Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *	PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*	I think it would be in everyone's best interest to follow this
  24 *	guidelines when writing PDC wrappers:
  25 *
  26 *	 - the name of the pdc wrapper should match one of the macros
  27 *	   used for the first two arguments
  28 *	 - don't use caps for random parts of the name
  29 *	 - use the static PDC result buffers and "copyout" to structs
  30 *	   supplied by the caller to encapsulate alignment restrictions
  31 *	 - hold pdc_lock while in PDC or using static result buffers
  32 *	 - use __pa() to convert virtual (kernel) pointers to physical
  33 *	   ones.
  34 *	 - the name of the struct used for pdc return values should equal
  35 *	   one of the macros used for the first two arguments to the
  36 *	   corresponding PDC call
  37 *	 - keep the order of arguments
  38 *	 - don't be smart (setting trailing NUL bytes for strings, return
  39 *	   something useful even if the call failed) unless you are sure
  40 *	   it's not going to affect functionality or performance
  41 *
  42 *	Example:
  43 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *	{
  45 *		int retval;
  46 *
  47 *		spin_lock_irq(&pdc_lock);
  48 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *		convert_to_wide(pdc_result);
  50 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *		spin_unlock_irq(&pdc_lock);
  52 *
  53 *		return retval;
  54 *	}
  55 *					prumpf	991016	
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
 
  70#include <asm/processor.h>	/* for boot_cpu_data */
  71
  72static DEFINE_SPINLOCK(pdc_lock);
  73extern unsigned long pdc_result[NUM_PDC_RESULT];
  74extern unsigned long pdc_result2[NUM_PDC_RESULT];
  75
  76#ifdef CONFIG_64BIT
  77#define WIDE_FIRMWARE 0x1
  78#define NARROW_FIRMWARE 0x2
  79
  80/* Firmware needs to be initially set to narrow to determine the 
  81 * actual firmware width. */
  82int parisc_narrow_firmware __read_mostly = 1;
  83#endif
  84
  85/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  86 * and MEM_PDC calls are always the same width as the OS.
  87 * Some PAT boxes may have 64-bit IODC I/O.
  88 *
  89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  91 * This allowed wide kernels to run on Cxxx boxes.
  92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  94 */
  95
  96#ifdef CONFIG_64BIT
  97long real64_call(unsigned long function, ...);
  98#endif
  99long real32_call(unsigned long function, ...);
 100
 101#ifdef CONFIG_64BIT
 102#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 103#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 104#else
 105#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 106#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 107#endif
 108
 109
 110/**
 111 * f_extend - Convert PDC addresses to kernel addresses.
 112 * @address: Address returned from PDC.
 113 *
 114 * This function is used to convert PDC addresses into kernel addresses
 115 * when the PDC address size and kernel address size are different.
 116 */
 117static unsigned long f_extend(unsigned long address)
 118{
 119#ifdef CONFIG_64BIT
 120	if(unlikely(parisc_narrow_firmware)) {
 121		if((address & 0xff000000) == 0xf0000000)
 122			return 0xf0f0f0f000000000UL | (u32)address;
 123
 124		if((address & 0xf0000000) == 0xf0000000)
 125			return 0xffffffff00000000UL | (u32)address;
 126	}
 127#endif
 128	return address;
 129}
 130
 131/**
 132 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 133 * @address: The return buffer from PDC.
 134 *
 135 * This function is used to convert the return buffer addresses retrieved from PDC
 136 * into kernel addresses when the PDC address size and kernel address size are
 137 * different.
 138 */
 139static void convert_to_wide(unsigned long *addr)
 140{
 141#ifdef CONFIG_64BIT
 142	int i;
 143	unsigned int *p = (unsigned int *)addr;
 144
 145	if(unlikely(parisc_narrow_firmware)) {
 146		for(i = 31; i >= 0; --i)
 147			addr[i] = p[i];
 148	}
 149#endif
 150}
 151
 152#ifdef CONFIG_64BIT
 153void __cpuinit set_firmware_width_unlocked(void)
 154{
 155	int ret;
 156
 157	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 158		__pa(pdc_result), 0);
 159	convert_to_wide(pdc_result);
 160	if (pdc_result[0] != NARROW_FIRMWARE)
 161		parisc_narrow_firmware = 0;
 162}
 163	
 164/**
 165 * set_firmware_width - Determine if the firmware is wide or narrow.
 166 * 
 167 * This function must be called before any pdc_* function that uses the
 168 * convert_to_wide function.
 169 */
 170void __cpuinit set_firmware_width(void)
 171{
 172	unsigned long flags;
 173	spin_lock_irqsave(&pdc_lock, flags);
 174	set_firmware_width_unlocked();
 175	spin_unlock_irqrestore(&pdc_lock, flags);
 176}
 177#else
 178void __cpuinit set_firmware_width_unlocked(void) {
 179	return;
 180}
 181
 182void __cpuinit set_firmware_width(void) {
 183	return;
 184}
 185#endif /*CONFIG_64BIT*/
 186
 187/**
 188 * pdc_emergency_unlock - Unlock the linux pdc lock
 189 *
 190 * This call unlocks the linux pdc lock in case we need some PDC functions
 191 * (like pdc_add_valid) during kernel stack dump.
 192 */
 193void pdc_emergency_unlock(void)
 194{
 195 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 196        if (spin_is_locked(&pdc_lock))
 197		spin_unlock(&pdc_lock);
 198}
 199
 200
 201/**
 202 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 203 * @address: Address to be verified.
 204 *
 205 * This PDC call attempts to read from the specified address and verifies
 206 * if the address is valid.
 207 * 
 208 * The return value is PDC_OK (0) in case accessing this address is valid.
 209 */
 210int pdc_add_valid(unsigned long address)
 211{
 212        int retval;
 213	unsigned long flags;
 214
 215        spin_lock_irqsave(&pdc_lock, flags);
 216        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 217        spin_unlock_irqrestore(&pdc_lock, flags);
 218
 219        return retval;
 220}
 221EXPORT_SYMBOL(pdc_add_valid);
 222
 223/**
 224 * pdc_chassis_info - Return chassis information.
 225 * @result: The return buffer.
 226 * @chassis_info: The memory buffer address.
 227 * @len: The size of the memory buffer address.
 228 *
 229 * An HVERSION dependent call for returning the chassis information.
 230 */
 231int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 232{
 233        int retval;
 234	unsigned long flags;
 235
 236        spin_lock_irqsave(&pdc_lock, flags);
 237        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 238        memcpy(&pdc_result2, led_info, len);
 239        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 240                              __pa(pdc_result), __pa(pdc_result2), len);
 241        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 242        memcpy(led_info, pdc_result2, len);
 243        spin_unlock_irqrestore(&pdc_lock, flags);
 244
 245        return retval;
 246}
 247
 248/**
 249 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 250 * @retval: -1 on error, 0 on success. Other value are PDC errors
 251 * 
 252 * Must be correctly formatted or expect system crash
 253 */
 254#ifdef CONFIG_64BIT
 255int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 256{
 257	int retval = 0;
 258	unsigned long flags;
 259        
 260	if (!is_pdc_pat())
 261		return -1;
 262
 263	spin_lock_irqsave(&pdc_lock, flags);
 264	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 265	spin_unlock_irqrestore(&pdc_lock, flags);
 266
 267	return retval;
 268}
 269#endif
 270
 271/**
 272 * pdc_chassis_disp - Updates chassis code
 273 * @retval: -1 on error, 0 on success
 274 */
 275int pdc_chassis_disp(unsigned long disp)
 276{
 277	int retval = 0;
 278	unsigned long flags;
 279
 280	spin_lock_irqsave(&pdc_lock, flags);
 281	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 282	spin_unlock_irqrestore(&pdc_lock, flags);
 283
 284	return retval;
 285}
 286
 287/**
 288 * pdc_chassis_warn - Fetches chassis warnings
 289 * @retval: -1 on error, 0 on success
 290 */
 291int pdc_chassis_warn(unsigned long *warn)
 292{
 293	int retval = 0;
 294	unsigned long flags;
 295
 296	spin_lock_irqsave(&pdc_lock, flags);
 297	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 298	*warn = pdc_result[0];
 299	spin_unlock_irqrestore(&pdc_lock, flags);
 300
 301	return retval;
 302}
 303
 304int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 305{
 306	int ret;
 307
 308	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 309	convert_to_wide(pdc_result);
 310	pdc_coproc_info->ccr_functional = pdc_result[0];
 311	pdc_coproc_info->ccr_present = pdc_result[1];
 312	pdc_coproc_info->revision = pdc_result[17];
 313	pdc_coproc_info->model = pdc_result[18];
 314
 315	return ret;
 316}
 317
 318/**
 319 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 320 * @pdc_coproc_info: Return buffer address.
 321 *
 322 * This PDC call returns the presence and status of all the coprocessors
 323 * attached to the processor.
 324 */
 325int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 326{
 327	int ret;
 328	unsigned long flags;
 329
 330	spin_lock_irqsave(&pdc_lock, flags);
 331	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 332	spin_unlock_irqrestore(&pdc_lock, flags);
 333
 334	return ret;
 335}
 336
 337/**
 338 * pdc_iodc_read - Read data from the modules IODC.
 339 * @actcnt: The actual number of bytes.
 340 * @hpa: The HPA of the module for the iodc read.
 341 * @index: The iodc entry point.
 342 * @iodc_data: A buffer memory for the iodc options.
 343 * @iodc_data_size: Size of the memory buffer.
 344 *
 345 * This PDC call reads from the IODC of the module specified by the hpa
 346 * argument.
 347 */
 348int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 349		  void *iodc_data, unsigned int iodc_data_size)
 350{
 351	int retval;
 352	unsigned long flags;
 353
 354	spin_lock_irqsave(&pdc_lock, flags);
 355	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 356			      index, __pa(pdc_result2), iodc_data_size);
 357	convert_to_wide(pdc_result);
 358	*actcnt = pdc_result[0];
 359	memcpy(iodc_data, pdc_result2, iodc_data_size);
 360	spin_unlock_irqrestore(&pdc_lock, flags);
 361
 362	return retval;
 363}
 364EXPORT_SYMBOL(pdc_iodc_read);
 365
 366/**
 367 * pdc_system_map_find_mods - Locate unarchitected modules.
 368 * @pdc_mod_info: Return buffer address.
 369 * @mod_path: pointer to dev path structure.
 370 * @mod_index: fixed address module index.
 371 *
 372 * To locate and identify modules which reside at fixed I/O addresses, which
 373 * do not self-identify via architected bus walks.
 374 */
 375int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 376			     struct pdc_module_path *mod_path, long mod_index)
 377{
 378	int retval;
 379	unsigned long flags;
 380
 381	spin_lock_irqsave(&pdc_lock, flags);
 382	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 383			      __pa(pdc_result2), mod_index);
 384	convert_to_wide(pdc_result);
 385	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 386	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 387	spin_unlock_irqrestore(&pdc_lock, flags);
 388
 389	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 390	return retval;
 391}
 392
 393/**
 394 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 395 * @pdc_addr_info: Return buffer address.
