Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * unaligned.c: Unaligned load/store trap handling with special
  3 *              cases for the kernel to do them more quickly.
  4 *
  5 * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
  6 * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7 */
  8
  9
 10#include <linux/jiffies.h>
 11#include <linux/kernel.h>
 12#include <linux/sched.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <asm/asi.h>
 16#include <asm/ptrace.h>
 17#include <asm/pstate.h>
 18#include <asm/processor.h>
 19#include <asm/uaccess.h>
 20#include <linux/smp.h>
 21#include <linux/bitops.h>
 22#include <linux/perf_event.h>
 23#include <linux/ratelimit.h>
 
 24#include <asm/fpumacro.h>
 25#include <asm/cacheflush.h>
 
 
 
 
 26
 27enum direction {
 28	load,    /* ld, ldd, ldh, ldsh */
 29	store,   /* st, std, sth, stsh */
 30	both,    /* Swap, ldstub, cas, ... */
 31	fpld,
 32	fpst,
 33	invalid,
 34};
 35
 36static inline enum direction decode_direction(unsigned int insn)
 37{
 38	unsigned long tmp = (insn >> 21) & 1;
 39
 40	if (!tmp)
 41		return load;
 42	else {
 43		switch ((insn>>19)&0xf) {
 44		case 15: /* swap* */
 45			return both;
 46		default:
 47			return store;
 48		}
 49	}
 50}
 51
 52/* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
 53static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
 54{
 55	unsigned int tmp;
 56
 57	tmp = ((insn >> 19) & 0xf);
 58	if (tmp == 11 || tmp == 14) /* ldx/stx */
 59		return 8;
 60	tmp &= 3;
 61	if (!tmp)
 62		return 4;
 63	else if (tmp == 3)
 64		return 16;	/* ldd/std - Although it is actually 8 */
 65	else if (tmp == 2)
 66		return 2;
 67	else {
 68		printk("Impossible unaligned trap. insn=%08x\n", insn);
 69		die_if_kernel("Byte sized unaligned access?!?!", regs);
 70
 71		/* GCC should never warn that control reaches the end
 72		 * of this function without returning a value because
 73		 * die_if_kernel() is marked with attribute 'noreturn'.
 74		 * Alas, some versions do...
 75		 */
 76
 77		return 0;
 78	}
 79}
 80
 81static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
 82{
 83	if (insn & 0x800000) {
 84		if (insn & 0x2000)
 85			return (unsigned char)(regs->tstate >> 24);	/* %asi */
 86		else
 87			return (unsigned char)(insn >> 5);		/* imm_asi */
 88	} else
 89		return ASI_P;
 90}
 91
 92/* 0x400000 = signed, 0 = unsigned */
 93static inline int decode_signedness(unsigned int insn)
 94{
 95	return (insn & 0x400000);
 96}
 97
 98static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
 99				       unsigned int rd, int from_kernel)
100{
101	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
102		if (from_kernel != 0)
103			__asm__ __volatile__("flushw");
104		else
105			flushw_user();
106	}
107}
108
109static inline long sign_extend_imm13(long imm)
110{
111	return imm << 51 >> 51;
112}
113
114static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
115{
116	unsigned long value;
117	
118	if (reg < 16)
119		return (!reg ? 0 : regs->u_regs[reg]);
 
 
 
120	if (regs->tstate & TSTATE_PRIV) {
121		struct reg_window *win;
122		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
123		value = win->locals[reg - 16];
124	} else if (test_thread_flag(TIF_32BIT)) {
125		struct reg_window32 __user *win32;
126		win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
127		get_user(value, &win32->locals[reg - 16]);
128	} else {
129		struct reg_window __user *win;
130		win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
131		get_user(value, &win->locals[reg - 16]);
132	}
133	return value;
134}
135
136static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
137{
 
 
138	if (reg < 16)
139		return &regs->u_regs[reg];
 
 
 
140	if (regs->tstate & TSTATE_PRIV) {
141		struct reg_window *win;
142		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
143		return &win->locals[reg - 16];
144	} else if (test_thread_flag(TIF_32BIT)) {
145		struct reg_window32 *win32;
146		win32 = (struct reg_window32 *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
147		return (unsigned long *)&win32->locals[reg - 16];
148	} else {
149		struct reg_window *win;
150		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
151		return &win->locals[reg - 16];
152	}
153}
154
155unsigned long compute_effective_address(struct pt_regs *regs,
156					unsigned int insn, unsigned int rd)
157{
 
158	unsigned int rs1 = (insn >> 14) & 0x1f;
159	unsigned int rs2 = insn & 0x1f;
160	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
161
162	if (insn & 0x2000) {
163		maybe_flush_windows(rs1, 0, rd, from_kernel);
164		return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
165	} else {
166		maybe_flush_windows(rs1, rs2, rd, from_kernel);
167		return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
168	}
 
 
 
 
 
