Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
 
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
 
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
 
 
 
  21
  22#define DM_MSG_PREFIX "table"
  23
  24#define MAX_DEPTH 16
  25#define NODE_SIZE L1_CACHE_BYTES
  26#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  27#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  28
  29/*
  30 * The table has always exactly one reference from either mapped_device->map
  31 * or hash_cell->new_map. This reference is not counted in table->holders.
  32 * A pair of dm_create_table/dm_destroy_table functions is used for table
  33 * creation/destruction.
  34 *
  35 * Temporary references from the other code increase table->holders. A pair
  36 * of dm_table_get/dm_table_put functions is used to manipulate it.
  37 *
  38 * When the table is about to be destroyed, we wait for table->holders to
  39 * drop to zero.
  40 */
  41
  42struct dm_table {
  43	struct mapped_device *md;
  44	atomic_t holders;
  45	unsigned type;
  46
  47	/* btree table */
  48	unsigned int depth;
  49	unsigned int counts[MAX_DEPTH];	/* in nodes */
  50	sector_t *index[MAX_DEPTH];
  51
  52	unsigned int num_targets;
  53	unsigned int num_allocated;
  54	sector_t *highs;
  55	struct dm_target *targets;
  56
  57	struct target_type *immutable_target_type;
  58	unsigned integrity_supported:1;
  59	unsigned singleton:1;
  60
  61	/*
  62	 * Indicates the rw permissions for the new logical
  63	 * device.  This should be a combination of FMODE_READ
  64	 * and FMODE_WRITE.
  65	 */
  66	fmode_t mode;
  67
  68	/* a list of devices used by this table */
  69	struct list_head devices;
  70
  71	/* events get handed up using this callback */
  72	void (*event_fn)(void *);
  73	void *event_context;
  74
  75	struct dm_md_mempools *mempools;
  76
  77	struct list_head target_callbacks;
  78};
  79
  80/*
  81 * Similar to ceiling(log_size(n))
  82 */
  83static unsigned int int_log(unsigned int n, unsigned int base)
  84{
  85	int result = 0;
  86
  87	while (n > 1) {
  88		n = dm_div_up(n, base);
  89		result++;
  90	}
  91
  92	return result;
  93}
  94
  95/*
  96 * Calculate the index of the child node of the n'th node k'th key.
  97 */
  98static inline unsigned int get_child(unsigned int n, unsigned int k)
  99{
 100	return (n * CHILDREN_PER_NODE) + k;
 101}
 102
 103/*
 104 * Return the n'th node of level l from table t.
 105 */
 106static inline sector_t *get_node(struct dm_table *t,
 107				 unsigned int l, unsigned int n)
 108{
 109	return t->index[l] + (n * KEYS_PER_NODE);
 110}
 111
 112/*
 113 * Return the highest key that you could lookup from the n'th
 114 * node on level l of the btree.
 115 */
 116static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 117{
 118	for (; l < t->depth - 1; l++)
 119		n = get_child(n, CHILDREN_PER_NODE - 1);
 120
 121	if (n >= t->counts[l])
 122		return (sector_t) - 1;
 123
 124	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 125}
 126
 127/*
 128 * Fills in a level of the btree based on the highs of the level
 129 * below it.
 130 */
 131static int setup_btree_index(unsigned int l, struct dm_table *t)
 132{
 133	unsigned int n, k;
 134	sector_t *node;
 135
 136	for (n = 0U; n < t->counts[l]; n++) {
 137		node = get_node(t, l, n);
 138
 139		for (k = 0U; k < KEYS_PER_NODE; k++)
 140			node[k] = high(t, l + 1, get_child(n, k));
 141	}
 142
 143	return 0;
 144}
 145
 146void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 147{
 148	unsigned long size;
 149	void *addr;
 150
 151	/*
 152	 * Check that we're not going to overflow.
 153	 */
 154	if (nmemb > (ULONG_MAX / elem_size))
 155		return NULL;
 156
 157	size = nmemb * elem_size;
 158	addr = vzalloc(size);
 159
 160	return addr;
 161}
 162EXPORT_SYMBOL(dm_vcalloc);
 163
 164/*
 165 * highs, and targets are managed as dynamic arrays during a
 166 * table load.
 167 */
 168static int alloc_targets(struct dm_table *t, unsigned int num)
 169{
 170	sector_t *n_highs;
 171	struct dm_target *n_targets;
 172	int n = t->num_targets;
 173
 174	/*
 175	 * Allocate both the target array and offset array at once.
 176	 * Append an empty entry to catch sectors beyond the end of
 177	 * the device.
 178	 */
 179	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 180					  sizeof(sector_t));
 181	if (!n_highs)
 182		return -ENOMEM;
 183
 184	n_targets = (struct dm_target *) (n_highs + num);
 185
 186	if (n) {
 187		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
 188		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
 189	}
 190
 191	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
 192	vfree(t->highs);
 193
 194	t->num_allocated = num;
 195	t->highs = n_highs;
 196	t->targets = n_targets;
 197
 198	return 0;
 199}
 200
 201int dm_table_create(struct dm_table **result, fmode_t mode,
 202		    unsigned num_targets, struct mapped_device *md)
 203{
 204	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 
 
 
 
 
 205
 206	if (!t)
 207		return -ENOMEM;
 208
 209	INIT_LIST_HEAD(&t->devices);
 210	INIT_LIST_HEAD(&t->target_callbacks);
 211	atomic_set(&t->holders, 0);
 212
 213	if (!num_targets)
 214		num_targets = KEYS_PER_NODE;
 215
 216	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 217
 
 
 
 
 
 218	if (alloc_targets(t, num_targets)) {
 219		kfree(t);
 220		t = NULL;
 221		return -ENOMEM;
 222	}
 223
 
 224	t->mode = mode;
 225	t->md = md;
 
 226	*result = t;
 227	return 0;
 228}
 229
 230static void free_devices(struct list_head *devices)
 231{
 232	struct list_head *tmp, *next;
 233
 234	list_for_each_safe(tmp, next, devices) {
 235		struct dm_dev_internal *dd =
 236		    list_entry(tmp, struct dm_dev_internal, list);
 237		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
 238		       dd->dm_dev.name);
 
 239		kfree(dd);
 240	}
 241}
 242
 
 
 243void dm_table_destroy(struct dm_table *t)
 244{
 245	unsigned int i;
 246
 247	if (!t)
 248		return;
 249
 250	while (atomic_read(&t->holders))
 251		msleep(1);
 252	smp_mb();
 253
 254	/* free the indexes */
 255	if (t->depth >= 2)
 256		vfree(t->index[t->depth - 2]);
 257
 258	/* free the targets */
 259	for (i = 0; i < t->num_targets; i++) {
 260		struct dm_target *tgt = t->targets + i;
 261
 262		if (tgt->type->dtr)
 263			tgt->type->dtr(tgt);
 264
 265		dm_put_target_type(tgt->type);
 266	}
 267
 268	vfree(t->highs);
 269
 270	/* free the device list */
 271	free_devices(&t->devices);
 272
 273	dm_free_md_mempools(t->mempools);
 274
 275	kfree(t);
 276}
 277
 278void dm_table_get(struct dm_table *t)
 279{
 280	atomic_inc(&t->holders);
 281}
 282EXPORT_SYMBOL(dm_table_get);
 283
 284void dm_table_put(struct dm_table *t)
 285{
 286	if (!t)
 287		return;
 288
 289	smp_mb__before_atomic_dec();
 290	atomic_dec(&t->holders);
 291}
 292EXPORT_SYMBOL(dm_table_put);
 293
 294/*
 295 * Checks to see if we need to extend highs or targets.
 296 */
 297static inline int check_space(struct dm_table *t)
 298{
 299	if (t->num_targets >= t->num_allocated)
 300		return alloc_targets(t, t->num_allocated * 2);
 301
 302	return 0;
 303}
 304
 305/*
 306 * See if we've already got a device in the list.
 307 */
 308static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 309{
 310	struct dm_dev_internal *dd;
 311
 312	list_for_each_entry (dd, l, list)
 313		if (dd->dm_dev.bdev->bd_dev == dev)
 314			return dd;
 315
 316	return NULL;
 317}
 318
 319/*
 320 * Open a device so we can use it as a map destination.
 321 */
 322static int open_dev(struct dm_dev_internal *d, dev_t dev,
 323		    struct mapped_device *md)
 324{
 325	static char *_claim_ptr = "I belong to device-mapper";
 326	struct block_device *bdev;
 327
 328	int r;
 329
 330	BUG_ON(d->dm_dev.bdev);
 331
 332	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 333	if (IS_ERR(bdev))
 334		return PTR_ERR(bdev);
 335
 336	r = bd_link_disk_holder(bdev, dm_disk(md));
 337	if (r) {
 338		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
 339		return r;
 340	}
 341
 342	d->dm_dev.bdev = bdev;
 343	return 0;
 344}
 345
 346/*
 347 * Close a device that we've been using.
 348 */
 349static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
 350{
 351	if (!d->dm_dev.bdev)
 352		return;
 353
 354	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
 355	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
 356	d->dm_dev.bdev = NULL;
 357}
 358
 359/*
 360 * If possible, this checks an area of a destination device is invalid.
 361 */
 362static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 363				  sector_t start, sector_t len, void *data)
 364{
 365	struct request_queue *q;
 366	struct queue_limits *limits = data;
 367	struct block_device *bdev = dev->bdev;
 368	sector_t dev_size =
 369		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 370	unsigned short logical_block_size_sectors =
 371		limits->logical_block_size >> SECTOR_SHIFT;
 372	char b[BDEVNAME_SIZE];
 373
 374	/*
 375	 * Some devices exist without request functions,
 376	 * such as loop devices not yet bound to backing files.
 377	 * Forbid the use of such devices.
 378	 */
 379	q = bdev_get_queue(bdev);
 380	if (!q || !q->make_request_fn) {
 381		DMWARN("%s: %s is not yet initialised: "
 382		       "start=%llu, len=%llu, dev_size=%llu",
 383		       dm_device_name(ti->table->md), bdevname(bdev, b),
 384		       (unsigned long long)start,
 385		       (unsigned long long)len,
 386		       (unsigned long long)dev_size);
 387		return 1;
 388	}
 389
 390	if (!dev_size)
 391		return 0;
 392
 393	if ((start >= dev_size) || (start + len > dev_size)) {
 394		DMWARN("%s: %s too small for target: "
 395		       "start=%llu, len=%llu, dev_size=%llu",
 396		       dm_device_name(ti->table->md), bdevname(bdev, b),
 397		       (unsigned long long)start,
 398		       (unsigned long long)len,
 399		       (unsigned long long)dev_size);
 400		return 1;
 401	}
 402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403	if (logical_block_size_sectors <= 1)
 404		return 0;
 405
 406	if (start & (logical_block_size_sectors - 1)) {
 407		DMWARN("%s: start=%llu not aligned to h/w "
 408		       "logical block size %u of %s",
 409		       dm_device_name(ti->table->md),
 410		       (unsigned long long)start,
 411		       limits->logical_block_size, bdevname(bdev, b));
 412		return 1;
 413	}
 414
 415	if (len & (logical_block_size_sectors - 1)) {
 416		DMWARN("%s: len=%llu not aligned to h/w "
 417		       "logical block size %u of %s",
 418		       dm_device_name(ti->table->md),
 419		       (unsigned long long)len,
 420		       limits->logical_block_size, bdevname(bdev, b));
 421		return 1;
 422	}
 423
 424	return 0;
 425}
 426
 427/*
 428 * This upgrades the mode on an already open dm_dev, being
 429 * careful to leave things as they were if we fail to reopen the
 430 * device and not to touch the existing bdev field in case
 431 * it is accessed concurrently inside dm_table_any_congested().
 432 */
 433static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 434			struct mapped_device *md)
 435{
 436	int r;
 437	struct dm_dev_internal dd_new, dd_old;
 438
 439	dd_new = dd_old = *dd;
 440
 441	dd_new.dm_dev.mode |= new_mode;
 442	dd_new.dm_dev.bdev = NULL;
 443
 444	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
 445	if (r)
 446		return r;
 447
 448	dd->dm_dev.mode |= new_mode;
 449	close_dev(&dd_old, md);
 450
 451	return 0;
 452}
 453
 454/*
 455 * Add a device to the list, or just increment the usage count if
 456 * it's already present.
 457 */
 458int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 459		  struct dm_dev **result)
 460{
 461	int r;
 462	dev_t uninitialized_var(dev);
 463	struct dm_dev_internal *dd;
 464	unsigned int major, minor;
 465	struct dm_table *t = ti->table;
 466	char dummy;
 467
 468	BUG_ON(!t);
 469
 470	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
 471		/* Extract the major/minor numbers */
 472		dev = MKDEV(major, minor);
 473		if (MAJOR(dev) != major || MINOR(dev) != minor)
 474			return -EOVERFLOW;
 475	} else {
 476		/* convert the path to a device */
 477		struct block_device *bdev = lookup_bdev(path);
 478
 479		if (IS_ERR(bdev))
 480			return PTR_ERR(bdev);
 481		dev = bdev->bd_dev;
 482		bdput(bdev);
 483	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484
 485	dd = find_device(&t->devices, dev);
 486	if (!dd) {
 487		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 488		if (!dd)
 489			return -ENOMEM;
 490
 491		dd->dm_dev.mode = mode;
 492		dd->dm_dev.bdev = NULL;
 493
 494		if ((r = open_dev(dd, dev, t->md))) {
 
