Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/interrupt.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/highmem.h>
  22#include <linux/log2.h>
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
  25#include <linux/amba/bus.h>
  26#include <linux/clk.h>
  27#include <linux/scatterlist.h>
  28#include <linux/gpio.h>
  29#include <linux/of_gpio.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/dmaengine.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/amba/mmci.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/types.h>
  36
  37#include <asm/div64.h>
  38#include <asm/io.h>
  39#include <asm/sizes.h>
  40
  41#include "mmci.h"
  42
  43#define DRIVER_NAME "mmci-pl18x"
  44
  45static unsigned int fmax = 515633;
  46
  47/**
  48 * struct variant_data - MMCI variant-specific quirks
  49 * @clkreg: default value for MCICLOCK register
  50 * @clkreg_enable: enable value for MMCICLOCK register
  51 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  52 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  53 *	      is asserted (likewise for RX)
  54 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  55 *		  is asserted (likewise for RX)
  56 * @sdio: variant supports SDIO
  57 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  58 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  59 * @pwrreg_powerup: power up value for MMCIPOWER register
  60 * @signal_direction: input/out direction of bus signals can be indicated
  61 */
  62struct variant_data {
  63	unsigned int		clkreg;
  64	unsigned int		clkreg_enable;
  65	unsigned int		datalength_bits;
  66	unsigned int		fifosize;
  67	unsigned int		fifohalfsize;
  68	bool			sdio;
  69	bool			st_clkdiv;
  70	bool			blksz_datactrl16;
  71	u32			pwrreg_powerup;
  72	bool			signal_direction;
  73};
  74
  75static struct variant_data variant_arm = {
  76	.fifosize		= 16 * 4,
  77	.fifohalfsize		= 8 * 4,
  78	.datalength_bits	= 16,
  79	.pwrreg_powerup		= MCI_PWR_UP,
  80};
  81
  82static struct variant_data variant_arm_extended_fifo = {
  83	.fifosize		= 128 * 4,
  84	.fifohalfsize		= 64 * 4,
  85	.datalength_bits	= 16,
  86	.pwrreg_powerup		= MCI_PWR_UP,
  87};
  88
  89static struct variant_data variant_u300 = {
  90	.fifosize		= 16 * 4,
  91	.fifohalfsize		= 8 * 4,
  92	.clkreg_enable		= MCI_ST_U300_HWFCEN,
  93	.datalength_bits	= 16,
  94	.sdio			= true,
  95	.pwrreg_powerup		= MCI_PWR_ON,
  96	.signal_direction	= true,
  97};
  98
  99static struct variant_data variant_nomadik = {
 100	.fifosize		= 16 * 4,
 101	.fifohalfsize		= 8 * 4,
 102	.clkreg			= MCI_CLK_ENABLE,
 103	.datalength_bits	= 24,
 104	.sdio			= true,
 105	.st_clkdiv		= true,
 106	.pwrreg_powerup		= MCI_PWR_ON,
 107	.signal_direction	= true,
 108};
 109
 110static struct variant_data variant_ux500 = {
 111	.fifosize		= 30 * 4,
 112	.fifohalfsize		= 8 * 4,
 113	.clkreg			= MCI_CLK_ENABLE,
 114	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 115	.datalength_bits	= 24,
 116	.sdio			= true,
 117	.st_clkdiv		= true,
 118	.pwrreg_powerup		= MCI_PWR_ON,
 119	.signal_direction	= true,
 120};
 121
 122static struct variant_data variant_ux500v2 = {
 123	.fifosize		= 30 * 4,
 124	.fifohalfsize		= 8 * 4,
 125	.clkreg			= MCI_CLK_ENABLE,
 126	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 127	.datalength_bits	= 24,
 128	.sdio			= true,
 129	.st_clkdiv		= true,
 130	.blksz_datactrl16	= true,
 131	.pwrreg_powerup		= MCI_PWR_ON,
 132	.signal_direction	= true,
 133};
 134
 135/*
 136 * This must be called with host->lock held
 137 */
 138static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 139{
 140	if (host->clk_reg != clk) {
 141		host->clk_reg = clk;
 142		writel(clk, host->base + MMCICLOCK);
 143	}
 144}
 145
 146/*
 147 * This must be called with host->lock held
 148 */
 149static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 150{
 151	if (host->pwr_reg != pwr) {
 152		host->pwr_reg = pwr;
 153		writel(pwr, host->base + MMCIPOWER);
 154	}
 155}
 156
 157/*
 158 * This must be called with host->lock held
 159 */
 160static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 161{
 162	struct variant_data *variant = host->variant;
 163	u32 clk = variant->clkreg;
 164
 165	if (desired) {
 166		if (desired >= host->mclk) {
 167			clk = MCI_CLK_BYPASS;
 168			if (variant->st_clkdiv)
 169				clk |= MCI_ST_UX500_NEG_EDGE;
 170			host->cclk = host->mclk;
 171		} else if (variant->st_clkdiv) {
 172			/*
 173			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 174			 * => clkdiv = (mclk / f) - 2
 175			 * Round the divider up so we don't exceed the max
 176			 * frequency
 177			 */
 178			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 179			if (clk >= 256)
 180				clk = 255;
 181			host->cclk = host->mclk / (clk + 2);
 182		} else {
 183			/*
 184			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 185			 * => clkdiv = mclk / (2 * f) - 1
 186			 */
 187			clk = host->mclk / (2 * desired) - 1;
 188			if (clk >= 256)
 189				clk = 255;
 190			host->cclk = host->mclk / (2 * (clk + 1));
 191		}
 192
 193		clk |= variant->clkreg_enable;
 194		clk |= MCI_CLK_ENABLE;
 195		/* This hasn't proven to be worthwhile */
 196		/* clk |= MCI_CLK_PWRSAVE; */
 197	}
 198
 199	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 200		clk |= MCI_4BIT_BUS;
 201	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 202		clk |= MCI_ST_8BIT_BUS;
 203
 204	mmci_write_clkreg(host, clk);
 205}
 206
 207static void
 208mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 209{
 210	writel(0, host->base + MMCICOMMAND);
 211
 212	BUG_ON(host->data);
 213
 214	host->mrq = NULL;
 215	host->cmd = NULL;
 216
 
 
 
 
 