169}
170
171/* This is just to make gcc think die_if_kernel does return... */
172static void __used unaligned_panic(char *str, struct pt_regs *regs)
173{
174	die_if_kernel(str, regs);
175}
176
177extern int do_int_load(unsigned long *dest_reg, int size,
178		       unsigned long *saddr, int is_signed, int asi);
179	
180extern int __do_int_store(unsigned long *dst_addr, int size,
181			  unsigned long src_val, int asi);
182
183static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
184			       struct pt_regs *regs, int asi, int orig_asi)
185{
186	unsigned long zero = 0;
187	unsigned long *src_val_p = &zero;
188	unsigned long src_val;
189
190	if (size == 16) {
191		size = 8;
192		zero = (((long)(reg_num ?
193		        (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
194			(unsigned)fetch_reg(reg_num + 1, regs);
195	} else if (reg_num) {
196		src_val_p = fetch_reg_addr(reg_num, regs);
197	}
198	src_val = *src_val_p;
199	if (unlikely(asi != orig_asi)) {
200		switch (size) {
201		case 2:
202			src_val = swab16(src_val);
203			break;
204		case 4:
205			src_val = swab32(src_val);
206			break;
207		case 8:
208			src_val = swab64(src_val);
209			break;
210		case 16:
211		default:
212			BUG();
213			break;
214		}
215	}
216	return __do_int_store(dst_addr, size, src_val, asi);
217}
218
219static inline void advance(struct pt_regs *regs)
220{
221	regs->tpc   = regs->tnpc;
222	regs->tnpc += 4;
223	if (test_thread_flag(TIF_32BIT)) {
224		regs->tpc &= 0xffffffff;
225		regs->tnpc &= 0xffffffff;
226	}
227}
228
229static inline int floating_point_load_or_store_p(unsigned int insn)
230{
231	return (insn >> 24) & 1;
232}
233
234static inline int ok_for_kernel(unsigned int insn)
235{
236	return !floating_point_load_or_store_p(insn);
237}
238
239static void kernel_mna_trap_fault(int fixup_tstate_asi)
240{
241	struct pt_regs *regs = current_thread_info()->kern_una_regs;
242	unsigned int insn = current_thread_info()->kern_una_insn;
243	const struct exception_table_entry *entry;
244
245	entry = search_exception_tables(regs->tpc);
246	if (!entry) {
247		unsigned long address;
248
249		address = compute_effective_address(regs, insn,
250						    ((insn >> 25) & 0x1f));
251        	if (address < PAGE_SIZE) {
252                	printk(KERN_ALERT "Unable to handle kernel NULL "
253			       "pointer dereference in mna handler");
254        	} else
255                	printk(KERN_ALERT "Unable to handle kernel paging "
256			       "request in mna handler");
257	        printk(KERN_ALERT " at virtual address %016lx\n",address);
258		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
259			(current->mm ? CTX_HWBITS(current->mm->context) :
260			CTX_HWBITS(current->active_mm->context)));
261		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
262			(current->mm ? (unsigned long) current->mm->pgd :
263			(unsigned long) current->active_mm->pgd));
264	        die_if_kernel("Oops", regs);
265		/* Not reached */
266	}
267	regs->tpc = entry->fixup;
268	regs->tnpc = regs->tpc + 4;
269
270	if (fixup_tstate_asi) {
271		regs->tstate &= ~TSTATE_ASI;
272		regs->tstate |= (ASI_AIUS << 24UL);
273	}
274}
275
276static void log_unaligned(struct pt_regs *regs)
277{
278	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
279
280	if (__ratelimit(&ratelimit)) {
281		printk("Kernel unaligned access at TPC[%lx] %pS\n",
282		       regs->tpc, (void *) regs->tpc);
283	}
284}
285
286asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
287{
288	enum direction dir = decode_direction(insn);
289	int size = decode_access_size(regs, insn);
290	int orig_asi, asi;
291
292	current_thread_info()->kern_una_regs = regs;
293	current_thread_info()->kern_una_insn = insn;
294
295	orig_asi = asi = decode_asi(insn, regs);
296
297	/* If this is a {get,put}_user() on an unaligned userspace pointer,
298	 * just signal a fault and do not log the event.
299	 */
300	if (asi == ASI_AIUS) {
301		kernel_mna_trap_fault(0);
302		return;
303	}
304
305	log_unaligned(regs);
306
307	if (!ok_for_kernel(insn) || dir == both) {
308		printk("Unsupported unaligned load/store trap for kernel "
309		       "at <%016lx>.\n", regs->tpc);
310		unaligned_panic("Kernel does fpu/atomic "
311				"unaligned load/store.", regs);
312
313		kernel_mna_trap_fault(0);
314	} else {
315		unsigned long addr, *reg_addr;
316		int err;
317
318		addr = compute_effective_address(regs, insn,
319						 ((insn >> 25) & 0x1f));
320		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
321		switch (asi) {
322		case ASI_NL:
323		case ASI_AIUPL:
324		case ASI_AIUSL:
325		case ASI_PL:
326		case ASI_SL:
327		case ASI_PNFL:
328		case ASI_SNFL:
329			asi &= ~0x08;
330			break;
331		}
332		switch (dir) {
333		case load:
334			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
335			err = do_int_load(reg_addr, size,
336					  (unsigned long *) addr,
337					  decode_signedness(insn), asi);
338			if (likely(!err) && unlikely(asi != orig_asi)) {
339				unsigned long val_in = *reg_addr;
340				switch (size) {
341				case 2:
342					val_in = swab16(val_in);
343					break;
344				case 4:
345					val_in = swab32(val_in);
346					break;
347				case 8:
348					val_in = swab64(val_in);
349					break;
350				case 16:
351				default:
352					BUG();
353					break;
354				}
355				*reg_addr = val_in;
356			}
357			break;
358
359		case store:
360			err = do_int_store(((insn>>25)&0x1f), size,
361					   (unsigned long *) addr, regs,
362					   asi, orig_asi);
363			break;
364
365		default:
366			panic("Impossible kernel unaligned trap.");
367			/* Not reached... */
368		}
369		if (unlikely(err))
370			kernel_mna_trap_fault(1);
371		else
372			advance(regs);
373	}
374}
375
376int handle_popc(u32 insn, struct pt_regs *regs)
377{
378	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
379	int ret, rd = ((insn >> 25) & 0x1f);
380	u64 value;
381	                        
382	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
383	if (insn & 0x2000) {
384		maybe_flush_windows(0, 0, rd, from_kernel);
385		value = sign_extend_imm13(insn);
386	} else {
387		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
388		value = fetch_reg(insn & 0x1f, regs);
389	}
390	ret = hweight64(value);
391	if (rd < 16) {
392		if (rd)
393			regs->u_regs[rd] = ret;
394	} else {
395		if (test_thread_flag(TIF_32BIT)) {
 