 495			kfree(dd);
 496			return r;
 497		}
 498
 499		format_dev_t(dd->dm_dev.name, dev);
 500
 501		atomic_set(&dd->count, 0);
 502		list_add(&dd->list, &t->devices);
 
 503
 504	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
 505		r = upgrade_mode(dd, mode, t->md);
 506		if (r)
 507			return r;
 508	}
 509	atomic_inc(&dd->count);
 510
 511	*result = &dd->dm_dev;
 
 512	return 0;
 
 
 
 
 513}
 514EXPORT_SYMBOL(dm_get_device);
 515
 516int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 517			 sector_t start, sector_t len, void *data)
 518{
 519	struct queue_limits *limits = data;
 520	struct block_device *bdev = dev->bdev;
 521	struct request_queue *q = bdev_get_queue(bdev);
 522	char b[BDEVNAME_SIZE];
 523
 524	if (unlikely(!q)) {
 525		DMWARN("%s: Cannot set limits for nonexistent device %s",
 526		       dm_device_name(ti->table->md), bdevname(bdev, b));
 527		return 0;
 528	}
 529
 530	if (bdev_stack_limits(limits, bdev, start) < 0)
 531		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 
 532		       "physical_block_size=%u, logical_block_size=%u, "
 533		       "alignment_offset=%u, start=%llu",
 534		       dm_device_name(ti->table->md), bdevname(bdev, b),
 535		       q->limits.physical_block_size,
 536		       q->limits.logical_block_size,
 537		       q->limits.alignment_offset,
 538		       (unsigned long long) start << SECTOR_SHIFT);
 539
 540	/*
 541	 * Check if merge fn is supported.
 542	 * If not we'll force DM to use PAGE_SIZE or
 543	 * smaller I/O, just to be safe.
 544	 */
 545	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
 546		blk_limits_max_hw_sectors(limits,
 547					  (unsigned int) (PAGE_SIZE >> 9));
 548	return 0;
 549}
 550EXPORT_SYMBOL_GPL(dm_set_device_limits);
 551
 552/*
 553 * Decrement a device's use count and remove it if necessary.
 554 */
 555void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 556{
 557	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
 558						  dm_dev);
 
 
 
 
 559
 560	if (atomic_dec_and_test(&dd->count)) {
 561		close_dev(dd, ti->table->md);
 
 
 
 
 
 
 
 
 
 
 
 562		list_del(&dd->list);
 563		kfree(dd);
 564	}
 
 
 
 565}
 566EXPORT_SYMBOL(dm_put_device);
 567
 568/*
 569 * Checks to see if the target joins onto the end of the table.
 570 */
 571static int adjoin(struct dm_table *table, struct dm_target *ti)
 572{
 573	struct dm_target *prev;
 574
 575	if (!table->num_targets)
 576		return !ti->begin;
 577
 578	prev = &table->targets[table->num_targets - 1];
 579	return (ti->begin == (prev->begin + prev->len));
 580}
 581
 582/*
 583 * Used to dynamically allocate the arg array.
 
 
 
 
 
 
 
 584 */
 585static char **realloc_argv(unsigned *array_size, char **old_argv)
 586{
 587	char **argv;
 588	unsigned new_size;
 
 589
 590	new_size = *array_size ? *array_size * 2 : 64;
 591	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
 592	if (argv) {
 593		memcpy(argv, old_argv, *array_size * sizeof(*argv));
 594		*array_size = new_size;
 
 
 
 
 
 
 595	}
 596
 597	kfree(old_argv);
 598	return argv;
 599}
 600
 601/*
 602 * Destructively splits up the argument list to pass to ctr.
 603 */
 604int dm_split_args(int *argc, char ***argvp, char *input)
 605{
 606	char *start, *end = input, *out, **argv = NULL;
 607	unsigned array_size = 0;
 608
 609	*argc = 0;
 610
 611	if (!input) {
 612		*argvp = NULL;
 613		return 0;
 614	}
 615
 616	argv = realloc_argv(&array_size, argv);
 617	if (!argv)
 618		return -ENOMEM;
 619
 620	while (1) {
 621		/* Skip whitespace */
 622		start = skip_spaces(end);
 623
 624		if (!*start)
 625			break;	/* success, we hit the end */
 626
 627		/* 'out' is used to remove any back-quotes */
 628		end = out = start;
 629		while (*end) {
 630			/* Everything apart from '\0' can be quoted */
 631			if (*end == '\\' && *(end + 1)) {
 632				*out++ = *(end + 1);
 633				end += 2;
 634				continue;
 635			}
 636
 637			if (isspace(*end))
 638				break;	/* end of token */
 639
 640			*out++ = *end++;
 641		}
 642
 643		/* have we already filled the array ? */
 644		if ((*argc + 1) > array_size) {
 645			argv = realloc_argv(&array_size, argv);
 646			if (!argv)
 647				return -ENOMEM;
 648		}
 649
 650		/* we know this is whitespace */
 651		if (*end)
 652			end++;
 653
 654		/* terminate the string and put it in the array */
 655		*out = '\0';
 656		argv[*argc] = start;
 657		(*argc)++;
 658	}
 659
 660	*argvp = argv;
 661	return 0;
 662}
 663
 
 
 
 
 
 
 664/*
 665 * Impose necessary and sufficient conditions on a devices's table such
 666 * that any incoming bio which respects its logical_block_size can be
 667 * processed successfully.  If it falls across the boundary between
 668 * two or more targets, the size of each piece it gets split into must
 669 * be compatible with the logical_block_size of the target processing it.
 670 */
 671static int validate_hardware_logical_block_alignment(struct dm_table *table,
 672						 struct queue_limits *limits)
 673{
 674	/*
 675	 * This function uses arithmetic modulo the logical_block_size
 676	 * (in units of 512-byte sectors).
 677	 */
 678	unsigned short device_logical_block_size_sects =
 679		limits->logical_block_size >> SECTOR_SHIFT;
 680
 681	/*
 682	 * Offset of the start of the next table entry, mod logical_block_size.
 683	 */
 684	unsigned short next_target_start = 0;
 685
 686	/*
 687	 * Given an aligned bio that extends beyond the end of a
 688	 * target, how many sectors must the next target handle?
 689	 */
 690	unsigned short remaining = 0;
 691
 692	struct dm_target *uninitialized_var(ti);
 693	struct queue_limits ti_limits;
 694	unsigned i = 0;
 695
 696	/*
 697	 * Check each entry in the table in turn.
 698	 */
 699	while (i < dm_table_get_num_targets(table)) {
 700		ti = dm_table_get_target(table, i++);
 701
 702		blk_set_stacking_limits(&ti_limits);
 703
 704		/* combine all target devices' limits */
 705		if (ti->type->iterate_devices)
 706			ti->type->iterate_devices(ti, dm_set_device_limits,
 707						  &ti_limits);
 708
 709		/*
 710		 * If the remaining sectors fall entirely within this
 711		 * table entry are they compatible with its logical_block_size?
 712		 */
 713		if (remaining < ti->len &&
 714		    remaining & ((ti_limits.logical_block_size >>
 715				  SECTOR_SHIFT) - 1))
 716			break;	/* Error */
 717
 718		next_target_start =
 719		    (unsigned short) ((next_target_start + ti->len) &
 720				      (device_logical_block_size_sects - 1));
 721		remaining = next_target_start ?
 722		    device_logical_block_size_sects - next_target_start : 0;
 723	}
 724
 725	if (remaining) {
 726		DMWARN("%s: table line %u (start sect %llu len %llu) "
 727		       "not aligned to h/w logical block size %u",
 728		       dm_device_name(table->md), i,
 729		       (unsigned long long) ti->begin,
 730		       (unsigned long long) ti->len,
 731		       limits->logical_block_size);
 732		return -EINVAL;
 733	}
 734
 735	return 0;
 736}
 737
 738int dm_table_add_target(struct dm_table *t, const char *type,
 739			sector_t start, sector_t len, char *params)
 740{
 741	int r = -EINVAL, argc;
 742	char **argv;
 743	struct dm_target *tgt;
 744
 745	if (t->singleton) {
 746		DMERR("%s: target type %s must appear alone in table",
 747		      dm_device_name(t->md), t->targets->type->name);
 748		return -EINVAL;
 749	}
 750
 751	if ((r = check_space(t)))
 752		return r;
 753
 754	tgt = t->targets + t->num_targets;
 755	memset(tgt, 0, sizeof(*tgt));
 756
 757	if (!len) {
 758		DMERR("%s: zero-length target", dm_device_name(t->md));
 759		return -EINVAL;
 760	}
 761
 762	tgt->type = dm_get_target_type(type);
 763	if (!tgt->type) {
 764		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
 765		      type);
 766		return -EINVAL;
 767	}
 768
 769	if (dm_target_needs_singleton(tgt->type)) {
 770		if (t->num_targets) {
 771			DMERR("%s: target type %s must appear alone in table",
 772			      dm_device_name(t->md), type);
 773			return -EINVAL;
 774		}
 775		t->singleton = 1;
 776	}
 777
 778	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 779		DMERR("%s: target type %s may not be included in read-only tables",
 780		      dm_device_name(t->md), type);
 781		return -EINVAL;
 782	}
 783
 784	if (t->immutable_target_type) {
 785		if (t->immutable_target_type != tgt->type) {
 786			DMERR("%s: immutable target type %s cannot be mixed with other target types",
 787			      dm_device_name(t->md), t->immutable_target_type->name);
 788			return -EINVAL;
 789		}
 790	} else if (dm_target_is_immutable(tgt->type)) {
 791		if (t->num_targets) {
 792			DMERR("%s: immutable target type %s cannot be mixed with other target types",
 793			      dm_device_name(t->md), tgt->type->name);
 794			return -EINVAL;
 795		}
 796		t->immutable_target_type = tgt->type;
 797	}
 798
 799	tgt->table = t;
 800	tgt->begin = start;
 801	tgt->len = len;
 802	tgt->error = "Unknown error";
 803
 804	/*
 805	 * Does this target adjoin the previous one ?
 806	 */
 807	if (!adjoin(t, tgt)) {
 808		tgt->error = "Gap in table";
 809		r = -EINVAL;
 810		goto bad;
 811	}
 812
 813	r = dm_split_args(&argc, &argv, params);
 814	if (r) {
 815		tgt->error = "couldn't split parameters (insufficient memory)";
 816		goto bad;
 817	}
 818
 819	r = tgt->type->ctr(tgt, argc, argv);
 820	kfree(argv);
 821	if (r)
 822		goto bad;
 823
 824	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 825
 826	if (!tgt->num_discard_requests && tgt->discards_supported)
 827		DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
 828		       dm_device_name(t->md), type);
 829
 
 
 
 
 
 
 830	return 0;
 831
 832 bad:
 833	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 834	dm_put_target_type(tgt->type);
 835	return r;
 836}
 837
 838/*
 839 * Target argument parsing helpers.
 840 */
 841static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 842			     unsigned *value, char **error, unsigned grouped)
 843{
 844	const char *arg_str = dm_shift_arg(arg_set);
 845	char dummy;
 846
 847	if (!arg_str ||
 848	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 849	    (*value < arg->min) ||
 850	    (*value > arg->max) ||
 851	    (grouped && arg_set->argc < *value)) {
 852		*error = arg->error;
 853		return -EINVAL;
 854	}
 855
 856	return 0;
 857}
 858
 859int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 860		unsigned *value, char **error)
 861{
 862	return validate_next_arg(arg, arg_set, value, error, 0);
 863}
 864EXPORT_SYMBOL(dm_read_arg);
 865
 866int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
 867		      unsigned *value, char **error)
 868{
 869	return validate_next_arg(arg, arg_set, value, error, 1);
 870}
 871EXPORT_SYMBOL(dm_read_arg_group);
 872
 873const char *dm_shift_arg(struct dm_arg_set *as)
 874{
 875	char *r;
 876
 877	if (as->argc) {
 878		as->argc--;
 879		r = *as->argv;
 880		as->argv++;
 881		return r;
 882	}
 883
 884	return NULL;
 885}
 886EXPORT_SYMBOL(dm_shift_arg);
 887
 888void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 889{
 890	BUG_ON(as->argc < num_args);
 891	as->argc -= num_args;
 892	as->argv += num_args;
 893}
 894EXPORT_SYMBOL(dm_consume_args);
 895
 896static int dm_table_set_type(struct dm_table *t)
 897{
 898	unsigned i;
 899	unsigned bio_based = 0, request_based = 0;
 900	struct dm_target *tgt;
 901	struct dm_dev_internal *dd;
 902	struct list_head *devices;
 903
 904	for (i = 0; i < t->num_targets; i++) {
 905		tgt = t->targets + i;
 906		if (dm_target_request_based(tgt))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907			request_based = 1;
 908		else
 909			bio_based = 1;
 910
 911		if (bio_based && request_based) {
 912			DMWARN("Inconsistent table: different target types"
 913			       " can't be mixed up");
 914			return -EINVAL;
 915		}
 916	}
 917
 
 
 
 
 
 
 
 
 
 
 