 396 * @mod_index: Fixed address module index.
 397 * @addr_index: Address range index.
 398 * 
 399 * Retrieve additional information about subsequent address ranges for modules
 400 * with multiple address ranges.  
 401 */
 402int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 403			      long mod_index, long addr_index)
 404{
 405	int retval;
 406	unsigned long flags;
 407
 408	spin_lock_irqsave(&pdc_lock, flags);
 409	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 410			      mod_index, addr_index);
 411	convert_to_wide(pdc_result);
 412	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 413	spin_unlock_irqrestore(&pdc_lock, flags);
 414
 415	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 416	return retval;
 417}
 418
 419/**
 420 * pdc_model_info - Return model information about the processor.
 421 * @model: The return buffer.
 422 *
 423 * Returns the version numbers, identifiers, and capabilities from the processor module.
 424 */
 425int pdc_model_info(struct pdc_model *model) 
 426{
 427	int retval;
 428	unsigned long flags;
 429
 430	spin_lock_irqsave(&pdc_lock, flags);
 431	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 432	convert_to_wide(pdc_result);
 433	memcpy(model, pdc_result, sizeof(*model));
 434	spin_unlock_irqrestore(&pdc_lock, flags);
 435
 436	return retval;
 437}
 438
 439/**
 440 * pdc_model_sysmodel - Get the system model name.
 441 * @name: A char array of at least 81 characters.
 442 *
 443 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 444 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 445 * on HP/UX.
 446 */
 447int pdc_model_sysmodel(char *name)
 448{
 449        int retval;
 450	unsigned long flags;
 451
 452        spin_lock_irqsave(&pdc_lock, flags);
 453        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 454                              OS_ID_HPUX, __pa(name));
 455        convert_to_wide(pdc_result);
 456
 457        if (retval == PDC_OK) {
 458                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 459        } else {
 460                name[0] = 0;
 461        }
 462        spin_unlock_irqrestore(&pdc_lock, flags);
 463
 464        return retval;
 465}
 466
 467/**
 468 * pdc_model_versions - Identify the version number of each processor.
 469 * @cpu_id: The return buffer.
 470 * @id: The id of the processor to check.
 471 *
 472 * Returns the version number for each processor component.
 473 *
 474 * This comment was here before, but I do not know what it means :( -RB
 475 * id: 0 = cpu revision, 1 = boot-rom-version
 476 */
 477int pdc_model_versions(unsigned long *versions, int id)
 478{
 479        int retval;
 480	unsigned long flags;
 481
 482        spin_lock_irqsave(&pdc_lock, flags);
 483        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 484        convert_to_wide(pdc_result);
 485        *versions = pdc_result[0];
 486        spin_unlock_irqrestore(&pdc_lock, flags);
 487
 488        return retval;
 489}
 490
 491/**
 492 * pdc_model_cpuid - Returns the CPU_ID.
 493 * @cpu_id: The return buffer.
 494 *
 495 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 496 * the processor module.
 497 */
 498int pdc_model_cpuid(unsigned long *cpu_id)
 499{
 500        int retval;
 501	unsigned long flags;
 502
 503        spin_lock_irqsave(&pdc_lock, flags);
 504        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 505        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 506        convert_to_wide(pdc_result);
 507        *cpu_id = pdc_result[0];
 508        spin_unlock_irqrestore(&pdc_lock, flags);
 509
 510        return retval;
 511}
 512
 513/**
 514 * pdc_model_capabilities - Returns the platform capabilities.
 515 * @capabilities: The return buffer.
 516 *
 517 * Returns information about platform support for 32- and/or 64-bit
 518 * OSes, IO-PDIR coherency, and virtual aliasing.
 519 */
 520int pdc_model_capabilities(unsigned long *capabilities)
 521{
 522        int retval;
 523	unsigned long flags;
 524
 525        spin_lock_irqsave(&pdc_lock, flags);
 526        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 527        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 528        convert_to_wide(pdc_result);
 529        if (retval == PDC_OK) {
 530                *capabilities = pdc_result[0];
 531        } else {
 532                *capabilities = PDC_MODEL_OS32;
 533        }
 534        spin_unlock_irqrestore(&pdc_lock, flags);
 535
 536        return retval;
 537}
 538
 539/**
 540 * pdc_cache_info - Return cache and TLB information.
 541 * @cache_info: The return buffer.
 542 *
 543 * Returns information about the processor's cache and TLB.
 544 */
 545int pdc_cache_info(struct pdc_cache_info *cache_info)
 546{
 547        int retval;
 548	unsigned long flags;
 549
 550        spin_lock_irqsave(&pdc_lock, flags);
 551        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 552        convert_to_wide(pdc_result);
 553        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 554        spin_unlock_irqrestore(&pdc_lock, flags);
 555
 556        return retval;
 557}
 558
 559/**
 560 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 561 * @space_bits: Should be 0, if not, bad mojo!
 562 *
 563 * Returns information about Space ID hashing.
 564 */
 565int pdc_spaceid_bits(unsigned long *space_bits)
 566{
 567	int retval;
 568	unsigned long flags;
 569
 570	spin_lock_irqsave(&pdc_lock, flags);
 571	pdc_result[0] = 0;
 572	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 573	convert_to_wide(pdc_result);
 574	*space_bits = pdc_result[0];
 575	spin_unlock_irqrestore(&pdc_lock, flags);
 576
 577	return retval;
 578}
 579
 580#ifndef CONFIG_PA20
 581/**
 582 * pdc_btlb_info - Return block TLB information.
 583 * @btlb: The return buffer.
 584 *
 585 * Returns information about the hardware Block TLB.
 586 */
 587int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 588{
 589        int retval;
 590	unsigned long flags;
 591
 592        spin_lock_irqsave(&pdc_lock, flags);
 593        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 594        memcpy(btlb, pdc_result, sizeof(*btlb));
 595        spin_unlock_irqrestore(&pdc_lock, flags);
 596
 597        if(retval < 0) {
 598                btlb->max_size = 0;
 599        }
 600        return retval;
 601}
 602
 603/**
 604 * pdc_mem_map_hpa - Find fixed module information.  
 605 * @address: The return buffer
 606 * @mod_path: pointer to dev path structure.
 607 *
 608 * This call was developed for S700 workstations to allow the kernel to find
 609 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 610 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 611 * call.
 612 *
 613 * This call is supported by all existing S700 workstations (up to  Gecko).
 614 */
 615int pdc_mem_map_hpa(struct pdc_memory_map *address,
 616		struct pdc_module_path *mod_path)
 617{
 618        int retval;
 619	unsigned long flags;
 620
 621        spin_lock_irqsave(&pdc_lock, flags);
 622        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 623        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 624				__pa(pdc_result2));
 625        memcpy(address, pdc_result, sizeof(*address));
 626        spin_unlock_irqrestore(&pdc_lock, flags);
 627
 628        return retval;
 629}
 630#endif	/* !CONFIG_PA20 */
 631
 632/**
 633 * pdc_lan_station_id - Get the LAN address.
 634 * @lan_addr: The return buffer.
 635 * @hpa: The network device HPA.
 636 *
 637 * Get the LAN station address when it is not directly available from the LAN hardware.
 638 */
 639int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 640{
 641	int retval;
 642	unsigned long flags;
 643
 644	spin_lock_irqsave(&pdc_lock, flags);
 645	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 646			__pa(pdc_result), hpa);
 647	if (retval < 0) {
 648		/* FIXME: else read MAC from NVRAM */
 649		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 650	} else {
 651		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 652	}
 653	spin_unlock_irqrestore(&pdc_lock, flags);
 654
 655	return retval;
 656}
 657EXPORT_SYMBOL(pdc_lan_station_id);
 658
 659/**
 660 * pdc_stable_read - Read data from Stable Storage.
 661 * @staddr: Stable Storage address to access.
 662 * @memaddr: The memory address where Stable Storage data shall be copied.
 663 * @count: number of bytes to transfer. count is multiple of 4.
 664 *
 665 * This PDC call reads from the Stable Storage address supplied in staddr
 666 * and copies count bytes to the memory address memaddr.
 667 * The call will fail if staddr+count > PDC_STABLE size.
 668 */
 669int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 670{
 671       int retval;
 672	unsigned long flags;
 673
 674       spin_lock_irqsave(&pdc_lock, flags);
 675       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 676               __pa(pdc_result), count);
 677       convert_to_wide(pdc_result);
 678       memcpy(memaddr, pdc_result, count);
 679       spin_unlock_irqrestore(&pdc_lock, flags);
 680
 681       return retval;
 682}
 683EXPORT_SYMBOL(pdc_stable_read);
 684
 685/**
 686 * pdc_stable_write - Write data to Stable Storage.
 687 * @staddr: Stable Storage address to access.
 688 * @memaddr: The memory address where Stable Storage data shall be read from.
 689 * @count: number of bytes to transfer. count is multiple of 4.
 690 *
 691 * This PDC call reads count bytes from the supplied memaddr address,
 692 * and copies count bytes to the Stable Storage address staddr.
 693 * The call will fail if staddr+count > PDC_STABLE size.
 694 */
 695int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 696{
 697       int retval;
 698	unsigned long flags;
 699
 700       spin_lock_irqsave(&pdc_lock, flags);
 701       memcpy(pdc_result, memaddr, count);
 702       convert_to_wide(pdc_result);
 703       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 704               __pa(pdc_result), count);
 705       spin_unlock_irqrestore(&pdc_lock, flags);
 706
 707       return retval;
 708}
 709EXPORT_SYMBOL(pdc_stable_write);
 710
 711/**
 712 * pdc_stable_get_size - Get Stable Storage size in bytes.
 713 * @size: pointer where the size will be stored.
 714 *
 715 * This PDC call returns the number of bytes in the processor's Stable
 716 * Storage, which is the number of contiguous bytes implemented in Stable
 717 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 718 * which is a multiple of four.
 719 */
 720int pdc_stable_get_size(unsigned long *size)
 721{
 722       int retval;
 723	unsigned long flags;
 724
 725       spin_lock_irqsave(&pdc_lock, flags);
 726       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 727       *size = pdc_result[0];
 728       spin_unlock_irqrestore(&pdc_lock, flags);
 729
 730       return retval;
 731}
 732EXPORT_SYMBOL(pdc_stable_get_size);
 733
 734/**
 735 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 736 *
 737 * This PDC call is meant to be used to check the integrity of the current
 738 * contents of Stable Storage.
 739 */
 740int pdc_stable_verify_contents(void)
 741{
 742       int retval;
 743	unsigned long flags;
 744
 745       spin_lock_irqsave(&pdc_lock, flags);
 746       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 747       spin_unlock_irqrestore(&pdc_lock, flags);
 748
 749       return retval;
 750}
 751EXPORT_SYMBOL(pdc_stable_verify_contents);
 752
 753/**
 754 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 755 * the validity indicator.
 756 *
 757 * This PDC call will erase all contents of Stable Storage. Use with care!
