Loading...
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21
22#define DM_MSG_PREFIX "table"
23
24#define MAX_DEPTH 16
25#define NODE_SIZE L1_CACHE_BYTES
26#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29/*
30 * The table has always exactly one reference from either mapped_device->map
31 * or hash_cell->new_map. This reference is not counted in table->holders.
32 * A pair of dm_create_table/dm_destroy_table functions is used for table
33 * creation/destruction.
34 *
35 * Temporary references from the other code increase table->holders. A pair
36 * of dm_table_get/dm_table_put functions is used to manipulate it.
37 *
38 * When the table is about to be destroyed, we wait for table->holders to
39 * drop to zero.
40 */
41
42struct dm_table {
43 struct mapped_device *md;
44 atomic_t holders;
45 unsigned type;
46
47 /* btree table */
48 unsigned int depth;
49 unsigned int counts[MAX_DEPTH]; /* in nodes */
50 sector_t *index[MAX_DEPTH];
51
52 unsigned int num_targets;
53 unsigned int num_allocated;
54 sector_t *highs;
55 struct dm_target *targets;
56
57 struct target_type *immutable_target_type;
58 unsigned integrity_supported:1;
59 unsigned singleton:1;
60
61 /*
62 * Indicates the rw permissions for the new logical
63 * device. This should be a combination of FMODE_READ
64 * and FMODE_WRITE.
65 */
66 fmode_t mode;
67
68 /* a list of devices used by this table */
69 struct list_head devices;
70
71 /* events get handed up using this callback */
72 void (*event_fn)(void *);
73 void *event_context;
74
75 struct dm_md_mempools *mempools;
76
77 struct list_head target_callbacks;
78};
79
80/*
81 * Similar to ceiling(log_size(n))
82 */
83static unsigned int int_log(unsigned int n, unsigned int base)
84{
85 int result = 0;
86
87 while (n > 1) {
88 n = dm_div_up(n, base);
89 result++;
90 }
91
92 return result;
93}
94
95/*
96 * Calculate the index of the child node of the n'th node k'th key.
97 */
98static inline unsigned int get_child(unsigned int n, unsigned int k)
99{
100 return (n * CHILDREN_PER_NODE) + k;
101}
102
103/*
104 * Return the n'th node of level l from table t.
105 */
106static inline sector_t *get_node(struct dm_table *t,
107 unsigned int l, unsigned int n)
108{
109 return t->index[l] + (n * KEYS_PER_NODE);
110}
111
112/*
113 * Return the highest key that you could lookup from the n'th
114 * node on level l of the btree.
115 */
116static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
117{
118 for (; l < t->depth - 1; l++)
119 n = get_child(n, CHILDREN_PER_NODE - 1);
120
121 if (n >= t->counts[l])
122 return (sector_t) - 1;
123
124 return get_node(t, l, n)[KEYS_PER_NODE - 1];
125}
126
127/*
128 * Fills in a level of the btree based on the highs of the level
129 * below it.
130 */
131static int setup_btree_index(unsigned int l, struct dm_table *t)
132{
133 unsigned int n, k;
134 sector_t *node;
135
136 for (n = 0U; n < t->counts[l]; n++) {
137 node = get_node(t, l, n);
138
139 for (k = 0U; k < KEYS_PER_NODE; k++)
140 node[k] = high(t, l + 1, get_child(n, k));
141 }
142
143 return 0;
144}
145
146void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
147{
148 unsigned long size;
149 void *addr;
150
151 /*
152 * Check that we're not going to overflow.
153 */
154 if (nmemb > (ULONG_MAX / elem_size))
155 return NULL;
156
157 size = nmemb * elem_size;
158 addr = vzalloc(size);
159
160 return addr;
161}
162EXPORT_SYMBOL(dm_vcalloc);
163
164/*
165 * highs, and targets are managed as dynamic arrays during a
166 * table load.
167 */
168static int alloc_targets(struct dm_table *t, unsigned int num)
169{
170 sector_t *n_highs;
171 struct dm_target *n_targets;
172 int n = t->num_targets;
173
174 /*
175 * Allocate both the target array and offset array at once.
176 * Append an empty entry to catch sectors beyond the end of
177 * the device.
178 */
179 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
180 sizeof(sector_t));
181 if (!n_highs)
182 return -ENOMEM;
183
184 n_targets = (struct dm_target *) (n_highs + num);
185
186 if (n) {
187 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
188 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
189 }
190
191 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
192 vfree(t->highs);
193
194 t->num_allocated = num;
195 t->highs = n_highs;
196 t->targets = n_targets;
197
198 return 0;
199}
200
201int dm_table_create(struct dm_table **result, fmode_t mode,
202 unsigned num_targets, struct mapped_device *md)
203{
204 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
205
206 if (!t)
207 return -ENOMEM;
208
209 INIT_LIST_HEAD(&t->devices);
210 INIT_LIST_HEAD(&t->target_callbacks);
211 atomic_set(&t->holders, 0);
212
213 if (!num_targets)
214 num_targets = KEYS_PER_NODE;
215
216 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
217
218 if (alloc_targets(t, num_targets)) {
219 kfree(t);
220 t = NULL;
221 return -ENOMEM;
222 }
223
224 t->mode = mode;
225 t->md = md;
226 *result = t;
227 return 0;
228}
229
230static void free_devices(struct list_head *devices)
231{
232 struct list_head *tmp, *next;
233
234 list_for_each_safe(tmp, next, devices) {
235 struct dm_dev_internal *dd =
236 list_entry(tmp, struct dm_dev_internal, list);
237 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
238 dd->dm_dev.name);
239 kfree(dd);
240 }
241}
242
243void dm_table_destroy(struct dm_table *t)
244{
245 unsigned int i;
246
247 if (!t)
248 return;
249
250 while (atomic_read(&t->holders))
251 msleep(1);
252 smp_mb();
253
254 /* free the indexes */
255 if (t->depth >= 2)
256 vfree(t->index[t->depth - 2]);
257
258 /* free the targets */
259 for (i = 0; i < t->num_targets; i++) {
260 struct dm_target *tgt = t->targets + i;
261
262 if (tgt->type->dtr)
263 tgt->type->dtr(tgt);
264
265 dm_put_target_type(tgt->type);
266 }
267
268 vfree(t->highs);
269
270 /* free the device list */
271 free_devices(&t->devices);
272
273 dm_free_md_mempools(t->mempools);
274
275 kfree(t);
276}
277
278void dm_table_get(struct dm_table *t)
279{
280 atomic_inc(&t->holders);
281}
282EXPORT_SYMBOL(dm_table_get);
283
284void dm_table_put(struct dm_table *t)
285{
286 if (!t)
287 return;
288
289 smp_mb__before_atomic_dec();
290 atomic_dec(&t->holders);
291}
292EXPORT_SYMBOL(dm_table_put);
293
294/*
295 * Checks to see if we need to extend highs or targets.
296 */
297static inline int check_space(struct dm_table *t)
298{
299 if (t->num_targets >= t->num_allocated)
300 return alloc_targets(t, t->num_allocated * 2);
301
302 return 0;
303}
304
305/*
306 * See if we've already got a device in the list.
307 */
308static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
309{
310 struct dm_dev_internal *dd;
311
312 list_for_each_entry (dd, l, list)
313 if (dd->dm_dev.bdev->bd_dev == dev)
314 return dd;
315
316 return NULL;
317}
318
319/*
320 * Open a device so we can use it as a map destination.
321 */
322static int open_dev(struct dm_dev_internal *d, dev_t dev,
323 struct mapped_device *md)
324{
325 static char *_claim_ptr = "I belong to device-mapper";
326 struct block_device *bdev;
327
328 int r;
329
330 BUG_ON(d->dm_dev.bdev);
331
332 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
333 if (IS_ERR(bdev))
334 return PTR_ERR(bdev);
335
336 r = bd_link_disk_holder(bdev, dm_disk(md));
337 if (r) {
338 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
339 return r;
340 }
341
342 d->dm_dev.bdev = bdev;
343 return 0;
344}
345
346/*
347 * Close a device that we've been using.
348 */
349static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
350{
351 if (!d->dm_dev.bdev)
352 return;
353
354 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
355 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
356 d->dm_dev.bdev = NULL;
357}
358
359/*
360 * If possible, this checks an area of a destination device is invalid.
361 */
362static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
363 sector_t start, sector_t len, void *data)
364{
365 struct request_queue *q;
366 struct queue_limits *limits = data;
367 struct block_device *bdev = dev->bdev;
368 sector_t dev_size =
369 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
370 unsigned short logical_block_size_sectors =
371 limits->logical_block_size >> SECTOR_SHIFT;
372 char b[BDEVNAME_SIZE];
373
374 /*
375 * Some devices exist without request functions,
376 * such as loop devices not yet bound to backing files.
377 * Forbid the use of such devices.
378 */
379 q = bdev_get_queue(bdev);
380 if (!q || !q->make_request_fn) {
381 DMWARN("%s: %s is not yet initialised: "
382 "start=%llu, len=%llu, dev_size=%llu",
383 dm_device_name(ti->table->md), bdevname(bdev, b),
384 (unsigned long long)start,
385 (unsigned long long)len,
386 (unsigned long long)dev_size);
387 return 1;
388 }
389
390 if (!dev_size)
391 return 0;
392
393 if ((start >= dev_size) || (start + len > dev_size)) {
394 DMWARN("%s: %s too small for target: "
395 "start=%llu, len=%llu, dev_size=%llu",
396 dm_device_name(ti->table->md), bdevname(bdev, b),
397 (unsigned long long)start,
398 (unsigned long long)len,
399 (unsigned long long)dev_size);
400 return 1;
401 }
402
403 if (logical_block_size_sectors <= 1)
404 return 0;
405
406 if (start & (logical_block_size_sectors - 1)) {
407 DMWARN("%s: start=%llu not aligned to h/w "
408 "logical block size %u of %s",
409 dm_device_name(ti->table->md),
410 (unsigned long long)start,
411 limits->logical_block_size, bdevname(bdev, b));
412 return 1;
413 }
414
415 if (len & (logical_block_size_sectors - 1)) {
416 DMWARN("%s: len=%llu not aligned to h/w "
417 "logical block size %u of %s",
418 dm_device_name(ti->table->md),
419 (unsigned long long)len,
420 limits->logical_block_size, bdevname(bdev, b));
421 return 1;
422 }
423
424 return 0;
425}
426
427/*
428 * This upgrades the mode on an already open dm_dev, being
429 * careful to leave things as they were if we fail to reopen the
430 * device and not to touch the existing bdev field in case
431 * it is accessed concurrently inside dm_table_any_congested().
