Loading...
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation, version 2.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for
13 * more details.
14 */
15
16#include <linux/module.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/hugetlb.h>
27#include <linux/swap.h>
28#include <linux/smp.h>
29#include <linux/init.h>
30#include <linux/highmem.h>
31#include <linux/pagemap.h>
32#include <linux/poison.h>
33#include <linux/bootmem.h>
34#include <linux/slab.h>
35#include <linux/proc_fs.h>
36#include <linux/efi.h>
37#include <linux/memory_hotplug.h>
38#include <linux/uaccess.h>
39#include <asm/mmu_context.h>
40#include <asm/processor.h>
41#include <asm/pgtable.h>
42#include <asm/pgalloc.h>
43#include <asm/dma.h>
44#include <asm/fixmap.h>
45#include <asm/tlb.h>
46#include <asm/tlbflush.h>
47#include <asm/sections.h>
48#include <asm/setup.h>
49#include <asm/homecache.h>
50#include <hv/hypervisor.h>
51#include <arch/chip.h>
52
53#include "migrate.h"
54
55#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
56
57#ifndef __tilegx__
58unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
59EXPORT_SYMBOL(VMALLOC_RESERVE);
60#endif
61
62/* Create an L2 page table */
63static pte_t * __init alloc_pte(void)
64{
65 return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
66}
67
68/*
69 * L2 page tables per controller. We allocate these all at once from
70 * the bootmem allocator and store them here. This saves on kernel L2
71 * page table memory, compared to allocating a full 64K page per L2
72 * page table, and also means that in cases where we use huge pages,
73 * we are guaranteed to later be able to shatter those huge pages and
74 * switch to using these page tables instead, without requiring
75 * further allocation. Each l2_ptes[] entry points to the first page
76 * table for the first hugepage-size piece of memory on the
77 * controller; other page tables are just indexed directly, i.e. the
78 * L2 page tables are contiguous in memory for each controller.
79 */
80static pte_t *l2_ptes[MAX_NUMNODES];
81static int num_l2_ptes[MAX_NUMNODES];
82
83static void init_prealloc_ptes(int node, int pages)
84{
85 BUG_ON(pages & (PTRS_PER_PTE - 1));
86 if (pages) {
87 num_l2_ptes[node] = pages;
88 l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
89 HV_PAGE_TABLE_ALIGN, 0);
90 }
91}
92
93pte_t *get_prealloc_pte(unsigned long pfn)
94{
95 int node = pfn_to_nid(pfn);
96 pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
97 BUG_ON(node >= MAX_NUMNODES);
98 BUG_ON(pfn >= num_l2_ptes[node]);
99 return &l2_ptes[node][pfn];
100}
101
102/*
103 * What caching do we expect pages from the heap to have when
104 * they are allocated during bootup? (Once we've installed the
105 * "real" swapper_pg_dir.)
106 */
107static int initial_heap_home(void)
108{
109#if CHIP_HAS_CBOX_HOME_MAP()
110 if (hash_default)
111 return PAGE_HOME_HASH;
112#endif
113 return smp_processor_id();
114}
115
116/*
117 * Place a pointer to an L2 page table in a middle page
118 * directory entry.
119 */
120static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
121{
122 phys_addr_t pa = __pa(page_table);
123 unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
124 pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
125 BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
126 pteval = pte_set_home(pteval, initial_heap_home());
127 *(pte_t *)pmd = pteval;
128 if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
129 BUG();
130}
131
132#ifdef __tilegx__
133
134static inline pmd_t *alloc_pmd(void)
135{
136 return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
137}
138
139static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
140{
141 assign_pte((pmd_t *)pud, (pte_t *)pmd);
142}
143
144#endif /* __tilegx__ */
145
146/* Replace the given pmd with a full PTE table. */
147void __init shatter_pmd(pmd_t *pmd)
148{
149 pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
150 assign_pte(pmd, pte);
151}
152
153#ifdef CONFIG_HIGHMEM
154/*
155 * This function initializes a certain range of kernel virtual memory
156 * with new bootmem page tables, everywhere page tables are missing in
157 * the given range.
158 */
159
160/*
161 * NOTE: The pagetables are allocated contiguous on the physical space
162 * so we can cache the place of the first one and move around without
163 * checking the pgd every time.
164 */
165static void __init page_table_range_init(unsigned long start,
166 unsigned long end, pgd_t *pgd_base)
167{
168 pgd_t *pgd;
169 int pgd_idx;
170 unsigned long vaddr;
171
172 vaddr = start;
173 pgd_idx = pgd_index(vaddr);
174 pgd = pgd_base + pgd_idx;
175
176 for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
177 pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
178 if (pmd_none(*pmd))
179 assign_pte(pmd, alloc_pte());
180 vaddr += PMD_SIZE;
181 }
182}
183#endif /* CONFIG_HIGHMEM */
184
185
186#if CHIP_HAS_CBOX_HOME_MAP()
187
188static int __initdata ktext_hash = 1; /* .text pages */
189static int __initdata kdata_hash = 1; /* .data and .bss pages */
190int __write_once hash_default = 1; /* kernel allocator pages */
191EXPORT_SYMBOL(hash_default);
192int __write_once kstack_hash = 1; /* if no homecaching, use h4h */
193#endif /* CHIP_HAS_CBOX_HOME_MAP */
194
195/*
196 * CPUs to use to for striping the pages of kernel data. If hash-for-home
197 * is available, this is only relevant if kcache_hash sets up the
198 * .data and .bss to be page-homed, and we don't want the default mode
199 * of using the full set of kernel cpus for the striping.
200 */
201static __initdata struct cpumask kdata_mask;
202static __initdata int kdata_arg_seen;
203
204int __write_once kdata_huge; /* if no homecaching, small pages */
205
206
207/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
208static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
209{
210 prot = pte_set_home(prot, home);
211#if CHIP_HAS_CBOX_HOME_MAP()
212 if (home == PAGE_HOME_IMMUTABLE) {
213 if (ktext_hash)
214 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
215 else
216 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
217 }
218#endif
219 return prot;
220}
221
222/*
223 * For a given kernel data VA, how should it be cached?
224 * We return the complete pgprot_t with caching bits set.
225 */
226static pgprot_t __init init_pgprot(ulong address)
227{
228 int cpu;
229 unsigned long page;
230 enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
231
232#if CHIP_HAS_CBOX_HOME_MAP()
233 /* For kdata=huge, everything is just hash-for-home. */
234 if (kdata_huge)
235 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
236#endif
237
238 /* We map the aliased pages of permanent text inaccessible. */
239 if (address < (ulong) _sinittext - CODE_DELTA)
240 return PAGE_NONE;
241
242 /*
243 * We map read-only data non-coherent for performance. We could
244 * use neighborhood caching on TILE64, but it's not clear it's a win.
245 */
246 if ((address >= (ulong) __start_rodata &&
247 address < (ulong) __end_rodata) ||
248 address == (ulong) empty_zero_page) {
249 return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
250 }
251
252#ifndef __tilegx__
253#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
254 /* Force the atomic_locks[] array page to be hash-for-home. */
255 if (address == (ulong) atomic_locks)
256 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
257#endif
258#endif
259
260 /*
261 * Everything else that isn't data or bss is heap, so mark it
262 * with the initial heap home (hash-for-home, or this cpu). This
263 * includes any addresses after the loaded image and any address before
264 * _einitdata, since we already captured the case of text before
265 * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
266 *
267 * All the LOWMEM pages that we mark this way will get their
268 * struct page homecache properly marked later, in set_page_homes().
269 * The HIGHMEM pages we leave with a default zero for their
270 * homes, but with a zero free_time we don't have to actually
271 * do a flush action the first time we use them, either.
272 */
273 if (address >= (ulong) _end || address < (ulong) _einitdata)
274 return construct_pgprot(PAGE_KERNEL, initial_heap_home());
275
276#if CHIP_HAS_CBOX_HOME_MAP()
277 /* Use hash-for-home if requested for data/bss. */
278 if (kdata_hash)
279 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
280#endif
281
282 /*
283 * Make the w1data homed like heap to start with, to avoid
284 * making it part of the page-striped data area when we're just
285 * going to convert it to read-only soon anyway.
286 */
287 if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
288 return construct_pgprot(PAGE_KERNEL, initial_heap_home());
289
290 /*
291 * Otherwise we just hand out consecutive cpus. To avoid
292 * requiring this function to hold state, we just walk forward from
293 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
294 * the requested address, while walking cpu home around kdata_mask.
295 * This is typically no more than a dozen or so iterations.