 758 */
 759int pdc_stable_initialize(void)
 760{
 761       int retval;
 762	unsigned long flags;
 763
 764       spin_lock_irqsave(&pdc_lock, flags);
 765       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 766       spin_unlock_irqrestore(&pdc_lock, flags);
 767
 768       return retval;
 769}
 770EXPORT_SYMBOL(pdc_stable_initialize);
 771
 772/**
 773 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 774 * @hwpath: fully bc.mod style path to the device.
 775 * @initiator: the array to return the result into
 776 *
 777 * Get the SCSI operational parameters from PDC.
 778 * Needed since HPUX never used BIOS or symbios card NVRAM.
 779 * Most ncr/sym cards won't have an entry and just use whatever
 780 * capabilities of the card are (eg Ultra, LVD). But there are
 781 * several cases where it's useful:
 782 *    o set SCSI id for Multi-initiator clusters,
 783 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 784 *    o bus width exported is less than what the interface chip supports.
 785 */
 786int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 787{
 788	int retval;
 789	unsigned long flags;
 790
 791	spin_lock_irqsave(&pdc_lock, flags);
 792
 793/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 794#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 795	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 796
 797	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 798			      __pa(pdc_result), __pa(hwpath));
 799	if (retval < PDC_OK)
 800		goto out;
 801
 802	if (pdc_result[0] < 16) {
 803		initiator->host_id = pdc_result[0];
 804	} else {
 805		initiator->host_id = -1;
 806	}
 807
 808	/*
 809	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 810	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 811	 */
 812	switch (pdc_result[1]) {
 813		case  1: initiator->factor = 50; break;
 814		case  2: initiator->factor = 25; break;
 815		case  5: initiator->factor = 12; break;
 816		case 25: initiator->factor = 10; break;
 817		case 20: initiator->factor = 12; break;
 818		case 40: initiator->factor = 10; break;
 819		default: initiator->factor = -1; break;
 820	}
 821
 822	if (IS_SPROCKETS()) {
 823		initiator->width = pdc_result[4];
 824		initiator->mode = pdc_result[5];
 825	} else {
 826		initiator->width = -1;
 827		initiator->mode = -1;
 828	}
 829
 830 out:
 831	spin_unlock_irqrestore(&pdc_lock, flags);
 832
 833	return (retval >= PDC_OK);
 834}
 835EXPORT_SYMBOL(pdc_get_initiator);
 836
 837
 838/**
 839 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 840 * @num_entries: The return value.
 841 * @hpa: The HPA for the device.
 842 *
 843 * This PDC function returns the number of entries in the specified cell's
 844 * interrupt table.
 845 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 846 */ 
 847int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 848{
 849	int retval;
 850	unsigned long flags;
 851
 852	spin_lock_irqsave(&pdc_lock, flags);
 853	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 854			      __pa(pdc_result), hpa);
 855	convert_to_wide(pdc_result);
 856	*num_entries = pdc_result[0];
 857	spin_unlock_irqrestore(&pdc_lock, flags);
 858
 859	return retval;
 860}
 861
 862/** 
 863 * pdc_pci_irt - Get the PCI interrupt routing table.
 864 * @num_entries: The number of entries in the table.
 865 * @hpa: The Hard Physical Address of the device.
 866 * @tbl: 
 867 *
 868 * Get the PCI interrupt routing table for the device at the given HPA.
 869 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 870 */
 871int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 872{
 873	int retval;
 874	unsigned long flags;
 875
 876	BUG_ON((unsigned long)tbl & 0x7);
 877
 878	spin_lock_irqsave(&pdc_lock, flags);
 879	pdc_result[0] = num_entries;
 880	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 881			      __pa(pdc_result), hpa, __pa(tbl));
 882	spin_unlock_irqrestore(&pdc_lock, flags);
 883
 884	return retval;
 885}
 886
 887
 888#if 0	/* UNTEST CODE - left here in case someone needs it */
 889
 890/** 
 891 * pdc_pci_config_read - read PCI config space.
 892 * @hpa		token from PDC to indicate which PCI device
 893 * @pci_addr	configuration space address to read from
 894 *
 895 * Read PCI Configuration space *before* linux PCI subsystem is running.
 896 */
 897unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 898{
 899	int retval;
 900	unsigned long flags;
 901
 902	spin_lock_irqsave(&pdc_lock, flags);
 903	pdc_result[0] = 0;
 904	pdc_result[1] = 0;
 905	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 906			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 907	spin_unlock_irqrestore(&pdc_lock, flags);
 908
 909	return retval ? ~0 : (unsigned int) pdc_result[0];
 910}
 911
 912
 913/** 
 914 * pdc_pci_config_write - read PCI config space.
 915 * @hpa		token from PDC to indicate which PCI device
 916 * @pci_addr	configuration space address to write
 917 * @val		value we want in the 32-bit register
 918 *
 919 * Write PCI Configuration space *before* linux PCI subsystem is running.
 920 */
 921void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 922{
 923	int retval;
 924	unsigned long flags;
 925
 926	spin_lock_irqsave(&pdc_lock, flags);
 927	pdc_result[0] = 0;
 928	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 929			      __pa(pdc_result), hpa,
 930			      cfg_addr&~3UL, 4UL, (unsigned long) val);
 931	spin_unlock_irqrestore(&pdc_lock, flags);
 932
 933	return retval;
 934}
 935#endif /* UNTESTED CODE */
 936
 937/**
 938 * pdc_tod_read - Read the Time-Of-Day clock.
 939 * @tod: The return buffer:
 940 *
 941 * Read the Time-Of-Day clock
 942 */
 943int pdc_tod_read(struct pdc_tod *tod)
 944{
 945        int retval;
 946	unsigned long flags;
 947
 948        spin_lock_irqsave(&pdc_lock, flags);
 949        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
 950        convert_to_wide(pdc_result);
 951        memcpy(tod, pdc_result, sizeof(*tod));
 952        spin_unlock_irqrestore(&pdc_lock, flags);
 953
 954        return retval;
 955}
 956EXPORT_SYMBOL(pdc_tod_read);
 957
 958/**
 959 * pdc_tod_set - Set the Time-Of-Day clock.
 960 * @sec: The number of seconds since epoch.
 961 * @usec: The number of micro seconds.
 962 *
 963 * Set the Time-Of-Day clock.
 964 */ 
 965int pdc_tod_set(unsigned long sec, unsigned long usec)
 966{
 967        int retval;
 968	unsigned long flags;
 969
 970        spin_lock_irqsave(&pdc_lock, flags);
 971        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
 972        spin_unlock_irqrestore(&pdc_lock, flags);
 973
 974        return retval;
 975}
 976EXPORT_SYMBOL(pdc_tod_set);
 977
 978#ifdef CONFIG_64BIT
 979int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
 980		struct pdc_memory_table *tbl, unsigned long entries)
 981{
 982	int retval;
 983	unsigned long flags;
 984
 985	spin_lock_irqsave(&pdc_lock, flags);
 986	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
 987	convert_to_wide(pdc_result);
 988	memcpy(r_addr, pdc_result, sizeof(*r_addr));
 989	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
 990	spin_unlock_irqrestore(&pdc_lock, flags);
 991
 992	return retval;
 993}
 994#endif /* CONFIG_64BIT */
 995
 996/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
 997 * so I guessed at unsigned long.  Someone who knows what this does, can fix
 998 * it later. :)
 999 */
1000int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1001{
1002        int retval;
1003	unsigned long flags;
1004
1005        spin_lock_irqsave(&pdc_lock, flags);
1006        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1007                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1008        spin_unlock_irqrestore(&pdc_lock, flags);
1009
1010        return retval;
1011}
1012
1013/*
1014 * pdc_do_reset - Reset the system.
1015 *
1016 * Reset the system.
1017 */
1018int pdc_do_reset(void)
1019{
1020        int retval;
1021	unsigned long flags;
1022
1023        spin_lock_irqsave(&pdc_lock, flags);
1024        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1025        spin_unlock_irqrestore(&pdc_lock, flags);
1026
1027        return retval;
1028}
1029
1030/*
1031 * pdc_soft_power_info - Enable soft power switch.
1032 * @power_reg: address of soft power register
1033 *
1034 * Return the absolute address of the soft power switch register
1035 */
1036int __init pdc_soft_power_info(unsigned long *power_reg)
1037{
1038	int retval;
1039	unsigned long flags;
1040
1041	*power_reg = (unsigned long) (-1);
1042	
1043	spin_lock_irqsave(&pdc_lock, flags);
1044	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1045	if (retval == PDC_OK) {
1046                convert_to_wide(pdc_result);
1047                *power_reg = f_extend(pdc_result[0]);
1048	}
1049	spin_unlock_irqrestore(&pdc_lock, flags);
1050
1051	return retval;
1052}
1053
1054/*
1055 * pdc_soft_power_button - Control the soft power button behaviour
1056 * @sw_control: 0 for hardware control, 1 for software control 
1057 *
1058 *
1059 * This PDC function places the soft power button under software or
1060 * hardware control.
1061 * Under software control the OS may control to when to allow to shut 
1062 * down the system. Under hardware control pressing the power button 
1063 * powers off the system immediately.
1064 */
1065int pdc_soft_power_button(int sw_control)
1066{
1067	int retval;
1068	unsigned long flags;
1069
1070	spin_lock_irqsave(&pdc_lock, flags);
1071	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1072	spin_unlock_irqrestore(&pdc_lock, flags);
1073
1074	return retval;
1075}
1076
1077/*
1078 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1079 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1080 * who knows what other platform firmware might do with this OS "hook".
1081 */
1082void pdc_io_reset(void)
1083{
1084	unsigned long flags;
1085
1086	spin_lock_irqsave(&pdc_lock, flags);
1087	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1088	spin_unlock_irqrestore(&pdc_lock, flags);
1089}
1090
1091/*
1092 * pdc_io_reset_devices - Hack to Stop USB controller
1093 *
1094 * If PDC used the usb controller, the usb controller
1095 * is still running and will crash the machines during iommu 
1096 * setup, because of still running DMA. This PDC call
1097 * stops the USB controller.
1098 * Normally called after calling pdc_io_reset().
1099 */
1100void pdc_io_reset_devices(void)
1101{
1102	unsigned long flags;
1103
1104	spin_lock_irqsave(&pdc_lock, flags);
1105	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1106	spin_unlock_irqrestore(&pdc_lock, flags);
1107}
1108
1109/* locked by pdc_console_lock */
1110static int __attribute__((aligned(8)))   iodc_retbuf[32];
1111static char __attribute__((aligned(64))) iodc_dbuf[4096];
1112
1113/**
1114 * pdc_iodc_print - Console print using IODC.
1115 * @str: the string to output.
1116 * @count: length of str
1117 *
1118 * Note that only these special chars are architected for console IODC io:
1119 * BEL, BS, CR, and LF. Others are passed through.
1120 * Since the HP console requires CR+LF to perform a 'newline', we translate
1121 * "\n" to "\r\n".