432 */
433static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
434 struct mapped_device *md)
435{
436 int r;
437 struct dm_dev_internal dd_new, dd_old;
438
439 dd_new = dd_old = *dd;
440
441 dd_new.dm_dev.mode |= new_mode;
442 dd_new.dm_dev.bdev = NULL;
443
444 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
445 if (r)
446 return r;
447
448 dd->dm_dev.mode |= new_mode;
449 close_dev(&dd_old, md);
450
451 return 0;
452}
453
454/*
455 * Add a device to the list, or just increment the usage count if
456 * it's already present.
457 */
458int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
459 struct dm_dev **result)
460{
461 int r;
462 dev_t uninitialized_var(dev);
463 struct dm_dev_internal *dd;
464 unsigned int major, minor;
465 struct dm_table *t = ti->table;
466 char dummy;
467
468 BUG_ON(!t);
469
470 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
471 /* Extract the major/minor numbers */
472 dev = MKDEV(major, minor);
473 if (MAJOR(dev) != major || MINOR(dev) != minor)
474 return -EOVERFLOW;
475 } else {
476 /* convert the path to a device */
477 struct block_device *bdev = lookup_bdev(path);
478
479 if (IS_ERR(bdev))
480 return PTR_ERR(bdev);
481 dev = bdev->bd_dev;
482 bdput(bdev);
483 }
484
485 dd = find_device(&t->devices, dev);
486 if (!dd) {
487 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
488 if (!dd)
489 return -ENOMEM;
490
491 dd->dm_dev.mode = mode;
492 dd->dm_dev.bdev = NULL;
493
494 if ((r = open_dev(dd, dev, t->md))) {
495 kfree(dd);
496 return r;
497 }
498
499 format_dev_t(dd->dm_dev.name, dev);
500
501 atomic_set(&dd->count, 0);
502 list_add(&dd->list, &t->devices);
503
504 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
505 r = upgrade_mode(dd, mode, t->md);
506 if (r)
507 return r;
508 }
509 atomic_inc(&dd->count);
510
511 *result = &dd->dm_dev;
512 return 0;
513}
514EXPORT_SYMBOL(dm_get_device);
515
516int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
517 sector_t start, sector_t len, void *data)
518{
519 struct queue_limits *limits = data;
520 struct block_device *bdev = dev->bdev;
521 struct request_queue *q = bdev_get_queue(bdev);
522 char b[BDEVNAME_SIZE];
523
524 if (unlikely(!q)) {
525 DMWARN("%s: Cannot set limits for nonexistent device %s",
526 dm_device_name(ti->table->md), bdevname(bdev, b));
527 return 0;
528 }
529
530 if (bdev_stack_limits(limits, bdev, start) < 0)
531 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
532 "physical_block_size=%u, logical_block_size=%u, "
533 "alignment_offset=%u, start=%llu",
534 dm_device_name(ti->table->md), bdevname(bdev, b),
535 q->limits.physical_block_size,
536 q->limits.logical_block_size,
537 q->limits.alignment_offset,
538 (unsigned long long) start << SECTOR_SHIFT);
539
540 /*
541 * Check if merge fn is supported.
542 * If not we'll force DM to use PAGE_SIZE or
543 * smaller I/O, just to be safe.
544 */
545 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
546 blk_limits_max_hw_sectors(limits,
547 (unsigned int) (PAGE_SIZE >> 9));
548 return 0;
549}
550EXPORT_SYMBOL_GPL(dm_set_device_limits);
551
552/*
553 * Decrement a device's use count and remove it if necessary.
554 */
555void dm_put_device(struct dm_target *ti, struct dm_dev *d)
556{
557 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
558 dm_dev);
559
560 if (atomic_dec_and_test(&dd->count)) {
561 close_dev(dd, ti->table->md);
562 list_del(&dd->list);
563 kfree(dd);
564 }
565}
566EXPORT_SYMBOL(dm_put_device);
567
568/*
569 * Checks to see if the target joins onto the end of the table.
570 */
571static int adjoin(struct dm_table *table, struct dm_target *ti)
572{
573 struct dm_target *prev;
574
575 if (!table->num_targets)
576 return !ti->begin;
577
578 prev = &table->targets[table->num_targets - 1];
579 return (ti->begin == (prev->begin + prev->len));
580}
581
582/*
583 * Used to dynamically allocate the arg array.
584 */
585static char **realloc_argv(unsigned *array_size, char **old_argv)
586{
587 char **argv;
588 unsigned new_size;
589
590 new_size = *array_size ? *array_size * 2 : 64;
591 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
592 if (argv) {
593 memcpy(argv, old_argv, *array_size * sizeof(*argv));
594 *array_size = new_size;
595 }
596
597 kfree(old_argv);
598 return argv;
599}
600
601/*
602 * Destructively splits up the argument list to pass to ctr.
603 */
604int dm_split_args(int *argc, char ***argvp, char *input)
605{
606 char *start, *end = input, *out, **argv = NULL;
607 unsigned array_size = 0;
608
609 *argc = 0;
610
611 if (!input) {
612 *argvp = NULL;
613 return 0;
614 }
615
616 argv = realloc_argv(&array_size, argv);
617 if (!argv)
618 return -ENOMEM;
619
620 while (1) {
621 /* Skip whitespace */
622 start = skip_spaces(end);
623
624 if (!*start)
625 break; /* success, we hit the end */
626
627 /* 'out' is used to remove any back-quotes */
628 end = out = start;
629 while (*end) {
630 /* Everything apart from '\0' can be quoted */
631 if (*end == '\\' && *(end + 1)) {
632 *out++ = *(end + 1);
633 end += 2;
634 continue;
635 }
636
637 if (isspace(*end))
638 break; /* end of token */
639
640 *out++ = *end++;
641 }
642
643 /* have we already filled the array ? */
644 if ((*argc + 1) > array_size) {
645 argv = realloc_argv(&array_size, argv);
646 if (!argv)
647 return -ENOMEM;
648 }
649
650 /* we know this is whitespace */
651 if (*end)
652 end++;
653
654 /* terminate the string and put it in the array */
655 *out = '\0';
656 argv[*argc] = start;
657 (*argc)++;
658 }
659
660 *argvp = argv;
661 return 0;
662}
663
664/*
665 * Impose necessary and sufficient conditions on a devices's table such
666 * that any incoming bio which respects its logical_block_size can be
667 * processed successfully. If it falls across the boundary between
668 * two or more targets, the size of each piece it gets split into must
669 * be compatible with the logical_block_size of the target processing it.
670 */
671static int validate_hardware_logical_block_alignment(struct dm_table *table,
672 struct queue_limits *limits)
673{
674 /*
675 * This function uses arithmetic modulo the logical_block_size
676 * (in units of 512-byte sectors).
677 */
678 unsigned short device_logical_block_size_sects =
679 limits->logical_block_size >> SECTOR_SHIFT;
680
681 /*
682 * Offset of the start of the next table entry, mod logical_block_size.
683 */
684 unsigned short next_target_start = 0;
685
686 /*
687 * Given an aligned bio that extends beyond the end of a
688 * target, how many sectors must the next target handle?
689 */
690 unsigned short remaining = 0;
691
692 struct dm_target *uninitialized_var(ti);
693 struct queue_limits ti_limits;
694 unsigned i = 0;
695
696 /*
697 * Check each entry in the table in turn.
698 */
699 while (i < dm_table_get_num_targets(table)) {
700 ti = dm_table_get_target(table, i++);
701
702 blk_set_stacking_limits(&ti_limits);
703
704 /* combine all target devices' limits */
705 if (ti->type->iterate_devices)
706 ti->type->iterate_devices(ti, dm_set_device_limits,
707 &ti_limits);
708
709 /*
710 * If the remaining sectors fall entirely within this
711 * table entry are they compatible with its logical_block_size?
712 */
713 if (remaining < ti->len &&
714 remaining & ((ti_limits.logical_block_size >>
715 SECTOR_SHIFT) - 1))
716 break; /* Error */
717
718 next_target_start =
719 (unsigned short) ((next_target_start + ti->len) &
720 (device_logical_block_size_sects - 1));
721 remaining = next_target_start ?
722 device_logical_block_size_sects - next_target_start : 0;
723 }
724
725 if (remaining) {
726 DMWARN("%s: table line %u (start sect %llu len %llu) "
727 "not aligned to h/w logical block size %u",
728 dm_device_name(table->md), i,
729 (unsigned long long) ti->begin,
730 (unsigned long long) ti->len,
731 limits->logical_block_size);
732 return -EINVAL;
733 }
734
735 return 0;
736}
737
738int dm_table_add_target(struct dm_table *t, const char *type,
739 sector_t start, sector_t len, char *params)
740{
741 int r = -EINVAL, argc;
742 char **argv;
743 struct dm_target *tgt;
744
745 if (t->singleton) {
746 DMERR("%s: target type %s must appear alone in table",
747 dm_device_name(t->md), t->targets->type->name);
748 return -EINVAL;
749 }
750
751 if ((r = check_space(t)))
752 return r;
753
754 tgt = t->targets + t->num_targets;
755 memset(tgt, 0, sizeof(*tgt));
756
757 if (!len) {
758 DMERR("%s: zero-length target", dm_device_name(t->md));
759 return -EINVAL;
760 }
761
762 tgt->type = dm_get_target_type(type);
763 if (!tgt->type) {
764 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
765 type);
766 return -EINVAL;
767 }
768
769 if (dm_target_needs_singleton(tgt->type)) {
770 if (t->num_targets) {
771 DMERR("%s: target type %s must appear alone in table",
772 dm_device_name(t->md), type);
773 return -EINVAL;
774 }
775 t->singleton = 1;
776 }
777
778 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
779 DMERR("%s: target type %s may not be included in read-only tables",
780 dm_device_name(t->md), type);
781 return -EINVAL;
782 }
783
784 if (t->immutable_target_type) {
785 if (t->immutable_target_type != tgt->type) {
786 DMERR("%s: immutable target type %s cannot be mixed with other target types",
787 dm_device_name(t->md), t->immutable_target_type->name);
788 return -EINVAL;
789 }
790 } else if (dm_target_is_immutable(tgt->type)) {
791 if (t->num_targets) {
792 DMERR("%s: immutable target type %s cannot be mixed with other target types",
793 dm_device_name(t->md), tgt->type->name);
794 return -EINVAL;
795 }
796 t->immutable_target_type = tgt->type;
797 }
798
799 tgt->table = t;
800 tgt->begin = start;
801 tgt->len = len;
802 tgt->error = "Unknown error";
803
804 /*
805 * Does this target adjoin the previous one ?
