Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * unaligned.c: Unaligned load/store trap handling with special
  3 *              cases for the kernel to do them more quickly.
  4 *
  5 * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
  6 * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7 */
  8
  9
 10#include <linux/jiffies.h>
 11#include <linux/kernel.h>
 12#include <linux/sched.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <asm/asi.h>
 16#include <asm/ptrace.h>
 17#include <asm/pstate.h>
 18#include <asm/processor.h>
 
 19#include <asm/uaccess.h>
 20#include <linux/smp.h>
 21#include <linux/bitops.h>
 22#include <linux/perf_event.h>
 23#include <linux/ratelimit.h>
 
 24#include <asm/fpumacro.h>
 25#include <asm/cacheflush.h>
 26
 27enum direction {
 28	load,    /* ld, ldd, ldh, ldsh */
 29	store,   /* st, std, sth, stsh */
 30	both,    /* Swap, ldstub, cas, ... */
 31	fpld,
 32	fpst,
 33	invalid,
 34};
 35
 36static inline enum direction decode_direction(unsigned int insn)
 37{
 38	unsigned long tmp = (insn >> 21) & 1;
 39
 40	if (!tmp)
 41		return load;
 42	else {
 43		switch ((insn>>19)&0xf) {
 44		case 15: /* swap* */
 45			return both;
 46		default:
 47			return store;
 48		}
 49	}
 50}
 51
 52/* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
 53static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
 54{
 55	unsigned int tmp;
 56
 57	tmp = ((insn >> 19) & 0xf);
 58	if (tmp == 11 || tmp == 14) /* ldx/stx */
 59		return 8;
 60	tmp &= 3;
 61	if (!tmp)
 62		return 4;
 63	else if (tmp == 3)
 64		return 16;	/* ldd/std - Although it is actually 8 */
 65	else if (tmp == 2)
 66		return 2;
 67	else {
 68		printk("Impossible unaligned trap. insn=%08x\n", insn);
 69		die_if_kernel("Byte sized unaligned access?!?!", regs);
 70
 71		/* GCC should never warn that control reaches the end
 72		 * of this function without returning a value because
 73		 * die_if_kernel() is marked with attribute 'noreturn'.
 74		 * Alas, some versions do...
 75		 */
 76
 77		return 0;
 78	}
 79}
 80
 81static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
 82{
 83	if (insn & 0x800000) {
 84		if (insn & 0x2000)
 85			return (unsigned char)(regs->tstate >> 24);	/* %asi */
 86		else
 87			return (unsigned char)(insn >> 5);		/* imm_asi */
 88	} else
 89		return ASI_P;
 90}
 91
 92/* 0x400000 = signed, 0 = unsigned */
 93static inline int decode_signedness(unsigned int insn)
 94{
 95	return (insn & 0x400000);
 96}
 97
 98static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
 99				       unsigned int rd, int from_kernel)
100{
101	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
102		if (from_kernel != 0)
103			__asm__ __volatile__("flushw");
104		else
105			flushw_user();
106	}
107}
108
109static inline long sign_extend_imm13(long imm)
110{
111	return imm << 51 >> 51;
112}
113
114static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
115{
116	unsigned long value;
117	
118	if (reg < 16)
119		return (!reg ? 0 : regs->u_regs[reg]);
120	if (regs->tstate & TSTATE_PRIV) {
121		struct reg_window *win;
122		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
123		value = win->locals[reg - 16];
124	} else if (test_thread_flag(TIF_32BIT)) {
125		struct reg_window32 __user *win32;
126		win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
127		get_user(value, &win32->locals[reg - 16]);
128	} else {
129		struct reg_window __user *win;
130		win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
131		get_user(value, &win->locals[reg - 16]);
132	}
133	return value;
134}
135
136static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
137{
138	if (reg < 16)
139		return &regs->u_regs[reg];
140	if (regs->tstate & TSTATE_PRIV) {
141		struct reg_window *win;
142		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
143		return &win->locals[reg - 16];
144	} else if (test_thread_flag(TIF_32BIT)) {
145		struct reg_window32 *win32;
146		win32 = (struct reg_window32 *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
147		return (unsigned long *)&win32->locals[reg - 16];
148	} else {
149		struct reg_window *win;
150		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
151		return &win->locals[reg - 16];
152	}
153}
154
155unsigned long compute_effective_address(struct pt_regs *regs,
156					unsigned int insn, unsigned int rd)
157{
158	unsigned int rs1 = (insn >> 14) & 0x1f;
159	unsigned int rs2 = insn & 0x1f;
160	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
161
162	if (insn & 0x2000) {
163		maybe_flush_windows(rs1, 0, rd, from_kernel);
164		return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
165	} else {
166		maybe_flush_windows(rs1, rs2, rd, from_kernel);
167		return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
168	}
169}
170
171/* This is just to make gcc think die_if_kernel does return... */
172static void __used unaligned_panic(char *str, struct pt_regs *regs)
173{
174	die_if_kernel(str, regs);
175}
176
177extern int do_int_load(unsigned long *dest_reg, int size,
178		       unsigned long *saddr, int is_signed, int asi);
179	
180extern int __do_int_store(unsigned long *dst_addr, int size,
181			  unsigned long src_val, int asi);
182
183static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
184			       struct pt_regs *regs, int asi, int orig_asi)
185{
186	unsigned long zero = 0;
187	unsigned long *src_val_p = &zero;
188	unsigned long src_val;
189
190	if (size == 16) {
191		size = 8;
192		zero = (((long)(reg_num ?