1122 */
1123int pdc_iodc_print(const unsigned char *str, unsigned count)
1124{
1125	unsigned int i;
1126	unsigned long flags;
1127
1128	for (i = 0; i < count;) {
1129		switch(str[i]) {
1130		case '\n':
1131			iodc_dbuf[i+0] = '\r';
1132			iodc_dbuf[i+1] = '\n';
1133			i += 2;
1134			goto print;
1135		default:
1136			iodc_dbuf[i] = str[i];
1137			i++;
1138			break;
1139		}
1140	}
1141
1142print:
1143        spin_lock_irqsave(&pdc_lock, flags);
1144        real32_call(PAGE0->mem_cons.iodc_io,
1145                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1146                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1147                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1148        spin_unlock_irqrestore(&pdc_lock, flags);
1149
1150	return i;
1151}
1152
1153/**
1154 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1155 *
1156 * Read a character (non-blocking) from the PDC console, returns -1 if
1157 * key is not present.
1158 */
1159int pdc_iodc_getc(void)
1160{
1161	int ch;
1162	int status;
1163	unsigned long flags;
1164
1165	/* Bail if no console input device. */
1166	if (!PAGE0->mem_kbd.iodc_io)
1167		return 0;
1168	
1169	/* wait for a keyboard (rs232)-input */
1170	spin_lock_irqsave(&pdc_lock, flags);
1171	real32_call(PAGE0->mem_kbd.iodc_io,
1172		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1173		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1174		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1175
1176	ch = *iodc_dbuf;
1177	status = *iodc_retbuf;
1178	spin_unlock_irqrestore(&pdc_lock, flags);
1179
1180	if (status == 0)
1181	    return -1;
1182	
1183	return ch;
1184}
1185
1186int pdc_sti_call(unsigned long func, unsigned long flags,
1187                 unsigned long inptr, unsigned long outputr,
1188                 unsigned long glob_cfg)
1189{
1190        int retval;
1191	unsigned long irqflags;
1192
1193        spin_lock_irqsave(&pdc_lock, irqflags);  
1194        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1195        spin_unlock_irqrestore(&pdc_lock, irqflags);
1196
1197        return retval;
1198}
1199EXPORT_SYMBOL(pdc_sti_call);
1200
1201#ifdef CONFIG_64BIT
1202/**
1203 * pdc_pat_cell_get_number - Returns the cell number.
1204 * @cell_info: The return buffer.
1205 *
1206 * This PDC call returns the cell number of the cell from which the call
1207 * is made.
1208 */
1209int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1210{
1211	int retval;
1212	unsigned long flags;
1213
1214	spin_lock_irqsave(&pdc_lock, flags);
1215	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1216	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1217	spin_unlock_irqrestore(&pdc_lock, flags);
1218
1219	return retval;
1220}
1221
1222/**
1223 * pdc_pat_cell_module - Retrieve the cell's module information.
1224 * @actcnt: The number of bytes written to mem_addr.
1225 * @ploc: The physical location.
1226 * @mod: The module index.
1227 * @view_type: The view of the address type.
1228 * @mem_addr: The return buffer.
1229 *
1230 * This PDC call returns information about each module attached to the cell
1231 * at the specified location.
1232 */
1233int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1234			unsigned long view_type, void *mem_addr)
1235{
1236	int retval;
1237	unsigned long flags;
1238	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1239
1240	spin_lock_irqsave(&pdc_lock, flags);
1241	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1242			      ploc, mod, view_type, __pa(&result));
1243	if(!retval) {
1244		*actcnt = pdc_result[0];
1245		memcpy(mem_addr, &result, *actcnt);
1246	}
1247	spin_unlock_irqrestore(&pdc_lock, flags);
1248
1249	return retval;
1250}
1251
1252/**
1253 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1254 * @cpu_info: The return buffer.
1255 * @hpa: The Hard Physical Address of the CPU.
1256 *
1257 * Retrieve the cpu number for the cpu at the specified HPA.
1258 */
1259int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1260{
1261	int retval;
1262	unsigned long flags;
1263
1264	spin_lock_irqsave(&pdc_lock, flags);
1265	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1266			      __pa(&pdc_result), hpa);
1267	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1268	spin_unlock_irqrestore(&pdc_lock, flags);
1269
1270	return retval;
1271}
1272
1273/**
1274 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1275 * @num_entries: The return value.
1276 * @cell_num: The target cell.
1277 *
1278 * This PDC function returns the number of entries in the specified cell's
1279 * interrupt table.
1280 */
1281int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1282{
1283	int retval;
1284	unsigned long flags;
1285
1286	spin_lock_irqsave(&pdc_lock, flags);
1287	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1288			      __pa(pdc_result), cell_num);
1289	*num_entries = pdc_result[0];
1290	spin_unlock_irqrestore(&pdc_lock, flags);
1291
1292	return retval;
1293}
1294
1295/**
1296 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1297 * @r_addr: The return buffer.
1298 * @cell_num: The target cell.
1299 *
1300 * This PDC function returns the actual interrupt table for the specified cell.
1301 */
1302int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1303{
1304	int retval;
1305	unsigned long flags;
1306
1307	spin_lock_irqsave(&pdc_lock, flags);
1308	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1309			      __pa(r_addr), cell_num);
1310	spin_unlock_irqrestore(&pdc_lock, flags);
1311
1312	return retval;
1313}
1314
1315/**
1316 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1317 * @actlen: The return buffer.
1318 * @mem_addr: Pointer to the memory buffer.
1319 * @count: The number of bytes to read from the buffer.
1320 * @offset: The offset with respect to the beginning of the buffer.
1321 *
1322 */
1323int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1324			    unsigned long count, unsigned long offset)
1325{
1326	int retval;
1327	unsigned long flags;
1328
1329	spin_lock_irqsave(&pdc_lock, flags);
1330	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1331			      __pa(pdc_result2), count, offset);
1332	*actual_len = pdc_result[0];
1333	memcpy(mem_addr, pdc_result2, *actual_len);
1334	spin_unlock_irqrestore(&pdc_lock, flags);
1335
1336	return retval;
1337}
1338
1339/**
1340 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1341 * @pci_addr: PCI configuration space address for which the read request is being made.
1342 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1343 * @mem_addr: Pointer to return memory buffer.
1344 *
1345 */
1346int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1347{
1348	int retval;
1349	unsigned long flags;
1350
1351	spin_lock_irqsave(&pdc_lock, flags);
1352	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1353					__pa(pdc_result), pci_addr, pci_size);
1354	switch(pci_size) {
1355		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1356		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1357		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1358	}
1359	spin_unlock_irqrestore(&pdc_lock, flags);
1360
1361	return retval;
1362}
1363
1364/**
1365 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1366 * @pci_addr: PCI configuration space address for which the write  request is being made.
1367 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1368 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1369 *         written to PCI Config space.
1370 *
1371 */
1372int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1373{
1374	int retval;
1375	unsigned long flags;
1376
1377	spin_lock_irqsave(&pdc_lock, flags);
1378	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1379				pci_addr, pci_size, val);
1380	spin_unlock_irqrestore(&pdc_lock, flags);
1381
1382	return retval;
1383}
1384#endif /* CONFIG_64BIT */
1385
1386
1387/***************** 32-bit real-mode calls ***********/
1388/* The struct below is used
1389 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1390 * real32_call_asm() then uses this stack in narrow real mode
1391 */
1392
1393struct narrow_stack {
1394	/* use int, not long which is 64 bits */
1395	unsigned int arg13;
1396	unsigned int arg12;
1397	unsigned int arg11;
1398	unsigned int arg10;
1399	unsigned int arg9;
1400	unsigned int arg8;
1401	unsigned int arg7;
1402	unsigned int arg6;
1403	unsigned int arg5;
1404	unsigned int arg4;
1405	unsigned int arg3;
1406	unsigned int arg2;
1407	unsigned int arg1;
1408	unsigned int arg0;
1409	unsigned int frame_marker[8];
1410	unsigned int sp;
1411	/* in reality, there's nearly 8k of stack after this */
1412};
1413
1414long real32_call(unsigned long fn, ...)
1415{
1416	va_list args;
1417	extern struct narrow_stack real_stack;
1418	extern unsigned long real32_call_asm(unsigned int *,
1419					     unsigned int *, 
1420					     unsigned int);
1421	
1422	va_start(args, fn);
1423	real_stack.arg0 = va_arg(args, unsigned int);
1424	real_stack.arg1 = va_arg(args, unsigned int);
1425	real_stack.arg2 = va_arg(args, unsigned int);
1426	real_stack.arg3 = va_arg(args, unsigned int);
1427	real_stack.arg4 = va_arg(args, unsigned int);
1428	real_stack.arg5 = va_arg(args, unsigned int);
1429	real_stack.arg6 = va_arg(args, unsigned int);
1430	real_stack.arg7 = va_arg(args, unsigned int);
1431	real_stack.arg8 = va_arg(args, unsigned int);
1432	real_stack.arg9 = va_arg(args, unsigned int);
1433	real_stack.arg10 = va_arg(args, unsigned int);
1434	real_stack.arg11 = va_arg(args, unsigned int);
1435	real_stack.arg12 = va_arg(args, unsigned int);
1436	real_stack.arg13 = va_arg(args, unsigned int);
1437	va_end(args);
1438	
1439	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1440}
1441
1442#ifdef CONFIG_64BIT
1443/***************** 64-bit real-mode calls ***********/
1444
1445struct wide_stack {
1446	unsigned long arg0;
1447	unsigned long arg1;
1448	unsigned long arg2;
1449	unsigned long arg3;
1450	unsigned long arg4;
1451	unsigned long arg5;
1452	unsigned long arg6;
1453	unsigned long arg7;
1454	unsigned long arg8;
1455	unsigned long arg9;
1456	unsigned long arg10;
1457	unsigned long arg11;
1458	unsigned long arg12;
1459	unsigned long arg13;
1460	unsigned long frame_marker[2];	/* rp, previous sp */
1461	unsigned long sp;
1462	/* in reality, there's nearly 8k of stack after this */
1463};
1464
1465long real64_call(unsigned long fn, ...)
1466{
1467	va_list args;
1468	extern struct wide_stack real64_stack;
1469	extern unsigned long real64_call_asm(unsigned long *,
1470					     unsigned long *, 
1471					     unsigned long);
1472    
1473	va_start(args, fn);
1474	real64_stack.arg0 = va_arg(args, unsigned long);
1475	real64_stack.arg1 = va_arg(args, unsigned long);
1476	real64_stack.arg2 = va_arg(args, unsigned long);
1477	real64_stack.arg3 = va_arg(args, unsigned long);
1478	real64_stack.arg4 = va_arg(args, unsigned long);
1479	real64_stack.arg5 = va_arg(args, unsigned long);
1480	real64_stack.arg6 = va_arg(args, unsigned long);
1481	real64_stack.arg7 = va_arg(args, unsigned long);
1482	real64_stack.arg8 = va_arg(args, unsigned long);
1483	real64_stack.arg9 = va_arg(args, unsigned long);
1484	real64_stack.arg10 = va_arg(args, unsigned long);
1485	real64_stack.arg11 = va_arg(args, unsigned long);
1486	real64_stack.arg12 = va_arg(args, unsigned long);
1487	real64_stack.arg13 = va_arg(args, unsigned long);
1488	va_end(args);
1489	
1490	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1491}
1492
1493#endif /* CONFIG_64BIT */
1494
v3.1
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *	PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*	I think it would be in everyone's best interest to follow this
  24 *	guidelines when writing PDC wrappers:
  25 *
  26 *	 - the name of the pdc wrapper should match one of the macros
  27 *	   used for the first two arguments
  28 *	 - don't use caps for random parts of the name
  29 *	 - use the static PDC result buffers and "copyout" to structs
  30 *	   supplied by the caller to encapsulate alignment restrictions
  31 *	 - hold pdc_lock while in PDC or using static result buffers
  32 *	 - use __pa() to convert virtual (kernel) pointers to physical
  33 *	   ones.