 
 918	if (bio_based) {
 
 919		/* We must use this table as bio-based */
 920		t->type = DM_TYPE_BIO_BASED;
 
 
 
 
 921		return 0;
 922	}
 923
 924	BUG_ON(!request_based); /* No targets in this table */
 925
 926	/* Non-request-stackable devices can't be used for request-based dm */
 927	devices = dm_table_get_devices(t);
 928	list_for_each_entry(dd, devices, list) {
 929		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
 930			DMWARN("table load rejected: including"
 931			       " non-request-stackable devices");
 932			return -EINVAL;
 933		}
 934	}
 935
 
 936	/*
 937	 * Request-based dm supports only tables that have a single target now.
 938	 * To support multiple targets, request splitting support is needed,
 939	 * and that needs lots of changes in the block-layer.
 940	 * (e.g. request completion process for partial completion.)
 941	 */
 942	if (t->num_targets > 1) {
 943		DMWARN("Request-based dm doesn't support multiple targets yet");
 944		return -EINVAL;
 945	}
 946
 947	t->type = DM_TYPE_REQUEST_BASED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 948
 949	return 0;
 950}
 951
 952unsigned dm_table_get_type(struct dm_table *t)
 953{
 954	return t->type;
 955}
 956
 957struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 958{
 959	return t->immutable_target_type;
 960}
 961
 962bool dm_table_request_based(struct dm_table *t)
 963{
 964	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
 
 
 
 
 
 965}
 966
 967int dm_table_alloc_md_mempools(struct dm_table *t)
 968{
 969	unsigned type = dm_table_get_type(t);
 
 970
 971	if (unlikely(type == DM_TYPE_NONE)) {
 972		DMWARN("no table type is set, can't allocate mempools");
 973		return -EINVAL;
 974	}
 975
 976	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
 977	if (!t->mempools)
 978		return -ENOMEM;
 979
 980	return 0;
 981}
 982
 983void dm_table_free_md_mempools(struct dm_table *t)
 984{
 985	dm_free_md_mempools(t->mempools);
 986	t->mempools = NULL;
 987}
 988
 989struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
 990{
 991	return t->mempools;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992}
 993
 994static int setup_indexes(struct dm_table *t)
 995{
 996	int i;
 997	unsigned int total = 0;
 998	sector_t *indexes;
 999
1000	/* allocate the space for *all* the indexes */
1001	for (i = t->depth - 2; i >= 0; i--) {
1002		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1003		total += t->counts[i];
1004	}
1005
1006	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1007	if (!indexes)
1008		return -ENOMEM;
1009
1010	/* set up internal nodes, bottom-up */
1011	for (i = t->depth - 2; i >= 0; i--) {
1012		t->index[i] = indexes;
1013		indexes += (KEYS_PER_NODE * t->counts[i]);
1014		setup_btree_index(i, t);
1015	}
1016
1017	return 0;
1018}
1019
1020/*
1021 * Builds the btree to index the map.
1022 */
1023static int dm_table_build_index(struct dm_table *t)
1024{
1025	int r = 0;
1026	unsigned int leaf_nodes;
1027
1028	/* how many indexes will the btree have ? */
1029	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1030	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1031
1032	/* leaf layer has already been set up */
1033	t->counts[t->depth - 1] = leaf_nodes;
1034	t->index[t->depth - 1] = t->highs;
1035
1036	if (t->depth >= 2)
1037		r = setup_indexes(t);
1038
1039	return r;
1040}
1041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042/*
1043 * Get a disk whose integrity profile reflects the table's profile.
1044 * If %match_all is true, all devices' profiles must match.
1045 * If %match_all is false, all devices must at least have an
1046 * allocated integrity profile; but uninitialized is ok.
1047 * Returns NULL if integrity support was inconsistent or unavailable.
1048 */
1049static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1050						    bool match_all)
1051{
1052	struct list_head *devices = dm_table_get_devices(t);
1053	struct dm_dev_internal *dd = NULL;
1054	struct gendisk *prev_disk = NULL, *template_disk = NULL;
 
1055
1056	list_for_each_entry(dd, devices, list) {
1057		template_disk = dd->dm_dev.bdev->bd_disk;
1058		if (!blk_get_integrity(template_disk))
1059			goto no_integrity;
1060		if (!match_all && !blk_integrity_is_initialized(template_disk))
1061			continue; /* skip uninitialized profiles */
1062		else if (prev_disk &&
1063			 blk_integrity_compare(prev_disk, template_disk) < 0)
1064			goto no_integrity;
1065		prev_disk = template_disk;
1066	}
1067
1068	return template_disk;
1069
1070no_integrity:
1071	if (prev_disk)
1072		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1073		       dm_device_name(t->md),
1074		       prev_disk->disk_name,
1075		       template_disk->disk_name);
1076	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077}
1078
1079/*
1080 * Register the mapped device for blk_integrity support if
1081 * the underlying devices have an integrity profile.  But all devices
1082 * may not have matching profiles (checking all devices isn't reliable
1083 * during table load because this table may use other DM device(s) which
1084 * must be resumed before they will have an initialized integity profile).
1085 * Stacked DM devices force a 2 stage integrity profile validation:
1086 * 1 - during load, validate all initialized integrity profiles match
1087 * 2 - during resume, validate all integrity profiles match
1088 */
1089static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1090{
1091	struct gendisk *template_disk = NULL;
 
 
 
1092
1093	template_disk = dm_table_get_integrity_disk(t, false);
1094	if (!template_disk)
1095		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096
1097	if (!blk_integrity_is_initialized(dm_disk(md))) {
1098		t->integrity_supported = 1;
1099		return blk_integrity_register(dm_disk(md), NULL);
 
 
 
1100	}
1101
1102	/*
1103	 * If DM device already has an initalized integrity
1104	 * profile the new profile should not conflict.
1105	 */
1106	if (blk_integrity_is_initialized(template_disk) &&
1107	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1108		DMWARN("%s: conflict with existing integrity profile: "
1109		       "%s profile mismatch",
1110		       dm_device_name(t->md),
1111		       template_disk->disk_name);
1112		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113	}
 
 
1114
1115	/* Preserve existing initialized integrity profile */
1116	t->integrity_supported = 1;
 
 
1117	return 0;
1118}
1119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120/*
1121 * Prepares the table for use by building the indices,
1122 * setting the type, and allocating mempools.
1123 */
1124int dm_table_complete(struct dm_table *t)
1125{
1126	int r;
1127
1128	r = dm_table_set_type(t);
1129	if (r) {
1130		DMERR("unable to set table type");
1131		return r;
1132	}
1133
1134	r = dm_table_build_index(t);
1135	if (r) {
1136		DMERR("unable to build btrees");
1137		return r;
1138	}
1139
1140	r = dm_table_prealloc_integrity(t, t->md);
1141	if (r) {
1142		DMERR("could not register integrity profile.");
1143		return r;
1144	}
1145
1146	r = dm_table_alloc_md_mempools(t);
1147	if (r)
1148		DMERR("unable to allocate mempools");
1149
1150	return r;
1151}
1152
1153static DEFINE_MUTEX(_event_lock);
1154void dm_table_event_callback(struct dm_table *t,
1155			     void (*fn)(void *), void *context)
1156{
1157	mutex_lock(&_event_lock);
1158	t->event_fn = fn;
1159	t->event_context = context;
1160	mutex_unlock(&_event_lock);
1161}
1162
1163void dm_table_event(struct dm_table *t)
1164{
1165	/*
1166	 * You can no longer call dm_table_event() from interrupt
1167	 * context, use a bottom half instead.
1168	 */
1169	BUG_ON(in_interrupt());
1170
1171	mutex_lock(&_event_lock);
1172	if (t->event_fn)
1173		t->event_fn(t->event_context);
1174	mutex_unlock(&_event_lock);
1175}
1176EXPORT_SYMBOL(dm_table_event);
1177
1178sector_t dm_table_get_size(struct dm_table *t)
1179{
1180	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1181}
1182EXPORT_SYMBOL(dm_table_get_size);
1183
1184struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1185{
1186	if (index >= t->num_targets)
1187		return NULL;
1188
1189	return t->targets + index;
1190}
1191
1192/*
1193 * Search the btree for the correct target.
1194 *
1195 * Caller should check returned pointer with dm_target_is_valid()
1196 * to trap I/O beyond end of device.
1197 */
1198struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1199{
1200	unsigned int l, n = 0, k = 0;
1201	sector_t *node;
1202
 
 
 
1203	for (l = 0; l < t->depth; l++) {
1204		n = get_child(n, k);
1205		node = get_node(t, l, n);
1206
1207		for (k = 0; k < KEYS_PER_NODE; k++)
1208			if (node[k] >= sector)
1209				break;
1210	}
1211
1212	return &t->targets[(KEYS_PER_NODE * n) + k];
1213}
1214
1215/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216 * Establish the new table's queue_limits and validate them.
1217 */
1218int dm_calculate_queue_limits(struct dm_table *table,
1219			      struct queue_limits *limits)
1220{
1221	struct dm_target *uninitialized_var(ti);
1222	struct queue_limits ti_limits;
1223	unsigned i = 0;
 
1224
1225	blk_set_stacking_limits(limits);
1226
1227	while (i < dm_table_get_num_targets(table)) {
1228		blk_set_stacking_limits(&ti_limits);
 
1229
1230		ti = dm_table_get_target(table, i++);
 
 
1231
1232		if (!ti->type->iterate_devices)
 
 
 
 
 
 
 
 
1233			goto combine_limits;
 
1234
1235		/*
1236		 * Combine queue limits of all the devices this target uses.
1237		 */
1238		ti->type->iterate_devices(ti, dm_set_device_limits,
1239					  &ti_limits);
1240
 
 
 
 
 
 
 
 
 
1241		/* Set I/O hints portion of queue limits */
1242		if (ti->type->io_hints)
1243			ti->type->io_hints(ti, &ti_limits);
1244
1245		/*
1246		 * Check each device area is consistent with the target's
1247		 * overall queue limits.
1248		 */
1249		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1250					      &ti_limits))
1251			return -EINVAL;
1252
1253combine_limits:
1254		/*
1255		 * Merge this target's queue limits into the overall limits
1256		 * for the table.
1257		 */
1258		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1259			DMWARN("%s: adding target device "
1260			       "(start sect %llu len %llu) "
1261			       "caused an alignment inconsistency",
1262			       dm_device_name(table->md),
1263			       (unsigned long long) ti->begin,
1264			       (unsigned long long) ti->len);
 
 
 
 
 
 
 
 
 
 
 
 
1265	}
1266
1267	return validate_hardware_logical_block_alignment(table, limits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1268}
1269
1270/*
1271 * Set the integrity profile for this device if all devices used have
1272 * matching profiles.  We're quite deep in the resume path but still
1273 * don't know if all devices (particularly DM devices this device
1274 * may be stacked on) have matching profiles.  Even if the profiles
1275 * don't match we have no way to fail (to resume) at this point.
1276 */
1277static void dm_table_set_integrity(struct dm_table *t)
1278{
1279	struct gendisk *template_disk = NULL;
 
1280
1281	if (!blk_get_integrity(dm_disk(t->md)))
1282		return;
 
1283
1284	template_disk = dm_table_get_integrity_disk(t, true);
1285	if (template_disk)
1286		blk_integrity_register(dm_disk(t->md),
1287				       blk_get_integrity(template_disk));
1288	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1289		DMWARN("%s: device no longer has a valid integrity profile",
1290		       dm_device_name(t->md));
1291	else
1292		DMWARN("%s: unable to establish an integrity profile",
1293		       dm_device_name(t->md));
1294}
1295
1296static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1297				sector_t start, sector_t len, void *data)
 
1298{
1299	unsigned flush = (*(unsigned *)data);
1300	struct request_queue *q = bdev_get_queue(dev->bdev);
1301
1302	return q && (q->flush_flags & flush);
 
 
 
 
 
1303}
1304
1305static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
 
1306{
1307	struct dm_target *ti;
1308	unsigned i = 0;
1309
1310	/*
1311	 * Require at least one underlying device to support flushes.
1312	 * t->devices includes internal dm devices such as mirror logs
1313	 * so we need to use iterate_devices here, which targets
1314	 * supporting flushes must provide.
1315	 */
1316	while (i < dm_table_get_num_targets(t)) {
1317		ti = dm_table_get_target(t, i++);
1318
1319		if (!ti->num_flush_requests)
1320			continue;
 
 
1321
1322		if (ti->type->iterate_devices &&
1323		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1324			return 1;
 
 
 
1325	}
1326
1327	return 0;
1328}
1329
1330static bool dm_table_discard_zeroes_data(struct dm_table *t)
1331{
1332	struct dm_target *ti;
1333	unsigned i = 0;
1334
1335	/* Ensure that all targets supports discard_zeroes_data. */
1336	while (i < dm_table_get_num_targets(t)) {
1337		ti = dm_table_get_target(t, i++);
1338
1339		if (ti->discard_zeroes_data_unsupported)
1340			return 0;
1341	}
1342
1343	return 1;
1344}
1345
1346static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1347			    sector_t start, sector_t len, void *data)
1348{
1349	struct request_queue *q = bdev_get_queue(dev->bdev);
1350
1351	return q && blk_queue_nonrot(q);
1352}
1353
1354static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1355			     sector_t start, sector_t len, void *data)
1356{
1357	struct request_queue *q = bdev_get_queue(dev->bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1358
1359	return q && !blk_queue_add_random(q);
1360}
1361
1362static bool dm_table_all_devices_attribute(struct dm_table *t,
1363					   iterate_devices_callout_fn func)
 