806 */
807 if (!adjoin(t, tgt)) {
808 tgt->error = "Gap in table";
809 r = -EINVAL;
810 goto bad;
811 }
812
813 r = dm_split_args(&argc, &argv, params);
814 if (r) {
815 tgt->error = "couldn't split parameters (insufficient memory)";
816 goto bad;
817 }
818
819 r = tgt->type->ctr(tgt, argc, argv);
820 kfree(argv);
821 if (r)
822 goto bad;
823
824 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
825
826 if (!tgt->num_discard_requests && tgt->discards_supported)
827 DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
828 dm_device_name(t->md), type);
829
830 return 0;
831
832 bad:
833 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
834 dm_put_target_type(tgt->type);
835 return r;
836}
837
838/*
839 * Target argument parsing helpers.
840 */
841static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
842 unsigned *value, char **error, unsigned grouped)
843{
844 const char *arg_str = dm_shift_arg(arg_set);
845 char dummy;
846
847 if (!arg_str ||
848 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
849 (*value < arg->min) ||
850 (*value > arg->max) ||
851 (grouped && arg_set->argc < *value)) {
852 *error = arg->error;
853 return -EINVAL;
854 }
855
856 return 0;
857}
858
859int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
860 unsigned *value, char **error)
861{
862 return validate_next_arg(arg, arg_set, value, error, 0);
863}
864EXPORT_SYMBOL(dm_read_arg);
865
866int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
867 unsigned *value, char **error)
868{
869 return validate_next_arg(arg, arg_set, value, error, 1);
870}
871EXPORT_SYMBOL(dm_read_arg_group);
872
873const char *dm_shift_arg(struct dm_arg_set *as)
874{
875 char *r;
876
877 if (as->argc) {
878 as->argc--;
879 r = *as->argv;
880 as->argv++;
881 return r;
882 }
883
884 return NULL;
885}
886EXPORT_SYMBOL(dm_shift_arg);
887
888void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
889{
890 BUG_ON(as->argc < num_args);
891 as->argc -= num_args;
892 as->argv += num_args;
893}
894EXPORT_SYMBOL(dm_consume_args);
895
896static int dm_table_set_type(struct dm_table *t)
897{
898 unsigned i;
899 unsigned bio_based = 0, request_based = 0;
900 struct dm_target *tgt;
901 struct dm_dev_internal *dd;
902 struct list_head *devices;
903
904 for (i = 0; i < t->num_targets; i++) {
905 tgt = t->targets + i;
906 if (dm_target_request_based(tgt))
907 request_based = 1;
908 else
909 bio_based = 1;
910
911 if (bio_based && request_based) {
912 DMWARN("Inconsistent table: different target types"
913 " can't be mixed up");
914 return -EINVAL;
915 }
916 }
917
918 if (bio_based) {
919 /* We must use this table as bio-based */
920 t->type = DM_TYPE_BIO_BASED;
921 return 0;
922 }
923
924 BUG_ON(!request_based); /* No targets in this table */
925
926 /* Non-request-stackable devices can't be used for request-based dm */
927 devices = dm_table_get_devices(t);
928 list_for_each_entry(dd, devices, list) {
929 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
930 DMWARN("table load rejected: including"
931 " non-request-stackable devices");
932 return -EINVAL;
933 }
934 }
935
936 /*
937 * Request-based dm supports only tables that have a single target now.
938 * To support multiple targets, request splitting support is needed,
939 * and that needs lots of changes in the block-layer.
940 * (e.g. request completion process for partial completion.)
941 */
942 if (t->num_targets > 1) {
943 DMWARN("Request-based dm doesn't support multiple targets yet");
944 return -EINVAL;
945 }
946
947 t->type = DM_TYPE_REQUEST_BASED;
948
949 return 0;
950}
951
952unsigned dm_table_get_type(struct dm_table *t)
953{
954 return t->type;
955}
956
957struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
958{
959 return t->immutable_target_type;
960}
961
962bool dm_table_request_based(struct dm_table *t)
963{
964 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
965}
966
967int dm_table_alloc_md_mempools(struct dm_table *t)
968{
969 unsigned type = dm_table_get_type(t);
970
971 if (unlikely(type == DM_TYPE_NONE)) {
972 DMWARN("no table type is set, can't allocate mempools");
973 return -EINVAL;
974 }
975
976 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
977 if (!t->mempools)
978 return -ENOMEM;
979
980 return 0;
981}
982
983void dm_table_free_md_mempools(struct dm_table *t)
984{
985 dm_free_md_mempools(t->mempools);
986 t->mempools = NULL;
987}
988
989struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
990{
991 return t->mempools;
992}
993
994static int setup_indexes(struct dm_table *t)
995{
996 int i;
997 unsigned int total = 0;
998 sector_t *indexes;
999
1000 /* allocate the space for *all* the indexes */
1001 for (i = t->depth - 2; i >= 0; i--) {
1002 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1003 total += t->counts[i];
1004 }
1005
1006 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1007 if (!indexes)
1008 return -ENOMEM;
1009
1010 /* set up internal nodes, bottom-up */
1011 for (i = t->depth - 2; i >= 0; i--) {
1012 t->index[i] = indexes;
1013 indexes += (KEYS_PER_NODE * t->counts[i]);
1014 setup_btree_index(i, t);
1015 }
1016
1017 return 0;
1018}
1019
1020/*
1021 * Builds the btree to index the map.
1022 */
1023static int dm_table_build_index(struct dm_table *t)
1024{
1025 int r = 0;
1026 unsigned int leaf_nodes;
1027
1028 /* how many indexes will the btree have ? */
1029 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1030 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1031
1032 /* leaf layer has already been set up */
1033 t->counts[t->depth - 1] = leaf_nodes;
1034 t->index[t->depth - 1] = t->highs;
1035
1036 if (t->depth >= 2)
1037 r = setup_indexes(t);
1038
1039 return r;
1040}
1041
1042/*
1043 * Get a disk whose integrity profile reflects the table's profile.
1044 * If %match_all is true, all devices' profiles must match.
1045 * If %match_all is false, all devices must at least have an
1046 * allocated integrity profile; but uninitialized is ok.
1047 * Returns NULL if integrity support was inconsistent or unavailable.
1048 */
1049static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1050 bool match_all)
1051{
1052 struct list_head *devices = dm_table_get_devices(t);
1053 struct dm_dev_internal *dd = NULL;
1054 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1055
1056 list_for_each_entry(dd, devices, list) {
1057 template_disk = dd->dm_dev.bdev->bd_disk;
1058 if (!blk_get_integrity(template_disk))
1059 goto no_integrity;
1060 if (!match_all && !blk_integrity_is_initialized(template_disk))
1061 continue; /* skip uninitialized profiles */
1062 else if (prev_disk &&
1063 blk_integrity_compare(prev_disk, template_disk) < 0)
1064 goto no_integrity;
1065 prev_disk = template_disk;
1066 }
1067
1068 return template_disk;
1069
1070no_integrity:
1071 if (prev_disk)
1072 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1073 dm_device_name(t->md),
1074 prev_disk->disk_name,
1075 template_disk->disk_name);
1076 return NULL;
1077}
1078
1079/*
1080 * Register the mapped device for blk_integrity support if
1081 * the underlying devices have an integrity profile. But all devices
1082 * may not have matching profiles (checking all devices isn't reliable
1083 * during table load because this table may use other DM device(s) which
1084 * must be resumed before they will have an initialized integity profile).
1085 * Stacked DM devices force a 2 stage integrity profile validation:
1086 * 1 - during load, validate all initialized integrity profiles match
1087 * 2 - during resume, validate all integrity profiles match
1088 */
1089static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1090{
1091 struct gendisk *template_disk = NULL;
1092
1093 template_disk = dm_table_get_integrity_disk(t, false);
1094 if (!template_disk)
1095 return 0;
1096
1097 if (!blk_integrity_is_initialized(dm_disk(md))) {
1098 t->integrity_supported = 1;
1099 return blk_integrity_register(dm_disk(md), NULL);
1100 }
1101
1102 /*
1103 * If DM device already has an initalized integrity
1104 * profile the new profile should not conflict.
1105 */
1106 if (blk_integrity_is_initialized(template_disk) &&
1107 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1108 DMWARN("%s: conflict with existing integrity profile: "
1109 "%s profile mismatch",
1110 dm_device_name(t->md),
1111 template_disk->disk_name);
1112 return 1;
1113 }
1114
1115 /* Preserve existing initialized integrity profile */
1116 t->integrity_supported = 1;
1117 return 0;
1118}
1119
1120/*
1121 * Prepares the table for use by building the indices,
1122 * setting the type, and allocating mempools.
1123 */
1124int dm_table_complete(struct dm_table *t)
1125{
1126 int r;
1127
1128 r = dm_table_set_type(t);
1129 if (r) {
1130 DMERR("unable to set table type");
1131 return r;
1132 }
1133
1134 r = dm_table_build_index(t);
1135 if (r) {
1136 DMERR("unable to build btrees");
1137 return r;
1138 }
1139
1140 r = dm_table_prealloc_integrity(t, t->md);
1141 if (r) {
1142 DMERR("could not register integrity profile.");
1143 return r;
1144 }
1145
1146 r = dm_table_alloc_md_mempools(t);
1147 if (r)
1148 DMERR("unable to allocate mempools");
1149
1150 return r;
1151}
1152
1153static DEFINE_MUTEX(_event_lock);
1154void dm_table_event_callback(struct dm_table *t,
1155 void (*fn)(void *), void *context)
1156{
1157 mutex_lock(&_event_lock);
1158 t->event_fn = fn;
1159 t->event_context = context;
1160 mutex_unlock(&_event_lock);
1161}
1162
1163void dm_table_event(struct dm_table *t)
1164{
1165 /*
1166 * You can no longer call dm_table_event() from interrupt
1167 * context, use a bottom half instead.