296 */
297 page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
298 BUG_ON(address < page || address >= (ulong)_end);
299 cpu = cpumask_first(&kdata_mask);
300 for (; page < address; page += PAGE_SIZE) {
301 if (page >= (ulong)&init_thread_union &&
302 page < (ulong)&init_thread_union + THREAD_SIZE)
303 continue;
304 if (page == (ulong)empty_zero_page)
305 continue;
306#ifndef __tilegx__
307#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
308 if (page == (ulong)atomic_locks)
309 continue;
310#endif
311#endif
312 cpu = cpumask_next(cpu, &kdata_mask);
313 if (cpu == NR_CPUS)
314 cpu = cpumask_first(&kdata_mask);
315 }
316 return construct_pgprot(PAGE_KERNEL, cpu);
317}
318
319/*
320 * This function sets up how we cache the kernel text. If we have
321 * hash-for-home support, normally that is used instead (see the
322 * kcache_hash boot flag for more information). But if we end up
323 * using a page-based caching technique, this option sets up the
324 * details of that. In addition, the "ktext=nocache" option may
325 * always be used to disable local caching of text pages, if desired.
326 */
327
328static int __initdata ktext_arg_seen;
329static int __initdata ktext_small;
330static int __initdata ktext_local;
331static int __initdata ktext_all;
332static int __initdata ktext_nondataplane;
333static int __initdata ktext_nocache;
334static struct cpumask __initdata ktext_mask;
335
336static int __init setup_ktext(char *str)
337{
338 if (str == NULL)
339 return -EINVAL;
340
341 /* If you have a leading "nocache", turn off ktext caching */
342 if (strncmp(str, "nocache", 7) == 0) {
343 ktext_nocache = 1;
344 pr_info("ktext: disabling local caching of kernel text\n");
345 str += 7;
346 if (*str == ',')
347 ++str;
348 if (*str == '\0')
349 return 0;
350 }
351
352 ktext_arg_seen = 1;
353
354 /* Default setting on Tile64: use a huge page */
355 if (strcmp(str, "huge") == 0)
356 pr_info("ktext: using one huge locally cached page\n");
357
358 /* Pay TLB cost but get no cache benefit: cache small pages locally */
359 else if (strcmp(str, "local") == 0) {
360 ktext_small = 1;
361 ktext_local = 1;
362 pr_info("ktext: using small pages with local caching\n");
363 }
364
365 /* Neighborhood cache ktext pages on all cpus. */
366 else if (strcmp(str, "all") == 0) {
367 ktext_small = 1;
368 ktext_all = 1;
369 pr_info("ktext: using maximal caching neighborhood\n");
370 }
371
372
373 /* Neighborhood ktext pages on specified mask */
374 else if (cpulist_parse(str, &ktext_mask) == 0) {
375 char buf[NR_CPUS * 5];
376 cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
377 if (cpumask_weight(&ktext_mask) > 1) {
378 ktext_small = 1;
379 pr_info("ktext: using caching neighborhood %s "
380 "with small pages\n", buf);
381 } else {
382 pr_info("ktext: caching on cpu %s with one huge page\n",
383 buf);
384 }
385 }
386
387 else if (*str)
388 return -EINVAL;
389
390 return 0;
391}
392
393early_param("ktext", setup_ktext);
394
395
396static inline pgprot_t ktext_set_nocache(pgprot_t prot)
397{
398 if (!ktext_nocache)
399 prot = hv_pte_set_nc(prot);
400#if CHIP_HAS_NC_AND_NOALLOC_BITS()
401 else
402 prot = hv_pte_set_no_alloc_l2(prot);
403#endif
404 return prot;
405}
406
407#ifndef __tilegx__
408static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
409{
410 return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
411}
412#else
413static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
414{
415 pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
416 if (pud_none(*pud))
417 assign_pmd(pud, alloc_pmd());
418 return pmd_offset(pud, va);
419}
420#endif
421
422/* Temporary page table we use for staging. */
423static pgd_t pgtables[PTRS_PER_PGD]
424 __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
425
426/*
427 * This maps the physical memory to kernel virtual address space, a total
428 * of max_low_pfn pages, by creating page tables starting from address
429 * PAGE_OFFSET.
430 *
431 * This routine transitions us from using a set of compiled-in large
432 * pages to using some more precise caching, including removing access
433 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
434 * marking read-only data as locally cacheable, striping the remaining
435 * .data and .bss across all the available tiles, and removing access
436 * to pages above the top of RAM (thus ensuring a page fault from a bad
437 * virtual address rather than a hypervisor shoot down for accessing
438 * memory outside the assigned limits).
439 */
440static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
441{
442 unsigned long long irqmask;
443 unsigned long address, pfn;
444 pmd_t *pmd;
445 pte_t *pte;
446 int pte_ofs;
447 const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
448 struct cpumask kstripe_mask;
449 int rc, i;
450
451#if CHIP_HAS_CBOX_HOME_MAP()
452 if (ktext_arg_seen && ktext_hash) {
453 pr_warning("warning: \"ktext\" boot argument ignored"
454 " if \"kcache_hash\" sets up text hash-for-home\n");
455 ktext_small = 0;
456 }
457
458 if (kdata_arg_seen && kdata_hash) {
459 pr_warning("warning: \"kdata\" boot argument ignored"
460 " if \"kcache_hash\" sets up data hash-for-home\n");
461 }
462
463 if (kdata_huge && !hash_default) {
464 pr_warning("warning: disabling \"kdata=huge\"; requires"
465 " kcache_hash=all or =allbutstack\n");
466 kdata_huge = 0;
467 }
468#endif
469
470 /*
471 * Set up a mask for cpus to use for kernel striping.
472 * This is normally all cpus, but minus dataplane cpus if any.
473 * If the dataplane covers the whole chip, we stripe over
474 * the whole chip too.
475 */
476 cpumask_copy(&kstripe_mask, cpu_possible_mask);
477 if (!kdata_arg_seen)
478 kdata_mask = kstripe_mask;
479
480 /* Allocate and fill in L2 page tables */
481 for (i = 0; i < MAX_NUMNODES; ++i) {
482#ifdef CONFIG_HIGHMEM
483 unsigned long end_pfn = node_lowmem_end_pfn[i];
484#else
485 unsigned long end_pfn = node_end_pfn[i];
486#endif
487 unsigned long end_huge_pfn = 0;
488
489 /* Pre-shatter the last huge page to allow per-cpu pages. */
490 if (kdata_huge)
491 end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
492
493 pfn = node_start_pfn[i];
494
495 /* Allocate enough memory to hold L2 page tables for node. */
496 init_prealloc_ptes(i, end_pfn - pfn);
497
498 address = (unsigned long) pfn_to_kaddr(pfn);
499 while (pfn < end_pfn) {
500 BUG_ON(address & (HPAGE_SIZE-1));
501 pmd = get_pmd(pgtables, address);
502 pte = get_prealloc_pte(pfn);
503 if (pfn < end_huge_pfn) {
504 pgprot_t prot = init_pgprot(address);
505 *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
506 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
507 pfn++, pte_ofs++, address += PAGE_SIZE)
508 pte[pte_ofs] = pfn_pte(pfn, prot);
509 } else {
510 if (kdata_huge)
511 printk(KERN_DEBUG "pre-shattered huge"
512 " page at %#lx\n", address);
513 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
514 pfn++, pte_ofs++, address += PAGE_SIZE) {
515 pgprot_t prot = init_pgprot(address);
516 pte[pte_ofs] = pfn_pte(pfn, prot);
517 }
518 assign_pte(pmd, pte);
519 }
520 }
521 }
522
523 /*
524 * Set or check ktext_map now that we have cpu_possible_mask
525 * and kstripe_mask to work with.