 
396			struct reg_window32 __user *win32;
397			win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
398			put_user(ret, &win32->locals[rd - 16]);
399		} else {
400			struct reg_window __user *win;
401			win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
402			put_user(ret, &win->locals[rd - 16]);
403		}
404	}
405	advance(regs);
406	return 1;
407}
408
409extern void do_fpother(struct pt_regs *regs);
410extern void do_privact(struct pt_regs *regs);
411extern void spitfire_data_access_exception(struct pt_regs *regs,
412					   unsigned long sfsr,
413					   unsigned long sfar);
414extern void sun4v_data_access_exception(struct pt_regs *regs,
415					unsigned long addr,
416					unsigned long type_ctx);
417
418int handle_ldf_stq(u32 insn, struct pt_regs *regs)
419{
420	unsigned long addr = compute_effective_address(regs, insn, 0);
421	int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
422	struct fpustate *f = FPUSTATE;
423	int asi = decode_asi(insn, regs);
424	int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
425
426	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
427
428	save_and_clear_fpu();
429	current_thread_info()->xfsr[0] &= ~0x1c000;
430	if (freg & 3) {
431		current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
432		do_fpother(regs);
433		return 0;
434	}
435	if (insn & 0x200000) {
436		/* STQ */
437		u64 first = 0, second = 0;
438		
 
 
 
 
 
 
 
439		if (current_thread_info()->fpsaved[0] & flag) {
440			first = *(u64 *)&f->regs[freg];
441			second = *(u64 *)&f->regs[freg+2];
442		}
443		if (asi < 0x80) {
444			do_privact(regs);
445			return 1;
446		}
447		switch (asi) {
448		case ASI_P:
449		case ASI_S: break;
450		case ASI_PL:
451		case ASI_SL: 
452			{
453				/* Need to convert endians */
454				u64 tmp = __swab64p(&first);
455				
456				first = __swab64p(&second);
457				second = tmp;
458				break;
459			}
460		default:
461			if (tlb_type == hypervisor)
462				sun4v_data_access_exception(regs, addr, 0);
463			else
464				spitfire_data_access_exception(regs, 0, addr);
465			return 1;
466		}
467		if (put_user (first >> 32, (u32 __user *)addr) ||
468		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
469		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
470		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
471			if (tlb_type == hypervisor)
472				sun4v_data_access_exception(regs, addr, 0);
473			else
474				spitfire_data_access_exception(regs, 0, addr);
475		    	return 1;
476		}
477	} else {
478		/* LDF, LDDF, LDQF */
479		u32 data[4] __attribute__ ((aligned(8)));
480		int size, i;
481		int err;
482
483		if (asi < 0x80) {
484			do_privact(regs);
485			return 1;
486		} else if (asi > ASI_SNFL) {
487			if (tlb_type == hypervisor)
488				sun4v_data_access_exception(regs, addr, 0);
489			else
490				spitfire_data_access_exception(regs, 0, addr);
491			return 1;
492		}
493		switch (insn & 0x180000) {
494		case 0x000000: size = 1; break;
495		case 0x100000: size = 4; break;
496		default: size = 2; break;
497		}
 
 
 
 
 