 217	mmc_request_done(host->mmc, mrq);
 218
 219	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
 220	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
 221}
 222
 223static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 224{
 225	void __iomem *base = host->base;
 226
 227	if (host->singleirq) {
 228		unsigned int mask0 = readl(base + MMCIMASK0);
 229
 230		mask0 &= ~MCI_IRQ1MASK;
 231		mask0 |= mask;
 232
 233		writel(mask0, base + MMCIMASK0);
 234	}
 235
 236	writel(mask, base + MMCIMASK1);
 237}
 238
 239static void mmci_stop_data(struct mmci_host *host)
 240{
 241	writel(0, host->base + MMCIDATACTRL);
 242	mmci_set_mask1(host, 0);
 243	host->data = NULL;
 244}
 245
 246static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 247{
 248	unsigned int flags = SG_MITER_ATOMIC;
 249
 250	if (data->flags & MMC_DATA_READ)
 251		flags |= SG_MITER_TO_SG;
 252	else
 253		flags |= SG_MITER_FROM_SG;
 254
 255	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 256}
 257
 258/*
 259 * All the DMA operation mode stuff goes inside this ifdef.
 260 * This assumes that you have a generic DMA device interface,
 261 * no custom DMA interfaces are supported.
 262 */
 263#ifdef CONFIG_DMA_ENGINE
 264static void __devinit mmci_dma_setup(struct mmci_host *host)
 265{
 266	struct mmci_platform_data *plat = host->plat;
 267	const char *rxname, *txname;
 268	dma_cap_mask_t mask;
 269
 270	if (!plat || !plat->dma_filter) {
 271		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
 272		return;
 273	}
 274
 275	/* initialize pre request cookie */
 276	host->next_data.cookie = 1;
 277
 278	/* Try to acquire a generic DMA engine slave channel */
 279	dma_cap_zero(mask);
 280	dma_cap_set(DMA_SLAVE, mask);
 281
 282	/*
 283	 * If only an RX channel is specified, the driver will
 284	 * attempt to use it bidirectionally, however if it is
 285	 * is specified but cannot be located, DMA will be disabled.
 286	 */
 287	if (plat->dma_rx_param) {
 288		host->dma_rx_channel = dma_request_channel(mask,
 289							   plat->dma_filter,
 290							   plat->dma_rx_param);
 291		/* E.g if no DMA hardware is present */
 292		if (!host->dma_rx_channel)
 293			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
 294	}
 295
 296	if (plat->dma_tx_param) {
 297		host->dma_tx_channel = dma_request_channel(mask,
 298							   plat->dma_filter,
 299							   plat->dma_tx_param);
 300		if (!host->dma_tx_channel)
 301			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
 302	} else {
 303		host->dma_tx_channel = host->dma_rx_channel;
 304	}
 305
 306	if (host->dma_rx_channel)
 307		rxname = dma_chan_name(host->dma_rx_channel);
 308	else
 309		rxname = "none";
 310
 311	if (host->dma_tx_channel)
 312		txname = dma_chan_name(host->dma_tx_channel);
 313	else
 314		txname = "none";
 315
 316	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 317		 rxname, txname);
 318
 319	/*
 320	 * Limit the maximum segment size in any SG entry according to
 321	 * the parameters of the DMA engine device.
 322	 */
 323	if (host->dma_tx_channel) {
 324		struct device *dev = host->dma_tx_channel->device->dev;
 325		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 326
 327		if (max_seg_size < host->mmc->max_seg_size)
 328			host->mmc->max_seg_size = max_seg_size;
 329	}
 330	if (host->dma_rx_channel) {
 331		struct device *dev = host->dma_rx_channel->device->dev;
 332		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 333
 334		if (max_seg_size < host->mmc->max_seg_size)
 335			host->mmc->max_seg_size = max_seg_size;
 336	}
 337}
 338
 339/*
 340 * This is used in __devinit or __devexit so inline it
 341 * so it can be discarded.
 342 */
 343static inline void mmci_dma_release(struct mmci_host *host)
 344{
 345	struct mmci_platform_data *plat = host->plat;
 346
 347	if (host->dma_rx_channel)
 348		dma_release_channel(host->dma_rx_channel);
 349	if (host->dma_tx_channel && plat->dma_tx_param)
 350		dma_release_channel(host->dma_tx_channel);
 351	host->dma_rx_channel = host->dma_tx_channel = NULL;
 352}
 353
 354static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 355{
 356	struct dma_chan *chan = host->dma_current;
 357	enum dma_data_direction dir;
 358	u32 status;
 359	int i;
 360
 361	/* Wait up to 1ms for the DMA to complete */
 362	for (i = 0; ; i++) {
 363		status = readl(host->base + MMCISTATUS);
 364		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 365			break;
 366		udelay(10);
 367	}
 368
 369	/*
 370	 * Check to see whether we still have some data left in the FIFO -
 371	 * this catches DMA controllers which are unable to monitor the
 372	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 373	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 374	 */
 375	if (status & MCI_RXDATAAVLBLMASK) {
 376		dmaengine_terminate_all(chan);
 377		if (!data->error)
 378			data->error = -EIO;
 379	}
 380
 381	if (data->flags & MMC_DATA_WRITE) {
 382		dir = DMA_TO_DEVICE;
 383	} else {
 384		dir = DMA_FROM_DEVICE;
 385	}
 386
 387	if (!data->host_cookie)
 388		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
 389
 390	/*
 391	 * Use of DMA with scatter-gather is impossible.
 392	 * Give up with DMA and switch back to PIO mode.
 393	 */
 394	if (status & MCI_RXDATAAVLBLMASK) {
 395		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 396		mmci_dma_release(host);
 397	}
 398}
 399
 400static void mmci_dma_data_error(struct mmci_host *host)
 401{
 402	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 403	dmaengine_terminate_all(host->dma_current);
 404}
 405
 406static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 407			      struct mmci_host_next *next)
 408{
 409	struct variant_data *variant = host->variant;
 410	struct dma_slave_config conf = {
 411		.src_addr = host->phybase + MMCIFIFO,
 412		.dst_addr = host->phybase + MMCIFIFO,
 413		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 414		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 415		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 416		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 417		.device_fc = false,
 418	};
 419	struct dma_chan *chan;
 420	struct dma_device *device;
 421	struct dma_async_tx_descriptor *desc;
 422	enum dma_data_direction buffer_dirn;
 423	int nr_sg;
 424
 425	/* Check if next job is already prepared */
 426	if (data->host_cookie && !next &&
 427	    host->dma_current && host->dma_desc_current)
 428		return 0;
 429
 430	if (!next) {
 431		host->dma_current = NULL;
 432		host->dma_desc_current = NULL;
 433	}
 434
 435	if (data->flags & MMC_DATA_READ) {
 436		conf.direction = DMA_DEV_TO_MEM;
 437		buffer_dirn = DMA_FROM_DEVICE;
 438		chan = host->dma_rx_channel;
 439	} else {
 440		conf.direction = DMA_MEM_TO_DEV;
 441		buffer_dirn = DMA_TO_DEVICE;
 442		chan = host->dma_tx_channel;
 443	}
 444
 445	/* If there's no DMA channel, fall back to PIO */
 446	if (!chan)
 447		return -EINVAL;
 448
 449	/* If less than or equal to the fifo size, don't bother with DMA */
 450	if (data->blksz * data->blocks <= variant->fifosize)
 451		return -EINVAL;
 452
 453	device = chan->device;
 454	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 455	if (nr_sg == 0)
 456		return -EINVAL;
 457
 458	dmaengine_slave_config(chan, &conf);
 459	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 460					    conf.direction, DMA_CTRL_ACK);
 461	if (!desc)
 462		goto unmap_exit;
 463
 464	if (next) {
 465		next->dma_chan = chan;
 466		next->dma_desc = desc;
 467	} else {
 468		host->dma_current = chan;
 469		host->dma_desc_current = desc;
 470	}
 471
 472	return 0;
 473
 474 unmap_exit:
 475	if (!next)
 476		dmaengine_terminate_all(chan);
 477	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 478	return -ENOMEM;
 479}
 480
 481static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 482{
 483	int ret;
 484	struct mmc_data *data = host->data;
 485
 486	ret = mmci_dma_prep_data(host, host->data, NULL);
 487	if (ret)
 488		return ret;
 489
 490	/* Okay, go for it. */
 491	dev_vdbg(mmc_dev(host->mmc),
 492		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 493		 data->sg_len, data->blksz, data->blocks, data->flags);
 494	dmaengine_submit(host->dma_desc_current);
 495	dma_async_issue_pending(host->dma_current);
 496
 497	datactrl |= MCI_DPSM_DMAENABLE;
 498
 499	/* Trigger the DMA transfer */
 500	writel(datactrl, host->base + MMCIDATACTRL);
 501
 502	/*
 503	 * Let the MMCI say when the data is ended and it's time
 504	 * to fire next DMA request. When that happens, MMCI will
 505	 * call mmci_data_end()
 506	 */
 507	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 508	       host->base + MMCIMASK0);
 509	return 0;
 510}
 511
 512static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 513{
 514	struct mmci_host_next *next = &host->next_data;
 515
 516	if (data->host_cookie && data->host_cookie != next->cookie) {
 517		pr_warning("[%s] invalid cookie: data->host_cookie %d"
 518		       " host->next_data.cookie %d\n",
 519		       __func__, data->host_cookie, host->next_data.cookie);
 520		data->host_cookie = 0;
 521	}
 522
 523	if (!data->host_cookie)
 524		return;
 525
 526	host->dma_desc_current = next->dma_desc;
 527	host->dma_current = next->dma_chan;
 528
 529	next->dma_desc = NULL;
 530	next->dma_chan = NULL;
 531}
 532
 533static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
 534			     bool is_first_req)
 535{
 536	struct mmci_host *host = mmc_priv(mmc);
 537	struct mmc_data *data = mrq->data;
 538	struct mmci_host_next *nd = &host->next_data;
 539
 540	if (!data)
 541		return;
 542
 543	if (data->host_cookie) {
 544		data->host_cookie = 0;
 545		return;
 546	}
 547
 548	/* if config for dma */
 549	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
 550	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
 551		if (mmci_dma_prep_data(host, data, nd))
 552			data->host_cookie = 0;
 553		else
 554			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 555	}
 556}
 557
 558static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 559			      int err)
 560{
 561	struct mmci_host *host = mmc_priv(mmc);
 562	struct mmc_data *data = mrq->data;
 563	struct dma_chan *chan;
 564	enum dma_data_direction dir;
 565
 566	if (!data)
 567		return;
 568
 569	if (data->flags & MMC_DATA_READ) {
 570		dir = DMA_FROM_DEVICE;
 571		chan = host->dma_rx_channel;
 572	} else {
 573		dir = DMA_TO_DEVICE;
 574		chan = host->dma_tx_channel;
 575	}
 576
 577
 578	/* if config for dma */
 579	if (chan) {
 580		if (err)
 581			dmaengine_terminate_all(chan);
 582		if (data->host_cookie)
 583			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
 584				     data->sg_len, dir);
 585		mrq->data->host_cookie = 0;
 586	}
 587}
 588
 589#else
 590/* Blank functions if the DMA engine is not available */
 591static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 592{
 593}
 594static inline void mmci_dma_setup(struct mmci_host *host)
 595{
 596}
 597
 598static inline void mmci_dma_release(struct mmci_host *host)
 599{
 600}
 601
 602static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 603{
 604}
 605
 606static inline void mmci_dma_data_error(struct mmci_host *host)
 607{
 608}
 609
 610static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 611{
 612	return -ENOSYS;
 613}
 614
 615#define mmci_pre_request NULL
 616#define mmci_post_request NULL
 617
 618#endif
 619
 620static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 621{
 622	struct variant_data *variant = host->variant;
 623	unsigned int datactrl, timeout, irqmask;
 624	unsigned long long clks;
 625	void __iomem *base;
 626	int blksz_bits;
 627
 628	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 629		data->blksz, data->blocks, data->flags);
 630
 631	host->data = data;
 632	host->size = data->blksz * data->blocks;
 633	data->bytes_xfered = 0;
 634
 635	clks = (unsigned long long)data->timeout_ns * host->cclk;
 636	do_div(clks, 1000000000UL);
 637
 638	timeout = data->timeout_clks + (unsigned int)clks;
 639
 640	base = host->base;
 641	writel(timeout, base + MMCIDATATIMER);
 642	writel(host->size, base + MMCIDATALENGTH);
 643
 644	blksz_bits = ffs(data->blksz) - 1;
 645	BUG_ON(1 << blksz_bits != data->blksz);
 646
 647	if (variant->blksz_datactrl16)
 648		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 649	else
 650		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 651
 652	if (data->flags & MMC_DATA_READ)
 653		datactrl |= MCI_DPSM_DIRECTION;
 654
 655	/* The ST Micro variants has a special bit to enable SDIO */
 656	if (variant->sdio && host->mmc->card)
 657		if (mmc_card_sdio(host->mmc->card))
 658			datactrl |= MCI_ST_DPSM_SDIOEN;
 659
 660	/*
 661	 * Attempt to use DMA operation mode, if this
 662	 * should fail, fall back to PIO mode
 663	 */
 664	if (!mmci_dma_start_data(host, datactrl))
 665		return;
 666
 667	/* IRQ mode, map the SG list for CPU reading/writing */
 668	mmci_init_sg(host, data);
 669
 670	if (data->flags & MMC_DATA_READ) {
 671		irqmask = MCI_RXFIFOHALFFULLMASK;
 672
 673		/*
 674		 * If we have less than the fifo 'half-full' threshold to
 675		 * transfer, trigger a PIO interrupt as soon as any data
 676		 * is available.
 677		 */
 678		if (host->size < variant->fifohalfsize)
 679			irqmask |= MCI_RXDATAAVLBLMASK;
 680	} else {
 681		/*
 682		 * We don't actually need to include "FIFO empty" here
 683		 * since its implicit in "FIFO half empty".
 684		 */
 685		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 686	}
 687
 
 
 
 
 
 688	writel(datactrl, base + MMCIDATACTRL);
 689	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 690	mmci_set_mask1(host, irqmask);
 691}
 692
 693static void
 694mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 695{
 696	void __iomem *base = host->base;
 697
 698	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 699	    cmd->opcode, cmd->arg, cmd->flags);
 700
 701	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 702		writel(0, base + MMCICOMMAND);
 703		udelay(1);
 704	}
 705
 706	c |= cmd->opcode | MCI_CPSM_ENABLE;
 707	if (cmd->flags & MMC_RSP_PRESENT) {
 708		if (cmd->flags & MMC_RSP_136)
 709			c |= MCI_CPSM_LONGRSP;
 710		c |= MCI_CPSM_RESPONSE;
 711	}
 712	if (/*interrupt*/0)
 713		c |= MCI_CPSM_INTERRUPT;
 714
 715	host->cmd = cmd;
 716
 717	writel(cmd->arg, base + MMCIARGUMENT);
 718	writel(c, base + MMCICOMMAND);
 719}
 720
 721static void
 722mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 723	      unsigned int status)
 724{
 725	/* First check for errors */
 726	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
 727		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
 728		u32 remain, success;
 729
 730		/* Terminate the DMA transfer */
 731		if (dma_inprogress(host))
 732			mmci_dma_data_error(host);
 733
 734		/*
 735		 * Calculate how far we are into the transfer.  Note that
 736		 * the data counter gives the number of bytes transferred
 737		 * on the MMC bus, not on the host side.  On reads, this
 738		 * can be as much as a FIFO-worth of data ahead.  This
 739		 * matters for FIFO overruns only.
 740		 */
 741		remain = readl(host->base + MMCIDATACNT);
 742		success = data->blksz * data->blocks - remain;
 743
 744		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 745			status, success);
 746		if (status & MCI_DATACRCFAIL) {
 747			/* Last block was not successful */
 748			success -= 1;
 749			data->error = -EILSEQ;
 750		} else if (status & MCI_DATATIMEOUT) {
 751			data->error = -ETIMEDOUT;
 752		} else if (status & MCI_STARTBITERR) {
 753			data->error = -ECOMM;
 754		} else if (status & MCI_TXUNDERRUN) {
 755			data->error = -EIO;
 756		} else if (status & MCI_RXOVERRUN) {
 757			if (success > host->variant->fifosize)
 758				success -= host->variant->fifosize;
 759			else
 760				success = 0;
 761			data->error = -EIO;
 762		}
 763		data->bytes_xfered = round_down(success, data->blksz);
 764	}
 765
 766	if (status & MCI_DATABLOCKEND)
 767		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
 768
 769	if (status & MCI_DATAEND || data->error) {
 770		if (dma_inprogress(host))
 771			mmci_dma_unmap(host, data);
 772		mmci_stop_data(host);
 773
 774		if (!data->error)
 775			/* The error clause is handled above, success! */
 776			data->bytes_xfered = data->blksz * data->blocks;
 777
 778		if (!data->stop) {
 779			mmci_request_end(host, data->mrq);
 780		} else {
 781			mmci_start_command(host, data->stop, 0);
 782		}
 783	}
 784}
 785
 786static void
 787mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
 788	     unsigned int status)
 789{
 790	void __iomem *base = host->base;
 791
 792	host->cmd = NULL;
 793
 794	if (status & MCI_CMDTIMEOUT) {
 795		cmd->error = -ETIMEDOUT;
 796	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
 797		cmd->error = -EILSEQ;
 798	} else {
 799		cmd->resp[0] = readl(base + MMCIRESPONSE0);
 800		cmd->resp[1] = readl(base + MMCIRESPONSE1);
 801		cmd->resp[2] = readl(base + MMCIRESPONSE2);
 802		cmd->resp[3] = readl(base + MMCIRESPONSE3);
 803	}
 804
 805	if (!cmd->data || cmd->error) {
 806		if (host->data) {
 807			/* Terminate the DMA transfer */
 808			if (dma_inprogress(host))
 809				mmci_dma_data_error(host);
 810			mmci_stop_data(host);
 811		}
 812		mmci_request_end(host, cmd->mrq);
 813	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
 814		mmci_start_data(host, cmd->data);
 815	}
 816}
 817
 818static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
 819{
 820	void __iomem *base = host->base;
 821	char *ptr = buffer;
 822	u32 status;
 823	int host_remain = host->size;
 824
 825	do {
 826		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
 827
 828		if (count > remain)
 829			count = remain;
 830
 831		if (count <= 0)
 832			break;
 833
 834		/*
 835		 * SDIO especially may want to send something that is
 836		 * not divisible by 4 (as opposed to card sectors
 837		 * etc). Therefore make sure to always read the last bytes
 838		 * while only doing full 32-bit reads towards the FIFO.
 839		 */
 840		if (unlikely(count & 0x3)) {
 841			if (count < 4) {
 842				unsigned char buf[4];
 843				readsl(base + MMCIFIFO, buf, 1);
 844				memcpy(ptr, buf, count);
 845			} else {
 846				readsl(base + MMCIFIFO, ptr, count >> 2);
 847				count &= ~0x3;
 848			}
 849		} else {
 850			readsl(base + MMCIFIFO, ptr, count >> 2);
 851		}
 852
 853		ptr += count;
 854		remain -= count;
 855		host_remain -= count;
 856
 857		if (remain == 0)
 858			break;
 859
 860		status = readl(base + MMCISTATUS);
 861	} while (status & MCI_RXDATAAVLBL);
 862
 863	return ptr - buffer;
 864}
 865
 866static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
 867{
 868	struct variant_data *variant = host->variant;
 869	void __iomem *base = host->base;
 870	char *ptr = buffer;
 871
 872	do {
 873		unsigned int count, maxcnt;
 874
 875		maxcnt = status & MCI_TXFIFOEMPTY ?
 876			 variant->fifosize : variant->fifohalfsize;
 877		count = min(remain, maxcnt);
 878
 879		/*
 880		 * The ST Micro variant for SDIO transfer sizes
 881		 * less then 8 bytes should have clock H/W flow
 882		 * control disabled.
 883		 */
 884		if (variant->sdio &&
 885		    mmc_card_sdio(host->mmc->card)) {
 886			u32 clk;
 887			if (count < 8)
 888				clk = host->clk_reg & ~variant->clkreg_enable;
 