526 */
527 if (ktext_all)
528 cpumask_copy(&ktext_mask, cpu_possible_mask);
529 else if (ktext_nondataplane)
530 ktext_mask = kstripe_mask;
531 else if (!cpumask_empty(&ktext_mask)) {
532 /* Sanity-check any mask that was requested */
533 struct cpumask bad;
534 cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
535 cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
536 if (!cpumask_empty(&bad)) {
537 char buf[NR_CPUS * 5];
538 cpulist_scnprintf(buf, sizeof(buf), &bad);
539 pr_info("ktext: not using unavailable cpus %s\n", buf);
540 }
541 if (cpumask_empty(&ktext_mask)) {
542 pr_warning("ktext: no valid cpus; caching on %d.\n",
543 smp_processor_id());
544 cpumask_copy(&ktext_mask,
545 cpumask_of(smp_processor_id()));
546 }
547 }
548
549 address = MEM_SV_INTRPT;
550 pmd = get_pmd(pgtables, address);
551 pfn = 0; /* code starts at PA 0 */
552 if (ktext_small) {
553 /* Allocate an L2 PTE for the kernel text */
554 int cpu = 0;
555 pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
556 PAGE_HOME_IMMUTABLE);
557
558 if (ktext_local) {
559 if (ktext_nocache)
560 prot = hv_pte_set_mode(prot,
561 HV_PTE_MODE_UNCACHED);
562 else
563 prot = hv_pte_set_mode(prot,
564 HV_PTE_MODE_CACHE_NO_L3);
565 } else {
566 prot = hv_pte_set_mode(prot,
567 HV_PTE_MODE_CACHE_TILE_L3);
568 cpu = cpumask_first(&ktext_mask);
569
570 prot = ktext_set_nocache(prot);
571 }
572
573 BUG_ON(address != (unsigned long)_stext);
574 pte = NULL;
575 for (; address < (unsigned long)_einittext;
576 pfn++, address += PAGE_SIZE) {
577 pte_ofs = pte_index(address);
578 if (pte_ofs == 0) {
579 if (pte)
580 assign_pte(pmd++, pte);
581 pte = alloc_pte();
582 }
583 if (!ktext_local) {
584 prot = set_remote_cache_cpu(prot, cpu);
585 cpu = cpumask_next(cpu, &ktext_mask);
586 if (cpu == NR_CPUS)
587 cpu = cpumask_first(&ktext_mask);
588 }
589 pte[pte_ofs] = pfn_pte(pfn, prot);
590 }
591 if (pte)
592 assign_pte(pmd, pte);
593 } else {
594 pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
595 pteval = pte_mkhuge(pteval);
596#if CHIP_HAS_CBOX_HOME_MAP()
597 if (ktext_hash) {
598 pteval = hv_pte_set_mode(pteval,
599 HV_PTE_MODE_CACHE_HASH_L3);
600 pteval = ktext_set_nocache(pteval);
601 } else
602#endif /* CHIP_HAS_CBOX_HOME_MAP() */
603 if (cpumask_weight(&ktext_mask) == 1) {
604 pteval = set_remote_cache_cpu(pteval,
605 cpumask_first(&ktext_mask));
606 pteval = hv_pte_set_mode(pteval,
607 HV_PTE_MODE_CACHE_TILE_L3);
608 pteval = ktext_set_nocache(pteval);
609 } else if (ktext_nocache)
610 pteval = hv_pte_set_mode(pteval,
611 HV_PTE_MODE_UNCACHED);
612 else
613 pteval = hv_pte_set_mode(pteval,
614 HV_PTE_MODE_CACHE_NO_L3);
615 for (; address < (unsigned long)_einittext;
616 pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE)
617 *(pte_t *)(pmd++) = pfn_pte(pfn, pteval);
618 }
619
620 /* Set swapper_pgprot here so it is flushed to memory right away. */
621 swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
622
623 /*
624 * Since we may be changing the caching of the stack and page
625 * table itself, we invoke an assembly helper to do the
626 * following steps:
627 *
628 * - flush the cache so we start with an empty slate
629 * - install pgtables[] as the real page table
630 * - flush the TLB so the new page table takes effect
631 */
632 irqmask = interrupt_mask_save_mask();
633 interrupt_mask_set_mask(-1ULL);
634 rc = flush_and_install_context(__pa(pgtables),
635 init_pgprot((unsigned long)pgtables),
636 __get_cpu_var(current_asid),
637 cpumask_bits(my_cpu_mask));
638 interrupt_mask_restore_mask(irqmask);
639 BUG_ON(rc != 0);
640
641 /* Copy the page table back to the normal swapper_pg_dir. */
642 memcpy(pgd_base, pgtables, sizeof(pgtables));
643 __install_page_table(pgd_base, __get_cpu_var(current_asid),
644 swapper_pgprot);
645
646 /*
647 * We just read swapper_pgprot and thus brought it into the cache,
648 * with its new home & caching mode. When we start the other CPUs,
649 * they're going to reference swapper_pgprot via their initial fake
650 * VA-is-PA mappings, which cache everything locally. At that
651 * time, if it's in our cache with a conflicting home, the
652 * simulator's coherence checker will complain. So, flush it out
653 * of our cache; we're not going to ever use it again anyway.
654 */
655 __insn_finv(&swapper_pgprot);
656}
657
658/*
659 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
660 * is valid. The argument is a physical page number.
661 *
662 * On Tile, the only valid things for which we can just hand out unchecked
663 * PTEs are the kernel code and data. Anything else might change its
664 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
665 * Note that init_thread_union is released to heap soon after boot,
666 * so we include it in the init data.
667 *
668 * For TILE-Gx, we might want to consider allowing access to PA
669 * regions corresponding to PCI space, etc.
670 */
671int devmem_is_allowed(unsigned long pagenr)
672{
673 return pagenr < kaddr_to_pfn(_end) &&
674 !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
675 pagenr < kaddr_to_pfn(_einitdata)) &&
676 !(pagenr >= kaddr_to_pfn(_sinittext) ||
677 pagenr <= kaddr_to_pfn(_einittext-1));
678}
679
680#ifdef CONFIG_HIGHMEM
681static void __init permanent_kmaps_init(pgd_t *pgd_base)
682{
683 pgd_t *pgd;
684 pud_t *pud;
685 pmd_t *pmd;
686 pte_t *pte;
687 unsigned long vaddr;
688
689 vaddr = PKMAP_BASE;
690 page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
691
692 pgd = swapper_pg_dir + pgd_index(vaddr);
693 pud = pud_offset(pgd, vaddr);
694 pmd = pmd_offset(pud, vaddr);
695 pte = pte_offset_kernel(pmd, vaddr);
696 pkmap_page_table = pte;
697}
698#endif /* CONFIG_HIGHMEM */
699
700
701#ifndef CONFIG_64BIT
702static void __init init_free_pfn_range(unsigned long start, unsigned long end)
703{
704 unsigned long pfn;
705 struct page *page = pfn_to_page(start);
706
707 for (pfn = start; pfn < end; ) {
708 /* Optimize by freeing pages in large batches */
709 int order = __ffs(pfn);
710 int count, i;
711 struct page *p;
712
713 if (order >= MAX_ORDER)
714 order = MAX_ORDER-1;
715 count = 1 << order;
716 while (pfn + count > end) {
717 count >>= 1;
718 --order;
719 }
720 for (p = page, i = 0; i < count; ++i, ++p) {
721 __ClearPageReserved(p);
722 /*
723 * Hacky direct set to avoid unnecessary
724 * lock take/release for EVERY page here.
725 */
726 p->_count.counter = 0;
727 p->_mapcount.counter = -1;
728 }
729 init_page_count(page);
730 __free_pages(page, order);
731 totalram_pages += count;
732
733 page += count;
734 pfn += count;
735 }
736}
737
738static void __init set_non_bootmem_pages_init(void)
739{
740 struct zone *z;
741 for_each_zone(z) {
742 unsigned long start, end;
743 int nid = z->zone_pgdat->node_id;
744 int idx = zone_idx(z);
745
746 start = z->zone_start_pfn;
747 if (start == 0)
748 continue; /* bootmem */
749 end = start + z->spanned_pages;
750 if (idx == ZONE_NORMAL) {
751 BUG_ON(start != node_start_pfn[nid]);
752 start = node_free_pfn[nid];
753 }
754#ifdef CONFIG_HIGHMEM
755 if (idx == ZONE_HIGHMEM)
756 totalhigh_pages += z->spanned_pages;
757#endif
758 if (kdata_huge) {
759 unsigned long percpu_pfn = node_percpu_pfn[nid];
760 if (start < percpu_pfn && end > percpu_pfn)
761 end = percpu_pfn;
762 }
763#ifdef CONFIG_PCI
764 if (start <= pci_reserve_start_pfn &&
765 end > pci_reserve_start_pfn) {
766 if (end > pci_reserve_end_pfn)
767 init_free_pfn_range(pci_reserve_end_pfn, end);
768 end = pci_reserve_start_pfn;
769 }
770#endif
771 init_free_pfn_range(start, end);
772 }
773}
774#endif
775
776/*
777 * paging_init() sets up the page tables - note that all of lowmem is
778 * already mapped by head.S.
779 */
780void __init paging_init(void)
781{
782#ifdef CONFIG_HIGHMEM
783 unsigned long vaddr, end;
784#endif
785#ifdef __tilegx__
786 pud_t *pud;
787#endif
788 pgd_t *pgd_base = swapper_pg_dir;
789
790 kernel_physical_mapping_init(pgd_base);
791
792#ifdef CONFIG_HIGHMEM
793 /*
794 * Fixed mappings, only the page table structure has to be
795 * created - mappings will be set by set_fixmap():
796 */
797 vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
798 end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
799 page_table_range_init(vaddr, end, pgd_base);
800 permanent_kmaps_init(pgd_base);
801#endif
802
803#ifdef __tilegx__
804 /*
805 * Since GX allocates just one pmd_t array worth of vmalloc space,
806 * we go ahead and allocate it statically here, then share it
807 * globally. As a result we don't have to worry about any task
808 * changing init_mm once we get up and running, and there's no
809 * need for e.g. vmalloc_sync_all().