 
498		for (i = 0; i < size; i++)
499			data[i] = 0;
500		
501		err = get_user (data[0], (u32 __user *) addr);
502		if (!err) {
503			for (i = 1; i < size; i++)
504				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
505		}
506		if (err && !(asi & 0x2 /* NF */)) {
507			if (tlb_type == hypervisor)
508				sun4v_data_access_exception(regs, addr, 0);
509			else
510				spitfire_data_access_exception(regs, 0, addr);
511			return 1;
512		}
513		if (asi & 0x8) /* Little */ {
514			u64 tmp;
515
516			switch (size) {
517			case 1: data[0] = le32_to_cpup(data + 0); break;
518			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
519				break;
520			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
521				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
522				*(u64 *)(data + 2) = tmp;
523				break;
524			}
525		}
526		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
527			current_thread_info()->fpsaved[0] = FPRS_FEF;
528			current_thread_info()->gsr[0] = 0;
529		}
530		if (!(current_thread_info()->fpsaved[0] & flag)) {
531			if (freg < 32)
532				memset(f->regs, 0, 32*sizeof(u32));
533			else
534				memset(f->regs+32, 0, 32*sizeof(u32));
535		}
536		memcpy(f->regs + freg, data, size * 4);
537		current_thread_info()->fpsaved[0] |= flag;
538	}
539	advance(regs);
540	return 1;
541}
542
543void handle_ld_nf(u32 insn, struct pt_regs *regs)
544{
545	int rd = ((insn >> 25) & 0x1f);
546	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
547	unsigned long *reg;
548	                        
549	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
550
551	maybe_flush_windows(0, 0, rd, from_kernel);
552	reg = fetch_reg_addr(rd, regs);
553	if (from_kernel || rd < 16) {
554		reg[0] = 0;
555		if ((insn & 0x780000) == 0x180000)
556			reg[1] = 0;
557	} else if (test_thread_flag(TIF_32BIT)) {
558		put_user(0, (int __user *) reg);
559		if ((insn & 0x780000) == 0x180000)
560			put_user(0, ((int __user *) reg) + 1);
561	} else {
562		put_user(0, (unsigned long __user *) reg);
563		if ((insn & 0x780000) == 0x180000)
564			put_user(0, (unsigned long __user *) reg + 1);
565	}
566	advance(regs);
567}
568
569void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
570{
 
571	unsigned long pc = regs->tpc;
572	unsigned long tstate = regs->tstate;
573	u32 insn;
574	u64 value;
575	u8 freg;
576	int flag;
577	struct fpustate *f = FPUSTATE;
578
579	if (tstate & TSTATE_PRIV)
580		die_if_kernel("lddfmna from kernel", regs);
581	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
582	if (test_thread_flag(TIF_32BIT))
583		pc = (u32)pc;
584	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
585		int asi = decode_asi(insn, regs);
586		u32 first, second;
587		int err;
588
589		if ((asi > ASI_SNFL) ||
590		    (asi < ASI_P))
591			goto daex;
592		first = second = 0;
593		err = get_user(first, (u32 __user *)sfar);
594		if (!err)
595			err = get_user(second, (u32 __user *)(sfar + 4));
596		if (err) {
597			if (!(asi & 0x2))
598				goto daex;
599			first = second = 0;
600		}
601		save_and_clear_fpu();
602		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
603		value = (((u64)first) << 32) | second;
604		if (asi & 0x8) /* Little */
605			value = __swab64p(&value);
606		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
607		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
608			current_thread_info()->fpsaved[0] = FPRS_FEF;
609			current_thread_info()->gsr[0] = 0;
610		}
611		if (!(current_thread_info()->fpsaved[0] & flag)) {
612			if (freg < 32)
613				memset(f->regs, 0, 32*sizeof(u32));
614			else
615				memset(f->regs+32, 0, 32*sizeof(u32));
616		}
617		*(u64 *)(f->regs + freg) = value;
618		current_thread_info()->fpsaved[0] |= flag;
619	} else {
620daex:
621		if (tlb_type == hypervisor)
622			sun4v_data_access_exception(regs, sfar, sfsr);
623		else
624			spitfire_data_access_exception(regs, sfsr, sfar);
625		return;
626	}
627	advance(regs);
 
 
628}
629
630void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
631{
 
632	unsigned long pc = regs->tpc;
633	unsigned long tstate = regs->tstate;
634	u32 insn;
635	u64 value;
636	u8 freg;
637	int flag;
638	struct fpustate *f = FPUSTATE;
639
640	if (tstate & TSTATE_PRIV)
641		die_if_kernel("stdfmna from kernel", regs);
642	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
643	if (test_thread_flag(TIF_32BIT))
644		pc = (u32)pc;
645	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
646		int asi = decode_asi(insn, regs);
647		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
648		value = 0;
649		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
650		if ((asi > ASI_SNFL) ||
651		    (asi < ASI_P))
652			goto daex;
653		save_and_clear_fpu();
654		if (current_thread_info()->fpsaved[0] & flag)
655			value = *(u64 *)&f->regs[freg];
656		switch (asi) {
657		case ASI_P:
658		case ASI_S: break;
659		case ASI_PL:
660		case ASI_SL: 
661			value = __swab64p(&value); break;
662		default: goto daex;
663		}
664		if (put_user (value >> 32, (u32 __user *) sfar) ||
665		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
666			goto daex;
667	} else {
668daex:
669		if (tlb_type == hypervisor)
670			sun4v_data_access_exception(regs, sfar, sfsr);
671		else
672			spitfire_data_access_exception(regs, sfsr, sfar);
673		return;
674	}
675	advance(regs);
 