 
 889			else
 890				clk = host->clk_reg | variant->clkreg_enable;
 891
 892			mmci_write_clkreg(host, clk);
 893		}
 894
 895		/*
 896		 * SDIO especially may want to send something that is
 897		 * not divisible by 4 (as opposed to card sectors
 898		 * etc), and the FIFO only accept full 32-bit writes.
 899		 * So compensate by adding +3 on the count, a single
 900		 * byte become a 32bit write, 7 bytes will be two
 901		 * 32bit writes etc.
 902		 */
 903		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
 904
 905		ptr += count;
 906		remain -= count;
 907
 908		if (remain == 0)
 909			break;
 910
 911		status = readl(base + MMCISTATUS);
 912	} while (status & MCI_TXFIFOHALFEMPTY);
 913
 914	return ptr - buffer;
 915}
 916
 917/*
 918 * PIO data transfer IRQ handler.
 919 */
 920static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
 921{
 922	struct mmci_host *host = dev_id;
 923	struct sg_mapping_iter *sg_miter = &host->sg_miter;
 924	struct variant_data *variant = host->variant;
 925	void __iomem *base = host->base;
 926	unsigned long flags;
 927	u32 status;
 928
 929	status = readl(base + MMCISTATUS);
 930
 931	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
 932
 933	local_irq_save(flags);
 934
 935	do {
 936		unsigned int remain, len;
 937		char *buffer;
 938
 939		/*
 940		 * For write, we only need to test the half-empty flag
 941		 * here - if the FIFO is completely empty, then by
 942		 * definition it is more than half empty.
 943		 *
 944		 * For read, check for data available.
 945		 */
 946		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
 947			break;
 948
 949		if (!sg_miter_next(sg_miter))
 950			break;
 951
 952		buffer = sg_miter->addr;
 953		remain = sg_miter->length;
 954
 955		len = 0;
 956		if (status & MCI_RXACTIVE)
 957			len = mmci_pio_read(host, buffer, remain);
 958		if (status & MCI_TXACTIVE)
 959			len = mmci_pio_write(host, buffer, remain, status);
 960
 961		sg_miter->consumed = len;
 962
 963		host->size -= len;
 964		remain -= len;
 965
 966		if (remain)
 967			break;
 968
 969		status = readl(base + MMCISTATUS);
 970	} while (1);
 971
 972	sg_miter_stop(sg_miter);
 973
 974	local_irq_restore(flags);
 975
 976	/*
 977	 * If we have less than the fifo 'half-full' threshold to transfer,
 978	 * trigger a PIO interrupt as soon as any data is available.
 979	 */
 980	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
 981		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
 982
 983	/*
 984	 * If we run out of data, disable the data IRQs; this
 985	 * prevents a race where the FIFO becomes empty before
 986	 * the chip itself has disabled the data path, and
 987	 * stops us racing with our data end IRQ.
 988	 */
 989	if (host->size == 0) {
 990		mmci_set_mask1(host, 0);
 991		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
 992	}
 993
 994	return IRQ_HANDLED;
 995}
 996
 997/*
 998 * Handle completion of command and data transfers.
 999 */
1000static irqreturn_t mmci_irq(int irq, void *dev_id)
1001{
1002	struct mmci_host *host = dev_id;
1003	u32 status;
1004	int ret = 0;
1005
1006	spin_lock(&host->lock);
1007
1008	do {
1009		struct mmc_command *cmd;
1010		struct mmc_data *data;
1011
1012		status = readl(host->base + MMCISTATUS);
1013
1014		if (host->singleirq) {
1015			if (status & readl(host->base + MMCIMASK1))
1016				mmci_pio_irq(irq, dev_id);
1017
1018			status &= ~MCI_IRQ1MASK;
1019		}
1020
1021		status &= readl(host->base + MMCIMASK0);
1022		writel(status, host->base + MMCICLEAR);
1023
1024		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1025
1026		data = host->data;
1027		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1028			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1029			      MCI_DATABLOCKEND) && data)
1030			mmci_data_irq(host, data, status);
1031
1032		cmd = host->cmd;
1033		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1034			mmci_cmd_irq(host, cmd, status);
1035
1036		ret = 1;
1037	} while (status);
1038
1039	spin_unlock(&host->lock);
1040
1041	return IRQ_RETVAL(ret);
1042}
1043
1044static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1045{
1046	struct mmci_host *host = mmc_priv(mmc);
1047	unsigned long flags;
1048
1049	WARN_ON(host->mrq != NULL);
1050
1051	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
1052		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
1053			mrq->data->blksz);
1054		mrq->cmd->error = -EINVAL;
1055		mmc_request_done(mmc, mrq);
1056		return;
1057	}
1058
1059	pm_runtime_get_sync(mmc_dev(mmc));
1060
1061	spin_lock_irqsave(&host->lock, flags);
1062
1063	host->mrq = mrq;
1064
1065	if (mrq->data)
1066		mmci_get_next_data(host, mrq->data);
1067
1068	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1069		mmci_start_data(host, mrq->data);
1070
1071	mmci_start_command(host, mrq->cmd, 0);
1072
1073	spin_unlock_irqrestore(&host->lock, flags);
1074}
1075
1076static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1077{
1078	struct mmci_host *host = mmc_priv(mmc);
1079	struct variant_data *variant = host->variant;
1080	u32 pwr = 0;
1081	unsigned long flags;
1082	int ret;
1083
1084	pm_runtime_get_sync(mmc_dev(mmc));
1085
1086	if (host->plat->ios_handler &&
1087		host->plat->ios_handler(mmc_dev(mmc), ios))
1088			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1089
1090	switch (ios->power_mode) {
1091	case MMC_POWER_OFF:
1092		if (host->vcc)
1093			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1094		break;
1095	case MMC_POWER_UP:
1096		if (host->vcc) {
1097			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1098			if (ret) {
1099				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1100				/*
1101				 * The .set_ios() function in the mmc_host_ops
1102				 * struct return void, and failing to set the
1103				 * power should be rare so we print an error
1104				 * and return here.
1105				 */
1106				goto out;
1107			}
1108		}
1109		/*
1110		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1111		 * and instead uses MCI_PWR_ON so apply whatever value is
1112		 * configured in the variant data.
1113		 */
1114		pwr |= variant->pwrreg_powerup;
1115
1116		break;
1117	case MMC_POWER_ON:
1118		pwr |= MCI_PWR_ON;
1119		break;
1120	}
1121
1122	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1123		/*
1124		 * The ST Micro variant has some additional bits
1125		 * indicating signal direction for the signals in
1126		 * the SD/MMC bus and feedback-clock usage.
1127		 */
1128		pwr |= host->plat->sigdir;
1129
1130		if (ios->bus_width == MMC_BUS_WIDTH_4)
1131			pwr &= ~MCI_ST_DATA74DIREN;
1132		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1133			pwr &= (~MCI_ST_DATA74DIREN &
1134				~MCI_ST_DATA31DIREN &
1135				~MCI_ST_DATA2DIREN);
1136	}
1137
1138	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1139		if (host->hw_designer != AMBA_VENDOR_ST)
1140			pwr |= MCI_ROD;
1141		else {
1142			/*
1143			 * The ST Micro variant use the ROD bit for something
1144			 * else and only has OD (Open Drain).
1145			 */
1146			pwr |= MCI_OD;
1147		}
1148	}
1149
1150	spin_lock_irqsave(&host->lock, flags);
1151
1152	mmci_set_clkreg(host, ios->clock);
1153	mmci_write_pwrreg(host, pwr);
1154
1155	spin_unlock_irqrestore(&host->lock, flags);
 
 
 