1168 */
1169 BUG_ON(in_interrupt());
1170
1171 mutex_lock(&_event_lock);
1172 if (t->event_fn)
1173 t->event_fn(t->event_context);
1174 mutex_unlock(&_event_lock);
1175}
1176EXPORT_SYMBOL(dm_table_event);
1177
1178sector_t dm_table_get_size(struct dm_table *t)
1179{
1180 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1181}
1182EXPORT_SYMBOL(dm_table_get_size);
1183
1184struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1185{
1186 if (index >= t->num_targets)
1187 return NULL;
1188
1189 return t->targets + index;
1190}
1191
1192/*
1193 * Search the btree for the correct target.
1194 *
1195 * Caller should check returned pointer with dm_target_is_valid()
1196 * to trap I/O beyond end of device.
1197 */
1198struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1199{
1200 unsigned int l, n = 0, k = 0;
1201 sector_t *node;
1202
1203 for (l = 0; l < t->depth; l++) {
1204 n = get_child(n, k);
1205 node = get_node(t, l, n);
1206
1207 for (k = 0; k < KEYS_PER_NODE; k++)
1208 if (node[k] >= sector)
1209 break;
1210 }
1211
1212 return &t->targets[(KEYS_PER_NODE * n) + k];
1213}
1214
1215/*
1216 * Establish the new table's queue_limits and validate them.
1217 */
1218int dm_calculate_queue_limits(struct dm_table *table,
1219 struct queue_limits *limits)
1220{
1221 struct dm_target *uninitialized_var(ti);
1222 struct queue_limits ti_limits;
1223 unsigned i = 0;
1224
1225 blk_set_stacking_limits(limits);
1226
1227 while (i < dm_table_get_num_targets(table)) {
1228 blk_set_stacking_limits(&ti_limits);
1229
1230 ti = dm_table_get_target(table, i++);
1231
1232 if (!ti->type->iterate_devices)
1233 goto combine_limits;
1234
1235 /*
1236 * Combine queue limits of all the devices this target uses.
1237 */
1238 ti->type->iterate_devices(ti, dm_set_device_limits,
1239 &ti_limits);
1240
1241 /* Set I/O hints portion of queue limits */
1242 if (ti->type->io_hints)
1243 ti->type->io_hints(ti, &ti_limits);
1244
1245 /*
1246 * Check each device area is consistent with the target's
1247 * overall queue limits.
1248 */
1249 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1250 &ti_limits))
1251 return -EINVAL;
1252
1253combine_limits:
1254 /*
1255 * Merge this target's queue limits into the overall limits
1256 * for the table.
1257 */
1258 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1259 DMWARN("%s: adding target device "
1260 "(start sect %llu len %llu) "
1261 "caused an alignment inconsistency",
1262 dm_device_name(table->md),
1263 (unsigned long long) ti->begin,
1264 (unsigned long long) ti->len);
1265 }
1266
1267 return validate_hardware_logical_block_alignment(table, limits);
1268}
1269
1270/*
1271 * Set the integrity profile for this device if all devices used have
1272 * matching profiles. We're quite deep in the resume path but still
1273 * don't know if all devices (particularly DM devices this device
1274 * may be stacked on) have matching profiles. Even if the profiles
1275 * don't match we have no way to fail (to resume) at this point.
1276 */
1277static void dm_table_set_integrity(struct dm_table *t)
1278{
1279 struct gendisk *template_disk = NULL;
1280
1281 if (!blk_get_integrity(dm_disk(t->md)))
1282 return;
1283
1284 template_disk = dm_table_get_integrity_disk(t, true);
1285 if (template_disk)
1286 blk_integrity_register(dm_disk(t->md),
1287 blk_get_integrity(template_disk));
1288 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1289 DMWARN("%s: device no longer has a valid integrity profile",
1290 dm_device_name(t->md));
1291 else
1292 DMWARN("%s: unable to establish an integrity profile",
1293 dm_device_name(t->md));
1294}
1295
1296static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1297 sector_t start, sector_t len, void *data)
1298{
1299 unsigned flush = (*(unsigned *)data);
1300 struct request_queue *q = bdev_get_queue(dev->bdev);
1301
1302 return q && (q->flush_flags & flush);
1303}
1304
1305static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1306{
1307 struct dm_target *ti;
1308 unsigned i = 0;
1309
1310 /*
1311 * Require at least one underlying device to support flushes.
1312 * t->devices includes internal dm devices such as mirror logs
1313 * so we need to use iterate_devices here, which targets
1314 * supporting flushes must provide.
1315 */
1316 while (i < dm_table_get_num_targets(t)) {
1317 ti = dm_table_get_target(t, i++);
1318
1319 if (!ti->num_flush_requests)
1320 continue;
1321
1322 if (ti->type->iterate_devices &&
1323 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1324 return 1;
1325 }
1326
1327 return 0;
1328}
1329
1330static bool dm_table_discard_zeroes_data(struct dm_table *t)
1331{
1332 struct dm_target *ti;
1333 unsigned i = 0;
1334
1335 /* Ensure that all targets supports discard_zeroes_data. */
1336 while (i < dm_table_get_num_targets(t)) {
1337 ti = dm_table_get_target(t, i++);
1338
1339 if (ti->discard_zeroes_data_unsupported)
1340 return 0;
1341 }
1342
1343 return 1;
1344}
1345
1346static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1347 sector_t start, sector_t len, void *data)
1348{
1349 struct request_queue *q = bdev_get_queue(dev->bdev);
1350
1351 return q && blk_queue_nonrot(q);
1352}
1353
1354static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1355 sector_t start, sector_t len, void *data)
1356{
1357 struct request_queue *q = bdev_get_queue(dev->bdev);
1358
1359 return q && !blk_queue_add_random(q);
1360}
1361
1362static bool dm_table_all_devices_attribute(struct dm_table *t,
1363 iterate_devices_callout_fn func)
1364{
1365 struct dm_target *ti;
1366 unsigned i = 0;
1367
1368 while (i < dm_table_get_num_targets(t)) {
1369 ti = dm_table_get_target(t, i++);
1370
1371 if (!ti->type->iterate_devices ||
1372 !ti->type->iterate_devices(ti, func, NULL))
1373 return 0;
1374 }
1375
1376 return 1;
1377}
1378
1379void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1380 struct queue_limits *limits)
1381{
1382 unsigned flush = 0;
1383
1384 /*
1385 * Copy table's limits to the DM device's request_queue
1386 */
1387 q->limits = *limits;
1388
1389 if (!dm_table_supports_discards(t))
1390 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1391 else
1392 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1393
1394 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1395 flush |= REQ_FLUSH;
1396 if (dm_table_supports_flush(t, REQ_FUA))
1397 flush |= REQ_FUA;
1398 }
1399 blk_queue_flush(q, flush);
1400
1401 if (!dm_table_discard_zeroes_data(t))
1402 q->limits.discard_zeroes_data = 0;
1403
1404 /* Ensure that all underlying devices are non-rotational. */
1405 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1406 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1407 else
1408 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1409
1410 dm_table_set_integrity(t);
1411
1412 /*
1413 * Determine whether or not this queue's I/O timings contribute
1414 * to the entropy pool, Only request-based targets use this.
1415 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1416 * have it set.
1417 */
1418 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1419 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1420
1421 /*
1422 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1423 * visible to other CPUs because, once the flag is set, incoming bios
1424 * are processed by request-based dm, which refers to the queue
1425 * settings.
1426 * Until the flag set, bios are passed to bio-based dm and queued to
1427 * md->deferred where queue settings are not needed yet.
1428 * Those bios are passed to request-based dm at the resume time.
1429 */
1430 smp_mb();
1431 if (dm_table_request_based(t))
1432 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1433}
1434
1435unsigned int dm_table_get_num_targets(struct dm_table *t)
1436{
1437 return t->num_targets;
1438}
1439
1440struct list_head *dm_table_get_devices(struct dm_table *t)
1441{
1442 return &t->devices;
1443}
1444
1445fmode_t dm_table_get_mode(struct dm_table *t)
1446{
1447 return t->mode;
1448}
1449EXPORT_SYMBOL(dm_table_get_mode);
1450
1451static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1452{
1453 int i = t->num_targets;
1454 struct dm_target *ti = t->targets;
1455
1456 while (i--) {
1457 if (postsuspend) {
1458 if (ti->type->postsuspend)
1459 ti->type->postsuspend(ti);
1460 } else if (ti->type->presuspend)
1461 ti->type->presuspend(ti);
1462
1463 ti++;
1464 }
1465}
1466
1467void dm_table_presuspend_targets(struct dm_table *t)
1468{
1469 if (!t)
1470 return;
1471
1472 suspend_targets(t, 0);
1473}
1474
1475void dm_table_postsuspend_targets(struct dm_table *t)
1476{
1477 if (!t)
1478 return;
1479
1480 suspend_targets(t, 1);
1481}
1482
1483int dm_table_resume_targets(struct dm_table *t)
1484{
1485 int i, r = 0;
1486
1487 for (i = 0; i < t->num_targets; i++) {
1488 struct dm_target *ti = t->targets + i;
1489
1490 if (!ti->type->preresume)
1491 continue;
1492
1493 r = ti->type->preresume(ti);
1494 if (r)
1495 return r;
1496 }
1497
1498 for (i = 0; i < t->num_targets; i++) {
1499 struct dm_target *ti = t->targets + i;
1500
1501 if (ti->type->resume)
1502 ti->type->resume(ti);
1503 }
1504
1505 return 0;
1506}
1507
1508void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1509{
1510 list_add(&cb->list, &t->target_callbacks);
1511}
1512EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1513
1514int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1515{
1516 struct dm_dev_internal *dd;
1517 struct list_head *devices = dm_table_get_devices(t);
1518 struct dm_target_callbacks *cb;
1519 int r = 0;
1520
1521 list_for_each_entry(dd, devices, list) {
1522 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1523 char b[BDEVNAME_SIZE];
1524
1525 if (likely(q))
1526 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1527 else
1528 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1529 dm_device_name(t->md),
1530 bdevname(dd->dm_dev.bdev, b));
1531 }
1532
1533 list_for_each_entry(cb, &t->target_callbacks, list)
1534 if (cb->congested_fn)
1535 r |= cb->congested_fn(cb, bdi_bits);
1536
1537 return r;
1538}
1539
1540int dm_table_any_busy_target(struct dm_table *t)
1541{
1542 unsigned i;
1543 struct dm_target *ti;
1544
1545 for (i = 0; i < t->num_targets; i++) {
1546 ti = t->targets + i;
1547 if (ti->type->busy && ti->type->busy(ti))
1548 return 1;
1549 }
1550
1551 return 0;
1552}
1553
1554struct mapped_device *dm_table_get_md(struct dm_table *t)
1555{
1556 return t->md;
1557}
1558EXPORT_SYMBOL(dm_table_get_md);
1559
1560static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1561 sector_t start, sector_t len, void *data)
1562{
1563 struct request_queue *q = bdev_get_queue(dev->bdev);
1564
1565 return q && blk_queue_discard(q);
1566}
1567
1568bool dm_table_supports_discards(struct dm_table *t)
1569{
1570 struct dm_target *ti;
1571 unsigned i = 0;
1572
1573 /*
1574 * Unless any target used by the table set discards_supported,
1575 * require at least one underlying device to support discards.