 
676}
v4.10.11
  1/*
  2 * unaligned.c: Unaligned load/store trap handling with special
  3 *              cases for the kernel to do them more quickly.
  4 *
  5 * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
  6 * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7 */
  8
  9
 10#include <linux/jiffies.h>
 11#include <linux/kernel.h>
 12#include <linux/sched.h>
 13#include <linux/mm.h>
 14#include <linux/extable.h>
 15#include <asm/asi.h>
 16#include <asm/ptrace.h>
 17#include <asm/pstate.h>
 18#include <asm/processor.h>
 19#include <linux/uaccess.h>
 20#include <linux/smp.h>
 21#include <linux/bitops.h>
 22#include <linux/perf_event.h>
 23#include <linux/ratelimit.h>
 24#include <linux/context_tracking.h>
 25#include <asm/fpumacro.h>
 26#include <asm/cacheflush.h>
 27#include <asm/setup.h>
 28
 29#include "entry.h"
 30#include "kernel.h"
 31
 32enum direction {
 33	load,    /* ld, ldd, ldh, ldsh */
 34	store,   /* st, std, sth, stsh */
 35	both,    /* Swap, ldstub, cas, ... */
 36	fpld,
 37	fpst,
 38	invalid,
 39};
 40
 41static inline enum direction decode_direction(unsigned int insn)
 42{
 43	unsigned long tmp = (insn >> 21) & 1;
 44
 45	if (!tmp)
 46		return load;
 47	else {
 48		switch ((insn>>19)&0xf) {
 49		case 15: /* swap* */
 50			return both;
 51		default:
 52			return store;
 53		}
 54	}
 55}
 56
 57/* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
 58static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
 59{
 60	unsigned int tmp;
 61
 62	tmp = ((insn >> 19) & 0xf);
 63	if (tmp == 11 || tmp == 14) /* ldx/stx */
 64		return 8;
 65	tmp &= 3;
 66	if (!tmp)
 67		return 4;
 68	else if (tmp == 3)
 69		return 16;	/* ldd/std - Although it is actually 8 */
 70	else if (tmp == 2)
 71		return 2;
 72	else {
 73		printk("Impossible unaligned trap. insn=%08x\n", insn);
 74		die_if_kernel("Byte sized unaligned access?!?!", regs);
 75
 76		/* GCC should never warn that control reaches the end
 77		 * of this function without returning a value because
 78		 * die_if_kernel() is marked with attribute 'noreturn'.
 79		 * Alas, some versions do...
 80		 */
 81
 82		return 0;
 83	}
 84}
 85
 86static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
 87{
 88	if (insn & 0x800000) {
 89		if (insn & 0x2000)
 90			return (unsigned char)(regs->tstate >> 24);	/* %asi */
 91		else
 92			return (unsigned char)(insn >> 5);		/* imm_asi */
 93	} else
 94		return ASI_P;
 95}
 96
 97/* 0x400000 = signed, 0 = unsigned */
 98static inline int decode_signedness(unsigned int insn)
 99{
100	return (insn & 0x400000);
101}
102
103static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
104				       unsigned int rd, int from_kernel)
105{
106	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
107		if (from_kernel != 0)
108			__asm__ __volatile__("flushw");
109		else
110			flushw_user();
111	}
112}
113
114static inline long sign_extend_imm13(long imm)
115{
116	return imm << 51 >> 51;
117}
118
119static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
120{
121	unsigned long value, fp;
122	
123	if (reg < 16)
124		return (!reg ? 0 : regs->u_regs[reg]);
125
126	fp = regs->u_regs[UREG_FP];
127
128	if (regs->tstate & TSTATE_PRIV) {
129		struct reg_window *win;
130		win = (struct reg_window *)(fp + STACK_BIAS);
131		value = win->locals[reg - 16];
132	} else if (!test_thread_64bit_stack(fp)) {
133		struct reg_window32 __user *win32;
134		win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
135		get_user(value, &win32->locals[reg - 16]);
136	} else {
137		struct reg_window __user *win;
138		win = (struct reg_window __user *)(fp + STACK_BIAS);
139		get_user(value, &win->locals[reg - 16]);
140	}
141	return value;
142}
143
144static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
145{
146	unsigned long fp;
147
148	if (reg < 16)
149		return &regs->u_regs[reg];
150
151	fp = regs->u_regs[UREG_FP];
152
153	if (regs->tstate & TSTATE_PRIV) {
154		struct reg_window *win;
155		win = (struct reg_window *)(fp + STACK_BIAS);
156		return &win->locals[reg - 16];
157	} else if (!test_thread_64bit_stack(fp)) {
158		struct reg_window32 *win32;
159		win32 = (struct reg_window32 *)((unsigned long)((u32)fp));
160		return (unsigned long *)&win32->locals[reg - 16];
161	} else {
162		struct reg_window *win;
163		win = (struct reg_window *)(fp + STACK_BIAS);
164		return &win->locals[reg - 16];
165	}
166}
167
168unsigned long compute_effective_address(struct pt_regs *regs,
169					unsigned int insn, unsigned int rd)
170{
171	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
172	unsigned int rs1 = (insn >> 14) & 0x1f;
173	unsigned int rs2 = insn & 0x1f;
174	unsigned long addr;
175
176	if (insn & 0x2000) {
177		maybe_flush_windows(rs1, 0, rd, from_kernel);
178		addr = (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
179	} else {
180		maybe_flush_windows(rs1, rs2, rd, from_kernel);
181		addr = (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
182	}
183
184	if (!from_kernel && test_thread_flag(TIF_32BIT))
185		addr &= 0xffffffff;
186
187	return addr;
188}
189
190/* This is just to make gcc think die_if_kernel does return... */
191static void __used unaligned_panic(char *str, struct pt_regs *regs)
192{
193	die_if_kernel(str, regs);
194}
195
196extern int do_int_load(unsigned long *dest_reg, int size,
197		       unsigned long *saddr, int is_signed, int asi);
198	
199extern int __do_int_store(unsigned long *dst_addr, int size,
200			  unsigned long src_val, int asi);
201
202static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
203			       struct pt_regs *regs, int asi, int orig_asi)
204{
205	unsigned long zero = 0;
206	unsigned long *src_val_p = &zero;
207	unsigned long src_val;
208
209	if (size == 16) {
210		size = 8;
211		zero = (((long)(reg_num ?
212		        (unsigned int)fetch_reg(reg_num, regs) : 0)) << 32) |
213			(unsigned int)fetch_reg(reg_num + 1, regs);
214	} else if (reg_num) {
215		src_val_p = fetch_reg_addr(reg_num, regs);