1156
1157 out:
1158	pm_runtime_mark_last_busy(mmc_dev(mmc));
1159	pm_runtime_put_autosuspend(mmc_dev(mmc));
1160}
1161
1162static int mmci_get_ro(struct mmc_host *mmc)
1163{
1164	struct mmci_host *host = mmc_priv(mmc);
1165
1166	if (host->gpio_wp == -ENOSYS)
1167		return -ENOSYS;
1168
1169	return gpio_get_value_cansleep(host->gpio_wp);
1170}
1171
1172static int mmci_get_cd(struct mmc_host *mmc)
1173{
1174	struct mmci_host *host = mmc_priv(mmc);
1175	struct mmci_platform_data *plat = host->plat;
1176	unsigned int status;
1177
1178	if (host->gpio_cd == -ENOSYS) {
1179		if (!plat->status)
1180			return 1; /* Assume always present */
1181
1182		status = plat->status(mmc_dev(host->mmc));
1183	} else
1184		status = !!gpio_get_value_cansleep(host->gpio_cd)
1185			^ plat->cd_invert;
1186
1187	/*
1188	 * Use positive logic throughout - status is zero for no card,
1189	 * non-zero for card inserted.
1190	 */
1191	return status;
1192}
1193
1194static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1195{
1196	struct mmci_host *host = dev_id;
1197
1198	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1199
1200	return IRQ_HANDLED;
1201}
1202
1203static const struct mmc_host_ops mmci_ops = {
1204	.request	= mmci_request,
1205	.pre_req	= mmci_pre_request,
1206	.post_req	= mmci_post_request,
1207	.set_ios	= mmci_set_ios,
1208	.get_ro		= mmci_get_ro,
1209	.get_cd		= mmci_get_cd,
1210};
1211
1212#ifdef CONFIG_OF
1213static void mmci_dt_populate_generic_pdata(struct device_node *np,
1214					struct mmci_platform_data *pdata)
1215{
1216	int bus_width = 0;
1217
1218	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1219	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1220
1221	if (of_get_property(np, "cd-inverted", NULL))
1222		pdata->cd_invert = true;
1223	else
1224		pdata->cd_invert = false;
1225
1226	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1227	if (!pdata->f_max)
1228		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1229
1230	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1231		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1232	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1233		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1234
1235	of_property_read_u32(np, "bus-width", &bus_width);
1236	switch (bus_width) {
1237	case 0 :
1238		/* No bus-width supplied. */
1239		break;
1240	case 4 :
1241		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1242		break;
1243	case 8 :
1244		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1245		break;
1246	default :
1247		pr_warn("%s: Unsupported bus width\n", np->full_name);
1248	}
1249}
1250#else
1251static void mmci_dt_populate_generic_pdata(struct device_node *np,
1252					struct mmci_platform_data *pdata)
1253{
1254	return;
1255}
1256#endif
1257
1258static int __devinit mmci_probe(struct amba_device *dev,
1259	const struct amba_id *id)
1260{
1261	struct mmci_platform_data *plat = dev->dev.platform_data;
1262	struct device_node *np = dev->dev.of_node;
1263	struct variant_data *variant = id->data;
1264	struct mmci_host *host;
1265	struct mmc_host *mmc;
1266	int ret;
1267
1268	/* Must have platform data or Device Tree. */
1269	if (!plat && !np) {
1270		dev_err(&dev->dev, "No plat data or DT found\n");
1271		return -EINVAL;
1272	}
1273
1274	if (!plat) {
1275		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1276		if (!plat)
1277			return -ENOMEM;
1278	}
1279
1280	if (np)
1281		mmci_dt_populate_generic_pdata(np, plat);
1282
1283	ret = amba_request_regions(dev, DRIVER_NAME);
1284	if (ret)
1285		goto out;
1286
1287	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1288	if (!mmc) {
1289		ret = -ENOMEM;
1290		goto rel_regions;
1291	}
1292
1293	host = mmc_priv(mmc);
1294	host->mmc = mmc;
1295
1296	host->gpio_wp = -ENOSYS;
1297	host->gpio_cd = -ENOSYS;
1298	host->gpio_cd_irq = -1;
1299
1300	host->hw_designer = amba_manf(dev);
1301	host->hw_revision = amba_rev(dev);
1302	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1303	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1304
1305	host->clk = clk_get(&dev->dev, NULL);
1306	if (IS_ERR(host->clk)) {
1307		ret = PTR_ERR(host->clk);
1308		host->clk = NULL;
1309		goto host_free;
1310	}
1311
1312	ret = clk_prepare(host->clk);
1313	if (ret)
1314		goto clk_free;
1315
1316	ret = clk_enable(host->clk);
1317	if (ret)
1318		goto clk_unprep;
1319
1320	host->plat = plat;
1321	host->variant = variant;
1322	host->mclk = clk_get_rate(host->clk);
1323	/*
1324	 * According to the spec, mclk is max 100 MHz,
1325	 * so we try to adjust the clock down to this,
1326	 * (if possible).
1327	 */
1328	if (host->mclk > 100000000) {
1329		ret = clk_set_rate(host->clk, 100000000);
1330		if (ret < 0)
1331			goto clk_disable;
1332		host->mclk = clk_get_rate(host->clk);
1333		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1334			host->mclk);
1335	}
1336	host->phybase = dev->res.start;
1337	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1338	if (!host->base) {
1339		ret = -ENOMEM;
1340		goto clk_disable;
1341	}
1342
1343	mmc->ops = &mmci_ops;
1344	/*
1345	 * The ARM and ST versions of the block have slightly different
1346	 * clock divider equations which means that the minimum divider
1347	 * differs too.
1348	 */
1349	if (variant->st_clkdiv)
1350		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1351	else
1352		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1353	/*
1354	 * If the platform data supplies a maximum operating
1355	 * frequency, this takes precedence. Else, we fall back
1356	 * to using the module parameter, which has a (low)
1357	 * default value in case it is not specified. Either
1358	 * value must not exceed the clock rate into the block,
1359	 * of course.
1360	 */
1361	if (plat->f_max)
1362		mmc->f_max = min(host->mclk, plat->f_max);
1363	else
1364		mmc->f_max = min(host->mclk, fmax);
1365	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1366
1367#ifdef CONFIG_REGULATOR
1368	/* If we're using the regulator framework, try to fetch a regulator */
1369	host->vcc = regulator_get(&dev->dev, "vmmc");
1370	if (IS_ERR(host->vcc))
1371		host->vcc = NULL;
1372	else {
1373		int mask = mmc_regulator_get_ocrmask(host->vcc);
1374
1375		if (mask < 0)
1376			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1377				mask);
1378		else {
1379			host->mmc->ocr_avail = (u32) mask;
1380			if (plat->ocr_mask)
1381				dev_warn(&dev->dev,
1382				 "Provided ocr_mask/setpower will not be used "
1383				 "(using regulator instead)\n");
1384		}
1385	}
1386#endif
1387	/* Fall back to platform data if no regulator is found */
1388	if (host->vcc == NULL)
1389		mmc->ocr_avail = plat->ocr_mask;
1390	mmc->caps = plat->capabilities;
1391	mmc->caps2 = plat->capabilities2;
1392
1393	/*
1394	 * We can do SGIO
1395	 */
1396	mmc->max_segs = NR_SG;
1397
1398	/*
1399	 * Since only a certain number of bits are valid in the data length
1400	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1401	 * single request.
1402	 */
1403	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1404
1405	/*
1406	 * Set the maximum segment size.  Since we aren't doing DMA
1407	 * (yet) we are only limited by the data length register.
1408	 */
1409	mmc->max_seg_size = mmc->max_req_size;
1410
1411	/*
1412	 * Block size can be up to 2048 bytes, but must be a power of two.
1413	 */
1414	mmc->max_blk_size = 1 << 11;
1415
1416	/*
1417	 * Limit the number of blocks transferred so that we don't overflow
1418	 * the maximum request size.
1419	 */
1420	mmc->max_blk_count = mmc->max_req_size >> 11;
1421
1422	spin_lock_init(&host->lock);
1423
1424	writel(0, host->base + MMCIMASK0);
1425	writel(0, host->base + MMCIMASK1);
1426	writel(0xfff, host->base + MMCICLEAR);
1427
1428	if (plat->gpio_cd == -EPROBE_DEFER) {
1429		ret = -EPROBE_DEFER;
1430		goto err_gpio_cd;
1431	}
1432	if (gpio_is_valid(plat->gpio_cd)) {
1433		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1434		if (ret == 0)
1435			ret = gpio_direction_input(plat->gpio_cd);
1436		if (ret == 0)
1437			host->gpio_cd = plat->gpio_cd;
1438		else if (ret != -ENOSYS)
1439			goto err_gpio_cd;
1440
1441		/*
1442		 * A gpio pin that will detect cards when inserted and removed
1443		 * will most likely want to trigger on the edges if it is
1444		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1445		 * for the inverted case) so we request triggers on both
1446		 * edges.
1447		 */
1448		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1449				mmci_cd_irq,
1450				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1451				DRIVER_NAME " (cd)", host);
1452		if (ret >= 0)
1453			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1454	}
1455	if (plat->gpio_wp == -EPROBE_DEFER) {
1456		ret = -EPROBE_DEFER;
1457		goto err_gpio_wp;
1458	}
1459	if (gpio_is_valid(plat->gpio_wp)) {
1460		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1461		if (ret == 0)
1462			ret = gpio_direction_input(plat->gpio_wp);
1463		if (ret == 0)
1464			host->gpio_wp = plat->gpio_wp;
1465		else if (ret != -ENOSYS)
1466			goto err_gpio_wp;
1467	}
1468
1469	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1470	    && host->gpio_cd_irq < 0)
1471		mmc->caps |= MMC_CAP_NEEDS_POLL;
1472
1473	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1474	if (ret)
1475		goto unmap;
1476
1477	if (!dev->irq[1])
1478		host->singleirq = true;
1479	else {
1480		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1481				  DRIVER_NAME " (pio)", host);
1482		if (ret)
1483			goto irq0_free;
1484	}
1485
1486	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1487
1488	amba_set_drvdata(dev, mmc);
1489
1490	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1491		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1492		 amba_rev(dev), (unsigned long long)dev->res.start,
1493		 dev->irq[0], dev->irq[1]);
1494
1495	mmci_dma_setup(host);
1496
1497	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1498	pm_runtime_use_autosuspend(&dev->dev);
1499	pm_runtime_put(&dev->dev);
1500
1501	mmc_add_host(mmc);
1502
1503	return 0;
1504
1505 irq0_free:
1506	free_irq(dev->irq[0], host);
1507 unmap:
1508	if (host->gpio_wp != -ENOSYS)
1509		gpio_free(host->gpio_wp);
1510 err_gpio_wp:
1511	if (host->gpio_cd_irq >= 0)
1512		free_irq(host->gpio_cd_irq, host);
1513	if (host->gpio_cd != -ENOSYS)
1514		gpio_free(host->gpio_cd);
1515 err_gpio_cd:
1516	iounmap(host->base);
1517 clk_disable:
1518	clk_disable(host->clk);
1519 clk_unprep:
1520	clk_unprepare(host->clk);
1521 clk_free:
1522	clk_put(host->clk);
1523 host_free:
1524	mmc_free_host(mmc);
1525 rel_regions:
1526	amba_release_regions(dev);
1527 out:
1528	return ret;
1529}
1530
1531static int __devexit mmci_remove(struct amba_device *dev)
1532{
1533	struct mmc_host *mmc = amba_get_drvdata(dev);
1534
1535	amba_set_drvdata(dev, NULL);
1536
1537	if (mmc) {
1538		struct mmci_host *host = mmc_priv(mmc);
1539
1540		/*
1541		 * Undo pm_runtime_put() in probe.  We use the _sync
1542		 * version here so that we can access the primecell.
1543		 */
1544		pm_runtime_get_sync(&dev->dev);
1545
1546		mmc_remove_host(mmc);
1547
1548		writel(0, host->base + MMCIMASK0);
1549		writel(0, host->base + MMCIMASK1);
1550
1551		writel(0, host->base + MMCICOMMAND);
1552		writel(0, host->base + MMCIDATACTRL);
1553
1554		mmci_dma_release(host);
1555		free_irq(dev->irq[0], host);
1556		if (!host->singleirq)
1557			free_irq(dev->irq[1], host);
1558
1559		if (host->gpio_wp != -ENOSYS)
1560			gpio_free(host->gpio_wp);
1561		if (host->gpio_cd_irq >= 0)
1562			free_irq(host->gpio_cd_irq, host);
1563		if (host->gpio_cd != -ENOSYS)
1564			gpio_free(host->gpio_cd);
1565
1566		iounmap(host->base);
1567		clk_disable(host->clk);
1568		clk_unprepare(host->clk);
1569		clk_put(host->clk);
1570
1571		if (host->vcc)
1572			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1573		regulator_put(host->vcc);
1574
1575		mmc_free_host(mmc);
1576
1577		amba_release_regions(dev);
1578	}
1579
1580	return 0;
1581}
1582
1583#ifdef CONFIG_SUSPEND
1584static int mmci_suspend(struct device *dev)
1585{
1586	struct amba_device *adev = to_amba_device(dev);
1587	struct mmc_host *mmc = amba_get_drvdata(adev);
1588	int ret = 0;
1589
1590	if (mmc) {
1591		struct mmci_host *host = mmc_priv(mmc);
1592
1593		ret = mmc_suspend_host(mmc);
1594		if (ret == 0) {
1595			pm_runtime_get_sync(dev);
1596			writel(0, host->base + MMCIMASK0);
1597		}
1598	}
1599
1600	return ret;
1601}
1602
1603static int mmci_resume(struct device *dev)
1604{
1605	struct amba_device *adev = to_amba_device(dev);
1606	struct mmc_host *mmc = amba_get_drvdata(adev);
1607	int ret = 0;
1608
1609	if (mmc) {
1610		struct mmci_host *host = mmc_priv(mmc);
1611
1612		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1613		pm_runtime_put(dev);
1614
1615		ret = mmc_resume_host(mmc);
1616	}
1617
1618	return ret;
1619}
 