193		        (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
194			(unsigned)fetch_reg(reg_num + 1, regs);
195	} else if (reg_num) {
196		src_val_p = fetch_reg_addr(reg_num, regs);
197	}
198	src_val = *src_val_p;
199	if (unlikely(asi != orig_asi)) {
200		switch (size) {
201		case 2:
202			src_val = swab16(src_val);
203			break;
204		case 4:
205			src_val = swab32(src_val);
206			break;
207		case 8:
208			src_val = swab64(src_val);
209			break;
210		case 16:
211		default:
212			BUG();
213			break;
214		}
215	}
216	return __do_int_store(dst_addr, size, src_val, asi);
217}
218
219static inline void advance(struct pt_regs *regs)
220{
221	regs->tpc   = regs->tnpc;
222	regs->tnpc += 4;
223	if (test_thread_flag(TIF_32BIT)) {
224		regs->tpc &= 0xffffffff;
225		regs->tnpc &= 0xffffffff;
226	}
227}
228
229static inline int floating_point_load_or_store_p(unsigned int insn)
230{
231	return (insn >> 24) & 1;
232}
233
234static inline int ok_for_kernel(unsigned int insn)
235{
236	return !floating_point_load_or_store_p(insn);
237}
238
239static void kernel_mna_trap_fault(int fixup_tstate_asi)
240{
241	struct pt_regs *regs = current_thread_info()->kern_una_regs;
242	unsigned int insn = current_thread_info()->kern_una_insn;
243	const struct exception_table_entry *entry;
244
245	entry = search_exception_tables(regs->tpc);
246	if (!entry) {
247		unsigned long address;
248
249		address = compute_effective_address(regs, insn,
250						    ((insn >> 25) & 0x1f));
251        	if (address < PAGE_SIZE) {
252                	printk(KERN_ALERT "Unable to handle kernel NULL "
253			       "pointer dereference in mna handler");
254        	} else
255                	printk(KERN_ALERT "Unable to handle kernel paging "
256			       "request in mna handler");
257	        printk(KERN_ALERT " at virtual address %016lx\n",address);
258		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
259			(current->mm ? CTX_HWBITS(current->mm->context) :
260			CTX_HWBITS(current->active_mm->context)));
261		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
262			(current->mm ? (unsigned long) current->mm->pgd :
263			(unsigned long) current->active_mm->pgd));
264	        die_if_kernel("Oops", regs);
265		/* Not reached */
266	}
267	regs->tpc = entry->fixup;
268	regs->tnpc = regs->tpc + 4;
269
270	if (fixup_tstate_asi) {
271		regs->tstate &= ~TSTATE_ASI;
272		regs->tstate |= (ASI_AIUS << 24UL);
273	}
274}
275
276static void log_unaligned(struct pt_regs *regs)
277{
278	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
279
280	if (__ratelimit(&ratelimit)) {
281		printk("Kernel unaligned access at TPC[%lx] %pS\n",
282		       regs->tpc, (void *) regs->tpc);
283	}
284}
285
286asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
287{
288	enum direction dir = decode_direction(insn);
289	int size = decode_access_size(regs, insn);
290	int orig_asi, asi;
291
292	current_thread_info()->kern_una_regs = regs;
293	current_thread_info()->kern_una_insn = insn;
294
295	orig_asi = asi = decode_asi(insn, regs);
296
297	/* If this is a {get,put}_user() on an unaligned userspace pointer,
298	 * just signal a fault and do not log the event.