1576 * t->devices includes internal dm devices such as mirror logs
1577 * so we need to use iterate_devices here, which targets
1578 * supporting discard selectively must provide.
1579 */
1580 while (i < dm_table_get_num_targets(t)) {
1581 ti = dm_table_get_target(t, i++);
1582
1583 if (!ti->num_discard_requests)
1584 continue;
1585
1586 if (ti->discards_supported)
1587 return 1;
1588
1589 if (ti->type->iterate_devices &&
1590 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1591 return 1;
1592 }
1593
1594 return 0;
1595}
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21
22#define DM_MSG_PREFIX "table"
23
24#define MAX_DEPTH 16
25#define NODE_SIZE L1_CACHE_BYTES
26#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29/*
30 * The table has always exactly one reference from either mapped_device->map
31 * or hash_cell->new_map. This reference is not counted in table->holders.
32 * A pair of dm_create_table/dm_destroy_table functions is used for table
33 * creation/destruction.
34 *
35 * Temporary references from the other code increase table->holders. A pair
36 * of dm_table_get/dm_table_put functions is used to manipulate it.
37 *
38 * When the table is about to be destroyed, we wait for table->holders to
39 * drop to zero.
40 */
41
42struct dm_table {
43 struct mapped_device *md;
44 atomic_t holders;
45 unsigned type;
46
47 /* btree table */
48 unsigned int depth;
49 unsigned int counts[MAX_DEPTH]; /* in nodes */
50 sector_t *index[MAX_DEPTH];
51
52 unsigned int num_targets;
53 unsigned int num_allocated;
54 sector_t *highs;
55 struct dm_target *targets;
56
57 unsigned integrity_supported:1;
58
59 /*
60 * Indicates the rw permissions for the new logical
61 * device. This should be a combination of FMODE_READ
62 * and FMODE_WRITE.
63 */
64 fmode_t mode;
65
66 /* a list of devices used by this table */
67 struct list_head devices;
68
69 /* events get handed up using this callback */
70 void (*event_fn)(void *);
71 void *event_context;
72
73 struct dm_md_mempools *mempools;
74
75 struct list_head target_callbacks;
76};
77
78/*
79 * Similar to ceiling(log_size(n))
80 */
81static unsigned int int_log(unsigned int n, unsigned int base)
82{
83 int result = 0;
84
85 while (n > 1) {
86 n = dm_div_up(n, base);
87 result++;
88 }
89
90 return result;
91}
92
93/*
94 * Calculate the index of the child node of the n'th node k'th key.
95 */
96static inline unsigned int get_child(unsigned int n, unsigned int k)
97{
98 return (n * CHILDREN_PER_NODE) + k;
99}
100
101/*
102 * Return the n'th node of level l from table t.
103 */
104static inline sector_t *get_node(struct dm_table *t,
105 unsigned int l, unsigned int n)
106{
107 return t->index[l] + (n * KEYS_PER_NODE);
108}
109
110/*
111 * Return the highest key that you could lookup from the n'th
112 * node on level l of the btree.
113 */
114static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
115{
116 for (; l < t->depth - 1; l++)
117 n = get_child(n, CHILDREN_PER_NODE - 1);
118
119 if (n >= t->counts[l])
120 return (sector_t) - 1;
121
122 return get_node(t, l, n)[KEYS_PER_NODE - 1];
123}
124
125/*
126 * Fills in a level of the btree based on the highs of the level
127 * below it.
128 */
129static int setup_btree_index(unsigned int l, struct dm_table *t)
130{
131 unsigned int n, k;
132 sector_t *node;
133
134 for (n = 0U; n < t->counts[l]; n++) {
135 node = get_node(t, l, n);
136
137 for (k = 0U; k < KEYS_PER_NODE; k++)
138 node[k] = high(t, l + 1, get_child(n, k));
139 }
140
141 return 0;
142}
143
144void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
145{
146 unsigned long size;
147 void *addr;
148
149 /*
150 * Check that we're not going to overflow.
151 */
152 if (nmemb > (ULONG_MAX / elem_size))
153 return NULL;
154
155 size = nmemb * elem_size;
156 addr = vzalloc(size);
157
158 return addr;
159}
160EXPORT_SYMBOL(dm_vcalloc);
161
162/*
163 * highs, and targets are managed as dynamic arrays during a
164 * table load.
165 */
166static int alloc_targets(struct dm_table *t, unsigned int num)
167{
168 sector_t *n_highs;
169 struct dm_target *n_targets;
170 int n = t->num_targets;
171
172 /*
173 * Allocate both the target array and offset array at once.
174 * Append an empty entry to catch sectors beyond the end of
175 * the device.
176 */
177 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
178 sizeof(sector_t));
179 if (!n_highs)
180 return -ENOMEM;
181
182 n_targets = (struct dm_target *) (n_highs + num);
183
184 if (n) {
185 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
186 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
187 }
188
189 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
190 vfree(t->highs);
191
192 t->num_allocated = num;
193 t->highs = n_highs;
194 t->targets = n_targets;
195
196 return 0;
197}
198
199int dm_table_create(struct dm_table **result, fmode_t mode,
200 unsigned num_targets, struct mapped_device *md)
201{
202 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
203
204 if (!t)
205 return -ENOMEM;
206
207 INIT_LIST_HEAD(&t->devices);
208 INIT_LIST_HEAD(&t->target_callbacks);
209 atomic_set(&t->holders, 0);
210
211 if (!num_targets)
212 num_targets = KEYS_PER_NODE;
213
214 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
215
216 if (alloc_targets(t, num_targets)) {
217 kfree(t);
218 t = NULL;
219 return -ENOMEM;
220 }
221
222 t->mode = mode;
223 t->md = md;
224 *result = t;
225 return 0;
226}
227
228static void free_devices(struct list_head *devices)
229{
230 struct list_head *tmp, *next;
231
232 list_for_each_safe(tmp, next, devices) {
233 struct dm_dev_internal *dd =
234 list_entry(tmp, struct dm_dev_internal, list);
235 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
236 dd->dm_dev.name);
237 kfree(dd);
238 }
239}
240
241void dm_table_destroy(struct dm_table *t)
242{
243 unsigned int i;
244
245 if (!t)
246 return;
247
248 while (atomic_read(&t->holders))
249 msleep(1);
250 smp_mb();
251
252 /* free the indexes */
253 if (t->depth >= 2)
254 vfree(t->index[t->depth - 2]);
255
256 /* free the targets */
257 for (i = 0; i < t->num_targets; i++) {
258 struct dm_target *tgt = t->targets + i;
259
260 if (tgt->type->dtr)
261 tgt->type->dtr(tgt);
262
263 dm_put_target_type(tgt->type);
264 }
265
266 vfree(t->highs);
267
268 /* free the device list */
269 if (t->devices.next != &t->devices)
270 free_devices(&t->devices);
271
272 dm_free_md_mempools(t->mempools);
273
274 kfree(t);
275}
276
277void dm_table_get(struct dm_table *t)
278{
279 atomic_inc(&t->holders);
280}
281EXPORT_SYMBOL(dm_table_get);
282
283void dm_table_put(struct dm_table *t)
284{
285 if (!t)
286 return;
287
288 smp_mb__before_atomic_dec();
289 atomic_dec(&t->holders);
290}
291EXPORT_SYMBOL(dm_table_put);
292
293/*
294 * Checks to see if we need to extend highs or targets.
295 */
296static inline int check_space(struct dm_table *t)
297{
298 if (t->num_targets >= t->num_allocated)
299 return alloc_targets(t, t->num_allocated * 2);
300
301 return 0;
302}
303
304/*
305 * See if we've already got a device in the list.
306 */
307static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
308{
309 struct dm_dev_internal *dd;
310
311 list_for_each_entry (dd, l, list)
312 if (dd->dm_dev.bdev->bd_dev == dev)
313 return dd;
314
315 return NULL;
316}
317
318/*
319 * Open a device so we can use it as a map destination.
320 */
321static int open_dev(struct dm_dev_internal *d, dev_t dev,
322 struct mapped_device *md)
323{
324 static char *_claim_ptr = "I belong to device-mapper";
325 struct block_device *bdev;
326
327 int r;
328
329 BUG_ON(d->dm_dev.bdev);
330
331 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
332 if (IS_ERR(bdev))
333 return PTR_ERR(bdev);
334
335 r = bd_link_disk_holder(bdev, dm_disk(md));
336 if (r) {
337 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
338 return r;
339 }
340
341 d->dm_dev.bdev = bdev;
342 return 0;
343}
344
345/*
346 * Close a device that we've been using.
347 */
348static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
349{
350 if (!d->dm_dev.bdev)
351 return;
352
353 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
354 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
355 d->dm_dev.bdev = NULL;
356}
357
358/*
359 * If possible, this checks an area of a destination device is invalid.
360 */
361static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
362 sector_t start, sector_t len, void *data)
363{
364 struct request_queue *q;
365 struct queue_limits *limits = data;
366 struct block_device *bdev = dev->bdev;
367 sector_t dev_size =
368 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
369 unsigned short logical_block_size_sectors =
370 limits->logical_block_size >> SECTOR_SHIFT;
371 char b[BDEVNAME_SIZE];
372
373 /*
374 * Some devices exist without request functions,
375 * such as loop devices not yet bound to backing files.
376 * Forbid the use of such devices.