810 */
811 BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1));
812 pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
813 assign_pmd(pud, alloc_pmd());
814#endif
815}
816
817
818/*
819 * Walk the kernel page tables and derive the page_home() from
820 * the PTEs, so that set_pte() can properly validate the caching
821 * of all PTEs it sees.
822 */
823void __init set_page_homes(void)
824{
825}
826
827static void __init set_max_mapnr_init(void)
828{
829#ifdef CONFIG_FLATMEM
830 max_mapnr = max_low_pfn;
831#endif
832}
833
834void __init mem_init(void)
835{
836 int codesize, datasize, initsize;
837 int i;
838#ifndef __tilegx__
839 void *last;
840#endif
841
842#ifdef CONFIG_FLATMEM
843 BUG_ON(!mem_map);
844#endif
845
846#ifdef CONFIG_HIGHMEM
847 /* check that fixmap and pkmap do not overlap */
848 if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
849 pr_err("fixmap and kmap areas overlap"
850 " - this will crash\n");
851 pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
852 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
853 FIXADDR_START);
854 BUG();
855 }
856#endif
857
858 set_max_mapnr_init();
859
860 /* this will put all bootmem onto the freelists */
861 totalram_pages += free_all_bootmem();
862
863#ifndef CONFIG_64BIT
864 /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
865 set_non_bootmem_pages_init();
866#endif
867
868 codesize = (unsigned long)&_etext - (unsigned long)&_text;
869 datasize = (unsigned long)&_end - (unsigned long)&_sdata;
870 initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext;
871 initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
872
873 pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
874 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
875 num_physpages << (PAGE_SHIFT-10),
876 codesize >> 10,
877 datasize >> 10,
878 initsize >> 10,
879 (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
880 );
881
882 /*
883 * In debug mode, dump some interesting memory mappings.
884 */
885#ifdef CONFIG_HIGHMEM
886 printk(KERN_DEBUG " KMAP %#lx - %#lx\n",
887 FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
888 printk(KERN_DEBUG " PKMAP %#lx - %#lx\n",
889 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
890#endif
891#ifdef CONFIG_HUGEVMAP
892 printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n",
893 HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
894#endif
895 printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n",
896 _VMALLOC_START, _VMALLOC_END - 1);
897#ifdef __tilegx__
898 for (i = MAX_NUMNODES-1; i >= 0; --i) {
899 struct pglist_data *node = &node_data[i];
900 if (node->node_present_pages) {
901 unsigned long start = (unsigned long)
902 pfn_to_kaddr(node->node_start_pfn);
903 unsigned long end = start +
904 (node->node_present_pages << PAGE_SHIFT);
905 printk(KERN_DEBUG " MEM%d %#lx - %#lx\n",
906 i, start, end - 1);
907 }
908 }
909#else
910 last = high_memory;
911 for (i = MAX_NUMNODES-1; i >= 0; --i) {
912 if ((unsigned long)vbase_map[i] != -1UL) {
913 printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n",
914 i, (unsigned long) (vbase_map[i]),
915 (unsigned long) (last-1));
916 last = vbase_map[i];
917 }
918 }
919#endif
920
921#ifndef __tilegx__
922 /*
923 * Convert from using one lock for all atomic operations to
924 * one per cpu.
925 */
926 __init_atomic_per_cpu();
927#endif
928}
929
930/*
931 * this is for the non-NUMA, single node SMP system case.
932 * Specifically, in the case of x86, we will always add
933 * memory to the highmem for now.
934 */
935#ifndef CONFIG_NEED_MULTIPLE_NODES
936int arch_add_memory(u64 start, u64 size)
937{
938 struct pglist_data *pgdata = &contig_page_data;
939 struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
940 unsigned long start_pfn = start >> PAGE_SHIFT;
941 unsigned long nr_pages = size >> PAGE_SHIFT;
942
943 return __add_pages(zone, start_pfn, nr_pages);
944}
945
946int remove_memory(u64 start, u64 size)
947{
948 return -EINVAL;
949}
950#endif
951
952struct kmem_cache *pgd_cache;
953
954void __init pgtable_cache_init(void)
955{
956 pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
957 if (!pgd_cache)
958 panic("pgtable_cache_init(): Cannot create pgd cache");
959}
960
961#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
962/*
963 * The __w1data area holds data that is only written during initialization,
964 * and is read-only and thus freely cacheable thereafter. Fix the page
965 * table entries that cover that region accordingly.
966 */
967static void mark_w1data_ro(void)
968{
969 /* Loop over page table entries */
970 unsigned long addr = (unsigned long)__w1data_begin;
971 BUG_ON((addr & (PAGE_SIZE-1)) != 0);
972 for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
973 unsigned long pfn = kaddr_to_pfn((void *)addr);
974 pte_t *ptep = virt_to_pte(NULL, addr);
975 BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */
976 set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
977 }
978}
979#endif
980
981#ifdef CONFIG_DEBUG_PAGEALLOC
982static long __write_once initfree;
983#else
984static long __write_once initfree = 1;
985#endif
986
987/* Select whether to free (1) or mark unusable (0) the __init pages. */
988static int __init set_initfree(char *str)
989{
990 long val;
991 if (strict_strtol(str, 0, &val) == 0) {
992 initfree = val;
993 pr_info("initfree: %s free init pages\n",
994 initfree ? "will" : "won't");
995 }
996 return 1;
997}
998__setup("initfree=", set_initfree);
999
1000static void free_init_pages(char *what, unsigned long begin, unsigned long end)
1001{
1002 unsigned long addr = (unsigned long) begin;
1003
1004 if (kdata_huge && !initfree) {
1005 pr_warning("Warning: ignoring initfree=0:"
1006 " incompatible with kdata=huge\n");
1007 initfree = 1;
1008 }
1009 end = (end + PAGE_SIZE - 1) & PAGE_MASK;
1010 local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
1011 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1012 /*
1013 * Note we just reset the home here directly in the
1014 * page table. We know this is safe because our caller
1015 * just flushed the caches on all the other cpus,
1016 * and they won't be touching any of these pages.
1017 */
1018 int pfn = kaddr_to_pfn((void *)addr);
1019 struct page *page = pfn_to_page(pfn);
1020 pte_t *ptep = virt_to_pte(NULL, addr);
1021 if (!initfree) {
1022 /*
1023 * If debugging page accesses then do not free
1024 * this memory but mark them not present - any
1025 * buggy init-section access will create a
1026 * kernel page fault:
1027 */
1028 pte_clear(&init_mm, addr, ptep);
1029 continue;
1030 }
1031 __ClearPageReserved(page);
1032 init_page_count(page);
1033 if (pte_huge(*ptep))
1034 BUG_ON(!kdata_huge);
1035 else
1036 set_pte_at(&init_mm, addr, ptep,
1037 pfn_pte(pfn, PAGE_KERNEL));
1038 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1039 free_page(addr);
1040 totalram_pages++;
1041 }
1042 pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
1043}
1044
1045void free_initmem(void)
1046{
1047 const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1048
1049 /*
1050 * Evict the dirty initdata on the boot cpu, evict the w1data
1051 * wherever it's homed, and evict all the init code everywhere.
1052 * We are guaranteed that no one will touch the init pages any
1053 * more, and although other cpus may be touching the w1data,
1054 * we only actually change the caching on tile64, which won't
1055 * be keeping local copies in the other tiles' caches anyway.
1056 */
1057 homecache_evict(&cpu_cacheable_map);
1058
1059 /* Free the data pages that we won't use again after init. */
1060 free_init_pages("unused kernel data",
1061 (unsigned long)_sinitdata,
1062 (unsigned long)_einitdata);
1063
1064 /*
1065 * Free the pages mapped from 0xc0000000 that correspond to code
1066 * pages from MEM_SV_INTRPT that we won't use again after init.
1067 */
1068 free_init_pages("unused kernel text",
1069 (unsigned long)_sinittext - text_delta,
1070 (unsigned long)_einittext - text_delta);
1071
1072#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1073 /*
1074 * Upgrade the .w1data section to globally cached.
1075 * We don't do this on tilepro, since the cache architecture
1076 * pretty much makes it irrelevant, and in any case we end
1077 * up having racing issues with other tiles that may touch
1078 * the data after we flush the cache but before we update
1079 * the PTEs and flush the TLBs, causing sharer shootdowns
1080 * later. Even though this is to clean data, it seems like
1081 * an unnecessary complication.
1082 */
1083 mark_w1data_ro();
1084#endif
1085
1086 /* Do a global TLB flush so everyone sees the changes. */
1087 flush_tlb_all();
1088}
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation, version 2.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for
13 * more details.