1364{
1365	struct dm_target *ti;
1366	unsigned i = 0;
 
 
 
 
 
1367
1368	while (i < dm_table_get_num_targets(t)) {
1369		ti = dm_table_get_target(t, i++);
1370
1371		if (!ti->type->iterate_devices ||
1372		    !ti->type->iterate_devices(ti, func, NULL))
1373			return 0;
1374	}
1375
1376	return 1;
1377}
1378
1379void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1380			       struct queue_limits *limits)
1381{
1382	unsigned flush = 0;
 
 
 
1383
1384	/*
1385	 * Copy table's limits to the DM device's request_queue
 
1386	 */
1387	q->limits = *limits;
 
1388
1389	if (!dm_table_supports_discards(t))
1390		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1391	else
1392		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1393
1394	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1395		flush |= REQ_FLUSH;
1396		if (dm_table_supports_flush(t, REQ_FUA))
1397			flush |= REQ_FUA;
1398	}
1399	blk_queue_flush(q, flush);
1400
1401	if (!dm_table_discard_zeroes_data(t))
1402		q->limits.discard_zeroes_data = 0;
1403
1404	/* Ensure that all underlying devices are non-rotational. */
1405	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1406		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1407	else
1408		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1409
1410	dm_table_set_integrity(t);
 
 
 
 
 
 
 
 
 
 
1411
1412	/*
1413	 * Determine whether or not this queue's I/O timings contribute
1414	 * to the entropy pool, Only request-based targets use this.
1415	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1416	 * have it set.
1417	 */
1418	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1419		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1420
1421	/*
1422	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1423	 * visible to other CPUs because, once the flag is set, incoming bios
1424	 * are processed by request-based dm, which refers to the queue
1425	 * settings.
1426	 * Until the flag set, bios are passed to bio-based dm and queued to
1427	 * md->deferred where queue settings are not needed yet.
1428	 * Those bios are passed to request-based dm at the resume time.
1429	 */
1430	smp_mb();
1431	if (dm_table_request_based(t))
1432		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1433}
 
 
1434
1435unsigned int dm_table_get_num_targets(struct dm_table *t)
1436{
1437	return t->num_targets;
1438}
1439
1440struct list_head *dm_table_get_devices(struct dm_table *t)
1441{
1442	return &t->devices;
1443}
1444
1445fmode_t dm_table_get_mode(struct dm_table *t)
1446{
1447	return t->mode;
1448}
1449EXPORT_SYMBOL(dm_table_get_mode);
1450
1451static void suspend_targets(struct dm_table *t, unsigned postsuspend)
 
 
 
 
 
 
1452{
1453	int i = t->num_targets;
1454	struct dm_target *ti = t->targets;
 
 
1455
1456	while (i--) {
1457		if (postsuspend) {
 
 
 
 
 
 
 
 
1458			if (ti->type->postsuspend)
1459				ti->type->postsuspend(ti);
1460		} else if (ti->type->presuspend)
1461			ti->type->presuspend(ti);
1462
1463		ti++;
1464	}
1465}
1466
1467void dm_table_presuspend_targets(struct dm_table *t)
1468{
1469	if (!t)
1470		return;
1471
1472	suspend_targets(t, 0);
 
 
 
 
 
 
 
 
1473}
1474
1475void dm_table_postsuspend_targets(struct dm_table *t)
1476{
1477	if (!t)
1478		return;
1479
1480	suspend_targets(t, 1);
1481}
1482
1483int dm_table_resume_targets(struct dm_table *t)
1484{
1485	int i, r = 0;
 
 
 
1486
1487	for (i = 0; i < t->num_targets; i++) {
1488		struct dm_target *ti = t->targets + i;
1489
1490		if (!ti->type->preresume)
1491			continue;
1492
1493		r = ti->type->preresume(ti);
1494		if (r)
 
 
1495			return r;
 
1496	}
1497
1498	for (i = 0; i < t->num_targets; i++) {
1499		struct dm_target *ti = t->targets + i;
1500
1501		if (ti->type->resume)
1502			ti->type->resume(ti);
1503	}
1504
1505	return 0;
1506}
1507
1508void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1509{
1510	list_add(&cb->list, &t->target_callbacks);
1511}
1512EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1513
1514int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1515{
1516	struct dm_dev_internal *dd;
1517	struct list_head *devices = dm_table_get_devices(t);
1518	struct dm_target_callbacks *cb;
1519	int r = 0;
1520
1521	list_for_each_entry(dd, devices, list) {
1522		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1523		char b[BDEVNAME_SIZE];
1524
1525		if (likely(q))
1526			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1527		else
1528			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1529				     dm_device_name(t->md),
1530				     bdevname(dd->dm_dev.bdev, b));
1531	}
1532
1533	list_for_each_entry(cb, &t->target_callbacks, list)
1534		if (cb->congested_fn)
1535			r |= cb->congested_fn(cb, bdi_bits);
1536
1537	return r;
1538}
1539
1540int dm_table_any_busy_target(struct dm_table *t)
1541{
1542	unsigned i;
1543	struct dm_target *ti;
1544
1545	for (i = 0; i < t->num_targets; i++) {
1546		ti = t->targets + i;
1547		if (ti->type->busy && ti->type->busy(ti))
1548			return 1;
1549	}
1550
1551	return 0;
1552}
1553
1554struct mapped_device *dm_table_get_md(struct dm_table *t)
1555{
1556	return t->md;
1557}
1558EXPORT_SYMBOL(dm_table_get_md);
1559
1560static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1561				  sector_t start, sector_t len, void *data)
1562{
1563	struct request_queue *q = bdev_get_queue(dev->bdev);
1564
1565	return q && blk_queue_discard(q);
1566}
 
1567
1568bool dm_table_supports_discards(struct dm_table *t)
1569{
1570	struct dm_target *ti;
1571	unsigned i = 0;
1572
1573	/*
1574	 * Unless any target used by the table set discards_supported,
1575	 * require at least one underlying device to support discards.
1576	 * t->devices includes internal dm devices such as mirror logs
1577	 * so we need to use iterate_devices here, which targets
1578	 * supporting discard selectively must provide.
1579	 */
1580	while (i < dm_table_get_num_targets(t)) {
1581		ti = dm_table_get_target(t, i++);
1582
1583		if (!ti->num_discard_requests)
1584			continue;
1585
1586		if (ti->discards_supported)
1587			return 1;
1588
1589		if (ti->type->iterate_devices &&
1590		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1591			return 1;
1592	}
1593
1594	return 0;
 
1595}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2001 Sistina Software (UK) Limited.
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-core.h"
  10#include "dm-rq.h"
  11
  12#include <linux/module.h>
  13#include <linux/vmalloc.h>
  14#include <linux/blkdev.h>
  15#include <linux/blk-integrity.h>
  16#include <linux/namei.h>
  17#include <linux/ctype.h>
  18#include <linux/string.h>
  19#include <linux/slab.h>
  20#include <linux/interrupt.h>
  21#include <linux/mutex.h>
  22#include <linux/delay.h>
  23#include <linux/atomic.h>
  24#include <linux/blk-mq.h>
  25#include <linux/mount.h>
  26#include <linux/dax.h>
  27
  28#define DM_MSG_PREFIX "table"
  29
 
  30#define NODE_SIZE L1_CACHE_BYTES
  31#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  32#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  33
  34/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35 * Similar to ceiling(log_size(n))
  36 */
  37static unsigned int int_log(unsigned int n, unsigned int base)
  38{
  39	int result = 0;
  40
  41	while (n > 1) {
  42		n = dm_div_up(n, base);
  43		result++;
  44	}
  45
  46	return result;
  47}
  48
  49/*
  50 * Calculate the index of the child node of the n'th node k'th key.
  51 */
  52static inline unsigned int get_child(unsigned int n, unsigned int k)
  53{
  54	return (n * CHILDREN_PER_NODE) + k;
  55}
  56
  57/*
  58 * Return the n'th node of level l from table t.
  59 */
  60static inline sector_t *get_node(struct dm_table *t,
  61				 unsigned int l, unsigned int n)
  62{
  63	return t->index[l] + (n * KEYS_PER_NODE);
  64}
  65
  66/*
  67 * Return the highest key that you could lookup from the n'th
  68 * node on level l of the btree.
  69 */
  70static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
  71{
  72	for (; l < t->depth - 1; l++)
  73		n = get_child(n, CHILDREN_PER_NODE - 1);
  74
  75	if (n >= t->counts[l])
  76		return (sector_t) -1;
  77
  78	return get_node(t, l, n)[KEYS_PER_NODE - 1];
  79}
  80
  81/*
  82 * Fills in a level of the btree based on the highs of the level
  83 * below it.
  84 */
  85static int setup_btree_index(unsigned int l, struct dm_table *t)
  86{
  87	unsigned int n, k;
  88	sector_t *node;
  89
  90	for (n = 0U; n < t->counts[l]; n++) {
  91		node = get_node(t, l, n);
  92
  93		for (k = 0U; k < KEYS_PER_NODE; k++)
  94			node[k] = high(t, l + 1, get_child(n, k));
  95	}
  96
  97	return 0;
  98}
  99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100/*
 101 * highs, and targets are managed as dynamic arrays during a
 102 * table load.
 103 */
 104static int alloc_targets(struct dm_table *t, unsigned int num)
 105{
 106	sector_t *n_highs;
 107	struct dm_target *n_targets;
 
 108
 109	/*
 110	 * Allocate both the target array and offset array at once.
 
 
 111	 */
 112	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
 113			   GFP_KERNEL);
 114	if (!n_highs)
 115		return -ENOMEM;
 116
 117	n_targets = (struct dm_target *) (n_highs + num);
 118
 119	memset(n_highs, -1, sizeof(*n_highs) * num);
 120	kvfree(t->highs);
 
 
 
 
 
 121
 122	t->num_allocated = num;
 123	t->highs = n_highs;
 124	t->targets = n_targets;
 125
 126	return 0;
 127}
 128
 129int dm_table_create(struct dm_table **result, blk_mode_t mode,
 130		    unsigned int num_targets, struct mapped_device *md)
 131{
 132	struct dm_table *t;
 133
 134	if (num_targets > DM_MAX_TARGETS)
 135		return -EOVERFLOW;
 136
 137	t = kzalloc(sizeof(*t), GFP_KERNEL);
 138
 139	if (!t)
 140		return -ENOMEM;
 141
 142	INIT_LIST_HEAD(&t->devices);
 143	init_rwsem(&t->devices_lock);
 
 144
 145	if (!num_targets)
 146		num_targets = KEYS_PER_NODE;
 147
 148	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 149
 150	if (!num_targets) {
 151		kfree(t);
 152		return -EOVERFLOW;
 153	}
 154
 155	if (alloc_targets(t, num_targets)) {
 156		kfree(t);
 
 157		return -ENOMEM;
 158	}
 159
 160	t->type = DM_TYPE_NONE;
 161	t->mode = mode;
 162	t->md = md;
 163	t->flush_bypasses_map = true;
 164	*result = t;
 165	return 0;
 166}
 167
 168static void free_devices(struct list_head *devices, struct mapped_device *md)
 169{
 170	struct list_head *tmp, *next;
 171
 172	list_for_each_safe(tmp, next, devices) {
 173		struct dm_dev_internal *dd =
 174		    list_entry(tmp, struct dm_dev_internal, list);
 175		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 176		       dm_device_name(md), dd->dm_dev->name);
 177		dm_put_table_device(md, dd->dm_dev);
 178		kfree(dd);
 179	}
 180}
 181
 182static void dm_table_destroy_crypto_profile(struct dm_table *t);
 183
 184void dm_table_destroy(struct dm_table *t)
 185{
 
 
 186	if (!t)
 187		return;
 188
 
 
 
 
 189	/* free the indexes */
 190	if (t->depth >= 2)
 191		kvfree(t->index[t->depth - 2]);
 192
 193	/* free the targets */
 194	for (unsigned int i = 0; i < t->num_targets; i++) {
 195		struct dm_target *ti = dm_table_get_target(t, i);
 196
 197		if (ti->type->dtr)
 198			ti->type->dtr(ti);
 199
 200		dm_put_target_type(ti->type);
 201	}
 202
 203	kvfree(t->highs);
 204
 205	/* free the device list */
 206	free_devices(&t->devices, t->md);
 207
 208	dm_free_md_mempools(t->mempools);
 209
 210	dm_table_destroy_crypto_profile(t);
 
 
 
 
 
 
 
 211
 212	kfree(t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213}
 214
 215/*
 216 * See if we've already got a device in the list.
 217 */
 218static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 219{
 220	struct dm_dev_internal *dd;
 221
 222	list_for_each_entry(dd, l, list)
 223		if (dd->dm_dev->bdev->bd_dev == dev)
 224			return dd;
 225
 226	return NULL;
 227}
 228
 229/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230 * If possible, this checks an area of a destination device is invalid.
 231 */
 232static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 233				  sector_t start, sector_t len, void *data)
 234{
 