377 */
378 q = bdev_get_queue(bdev);
379 if (!q || !q->make_request_fn) {
380 DMWARN("%s: %s is not yet initialised: "
381 "start=%llu, len=%llu, dev_size=%llu",
382 dm_device_name(ti->table->md), bdevname(bdev, b),
383 (unsigned long long)start,
384 (unsigned long long)len,
385 (unsigned long long)dev_size);
386 return 1;
387 }
388
389 if (!dev_size)
390 return 0;
391
392 if ((start >= dev_size) || (start + len > dev_size)) {
393 DMWARN("%s: %s too small for target: "
394 "start=%llu, len=%llu, dev_size=%llu",
395 dm_device_name(ti->table->md), bdevname(bdev, b),
396 (unsigned long long)start,
397 (unsigned long long)len,
398 (unsigned long long)dev_size);
399 return 1;
400 }
401
402 if (logical_block_size_sectors <= 1)
403 return 0;
404
405 if (start & (logical_block_size_sectors - 1)) {
406 DMWARN("%s: start=%llu not aligned to h/w "
407 "logical block size %u of %s",
408 dm_device_name(ti->table->md),
409 (unsigned long long)start,
410 limits->logical_block_size, bdevname(bdev, b));
411 return 1;
412 }
413
414 if (len & (logical_block_size_sectors - 1)) {
415 DMWARN("%s: len=%llu not aligned to h/w "
416 "logical block size %u of %s",
417 dm_device_name(ti->table->md),
418 (unsigned long long)len,
419 limits->logical_block_size, bdevname(bdev, b));
420 return 1;
421 }
422
423 return 0;
424}
425
426/*
427 * This upgrades the mode on an already open dm_dev, being
428 * careful to leave things as they were if we fail to reopen the
429 * device and not to touch the existing bdev field in case
430 * it is accessed concurrently inside dm_table_any_congested().
431 */
432static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
433 struct mapped_device *md)
434{
435 int r;
436 struct dm_dev_internal dd_new, dd_old;
437
438 dd_new = dd_old = *dd;
439
440 dd_new.dm_dev.mode |= new_mode;
441 dd_new.dm_dev.bdev = NULL;
442
443 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
444 if (r)
445 return r;
446
447 dd->dm_dev.mode |= new_mode;
448 close_dev(&dd_old, md);
449
450 return 0;
451}
452
453/*
454 * Add a device to the list, or just increment the usage count if
455 * it's already present.
456 */
457int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
458 struct dm_dev **result)
459{
460 int r;
461 dev_t uninitialized_var(dev);
462 struct dm_dev_internal *dd;
463 unsigned int major, minor;
464 struct dm_table *t = ti->table;
465
466 BUG_ON(!t);
467
468 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
469 /* Extract the major/minor numbers */
470 dev = MKDEV(major, minor);
471 if (MAJOR(dev) != major || MINOR(dev) != minor)
472 return -EOVERFLOW;
473 } else {
474 /* convert the path to a device */
475 struct block_device *bdev = lookup_bdev(path);
476
477 if (IS_ERR(bdev))
478 return PTR_ERR(bdev);
479 dev = bdev->bd_dev;
480 bdput(bdev);
481 }
482
483 dd = find_device(&t->devices, dev);
484 if (!dd) {
485 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
486 if (!dd)
487 return -ENOMEM;
488
489 dd->dm_dev.mode = mode;
490 dd->dm_dev.bdev = NULL;
491
492 if ((r = open_dev(dd, dev, t->md))) {
493 kfree(dd);
494 return r;
495 }
496
497 format_dev_t(dd->dm_dev.name, dev);
498
499 atomic_set(&dd->count, 0);
500 list_add(&dd->list, &t->devices);
501
502 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
503 r = upgrade_mode(dd, mode, t->md);
504 if (r)
505 return r;
506 }
507 atomic_inc(&dd->count);
508
509 *result = &dd->dm_dev;
510 return 0;
511}
512EXPORT_SYMBOL(dm_get_device);
513
514int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
515 sector_t start, sector_t len, void *data)
516{
517 struct queue_limits *limits = data;
518 struct block_device *bdev = dev->bdev;
519 struct request_queue *q = bdev_get_queue(bdev);
520 char b[BDEVNAME_SIZE];
521
522 if (unlikely(!q)) {
523 DMWARN("%s: Cannot set limits for nonexistent device %s",
524 dm_device_name(ti->table->md), bdevname(bdev, b));
525 return 0;
526 }
527
528 if (bdev_stack_limits(limits, bdev, start) < 0)
529 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
530 "physical_block_size=%u, logical_block_size=%u, "
531 "alignment_offset=%u, start=%llu",
532 dm_device_name(ti->table->md), bdevname(bdev, b),
533 q->limits.physical_block_size,
534 q->limits.logical_block_size,
535 q->limits.alignment_offset,
536 (unsigned long long) start << SECTOR_SHIFT);
537
538 /*
539 * Check if merge fn is supported.
540 * If not we'll force DM to use PAGE_SIZE or
541 * smaller I/O, just to be safe.
542 */
543 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
544 blk_limits_max_hw_sectors(limits,
545 (unsigned int) (PAGE_SIZE >> 9));
546 return 0;
547}
548EXPORT_SYMBOL_GPL(dm_set_device_limits);
549
550/*
551 * Decrement a device's use count and remove it if necessary.
552 */
553void dm_put_device(struct dm_target *ti, struct dm_dev *d)
554{
555 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
556 dm_dev);
557
558 if (atomic_dec_and_test(&dd->count)) {
559 close_dev(dd, ti->table->md);
560 list_del(&dd->list);
561 kfree(dd);
562 }
563}
564EXPORT_SYMBOL(dm_put_device);
565
566/*
567 * Checks to see if the target joins onto the end of the table.
568 */
569static int adjoin(struct dm_table *table, struct dm_target *ti)
570{
571 struct dm_target *prev;
572
573 if (!table->num_targets)
574 return !ti->begin;
575
576 prev = &table->targets[table->num_targets - 1];
577 return (ti->begin == (prev->begin + prev->len));
578}
579
580/*
581 * Used to dynamically allocate the arg array.
582 */
583static char **realloc_argv(unsigned *array_size, char **old_argv)
584{
585 char **argv;
586 unsigned new_size;
587
588 new_size = *array_size ? *array_size * 2 : 64;
589 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
590 if (argv) {
591 memcpy(argv, old_argv, *array_size * sizeof(*argv));
592 *array_size = new_size;
593 }
594
595 kfree(old_argv);
596 return argv;
597}
598
599/*
600 * Destructively splits up the argument list to pass to ctr.
601 */
602int dm_split_args(int *argc, char ***argvp, char *input)
603{
604 char *start, *end = input, *out, **argv = NULL;
605 unsigned array_size = 0;
606
607 *argc = 0;
608
609 if (!input) {
610 *argvp = NULL;
611 return 0;
612 }
613
614 argv = realloc_argv(&array_size, argv);
615 if (!argv)
616 return -ENOMEM;
617
618 while (1) {
619 /* Skip whitespace */
620 start = skip_spaces(end);
621
622 if (!*start)
623 break; /* success, we hit the end */
624
625 /* 'out' is used to remove any back-quotes */
626 end = out = start;
627 while (*end) {
628 /* Everything apart from '\0' can be quoted */
629 if (*end == '\\' && *(end + 1)) {
630 *out++ = *(end + 1);
631 end += 2;
632 continue;
633 }
634
635 if (isspace(*end))
636 break; /* end of token */
637
638 *out++ = *end++;
639 }
640
641 /* have we already filled the array ? */
642 if ((*argc + 1) > array_size) {
643 argv = realloc_argv(&array_size, argv);
644 if (!argv)
645 return -ENOMEM;
646 }
647
648 /* we know this is whitespace */
649 if (*end)
650 end++;
651
652 /* terminate the string and put it in the array */
653 *out = '\0';
654 argv[*argc] = start;
655 (*argc)++;
656 }
657
658 *argvp = argv;
659 return 0;
660}
661
662/*
663 * Impose necessary and sufficient conditions on a devices's table such
664 * that any incoming bio which respects its logical_block_size can be
665 * processed successfully. If it falls across the boundary between
666 * two or more targets, the size of each piece it gets split into must
667 * be compatible with the logical_block_size of the target processing it.
668 */
669static int validate_hardware_logical_block_alignment(struct dm_table *table,
670 struct queue_limits *limits)
671{
672 /*
673 * This function uses arithmetic modulo the logical_block_size
674 * (in units of 512-byte sectors).
675 */
676 unsigned short device_logical_block_size_sects =
677 limits->logical_block_size >> SECTOR_SHIFT;
678
679 /*
680 * Offset of the start of the next table entry, mod logical_block_size.
681 */
682 unsigned short next_target_start = 0;
683
684 /*
685 * Given an aligned bio that extends beyond the end of a
686 * target, how many sectors must the next target handle?
687 */
688 unsigned short remaining = 0;
689
690 struct dm_target *uninitialized_var(ti);
691 struct queue_limits ti_limits;
692 unsigned i = 0;
693
694 /*
695 * Check each entry in the table in turn.
696 */
697 while (i < dm_table_get_num_targets(table)) {
698 ti = dm_table_get_target(table, i++);
699
700 blk_set_default_limits(&ti_limits);
701
702 /* combine all target devices' limits */
703 if (ti->type->iterate_devices)
704 ti->type->iterate_devices(ti, dm_set_device_limits,
705 &ti_limits);
706
707 /*
708 * If the remaining sectors fall entirely within this
709 * table entry are they compatible with its logical_block_size?
710 */
711 if (remaining < ti->len &&
712 remaining & ((ti_limits.logical_block_size >>
713 SECTOR_SHIFT) - 1))
714 break; /* Error */
715
716 next_target_start =
717 (unsigned short) ((next_target_start + ti->len) &
718 (device_logical_block_size_sects - 1));
719 remaining = next_target_start ?
720 device_logical_block_size_sects - next_target_start : 0;
721 }
722
723 if (remaining) {
724 DMWARN("%s: table line %u (start sect %llu len %llu) "
725 "not aligned to h/w logical block size %u",
726 dm_device_name(table->md), i,
727 (unsigned long long) ti->begin,
728 (unsigned long long) ti->len,
729 limits->logical_block_size);
730 return -EINVAL;
731 }
732
733 return 0;
734}
735
736int dm_table_add_target(struct dm_table *t, const char *type,
737 sector_t start, sector_t len, char *params)
738{
739 int r = -EINVAL, argc;
740 char **argv;
741 struct dm_target *tgt;
742
743 if ((r = check_space(t)))
744 return r;
745
746 tgt = t->targets + t->num_targets;
747 memset(tgt, 0, sizeof(*tgt));
748
749 if (!len) {
750 DMERR("%s: zero-length target", dm_device_name(t->md));
751 return -EINVAL;
752 }
753
754 tgt->type = dm_get_target_type(type);
755 if (!tgt->type) {
756 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
757 type);
758 return -EINVAL;
759 }
760
761 tgt->table = t;
762 tgt->begin = start;
763 tgt->len = len;
764 tgt->error = "Unknown error";
765
766 /*
767 * Does this target adjoin the previous one ?