  34 *	 - the name of the struct used for pdc return values should equal
  35 *	   one of the macros used for the first two arguments to the
  36 *	   corresponding PDC call
  37 *	 - keep the order of arguments
  38 *	 - don't be smart (setting trailing NUL bytes for strings, return
  39 *	   something useful even if the call failed) unless you are sure
  40 *	   it's not going to affect functionality or performance
  41 *
  42 *	Example:
  43 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *	{
  45 *		int retval;
  46 *
  47 *		spin_lock_irq(&pdc_lock);
  48 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *		convert_to_wide(pdc_result);
  50 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *		spin_unlock_irq(&pdc_lock);
  52 *
  53 *		return retval;
  54 *	}
  55 *					prumpf	991016	
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
  70#include <asm/system.h>
  71#include <asm/processor.h>	/* for boot_cpu_data */
  72
  73static DEFINE_SPINLOCK(pdc_lock);
  74extern unsigned long pdc_result[NUM_PDC_RESULT];
  75extern unsigned long pdc_result2[NUM_PDC_RESULT];
  76
  77#ifdef CONFIG_64BIT
  78#define WIDE_FIRMWARE 0x1
  79#define NARROW_FIRMWARE 0x2
  80
  81/* Firmware needs to be initially set to narrow to determine the 
  82 * actual firmware width. */
  83int parisc_narrow_firmware __read_mostly = 1;
  84#endif
  85
  86/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  87 * and MEM_PDC calls are always the same width as the OS.
  88 * Some PAT boxes may have 64-bit IODC I/O.
  89 *
  90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  92 * This allowed wide kernels to run on Cxxx boxes.
  93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  95 */
  96
  97#ifdef CONFIG_64BIT
  98long real64_call(unsigned long function, ...);
  99#endif
 100long real32_call(unsigned long function, ...);
 101
 102#ifdef CONFIG_64BIT
 103#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 104#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 105#else
 106#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 107#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 108#endif
 109
 110
 111/**
 112 * f_extend - Convert PDC addresses to kernel addresses.
 113 * @address: Address returned from PDC.
 114 *
 115 * This function is used to convert PDC addresses into kernel addresses
 116 * when the PDC address size and kernel address size are different.
 117 */
 118static unsigned long f_extend(unsigned long address)
 119{
 120#ifdef CONFIG_64BIT
 121	if(unlikely(parisc_narrow_firmware)) {
 122		if((address & 0xff000000) == 0xf0000000)
 123			return 0xf0f0f0f000000000UL | (u32)address;
 124
 125		if((address & 0xf0000000) == 0xf0000000)
 126			return 0xffffffff00000000UL | (u32)address;
 127	}
 128#endif
 129	return address;
 130}
 131
 132/**
 133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 134 * @address: The return buffer from PDC.
 135 *
 136 * This function is used to convert the return buffer addresses retrieved from PDC
 137 * into kernel addresses when the PDC address size and kernel address size are
 138 * different.
 139 */
 140static void convert_to_wide(unsigned long *addr)
 141{
 142#ifdef CONFIG_64BIT
 143	int i;
 144	unsigned int *p = (unsigned int *)addr;
 145
 146	if(unlikely(parisc_narrow_firmware)) {
 147		for(i = 31; i >= 0; --i)
 148			addr[i] = p[i];
 149	}
 150#endif
 151}
 152
 153#ifdef CONFIG_64BIT
 154void __cpuinit set_firmware_width_unlocked(void)
 155{
 156	int ret;
 157
 158	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 159		__pa(pdc_result), 0);
 160	convert_to_wide(pdc_result);
 161	if (pdc_result[0] != NARROW_FIRMWARE)
 162		parisc_narrow_firmware = 0;
 163}
 164	
 165/**
 166 * set_firmware_width - Determine if the firmware is wide or narrow.
 167 * 
 168 * This function must be called before any pdc_* function that uses the
 169 * convert_to_wide function.
 170 */
 171void __cpuinit set_firmware_width(void)
 172{
 173	unsigned long flags;
 174	spin_lock_irqsave(&pdc_lock, flags);
 175	set_firmware_width_unlocked();
 176	spin_unlock_irqrestore(&pdc_lock, flags);
 177}
 178#else
 179void __cpuinit set_firmware_width_unlocked(void) {
 180	return;
 181}
 182
 183void __cpuinit set_firmware_width(void) {
 184	return;
 185}
 186#endif /*CONFIG_64BIT*/
 187
 188/**
 189 * pdc_emergency_unlock - Unlock the linux pdc lock
 190 *
 191 * This call unlocks the linux pdc lock in case we need some PDC functions
 192 * (like pdc_add_valid) during kernel stack dump.
 193 */
 194void pdc_emergency_unlock(void)
 195{
 196 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 197        if (spin_is_locked(&pdc_lock))
 198		spin_unlock(&pdc_lock);
 199}
 200
 201
 202/**
 203 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 204 * @address: Address to be verified.
 205 *
 206 * This PDC call attempts to read from the specified address and verifies
 207 * if the address is valid.
 208 * 
 209 * The return value is PDC_OK (0) in case accessing this address is valid.
 210 */
 211int pdc_add_valid(unsigned long address)
 212{
 213        int retval;
 214	unsigned long flags;
 215
 216        spin_lock_irqsave(&pdc_lock, flags);
 217        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 218        spin_unlock_irqrestore(&pdc_lock, flags);
 219
 220        return retval;
 221}
 222EXPORT_SYMBOL(pdc_add_valid);
 223
 224/**
 225 * pdc_chassis_info - Return chassis information.
 226 * @result: The return buffer.
 227 * @chassis_info: The memory buffer address.
 228 * @len: The size of the memory buffer address.
 229 *
 230 * An HVERSION dependent call for returning the chassis information.
 231 */
 232int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 233{
 234        int retval;
 235	unsigned long flags;
 236
 237        spin_lock_irqsave(&pdc_lock, flags);
 238        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 239        memcpy(&pdc_result2, led_info, len);
 240        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 241                              __pa(pdc_result), __pa(pdc_result2), len);
 242        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 243        memcpy(led_info, pdc_result2, len);
 244        spin_unlock_irqrestore(&pdc_lock, flags);
 245
 246        return retval;
 247}
 248
 249/**
 250 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 251 * @retval: -1 on error, 0 on success. Other value are PDC errors
 252 * 
 253 * Must be correctly formatted or expect system crash
 254 */
 255#ifdef CONFIG_64BIT
 256int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 257{
 258	int retval = 0;
 259	unsigned long flags;
 260        
 261	if (!is_pdc_pat())
 262		return -1;
 263
 264	spin_lock_irqsave(&pdc_lock, flags);
 265	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 266	spin_unlock_irqrestore(&pdc_lock, flags);
 267
 268	return retval;
 269}
 270#endif
 271
 272/**
 273 * pdc_chassis_disp - Updates chassis code
 274 * @retval: -1 on error, 0 on success
 275 */
 276int pdc_chassis_disp(unsigned long disp)
 277{
 278	int retval = 0;
 279	unsigned long flags;
 280
 281	spin_lock_irqsave(&pdc_lock, flags);
 282	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 283	spin_unlock_irqrestore(&pdc_lock, flags);
 284
 285	return retval;
 286}
 287
 288/**
 289 * pdc_chassis_warn - Fetches chassis warnings
 290 * @retval: -1 on error, 0 on success
 291 */
 292int pdc_chassis_warn(unsigned long *warn)
 293{
 294	int retval = 0;
 295	unsigned long flags;
 296
 297	spin_lock_irqsave(&pdc_lock, flags);
 298	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 299	*warn = pdc_result[0];
 300	spin_unlock_irqrestore(&pdc_lock, flags);
 301
 302	return retval;
 303}
 304
 305int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 306{
 307	int ret;
 308
 309	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 310	convert_to_wide(pdc_result);
 311	pdc_coproc_info->ccr_functional = pdc_result[0];
 312	pdc_coproc_info->ccr_present = pdc_result[1];
 313	pdc_coproc_info->revision = pdc_result[17];
 314	pdc_coproc_info->model = pdc_result[18];
 315
 316	return ret;
 317}
 318
 319/**
 320 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 321 * @pdc_coproc_info: Return buffer address.
 322 *
 323 * This PDC call returns the presence and status of all the coprocessors
 324 * attached to the processor.
 325 */
 326int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 327{
 328	int ret;
 329	unsigned long flags;
 330
 331	spin_lock_irqsave(&pdc_lock, flags);
 332	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 333	spin_unlock_irqrestore(&pdc_lock, flags);
 334
 335	return ret;
 336}
 337
 338/**
 339 * pdc_iodc_read - Read data from the modules IODC.
 340 * @actcnt: The actual number of bytes.
 341 * @hpa: The HPA of the module for the iodc read.
 342 * @index: The iodc entry point.
 343 * @iodc_data: A buffer memory for the iodc options.
 344 * @iodc_data_size: Size of the memory buffer.
 345 *
 346 * This PDC call reads from the IODC of the module specified by the hpa
 347 * argument.
 348 */
 349int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 350		  void *iodc_data, unsigned int iodc_data_size)
 351{
 352	int retval;
 353	unsigned long flags;
 354
 355	spin_lock_irqsave(&pdc_lock, flags);
 356	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 357			      index, __pa(pdc_result2), iodc_data_size);
 358	convert_to_wide(pdc_result);
 359	*actcnt = pdc_result[0];
 360	memcpy(iodc_data, pdc_result2, iodc_data_size);
 361	spin_unlock_irqrestore(&pdc_lock, flags);
 362
 363	return retval;
 364}
 365EXPORT_SYMBOL(pdc_iodc_read);
 366
 367/**
 368 * pdc_system_map_find_mods - Locate unarchitected modules.
 369 * @pdc_mod_info: Return buffer address.
 370 * @mod_path: pointer to dev path structure.
 371 * @mod_index: fixed address module index.
 372 *
 373 * To locate and identify modules which reside at fixed I/O addresses, which
 374 * do not self-identify via architected bus walks.