 
 
1620#endif
1621
1622static const struct dev_pm_ops mmci_dev_pm_ops = {
1623	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1624};
1625
1626static struct amba_id mmci_ids[] = {
1627	{
1628		.id	= 0x00041180,
1629		.mask	= 0xff0fffff,
1630		.data	= &variant_arm,
1631	},
1632	{
1633		.id	= 0x01041180,
1634		.mask	= 0xff0fffff,
1635		.data	= &variant_arm_extended_fifo,
1636	},
1637	{
1638		.id	= 0x00041181,
1639		.mask	= 0x000fffff,
1640		.data	= &variant_arm,
1641	},
1642	/* ST Micro variants */
1643	{
1644		.id     = 0x00180180,
1645		.mask   = 0x00ffffff,
1646		.data	= &variant_u300,
1647	},
1648	{
1649		.id     = 0x10180180,
1650		.mask   = 0xf0ffffff,
1651		.data	= &variant_nomadik,
1652	},
1653	{
1654		.id     = 0x00280180,
1655		.mask   = 0x00ffffff,
1656		.data	= &variant_u300,
1657	},
1658	{
1659		.id     = 0x00480180,
1660		.mask   = 0xf0ffffff,
1661		.data	= &variant_ux500,
1662	},
1663	{
1664		.id     = 0x10480180,
1665		.mask   = 0xf0ffffff,
1666		.data	= &variant_ux500v2,
1667	},
1668	{ 0, 0 },
1669};
1670
1671MODULE_DEVICE_TABLE(amba, mmci_ids);
1672
1673static struct amba_driver mmci_driver = {
1674	.drv		= {
1675		.name	= DRIVER_NAME,
1676		.pm	= &mmci_dev_pm_ops,
1677	},
1678	.probe		= mmci_probe,
1679	.remove		= __devexit_p(mmci_remove),
 
 
1680	.id_table	= mmci_ids,
1681};
1682
1683module_amba_driver(mmci_driver);
 
 
 
 
 
 
 
 
1684
 
 
1685module_param(fmax, uint, 0444);
1686
1687MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1688MODULE_LICENSE("GPL");
v3.1
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/interrupt.h>
  17#include <linux/kernel.h>
 
  18#include <linux/delay.h>
  19#include <linux/err.h>
  20#include <linux/highmem.h>
  21#include <linux/log2.h>
  22#include <linux/mmc/host.h>
  23#include <linux/mmc/card.h>
  24#include <linux/amba/bus.h>
  25#include <linux/clk.h>
  26#include <linux/scatterlist.h>
  27#include <linux/gpio.h>
 
  28#include <linux/regulator/consumer.h>
  29#include <linux/dmaengine.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/amba/mmci.h>
 
 
  32
  33#include <asm/div64.h>
  34#include <asm/io.h>
  35#include <asm/sizes.h>
  36
  37#include "mmci.h"
  38
  39#define DRIVER_NAME "mmci-pl18x"
  40
  41static unsigned int fmax = 515633;
  42
  43/**
  44 * struct variant_data - MMCI variant-specific quirks
  45 * @clkreg: default value for MCICLOCK register
  46 * @clkreg_enable: enable value for MMCICLOCK register
  47 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  48 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  49 *	      is asserted (likewise for RX)
  50 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  51 *		  is asserted (likewise for RX)
  52 * @sdio: variant supports SDIO
  53 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  54 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
 
 
  55 */
  56struct variant_data {
  57	unsigned int		clkreg;
  58	unsigned int		clkreg_enable;
  59	unsigned int		datalength_bits;
  60	unsigned int		fifosize;
  61	unsigned int		fifohalfsize;
  62	bool			sdio;
  63	bool			st_clkdiv;
  64	bool			blksz_datactrl16;
 
 
  65};
  66
  67static struct variant_data variant_arm = {
  68	.fifosize		= 16 * 4,
  69	.fifohalfsize		= 8 * 4,
  70	.datalength_bits	= 16,
 
  71};
  72
  73static struct variant_data variant_arm_extended_fifo = {
  74	.fifosize		= 128 * 4,
  75	.fifohalfsize		= 64 * 4,
  76	.datalength_bits	= 16,
 
  77};
  78
  79static struct variant_data variant_u300 = {
  80	.fifosize		= 16 * 4,
  81	.fifohalfsize		= 8 * 4,
  82	.clkreg_enable		= MCI_ST_U300_HWFCEN,
  83	.datalength_bits	= 16,
  84	.sdio			= true,
 
 
 
 
 
 
 
 
 
 
 
 
 
  85};
  86
  87static struct variant_data variant_ux500 = {
  88	.fifosize		= 30 * 4,
  89	.fifohalfsize		= 8 * 4,
  90	.clkreg			= MCI_CLK_ENABLE,
  91	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
  92	.datalength_bits	= 24,
  93	.sdio			= true,
  94	.st_clkdiv		= true,
 
 
  95};
  96
  97static struct variant_data variant_ux500v2 = {
  98	.fifosize		= 30 * 4,
  99	.fifohalfsize		= 8 * 4,
 100	.clkreg			= MCI_CLK_ENABLE,
 101	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 102	.datalength_bits	= 24,
 103	.sdio			= true,
 104	.st_clkdiv		= true,
 105	.blksz_datactrl16	= true,
 
 
 106};
 107
 108/*
 109 * This must be called with host->lock held
 110 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 112{
 113	struct variant_data *variant = host->variant;
 114	u32 clk = variant->clkreg;
 115
 116	if (desired) {
 117		if (desired >= host->mclk) {
 118			clk = MCI_CLK_BYPASS;
 119			if (variant->st_clkdiv)
 120				clk |= MCI_ST_UX500_NEG_EDGE;
 121			host->cclk = host->mclk;
 122		} else if (variant->st_clkdiv) {
 123			/*
 124			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 125			 * => clkdiv = (mclk / f) - 2
 126			 * Round the divider up so we don't exceed the max
 127			 * frequency
 128			 */
 129			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 130			if (clk >= 256)
 131				clk = 255;
 132			host->cclk = host->mclk / (clk + 2);
 133		} else {
 134			/*
 135			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 136			 * => clkdiv = mclk / (2 * f) - 1
 137			 */
 138			clk = host->mclk / (2 * desired) - 1;
 139			if (clk >= 256)
 140				clk = 255;
 141			host->cclk = host->mclk / (2 * (clk + 1));
 142		}
 143
 144		clk |= variant->clkreg_enable;
 145		clk |= MCI_CLK_ENABLE;
 146		/* This hasn't proven to be worthwhile */
 147		/* clk |= MCI_CLK_PWRSAVE; */
 148	}
 149
 150	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 151		clk |= MCI_4BIT_BUS;
 152	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 153		clk |= MCI_ST_8BIT_BUS;
 154
 155	writel(clk, host->base + MMCICLOCK);
 156}
 157
 158static void
 159mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 160{
 161	writel(0, host->base + MMCICOMMAND);
 162
 163	BUG_ON(host->data);
 164
 165	host->mrq = NULL;
 166	host->cmd = NULL;
 167
 168	/*
 169	 * Need to drop the host lock here; mmc_request_done may call
 170	 * back into the driver...
 171	 */
 172	spin_unlock(&host->lock);
 173	mmc_request_done(host->mmc, mrq);
 174	spin_lock(&host->lock);
 
 
 175}
 176
 177static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 178{
 179	void __iomem *base = host->base;
 180
 181	if (host->singleirq) {
 182		unsigned int mask0 = readl(base + MMCIMASK0);
 183
 184		mask0 &= ~MCI_IRQ1MASK;
 185		mask0 |= mask;
 186
 187		writel(mask0, base + MMCIMASK0);
 188	}
 189
 190	writel(mask, base + MMCIMASK1);
 191}
 192
 193static void mmci_stop_data(struct mmci_host *host)
 194{
 195	writel(0, host->base + MMCIDATACTRL);
 196	mmci_set_mask1(host, 0);
 197	host->data = NULL;
 198}
 199
 200static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 201{
 202	unsigned int flags = SG_MITER_ATOMIC;
 203
 204	if (data->flags & MMC_DATA_READ)
 205		flags |= SG_MITER_TO_SG;
 206	else
 207		flags |= SG_MITER_FROM_SG;
 208
 209	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 210}
 211
 212/*
 213 * All the DMA operation mode stuff goes inside this ifdef.
 214 * This assumes that you have a generic DMA device interface,
 215 * no custom DMA interfaces are supported.
 216 */
 217#ifdef CONFIG_DMA_ENGINE
 218static void __devinit mmci_dma_setup(struct mmci_host *host)
 219{
 220	struct mmci_platform_data *plat = host->plat;
 221	const char *rxname, *txname;
 222	dma_cap_mask_t mask;
 223
 224	if (!plat || !plat->dma_filter) {
 225		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
 226		return;
 227	}
 228
 229	/* initialize pre request cookie */
 230	host->next_data.cookie = 1;
 231
 232	/* Try to acquire a generic DMA engine slave channel */
 233	dma_cap_zero(mask);
 234	dma_cap_set(DMA_SLAVE, mask);
 235
 236	/*
 237	 * If only an RX channel is specified, the driver will
 238	 * attempt to use it bidirectionally, however if it is
 239	 * is specified but cannot be located, DMA will be disabled.
 240	 */
 241	if (plat->dma_rx_param) {
 242		host->dma_rx_channel = dma_request_channel(mask,
 243							   plat->dma_filter,
 244							   plat->dma_rx_param);
 245		/* E.g if no DMA hardware is present */
 246		if (!host->dma_rx_channel)
 247			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
 248	}
 249
 250	if (plat->dma_tx_param) {
 251		host->dma_tx_channel = dma_request_channel(mask,
 252							   plat->dma_filter,
 253							   plat->dma_tx_param);
 254		if (!host->dma_tx_channel)
 255			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
 256	} else {
 257		host->dma_tx_channel = host->dma_rx_channel;
 258	}
 259
 260	if (host->dma_rx_channel)
 261		rxname = dma_chan_name(host->dma_rx_channel);
 262	else
 263		rxname = "none";
 264
 265	if (host->dma_tx_channel)
 266		txname = dma_chan_name(host->dma_tx_channel);
 267	else
 268		txname = "none";
 269
 270	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 271		 rxname, txname);
 272
 273	/*
 274	 * Limit the maximum segment size in any SG entry according to
 275	 * the parameters of the DMA engine device.
 276	 */
 277	if (host->dma_tx_channel) {
 278		struct device *dev = host->dma_tx_channel->device->dev;
 279		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 280
 281		if (max_seg_size < host->mmc->max_seg_size)
 282			host->mmc->max_seg_size = max_seg_size;
 283	}
 284	if (host->dma_rx_channel) {
 285		struct device *dev = host->dma_rx_channel->device->dev;
 286		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 287
 288		if (max_seg_size < host->mmc->max_seg_size)
 289			host->mmc->max_seg_size = max_seg_size;
 290	}
 291}
 292
 293/*
 294 * This is used in __devinit or __devexit so inline it
 295 * so it can be discarded.
 296 */
 297static inline void mmci_dma_release(struct mmci_host *host)
 298{
 299	struct mmci_platform_data *plat = host->plat;
 300
 301	if (host->dma_rx_channel)
 302		dma_release_channel(host->dma_rx_channel);
 303	if (host->dma_tx_channel && plat->dma_tx_param)
 304		dma_release_channel(host->dma_tx_channel);
 305	host->dma_rx_channel = host->dma_tx_channel = NULL;
 306}
 307
 308static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 309{
 310	struct dma_chan *chan = host->dma_current;
 311	enum dma_data_direction dir;
 312	u32 status;
 313	int i;
 314
 315	/* Wait up to 1ms for the DMA to complete */
 316	for (i = 0; ; i++) {
 317		status = readl(host->base + MMCISTATUS);
 318		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 319			break;
 320		udelay(10);
 321	}
 322
 323	/*
 324	 * Check to see whether we still have some data left in the FIFO -
 325	 * this catches DMA controllers which are unable to monitor the
 326	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 327	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 328	 */
 329	if (status & MCI_RXDATAAVLBLMASK) {
 330		dmaengine_terminate_all(chan);
 331		if (!data->error)
 332			data->error = -EIO;
 333	}
 334
 335	if (data->flags & MMC_DATA_WRITE) {
 336		dir = DMA_TO_DEVICE;
 337	} else {
 338		dir = DMA_FROM_DEVICE;
 339	}
 340
 341	if (!data->host_cookie)
 342		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
 343
 344	/*
 345	 * Use of DMA with scatter-gather is impossible.
 346	 * Give up with DMA and switch back to PIO mode.
 347	 */
 348	if (status & MCI_RXDATAAVLBLMASK) {
 349		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 350		mmci_dma_release(host);
 351	}
 352}
 353
 354static void mmci_dma_data_error(struct mmci_host *host)
 355{
 356	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 357	dmaengine_terminate_all(host->dma_current);
 358}
 359
 360static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 361			      struct mmci_host_next *next)
 362{
 363	struct variant_data *variant = host->variant;
 364	struct dma_slave_config conf = {
 365		.src_addr = host->phybase + MMCIFIFO,
 366		.dst_addr = host->phybase + MMCIFIFO,
 367		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 368		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 369		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 370		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 
 371	};
 372	struct dma_chan *chan;
 373	struct dma_device *device;
 374	struct dma_async_tx_descriptor *desc;
 