768 */
769 if (!adjoin(t, tgt)) {
770 tgt->error = "Gap in table";
771 r = -EINVAL;
772 goto bad;
773 }
774
775 r = dm_split_args(&argc, &argv, params);
776 if (r) {
777 tgt->error = "couldn't split parameters (insufficient memory)";
778 goto bad;
779 }
780
781 r = tgt->type->ctr(tgt, argc, argv);
782 kfree(argv);
783 if (r)
784 goto bad;
785
786 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
787
788 if (!tgt->num_discard_requests && tgt->discards_supported)
789 DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
790 dm_device_name(t->md), type);
791
792 return 0;
793
794 bad:
795 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
796 dm_put_target_type(tgt->type);
797 return r;
798}
799
800/*
801 * Target argument parsing helpers.
802 */
803static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
804 unsigned *value, char **error, unsigned grouped)
805{
806 const char *arg_str = dm_shift_arg(arg_set);
807
808 if (!arg_str ||
809 (sscanf(arg_str, "%u", value) != 1) ||
810 (*value < arg->min) ||
811 (*value > arg->max) ||
812 (grouped && arg_set->argc < *value)) {
813 *error = arg->error;
814 return -EINVAL;
815 }
816
817 return 0;
818}
819
820int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
821 unsigned *value, char **error)
822{
823 return validate_next_arg(arg, arg_set, value, error, 0);
824}
825EXPORT_SYMBOL(dm_read_arg);
826
827int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
828 unsigned *value, char **error)
829{
830 return validate_next_arg(arg, arg_set, value, error, 1);
831}
832EXPORT_SYMBOL(dm_read_arg_group);
833
834const char *dm_shift_arg(struct dm_arg_set *as)
835{
836 char *r;
837
838 if (as->argc) {
839 as->argc--;
840 r = *as->argv;
841 as->argv++;
842 return r;
843 }
844
845 return NULL;
846}
847EXPORT_SYMBOL(dm_shift_arg);
848
849void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
850{
851 BUG_ON(as->argc < num_args);
852 as->argc -= num_args;
853 as->argv += num_args;
854}
855EXPORT_SYMBOL(dm_consume_args);
856
857static int dm_table_set_type(struct dm_table *t)
858{
859 unsigned i;
860 unsigned bio_based = 0, request_based = 0;
861 struct dm_target *tgt;
862 struct dm_dev_internal *dd;
863 struct list_head *devices;
864
865 for (i = 0; i < t->num_targets; i++) {
866 tgt = t->targets + i;
867 if (dm_target_request_based(tgt))
868 request_based = 1;
869 else
870 bio_based = 1;
871
872 if (bio_based && request_based) {
873 DMWARN("Inconsistent table: different target types"
874 " can't be mixed up");
875 return -EINVAL;
876 }
877 }
878
879 if (bio_based) {
880 /* We must use this table as bio-based */
881 t->type = DM_TYPE_BIO_BASED;
882 return 0;
883 }
884
885 BUG_ON(!request_based); /* No targets in this table */
886
887 /* Non-request-stackable devices can't be used for request-based dm */
888 devices = dm_table_get_devices(t);
889 list_for_each_entry(dd, devices, list) {
890 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
891 DMWARN("table load rejected: including"
892 " non-request-stackable devices");
893 return -EINVAL;
894 }
895 }
896
897 /*
898 * Request-based dm supports only tables that have a single target now.
899 * To support multiple targets, request splitting support is needed,
900 * and that needs lots of changes in the block-layer.
901 * (e.g. request completion process for partial completion.)
902 */
903 if (t->num_targets > 1) {
904 DMWARN("Request-based dm doesn't support multiple targets yet");
905 return -EINVAL;
906 }
907
908 t->type = DM_TYPE_REQUEST_BASED;
909
910 return 0;
911}
912
913unsigned dm_table_get_type(struct dm_table *t)
914{
915 return t->type;
916}
917
918bool dm_table_request_based(struct dm_table *t)
919{
920 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
921}
922
923int dm_table_alloc_md_mempools(struct dm_table *t)
924{
925 unsigned type = dm_table_get_type(t);
926
927 if (unlikely(type == DM_TYPE_NONE)) {
928 DMWARN("no table type is set, can't allocate mempools");
929 return -EINVAL;
930 }
931
932 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
933 if (!t->mempools)
934 return -ENOMEM;
935
936 return 0;
937}
938
939void dm_table_free_md_mempools(struct dm_table *t)
940{
941 dm_free_md_mempools(t->mempools);
942 t->mempools = NULL;
943}
944
945struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
946{
947 return t->mempools;
948}
949
950static int setup_indexes(struct dm_table *t)
951{
952 int i;
953 unsigned int total = 0;
954 sector_t *indexes;
955
956 /* allocate the space for *all* the indexes */
957 for (i = t->depth - 2; i >= 0; i--) {
958 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
959 total += t->counts[i];
960 }
961
962 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
963 if (!indexes)
964 return -ENOMEM;
965
966 /* set up internal nodes, bottom-up */
967 for (i = t->depth - 2; i >= 0; i--) {
968 t->index[i] = indexes;
969 indexes += (KEYS_PER_NODE * t->counts[i]);
970 setup_btree_index(i, t);
971 }
972
973 return 0;
974}
975
976/*
977 * Builds the btree to index the map.
978 */
979static int dm_table_build_index(struct dm_table *t)
980{
981 int r = 0;
982 unsigned int leaf_nodes;
983
984 /* how many indexes will the btree have ? */
985 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
986 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
987
988 /* leaf layer has already been set up */
989 t->counts[t->depth - 1] = leaf_nodes;
990 t->index[t->depth - 1] = t->highs;
991
992 if (t->depth >= 2)
993 r = setup_indexes(t);
994
995 return r;
996}
997
998/*
999 * Get a disk whose integrity profile reflects the table's profile.
1000 * If %match_all is true, all devices' profiles must match.
1001 * If %match_all is false, all devices must at least have an
1002 * allocated integrity profile; but uninitialized is ok.
1003 * Returns NULL if integrity support was inconsistent or unavailable.
1004 */
1005static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1006 bool match_all)
1007{
1008 struct list_head *devices = dm_table_get_devices(t);
1009 struct dm_dev_internal *dd = NULL;
1010 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1011
1012 list_for_each_entry(dd, devices, list) {
1013 template_disk = dd->dm_dev.bdev->bd_disk;
1014 if (!blk_get_integrity(template_disk))
1015 goto no_integrity;
1016 if (!match_all && !blk_integrity_is_initialized(template_disk))
1017 continue; /* skip uninitialized profiles */
1018 else if (prev_disk &&
1019 blk_integrity_compare(prev_disk, template_disk) < 0)
1020 goto no_integrity;
1021 prev_disk = template_disk;
1022 }
1023
1024 return template_disk;
1025
1026no_integrity:
1027 if (prev_disk)
1028 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1029 dm_device_name(t->md),
1030 prev_disk->disk_name,
1031 template_disk->disk_name);
1032 return NULL;
1033}
1034
1035/*
1036 * Register the mapped device for blk_integrity support if
1037 * the underlying devices have an integrity profile. But all devices
1038 * may not have matching profiles (checking all devices isn't reliable
1039 * during table load because this table may use other DM device(s) which
1040 * must be resumed before they will have an initialized integity profile).
1041 * Stacked DM devices force a 2 stage integrity profile validation:
1042 * 1 - during load, validate all initialized integrity profiles match
1043 * 2 - during resume, validate all integrity profiles match
1044 */
1045static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1046{
1047 struct gendisk *template_disk = NULL;
1048
1049 template_disk = dm_table_get_integrity_disk(t, false);
1050 if (!template_disk)
1051 return 0;
1052
1053 if (!blk_integrity_is_initialized(dm_disk(md))) {
1054 t->integrity_supported = 1;
1055 return blk_integrity_register(dm_disk(md), NULL);
1056 }
1057
1058 /*
1059 * If DM device already has an initalized integrity
1060 * profile the new profile should not conflict.
1061 */
1062 if (blk_integrity_is_initialized(template_disk) &&
1063 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1064 DMWARN("%s: conflict with existing integrity profile: "
1065 "%s profile mismatch",
1066 dm_device_name(t->md),
1067 template_disk->disk_name);
1068 return 1;
1069 }
1070
1071 /* Preserve existing initialized integrity profile */
1072 t->integrity_supported = 1;
1073 return 0;
1074}
1075
1076/*
1077 * Prepares the table for use by building the indices,
1078 * setting the type, and allocating mempools.
1079 */
1080int dm_table_complete(struct dm_table *t)
1081{
1082 int r;
1083
1084 r = dm_table_set_type(t);
1085 if (r) {
1086 DMERR("unable to set table type");
1087 return r;
1088 }
1089
1090 r = dm_table_build_index(t);
1091 if (r) {
1092 DMERR("unable to build btrees");
1093 return r;
1094 }
1095
1096 r = dm_table_prealloc_integrity(t, t->md);
1097 if (r) {
1098 DMERR("could not register integrity profile.");
1099 return r;
1100 }
1101
1102 r = dm_table_alloc_md_mempools(t);
1103 if (r)
1104 DMERR("unable to allocate mempools");
1105
1106 return r;
1107}
1108
1109static DEFINE_MUTEX(_event_lock);
1110void dm_table_event_callback(struct dm_table *t,
1111 void (*fn)(void *), void *context)
1112{
1113 mutex_lock(&_event_lock);
1114 t->event_fn = fn;
1115 t->event_context = context;
1116 mutex_unlock(&_event_lock);
1117}
1118
1119void dm_table_event(struct dm_table *t)
1120{
1121 /*
1122 * You can no longer call dm_table_event() from interrupt
1123 * context, use a bottom half instead.
