc_driver);
676}
677
678static void __exit intel_scu_ipc_exit(void)
679{
680	pci_unregister_driver(&ipc_driver);
681}
682
683MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>");
684MODULE_DESCRIPTION("Intel SCU IPC driver");
685MODULE_LICENSE("GPL");
686
687module_init(intel_scu_ipc_init);
688module_exit(intel_scu_ipc_exit);