14 */
15
16#include <linux/module.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/hugetlb.h>
27#include <linux/swap.h>
28#include <linux/smp.h>
29#include <linux/init.h>
30#include <linux/highmem.h>
31#include <linux/pagemap.h>
32#include <linux/poison.h>
33#include <linux/bootmem.h>
34#include <linux/slab.h>
35#include <linux/proc_fs.h>
36#include <linux/efi.h>
37#include <linux/memory_hotplug.h>
38#include <linux/uaccess.h>
39#include <asm/mmu_context.h>
40#include <asm/processor.h>
41#include <asm/system.h>
42#include <asm/pgtable.h>
43#include <asm/pgalloc.h>
44#include <asm/dma.h>
45#include <asm/fixmap.h>
46#include <asm/tlb.h>
47#include <asm/tlbflush.h>
48#include <asm/sections.h>
49#include <asm/setup.h>
50#include <asm/homecache.h>
51#include <hv/hypervisor.h>
52#include <arch/chip.h>
53
54#include "migrate.h"
55
56#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
57
58#ifndef __tilegx__
59unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
60EXPORT_SYMBOL(VMALLOC_RESERVE);
61#endif
62
63/* Create an L2 page table */
64static pte_t * __init alloc_pte(void)
65{
66 return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
67}
68
69/*
70 * L2 page tables per controller. We allocate these all at once from
71 * the bootmem allocator and store them here. This saves on kernel L2
72 * page table memory, compared to allocating a full 64K page per L2
73 * page table, and also means that in cases where we use huge pages,
74 * we are guaranteed to later be able to shatter those huge pages and
75 * switch to using these page tables instead, without requiring
76 * further allocation. Each l2_ptes[] entry points to the first page
77 * table for the first hugepage-size piece of memory on the
78 * controller; other page tables are just indexed directly, i.e. the
79 * L2 page tables are contiguous in memory for each controller.
80 */
81static pte_t *l2_ptes[MAX_NUMNODES];
82static int num_l2_ptes[MAX_NUMNODES];
83
84static void init_prealloc_ptes(int node, int pages)
85{
86 BUG_ON(pages & (HV_L2_ENTRIES-1));
87 if (pages) {
88 num_l2_ptes[node] = pages;
89 l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
90 HV_PAGE_TABLE_ALIGN, 0);
91 }
92}
93
94pte_t *get_prealloc_pte(unsigned long pfn)
95{
96 int node = pfn_to_nid(pfn);
97 pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
98 BUG_ON(node >= MAX_NUMNODES);
99 BUG_ON(pfn >= num_l2_ptes[node]);
100 return &l2_ptes[node][pfn];
101}
102
103/*
104 * What caching do we expect pages from the heap to have when
105 * they are allocated during bootup? (Once we've installed the
106 * "real" swapper_pg_dir.)
107 */
108static int initial_heap_home(void)
109{
110#if CHIP_HAS_CBOX_HOME_MAP()
111 if (hash_default)
112 return PAGE_HOME_HASH;
113#endif
114 return smp_processor_id();
115}
116
117/*
118 * Place a pointer to an L2 page table in a middle page
119 * directory entry.
120 */
121static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
122{
123 phys_addr_t pa = __pa(page_table);
124 unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
125 pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
126 BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
127 pteval = pte_set_home(pteval, initial_heap_home());
128 *(pte_t *)pmd = pteval;
129 if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
130 BUG();
131}
132
133#ifdef __tilegx__
134
135#if HV_L1_SIZE != HV_L2_SIZE
136# error Rework assumption that L1 and L2 page tables are same size.
137#endif
138
139/* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
140static inline pmd_t *alloc_pmd(void)
141{
142 return (pmd_t *)alloc_pte();
143}
144
145static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
146{
147 assign_pte((pmd_t *)pud, (pte_t *)pmd);
148}
149
150#endif /* __tilegx__ */
151
152/* Replace the given pmd with a full PTE table. */
153void __init shatter_pmd(pmd_t *pmd)
154{
155 pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
156 assign_pte(pmd, pte);
157}
158
159#ifdef CONFIG_HIGHMEM
160/*
161 * This function initializes a certain range of kernel virtual memory
162 * with new bootmem page tables, everywhere page tables are missing in
163 * the given range.
164 */
165
166/*
167 * NOTE: The pagetables are allocated contiguous on the physical space
168 * so we can cache the place of the first one and move around without
169 * checking the pgd every time.
170 */
171static void __init page_table_range_init(unsigned long start,
172 unsigned long end, pgd_t *pgd_base)
173{
174 pgd_t *pgd;
175 int pgd_idx;
176 unsigned long vaddr;
177
178 vaddr = start;
179 pgd_idx = pgd_index(vaddr);
180 pgd = pgd_base + pgd_idx;
181
182 for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
183 pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
184 if (pmd_none(*pmd))
185 assign_pte(pmd, alloc_pte());
186 vaddr += PMD_SIZE;
187 }
188}
189#endif /* CONFIG_HIGHMEM */
190
191
192#if CHIP_HAS_CBOX_HOME_MAP()
193
194static int __initdata ktext_hash = 1; /* .text pages */
195static int __initdata kdata_hash = 1; /* .data and .bss pages */
196int __write_once hash_default = 1; /* kernel allocator pages */
197EXPORT_SYMBOL(hash_default);
198int __write_once kstack_hash = 1; /* if no homecaching, use h4h */
199#endif /* CHIP_HAS_CBOX_HOME_MAP */
200
201/*
202 * CPUs to use to for striping the pages of kernel data. If hash-for-home
203 * is available, this is only relevant if kcache_hash sets up the
204 * .data and .bss to be page-homed, and we don't want the default mode
205 * of using the full set of kernel cpus for the striping.
206 */
207static __initdata struct cpumask kdata_mask;
208static __initdata int kdata_arg_seen;
209
210int __write_once kdata_huge; /* if no homecaching, small pages */
211
212
213/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
214static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
215{
216 prot = pte_set_home(prot, home);
217#if CHIP_HAS_CBOX_HOME_MAP()
218 if (home == PAGE_HOME_IMMUTABLE) {
219 if (ktext_hash)
220 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
221 else
222 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
223 }
224#endif
225 return prot;
226}
227
228/*
229 * For a given kernel data VA, how should it be cached?
230 * We return the complete pgprot_t with caching bits set.
231 */
232static pgprot_t __init init_pgprot(ulong address)
233{
234 int cpu;
235 unsigned long page;
236 enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
237
238#if CHIP_HAS_CBOX_HOME_MAP()
239 /* For kdata=huge, everything is just hash-for-home. */
240 if (kdata_huge)
241 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
242#endif
243
244 /* We map the aliased pages of permanent text inaccessible. */
245 if (address < (ulong) _sinittext - CODE_DELTA)
246 return PAGE_NONE;
247
248 /*
249 * We map read-only data non-coherent for performance. We could
250 * use neighborhood caching on TILE64, but it's not clear it's a win.
251 */
252 if ((address >= (ulong) __start_rodata &&
253 address < (ulong) __end_rodata) ||
254 address == (ulong) empty_zero_page) {
255 return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
256 }
257
258 /* As a performance optimization, keep the boot init stack here. */
259 if (address >= (ulong)&init_thread_union &&
260 address < (ulong)&init_thread_union + THREAD_SIZE)
261 return construct_pgprot(PAGE_KERNEL, smp_processor_id());
262
263#ifndef __tilegx__
264#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
265 /* Force the atomic_locks[] array page to be hash-for-home. */
266 if (address == (ulong) atomic_locks)
267 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
268#endif
269#endif
270
271 /*
272 * Everything else that isn't data or bss is heap, so mark it
273 * with the initial heap home (hash-for-home, or this cpu). This
274 * includes any addresses after the loaded image and any address before
275 * _einitdata, since we already captured the case of text before
276 * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
277 *
278 * All the LOWMEM pages that we mark this way will get their
279 * struct page homecache properly marked later, in set_page_homes().
280 * The HIGHMEM pages we leave with a default zero for their
281 * homes, but with a zero free_time we don't have to actually
282 * do a flush action the first time we use them, either.
283 */
284 if (address >= (ulong) _end || address < (ulong) _einitdata)
285 return construct_pgprot(PAGE_KERNEL, initial_heap_home());
286
287#if CHIP_HAS_CBOX_HOME_MAP()
288 /* Use hash-for-home if requested for data/bss. */
289 if (kdata_hash)
290 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
291#endif
292
293 /*
294 * Make the w1data homed like heap to start with, to avoid
295 * making it part of the page-striped data area when we're just
296 * going to convert it to read-only soon anyway.