299	 */
300	if (asi == ASI_AIUS) {
301		kernel_mna_trap_fault(0);
302		return;
303	}
304
305	log_unaligned(regs);
306
307	if (!ok_for_kernel(insn) || dir == both) {
308		printk("Unsupported unaligned load/store trap for kernel "
309		       "at <%016lx>.\n", regs->tpc);
310		unaligned_panic("Kernel does fpu/atomic "
311				"unaligned load/store.", regs);
312
313		kernel_mna_trap_fault(0);
314	} else {
315		unsigned long addr, *reg_addr;
316		int err;
317
318		addr = compute_effective_address(regs, insn,
319						 ((insn >> 25) & 0x1f));
320		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
321		switch (asi) {
322		case ASI_NL:
323		case ASI_AIUPL:
324		case ASI_AIUSL:
325		case ASI_PL:
326		case ASI_SL:
327		case ASI_PNFL:
328		case ASI_SNFL:
329			asi &= ~0x08;
330			break;
331		}
332		switch (dir) {
333		case load:
334			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
335			err = do_int_load(reg_addr, size,
336					  (unsigned long *) addr,
337					  decode_signedness(insn), asi);
338			if (likely(!err) && unlikely(asi != orig_asi)) {
339				unsigned long val_in = *reg_addr;
340				switch (size) {
341				case 2:
342					val_in = swab16(val_in);
343					break;
344				case 4:
345					val_in = swab32(val_in);
346					break;
347				case 8:
348					val_in = swab64(val_in);
349					break;
350				case 16:
351				default:
352					BUG();
353					break;
354				}
355				*reg_addr = val_in;
356			}
357			break;
358
359		case store:
360			err = do_int_store(((insn>>25)&0x1f), size,
361					   (unsigned long *) addr, regs,
362					   asi, orig_asi);
363			break;
364
365		default:
366			panic("Impossible kernel unaligned trap.");
367			/* Not reached... */
368		}
369		if (unlikely(err))
370			kernel_mna_trap_fault(1);
371		else
372			advance(regs);
373	}
374}
375
376int handle_popc(u32 insn, struct pt_regs *regs)
377{
378	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
379	int ret, rd = ((insn >> 25) & 0x1f);
380	u64 value;
381	                        
382	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
383	if (insn & 0x2000) {
384		maybe_flush_windows(0, 0, rd, from_kernel);
385		value = sign_extend_imm13(insn);
386	} else {
387		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
388		value = fetch_reg(insn & 0x1f, regs);
389	}
390	ret = hweight64(value);
391	if (rd < 16) {
392		if (rd)
393			regs->u_regs[rd] = ret;
394	} else {
395		if (test_thread_flag(TIF_32BIT)) {
396			struct reg_window32 __user *win32;
397			win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
398			put_user(ret, &win32->locals[rd - 16]);
399		} else {
400			struct reg_window __user *win;
401			win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
402			put_user(ret, &win->locals[rd - 16]);
403		}
404	}
405	advance(regs);
406	return 1;
407}
408
409extern void do_fpother(struct pt_regs *regs);
410extern void do_privact(struct pt_regs *regs);
411extern void spitfire_data_access_exception(struct pt_regs *regs,
412					   unsigned long sfsr,
413					   unsigned long sfar);
414extern void sun4v_data_access_exception(struct pt_regs *regs,
415					unsigned long addr,
416					unsigned long type_ctx);
417
418int handle_ldf_stq(u32 insn, struct pt_regs *regs)
419{
420	unsigned long addr = compute_effective_address(regs, insn, 0);
421	int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
422	struct fpustate *f = FPUSTATE;
423	int asi = decode_asi(insn, regs);
424	int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
425
426	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
427
428	save_and_clear_fpu();
429	current_thread_info()->xfsr[0] &= ~0x1c000;
430	if (freg & 3) {
431		current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
432		do_fpother(regs);
433		return 0;
434	}
435	if (insn & 0x200000) {
436		/* STQ */
437		u64 first = 0, second = 0;
438		
439		if (current_thread_info()->fpsaved[0] & flag) {
440			first = *(u64 *)&f->regs[freg];
441			second = *(u64 *)&f->regs[freg+2];
442		}
443		if (asi < 0x80) {
444			do_privact(regs);
445			return 1;
446		}
447		switch (asi) {
448		case ASI_P:
449		case ASI_S: break;
450		case ASI_PL:
451		case ASI_SL: 
452			{
453				/* Need to convert endians */
454				u64 tmp = __swab64p(&first);
455				
456				first = __swab64p(&second);
457				second = tmp;
458				break;
459			}
460		default:
461			if (tlb_type == hypervisor)
462				sun4v_data_access_exception(regs, addr, 0);
463			else
464				spitfire_data_access_exception(regs, 0, addr);
465			return 1;
466		}
467		if (put_user (first >> 32, (u32 __user *)addr) ||
468		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
469		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
470		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
471			if (tlb_type == hypervisor)
472				sun4v_data_access_exception(regs, addr, 0);
473			else
474				spitfire_data_access_exception(regs, 0, addr);
475		    	return 1;
476		}
477	} else {
478		/* LDF, LDDF, LDQF */
479		u32 data[4] __attribute__ ((aligned(8)));
480		int size, i;
481		int err;
482
483		if (asi < 0x80) {
484			do_privact(regs);
485			return 1;
486		} else if (asi > ASI_SNFL) {
487			if (tlb_type == hypervisor)
488				sun4v_data_access_exception(regs, addr, 0);
489			else
490				spitfire_data_access_exception(regs, 0, addr);
491			return 1;
492		}
493		switch (insn & 0x180000) {
494		case 0x000000: size = 1; break;
495		case 0x100000: size = 4; break;
496		default: size = 2; break;