 375 */
 376int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 377			     struct pdc_module_path *mod_path, long mod_index)
 378{
 379	int retval;
 380	unsigned long flags;
 381
 382	spin_lock_irqsave(&pdc_lock, flags);
 383	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 384			      __pa(pdc_result2), mod_index);
 385	convert_to_wide(pdc_result);
 386	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 387	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 388	spin_unlock_irqrestore(&pdc_lock, flags);
 389
 390	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 391	return retval;
 392}
 393
 394/**
 395 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 396 * @pdc_addr_info: Return buffer address.
 397 * @mod_index: Fixed address module index.
 398 * @addr_index: Address range index.
 399 * 
 400 * Retrieve additional information about subsequent address ranges for modules
 401 * with multiple address ranges.  
 402 */
 403int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 404			      long mod_index, long addr_index)
 405{
 406	int retval;
 407	unsigned long flags;
 408
 409	spin_lock_irqsave(&pdc_lock, flags);
 410	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 411			      mod_index, addr_index);
 412	convert_to_wide(pdc_result);
 413	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 414	spin_unlock_irqrestore(&pdc_lock, flags);
 415
 416	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 417	return retval;
 418}
 419
 420/**
 421 * pdc_model_info - Return model information about the processor.
 422 * @model: The return buffer.
 423 *
 424 * Returns the version numbers, identifiers, and capabilities from the processor module.
 425 */
 426int pdc_model_info(struct pdc_model *model) 
 427{
 428	int retval;
 429	unsigned long flags;
 430
 431	spin_lock_irqsave(&pdc_lock, flags);
 432	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 433	convert_to_wide(pdc_result);
 434	memcpy(model, pdc_result, sizeof(*model));
 435	spin_unlock_irqrestore(&pdc_lock, flags);
 436
 437	return retval;
 438}
 439
 440/**
 441 * pdc_model_sysmodel - Get the system model name.
 442 * @name: A char array of at least 81 characters.
 443 *
 444 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 445 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 446 * on HP/UX.
 447 */
 448int pdc_model_sysmodel(char *name)
 449{
 450        int retval;
 451	unsigned long flags;
 452
 453        spin_lock_irqsave(&pdc_lock, flags);
 454        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 455                              OS_ID_HPUX, __pa(name));
 456        convert_to_wide(pdc_result);
 457
 458        if (retval == PDC_OK) {
 459                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 460        } else {
 461                name[0] = 0;
 462        }
 463        spin_unlock_irqrestore(&pdc_lock, flags);
 464
 465        return retval;
 466}
 467
 468/**
 469 * pdc_model_versions - Identify the version number of each processor.
 470 * @cpu_id: The return buffer.
 471 * @id: The id of the processor to check.
 472 *
 473 * Returns the version number for each processor component.
 474 *
 475 * This comment was here before, but I do not know what it means :( -RB
 476 * id: 0 = cpu revision, 1 = boot-rom-version
 477 */
 478int pdc_model_versions(unsigned long *versions, int id)
 479{
 480        int retval;
 481	unsigned long flags;
 482
 483        spin_lock_irqsave(&pdc_lock, flags);
 484        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 485        convert_to_wide(pdc_result);
 486        *versions = pdc_result[0];
 487        spin_unlock_irqrestore(&pdc_lock, flags);
 488
 489        return retval;
 490}
 491
 492/**
 493 * pdc_model_cpuid - Returns the CPU_ID.
 494 * @cpu_id: The return buffer.
 495 *
 496 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 497 * the processor module.
 498 */
 499int pdc_model_cpuid(unsigned long *cpu_id)
 500{
 501        int retval;
 502	unsigned long flags;
 503
 504        spin_lock_irqsave(&pdc_lock, flags);
 505        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 506        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 507        convert_to_wide(pdc_result);
 508        *cpu_id = pdc_result[0];
 509        spin_unlock_irqrestore(&pdc_lock, flags);
 510
 511        return retval;
 512}
 513
 514/**
 515 * pdc_model_capabilities - Returns the platform capabilities.
 516 * @capabilities: The return buffer.
 517 *
 518 * Returns information about platform support for 32- and/or 64-bit
 519 * OSes, IO-PDIR coherency, and virtual aliasing.
 520 */
 521int pdc_model_capabilities(unsigned long *capabilities)
 522{
 523        int retval;
 524	unsigned long flags;
 525
 526        spin_lock_irqsave(&pdc_lock, flags);
 527        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 528        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 529        convert_to_wide(pdc_result);
 530        if (retval == PDC_OK) {
 531                *capabilities = pdc_result[0];
 532        } else {
 533                *capabilities = PDC_MODEL_OS32;
 534        }
 535        spin_unlock_irqrestore(&pdc_lock, flags);
 536
 537        return retval;
 538}
 539
 540/**
 541 * pdc_cache_info - Return cache and TLB information.
 542 * @cache_info: The return buffer.
 543 *
 544 * Returns information about the processor's cache and TLB.
 545 */
 546int pdc_cache_info(struct pdc_cache_info *cache_info)
 547{
 548        int retval;
 549	unsigned long flags;
 550
 551        spin_lock_irqsave(&pdc_lock, flags);
 552        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 553        convert_to_wide(pdc_result);
 554        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 555        spin_unlock_irqrestore(&pdc_lock, flags);
 556
 557        return retval;
 558}
 559
 560/**
 561 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 562 * @space_bits: Should be 0, if not, bad mojo!
 563 *
 564 * Returns information about Space ID hashing.
 565 */
 566int pdc_spaceid_bits(unsigned long *space_bits)
 567{
 568	int retval;
 569	unsigned long flags;
 570
 571	spin_lock_irqsave(&pdc_lock, flags);
 572	pdc_result[0] = 0;
 573	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 574	convert_to_wide(pdc_result);
 575	*space_bits = pdc_result[0];
 576	spin_unlock_irqrestore(&pdc_lock, flags);
 577
 578	return retval;
 579}
 580
 581#ifndef CONFIG_PA20
 582/**
 583 * pdc_btlb_info - Return block TLB information.
 584 * @btlb: The return buffer.
 585 *
 586 * Returns information about the hardware Block TLB.
 587 */
 588int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 589{
 590        int retval;
 591	unsigned long flags;
 592
 593        spin_lock_irqsave(&pdc_lock, flags);
 594        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 595        memcpy(btlb, pdc_result, sizeof(*btlb));
 596        spin_unlock_irqrestore(&pdc_lock, flags);
 597
 598        if(retval < 0) {
 599                btlb->max_size = 0;
 600        }
 601        return retval;
 602}
 603
 604/**
 605 * pdc_mem_map_hpa - Find fixed module information.  
 606 * @address: The return buffer
 607 * @mod_path: pointer to dev path structure.
 608 *
 609 * This call was developed for S700 workstations to allow the kernel to find
 610 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 611 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 612 * call.
 613 *
 614 * This call is supported by all existing S700 workstations (up to  Gecko).
 615 */
 616int pdc_mem_map_hpa(struct pdc_memory_map *address,
 617		struct pdc_module_path *mod_path)
 618{
 619        int retval;
 620	unsigned long flags;
 621
 622        spin_lock_irqsave(&pdc_lock, flags);
 623        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 624        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 625				__pa(pdc_result2));
 626        memcpy(address, pdc_result, sizeof(*address));
 627        spin_unlock_irqrestore(&pdc_lock, flags);
 628
 629        return retval;
 630}
 631#endif	/* !CONFIG_PA20 */
 632
 633/**
 634 * pdc_lan_station_id - Get the LAN address.
 635 * @lan_addr: The return buffer.
 636 * @hpa: The network device HPA.
 637 *
 638 * Get the LAN station address when it is not directly available from the LAN hardware.
 639 */
 640int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 641{
 642	int retval;
 643	unsigned long flags;
 644
 645	spin_lock_irqsave(&pdc_lock, flags);
 646	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 647			__pa(pdc_result), hpa);
 648	if (retval < 0) {
 649		/* FIXME: else read MAC from NVRAM */
 650		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 651	} else {
 652		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 653	}
 654	spin_unlock_irqrestore(&pdc_lock, flags);
 655
 656	return retval;
 657}
 658EXPORT_SYMBOL(pdc_lan_station_id);
 659
 660/**
 661 * pdc_stable_read - Read data from Stable Storage.
 662 * @staddr: Stable Storage address to access.
 663 * @memaddr: The memory address where Stable Storage data shall be copied.
 664 * @count: number of bytes to transfer. count is multiple of 4.
 665 *
 666 * This PDC call reads from the Stable Storage address supplied in staddr
 667 * and copies count bytes to the memory address memaddr.
 668 * The call will fail if staddr+count > PDC_STABLE size.
 669 */
 670int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 671{
 672       int retval;
 673	unsigned long flags;
 674
 675       spin_lock_irqsave(&pdc_lock, flags);
 676       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 677               __pa(pdc_result), count);
 678       convert_to_wide(pdc_result);
 679       memcpy(memaddr, pdc_result, count);
 680       spin_unlock_irqrestore(&pdc_lock, flags);
 681
 682       return retval;
 683}
 684EXPORT_SYMBOL(pdc_stable_read);
 685
 686/**
 687 * pdc_stable_write - Write data to Stable Storage.
 688 * @staddr: Stable Storage address to access.
 689 * @memaddr: The memory address where Stable Storage data shall be read from.
 690 * @count: number of bytes to transfer. count is multiple of 4.
 691 *
 692 * This PDC call reads count bytes from the supplied memaddr address,
 693 * and copies count bytes to the Stable Storage address staddr.
 694 * The call will fail if staddr+count > PDC_STABLE size.
 695 */
 696int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 697{
 698       int retval;
 699	unsigned long flags;
 700
 701       spin_lock_irqsave(&pdc_lock, flags);
 702       memcpy(pdc_result, memaddr, count);
 703       convert_to_wide(pdc_result);
 704       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 705               __pa(pdc_result), count);
 706       spin_unlock_irqrestore(&pdc_lock, flags);
 707
 708       return retval;
 709}
 710EXPORT_SYMBOL(pdc_stable_write);
 711
 712/**
 713 * pdc_stable_get_size - Get Stable Storage size in bytes.
 714 * @size: pointer where the size will be stored.
 715 *
 716 * This PDC call returns the number of bytes in the processor's Stable
 717 * Storage, which is the number of contiguous bytes implemented in Stable
 718 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 719 * which is a multiple of four.
 720 */
 721int pdc_stable_get_size(unsigned long *size)
 722{
 723       int retval;
 724	unsigned long flags;
 725
 726       spin_lock_irqsave(&pdc_lock, flags);
 727       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 728       *size = pdc_result[0];
 729       spin_unlock_irqrestore(&pdc_lock, flags);
 730
 731       return retval;
 732}
 733EXPORT_SYMBOL(pdc_stable_get_size);
 734
 735/**
 736 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 737 *
 738 * This PDC call is meant to be used to check the integrity of the current
 739 * contents of Stable Storage.