297 */
298 if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
299 return construct_pgprot(PAGE_KERNEL, initial_heap_home());
300
301 /*
302 * Otherwise we just hand out consecutive cpus. To avoid
303 * requiring this function to hold state, we just walk forward from
304 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
305 * the requested address, while walking cpu home around kdata_mask.
306 * This is typically no more than a dozen or so iterations.
307 */
308 page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
309 BUG_ON(address < page || address >= (ulong)_end);
310 cpu = cpumask_first(&kdata_mask);
311 for (; page < address; page += PAGE_SIZE) {
312 if (page >= (ulong)&init_thread_union &&
313 page < (ulong)&init_thread_union + THREAD_SIZE)
314 continue;
315 if (page == (ulong)empty_zero_page)
316 continue;
317#ifndef __tilegx__
318#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
319 if (page == (ulong)atomic_locks)
320 continue;
321#endif
322#endif
323 cpu = cpumask_next(cpu, &kdata_mask);
324 if (cpu == NR_CPUS)
325 cpu = cpumask_first(&kdata_mask);
326 }
327 return construct_pgprot(PAGE_KERNEL, cpu);
328}
329
330/*
331 * This function sets up how we cache the kernel text. If we have
332 * hash-for-home support, normally that is used instead (see the
333 * kcache_hash boot flag for more information). But if we end up
334 * using a page-based caching technique, this option sets up the
335 * details of that. In addition, the "ktext=nocache" option may
336 * always be used to disable local caching of text pages, if desired.
337 */
338
339static int __initdata ktext_arg_seen;
340static int __initdata ktext_small;
341static int __initdata ktext_local;
342static int __initdata ktext_all;
343static int __initdata ktext_nondataplane;
344static int __initdata ktext_nocache;
345static struct cpumask __initdata ktext_mask;
346
347static int __init setup_ktext(char *str)
348{
349 if (str == NULL)
350 return -EINVAL;
351
352 /* If you have a leading "nocache", turn off ktext caching */
353 if (strncmp(str, "nocache", 7) == 0) {
354 ktext_nocache = 1;
355 pr_info("ktext: disabling local caching of kernel text\n");
356 str += 7;
357 if (*str == ',')
358 ++str;
359 if (*str == '\0')
360 return 0;
361 }
362
363 ktext_arg_seen = 1;
364
365 /* Default setting on Tile64: use a huge page */
366 if (strcmp(str, "huge") == 0)
367 pr_info("ktext: using one huge locally cached page\n");
368
369 /* Pay TLB cost but get no cache benefit: cache small pages locally */
370 else if (strcmp(str, "local") == 0) {
371 ktext_small = 1;
372 ktext_local = 1;
373 pr_info("ktext: using small pages with local caching\n");
374 }
375
376 /* Neighborhood cache ktext pages on all cpus. */
377 else if (strcmp(str, "all") == 0) {
378 ktext_small = 1;
379 ktext_all = 1;
380 pr_info("ktext: using maximal caching neighborhood\n");
381 }
382
383
384 /* Neighborhood ktext pages on specified mask */
385 else if (cpulist_parse(str, &ktext_mask) == 0) {
386 char buf[NR_CPUS * 5];
387 cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
388 if (cpumask_weight(&ktext_mask) > 1) {
389 ktext_small = 1;
390 pr_info("ktext: using caching neighborhood %s "
391 "with small pages\n", buf);
392 } else {
393 pr_info("ktext: caching on cpu %s with one huge page\n",
394 buf);
395 }
396 }
397
398 else if (*str)
399 return -EINVAL;
400
401 return 0;
402}
403
404early_param("ktext", setup_ktext);
405
406
407static inline pgprot_t ktext_set_nocache(pgprot_t prot)
408{
409 if (!ktext_nocache)
410 prot = hv_pte_set_nc(prot);
411#if CHIP_HAS_NC_AND_NOALLOC_BITS()
412 else
413 prot = hv_pte_set_no_alloc_l2(prot);
414#endif
415 return prot;
416}
417
418#ifndef __tilegx__
419static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
420{
421 return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
422}
423#else
424static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
425{
426 pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
427 if (pud_none(*pud))
428 assign_pmd(pud, alloc_pmd());
429 return pmd_offset(pud, va);
430}
431#endif
432
433/* Temporary page table we use for staging. */
434static pgd_t pgtables[PTRS_PER_PGD]
435 __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
436
437/*
438 * This maps the physical memory to kernel virtual address space, a total
439 * of max_low_pfn pages, by creating page tables starting from address
440 * PAGE_OFFSET.
441 *
442 * This routine transitions us from using a set of compiled-in large
443 * pages to using some more precise caching, including removing access
444 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
445 * marking read-only data as locally cacheable, striping the remaining
446 * .data and .bss across all the available tiles, and removing access
447 * to pages above the top of RAM (thus ensuring a page fault from a bad
448 * virtual address rather than a hypervisor shoot down for accessing
449 * memory outside the assigned limits).
450 */
451static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
452{
453 unsigned long address, pfn;
454 pmd_t *pmd;
455 pte_t *pte;
456 int pte_ofs;
457 const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
458 struct cpumask kstripe_mask;
459 int rc, i;
460
461#if CHIP_HAS_CBOX_HOME_MAP()
462 if (ktext_arg_seen && ktext_hash) {
463 pr_warning("warning: \"ktext\" boot argument ignored"
464 " if \"kcache_hash\" sets up text hash-for-home\n");
465 ktext_small = 0;
466 }
467
468 if (kdata_arg_seen && kdata_hash) {
469 pr_warning("warning: \"kdata\" boot argument ignored"
470 " if \"kcache_hash\" sets up data hash-for-home\n");
471 }
472
473 if (kdata_huge && !hash_default) {
474 pr_warning("warning: disabling \"kdata=huge\"; requires"
475 " kcache_hash=all or =allbutstack\n");
476 kdata_huge = 0;
477 }
478#endif
479
480 /*
481 * Set up a mask for cpus to use for kernel striping.
482 * This is normally all cpus, but minus dataplane cpus if any.
483 * If the dataplane covers the whole chip, we stripe over
484 * the whole chip too.
485 */
486 cpumask_copy(&kstripe_mask, cpu_possible_mask);
487 if (!kdata_arg_seen)
488 kdata_mask = kstripe_mask;
489
490 /* Allocate and fill in L2 page tables */
491 for (i = 0; i < MAX_NUMNODES; ++i) {
492#ifdef CONFIG_HIGHMEM
493 unsigned long end_pfn = node_lowmem_end_pfn[i];
494#else
495 unsigned long end_pfn = node_end_pfn[i];
496#endif
497 unsigned long end_huge_pfn = 0;
498
499 /* Pre-shatter the last huge page to allow per-cpu pages. */
500 if (kdata_huge)
501 end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
502
503 pfn = node_start_pfn[i];
504
505 /* Allocate enough memory to hold L2 page tables for node. */
506 init_prealloc_ptes(i, end_pfn - pfn);
507
508 address = (unsigned long) pfn_to_kaddr(pfn);
509 while (pfn < end_pfn) {
510 BUG_ON(address & (HPAGE_SIZE-1));
511 pmd = get_pmd(pgtables, address);
512 pte = get_prealloc_pte(pfn);
513 if (pfn < end_huge_pfn) {
514 pgprot_t prot = init_pgprot(address);
515 *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
516 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
517 pfn++, pte_ofs++, address += PAGE_SIZE)
518 pte[pte_ofs] = pfn_pte(pfn, prot);
519 } else {
520 if (kdata_huge)
521 printk(KERN_DEBUG "pre-shattered huge"
522 " page at %#lx\n", address);
523 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
524 pfn++, pte_ofs++, address += PAGE_SIZE) {
525 pgprot_t prot = init_pgprot(address);
526 pte[pte_ofs] = pfn_pte(pfn, prot);
527 }
528 assign_pte(pmd, pte);
529 }
530 }
531 }
532
533 /*
534 * Set or check ktext_map now that we have cpu_possible_mask
535 * and kstripe_mask to work with.