216	}
217	src_val = *src_val_p;
218	if (unlikely(asi != orig_asi)) {
219		switch (size) {
220		case 2:
221			src_val = swab16(src_val);
222			break;
223		case 4:
224			src_val = swab32(src_val);
225			break;
226		case 8:
227			src_val = swab64(src_val);
228			break;
229		case 16:
230		default:
231			BUG();
232			break;
233		}
234	}
235	return __do_int_store(dst_addr, size, src_val, asi);
236}
237
238static inline void advance(struct pt_regs *regs)
239{
240	regs->tpc   = regs->tnpc;
241	regs->tnpc += 4;
242	if (test_thread_flag(TIF_32BIT)) {
243		regs->tpc &= 0xffffffff;
244		regs->tnpc &= 0xffffffff;
245	}
246}
247
248static inline int floating_point_load_or_store_p(unsigned int insn)
249{
250	return (insn >> 24) & 1;
251}
252
253static inline int ok_for_kernel(unsigned int insn)
254{
255	return !floating_point_load_or_store_p(insn);
256}
257
258static void kernel_mna_trap_fault(int fixup_tstate_asi)
259{
260	struct pt_regs *regs = current_thread_info()->kern_una_regs;
261	unsigned int insn = current_thread_info()->kern_una_insn;
262	const struct exception_table_entry *entry;
263
264	entry = search_exception_tables(regs->tpc);
265	if (!entry) {
266		unsigned long address;
267
268		address = compute_effective_address(regs, insn,
269						    ((insn >> 25) & 0x1f));
270        	if (address < PAGE_SIZE) {
271                	printk(KERN_ALERT "Unable to handle kernel NULL "
272			       "pointer dereference in mna handler");
273        	} else
274                	printk(KERN_ALERT "Unable to handle kernel paging "
275			       "request in mna handler");
276	        printk(KERN_ALERT " at virtual address %016lx\n",address);
277		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
278			(current->mm ? CTX_HWBITS(current->mm->context) :
279			CTX_HWBITS(current->active_mm->context)));
280		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
281			(current->mm ? (unsigned long) current->mm->pgd :
282			(unsigned long) current->active_mm->pgd));
283	        die_if_kernel("Oops", regs);
284		/* Not reached */
285	}
286	regs->tpc = entry->fixup;
287	regs->tnpc = regs->tpc + 4;
288
289	if (fixup_tstate_asi) {
290		regs->tstate &= ~TSTATE_ASI;
291		regs->tstate |= (ASI_AIUS << 24UL);
292	}
293}
294
295static void log_unaligned(struct pt_regs *regs)
296{
297	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
298
299	if (__ratelimit(&ratelimit)) {
300		printk("Kernel unaligned access at TPC[%lx] %pS\n",
301		       regs->tpc, (void *) regs->tpc);
302	}
303}
304
305asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
306{
307	enum direction dir = decode_direction(insn);
308	int size = decode_access_size(regs, insn);
309	int orig_asi, asi;
310
311	current_thread_info()->kern_una_regs = regs;
312	current_thread_info()->kern_una_insn = insn;
313
314	orig_asi = asi = decode_asi(insn, regs);
315
316	/* If this is a {get,put}_user() on an unaligned userspace pointer,
317	 * just signal a fault and do not log the event.
318	 */
319	if (asi == ASI_AIUS) {
320		kernel_mna_trap_fault(0);
321		return;
322	}
323
324	log_unaligned(regs);
325
326	if (!ok_for_kernel(insn) || dir == both) {
327		printk("Unsupported unaligned load/store trap for kernel "
328		       "at <%016lx>.\n", regs->tpc);
329		unaligned_panic("Kernel does fpu/atomic "
330				"unaligned load/store.", regs);
331
332		kernel_mna_trap_fault(0);
333	} else {
334		unsigned long addr, *reg_addr;
335		int err;
336
337		addr = compute_effective_address(regs, insn,
338						 ((insn >> 25) & 0x1f));
339		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
340		switch (asi) {
341		case ASI_NL:
342		case ASI_AIUPL:
343		case ASI_AIUSL:
344		case ASI_PL:
345		case ASI_SL:
346		case ASI_PNFL:
347		case ASI_SNFL:
348			asi &= ~0x08;
349			break;
350		}
351		switch (dir) {
352		case load:
353			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
354			err = do_int_load(reg_addr, size,
355					  (unsigned long *) addr,
356					  decode_signedness(insn), asi);
357			if (likely(!err) && unlikely(asi != orig_asi)) {
358				unsigned long val_in = *reg_addr;
359				switch (size) {
360				case 2:
361					val_in = swab16(val_in);
362					break;
363				case 4:
364					val_in = swab32(val_in);
365					break;
366				case 8:
367					val_in = swab64(val_in);
368					break;
369				case 16:
370				default:
371					BUG();
372					break;
373				}
374				*reg_addr = val_in;
375			}
376			break;
377
378		case store:
379			err = do_int_store(((insn>>25)&0x1f), size,
380					   (unsigned long *) addr, regs,
381					   asi, orig_asi);
382			break;
383
384		default:
385			panic("Impossible kernel unaligned trap.");
386			/* Not reached... */
387		}
388		if (unlikely(err))
389			kernel_mna_trap_fault(1);
390		else
391			advance(regs);
392	}
393}
394
395int handle_popc(u32 insn, struct pt_regs *regs)
396{
397	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
398	int ret, rd = ((insn >> 25) & 0x1f);
399	u64 value;
400	                        
401	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
402	if (insn & 0x2000) {
403		maybe_flush_windows(0, 0, rd, from_kernel);
404		value = sign_extend_imm13(insn);
405	} else {
406		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
407		value = fetch_reg(insn & 0x1f, regs);
408	}
409	ret = hweight64(value);
410	if (rd < 16) {
411		if (rd)
412			regs->u_regs[rd] = ret;
413	} else {
414		unsigned long fp = regs->u_regs[UREG_FP];
415
416		if (!test_thread_64bit_stack(fp)) {
417			struct reg_window32 __user *win32;
418			win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
419			put_user(ret, &win32->locals[rd - 16]);
420		} else {
421			struct reg_window __user *win;
422			win = (struct reg_window __user *)(fp + STACK_BIAS);
423			put_user(ret, &win->locals[rd - 16]);
424		}
425	}
426	advance(regs);
427	return 1;
428}
429
430extern void do_fpother(struct pt_regs *regs);
431extern void do_privact(struct pt_regs *regs);
 