 375	int nr_sg;
 376
 377	/* Check if next job is already prepared */
 378	if (data->host_cookie && !next &&
 379	    host->dma_current && host->dma_desc_current)
 380		return 0;
 381
 382	if (!next) {
 383		host->dma_current = NULL;
 384		host->dma_desc_current = NULL;
 385	}
 386
 387	if (data->flags & MMC_DATA_READ) {
 388		conf.direction = DMA_FROM_DEVICE;
 
 389		chan = host->dma_rx_channel;
 390	} else {
 391		conf.direction = DMA_TO_DEVICE;
 
 392		chan = host->dma_tx_channel;
 393	}
 394
 395	/* If there's no DMA channel, fall back to PIO */
 396	if (!chan)
 397		return -EINVAL;
 398
 399	/* If less than or equal to the fifo size, don't bother with DMA */
 400	if (data->blksz * data->blocks <= variant->fifosize)
 401		return -EINVAL;
 402
 403	device = chan->device;
 404	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
 405	if (nr_sg == 0)
 406		return -EINVAL;
 407
 408	dmaengine_slave_config(chan, &conf);
 409	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
 410					    conf.direction, DMA_CTRL_ACK);
 411	if (!desc)
 412		goto unmap_exit;
 413
 414	if (next) {
 415		next->dma_chan = chan;
 416		next->dma_desc = desc;
 417	} else {
 418		host->dma_current = chan;
 419		host->dma_desc_current = desc;
 420	}
 421
 422	return 0;
 423
 424 unmap_exit:
 425	if (!next)
 426		dmaengine_terminate_all(chan);
 427	dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
 428	return -ENOMEM;
 429}
 430
 431static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 432{
 433	int ret;
 434	struct mmc_data *data = host->data;
 435
 436	ret = mmci_dma_prep_data(host, host->data, NULL);
 437	if (ret)
 438		return ret;
 439
 440	/* Okay, go for it. */
 441	dev_vdbg(mmc_dev(host->mmc),
 442		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 443		 data->sg_len, data->blksz, data->blocks, data->flags);
 444	dmaengine_submit(host->dma_desc_current);
 445	dma_async_issue_pending(host->dma_current);
 446
 447	datactrl |= MCI_DPSM_DMAENABLE;
 448
 449	/* Trigger the DMA transfer */
 450	writel(datactrl, host->base + MMCIDATACTRL);
 451
 452	/*
 453	 * Let the MMCI say when the data is ended and it's time
 454	 * to fire next DMA request. When that happens, MMCI will
 455	 * call mmci_data_end()
 456	 */
 457	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 458	       host->base + MMCIMASK0);
 459	return 0;
 460}
 461
 462static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 463{
 464	struct mmci_host_next *next = &host->next_data;
 465
 466	if (data->host_cookie && data->host_cookie != next->cookie) {
 467		printk(KERN_WARNING "[%s] invalid cookie: data->host_cookie %d"
 468		       " host->next_data.cookie %d\n",
 469		       __func__, data->host_cookie, host->next_data.cookie);
 470		data->host_cookie = 0;
 471	}
 472
 473	if (!data->host_cookie)
 474		return;
 475
 476	host->dma_desc_current = next->dma_desc;
 477	host->dma_current = next->dma_chan;
 478
 479	next->dma_desc = NULL;
 480	next->dma_chan = NULL;
 481}
 482
 483static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
 484			     bool is_first_req)
 485{
 486	struct mmci_host *host = mmc_priv(mmc);
 487	struct mmc_data *data = mrq->data;
 488	struct mmci_host_next *nd = &host->next_data;
 489
 490	if (!data)
 491		return;
 492
 493	if (data->host_cookie) {
 494		data->host_cookie = 0;
 495		return;
 496	}
 497
 498	/* if config for dma */
 499	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
 500	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
 501		if (mmci_dma_prep_data(host, data, nd))
 502			data->host_cookie = 0;
 503		else
 504			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 505	}
 506}
 507
 508static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 509			      int err)
 510{
 511	struct mmci_host *host = mmc_priv(mmc);
 512	struct mmc_data *data = mrq->data;
 513	struct dma_chan *chan;
 514	enum dma_data_direction dir;
 515
 516	if (!data)
 517		return;
 518
 519	if (data->flags & MMC_DATA_READ) {
 520		dir = DMA_FROM_DEVICE;
 521		chan = host->dma_rx_channel;
 522	} else {
 523		dir = DMA_TO_DEVICE;
 524		chan = host->dma_tx_channel;
 525	}
 526
 527
 528	/* if config for dma */
 529	if (chan) {
 530		if (err)
 531			dmaengine_terminate_all(chan);
 532		if (err || data->host_cookie)
 533			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
 534				     data->sg_len, dir);
 535		mrq->data->host_cookie = 0;
 536	}
 537}
 538
 539#else
 540/* Blank functions if the DMA engine is not available */
 541static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 542{
 543}
 544static inline void mmci_dma_setup(struct mmci_host *host)
 545{
 546}
 547
 548static inline void mmci_dma_release(struct mmci_host *host)
 549{
 550}
 551
 552static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 553{
 554}
 555
 556static inline void mmci_dma_data_error(struct mmci_host *host)
 557{
 558}
 559
 560static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 561{
 562	return -ENOSYS;
 563}
 564
 565#define mmci_pre_request NULL
 566#define mmci_post_request NULL
 567
 568#endif
 569
 570static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 571{
 572	struct variant_data *variant = host->variant;
 573	unsigned int datactrl, timeout, irqmask;
 574	unsigned long long clks;
 575	void __iomem *base;
 576	int blksz_bits;
 577
 578	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 579		data->blksz, data->blocks, data->flags);
 580
 581	host->data = data;
 582	host->size = data->blksz * data->blocks;
 583	data->bytes_xfered = 0;
 584
 585	clks = (unsigned long long)data->timeout_ns * host->cclk;
 586	do_div(clks, 1000000000UL);
 587
 588	timeout = data->timeout_clks + (unsigned int)clks;
 589
 590	base = host->base;
 591	writel(timeout, base + MMCIDATATIMER);
 592	writel(host->size, base + MMCIDATALENGTH);
 593
 594	blksz_bits = ffs(data->blksz) - 1;
 595	BUG_ON(1 << blksz_bits != data->blksz);
 596
 597	if (variant->blksz_datactrl16)
 598		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 599	else
 600		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 601
 602	if (data->flags & MMC_DATA_READ)
 603		datactrl |= MCI_DPSM_DIRECTION;
 604
 
 
 
 
 
 605	/*
 606	 * Attempt to use DMA operation mode, if this
 607	 * should fail, fall back to PIO mode
 608	 */
 609	if (!mmci_dma_start_data(host, datactrl))
 610		return;
 611
 612	/* IRQ mode, map the SG list for CPU reading/writing */
 613	mmci_init_sg(host, data);
 614
 615	if (data->flags & MMC_DATA_READ) {
 616		irqmask = MCI_RXFIFOHALFFULLMASK;
 617
 618		/*
 619		 * If we have less than the fifo 'half-full' threshold to
 620		 * transfer, trigger a PIO interrupt as soon as any data
 621		 * is available.
 622		 */
 623		if (host->size < variant->fifohalfsize)
 624			irqmask |= MCI_RXDATAAVLBLMASK;
 625	} else {
 626		/*
 627		 * We don't actually need to include "FIFO empty" here
 628		 * since its implicit in "FIFO half empty".
 629		 */
 630		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 631	}
 632
 633	/* The ST Micro variants has a special bit to enable SDIO */
 634	if (variant->sdio && host->mmc->card)
 635		if (mmc_card_sdio(host->mmc->card))
 636			datactrl |= MCI_ST_DPSM_SDIOEN;
 637
 638	writel(datactrl, base + MMCIDATACTRL);
 639	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 640	mmci_set_mask1(host, irqmask);
 641}
 642
 643static void
 644mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 645{
 646	void __iomem *base = host->base;
 647
 648	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 649	    cmd->opcode, cmd->arg, cmd->flags);
 650
 651	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 652		writel(0, base + MMCICOMMAND);
 653		udelay(1);
 654	}
 655
 656	c |= cmd->opcode | MCI_CPSM_ENABLE;
 657	if (cmd->flags & MMC_RSP_PRESENT) {
 658		if (cmd->flags & MMC_RSP_136)
 659			c |= MCI_CPSM_LONGRSP;
 660		c |= MCI_CPSM_RESPONSE;
 661	}
 662	if (/*interrupt*/0)
 663		c |= MCI_CPSM_INTERRUPT;
 664
 665	host->cmd = cmd;
 666
 667	writel(cmd->arg, base + MMCIARGUMENT);
 668	writel(c, base + MMCICOMMAND);
 669}
 670
 671static void
 672mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 673	      unsigned int status)
 674{
 675	/* First check for errors */
 676	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
 