536 */
537 if (ktext_all)
538 cpumask_copy(&ktext_mask, cpu_possible_mask);
539 else if (ktext_nondataplane)
540 ktext_mask = kstripe_mask;
541 else if (!cpumask_empty(&ktext_mask)) {
542 /* Sanity-check any mask that was requested */
543 struct cpumask bad;
544 cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
545 cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
546 if (!cpumask_empty(&bad)) {
547 char buf[NR_CPUS * 5];
548 cpulist_scnprintf(buf, sizeof(buf), &bad);
549 pr_info("ktext: not using unavailable cpus %s\n", buf);
550 }
551 if (cpumask_empty(&ktext_mask)) {
552 pr_warning("ktext: no valid cpus; caching on %d.\n",
553 smp_processor_id());
554 cpumask_copy(&ktext_mask,
555 cpumask_of(smp_processor_id()));
556 }
557 }
558
559 address = MEM_SV_INTRPT;
560 pmd = get_pmd(pgtables, address);
561 if (ktext_small) {
562 /* Allocate an L2 PTE for the kernel text */
563 int cpu = 0;
564 pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
565 PAGE_HOME_IMMUTABLE);
566
567 if (ktext_local) {
568 if (ktext_nocache)
569 prot = hv_pte_set_mode(prot,
570 HV_PTE_MODE_UNCACHED);
571 else
572 prot = hv_pte_set_mode(prot,
573 HV_PTE_MODE_CACHE_NO_L3);
574 } else {
575 prot = hv_pte_set_mode(prot,
576 HV_PTE_MODE_CACHE_TILE_L3);
577 cpu = cpumask_first(&ktext_mask);
578
579 prot = ktext_set_nocache(prot);
580 }
581
582 BUG_ON(address != (unsigned long)_stext);
583 pfn = 0; /* code starts at PA 0 */
584 pte = alloc_pte();
585 for (pte_ofs = 0; address < (unsigned long)_einittext;
586 pfn++, pte_ofs++, address += PAGE_SIZE) {
587 if (!ktext_local) {
588 prot = set_remote_cache_cpu(prot, cpu);
589 cpu = cpumask_next(cpu, &ktext_mask);
590 if (cpu == NR_CPUS)
591 cpu = cpumask_first(&ktext_mask);
592 }
593 pte[pte_ofs] = pfn_pte(pfn, prot);
594 }
595 assign_pte(pmd, pte);
596 } else {
597 pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
598 pteval = pte_mkhuge(pteval);
599#if CHIP_HAS_CBOX_HOME_MAP()
600 if (ktext_hash) {
601 pteval = hv_pte_set_mode(pteval,
602 HV_PTE_MODE_CACHE_HASH_L3);
603 pteval = ktext_set_nocache(pteval);
604 } else
605#endif /* CHIP_HAS_CBOX_HOME_MAP() */
606 if (cpumask_weight(&ktext_mask) == 1) {
607 pteval = set_remote_cache_cpu(pteval,
608 cpumask_first(&ktext_mask));
609 pteval = hv_pte_set_mode(pteval,
610 HV_PTE_MODE_CACHE_TILE_L3);
611 pteval = ktext_set_nocache(pteval);
612 } else if (ktext_nocache)
613 pteval = hv_pte_set_mode(pteval,
614 HV_PTE_MODE_UNCACHED);
615 else
616 pteval = hv_pte_set_mode(pteval,
617 HV_PTE_MODE_CACHE_NO_L3);
618 *(pte_t *)pmd = pteval;
619 }
620
621 /* Set swapper_pgprot here so it is flushed to memory right away. */
622 swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
623
624 /*
625 * Since we may be changing the caching of the stack and page
626 * table itself, we invoke an assembly helper to do the
627 * following steps:
628 *
629 * - flush the cache so we start with an empty slate
630 * - install pgtables[] as the real page table
631 * - flush the TLB so the new page table takes effect
632 */
633 rc = flush_and_install_context(__pa(pgtables),
634 init_pgprot((unsigned long)pgtables),
635 __get_cpu_var(current_asid),
636 cpumask_bits(my_cpu_mask));
637 BUG_ON(rc != 0);
638
639 /* Copy the page table back to the normal swapper_pg_dir. */
640 memcpy(pgd_base, pgtables, sizeof(pgtables));
641 __install_page_table(pgd_base, __get_cpu_var(current_asid),
642 swapper_pgprot);
643
644 /*
645 * We just read swapper_pgprot and thus brought it into the cache,
646 * with its new home & caching mode. When we start the other CPUs,
647 * they're going to reference swapper_pgprot via their initial fake
648 * VA-is-PA mappings, which cache everything locally. At that
649 * time, if it's in our cache with a conflicting home, the
650 * simulator's coherence checker will complain. So, flush it out
651 * of our cache; we're not going to ever use it again anyway.
652 */
653 __insn_finv(&swapper_pgprot);
654}
655
656/*
657 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
658 * is valid. The argument is a physical page number.
659 *
660 * On Tile, the only valid things for which we can just hand out unchecked
661 * PTEs are the kernel code and data. Anything else might change its
662 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
663 * Note that init_thread_union is released to heap soon after boot,
664 * so we include it in the init data.
665 *
666 * For TILE-Gx, we might want to consider allowing access to PA
667 * regions corresponding to PCI space, etc.
668 */
669int devmem_is_allowed(unsigned long pagenr)
670{
671 return pagenr < kaddr_to_pfn(_end) &&
672 !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
673 pagenr < kaddr_to_pfn(_einitdata)) &&
674 !(pagenr >= kaddr_to_pfn(_sinittext) ||
675 pagenr <= kaddr_to_pfn(_einittext-1));
676}
677
678#ifdef CONFIG_HIGHMEM
679static void __init permanent_kmaps_init(pgd_t *pgd_base)
680{
681 pgd_t *pgd;
682 pud_t *pud;
683 pmd_t *pmd;
684 pte_t *pte;
685 unsigned long vaddr;
686
687 vaddr = PKMAP_BASE;
688 page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
689
690 pgd = swapper_pg_dir + pgd_index(vaddr);
691 pud = pud_offset(pgd, vaddr);
692 pmd = pmd_offset(pud, vaddr);
693 pte = pte_offset_kernel(pmd, vaddr);
694 pkmap_page_table = pte;
695}
696#endif /* CONFIG_HIGHMEM */
697
698
699static void __init init_free_pfn_range(unsigned long start, unsigned long end)
700{
701 unsigned long pfn;
702 struct page *page = pfn_to_page(start);
703
704 for (pfn = start; pfn < end; ) {
705 /* Optimize by freeing pages in large batches */
706 int order = __ffs(pfn);
707 int count, i;
708 struct page *p;
709
710 if (order >= MAX_ORDER)
711 order = MAX_ORDER-1;
712 count = 1 << order;
713 while (pfn + count > end) {
714 count >>= 1;
715 --order;
716 }
717 for (p = page, i = 0; i < count; ++i, ++p) {
718 __ClearPageReserved(p);
719 /*
720 * Hacky direct set to avoid unnecessary
721 * lock take/release for EVERY page here.
722 */
723 p->_count.counter = 0;
724 p->_mapcount.counter = -1;
725 }
726 init_page_count(page);
727 __free_pages(page, order);
728 totalram_pages += count;
729
730 page += count;
731 pfn += count;
732 }
733}
734
735static void __init set_non_bootmem_pages_init(void)
736{
737 struct zone *z;
738 for_each_zone(z) {
739 unsigned long start, end;
740 int nid = z->zone_pgdat->node_id;
741 int idx = zone_idx(z);
742
743 start = z->zone_start_pfn;
744 if (start == 0)
745 continue; /* bootmem */
746 end = start + z->spanned_pages;
747 if (idx == ZONE_NORMAL) {
748 BUG_ON(start != node_start_pfn[nid]);
749 start = node_free_pfn[nid];
750 }
751#ifdef CONFIG_HIGHMEM
752 if (idx == ZONE_HIGHMEM)
753 totalhigh_pages += z->spanned_pages;
754#endif
755 if (kdata_huge) {
756 unsigned long percpu_pfn = node_percpu_pfn[nid];
757 if (start < percpu_pfn && end > percpu_pfn)
758 end = percpu_pfn;
759 }
760#ifdef CONFIG_PCI
761 if (start <= pci_reserve_start_pfn &&
762 end > pci_reserve_start_pfn) {
763 if (end > pci_reserve_end_pfn)
764 init_free_pfn_range(pci_reserve_end_pfn, end);
765 end = pci_reserve_start_pfn;
766 }
767#endif
768 init_free_pfn_range(start, end);
769 }
770}
771
772/*
773 * paging_init() sets up the page tables - note that all of lowmem is
774 * already mapped by head.S.
775 */
776void __init paging_init(void)
777{
778#ifdef CONFIG_HIGHMEM
779 unsigned long vaddr, end;
780#endif
781#ifdef __tilegx__
782 pud_t *pud;
783#endif
784 pgd_t *pgd_base = swapper_pg_dir;
785
786 kernel_physical_mapping_init(pgd_base);
787
788#ifdef CONFIG_HIGHMEM
789 /*
790 * Fixed mappings, only the page table structure has to be
791 * created - mappings will be set by set_fixmap():
792 */
793 vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
794 end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
795 page_table_range_init(vaddr, end, pgd_base);
796 permanent_kmaps_init(pgd_base);
797#endif
798
799#ifdef __tilegx__
800 /*
801 * Since GX allocates just one pmd_t array worth of vmalloc space,
802 * we go ahead and allocate it statically here, then share it
803 * globally. As a result we don't have to worry about any task
804 * changing init_mm once we get up and running, and there's no
805 * need for e.g. vmalloc_sync_all().