497		}
498		for (i = 0; i < size; i++)
499			data[i] = 0;
500		
501		err = get_user (data[0], (u32 __user *) addr);
502		if (!err) {
503			for (i = 1; i < size; i++)
504				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
505		}
506		if (err && !(asi & 0x2 /* NF */)) {
507			if (tlb_type == hypervisor)
508				sun4v_data_access_exception(regs, addr, 0);
509			else
510				spitfire_data_access_exception(regs, 0, addr);
511			return 1;
512		}
513		if (asi & 0x8) /* Little */ {
514			u64 tmp;
515
516			switch (size) {
517			case 1: data[0] = le32_to_cpup(data + 0); break;
518			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
519				break;
520			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
521				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
522				*(u64 *)(data + 2) = tmp;
523				break;
524			}
525		}
526		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
527			current_thread_info()->fpsaved[0] = FPRS_FEF;
528			current_thread_info()->gsr[0] = 0;
529		}
530		if (!(current_thread_info()->fpsaved[0] & flag)) {
531			if (freg < 32)
532				memset(f->regs, 0, 32*sizeof(u32));
533			else
534				memset(f->regs+32, 0, 32*sizeof(u32));
535		}
536		memcpy(f->regs + freg, data, size * 4);
537		current_thread_info()->fpsaved[0] |= flag;
538	}
539	advance(regs);
540	return 1;
541}
542
543void handle_ld_nf(u32 insn, struct pt_regs *regs)
544{
545	int rd = ((insn >> 25) & 0x1f);
546	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
547	unsigned long *reg;
548	                        
549	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
550
551	maybe_flush_windows(0, 0, rd, from_kernel);
552	reg = fetch_reg_addr(rd, regs);
553	if (from_kernel || rd < 16) {
554		reg[0] = 0;
555		if ((insn & 0x780000) == 0x180000)
556			reg[1] = 0;
557	} else if (test_thread_flag(TIF_32BIT)) {
558		put_user(0, (int __user *) reg);
559		if ((insn & 0x780000) == 0x180000)
560			put_user(0, ((int __user *) reg) + 1);
561	} else {
562		put_user(0, (unsigned long __user *) reg);
563		if ((insn & 0x780000) == 0x180000)
564			put_user(0, (unsigned long __user *) reg + 1);
565	}
566	advance(regs);
567}
568
569void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
570{
571	unsigned long pc = regs->tpc;
572	unsigned long tstate = regs->tstate;
573	u32 insn;
574	u64 value;
575	u8 freg;
576	int flag;
577	struct fpustate *f = FPUSTATE;
578
579	if (tstate & TSTATE_PRIV)
580		die_if_kernel("lddfmna from kernel", regs);
581	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
582	if (test_thread_flag(TIF_32BIT))
583		pc = (u32)pc;
584	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
585		int asi = decode_asi(insn, regs);
586		u32 first, second;
587		int err;
588
589		if ((asi > ASI_SNFL) ||
590		    (asi < ASI_P))
591			goto daex;
592		first = second = 0;
593		err = get_user(first, (u32 __user *)sfar);
594		if (!err)
595			err = get_user(second, (u32 __user *)(sfar + 4));
596		if (err) {
597			if (!(asi & 0x2))
598				goto daex;
599			first = second = 0;
600		}
601		save_and_clear_fpu();
602		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
603		value = (((u64)first) << 32) | second;
604		if (asi & 0x8) /* Little */
605			value = __swab64p(&value);
606		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
607		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
608			current_thread_info()->fpsaved[0] = FPRS_FEF;
609			current_thread_info()->gsr[0] = 0;
610		}
611		if (!(current_thread_info()->fpsaved[0] & flag)) {
612			if (freg < 32)
613				memset(f->regs, 0, 32*sizeof(u32));
614			else
615				memset(f->regs+32, 0, 32*sizeof(u32));
616		}
617		*(u64 *)(f->regs + freg) = value;
618		current_thread_info()->fpsaved[0] |= flag;
619	} else {
620daex:
621		if (tlb_type == hypervisor)
622			sun4v_data_access_exception(regs, sfar, sfsr);
623		else
624			spitfire_data_access_exception(regs, sfsr, sfar);
625		return;
626	}
627	advance(regs);
628}
629
630void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
631{
632	unsigned long pc = regs->tpc;
633	unsigned long tstate = regs->tstate;
634	u32 insn;
635	u64 value;
636	u8 freg;
637	int flag;
638	struct fpustate *f = FPUSTATE;
639
640	if (tstate & TSTATE_PRIV)
641		die_if_kernel("stdfmna from kernel", regs);
642	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
643	if (test_thread_flag(TIF_32BIT))
644		pc = (u32)pc;
645	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
646		int asi = decode_asi(insn, regs);
647		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
648		value = 0;
649		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
650		if ((asi > ASI_SNFL) ||
651		    (asi < ASI_P))
652			goto daex;
653		save_and_clear_fpu();
654		if (current_thread_info()->fpsaved[0] & flag)
655			value = *(u64 *)&f->regs[freg];
656		switch (asi) {
657		case ASI_P:
658		case ASI_S: break;
659		case ASI_PL:
660		case ASI_SL: 
661			value = __swab64p(&value); break;
662		default: goto daex;
663		}
664		if (put_user (value >> 32, (u32 __user *) sfar) ||
665		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
666			goto daex;
667	} else {
668daex:
669		if (tlb_type == hypervisor)
670			sun4v_data_access_exception(regs, sfar, sfsr);
671		else
672			spitfire_data_access_exception(regs, sfsr, sfar);
673		return;
674	}
675	advance(regs);
676}
v3.1
  1/*
  2 * unaligned.c: Unaligned load/store trap handling with special
  3 *              cases for the kernel to do them more quickly.