 235	struct queue_limits *limits = data;
 236	struct block_device *bdev = dev->bdev;
 237	sector_t dev_size = bdev_nr_sectors(bdev);
 
 238	unsigned short logical_block_size_sectors =
 239		limits->logical_block_size >> SECTOR_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240
 241	if (!dev_size)
 242		return 0;
 243
 244	if ((start >= dev_size) || (start + len > dev_size)) {
 245		DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
 246		      dm_device_name(ti->table->md), bdev,
 247		      (unsigned long long)start,
 248		      (unsigned long long)len,
 249		      (unsigned long long)dev_size);
 
 250		return 1;
 251	}
 252
 253	/*
 254	 * If the target is mapped to zoned block device(s), check
 255	 * that the zones are not partially mapped.
 256	 */
 257	if (bdev_is_zoned(bdev)) {
 258		unsigned int zone_sectors = bdev_zone_sectors(bdev);
 259
 260		if (start & (zone_sectors - 1)) {
 261			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
 262			      dm_device_name(ti->table->md),
 263			      (unsigned long long)start,
 264			      zone_sectors, bdev);
 265			return 1;
 266		}
 267
 268		/*
 269		 * Note: The last zone of a zoned block device may be smaller
 270		 * than other zones. So for a target mapping the end of a
 271		 * zoned block device with such a zone, len would not be zone
 272		 * aligned. We do not allow such last smaller zone to be part
 273		 * of the mapping here to ensure that mappings with multiple
 274		 * devices do not end up with a smaller zone in the middle of
 275		 * the sector range.
 276		 */
 277		if (len & (zone_sectors - 1)) {
 278			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
 279			      dm_device_name(ti->table->md),
 280			      (unsigned long long)len,
 281			      zone_sectors, bdev);
 282			return 1;
 283		}
 284	}
 285
 286	if (logical_block_size_sectors <= 1)
 287		return 0;
 288
 289	if (start & (logical_block_size_sectors - 1)) {
 290		DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
 291		      dm_device_name(ti->table->md),
 292		      (unsigned long long)start,
 293		      limits->logical_block_size, bdev);
 
 294		return 1;
 295	}
 296
 297	if (len & (logical_block_size_sectors - 1)) {
 298		DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
 299		      dm_device_name(ti->table->md),
 300		      (unsigned long long)len,
 301		      limits->logical_block_size, bdev);
 
 302		return 1;
 303	}
 304
 305	return 0;
 306}
 307
 308/*
 309 * This upgrades the mode on an already open dm_dev, being
 310 * careful to leave things as they were if we fail to reopen the
 311 * device and not to touch the existing bdev field in case
 312 * it is accessed concurrently.
 313 */
 314static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
 315			struct mapped_device *md)
 316{
 317	int r;
 318	struct dm_dev *old_dev, *new_dev;
 319
 320	old_dev = dd->dm_dev;
 321
 322	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 323				dd->dm_dev->mode | new_mode, &new_dev);
 
 
 324	if (r)
 325		return r;
 326
 327	dd->dm_dev = new_dev;
 328	dm_put_table_device(md, old_dev);
 329
 330	return 0;
 331}
 332
 333/*
 334 * Note: the __ref annotation is because this function can call the __init
 335 * marked early_lookup_bdev when called during early boot code from dm-init.c.
 336 */
 337int __ref dm_devt_from_path(const char *path, dev_t *dev_p)
 
 338{
 339	int r;
 340	dev_t dev;
 
 341	unsigned int major, minor;
 
 342	char dummy;
 343
 
 
 344	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
 345		/* Extract the major/minor numbers */
 346		dev = MKDEV(major, minor);
 347		if (MAJOR(dev) != major || MINOR(dev) != minor)
 348			return -EOVERFLOW;
 349	} else {
 350		r = lookup_bdev(path, &dev);
 351#ifndef MODULE
 352		if (r && system_state < SYSTEM_RUNNING)
 353			r = early_lookup_bdev(path, &dev);
 354#endif
 355		if (r)
 356			return r;
 357	}
 358	*dev_p = dev;
 359	return 0;
 360}
 361EXPORT_SYMBOL(dm_devt_from_path);
 362
 363/*
 364 * Add a device to the list, or just increment the usage count if
 365 * it's already present.
 366 */
 367int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
 368		  struct dm_dev **result)
 369{
 370	int r;
 371	dev_t dev;
 372	struct dm_dev_internal *dd;
 373	struct dm_table *t = ti->table;
 374
 375	BUG_ON(!t);
 376
 377	r = dm_devt_from_path(path, &dev);
 378	if (r)
 379		return r;
 380
 381	if (dev == disk_devt(t->md->disk))
 382		return -EINVAL;
 383
 384	down_write(&t->devices_lock);
 385
 386	dd = find_device(&t->devices, dev);
 387	if (!dd) {
 388		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 389		if (!dd) {
 390			r = -ENOMEM;
 391			goto unlock_ret_r;
 392		}
 
 393
 394		r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
 395		if (r) {
 396			kfree(dd);
 397			goto unlock_ret_r;
 398		}
 399
 400		refcount_set(&dd->count, 1);
 
 
 401		list_add(&dd->list, &t->devices);
 402		goto out;
 403
 404	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 405		r = upgrade_mode(dd, mode, t->md);
 406		if (r)
 407			goto unlock_ret_r;
 408	}
 409	refcount_inc(&dd->count);
 410out:
 411	up_write(&t->devices_lock);
 412	*result = dd->dm_dev;
 413	return 0;
 414
 415unlock_ret_r:
 416	up_write(&t->devices_lock);
 417	return r;
 418}
 419EXPORT_SYMBOL(dm_get_device);
 420
 421static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 422				sector_t start, sector_t len, void *data)
 423{
 424	struct queue_limits *limits = data;
 425	struct block_device *bdev = dev->bdev;
 426	struct request_queue *q = bdev_get_queue(bdev);
 
 427
 428	if (unlikely(!q)) {
 429		DMWARN("%s: Cannot set limits for nonexistent device %pg",
 430		       dm_device_name(ti->table->md), bdev);
 431		return 0;
 432	}
 433
 434	if (blk_stack_limits(limits, &q->limits,
 435			get_start_sect(bdev) + start) < 0)
 436		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
 437		       "physical_block_size=%u, logical_block_size=%u, "
 438		       "alignment_offset=%u, start=%llu",
 439		       dm_device_name(ti->table->md), bdev,
 440		       q->limits.physical_block_size,
 441		       q->limits.logical_block_size,
 442		       q->limits.alignment_offset,
 443		       (unsigned long long) start << SECTOR_SHIFT);
 444
 445	/*
 446	 * Only stack the integrity profile if the target doesn't have native
 447	 * integrity support.
 
 448	 */
 449	if (!dm_target_has_integrity(ti->type))
 450		queue_limits_stack_integrity_bdev(limits, bdev);
 
 451	return 0;
 452}
 
 453
 454/*
 455 * Decrement a device's use count and remove it if necessary.
 456 */
 457void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 458{
 459	int found = 0;
 460	struct dm_table *t = ti->table;
 461	struct list_head *devices = &t->devices;
 462	struct dm_dev_internal *dd;
 463
 464	down_write(&t->devices_lock);
 465
 466	list_for_each_entry(dd, devices, list) {
 467		if (dd->dm_dev == d) {
 468			found = 1;
 469			break;
 470		}
 471	}
 472	if (!found) {
 473		DMERR("%s: device %s not in table devices list",
 474		      dm_device_name(t->md), d->name);
 475		goto unlock_ret;
 476	}
 477	if (refcount_dec_and_test(&dd->count)) {
 478		dm_put_table_device(t->md, d);
 479		list_del(&dd->list);
 480		kfree(dd);
 481	}
 482
 483unlock_ret:
 484	up_write(&t->devices_lock);
 485}
 486EXPORT_SYMBOL(dm_put_device);
 487
 488/*
 489 * Checks to see if the target joins onto the end of the table.
 490 */
 491static int adjoin(struct dm_table *t, struct dm_target *ti)
 492{
 493	struct dm_target *prev;
 494
 495	if (!t->num_targets)
 496		return !ti->begin;
 497
 498	prev = &t->targets[t->num_targets - 1];
 499	return (ti->begin == (prev->begin + prev->len));
 500}
 501
 502/*
 503 * Used to dynamically allocate the arg array.
 504 *
 505 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 506 * process messages even if some device is suspended. These messages have a
 507 * small fixed number of arguments.
 508 *
 509 * On the other hand, dm-switch needs to process bulk data using messages and
 510 * excessive use of GFP_NOIO could cause trouble.
 511 */
 512static char **realloc_argv(unsigned int *size, char **old_argv)
 513{
 514	char **argv;
 515	unsigned int new_size;
 516	gfp_t gfp;
 517
 518	if (*size) {
 519		new_size = *size * 2;
 520		gfp = GFP_KERNEL;
 521	} else {
 522		new_size = 8;
 523		gfp = GFP_NOIO;
 524	}
 525	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
 526	if (argv && old_argv) {
 527		memcpy(argv, old_argv, *size * sizeof(*argv));
 528		*size = new_size;
 529	}
 530
 531	kfree(old_argv);
 532	return argv;
 533}
 534
 535/*
 536 * Destructively splits up the argument list to pass to ctr.
 537 */
 538int dm_split_args(int *argc, char ***argvp, char *input)
 539{
 540	char *start, *end = input, *out, **argv = NULL;
 541	unsigned int array_size = 0;
 542
 543	*argc = 0;
 544
 545	if (!input) {
 546		*argvp = NULL;
 547		return 0;
 548	}
 549
 550	argv = realloc_argv(&array_size, argv);
 551	if (!argv)
 552		return -ENOMEM;
 553
 554	while (1) {
 555		/* Skip whitespace */
 556		start = skip_spaces(end);
 557
 558		if (!*start)
 559			break;	/* success, we hit the end */
 560
 561		/* 'out' is used to remove any back-quotes */
 562		end = out = start;
 563		while (*end) {
 564			/* Everything apart from '\0' can be quoted */
 565			if (*end == '\\' && *(end + 1)) {
 566				*out++ = *(end + 1);
 567				end += 2;
 568				continue;
 569			}
 570
 571			if (isspace(*end))
 572				break;	/* end of token */
 573
 574			*out++ = *end++;
 575		}
 576
 577		/* have we already filled the array ? */
 578		if ((*argc + 1) > array_size) {
 579			argv = realloc_argv(&array_size, argv);
 580			if (!argv)
 581				return -ENOMEM;
 582		}
 583
 584		/* we know this is whitespace */
 585		if (*end)
 586			end++;
 587
 588		/* terminate the string and put it in the array */
 589		*out = '\0';
 590		argv[*argc] = start;
 591		(*argc)++;
 592	}
 593
 594	*argvp = argv;
 595	return 0;
 596}
 597
 598static void dm_set_stacking_limits(struct queue_limits *limits)
 599{
 600	blk_set_stacking_limits(limits);
 601	limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
 602}
 603
 604/*
 605 * Impose necessary and sufficient conditions on a devices's table such
 606 * that any incoming bio which respects its logical_block_size can be
 607 * processed successfully.  If it falls across the boundary between
 608 * two or more targets, the size of each piece it gets split into must
 609 * be compatible with the logical_block_size of the target processing it.
 610 */
 611static int validate_hardware_logical_block_alignment(struct dm_table *t,
 612						     struct queue_limits *limits)
 613{
 614	/*
 615	 * This function uses arithmetic modulo the logical_block_size
 616	 * (in units of 512-byte sectors).
 617	 */
 618	unsigned short device_logical_block_size_sects =
 619		limits->logical_block_size >> SECTOR_SHIFT;
 620
 621	/*
 622	 * Offset of the start of the next table entry, mod logical_block_size.
 623	 */
 624	unsigned short next_target_start = 0;
 625
 626	/*
 627	 * Given an aligned bio that extends beyond the end of a
 628	 * target, how many sectors must the next target handle?
 629	 */
 630	unsigned short remaining = 0;
 631
 632	struct dm_target *ti;
 633	struct queue_limits ti_limits;
 634	unsigned int i;
 635
 636	/*
 637	 * Check each entry in the table in turn.
 638	 */
 639	for (i = 0; i < t->num_targets; i++) {
 640		ti = dm_table_get_target(t, i);
 641
 642		dm_set_stacking_limits(&ti_limits);
 643
 644		/* combine all target devices' limits */
 645		if (ti->type->iterate_devices)
 646			ti->type->iterate_devices(ti, dm_set_device_limits,
 647						  &ti_limits);
 648
 649		/*
 650		 * If the remaining sectors fall entirely within this
 651		 * table entry are they compatible with its logical_block_size?
 652		 */
 653		if (remaining < ti->len &&
 654		    remaining & ((ti_limits.logical_block_size >>
 655				  SECTOR_SHIFT) - 1))
 656			break;	/* Error */
 657
 658		next_target_start =
 659		    (unsigned short) ((next_target_start + ti->len) &
 660				      (device_logical_block_size_sects - 1));
 661		remaining = next_target_start ?
 662		    device_logical_block_size_sects - next_target_start : 0;
 663	}
 664
 665	if (remaining) {
 666		DMERR("%s: table line %u (start sect %llu len %llu) "
 667		      "not aligned to h/w logical block size %u",
 668		      dm_device_name(t->md), i,
 669		      (unsigned long long) ti->begin,
 670		      (unsigned long long) ti->len,
 671		      limits->logical_block_size);
 672		return -EINVAL;
 673	}
 674
 675	return 0;
 676}
 677
 678int dm_table_add_target(struct dm_table *t, const char *type,
 679			sector_t start, sector_t len, char *params)
 680{
 681	int r = -EINVAL, argc;
 682	char **argv;
 683	struct dm_target *ti;
 684
 685	if (t->singleton) {
 686		DMERR("%s: target type %s must appear alone in table",
 687		      dm_device_name(t->md), t->targets->type->name);
 688		return -EINVAL;
 689	}
 690
 691	BUG_ON(t->num_targets >= t->num_allocated);
 