 677		u32 remain, success;
 678
 679		/* Terminate the DMA transfer */
 680		if (dma_inprogress(host))
 681			mmci_dma_data_error(host);
 682
 683		/*
 684		 * Calculate how far we are into the transfer.  Note that
 685		 * the data counter gives the number of bytes transferred
 686		 * on the MMC bus, not on the host side.  On reads, this
 687		 * can be as much as a FIFO-worth of data ahead.  This
 688		 * matters for FIFO overruns only.
 689		 */
 690		remain = readl(host->base + MMCIDATACNT);
 691		success = data->blksz * data->blocks - remain;
 692
 693		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 694			status, success);
 695		if (status & MCI_DATACRCFAIL) {
 696			/* Last block was not successful */
 697			success -= 1;
 698			data->error = -EILSEQ;
 699		} else if (status & MCI_DATATIMEOUT) {
 700			data->error = -ETIMEDOUT;
 701		} else if (status & MCI_STARTBITERR) {
 702			data->error = -ECOMM;
 703		} else if (status & MCI_TXUNDERRUN) {
 704			data->error = -EIO;
 705		} else if (status & MCI_RXOVERRUN) {
 706			if (success > host->variant->fifosize)
 707				success -= host->variant->fifosize;
 708			else
 709				success = 0;
 710			data->error = -EIO;
 711		}
 712		data->bytes_xfered = round_down(success, data->blksz);
 713	}
 714
 715	if (status & MCI_DATABLOCKEND)
 716		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
 717
 718	if (status & MCI_DATAEND || data->error) {
 719		if (dma_inprogress(host))
 720			mmci_dma_unmap(host, data);
 721		mmci_stop_data(host);
 722
 723		if (!data->error)
 724			/* The error clause is handled above, success! */
 725			data->bytes_xfered = data->blksz * data->blocks;
 726
 727		if (!data->stop) {
 728			mmci_request_end(host, data->mrq);
 729		} else {
 730			mmci_start_command(host, data->stop, 0);
 731		}
 732	}
 733}
 734
 735static void
 736mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
 737	     unsigned int status)
 738{
 739	void __iomem *base = host->base;
 740
 741	host->cmd = NULL;
 742
 743	if (status & MCI_CMDTIMEOUT) {
 744		cmd->error = -ETIMEDOUT;
 745	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
 746		cmd->error = -EILSEQ;
 747	} else {
 748		cmd->resp[0] = readl(base + MMCIRESPONSE0);
 749		cmd->resp[1] = readl(base + MMCIRESPONSE1);
 750		cmd->resp[2] = readl(base + MMCIRESPONSE2);
 751		cmd->resp[3] = readl(base + MMCIRESPONSE3);
 752	}
 753
 754	if (!cmd->data || cmd->error) {
 755		if (host->data)
 
 
 
 756			mmci_stop_data(host);
 
 757		mmci_request_end(host, cmd->mrq);
 758	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
 759		mmci_start_data(host, cmd->data);
 760	}
 761}
 762
 763static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
 764{
 765	void __iomem *base = host->base;
 766	char *ptr = buffer;
 767	u32 status;
 768	int host_remain = host->size;
 769
 770	do {
 771		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
 772
 773		if (count > remain)
 774			count = remain;
 775
 776		if (count <= 0)
 777			break;
 778
 779		readsl(base + MMCIFIFO, ptr, count >> 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780
 781		ptr += count;
 782		remain -= count;
 783		host_remain -= count;
 784
 785		if (remain == 0)
 786			break;
 787
 788		status = readl(base + MMCISTATUS);
 789	} while (status & MCI_RXDATAAVLBL);
 790
 791	return ptr - buffer;
 792}
 793
 794static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
 795{
 796	struct variant_data *variant = host->variant;
 797	void __iomem *base = host->base;
 798	char *ptr = buffer;
 799
 800	do {
 801		unsigned int count, maxcnt;
 802
 803		maxcnt = status & MCI_TXFIFOEMPTY ?
 804			 variant->fifosize : variant->fifohalfsize;
 805		count = min(remain, maxcnt);
 806
 807		/*
 808		 * The ST Micro variant for SDIO transfer sizes
 809		 * less then 8 bytes should have clock H/W flow
 810		 * control disabled.
 811		 */
 812		if (variant->sdio &&
 813		    mmc_card_sdio(host->mmc->card)) {
 
 814			if (count < 8)
 815				writel(readl(host->base + MMCICLOCK) &
 816					~variant->clkreg_enable,
 817					host->base + MMCICLOCK);
 818			else
 819				writel(readl(host->base + MMCICLOCK) |
 820					variant->clkreg_enable,
 821					host->base + MMCICLOCK);
 822		}
 823
 824		/*
 825		 * SDIO especially may want to send something that is
 826		 * not divisible by 4 (as opposed to card sectors
 827		 * etc), and the FIFO only accept full 32-bit writes.
 828		 * So compensate by adding +3 on the count, a single
 829		 * byte become a 32bit write, 7 bytes will be two
 830		 * 32bit writes etc.
 831		 */
 832		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
 833
 834		ptr += count;
 835		remain -= count;
 836
 837		if (remain == 0)
 838			break;
 839
 840		status = readl(base + MMCISTATUS);
 841	} while (status & MCI_TXFIFOHALFEMPTY);
 842
 843	return ptr - buffer;
 844}
 845
 846/*
 847 * PIO data transfer IRQ handler.
 848 */
 849static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
 850{
 851	struct mmci_host *host = dev_id;
 852	struct sg_mapping_iter *sg_miter = &host->sg_miter;
 853	struct variant_data *variant = host->variant;
 854	void __iomem *base = host->base;
 855	unsigned long flags;
 856	u32 status;
 857
 858	status = readl(base + MMCISTATUS);
 859
 860	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
 861
 862	local_irq_save(flags);
 863
 864	do {
 865		unsigned int remain, len;
 866		char *buffer;
 867
 868		/*
 869		 * For write, we only need to test the half-empty flag
 870		 * here - if the FIFO is completely empty, then by
 871		 * definition it is more than half empty.
 872		 *
 873		 * For read, check for data available.
 874		 */
 875		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
 876			break;
 877
 878		if (!sg_miter_next(sg_miter))
 879			break;
 880
 881		buffer = sg_miter->addr;
 882		remain = sg_miter->length;
 883
 884		len = 0;
 885		if (status & MCI_RXACTIVE)
 886			len = mmci_pio_read(host, buffer, remain);
 887		if (status & MCI_TXACTIVE)
 888			len = mmci_pio_write(host, buffer, remain, status);
 889
 890		sg_miter->consumed = len;
 891
 892		host->size -= len;
 893		remain -= len;
 894
 895		if (remain)
 896			break;
 897
 898		status = readl(base + MMCISTATUS);
 899	} while (1);
 900
 901	sg_miter_stop(sg_miter);
 902
 903	local_irq_restore(flags);
 904
 905	/*
 906	 * If we have less than the fifo 'half-full' threshold to transfer,
 907	 * trigger a PIO interrupt as soon as any data is available.
 908	 */
 909	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
 910		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
 911
 912	/*
 913	 * If we run out of data, disable the data IRQs; this
 914	 * prevents a race where the FIFO becomes empty before
 915	 * the chip itself has disabled the data path, and
 916	 * stops us racing with our data end IRQ.
 917	 */
 918	if (host->size == 0) {
 919		mmci_set_mask1(host, 0);
 920		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
 921	}
 922
 923	return IRQ_HANDLED;
 924}
 925
 926/*
 927 * Handle completion of command and data transfers.
 928 */
 929static irqreturn_t mmci_irq(int irq, void *dev_id)
 930{
 931	struct mmci_host *host = dev_id;
 932	u32 status;
 933	int ret = 0;
 934
 935	spin_lock(&host->lock);
 936
 937	do {
 938		struct mmc_command *cmd;
 939		struct mmc_data *data;
 940
 941		status = readl(host->base + MMCISTATUS);
 942
 943		if (host->singleirq) {
 944			if (status & readl(host->base + MMCIMASK1))
 945				mmci_pio_irq(irq, dev_id);
 946
 947			status &= ~MCI_IRQ1MASK;
 948		}
 949
 950		status &= readl(host->base + MMCIMASK0);
 951		writel(status, host->base + MMCICLEAR);
 952
 953		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
 954
 955		data = host->data;
 956		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
 957			      MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
 
 958			mmci_data_irq(host, data, status);
 959
 960		cmd = host->cmd;
 961		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
 962			mmci_cmd_irq(host, cmd, status);
 963
 964		ret = 1;
 965	} while (status);
 966
 967	spin_unlock(&host->lock);
 968
 969	return IRQ_RETVAL(ret);
 970}
 971
 972static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
 973{
 974	struct mmci_host *host = mmc_priv(mmc);
 975	unsigned long flags;
 976
 977	WARN_ON(host->mrq != NULL);
 978
 979	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
 980		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
 981			mrq->data->blksz);
 982		mrq->cmd->error = -EINVAL;
 983		mmc_request_done(mmc, mrq);
 984		return;
 985	}
 986
 
 
 987	spin_lock_irqsave(&host->lock, flags);
 988
 989	host->mrq = mrq;
 990
 991	if (mrq->data)
 992		mmci_get_next_data(host, mrq->data);
 993
 994	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
 995		mmci_start_data(host, mrq->data);
 996
 997	mmci_start_command(host, mrq->cmd, 0);
 998
 999	spin_unlock_irqrestore(&host->lock, flags);
1000}
1001
1002static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1003{
1004	struct mmci_host *host = mmc_priv(mmc);
 
1005	u32 pwr = 0;
1006	unsigned long flags;
1007	int ret;
1008
 
 
 
 
 
 
1009	switch (ios->power_mode) {
1010	case MMC_POWER_OFF:
1011		if (host->vcc)
1012			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1013		break;
1014	case MMC_POWER_UP:
1015		if (host->vcc) {
1016			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1017			if (ret) {
1018				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1019				/*
1020				 * The .set_ios() function in the mmc_host_ops
1021				 * struct return void, and failing to set the
1022				 * power should be rare so we print an error
1023				 * and return here.
1024				 */
1025				return;
1026			}
1027		}
1028		if (host->plat->vdd_handler)
1029			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
1030						       ios->power_mode);
1031		/* The ST version does not have this, fall through to POWER_ON */
1032		if (host->hw_designer != AMBA_VENDOR_ST) {
1033			pwr |= MCI_PWR_UP;
1034			break;
1035		}
1036	case MMC_POWER_ON:
1037		pwr |= MCI_PWR_ON;
1038		break;
1039	}
1040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1042		if (host->hw_designer != AMBA_VENDOR_ST)
1043			pwr |= MCI_ROD;
1044		else {
1045			/*
1046			 * The ST Micro variant use the ROD bit for something
1047			 * else and only has OD (Open Drain).
1048			 */
1049			pwr |= MCI_OD;
1050		}
1051	}
1052
1053	spin_lock_irqsave(&host->lock, flags);
1054
1055	mmci_set_clkreg(host, ios->clock);
 
1056
1057	if (host->pwr != pwr) {
1058		host->pwr = pwr;
1059		writel(pwr, host->base + MMCIPOWER);
1060	}
1061
1062	spin_unlock_irqrestore(&host->lock, flags);
 
 
1063}
1064
1065static int mmci_get_ro(struct mmc_host *mmc)
1066{
1067	struct mmci_host *host = mmc_priv(mmc);
1068
1069	if (host->gpio_wp == -ENOSYS)
1070		return -ENOSYS;
1071
1072	return gpio_get_value_cansleep(host->gpio_wp);
1073}
1074
1075static int mmci_get_cd(struct mmc_host *mmc)
1076{
1077	struct mmci_host *host = mmc_priv(mmc);
1078	struct mmci_platform_data *plat = host->plat;
1079	unsigned int status;
1080
1081	if (host->gpio_cd == -ENOSYS) {
1082		if (!plat->status)
1083			return 1; /* Assume always present */
1084
1085		status = plat->status(mmc_dev(host->mmc));
1086	} else
1087		status = !!gpio_get_value_cansleep(host->gpio_cd)
1088			^ plat->cd_invert;
1089
1090	/*
1091	 * Use positive logic throughout - status is zero for no card,
1092	 * non-zero for card inserted.
1093	 */
1094	return status;
1095}
1096
1097static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1098{
1099	struct mmci_host *host = dev_id;
1100
1101	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1102
1103	return IRQ_HANDLED;
1104}
1105
1106static const struct mmc_host_ops mmci_ops = {
1107	.request	= mmci_request,
1108	.pre_req	= mmci_pre_request,
1109	.post_req	= mmci_post_request,
1110	.set_ios	= mmci_set_ios,
1111	.get_ro		= mmci_get_ro,
1112	.get_cd		= mmci_get_cd,
1113};
1114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115static int __devinit mmci_probe(struct amba_device *dev,
1116	const struct amba_id *id)
1117{
1118	struct mmci_platform_data *plat = dev->dev.platform_data;
 