806 */
807 BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
808 pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
809 assign_pmd(pud, alloc_pmd());
810#endif
811}
812
813
814/*
815 * Walk the kernel page tables and derive the page_home() from
816 * the PTEs, so that set_pte() can properly validate the caching
817 * of all PTEs it sees.
818 */
819void __init set_page_homes(void)
820{
821}
822
823static void __init set_max_mapnr_init(void)
824{
825#ifdef CONFIG_FLATMEM
826 max_mapnr = max_low_pfn;
827#endif
828}
829
830void __init mem_init(void)
831{
832 int codesize, datasize, initsize;
833 int i;
834#ifndef __tilegx__
835 void *last;
836#endif
837
838#ifdef CONFIG_FLATMEM
839 BUG_ON(!mem_map);
840#endif
841
842#ifdef CONFIG_HIGHMEM
843 /* check that fixmap and pkmap do not overlap */
844 if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
845 pr_err("fixmap and kmap areas overlap"
846 " - this will crash\n");
847 pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
848 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
849 FIXADDR_START);
850 BUG();
851 }
852#endif
853
854 set_max_mapnr_init();
855
856 /* this will put all bootmem onto the freelists */
857 totalram_pages += free_all_bootmem();
858
859 /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
860 set_non_bootmem_pages_init();
861
862 codesize = (unsigned long)&_etext - (unsigned long)&_text;
863 datasize = (unsigned long)&_end - (unsigned long)&_sdata;
864 initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext;
865 initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
866
867 pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
868 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
869 num_physpages << (PAGE_SHIFT-10),
870 codesize >> 10,
871 datasize >> 10,
872 initsize >> 10,
873 (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
874 );
875
876 /*
877 * In debug mode, dump some interesting memory mappings.
878 */
879#ifdef CONFIG_HIGHMEM
880 printk(KERN_DEBUG " KMAP %#lx - %#lx\n",
881 FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
882 printk(KERN_DEBUG " PKMAP %#lx - %#lx\n",
883 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
884#endif
885#ifdef CONFIG_HUGEVMAP
886 printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n",
887 HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
888#endif
889 printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n",
890 _VMALLOC_START, _VMALLOC_END - 1);
891#ifdef __tilegx__
892 for (i = MAX_NUMNODES-1; i >= 0; --i) {
893 struct pglist_data *node = &node_data[i];
894 if (node->node_present_pages) {
895 unsigned long start = (unsigned long)
896 pfn_to_kaddr(node->node_start_pfn);
897 unsigned long end = start +
898 (node->node_present_pages << PAGE_SHIFT);
899 printk(KERN_DEBUG " MEM%d %#lx - %#lx\n",
900 i, start, end - 1);
901 }
902 }
903#else
904 last = high_memory;
905 for (i = MAX_NUMNODES-1; i >= 0; --i) {
906 if ((unsigned long)vbase_map[i] != -1UL) {
907 printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n",
908 i, (unsigned long) (vbase_map[i]),
909 (unsigned long) (last-1));
910 last = vbase_map[i];
911 }
912 }
913#endif
914
915#ifndef __tilegx__
916 /*
917 * Convert from using one lock for all atomic operations to
918 * one per cpu.
919 */
920 __init_atomic_per_cpu();
921#endif
922}
923
924/*
925 * this is for the non-NUMA, single node SMP system case.
926 * Specifically, in the case of x86, we will always add
927 * memory to the highmem for now.
928 */
929#ifndef CONFIG_NEED_MULTIPLE_NODES
930int arch_add_memory(u64 start, u64 size)
931{
932 struct pglist_data *pgdata = &contig_page_data;
933 struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
934 unsigned long start_pfn = start >> PAGE_SHIFT;
935 unsigned long nr_pages = size >> PAGE_SHIFT;
936
937 return __add_pages(zone, start_pfn, nr_pages);
938}
939
940int remove_memory(u64 start, u64 size)
941{
942 return -EINVAL;
943}
944#endif
945
946struct kmem_cache *pgd_cache;
947
948void __init pgtable_cache_init(void)
949{
950 pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
951 if (!pgd_cache)
952 panic("pgtable_cache_init(): Cannot create pgd cache");
953}
954
955#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
956/*
957 * The __w1data area holds data that is only written during initialization,
958 * and is read-only and thus freely cacheable thereafter. Fix the page
959 * table entries that cover that region accordingly.
960 */
961static void mark_w1data_ro(void)
962{
963 /* Loop over page table entries */
964 unsigned long addr = (unsigned long)__w1data_begin;
965 BUG_ON((addr & (PAGE_SIZE-1)) != 0);
966 for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
967 unsigned long pfn = kaddr_to_pfn((void *)addr);
968 pte_t *ptep = virt_to_pte(NULL, addr);
969 BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */
970 set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
971 }
972}
973#endif
974
975#ifdef CONFIG_DEBUG_PAGEALLOC
976static long __write_once initfree;
977#else
978static long __write_once initfree = 1;
979#endif
980
981/* Select whether to free (1) or mark unusable (0) the __init pages. */
982static int __init set_initfree(char *str)
983{
984 long val;
985 if (strict_strtol(str, 0, &val) == 0) {
986 initfree = val;
987 pr_info("initfree: %s free init pages\n",
988 initfree ? "will" : "won't");
989 }
990 return 1;
991}
992__setup("initfree=", set_initfree);
993
994static void free_init_pages(char *what, unsigned long begin, unsigned long end)
995{
996 unsigned long addr = (unsigned long) begin;
997
998 if (kdata_huge && !initfree) {
999 pr_warning("Warning: ignoring initfree=0:"
1000 " incompatible with kdata=huge\n");
1001 initfree = 1;
1002 }
1003 end = (end + PAGE_SIZE - 1) & PAGE_MASK;
1004 local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
1005 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1006 /*
1007 * Note we just reset the home here directly in the
1008 * page table. We know this is safe because our caller
1009 * just flushed the caches on all the other cpus,
1010 * and they won't be touching any of these pages.
1011 */
1012 int pfn = kaddr_to_pfn((void *)addr);
1013 struct page *page = pfn_to_page(pfn);
1014 pte_t *ptep = virt_to_pte(NULL, addr);
1015 if (!initfree) {
1016 /*
1017 * If debugging page accesses then do not free
1018 * this memory but mark them not present - any
1019 * buggy init-section access will create a
1020 * kernel page fault:
1021 */
1022 pte_clear(&init_mm, addr, ptep);
1023 continue;
1024 }
1025 __ClearPageReserved(page);
1026 init_page_count(page);
1027 if (pte_huge(*ptep))
1028 BUG_ON(!kdata_huge);
1029 else
1030 set_pte_at(&init_mm, addr, ptep,
1031 pfn_pte(pfn, PAGE_KERNEL));
1032 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1033 free_page(addr);
1034 totalram_pages++;
1035 }
1036 pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
1037}
1038
1039void free_initmem(void)
1040{
1041 const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1042
1043 /*
1044 * Evict the dirty initdata on the boot cpu, evict the w1data
1045 * wherever it's homed, and evict all the init code everywhere.
1046 * We are guaranteed that no one will touch the init pages any
1047 * more, and although other cpus may be touching the w1data,
1048 * we only actually change the caching on tile64, which won't
1049 * be keeping local copies in the other tiles' caches anyway.
1050 */
1051 homecache_evict(&cpu_cacheable_map);
1052
1053 /* Free the data pages that we won't use again after init. */
1054 free_init_pages("unused kernel data",
1055 (unsigned long)_sinitdata,
1056 (unsigned long)_einitdata);
1057
1058 /*
1059 * Free the pages mapped from 0xc0000000 that correspond to code
1060 * pages from MEM_SV_INTRPT that we won't use again after init.
1061 */
1062 free_init_pages("unused kernel text",
1063 (unsigned long)_sinittext - text_delta,
1064 (unsigned long)_einittext - text_delta);
1065
1066#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1067 /*
1068 * Upgrade the .w1data section to globally cached.
1069 * We don't do this on tilepro, since the cache architecture
1070 * pretty much makes it irrelevant, and in any case we end
1071 * up having racing issues with other tiles that may touch
1072 * the data after we flush the cache but before we update
1073 * the PTEs and flush the TLBs, causing sharer shootdowns
1074 * later. Even though this is to clean data, it seems like
1075 * an unnecessary complication.
1076 */
1077 mark_w1data_ro();
1078#endif
1079
1080 /* Do a global TLB flush so everyone sees the changes. */
1081 flush_tlb_all();
1082}