 692
 693	ti = t->targets + t->num_targets;
 694	memset(ti, 0, sizeof(*ti));
 695
 696	if (!len) {
 697		DMERR("%s: zero-length target", dm_device_name(t->md));
 698		return -EINVAL;
 699	}
 700
 701	ti->type = dm_get_target_type(type);
 702	if (!ti->type) {
 703		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 
 704		return -EINVAL;
 705	}
 706
 707	if (dm_target_needs_singleton(ti->type)) {
 708		if (t->num_targets) {
 709			ti->error = "singleton target type must appear alone in table";
 710			goto bad;
 
 711		}
 712		t->singleton = true;
 713	}
 714
 715	if (dm_target_always_writeable(ti->type) &&
 716	    !(t->mode & BLK_OPEN_WRITE)) {
 717		ti->error = "target type may not be included in a read-only table";
 718		goto bad;
 719	}
 720
 721	if (t->immutable_target_type) {
 722		if (t->immutable_target_type != ti->type) {
 723			ti->error = "immutable target type cannot be mixed with other target types";
 724			goto bad;
 
 725		}
 726	} else if (dm_target_is_immutable(ti->type)) {
 727		if (t->num_targets) {
 728			ti->error = "immutable target type cannot be mixed with other target types";
 729			goto bad;
 
 730		}
 731		t->immutable_target_type = ti->type;
 732	}
 733
 734	ti->table = t;
 735	ti->begin = start;
 736	ti->len = len;
 737	ti->error = "Unknown error";
 738
 739	/*
 740	 * Does this target adjoin the previous one ?
 741	 */
 742	if (!adjoin(t, ti)) {
 743		ti->error = "Gap in table";
 
 744		goto bad;
 745	}
 746
 747	r = dm_split_args(&argc, &argv, params);
 748	if (r) {
 749		ti->error = "couldn't split parameters";
 750		goto bad;
 751	}
 752
 753	r = ti->type->ctr(ti, argc, argv);
 754	kfree(argv);
 755	if (r)
 756		goto bad;
 757
 758	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
 759
 760	if (!ti->num_discard_bios && ti->discards_supported)
 761		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 762		       dm_device_name(t->md), type);
 763
 764	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
 765		static_branch_enable(&swap_bios_enabled);
 766
 767	if (!ti->flush_bypasses_map)
 768		t->flush_bypasses_map = false;
 769
 770	return 0;
 771
 772 bad:
 773	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
 774	dm_put_target_type(ti->type);
 775	return r;
 776}
 777
 778/*
 779 * Target argument parsing helpers.
 780 */
 781static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 782			     unsigned int *value, char **error, unsigned int grouped)
 783{
 784	const char *arg_str = dm_shift_arg(arg_set);
 785	char dummy;
 786
 787	if (!arg_str ||
 788	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 789	    (*value < arg->min) ||
 790	    (*value > arg->max) ||
 791	    (grouped && arg_set->argc < *value)) {
 792		*error = arg->error;
 793		return -EINVAL;
 794	}
 795
 796	return 0;
 797}
 798
 799int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 800		unsigned int *value, char **error)
 801{
 802	return validate_next_arg(arg, arg_set, value, error, 0);
 803}
 804EXPORT_SYMBOL(dm_read_arg);
 805
 806int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 807		      unsigned int *value, char **error)
 808{
 809	return validate_next_arg(arg, arg_set, value, error, 1);
 810}
 811EXPORT_SYMBOL(dm_read_arg_group);
 812
 813const char *dm_shift_arg(struct dm_arg_set *as)
 814{
 815	char *r;
 816
 817	if (as->argc) {
 818		as->argc--;
 819		r = *as->argv;
 820		as->argv++;
 821		return r;
 822	}
 823
 824	return NULL;
 825}
 826EXPORT_SYMBOL(dm_shift_arg);
 827
 828void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
 829{
 830	BUG_ON(as->argc < num_args);
 831	as->argc -= num_args;
 832	as->argv += num_args;
 833}
 834EXPORT_SYMBOL(dm_consume_args);
 835
 836static bool __table_type_bio_based(enum dm_queue_mode table_type)
 837{
 838	return (table_type == DM_TYPE_BIO_BASED ||
 839		table_type == DM_TYPE_DAX_BIO_BASED);
 840}
 
 
 841
 842static bool __table_type_request_based(enum dm_queue_mode table_type)
 843{
 844	return table_type == DM_TYPE_REQUEST_BASED;
 845}
 846
 847void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
 848{
 849	t->type = type;
 850}
 851EXPORT_SYMBOL_GPL(dm_table_set_type);
 852
 853/* validate the dax capability of the target device span */
 854static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
 855			sector_t start, sector_t len, void *data)
 856{
 857	if (dev->dax_dev)
 858		return false;
 859
 860	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
 861	return true;
 862}
 863
 864/* Check devices support synchronous DAX */
 865static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
 866					      sector_t start, sector_t len, void *data)
 867{
 868	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
 869}
 870
 871static bool dm_table_supports_dax(struct dm_table *t,
 872				  iterate_devices_callout_fn iterate_fn)
 873{
 874	/* Ensure that all targets support DAX. */
 875	for (unsigned int i = 0; i < t->num_targets; i++) {
 876		struct dm_target *ti = dm_table_get_target(t, i);
 877
 878		if (!ti->type->direct_access)
 879			return false;
 880
 881		if (dm_target_is_wildcard(ti->type) ||
 882		    !ti->type->iterate_devices ||
 883		    ti->type->iterate_devices(ti, iterate_fn, NULL))
 884			return false;
 885	}
 886
 887	return true;
 888}
 889
 890static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
 891				  sector_t start, sector_t len, void *data)
 892{
 893	struct block_device *bdev = dev->bdev;
 894	struct request_queue *q = bdev_get_queue(bdev);
 895
 896	/* request-based cannot stack on partitions! */
 897	if (bdev_is_partition(bdev))
 898		return false;
 899
 900	return queue_is_mq(q);
 901}
 902
 903static int dm_table_determine_type(struct dm_table *t)
 904{
 905	unsigned int bio_based = 0, request_based = 0, hybrid = 0;
 906	struct dm_target *ti;
 907	struct list_head *devices = dm_table_get_devices(t);
 908	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
 909
 910	if (t->type != DM_TYPE_NONE) {
 911		/* target already set the table's type */
 912		if (t->type == DM_TYPE_BIO_BASED) {
 913			/* possibly upgrade to a variant of bio-based */
 914			goto verify_bio_based;
 915		}
 916		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 917		goto verify_rq_based;
 918	}
 919
 920	for (unsigned int i = 0; i < t->num_targets; i++) {
 921		ti = dm_table_get_target(t, i);
 922		if (dm_target_hybrid(ti))
 923			hybrid = 1;
 924		else if (dm_target_request_based(ti))
 925			request_based = 1;
 926		else
 927			bio_based = 1;
 928
 929		if (bio_based && request_based) {
 930			DMERR("Inconsistent table: different target types can't be mixed up");
 
 931			return -EINVAL;
 932		}
 933	}
 934
 935	if (hybrid && !bio_based && !request_based) {
 936		/*
 937		 * The targets can work either way.
 938		 * Determine the type from the live device.
 939		 * Default to bio-based if device is new.
 940		 */
 941		if (__table_type_request_based(live_md_type))
 942			request_based = 1;
 943		else
 944			bio_based = 1;
 945	}
 946
 947	if (bio_based) {
 948verify_bio_based:
 949		/* We must use this table as bio-based */
 950		t->type = DM_TYPE_BIO_BASED;
 951		if (dm_table_supports_dax(t, device_not_dax_capable) ||
 952		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
 953			t->type = DM_TYPE_DAX_BIO_BASED;
 954		}
 955		return 0;
 956	}
 957
 958	BUG_ON(!request_based); /* No targets in this table */
 959
 960	t->type = DM_TYPE_REQUEST_BASED;
 
 
 
 
 
 
 
 
 961
 962verify_rq_based:
 963	/*
 964	 * Request-based dm supports only tables that have a single target now.
 965	 * To support multiple targets, request splitting support is needed,
 966	 * and that needs lots of changes in the block-layer.
 967	 * (e.g. request completion process for partial completion.)
 968	 */
 969	if (t->num_targets > 1) {
 970		DMERR("request-based DM doesn't support multiple targets");
 971		return -EINVAL;
 972	}
 973
 974	if (list_empty(devices)) {
 975		int srcu_idx;
 976		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
 977
 978		/* inherit live table's type */
 979		if (live_table)
 980			t->type = live_table->type;
 981		dm_put_live_table(t->md, srcu_idx);
 982		return 0;
 983	}
 984
 985	ti = dm_table_get_immutable_target(t);
 986	if (!ti) {
 987		DMERR("table load rejected: immutable target is required");
 988		return -EINVAL;
 989	} else if (ti->max_io_len) {
 990		DMERR("table load rejected: immutable target that splits IO is not supported");
 991		return -EINVAL;
 992	}
 993
 994	/* Non-request-stackable devices can't be used for request-based dm */
 995	if (!ti->type->iterate_devices ||
 996	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
 997		DMERR("table load rejected: including non-request-stackable devices");
 998		return -EINVAL;
 999	}
1000
1001	return 0;
1002}
1003
1004enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1005{
1006	return t->type;
1007}
1008
1009struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1010{
1011	return t->immutable_target_type;
1012}
1013
1014struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1015{
1016	/* Immutable target is implicitly a singleton */
1017	if (t->num_targets > 1 ||
1018	    !dm_target_is_immutable(t->targets[0].type))
1019		return NULL;
1020
1021	return t->targets;
1022}
1023
1024struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1025{
1026	for (unsigned int i = 0; i < t->num_targets; i++) {
1027		struct dm_target *ti = dm_table_get_target(t, i);
1028
1029		if (dm_target_is_wildcard(ti->type))
1030			return ti;
 
1031	}
1032
1033	return NULL;
 
 
 
 
1034}
1035
1036bool dm_table_request_based(struct dm_table *t)
1037{
1038	return __table_type_request_based(dm_table_get_type(t));
 
1039}
1040
1041static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1042{
1043	enum dm_queue_mode type = dm_table_get_type(t);
1044	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1045	unsigned int min_pool_size = 0, pool_size;
1046	struct dm_md_mempools *pools;
1047	unsigned int bioset_flags = 0;
1048	bool mempool_needs_integrity = t->integrity_supported;
1049
1050	if (unlikely(type == DM_TYPE_NONE)) {
1051		DMERR("no table type is set, can't allocate mempools");
1052		return -EINVAL;
1053	}
1054
1055	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1056	if (!pools)
1057		return -ENOMEM;
1058
1059	if (type == DM_TYPE_REQUEST_BASED) {
1060		pool_size = dm_get_reserved_rq_based_ios();
1061		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1062		goto init_bs;
1063	}
1064
1065	if (md->queue->limits.features & BLK_FEAT_POLL)
1066		bioset_flags |= BIOSET_PERCPU_CACHE;
1067
1068	for (unsigned int i = 0; i < t->num_targets; i++) {
1069		struct dm_target *ti = dm_table_get_target(t, i);
1070
1071		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1072		min_pool_size = max(min_pool_size, ti->num_flush_bios);
1073
1074		mempool_needs_integrity |= ti->mempool_needs_integrity;
1075	}
1076	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1077	front_pad = roundup(per_io_data_size,
1078		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1079
1080	io_front_pad = roundup(per_io_data_size,
1081		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1082	if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags))
1083		goto out_free_pools;
1084	if (mempool_needs_integrity &&
1085	    bioset_integrity_create(&pools->io_bs, pool_size))
1086		goto out_free_pools;
1087init_bs:
1088	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1089		goto out_free_pools;
1090	if (mempool_needs_integrity &&
1091	    bioset_integrity_create(&pools->bs, pool_size))
1092		goto out_free_pools;
1093
1094	t->mempools = pools;
1095	return 0;
1096
1097out_free_pools:
1098	dm_free_md_mempools(pools);
1099	return -ENOMEM;
1100}
1101
1102static int setup_indexes(struct dm_table *t)
1103{
1104	int i;
1105	unsigned int total = 0;
1106	sector_t *indexes;
1107
1108	/* allocate the space for *all* the indexes */
1109	for (i = t->depth - 2; i >= 0; i--) {
1110		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1111		total += t->counts[i];
1112	}
1113
1114	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1115	if (!indexes)
1116		return -ENOMEM;
1117
1118	/* set up internal nodes, bottom-up */
1119	for (i = t->depth - 2; i >= 0; i--) {
1120		t->index[i] = indexes;
1121		indexes += (KEYS_PER_NODE * t->counts[i]);
1122		setup_btree_index(i, t);
1123	}
1124
1125	return 0;
1126}
1127
1128/*
1129 * Builds the btree to index the map.
1130 */
1131static int dm_table_build_index(struct dm_table *t)
1132{
1133	int r = 0;
1134	unsigned int leaf_nodes;
1135
1136	/* how many indexes will the btree have ? */
1137	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1138	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1139
1140	/* leaf layer has already been set up */
1141	t->counts[t->depth - 1] = leaf_nodes;
1142	t->index[t->depth - 1] = t->highs;
1143
1144	if (t->depth >= 2)
1145		r = setup_indexes(t);
1146
1147	return r;
1148}
1149
1150#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1151
1152struct dm_crypto_profile {
1153	struct blk_crypto_profile profile;
1154	struct mapped_device *md;
1155};
1156
1157static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1158				     sector_t start, sector_t len, void *data)
1159{
1160	const struct blk_crypto_key *key = data;
1161
1162	blk_crypto_evict_key(dev->bdev, key);
1163	return 0;
1164}
1165
1166/*
1167 * When an inline encryption key is evicted from a device-mapper device, evict
1168 * it from all the underlying devices.
 