  4 *
  5 * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
  6 * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7 */
  8
  9
 10#include <linux/jiffies.h>
 11#include <linux/kernel.h>
 12#include <linux/sched.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <asm/asi.h>
 16#include <asm/ptrace.h>
 17#include <asm/pstate.h>
 18#include <asm/processor.h>
 19#include <asm/system.h>
 20#include <asm/uaccess.h>
 21#include <linux/smp.h>
 22#include <linux/bitops.h>
 23#include <linux/perf_event.h>
 24#include <linux/ratelimit.h>
 25#include <linux/bitops.h>
 26#include <asm/fpumacro.h>
 
 27
 28enum direction {
 29	load,    /* ld, ldd, ldh, ldsh */
 30	store,   /* st, std, sth, stsh */
 31	both,    /* Swap, ldstub, cas, ... */
 32	fpld,
 33	fpst,
 34	invalid,
 35};
 36
 37static inline enum direction decode_direction(unsigned int insn)
 38{
 39	unsigned long tmp = (insn >> 21) & 1;
 40
 41	if (!tmp)
 42		return load;
 43	else {
 44		switch ((insn>>19)&0xf) {
 45		case 15: /* swap* */
 46			return both;
 47		default:
 48			return store;
 49		}
 50	}
 51}
 52
 53/* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
 54static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
 55{
 56	unsigned int tmp;
 57
 58	tmp = ((insn >> 19) & 0xf);
 59	if (tmp == 11 || tmp == 14) /* ldx/stx */
 60		return 8;
 61	tmp &= 3;
 62	if (!tmp)
 63		return 4;
 64	else if (tmp == 3)
 65		return 16;	/* ldd/std - Although it is actually 8 */
 66	else if (tmp == 2)
 67		return 2;
 68	else {
 69		printk("Impossible unaligned trap. insn=%08x\n", insn);
 70		die_if_kernel("Byte sized unaligned access?!?!", regs);
 71
 72		/* GCC should never warn that control reaches the end
 73		 * of this function without returning a value because
 74		 * die_if_kernel() is marked with attribute 'noreturn'.
 75		 * Alas, some versions do...
 76		 */
 77
 78		return 0;
 79	}
 80}
 81
 82static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
 83{
 84	if (insn & 0x800000) {
 85		if (insn & 0x2000)
 86			return (unsigned char)(regs->tstate >> 24);	/* %asi */
 87		else
 88			return (unsigned char)(insn >> 5);		/* imm_asi */
 89	} else
 90		return ASI_P;
 91}
 92
 93/* 0x400000 = signed, 0 = unsigned */
 94static inline int decode_signedness(unsigned int insn)
 95{
 96	return (insn & 0x400000);
 97}
 98
 99static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
100				       unsigned int rd, int from_kernel)
101{
102	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
103		if (from_kernel != 0)
104			__asm__ __volatile__("flushw");
105		else
106			flushw_user();
107	}
108}
109
110static inline long sign_extend_imm13(long imm)
111{
112	return imm << 51 >> 51;
113}
114
115static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
116{
117	unsigned long value;
118	
119	if (reg < 16)
120		return (!reg ? 0 : regs->u_regs[reg]);
121	if (regs->tstate & TSTATE_PRIV) {
122		struct reg_window *win;
123		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
124		value = win->locals[reg - 16];
125	} else if (test_thread_flag(TIF_32BIT)) {
126		struct reg_window32 __user *win32;
127		win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
128		get_user(value, &win32->locals[reg - 16]);
129	} else {
130		struct reg_window __user *win;
131		win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
132		get_user(value, &win->locals[reg - 16]);
133	}
134	return value;
135}
136
137static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
138{
139	if (reg < 16)
140		return &regs->u_regs[reg];
141	if (regs->tstate & TSTATE_PRIV) {
142		struct reg_window *win;
143		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
144		return &win->locals[reg - 16];
145	} else if (test_thread_flag(TIF_32BIT)) {
146		struct reg_window32 *win32;
147		win32 = (struct reg_window32 *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
148		return (unsigned long *)&win32->locals[reg - 16];
149	} else {
150		struct reg_window *win;
151		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
152		return &win->locals[reg - 16];
153	}
154}
155
156unsigned long compute_effective_address(struct pt_regs *regs,
157					unsigned int insn, unsigned int rd)
158{
159	unsigned int rs1 = (insn >> 14) & 0x1f;
160	unsigned int rs2 = insn & 0x1f;
161	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
162
163	if (insn & 0x2000) {
164		maybe_flush_windows(rs1, 0, rd, from_kernel);
165		return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
166	} else {
167		maybe_flush_windows(rs1, rs2, rd, from_kernel);
168		return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
169	}
170}
171
172/* This is just to make gcc think die_if_kernel does return... */
173static void __used unaligned_panic(char *str, struct pt_regs *regs)
174{
175	die_if_kernel(str, regs);
176}
177
178extern int do_int_load(unsigned long *dest_reg, int size,
179		       unsigned long *saddr, int is_signed, int asi);
180	
181extern int __do_int_store(unsigned long *dst_addr, int size,
182			  unsigned long src_val, int asi);
183
184static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
185			       struct pt_regs *regs, int asi, int orig_asi)
186{
187	unsigned long zero = 0;
188	unsigned long *src_val_p = &zero;
189	unsigned long src_val;
190
191	if (size == 16) {
192		size = 8;
193		zero = (((long)(reg_num ?