 
 
432extern void sun4v_data_access_exception(struct pt_regs *regs,
433					unsigned long addr,
434					unsigned long type_ctx);
435
436int handle_ldf_stq(u32 insn, struct pt_regs *regs)
437{
438	unsigned long addr = compute_effective_address(regs, insn, 0);
439	int freg;
440	struct fpustate *f = FPUSTATE;
441	int asi = decode_asi(insn, regs);
442	int flag;
443
444	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
445
446	save_and_clear_fpu();
447	current_thread_info()->xfsr[0] &= ~0x1c000;
 
 
 
 
 
448	if (insn & 0x200000) {
449		/* STQ */
450		u64 first = 0, second = 0;
451		
452		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
453		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
454		if (freg & 3) {
455			current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
456			do_fpother(regs);
457			return 0;
458		}
459		if (current_thread_info()->fpsaved[0] & flag) {
460			first = *(u64 *)&f->regs[freg];
461			second = *(u64 *)&f->regs[freg+2];
462		}
463		if (asi < 0x80) {
464			do_privact(regs);
465			return 1;
466		}
467		switch (asi) {
468		case ASI_P:
469		case ASI_S: break;
470		case ASI_PL:
471		case ASI_SL: 
472			{
473				/* Need to convert endians */
474				u64 tmp = __swab64p(&first);
475				
476				first = __swab64p(&second);
477				second = tmp;
478				break;
479			}
480		default:
481			if (tlb_type == hypervisor)
482				sun4v_data_access_exception(regs, addr, 0);
483			else
484				spitfire_data_access_exception(regs, 0, addr);
485			return 1;
486		}
487		if (put_user (first >> 32, (u32 __user *)addr) ||
488		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
489		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
490		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
491			if (tlb_type == hypervisor)
492				sun4v_data_access_exception(regs, addr, 0);
493			else
494				spitfire_data_access_exception(regs, 0, addr);
495		    	return 1;
496		}
497	} else {
498		/* LDF, LDDF, LDQF */
499		u32 data[4] __attribute__ ((aligned(8)));
500		int size, i;
501		int err;
502
503		if (asi < 0x80) {
504			do_privact(regs);
505			return 1;
506		} else if (asi > ASI_SNFL) {
507			if (tlb_type == hypervisor)
508				sun4v_data_access_exception(regs, addr, 0);
509			else
510				spitfire_data_access_exception(regs, 0, addr);
511			return 1;
512		}
513		switch (insn & 0x180000) {
514		case 0x000000: size = 1; break;
515		case 0x100000: size = 4; break;
516		default: size = 2; break;
517		}
518		if (size == 1)
519			freg = (insn >> 25) & 0x1f;
520		else
521			freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
522		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
523
524		for (i = 0; i < size; i++)
525			data[i] = 0;
526		
527		err = get_user (data[0], (u32 __user *) addr);
528		if (!err) {
529			for (i = 1; i < size; i++)
530				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
531		}
532		if (err && !(asi & 0x2 /* NF */)) {
533			if (tlb_type == hypervisor)
534				sun4v_data_access_exception(regs, addr, 0);
535			else
536				spitfire_data_access_exception(regs, 0, addr);
537			return 1;
538		}
539		if (asi & 0x8) /* Little */ {
540			u64 tmp;
541
542			switch (size) {
543			case 1: data[0] = le32_to_cpup(data + 0); break;
544			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
545				break;
546			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
547				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
548				*(u64 *)(data + 2) = tmp;
549				break;
550			}
551		}
552		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
553			current_thread_info()->fpsaved[0] = FPRS_FEF;
554			current_thread_info()->gsr[0] = 0;
555		}
556		if (!(current_thread_info()->fpsaved[0] & flag)) {
557			if (freg < 32)
558				memset(f->regs, 0, 32*sizeof(u32));
559			else
560				memset(f->regs+32, 0, 32*sizeof(u32));
561		}
562		memcpy(f->regs + freg, data, size * 4);
563		current_thread_info()->fpsaved[0] |= flag;
564	}
565	advance(regs);
566	return 1;
567}
568
569void handle_ld_nf(u32 insn, struct pt_regs *regs)
570{
571	int rd = ((insn >> 25) & 0x1f);