1124 */
1125 BUG_ON(in_interrupt());
1126
1127 mutex_lock(&_event_lock);
1128 if (t->event_fn)
1129 t->event_fn(t->event_context);
1130 mutex_unlock(&_event_lock);
1131}
1132EXPORT_SYMBOL(dm_table_event);
1133
1134sector_t dm_table_get_size(struct dm_table *t)
1135{
1136 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1137}
1138EXPORT_SYMBOL(dm_table_get_size);
1139
1140struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1141{
1142 if (index >= t->num_targets)
1143 return NULL;
1144
1145 return t->targets + index;
1146}
1147
1148/*
1149 * Search the btree for the correct target.
1150 *
1151 * Caller should check returned pointer with dm_target_is_valid()
1152 * to trap I/O beyond end of device.
1153 */
1154struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1155{
1156 unsigned int l, n = 0, k = 0;
1157 sector_t *node;
1158
1159 for (l = 0; l < t->depth; l++) {
1160 n = get_child(n, k);
1161 node = get_node(t, l, n);
1162
1163 for (k = 0; k < KEYS_PER_NODE; k++)
1164 if (node[k] >= sector)
1165 break;
1166 }
1167
1168 return &t->targets[(KEYS_PER_NODE * n) + k];
1169}
1170
1171/*
1172 * Establish the new table's queue_limits and validate them.
1173 */
1174int dm_calculate_queue_limits(struct dm_table *table,
1175 struct queue_limits *limits)
1176{
1177 struct dm_target *uninitialized_var(ti);
1178 struct queue_limits ti_limits;
1179 unsigned i = 0;
1180
1181 blk_set_default_limits(limits);
1182
1183 while (i < dm_table_get_num_targets(table)) {
1184 blk_set_default_limits(&ti_limits);
1185
1186 ti = dm_table_get_target(table, i++);
1187
1188 if (!ti->type->iterate_devices)
1189 goto combine_limits;
1190
1191 /*
1192 * Combine queue limits of all the devices this target uses.
1193 */
1194 ti->type->iterate_devices(ti, dm_set_device_limits,
1195 &ti_limits);
1196
1197 /* Set I/O hints portion of queue limits */
1198 if (ti->type->io_hints)
1199 ti->type->io_hints(ti, &ti_limits);
1200
1201 /*
1202 * Check each device area is consistent with the target's
1203 * overall queue limits.
1204 */
1205 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1206 &ti_limits))
1207 return -EINVAL;
1208
1209combine_limits:
1210 /*
1211 * Merge this target's queue limits into the overall limits
1212 * for the table.
1213 */
1214 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1215 DMWARN("%s: adding target device "
1216 "(start sect %llu len %llu) "
1217 "caused an alignment inconsistency",
1218 dm_device_name(table->md),
1219 (unsigned long long) ti->begin,
1220 (unsigned long long) ti->len);
1221 }
1222
1223 return validate_hardware_logical_block_alignment(table, limits);
1224}
1225
1226/*
1227 * Set the integrity profile for this device if all devices used have
1228 * matching profiles. We're quite deep in the resume path but still
1229 * don't know if all devices (particularly DM devices this device
1230 * may be stacked on) have matching profiles. Even if the profiles
1231 * don't match we have no way to fail (to resume) at this point.
1232 */
1233static void dm_table_set_integrity(struct dm_table *t)
1234{
1235 struct gendisk *template_disk = NULL;
1236
1237 if (!blk_get_integrity(dm_disk(t->md)))
1238 return;
1239
1240 template_disk = dm_table_get_integrity_disk(t, true);
1241 if (template_disk)
1242 blk_integrity_register(dm_disk(t->md),
1243 blk_get_integrity(template_disk));
1244 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1245 DMWARN("%s: device no longer has a valid integrity profile",
1246 dm_device_name(t->md));
1247 else
1248 DMWARN("%s: unable to establish an integrity profile",
1249 dm_device_name(t->md));
1250}
1251
1252static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1253 sector_t start, sector_t len, void *data)
1254{
1255 unsigned flush = (*(unsigned *)data);
1256 struct request_queue *q = bdev_get_queue(dev->bdev);
1257
1258 return q && (q->flush_flags & flush);
1259}
1260
1261static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1262{
1263 struct dm_target *ti;
1264 unsigned i = 0;
1265
1266 /*
1267 * Require at least one underlying device to support flushes.
1268 * t->devices includes internal dm devices such as mirror logs
1269 * so we need to use iterate_devices here, which targets
1270 * supporting flushes must provide.
1271 */
1272 while (i < dm_table_get_num_targets(t)) {
1273 ti = dm_table_get_target(t, i++);
1274
1275 if (!ti->num_flush_requests)
1276 continue;
1277
1278 if (ti->type->iterate_devices &&
1279 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1280 return 1;
1281 }
1282
1283 return 0;
1284}
1285
1286static bool dm_table_discard_zeroes_data(struct dm_table *t)
1287{
1288 struct dm_target *ti;
1289 unsigned i = 0;
1290
1291 /* Ensure that all targets supports discard_zeroes_data. */
1292 while (i < dm_table_get_num_targets(t)) {
1293 ti = dm_table_get_target(t, i++);
1294
1295 if (ti->discard_zeroes_data_unsupported)
1296 return 0;
1297 }
1298
1299 return 1;
1300}
1301
1302void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1303 struct queue_limits *limits)
1304{
1305 unsigned flush = 0;
1306
1307 /*
1308 * Copy table's limits to the DM device's request_queue
1309 */
1310 q->limits = *limits;
1311
1312 if (!dm_table_supports_discards(t))
1313 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1314 else
1315 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1316
1317 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1318 flush |= REQ_FLUSH;
1319 if (dm_table_supports_flush(t, REQ_FUA))
1320 flush |= REQ_FUA;
1321 }
1322 blk_queue_flush(q, flush);
1323
1324 if (!dm_table_discard_zeroes_data(t))
1325 q->limits.discard_zeroes_data = 0;
1326
1327 dm_table_set_integrity(t);
1328
1329 /*
1330 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1331 * visible to other CPUs because, once the flag is set, incoming bios
1332 * are processed by request-based dm, which refers to the queue
1333 * settings.
1334 * Until the flag set, bios are passed to bio-based dm and queued to
1335 * md->deferred where queue settings are not needed yet.
1336 * Those bios are passed to request-based dm at the resume time.
1337 */
1338 smp_mb();
1339 if (dm_table_request_based(t))
1340 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1341}
1342
1343unsigned int dm_table_get_num_targets(struct dm_table *t)
1344{
1345 return t->num_targets;
1346}
1347
1348struct list_head *dm_table_get_devices(struct dm_table *t)
1349{
1350 return &t->devices;
1351}
1352
1353fmode_t dm_table_get_mode(struct dm_table *t)
1354{
1355 return t->mode;
1356}
1357EXPORT_SYMBOL(dm_table_get_mode);
1358
1359static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1360{
1361 int i = t->num_targets;
1362 struct dm_target *ti = t->targets;
1363
1364 while (i--) {
1365 if (postsuspend) {
1366 if (ti->type->postsuspend)
1367 ti->type->postsuspend(ti);
1368 } else if (ti->type->presuspend)
1369 ti->type->presuspend(ti);
1370
1371 ti++;
1372 }
1373}
1374
1375void dm_table_presuspend_targets(struct dm_table *t)
1376{
1377 if (!t)
1378 return;
1379
1380 suspend_targets(t, 0);
1381}
1382
1383void dm_table_postsuspend_targets(struct dm_table *t)
1384{
1385 if (!t)
1386 return;
1387
1388 suspend_targets(t, 1);
1389}
1390
1391int dm_table_resume_targets(struct dm_table *t)
1392{
1393 int i, r = 0;
1394
1395 for (i = 0; i < t->num_targets; i++) {
1396 struct dm_target *ti = t->targets + i;
1397
1398 if (!ti->type->preresume)
1399 continue;
1400
1401 r = ti->type->preresume(ti);
1402 if (r)
1403 return r;
1404 }
1405
1406 for (i = 0; i < t->num_targets; i++) {
1407 struct dm_target *ti = t->targets + i;
1408
1409 if (ti->type->resume)
1410 ti->type->resume(ti);
1411 }
1412
1413 return 0;
1414}
1415
1416void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1417{
1418 list_add(&cb->list, &t->target_callbacks);
1419}
1420EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1421
1422int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1423{
1424 struct dm_dev_internal *dd;
1425 struct list_head *devices = dm_table_get_devices(t);
1426 struct dm_target_callbacks *cb;
1427 int r = 0;
1428
1429 list_for_each_entry(dd, devices, list) {
1430 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1431 char b[BDEVNAME_SIZE];
1432
1433 if (likely(q))
1434 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1435 else
1436 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1437 dm_device_name(t->md),
1438 bdevname(dd->dm_dev.bdev, b));
1439 }
1440
1441 list_for_each_entry(cb, &t->target_callbacks, list)
1442 if (cb->congested_fn)
1443 r |= cb->congested_fn(cb, bdi_bits);
1444
1445 return r;
1446}
1447
1448int dm_table_any_busy_target(struct dm_table *t)
1449{
1450 unsigned i;
1451 struct dm_target *ti;
1452
1453 for (i = 0; i < t->num_targets; i++) {
1454 ti = t->targets + i;
1455 if (ti->type->busy && ti->type->busy(ti))
1456 return 1;
1457 }
1458
1459 return 0;
1460}
1461
1462struct mapped_device *dm_table_get_md(struct dm_table *t)
1463{
1464 return t->md;
1465}
1466EXPORT_SYMBOL(dm_table_get_md);
1467
1468static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1469 sector_t start, sector_t len, void *data)
1470{
1471 struct request_queue *q = bdev_get_queue(dev->bdev);
1472
1473 return q && blk_queue_discard(q);
1474}
1475
1476bool dm_table_supports_discards(struct dm_table *t)
1477{
1478 struct dm_target *ti;
1479 unsigned i = 0;
1480
1481 /*
1482 * Unless any target used by the table set discards_supported,
1483 * require at least one underlying device to support discards.
1484 * t->devices includes internal dm devices such as mirror logs
1485 * so we need to use iterate_devices here, which targets
1486 * supporting discard selectively must provide.
1487 */
1488 while (i < dm_table_get_num_targets(t)) {
1489 ti = dm_table_get_target(t, i++);
1490
1491 if (!ti->num_discard_requests)
1492 continue;
1493
1494 if (ti->discards_supported)
1495 return 1;
1496
1497 if (ti->type->iterate_devices &&
1498 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1499 return 1;
1500 }
1501
1502 return 0;
1503}