194		        (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
195			(unsigned)fetch_reg(reg_num + 1, regs);
196	} else if (reg_num) {
197		src_val_p = fetch_reg_addr(reg_num, regs);
198	}
199	src_val = *src_val_p;
200	if (unlikely(asi != orig_asi)) {
201		switch (size) {
202		case 2:
203			src_val = swab16(src_val);
204			break;
205		case 4:
206			src_val = swab32(src_val);
207			break;
208		case 8:
209			src_val = swab64(src_val);
210			break;
211		case 16:
212		default:
213			BUG();
214			break;
215		}
216	}
217	return __do_int_store(dst_addr, size, src_val, asi);
218}
219
220static inline void advance(struct pt_regs *regs)
221{
222	regs->tpc   = regs->tnpc;
223	regs->tnpc += 4;
224	if (test_thread_flag(TIF_32BIT)) {
225		regs->tpc &= 0xffffffff;
226		regs->tnpc &= 0xffffffff;
227	}
228}
229
230static inline int floating_point_load_or_store_p(unsigned int insn)
231{
232	return (insn >> 24) & 1;
233}
234
235static inline int ok_for_kernel(unsigned int insn)
236{
237	return !floating_point_load_or_store_p(insn);
238}
239
240static void kernel_mna_trap_fault(int fixup_tstate_asi)
241{
242	struct pt_regs *regs = current_thread_info()->kern_una_regs;
243	unsigned int insn = current_thread_info()->kern_una_insn;
244	const struct exception_table_entry *entry;
245
246	entry = search_exception_tables(regs->tpc);
247	if (!entry) {
248		unsigned long address;
249
250		address = compute_effective_address(regs, insn,
251						    ((insn >> 25) & 0x1f));
252        	if (address < PAGE_SIZE) {
253                	printk(KERN_ALERT "Unable to handle kernel NULL "
254			       "pointer dereference in mna handler");
255        	} else
256                	printk(KERN_ALERT "Unable to handle kernel paging "
257			       "request in mna handler");
258	        printk(KERN_ALERT " at virtual address %016lx\n",address);
259		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
260			(current->mm ? CTX_HWBITS(current->mm->context) :
261			CTX_HWBITS(current->active_mm->context)));
262		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
263			(current->mm ? (unsigned long) current->mm->pgd :
264			(unsigned long) current->active_mm->pgd));
265	        die_if_kernel("Oops", regs);
266		/* Not reached */
267	}
268	regs->tpc = entry->fixup;
269	regs->tnpc = regs->tpc + 4;
270
271	if (fixup_tstate_asi) {
272		regs->tstate &= ~TSTATE_ASI;
273		regs->tstate |= (ASI_AIUS << 24UL);
274	}
275}
276
277static void log_unaligned(struct pt_regs *regs)
278{
279	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
280
281	if (__ratelimit(&ratelimit)) {
282		printk("Kernel unaligned access at TPC[%lx] %pS\n",
283		       regs->tpc, (void *) regs->tpc);
284	}
285}
286
287asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
288{
289	enum direction dir = decode_direction(insn);
290	int size = decode_access_size(regs, insn);
291	int orig_asi, asi;
292
293	current_thread_info()->kern_una_regs = regs;
294	current_thread_info()->kern_una_insn = insn;
295
296	orig_asi = asi = decode_asi(insn, regs);
297
298	/* If this is a {get,put}_user() on an unaligned userspace pointer,
299	 * just signal a fault and do not log the event.