 740 */
 741int pdc_stable_verify_contents(void)
 742{
 743       int retval;
 744	unsigned long flags;
 745
 746       spin_lock_irqsave(&pdc_lock, flags);
 747       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 748       spin_unlock_irqrestore(&pdc_lock, flags);
 749
 750       return retval;
 751}
 752EXPORT_SYMBOL(pdc_stable_verify_contents);
 753
 754/**
 755 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 756 * the validity indicator.
 757 *
 758 * This PDC call will erase all contents of Stable Storage. Use with care!
 759 */
 760int pdc_stable_initialize(void)
 761{
 762       int retval;
 763	unsigned long flags;
 764
 765       spin_lock_irqsave(&pdc_lock, flags);
 766       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 767       spin_unlock_irqrestore(&pdc_lock, flags);
 768
 769       return retval;
 770}
 771EXPORT_SYMBOL(pdc_stable_initialize);
 772
 773/**
 774 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 775 * @hwpath: fully bc.mod style path to the device.
 776 * @initiator: the array to return the result into
 777 *
 778 * Get the SCSI operational parameters from PDC.
 779 * Needed since HPUX never used BIOS or symbios card NVRAM.
 780 * Most ncr/sym cards won't have an entry and just use whatever
 781 * capabilities of the card are (eg Ultra, LVD). But there are
 782 * several cases where it's useful:
 783 *    o set SCSI id for Multi-initiator clusters,
 784 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 785 *    o bus width exported is less than what the interface chip supports.
 786 */
 787int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 788{
 789	int retval;
 790	unsigned long flags;
 791
 792	spin_lock_irqsave(&pdc_lock, flags);
 793
 794/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 795#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 796	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 797
 798	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 799			      __pa(pdc_result), __pa(hwpath));
 800	if (retval < PDC_OK)
 801		goto out;
 802
 803	if (pdc_result[0] < 16) {
 804		initiator->host_id = pdc_result[0];
 805	} else {
 806		initiator->host_id = -1;
 807	}
 808
 809	/*
 810	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 811	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 812	 */
 813	switch (pdc_result[1]) {
 814		case  1: initiator->factor = 50; break;
 815		case  2: initiator->factor = 25; break;
 816		case  5: initiator->factor = 12; break;
 817		case 25: initiator->factor = 10; break;
 818		case 20: initiator->factor = 12; break;
 819		case 40: initiator->factor = 10; break;
 820		default: initiator->factor = -1; break;
 821	}
 822
 823	if (IS_SPROCKETS()) {
 824		initiator->width = pdc_result[4];
 825		initiator->mode = pdc_result[5];
 826	} else {
 827		initiator->width = -1;
 828		initiator->mode = -1;
 829	}
 830
 831 out:
 832	spin_unlock_irqrestore(&pdc_lock, flags);
 833
 834	return (retval >= PDC_OK);
 835}
 836EXPORT_SYMBOL(pdc_get_initiator);
 837
 838
 839/**
 840 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 841 * @num_entries: The return value.
 842 * @hpa: The HPA for the device.
 843 *
 844 * This PDC function returns the number of entries in the specified cell's
 845 * interrupt table.
 846 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 847 */ 
 848int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 849{
 850	int retval;
 851	unsigned long flags;
 852
 853	spin_lock_irqsave(&pdc_lock, flags);
 854	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 855			      __pa(pdc_result), hpa);
 856	convert_to_wide(pdc_result);
 857	*num_entries = pdc_result[0];
 858	spin_unlock_irqrestore(&pdc_lock, flags);
 859
 860	return retval;
 861}
 862
 863/** 
 864 * pdc_pci_irt - Get the PCI interrupt routing table.
 865 * @num_entries: The number of entries in the table.
 866 * @hpa: The Hard Physical Address of the device.
 867 * @tbl: 
 868 *
 869 * Get the PCI interrupt routing table for the device at the given HPA.
 870 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 871 */
 872int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 873{
 874	int retval;
 875	unsigned long flags;
 876
 877	BUG_ON((unsigned long)tbl & 0x7);
 878
 879	spin_lock_irqsave(&pdc_lock, flags);
 880	pdc_result[0] = num_entries;
 881	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 882			      __pa(pdc_result), hpa, __pa(tbl));
 883	spin_unlock_irqrestore(&pdc_lock, flags);
 884
 885	return retval;
 886}
 887
 888
 889#if 0	/* UNTEST CODE - left here in case someone needs it */
 890
 891/** 
 892 * pdc_pci_config_read - read PCI config space.
 893 * @hpa		token from PDC to indicate which PCI device
 894 * @pci_addr	configuration space address to read from
 895 *
 896 * Read PCI Configuration space *before* linux PCI subsystem is running.
 897 */
 898unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 899{
 900	int retval;
 901	unsigned long flags;
 902
 903	spin_lock_irqsave(&pdc_lock, flags);
 904	pdc_result[0] = 0;
 905	pdc_result[1] = 0;
 906	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 907			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 908	spin_unlock_irqrestore(&pdc_lock, flags);
 909
 910	return retval ? ~0 : (unsigned int) pdc_result[0];
 911}
 912
 913
 914/** 
 915 * pdc_pci_config_write - read PCI config space.
 916 * @hpa		token from PDC to indicate which PCI device
 917 * @pci_addr	configuration space address to write
 918 * @val		value we want in the 32-bit register
 919 *
 920 * Write PCI Configuration space *before* linux PCI subsystem is running.
 921 */
 922void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 923{
 924	int retval;
 925	unsigned long flags;
 926
 927	spin_lock_irqsave(&pdc_lock, flags);
 928	pdc_result[0] = 0;
 929	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 930			      __pa(pdc_result), hpa,
 931			      cfg_addr&~3UL, 4UL, (unsigned long) val);
 932	spin_unlock_irqrestore(&pdc_lock, flags);
 933
 934	return retval;
 935}
 936#endif /* UNTESTED CODE */
 937
 938/**
 939 * pdc_tod_read - Read the Time-Of-Day clock.
 940 * @tod: The return buffer:
 941 *
 942 * Read the Time-Of-Day clock
 943 */
 944int pdc_tod_read(struct pdc_tod *tod)
 945{
 946        int retval;
 947	unsigned long flags;
 948
 949        spin_lock_irqsave(&pdc_lock, flags);
 950        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
 951        convert_to_wide(pdc_result);
 952        memcpy(tod, pdc_result, sizeof(*tod));
 953        spin_unlock_irqrestore(&pdc_lock, flags);
 954
 955        return retval;
 956}
 957EXPORT_SYMBOL(pdc_tod_read);
 958
 959/**
 960 * pdc_tod_set - Set the Time-Of-Day clock.
 961 * @sec: The number of seconds since epoch.
 962 * @usec: The number of micro seconds.
 963 *
 964 * Set the Time-Of-Day clock.
 965 */ 
 966int pdc_tod_set(unsigned long sec, unsigned long usec)
 967{
 968        int retval;
 969	unsigned long flags;
 970
 971        spin_lock_irqsave(&pdc_lock, flags);
 972        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
 973        spin_unlock_irqrestore(&pdc_lock, flags);
 974
 975        return retval;
 976}
 977EXPORT_SYMBOL(pdc_tod_set);
 978
 979#ifdef CONFIG_64BIT
 980int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
 981		struct pdc_memory_table *tbl, unsigned long entries)
 982{
 983	int retval;
 984	unsigned long flags;
 985
 986	spin_lock_irqsave(&pdc_lock, flags);
 987	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
 988	convert_to_wide(pdc_result);
 989	memcpy(r_addr, pdc_result, sizeof(*r_addr));
 990	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
 991	spin_unlock_irqrestore(&pdc_lock, flags);
 992
 993	return retval;
 994}
 995#endif /* CONFIG_64BIT */
 996
 997/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
 998 * so I guessed at unsigned long.  Someone who knows what this does, can fix
 999 * it later. :)
1000 */
1001int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1002{
1003        int retval;
1004	unsigned long flags;
1005
1006        spin_lock_irqsave(&pdc_lock, flags);
1007        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1008                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1009        spin_unlock_irqrestore(&pdc_lock, flags);
1010
1011        return retval;
1012}
1013
1014/*
1015 * pdc_do_reset - Reset the system.
1016 *
1017 * Reset the system.
1018 */
1019int pdc_do_reset(void)
1020{
1021        int retval;
1022	unsigned long flags;
1023
1024        spin_lock_irqsave(&pdc_lock, flags);
1025        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1026        spin_unlock_irqrestore(&pdc_lock, flags);
1027
1028        return retval;
1029}
1030
1031/*
1032 * pdc_soft_power_info - Enable soft power switch.
1033 * @power_reg: address of soft power register
1034 *
1035 * Return the absolute address of the soft power switch register
1036 */
1037int __init pdc_soft_power_info(unsigned long *power_reg)
1038{
1039	int retval;
1040	unsigned long flags;
1041
1042	*power_reg = (unsigned long) (-1);
1043	
1044	spin_lock_irqsave(&pdc_lock, flags);
1045	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1046	if (retval == PDC_OK) {
1047                convert_to_wide(pdc_result);
1048                *power_reg = f_extend(pdc_result[0]);
1049	}
1050	spin_unlock_irqrestore(&pdc_lock, flags);
1051
1052	return retval;
1053}
1054
1055/*
1056 * pdc_soft_power_button - Control the soft power button behaviour
1057 * @sw_control: 0 for hardware control, 1 for software control 
1058 *
1059 *
1060 * This PDC function places the soft power button under software or
1061 * hardware control.
1062 * Under software control the OS may control to when to allow to shut 
1063 * down the system. Under hardware control pressing the power button 
1064 * powers off the system immediately.
1065 */
1066int pdc_soft_power_button(int sw_control)
1067{
1068	int retval;
1069	unsigned long flags;
1070
1071	spin_lock_irqsave(&pdc_lock, flags);
1072	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1073	spin_unlock_irqrestore(&pdc_lock, flags);
1074
1075	return retval;
1076}
1077
1078/*
1079 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1080 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1081 * who knows what other platform firmware might do with this OS "hook".
1082 */
1083void pdc_io_reset(void)
1084{
1085	unsigned long flags;
1086
1087	spin_lock_irqsave(&pdc_lock, flags);
1088	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1089	spin_unlock_irqrestore(&pdc_lock, flags);
1090}
1091
1092/*
1093 * pdc_io_reset_devices - Hack to Stop USB controller
1094 *
1095 * If PDC used the usb controller, the usb controller
1096 * is still running and will crash the machines during iommu 
1097 * setup, because of still running DMA. This PDC call
1098 * stops the USB controller.
1099 * Normally called after calling pdc_io_reset().
1100 */
1101void pdc_io_reset_devices(void)
1102{
1103	unsigned long flags;
1104
1105	spin_lock_irqsave(&pdc_lock, flags);
1106	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1107	spin_unlock_irqrestore(&pdc_lock, flags);
1108}
1109
1110/* locked by pdc_console_lock */
1111static int __attribute__((aligned(8)))   iodc_retbuf[32];
1112static char __attribute__((aligned(64))) iodc_dbuf[4096];
1113
1114/**
1115 * pdc_iodc_print - Console print using IODC.