1119	struct variant_data *variant = id->data;
1120	struct mmci_host *host;
1121	struct mmc_host *mmc;
1122	int ret;
1123
1124	/* must have platform data */
 
 
 
 
 
1125	if (!plat) {
1126		ret = -EINVAL;
1127		goto out;
 
1128	}
1129
 
 
 
1130	ret = amba_request_regions(dev, DRIVER_NAME);
1131	if (ret)
1132		goto out;
1133
1134	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1135	if (!mmc) {
1136		ret = -ENOMEM;
1137		goto rel_regions;
1138	}
1139
1140	host = mmc_priv(mmc);
1141	host->mmc = mmc;
1142
1143	host->gpio_wp = -ENOSYS;
1144	host->gpio_cd = -ENOSYS;
1145	host->gpio_cd_irq = -1;
1146
1147	host->hw_designer = amba_manf(dev);
1148	host->hw_revision = amba_rev(dev);
1149	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1150	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1151
1152	host->clk = clk_get(&dev->dev, NULL);
1153	if (IS_ERR(host->clk)) {
1154		ret = PTR_ERR(host->clk);
1155		host->clk = NULL;
1156		goto host_free;
1157	}
1158
 
 
 
 
1159	ret = clk_enable(host->clk);
1160	if (ret)
1161		goto clk_free;
1162
1163	host->plat = plat;
1164	host->variant = variant;
1165	host->mclk = clk_get_rate(host->clk);
1166	/*
1167	 * According to the spec, mclk is max 100 MHz,
1168	 * so we try to adjust the clock down to this,
1169	 * (if possible).
1170	 */
1171	if (host->mclk > 100000000) {
1172		ret = clk_set_rate(host->clk, 100000000);
1173		if (ret < 0)
1174			goto clk_disable;
1175		host->mclk = clk_get_rate(host->clk);
1176		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1177			host->mclk);
1178	}
1179	host->phybase = dev->res.start;
1180	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1181	if (!host->base) {
1182		ret = -ENOMEM;
1183		goto clk_disable;
1184	}
1185
1186	mmc->ops = &mmci_ops;
1187	/*
1188	 * The ARM and ST versions of the block have slightly different
1189	 * clock divider equations which means that the minimum divider
1190	 * differs too.
1191	 */
1192	if (variant->st_clkdiv)
1193		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1194	else
1195		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1196	/*
1197	 * If the platform data supplies a maximum operating
1198	 * frequency, this takes precedence. Else, we fall back
1199	 * to using the module parameter, which has a (low)
1200	 * default value in case it is not specified. Either
1201	 * value must not exceed the clock rate into the block,
1202	 * of course.
1203	 */
1204	if (plat->f_max)
1205		mmc->f_max = min(host->mclk, plat->f_max);
1206	else
1207		mmc->f_max = min(host->mclk, fmax);
1208	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1209
1210#ifdef CONFIG_REGULATOR
1211	/* If we're using the regulator framework, try to fetch a regulator */
1212	host->vcc = regulator_get(&dev->dev, "vmmc");
1213	if (IS_ERR(host->vcc))
1214		host->vcc = NULL;
1215	else {
1216		int mask = mmc_regulator_get_ocrmask(host->vcc);
1217
1218		if (mask < 0)
1219			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1220				mask);
1221		else {
1222			host->mmc->ocr_avail = (u32) mask;
1223			if (plat->ocr_mask)
1224				dev_warn(&dev->dev,
1225				 "Provided ocr_mask/setpower will not be used "
1226				 "(using regulator instead)\n");
1227		}
1228	}
1229#endif
1230	/* Fall back to platform data if no regulator is found */
1231	if (host->vcc == NULL)
1232		mmc->ocr_avail = plat->ocr_mask;
1233	mmc->caps = plat->capabilities;
 
1234
1235	/*
1236	 * We can do SGIO
1237	 */
1238	mmc->max_segs = NR_SG;
1239
1240	/*
1241	 * Since only a certain number of bits are valid in the data length
1242	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1243	 * single request.
1244	 */
1245	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1246
1247	/*
1248	 * Set the maximum segment size.  Since we aren't doing DMA
1249	 * (yet) we are only limited by the data length register.
1250	 */
1251	mmc->max_seg_size = mmc->max_req_size;
1252
1253	/*
1254	 * Block size can be up to 2048 bytes, but must be a power of two.
1255	 */
1256	mmc->max_blk_size = 2048;
1257
1258	/*
1259	 * No limit on the number of blocks transferred.
 
1260	 */
1261	mmc->max_blk_count = mmc->max_req_size;
1262
1263	spin_lock_init(&host->lock);
1264
1265	writel(0, host->base + MMCIMASK0);
1266	writel(0, host->base + MMCIMASK1);
1267	writel(0xfff, host->base + MMCICLEAR);
1268
 
 
 
 
1269	if (gpio_is_valid(plat->gpio_cd)) {
1270		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1271		if (ret == 0)
1272			ret = gpio_direction_input(plat->gpio_cd);
1273		if (ret == 0)
1274			host->gpio_cd = plat->gpio_cd;
1275		else if (ret != -ENOSYS)
1276			goto err_gpio_cd;
1277
1278		/*
1279		 * A gpio pin that will detect cards when inserted and removed
1280		 * will most likely want to trigger on the edges if it is
1281		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1282		 * for the inverted case) so we request triggers on both
1283		 * edges.
1284		 */
1285		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1286				mmci_cd_irq,
1287				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1288				DRIVER_NAME " (cd)", host);
1289		if (ret >= 0)
1290			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1291	}
 
 
 
 
1292	if (gpio_is_valid(plat->gpio_wp)) {
1293		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1294		if (ret == 0)
1295			ret = gpio_direction_input(plat->gpio_wp);
1296		if (ret == 0)
1297			host->gpio_wp = plat->gpio_wp;
1298		else if (ret != -ENOSYS)
1299			goto err_gpio_wp;
1300	}
1301
1302	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1303	    && host->gpio_cd_irq < 0)
1304		mmc->caps |= MMC_CAP_NEEDS_POLL;
1305
1306	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1307	if (ret)
1308		goto unmap;
1309
1310	if (dev->irq[1] == NO_IRQ)
1311		host->singleirq = true;
1312	else {
1313		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1314				  DRIVER_NAME " (pio)", host);
1315		if (ret)
1316			goto irq0_free;
1317	}
1318
1319	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1320
1321	amba_set_drvdata(dev, mmc);
1322
1323	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1324		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1325		 amba_rev(dev), (unsigned long long)dev->res.start,
1326		 dev->irq[0], dev->irq[1]);
1327
1328	mmci_dma_setup(host);
1329
 
 
 
 
1330	mmc_add_host(mmc);
1331
1332	return 0;
1333
1334 irq0_free:
1335	free_irq(dev->irq[0], host);
1336 unmap:
1337	if (host->gpio_wp != -ENOSYS)
1338		gpio_free(host->gpio_wp);
1339 err_gpio_wp:
1340	if (host->gpio_cd_irq >= 0)
1341		free_irq(host->gpio_cd_irq, host);
1342	if (host->gpio_cd != -ENOSYS)
1343		gpio_free(host->gpio_cd);
1344 err_gpio_cd:
1345	iounmap(host->base);
1346 clk_disable:
1347	clk_disable(host->clk);
 
 
1348 clk_free:
1349	clk_put(host->clk);
1350 host_free:
1351	mmc_free_host(mmc);
1352 rel_regions:
1353	amba_release_regions(dev);
1354 out:
1355	return ret;
1356}
1357
1358static int __devexit mmci_remove(struct amba_device *dev)
1359{
1360	struct mmc_host *mmc = amba_get_drvdata(dev);
1361
1362	amba_set_drvdata(dev, NULL);
1363
1364	if (mmc) {
1365		struct mmci_host *host = mmc_priv(mmc);
1366
 
 
 
 
 
 
1367		mmc_remove_host(mmc);
1368
1369		writel(0, host->base + MMCIMASK0);
1370		writel(0, host->base + MMCIMASK1);
1371
1372		writel(0, host->base + MMCICOMMAND);
1373		writel(0, host->base + MMCIDATACTRL);
1374
1375		mmci_dma_release(host);
1376		free_irq(dev->irq[0], host);
1377		if (!host->singleirq)
1378			free_irq(dev->irq[1], host);
1379
1380		if (host->gpio_wp != -ENOSYS)
1381			gpio_free(host->gpio_wp);
1382		if (host->gpio_cd_irq >= 0)
1383			free_irq(host->gpio_cd_irq, host);
1384		if (host->gpio_cd != -ENOSYS)
1385			gpio_free(host->gpio_cd);
1386
1387		iounmap(host->base);
1388		clk_disable(host->clk);
 
1389		clk_put(host->clk);
1390
1391		if (host->vcc)
1392			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1393		regulator_put(host->vcc);
1394
1395		mmc_free_host(mmc);
1396
1397		amba_release_regions(dev);
1398	}
1399
1400	return 0;
1401}
1402
1403#ifdef CONFIG_PM
1404static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1405{
1406	struct mmc_host *mmc = amba_get_drvdata(dev);
 
1407	int ret = 0;
1408
1409	if (mmc) {
1410		struct mmci_host *host = mmc_priv(mmc);
1411
1412		ret = mmc_suspend_host(mmc);
1413		if (ret == 0)
 
1414			writel(0, host->base + MMCIMASK0);
 
1415	}
1416
1417	return ret;
1418}
1419
1420static int mmci_resume(struct amba_device *dev)
1421{
1422	struct mmc_host *mmc = amba_get_drvdata(dev);
 
1423	int ret = 0;
1424
1425	if (mmc) {
1426		struct mmci_host *host = mmc_priv(mmc);
1427
1428		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
 
1429
1430		ret = mmc_resume_host(mmc);
1431	}
1432
1433	return ret;
1434}
1435#else
1436#define mmci_suspend	NULL
1437#define mmci_resume	NULL
1438#endif
1439
 
 
 
 
1440static struct amba_id mmci_ids[] = {
1441	{
1442		.id	= 0x00041180,
1443		.mask	= 0xff0fffff,
1444		.data	= &variant_arm,
1445	},
1446	{
1447		.id	= 0x01041180,
1448		.mask	= 0xff0fffff,
1449		.data	= &variant_arm_extended_fifo,
1450	},
1451	{
1452		.id	= 0x00041181,
1453		.mask	= 0x000fffff,
1454		.data	= &variant_arm,
1455	},
1456	/* ST Micro variants */
1457	{
1458		.id     = 0x00180180,
1459		.mask   = 0x00ffffff,
1460		.data	= &variant_u300,
1461	},
1462	{
 
 
 
 
 
1463		.id     = 0x00280180,
1464		.mask   = 0x00ffffff,
1465		.data	= &variant_u300,
1466	},
1467	{
1468		.id     = 0x00480180,
1469		.mask   = 0xf0ffffff,
1470		.data	= &variant_ux500,
1471	},
1472	{
1473		.id     = 0x10480180,
1474		.mask   = 0xf0ffffff,
1475		.data	= &variant_ux500v2,
1476	},
1477	{ 0, 0 },
1478};
1479
 
 
1480static struct amba_driver mmci_driver = {
1481	.drv		= {
1482		.name	= DRIVER_NAME,
 
1483	},
1484	.probe		= mmci_probe,
1485	.remove		= __devexit_p(mmci_remove),
1486	.suspend	= mmci_suspend,
1487	.resume		= mmci_resume,
1488	.id_table	= mmci_ids,
1489};
1490
1491static int __init mmci_init(void)
1492{
1493	return amba_driver_register(&mmci_driver);
1494}
1495
1496static void __exit mmci_exit(void)
1497{
1498	amba_driver_unregister(&mmci_driver);
1499}
1500
1501module_init(mmci_init);
1502module_exit(mmci_exit);
1503module_param(fmax, uint, 0444);
1504
1505MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1506MODULE_LICENSE("GPL");