300	 */
301	if (asi == ASI_AIUS) {
302		kernel_mna_trap_fault(0);
303		return;
304	}
305
306	log_unaligned(regs);
307
308	if (!ok_for_kernel(insn) || dir == both) {
309		printk("Unsupported unaligned load/store trap for kernel "
310		       "at <%016lx>.\n", regs->tpc);
311		unaligned_panic("Kernel does fpu/atomic "
312				"unaligned load/store.", regs);
313
314		kernel_mna_trap_fault(0);
315	} else {
316		unsigned long addr, *reg_addr;
317		int err;
318
319		addr = compute_effective_address(regs, insn,
320						 ((insn >> 25) & 0x1f));
321		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
322		switch (asi) {
323		case ASI_NL:
324		case ASI_AIUPL:
325		case ASI_AIUSL:
326		case ASI_PL:
327		case ASI_SL:
328		case ASI_PNFL:
329		case ASI_SNFL:
330			asi &= ~0x08;
331			break;
332		}
333		switch (dir) {
334		case load:
335			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
336			err = do_int_load(reg_addr, size,
337					  (unsigned long *) addr,
338					  decode_signedness(insn), asi);
339			if (likely(!err) && unlikely(asi != orig_asi)) {
340				unsigned long val_in = *reg_addr;
341				switch (size) {
342				case 2:
343					val_in = swab16(val_in);
344					break;
345				case 4:
346					val_in = swab32(val_in);
347					break;
348				case 8:
349					val_in = swab64(val_in);
350					break;
351				case 16:
352				default:
353					BUG();
354					break;
355				}
356				*reg_addr = val_in;
357			}
358			break;
359
360		case store:
361			err = do_int_store(((insn>>25)&0x1f), size,
362					   (unsigned long *) addr, regs,
363					   asi, orig_asi);
364			break;
365
366		default:
367			panic("Impossible kernel unaligned trap.");
368			/* Not reached... */
369		}
370		if (unlikely(err))
371			kernel_mna_trap_fault(1);
372		else
373			advance(regs);
374	}
375}
376
377int handle_popc(u32 insn, struct pt_regs *regs)
378{
379	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
380	int ret, rd = ((insn >> 25) & 0x1f);
381	u64 value;
382	                        
383	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
384	if (insn & 0x2000) {
385		maybe_flush_windows(0, 0, rd, from_kernel);
386		value = sign_extend_imm13(insn);
387	} else {
388		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
389		value = fetch_reg(insn & 0x1f, regs);
390	}
391	ret = hweight64(value);
392	if (rd < 16) {
393		if (rd)
394			regs->u_regs[rd] = ret;
395	} else {
396		if (test_thread_flag(TIF_32BIT)) {
397			struct reg_window32 __user *win32;
398			win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
399			put_user(ret, &win32->locals[rd - 16]);
400		} else {
401			struct reg_window __user *win;
402			win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
403			put_user(ret, &win->locals[rd - 16]);
404		}
405	}
406	advance(regs);
407	return 1;
408}
409
410extern void do_fpother(struct pt_regs *regs);
411extern void do_privact(struct pt_regs *regs);
412extern void spitfire_data_access_exception(struct pt_regs *regs,
413					   unsigned long sfsr,
414					   unsigned long sfar);
415extern void sun4v_data_access_exception(struct pt_regs *regs,
416					unsigned long addr,
417					unsigned long type_ctx);
418
419int handle_ldf_stq(u32 insn, struct pt_regs *regs)
420{
421	unsigned long addr = compute_effective_address(regs, insn, 0);
422	int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
423	struct fpustate *f = FPUSTATE;
424	int asi = decode_asi(insn, regs);
425	int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
426
427	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
428
429	save_and_clear_fpu();
430	current_thread_info()->xfsr[0] &= ~0x1c000;
431	if (freg & 3) {
432		current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
433		do_fpother(regs);
434		return 0;
435	}
436	if (insn & 0x200000) {
437		/* STQ */
438		u64 first = 0, second = 0;
439		
440		if (current_thread_info()->fpsaved[0] & flag) {
441			first = *(u64 *)&f->regs[freg];
442			second = *(u64 *)&f->regs[freg+2];
443		}
444		if (asi < 0x80) {
445			do_privact(regs);
446			return 1;
447		}
448		switch (asi) {
449		case ASI_P:
450		case ASI_S: break;
451		case ASI_PL:
452		case ASI_SL: 
453			{
454				/* Need to convert endians */
455				u64 tmp = __swab64p(&first);
456				
457				first = __swab64p(&second);
458				second = tmp;
459				break;
460			}
461		default:
462			if (tlb_type == hypervisor)
463				sun4v_data_access_exception(regs, addr, 0);
464			else
465				spitfire_data_access_exception(regs, 0, addr);
466			return 1;
467		}
468		if (put_user (first >> 32, (u32 __user *)addr) ||
469		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
470		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
471		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
472			if (tlb_type == hypervisor)
473				sun4v_data_access_exception(regs, addr, 0);
474			else
475				spitfire_data_access_exception(regs, 0, addr);
476		    	return 1;
477		}
478	} else {
479		/* LDF, LDDF, LDQF */
480		u32 data[4] __attribute__ ((aligned(8)));
481		int size, i;
482		int err;
483
484		if (asi < 0x80) {
485			do_privact(regs);
486			return 1;
487		} else if (asi > ASI_SNFL) {
488			if (tlb_type == hypervisor)
489				sun4v_data_access_exception(regs, addr, 0);
490			else
491				spitfire_data_access_exception(regs, 0, addr);
492			return 1;
493		}
494		switch (insn & 0x180000) {
495		case 0x000000: size = 1; break;