 
 
1169 */
1170static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1171			    const struct blk_crypto_key *key, unsigned int slot)
1172{
1173	struct mapped_device *md =
1174		container_of(profile, struct dm_crypto_profile, profile)->md;
1175	struct dm_table *t;
1176	int srcu_idx;
1177
1178	t = dm_get_live_table(md, &srcu_idx);
1179	if (!t)
1180		return 0;
1181
1182	for (unsigned int i = 0; i < t->num_targets; i++) {
1183		struct dm_target *ti = dm_table_get_target(t, i);
1184
1185		if (!ti->type->iterate_devices)
1186			continue;
1187		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1188					  (void *)key);
1189	}
1190
1191	dm_put_live_table(md, srcu_idx);
1192	return 0;
1193}
1194
1195static int
1196device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1197				     sector_t start, sector_t len, void *data)
1198{
1199	struct blk_crypto_profile *parent = data;
1200	struct blk_crypto_profile *child =
1201		bdev_get_queue(dev->bdev)->crypto_profile;
1202
1203	blk_crypto_intersect_capabilities(parent, child);
1204	return 0;
1205}
1206
1207void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1208{
1209	struct dm_crypto_profile *dmcp = container_of(profile,
1210						      struct dm_crypto_profile,
1211						      profile);
1212
1213	if (!profile)
1214		return;
1215
1216	blk_crypto_profile_destroy(profile);
1217	kfree(dmcp);
1218}
1219
1220static void dm_table_destroy_crypto_profile(struct dm_table *t)
1221{
1222	dm_destroy_crypto_profile(t->crypto_profile);
1223	t->crypto_profile = NULL;
1224}
1225
1226/*
1227 * Constructs and initializes t->crypto_profile with a crypto profile that
1228 * represents the common set of crypto capabilities of the devices described by
1229 * the dm_table.  However, if the constructed crypto profile doesn't support all
1230 * crypto capabilities that are supported by the current mapped_device, it
1231 * returns an error instead, since we don't support removing crypto capabilities
1232 * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1233 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
 
1234 */
1235static int dm_table_construct_crypto_profile(struct dm_table *t)
1236{
1237	struct dm_crypto_profile *dmcp;
1238	struct blk_crypto_profile *profile;
1239	unsigned int i;
1240	bool empty_profile = true;
1241
1242	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1243	if (!dmcp)
1244		return -ENOMEM;
1245	dmcp->md = t->md;
1246
1247	profile = &dmcp->profile;
1248	blk_crypto_profile_init(profile, 0);
1249	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1250	profile->max_dun_bytes_supported = UINT_MAX;
1251	memset(profile->modes_supported, 0xFF,
1252	       sizeof(profile->modes_supported));
1253
1254	for (i = 0; i < t->num_targets; i++) {
1255		struct dm_target *ti = dm_table_get_target(t, i);
1256
1257		if (!dm_target_passes_crypto(ti->type)) {
1258			blk_crypto_intersect_capabilities(profile, NULL);
1259			break;
1260		}
1261		if (!ti->type->iterate_devices)
1262			continue;
1263		ti->type->iterate_devices(ti,
1264					  device_intersect_crypto_capabilities,
1265					  profile);
1266	}
1267
1268	if (t->md->queue &&
1269	    !blk_crypto_has_capabilities(profile,
1270					 t->md->queue->crypto_profile)) {
1271		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1272		dm_destroy_crypto_profile(profile);
1273		return -EINVAL;
1274	}
1275
1276	/*
1277	 * If the new profile doesn't actually support any crypto capabilities,
1278	 * we may as well represent it with a NULL profile.
1279	 */
1280	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1281		if (profile->modes_supported[i]) {
1282			empty_profile = false;
1283			break;
1284		}
1285	}
1286
1287	if (empty_profile) {
1288		dm_destroy_crypto_profile(profile);
1289		profile = NULL;
1290	}
1291
1292	/*
1293	 * t->crypto_profile is only set temporarily while the table is being
1294	 * set up, and it gets set to NULL after the profile has been
1295	 * transferred to the request_queue.
1296	 */
1297	t->crypto_profile = profile;
1298
1299	return 0;
1300}
1301
1302static void dm_update_crypto_profile(struct request_queue *q,
1303				     struct dm_table *t)
1304{
1305	if (!t->crypto_profile)
1306		return;
1307
1308	/* Make the crypto profile less restrictive. */
1309	if (!q->crypto_profile) {
1310		blk_crypto_register(t->crypto_profile, q);
1311	} else {
1312		blk_crypto_update_capabilities(q->crypto_profile,
1313					       t->crypto_profile);
1314		dm_destroy_crypto_profile(t->crypto_profile);
1315	}
1316	t->crypto_profile = NULL;
1317}
1318
1319#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1320
1321static int dm_table_construct_crypto_profile(struct dm_table *t)
1322{
1323	return 0;
1324}
1325
1326void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1327{
1328}
1329
1330static void dm_table_destroy_crypto_profile(struct dm_table *t)
1331{
1332}
1333
1334static void dm_update_crypto_profile(struct request_queue *q,
1335				     struct dm_table *t)
1336{
1337}
1338
1339#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1340
1341/*
1342 * Prepares the table for use by building the indices,
1343 * setting the type, and allocating mempools.
1344 */
1345int dm_table_complete(struct dm_table *t)
1346{
1347	int r;
1348
1349	r = dm_table_determine_type(t);
1350	if (r) {
1351		DMERR("unable to determine table type");
1352		return r;
1353	}
1354
1355	r = dm_table_build_index(t);
1356	if (r) {
1357		DMERR("unable to build btrees");
1358		return r;
1359	}
1360
1361	r = dm_table_construct_crypto_profile(t);
1362	if (r) {
1363		DMERR("could not construct crypto profile.");
1364		return r;
1365	}
1366
1367	r = dm_table_alloc_md_mempools(t, t->md);
1368	if (r)
1369		DMERR("unable to allocate mempools");
1370
1371	return r;
1372}
1373
1374static DEFINE_MUTEX(_event_lock);
1375void dm_table_event_callback(struct dm_table *t,
1376			     void (*fn)(void *), void *context)
1377{
1378	mutex_lock(&_event_lock);
1379	t->event_fn = fn;
1380	t->event_context = context;
1381	mutex_unlock(&_event_lock);
1382}
1383
1384void dm_table_event(struct dm_table *t)
1385{
 
 
 
 
 
 
1386	mutex_lock(&_event_lock);
1387	if (t->event_fn)
1388		t->event_fn(t->event_context);
1389	mutex_unlock(&_event_lock);
1390}
1391EXPORT_SYMBOL(dm_table_event);
1392
1393inline sector_t dm_table_get_size(struct dm_table *t)
1394{
1395	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1396}
1397EXPORT_SYMBOL(dm_table_get_size);
1398
 
 
 
 
 
 
 
 
1399/*
1400 * Search the btree for the correct target.
1401 *
1402 * Caller should check returned pointer for NULL
1403 * to trap I/O beyond end of device.
1404 */
1405struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1406{
1407	unsigned int l, n = 0, k = 0;
1408	sector_t *node;
1409
1410	if (unlikely(sector >= dm_table_get_size(t)))
1411		return NULL;
1412
1413	for (l = 0; l < t->depth; l++) {
1414		n = get_child(n, k);
1415		node = get_node(t, l, n);
1416
1417		for (k = 0; k < KEYS_PER_NODE; k++)
1418			if (node[k] >= sector)
1419				break;
1420	}
1421
1422	return &t->targets[(KEYS_PER_NODE * n) + k];
1423}
1424
1425/*
1426 * type->iterate_devices() should be called when the sanity check needs to
1427 * iterate and check all underlying data devices. iterate_devices() will
1428 * iterate all underlying data devices until it encounters a non-zero return
1429 * code, returned by whether the input iterate_devices_callout_fn, or
1430 * iterate_devices() itself internally.
1431 *
1432 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1433 * iterate multiple underlying devices internally, in which case a non-zero
1434 * return code returned by iterate_devices_callout_fn will stop the iteration
1435 * in advance.
1436 *
1437 * Cases requiring _any_ underlying device supporting some kind of attribute,
1438 * should use the iteration structure like dm_table_any_dev_attr(), or call
1439 * it directly. @func should handle semantics of positive examples, e.g.
1440 * capable of something.
1441 *
1442 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1443 * should use the iteration structure like dm_table_supports_nowait() or
1444 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1445 * uses an @anti_func that handle semantics of counter examples, e.g. not
1446 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1447 */
1448static bool dm_table_any_dev_attr(struct dm_table *t,
1449				  iterate_devices_callout_fn func, void *data)
1450{
1451	for (unsigned int i = 0; i < t->num_targets; i++) {
1452		struct dm_target *ti = dm_table_get_target(t, i);
1453
1454		if (ti->type->iterate_devices &&
1455		    ti->type->iterate_devices(ti, func, data))
1456			return true;
1457	}
1458
1459	return false;
1460}
1461
1462static int count_device(struct dm_target *ti, struct dm_dev *dev,
1463			sector_t start, sector_t len, void *data)
1464{
1465	unsigned int *num_devices = data;
1466
1467	(*num_devices)++;
1468
1469	return 0;
1470}
1471
1472/*
1473 * Check whether a table has no data devices attached using each
1474 * target's iterate_devices method.
1475 * Returns false if the result is unknown because a target doesn't
1476 * support iterate_devices.
1477 */
1478bool dm_table_has_no_data_devices(struct dm_table *t)
1479{
1480	for (unsigned int i = 0; i < t->num_targets; i++) {
1481		struct dm_target *ti = dm_table_get_target(t, i);
1482		unsigned int num_devices = 0;
1483
1484		if (!ti->type->iterate_devices)
1485			return false;
1486
1487		ti->type->iterate_devices(ti, count_device, &num_devices);
1488		if (num_devices)
1489			return false;
1490	}
1491
1492	return true;
1493}
1494
1495static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1496			    sector_t start, sector_t len, void *data)
1497{
1498	bool *zoned = data;
1499
1500	return bdev_is_zoned(dev->bdev) != *zoned;
1501}
1502
1503static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1504				 sector_t start, sector_t len, void *data)
1505{
1506	return bdev_is_zoned(dev->bdev);
1507}
1508
1509/*
1510 * Check the device zoned model based on the target feature flag. If the target
1511 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1512 * also accepted but all devices must have the same zoned model. If the target
1513 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1514 * zoned model with all zoned devices having the same zone size.
1515 */
1516static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1517{
1518	for (unsigned int i = 0; i < t->num_targets; i++) {
1519		struct dm_target *ti = dm_table_get_target(t, i);
1520
1521		/*
1522		 * For the wildcard target (dm-error), if we do not have a
1523		 * backing device, we must always return false. If we have a
1524		 * backing device, the result must depend on checking zoned
1525		 * model, like for any other target. So for this, check directly
1526		 * if the target backing device is zoned as we get "false" when
1527		 * dm-error was set without a backing device.
1528		 */
1529		if (dm_target_is_wildcard(ti->type) &&
1530		    !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1531			return false;
1532
1533		if (dm_target_supports_zoned_hm(ti->type)) {
1534			if (!ti->type->iterate_devices ||
1535			    ti->type->iterate_devices(ti, device_not_zoned,
1536						      &zoned))
1537				return false;
1538		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1539			if (zoned)
1540				return false;
1541		}
1542	}
1543
1544	return true;
1545}
1546
1547static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1548					   sector_t start, sector_t len, void *data)
1549{
1550	unsigned int *zone_sectors = data;
1551
1552	if (!bdev_is_zoned(dev->bdev))
1553		return 0;
1554	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1555}
1556
1557/*
1558 * Check consistency of zoned model and zone sectors across all targets. For
1559 * zone sectors, if the destination device is a zoned block device, it shall
1560 * have the specified zone_sectors.
1561 */
1562static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1563				   unsigned int zone_sectors)
1564{
1565	if (!zoned)
1566		return 0;
1567
1568	if (!dm_table_supports_zoned(t, zoned)) {
1569		DMERR("%s: zoned model is not consistent across all devices",
1570		      dm_device_name(t->md));
1571		return -EINVAL;
1572	}
1573
1574	/* Check zone size validity and compatibility */
1575	if (!zone_sectors || !is_power_of_2(zone_sectors))
1576		return -EINVAL;
1577
1578	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1579		DMERR("%s: zone sectors is not consistent across all zoned devices",
1580		      dm_device_name(t->md));
1581		return -EINVAL;
1582	}
1583
1584	return 0;
1585}
1586
1587/*
1588 * Establish the new table's queue_limits and validate them.
1589 */
1590int dm_calculate_queue_limits(struct dm_table *t,
1591			      struct queue_limits *limits)
1592{
 