572	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
573	unsigned long *reg;
574	                        
575	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
576
577	maybe_flush_windows(0, 0, rd, from_kernel);
578	reg = fetch_reg_addr(rd, regs);
579	if (from_kernel || rd < 16) {
580		reg[0] = 0;
581		if ((insn & 0x780000) == 0x180000)
582			reg[1] = 0;
583	} else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
584		put_user(0, (int __user *) reg);
585		if ((insn & 0x780000) == 0x180000)
586			put_user(0, ((int __user *) reg) + 1);
587	} else {
588		put_user(0, (unsigned long __user *) reg);
589		if ((insn & 0x780000) == 0x180000)
590			put_user(0, (unsigned long __user *) reg + 1);
591	}
592	advance(regs);
593}
594
595void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
596{
597	enum ctx_state prev_state = exception_enter();
598	unsigned long pc = regs->tpc;
599	unsigned long tstate = regs->tstate;
600	u32 insn;
601	u64 value;
602	u8 freg;
603	int flag;
604	struct fpustate *f = FPUSTATE;
605
606	if (tstate & TSTATE_PRIV)
607		die_if_kernel("lddfmna from kernel", regs);
608	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
609	if (test_thread_flag(TIF_32BIT))
610		pc = (u32)pc;
611	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
612		int asi = decode_asi(insn, regs);
613		u32 first, second;
614		int err;
615
616		if ((asi > ASI_SNFL) ||
617		    (asi < ASI_P))
618			goto daex;
619		first = second = 0;
620		err = get_user(first, (u32 __user *)sfar);
621		if (!err)
622			err = get_user(second, (u32 __user *)(sfar + 4));
623		if (err) {
624			if (!(asi & 0x2))
625				goto daex;
626			first = second = 0;
627		}
628		save_and_clear_fpu();
629		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
630		value = (((u64)first) << 32) | second;
631		if (asi & 0x8) /* Little */
632			value = __swab64p(&value);
633		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
634		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
635			current_thread_info()->fpsaved[0] = FPRS_FEF;
636			current_thread_info()->gsr[0] = 0;
637		}
638		if (!(current_thread_info()->fpsaved[0] & flag)) {
639			if (freg < 32)
640				memset(f->regs, 0, 32*sizeof(u32));
641			else
642				memset(f->regs+32, 0, 32*sizeof(u32));
643		}
644		*(u64 *)(f->regs + freg) = value;
645		current_thread_info()->fpsaved[0] |= flag;
646	} else {
647daex:
648		if (tlb_type == hypervisor)
649			sun4v_data_access_exception(regs, sfar, sfsr);
650		else
651			spitfire_data_access_exception(regs, sfsr, sfar);
652		goto out;
653	}
654	advance(regs);
655out:
656	exception_exit(prev_state);
657}
658
659void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
660{
661	enum ctx_state prev_state = exception_enter();
662	unsigned long pc = regs->tpc;
663	unsigned long tstate = regs->tstate;
664	u32 insn;
665	u64 value;
666	u8 freg;
667	int flag;
668	struct fpustate *f = FPUSTATE;
669
670	if (tstate & TSTATE_PRIV)
671		die_if_kernel("stdfmna from kernel", regs);
672	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
673	if (test_thread_flag(TIF_32BIT))
674		pc = (u32)pc;
675	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
676		int asi = decode_asi(insn, regs);
677		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
678		value = 0;
679		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
680		if ((asi > ASI_SNFL) ||
681		    (asi < ASI_P))
682			goto daex;
683		save_and_clear_fpu();
684		if (current_thread_info()->fpsaved[0] & flag)
685			value = *(u64 *)&f->regs[freg];
686		switch (asi) {
687		case ASI_P:
688		case ASI_S: break;
689		case ASI_PL:
690		case ASI_SL: 
691			value = __swab64p(&value); break;
692		default: goto daex;
693		}
694		if (put_user (value >> 32, (u32 __user *) sfar) ||
695		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
696			goto daex;
697	} else {
698daex:
699		if (tlb_type == hypervisor)
700			sun4v_data_access_exception(regs, sfar, sfsr);
701		else
702			spitfire_data_access_exception(regs, sfsr, sfar);
703		goto out;
704	}
705	advance(regs);
706out:
707	exception_exit(prev_state);
708}