496		case 0x100000: size = 4; break;
497		default: size = 2; break;
498		}
499		for (i = 0; i < size; i++)
500			data[i] = 0;
501		
502		err = get_user (data[0], (u32 __user *) addr);
503		if (!err) {
504			for (i = 1; i < size; i++)
505				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
506		}
507		if (err && !(asi & 0x2 /* NF */)) {
508			if (tlb_type == hypervisor)
509				sun4v_data_access_exception(regs, addr, 0);
510			else
511				spitfire_data_access_exception(regs, 0, addr);
512			return 1;
513		}
514		if (asi & 0x8) /* Little */ {
515			u64 tmp;
516
517			switch (size) {
518			case 1: data[0] = le32_to_cpup(data + 0); break;
519			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
520				break;
521			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
522				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
523				*(u64 *)(data + 2) = tmp;
524				break;
525			}
526		}
527		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
528			current_thread_info()->fpsaved[0] = FPRS_FEF;
529			current_thread_info()->gsr[0] = 0;
530		}
531		if (!(current_thread_info()->fpsaved[0] & flag)) {
532			if (freg < 32)
533				memset(f->regs, 0, 32*sizeof(u32));
534			else
535				memset(f->regs+32, 0, 32*sizeof(u32));
536		}
537		memcpy(f->regs + freg, data, size * 4);
538		current_thread_info()->fpsaved[0] |= flag;
539	}
540	advance(regs);
541	return 1;
542}
543
544void handle_ld_nf(u32 insn, struct pt_regs *regs)
545{
546	int rd = ((insn >> 25) & 0x1f);
547	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
548	unsigned long *reg;
549	                        
550	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
551
552	maybe_flush_windows(0, 0, rd, from_kernel);
553	reg = fetch_reg_addr(rd, regs);
554	if (from_kernel || rd < 16) {
555		reg[0] = 0;
556		if ((insn & 0x780000) == 0x180000)
557			reg[1] = 0;
558	} else if (test_thread_flag(TIF_32BIT)) {
559		put_user(0, (int __user *) reg);
560		if ((insn & 0x780000) == 0x180000)
561			put_user(0, ((int __user *) reg) + 1);
562	} else {
563		put_user(0, (unsigned long __user *) reg);
564		if ((insn & 0x780000) == 0x180000)
565			put_user(0, (unsigned long __user *) reg + 1);
566	}
567	advance(regs);
568}
569
570void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
571{
572	unsigned long pc = regs->tpc;
573	unsigned long tstate = regs->tstate;
574	u32 insn;
575	u64 value;
576	u8 freg;
577	int flag;
578	struct fpustate *f = FPUSTATE;
579
580	if (tstate & TSTATE_PRIV)
581		die_if_kernel("lddfmna from kernel", regs);
582	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
583	if (test_thread_flag(TIF_32BIT))
584		pc = (u32)pc;
585	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
586		int asi = decode_asi(insn, regs);
587		u32 first, second;
588		int err;
589
590		if ((asi > ASI_SNFL) ||
591		    (asi < ASI_P))
592			goto daex;
593		first = second = 0;
594		err = get_user(first, (u32 __user *)sfar);
595		if (!err)
596			err = get_user(second, (u32 __user *)(sfar + 4));
597		if (err) {
598			if (!(asi & 0x2))
599				goto daex;
600			first = second = 0;
601		}
602		save_and_clear_fpu();
603		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
604		value = (((u64)first) << 32) | second;
605		if (asi & 0x8) /* Little */
606			value = __swab64p(&value);
607		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
608		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
609			current_thread_info()->fpsaved[0] = FPRS_FEF;
610			current_thread_info()->gsr[0] = 0;
611		}
612		if (!(current_thread_info()->fpsaved[0] & flag)) {
613			if (freg < 32)
614				memset(f->regs, 0, 32*sizeof(u32));
615			else
616				memset(f->regs+32, 0, 32*sizeof(u32));
617		}
618		*(u64 *)(f->regs + freg) = value;
619		current_thread_info()->fpsaved[0] |= flag;
620	} else {
621daex:
622		if (tlb_type == hypervisor)
623			sun4v_data_access_exception(regs, sfar, sfsr);
624		else
625			spitfire_data_access_exception(regs, sfsr, sfar);
626		return;
627	}
628	advance(regs);
629}
630
631void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
632{
633	unsigned long pc = regs->tpc;
634	unsigned long tstate = regs->tstate;
635	u32 insn;
636	u64 value;
637	u8 freg;
638	int flag;
639	struct fpustate *f = FPUSTATE;
640
641	if (tstate & TSTATE_PRIV)
642		die_if_kernel("stdfmna from kernel", regs);
643	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
644	if (test_thread_flag(TIF_32BIT))
645		pc = (u32)pc;
646	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
647		int asi = decode_asi(insn, regs);
648		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
649		value = 0;
650		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
651		if ((asi > ASI_SNFL) ||
652		    (asi < ASI_P))
653			goto daex;
654		save_and_clear_fpu();
655		if (current_thread_info()->fpsaved[0] & flag)
656			value = *(u64 *)&f->regs[freg];
657		switch (asi) {
658		case ASI_P:
659		case ASI_S: break;
660		case ASI_PL:
661		case ASI_SL: 
662			value = __swab64p(&value); break;
663		default: goto daex;
664		}
665		if (put_user (value >> 32, (u32 __user *) sfar) ||
666		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
667			goto daex;
668	} else {
669daex:
670		if (tlb_type == hypervisor)
671			sun4v_data_access_exception(regs, sfar, sfsr);
672		else
673			spitfire_data_access_exception(regs, sfsr, sfar);
674		return;
675	}
676	advance(regs);
677}