1593	struct queue_limits ti_limits;
1594	unsigned int zone_sectors = 0;
1595	bool zoned = false;
1596
1597	dm_set_stacking_limits(limits);
1598
1599	t->integrity_supported = true;
1600	for (unsigned int i = 0; i < t->num_targets; i++) {
1601		struct dm_target *ti = dm_table_get_target(t, i);
1602
1603		if (!dm_target_passes_integrity(ti->type))
1604			t->integrity_supported = false;
1605	}
1606
1607	for (unsigned int i = 0; i < t->num_targets; i++) {
1608		struct dm_target *ti = dm_table_get_target(t, i);
1609
1610		dm_set_stacking_limits(&ti_limits);
1611
1612		if (!ti->type->iterate_devices) {
1613			/* Set I/O hints portion of queue limits */
1614			if (ti->type->io_hints)
1615				ti->type->io_hints(ti, &ti_limits);
1616			goto combine_limits;
1617		}
1618
1619		/*
1620		 * Combine queue limits of all the devices this target uses.
1621		 */
1622		ti->type->iterate_devices(ti, dm_set_device_limits,
1623					  &ti_limits);
1624
1625		if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) {
1626			/*
1627			 * After stacking all limits, validate all devices
1628			 * in table support this zoned model and zone sectors.
1629			 */
1630			zoned = (ti_limits.features & BLK_FEAT_ZONED);
1631			zone_sectors = ti_limits.chunk_sectors;
1632		}
1633
1634		/* Set I/O hints portion of queue limits */
1635		if (ti->type->io_hints)
1636			ti->type->io_hints(ti, &ti_limits);
1637
1638		/*
1639		 * Check each device area is consistent with the target's
1640		 * overall queue limits.
1641		 */
1642		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1643					      &ti_limits))
1644			return -EINVAL;
1645
1646combine_limits:
1647		/*
1648		 * Merge this target's queue limits into the overall limits
1649		 * for the table.
1650		 */
1651		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1652			DMWARN("%s: adding target device (start sect %llu len %llu) "
 
1653			       "caused an alignment inconsistency",
1654			       dm_device_name(t->md),
1655			       (unsigned long long) ti->begin,
1656			       (unsigned long long) ti->len);
1657
1658		if (t->integrity_supported ||
1659		    dm_target_has_integrity(ti->type)) {
1660			if (!queue_limits_stack_integrity(limits, &ti_limits)) {
1661				DMWARN("%s: adding target device (start sect %llu len %llu) "
1662				       "disabled integrity support due to incompatibility",
1663				       dm_device_name(t->md),
1664				       (unsigned long long) ti->begin,
1665				       (unsigned long long) ti->len);
1666				t->integrity_supported = false;
1667			}
1668		}
1669	}
1670
1671	/*
1672	 * Verify that the zoned model and zone sectors, as determined before
1673	 * any .io_hints override, are the same across all devices in the table.
1674	 * - this is especially relevant if .io_hints is emulating a disk-managed
1675	 *   zoned model on host-managed zoned block devices.
1676	 * BUT...
1677	 */
1678	if (limits->features & BLK_FEAT_ZONED) {
1679		/*
1680		 * ...IF the above limits stacking determined a zoned model
1681		 * validate that all of the table's devices conform to it.
1682		 */
1683		zoned = limits->features & BLK_FEAT_ZONED;
1684		zone_sectors = limits->chunk_sectors;
1685	}
1686	if (validate_hardware_zoned(t, zoned, zone_sectors))
1687		return -EINVAL;
1688
1689	return validate_hardware_logical_block_alignment(t, limits);
1690}
1691
1692/*
1693 * Check if a target requires flush support even if none of the underlying
1694 * devices need it (e.g. to persist target-specific metadata).
 
 
 
1695 */
1696static bool dm_table_supports_flush(struct dm_table *t)
1697{
1698	for (unsigned int i = 0; i < t->num_targets; i++) {
1699		struct dm_target *ti = dm_table_get_target(t, i);
1700
1701		if (ti->num_flush_bios && ti->flush_supported)
1702			return true;
1703	}
1704
1705	return false;
 
 
 
 
 
 
 
 
 
1706}
1707
1708static int device_dax_write_cache_enabled(struct dm_target *ti,
1709					  struct dm_dev *dev, sector_t start,
1710					  sector_t len, void *data)
1711{
1712	struct dax_device *dax_dev = dev->dax_dev;
 
1713
1714	if (!dax_dev)
1715		return false;
1716
1717	if (dax_write_cache_enabled(dax_dev))
1718		return true;
1719	return false;
1720}
1721
1722static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1723					   sector_t start, sector_t len, void *data)
1724{
1725	struct request_queue *q = bdev_get_queue(dev->bdev);
 
1726
1727	return !q->limits.max_write_zeroes_sectors;
1728}
 
 
 
 
 
 
1729
1730static bool dm_table_supports_write_zeroes(struct dm_table *t)
1731{
1732	for (unsigned int i = 0; i < t->num_targets; i++) {
1733		struct dm_target *ti = dm_table_get_target(t, i);
1734
1735		if (!ti->num_write_zeroes_bios)
1736			return false;
1737
1738		if (!ti->type->iterate_devices ||
1739		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1740			return false;
1741	}
1742
1743	return true;
1744}
1745
1746static bool dm_table_supports_nowait(struct dm_table *t)
1747{
1748	for (unsigned int i = 0; i < t->num_targets; i++) {
1749		struct dm_target *ti = dm_table_get_target(t, i);
 
 
 
 
1750
1751		if (!dm_target_supports_nowait(ti->type))
1752			return false;
1753	}
1754
1755	return true;
1756}
1757
1758static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1759				      sector_t start, sector_t len, void *data)
1760{
1761	return !bdev_max_discard_sectors(dev->bdev);
 
 
1762}
1763
1764static bool dm_table_supports_discards(struct dm_table *t)
 
1765{
1766	for (unsigned int i = 0; i < t->num_targets; i++) {
1767		struct dm_target *ti = dm_table_get_target(t, i);
1768
1769		if (!ti->num_discard_bios)
1770			return false;
1771
1772		/*
1773		 * Either the target provides discard support (as implied by setting
1774		 * 'discards_supported') or it relies on _all_ data devices having
1775		 * discard support.
1776		 */
1777		if (!ti->discards_supported &&
1778		    (!ti->type->iterate_devices ||
1779		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1780			return false;
1781	}
1782
1783	return true;
1784}
1785
1786static int device_not_secure_erase_capable(struct dm_target *ti,
1787					   struct dm_dev *dev, sector_t start,
1788					   sector_t len, void *data)
1789{
1790	return !bdev_max_secure_erase_sectors(dev->bdev);
1791}
1792
1793static bool dm_table_supports_secure_erase(struct dm_table *t)
1794{
1795	for (unsigned int i = 0; i < t->num_targets; i++) {
1796		struct dm_target *ti = dm_table_get_target(t, i);
1797
1798		if (!ti->num_secure_erase_bios)
1799			return false;
1800
1801		if (!ti->type->iterate_devices ||
1802		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1803			return false;
1804	}
1805
1806	return true;
1807}
1808
1809int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1810			      struct queue_limits *limits)
1811{
1812	int r;
1813
1814	if (!dm_table_supports_nowait(t))
1815		limits->features &= ~BLK_FEAT_NOWAIT;
1816
1817	/*
1818	 * The current polling impementation does not support request based
1819	 * stacking.
1820	 */
1821	if (!__table_type_bio_based(t->type))
1822		limits->features &= ~BLK_FEAT_POLL;
1823
1824	if (!dm_table_supports_discards(t)) {
1825		limits->max_hw_discard_sectors = 0;
1826		limits->discard_granularity = 0;
1827		limits->discard_alignment = 0;
1828	}
1829
1830	if (!dm_table_supports_write_zeroes(t))
1831		limits->max_write_zeroes_sectors = 0;
1832
1833	if (!dm_table_supports_secure_erase(t))
1834		limits->max_secure_erase_sectors = 0;
1835
1836	if (dm_table_supports_flush(t))
1837		limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
1838
1839	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1840		limits->features |= BLK_FEAT_DAX;
1841		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1842			set_dax_synchronous(t->md->dax_dev);
1843	} else
1844		limits->features &= ~BLK_FEAT_DAX;
1845
1846	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1847		dax_write_cache(t->md->dax_dev, true);
1848
1849	/* For a zoned table, setup the zone related queue attributes. */
1850	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1851	    (limits->features & BLK_FEAT_ZONED)) {
1852		r = dm_set_zones_restrictions(t, q, limits);
1853		if (r)
1854			return r;
1855	}
1856
1857	r = queue_limits_set(q, limits);
1858	if (r)
1859		return r;
 
 
 
 
 
1860
1861	/*
1862	 * Now that the limits are set, check the zones mapped by the table
1863	 * and setup the resources for zone append emulation if necessary.
 
 
 
 
 
1864	 */
1865	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1866	    (limits->features & BLK_FEAT_ZONED)) {
1867		r = dm_revalidate_zones(t, q);
1868		if (r)
1869			return r;
1870	}
1871
1872	dm_update_crypto_profile(q, t);
1873	return 0;
 
1874}
1875
1876struct list_head *dm_table_get_devices(struct dm_table *t)
1877{
1878	return &t->devices;
1879}
1880
1881blk_mode_t dm_table_get_mode(struct dm_table *t)
1882{
1883	return t->mode;
1884}
1885EXPORT_SYMBOL(dm_table_get_mode);
1886
1887enum suspend_mode {
1888	PRESUSPEND,
1889	PRESUSPEND_UNDO,
1890	POSTSUSPEND,
1891};
1892
1893static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1894{
1895	lockdep_assert_held(&t->md->suspend_lock);
1896
1897	for (unsigned int i = 0; i < t->num_targets; i++) {
1898		struct dm_target *ti = dm_table_get_target(t, i);
1899
1900		switch (mode) {
1901		case PRESUSPEND:
1902			if (ti->type->presuspend)
1903				ti->type->presuspend(ti);
1904			break;
1905		case PRESUSPEND_UNDO:
1906			if (ti->type->presuspend_undo)
1907				ti->type->presuspend_undo(ti);
1908			break;
1909		case POSTSUSPEND:
1910			if (ti->type->postsuspend)
1911				ti->type->postsuspend(ti);
1912			break;
1913		}
 
 
1914	}
1915}
1916
1917void dm_table_presuspend_targets(struct dm_table *t)
1918{
1919	if (!t)
1920		return;
1921
1922	suspend_targets(t, PRESUSPEND);
1923}
1924
1925void dm_table_presuspend_undo_targets(struct dm_table *t)
1926{
1927	if (!t)
1928		return;
1929
1930	suspend_targets(t, PRESUSPEND_UNDO);
1931}
1932
1933void dm_table_postsuspend_targets(struct dm_table *t)
1934{
1935	if (!t)
1936		return;
1937
1938	suspend_targets(t, POSTSUSPEND);
1939}
1940
1941int dm_table_resume_targets(struct dm_table *t)
1942{
1943	unsigned int i;
1944	int r = 0;
1945
1946	lockdep_assert_held(&t->md->suspend_lock);
1947
1948	for (i = 0; i < t->num_targets; i++) {
1949		struct dm_target *ti = dm_table_get_target(t, i);
1950
1951		if (!ti->type->preresume)
1952			continue;
1953
1954		r = ti->type->preresume(ti);
1955		if (r) {
1956			DMERR("%s: %s: preresume failed, error = %d",
1957			      dm_device_name(t->md), ti->type->name, r);
1958			return r;
1959		}
1960	}
1961
1962	for (i = 0; i < t->num_targets; i++) {
1963		struct dm_target *ti = dm_table_get_target(t, i);
1964
1965		if (ti->type->resume)
1966			ti->type->resume(ti);
1967	}
1968
1969	return 0;
1970}
1971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1972struct mapped_device *dm_table_get_md(struct dm_table *t)
1973{
1974	return t->md;
1975}
1976EXPORT_SYMBOL(dm_table_get_md);
1977
1978const char *dm_table_device_name(struct dm_table *t)
 
1979{
1980	return dm_device_name(t->md);
 
 
1981}
1982EXPORT_SYMBOL_GPL(dm_table_device_name);
1983
1984void dm_table_run_md_queue_async(struct dm_table *t)
1985{
1986	if (!dm_table_request_based(t))
1987		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1988
1989	if (t->md->queue)
1990		blk_mq_run_hw_queues(t->md->queue, true);
1991}
1992EXPORT_SYMBOL(dm_table_run_md_queue_async);
1993