1116 * @str: the string to output.
1117 * @count: length of str
1118 *
1119 * Note that only these special chars are architected for console IODC io:
1120 * BEL, BS, CR, and LF. Others are passed through.
1121 * Since the HP console requires CR+LF to perform a 'newline', we translate
1122 * "\n" to "\r\n".
1123 */
1124int pdc_iodc_print(const unsigned char *str, unsigned count)
1125{
1126	unsigned int i;
1127	unsigned long flags;
1128
1129	for (i = 0; i < count;) {
1130		switch(str[i]) {
1131		case '\n':
1132			iodc_dbuf[i+0] = '\r';
1133			iodc_dbuf[i+1] = '\n';
1134			i += 2;
1135			goto print;
1136		default:
1137			iodc_dbuf[i] = str[i];
1138			i++;
1139			break;
1140		}
1141	}
1142
1143print:
1144        spin_lock_irqsave(&pdc_lock, flags);
1145        real32_call(PAGE0->mem_cons.iodc_io,
1146                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1147                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1148                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1149        spin_unlock_irqrestore(&pdc_lock, flags);
1150
1151	return i;
1152}
1153
1154/**
1155 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1156 *
1157 * Read a character (non-blocking) from the PDC console, returns -1 if
1158 * key is not present.
1159 */
1160int pdc_iodc_getc(void)
1161{
1162	int ch;
1163	int status;
1164	unsigned long flags;
1165
1166	/* Bail if no console input device. */
1167	if (!PAGE0->mem_kbd.iodc_io)
1168		return 0;
1169	
1170	/* wait for a keyboard (rs232)-input */
1171	spin_lock_irqsave(&pdc_lock, flags);
1172	real32_call(PAGE0->mem_kbd.iodc_io,
1173		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1174		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1175		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1176
1177	ch = *iodc_dbuf;
1178	status = *iodc_retbuf;
1179	spin_unlock_irqrestore(&pdc_lock, flags);
1180
1181	if (status == 0)
1182	    return -1;
1183	
1184	return ch;
1185}
1186
1187int pdc_sti_call(unsigned long func, unsigned long flags,
1188                 unsigned long inptr, unsigned long outputr,
1189                 unsigned long glob_cfg)
1190{
1191        int retval;
1192	unsigned long irqflags;
1193
1194        spin_lock_irqsave(&pdc_lock, irqflags);  
1195        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1196        spin_unlock_irqrestore(&pdc_lock, irqflags);
1197
1198        return retval;
1199}
1200EXPORT_SYMBOL(pdc_sti_call);
1201
1202#ifdef CONFIG_64BIT
1203/**
1204 * pdc_pat_cell_get_number - Returns the cell number.
1205 * @cell_info: The return buffer.
1206 *
1207 * This PDC call returns the cell number of the cell from which the call
1208 * is made.
1209 */
1210int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1211{
1212	int retval;
1213	unsigned long flags;
1214
1215	spin_lock_irqsave(&pdc_lock, flags);
1216	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1217	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1218	spin_unlock_irqrestore(&pdc_lock, flags);
1219
1220	return retval;
1221}
1222
1223/**
1224 * pdc_pat_cell_module - Retrieve the cell's module information.
1225 * @actcnt: The number of bytes written to mem_addr.
1226 * @ploc: The physical location.
1227 * @mod: The module index.
1228 * @view_type: The view of the address type.
1229 * @mem_addr: The return buffer.
1230 *
1231 * This PDC call returns information about each module attached to the cell
1232 * at the specified location.
1233 */
1234int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1235			unsigned long view_type, void *mem_addr)
1236{
1237	int retval;
1238	unsigned long flags;
1239	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1240
1241	spin_lock_irqsave(&pdc_lock, flags);
1242	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1243			      ploc, mod, view_type, __pa(&result));
1244	if(!retval) {
1245		*actcnt = pdc_result[0];
1246		memcpy(mem_addr, &result, *actcnt);
1247	}
1248	spin_unlock_irqrestore(&pdc_lock, flags);
1249
1250	return retval;
1251}
1252
1253/**
1254 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1255 * @cpu_info: The return buffer.
1256 * @hpa: The Hard Physical Address of the CPU.
1257 *
1258 * Retrieve the cpu number for the cpu at the specified HPA.
1259 */
1260int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1261{
1262	int retval;
1263	unsigned long flags;
1264
1265	spin_lock_irqsave(&pdc_lock, flags);
1266	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1267			      __pa(&pdc_result), hpa);
1268	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1269	spin_unlock_irqrestore(&pdc_lock, flags);
1270
1271	return retval;
1272}
1273
1274/**
1275 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1276 * @num_entries: The return value.
1277 * @cell_num: The target cell.
1278 *
1279 * This PDC function returns the number of entries in the specified cell's
1280 * interrupt table.
1281 */
1282int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1283{
1284	int retval;
1285	unsigned long flags;
1286
1287	spin_lock_irqsave(&pdc_lock, flags);
1288	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1289			      __pa(pdc_result), cell_num);
1290	*num_entries = pdc_result[0];
1291	spin_unlock_irqrestore(&pdc_lock, flags);
1292
1293	return retval;
1294}
1295
1296/**
1297 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1298 * @r_addr: The return buffer.
1299 * @cell_num: The target cell.
1300 *
1301 * This PDC function returns the actual interrupt table for the specified cell.
1302 */
1303int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1304{
1305	int retval;
1306	unsigned long flags;
1307
1308	spin_lock_irqsave(&pdc_lock, flags);
1309	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1310			      __pa(r_addr), cell_num);
1311	spin_unlock_irqrestore(&pdc_lock, flags);
1312
1313	return retval;
1314}
1315
1316/**
1317 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1318 * @actlen: The return buffer.
1319 * @mem_addr: Pointer to the memory buffer.
1320 * @count: The number of bytes to read from the buffer.
1321 * @offset: The offset with respect to the beginning of the buffer.
1322 *
1323 */
1324int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1325			    unsigned long count, unsigned long offset)
1326{
1327	int retval;
1328	unsigned long flags;
1329
1330	spin_lock_irqsave(&pdc_lock, flags);
1331	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1332			      __pa(pdc_result2), count, offset);
1333	*actual_len = pdc_result[0];
1334	memcpy(mem_addr, pdc_result2, *actual_len);
1335	spin_unlock_irqrestore(&pdc_lock, flags);
1336
1337	return retval;
1338}
1339
1340/**
1341 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1342 * @pci_addr: PCI configuration space address for which the read request is being made.
1343 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1344 * @mem_addr: Pointer to return memory buffer.
1345 *
1346 */
1347int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1348{
1349	int retval;
1350	unsigned long flags;
1351
1352	spin_lock_irqsave(&pdc_lock, flags);
1353	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1354					__pa(pdc_result), pci_addr, pci_size);
1355	switch(pci_size) {
1356		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1357		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1358		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1359	}
1360	spin_unlock_irqrestore(&pdc_lock, flags);
1361
1362	return retval;
1363}
1364
1365/**
1366 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1367 * @pci_addr: PCI configuration space address for which the write  request is being made.
1368 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1369 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1370 *         written to PCI Config space.
1371 *
1372 */
1373int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1374{
1375	int retval;
1376	unsigned long flags;
1377
1378	spin_lock_irqsave(&pdc_lock, flags);
1379	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1380				pci_addr, pci_size, val);
1381	spin_unlock_irqrestore(&pdc_lock, flags);
1382
1383	return retval;
1384}
1385#endif /* CONFIG_64BIT */
1386
1387
1388/***************** 32-bit real-mode calls ***********/
1389/* The struct below is used
1390 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1391 * real32_call_asm() then uses this stack in narrow real mode
1392 */
1393
1394struct narrow_stack {
1395	/* use int, not long which is 64 bits */
1396	unsigned int arg13;
1397	unsigned int arg12;
1398	unsigned int arg11;
1399	unsigned int arg10;
1400	unsigned int arg9;
1401	unsigned int arg8;
1402	unsigned int arg7;
1403	unsigned int arg6;
1404	unsigned int arg5;
1405	unsigned int arg4;
1406	unsigned int arg3;
1407	unsigned int arg2;
1408	unsigned int arg1;
1409	unsigned int arg0;
1410	unsigned int frame_marker[8];
1411	unsigned int sp;
1412	/* in reality, there's nearly 8k of stack after this */
1413};
1414
1415long real32_call(unsigned long fn, ...)
1416{
1417	va_list args;
1418	extern struct narrow_stack real_stack;
1419	extern unsigned long real32_call_asm(unsigned int *,
1420					     unsigned int *, 
1421					     unsigned int);
1422	
1423	va_start(args, fn);
1424	real_stack.arg0 = va_arg(args, unsigned int);
1425	real_stack.arg1 = va_arg(args, unsigned int);
1426	real_stack.arg2 = va_arg(args, unsigned int);
1427	real_stack.arg3 = va_arg(args, unsigned int);
1428	real_stack.arg4 = va_arg(args, unsigned int);
1429	real_stack.arg5 = va_arg(args, unsigned int);
1430	real_stack.arg6 = va_arg(args, unsigned int);
1431	real_stack.arg7 = va_arg(args, unsigned int);
1432	real_stack.arg8 = va_arg(args, unsigned int);
1433	real_stack.arg9 = va_arg(args, unsigned int);
1434	real_stack.arg10 = va_arg(args, unsigned int);
1435	real_stack.arg11 = va_arg(args, unsigned int);
1436	real_stack.arg12 = va_arg(args, unsigned int);
1437	real_stack.arg13 = va_arg(args, unsigned int);
1438	va_end(args);
1439	
1440	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1441}
1442
1443#ifdef CONFIG_64BIT
1444/***************** 64-bit real-mode calls ***********/
1445
1446struct wide_stack {
1447	unsigned long arg0;
1448	unsigned long arg1;
1449	unsigned long arg2;
1450	unsigned long arg3;
1451	unsigned long arg4;
1452	unsigned long arg5;
1453	unsigned long arg6;
1454	unsigned long arg7;
1455	unsigned long arg8;
1456	unsigned long arg9;
1457	unsigned long arg10;
1458	unsigned long arg11;
1459	unsigned long arg12;
1460	unsigned long arg13;
1461	unsigned long frame_marker[2];	/* rp, previous sp */
1462	unsigned long sp;
1463	/* in reality, there's nearly 8k of stack after this */
1464};
1465
1466long real64_call(unsigned long fn, ...)
1467{
1468	va_list args;
1469	extern struct wide_stack real64_stack;
1470	extern unsigned long real64_call_asm(unsigned long *,
1471					     unsigned long *, 
1472					     unsigned long);
1473    
1474	va_start(args, fn);
1475	real64_stack.arg0 = va_arg(args, unsigned long);
1476	real64_stack.arg1 = va_arg(args, unsigned long);
1477	real64_stack.arg2 = va_arg(args, unsigned long);
1478	real64_stack.arg3 = va_arg(args, unsigned long);
1479	real64_stack.arg4 = va_arg(args, unsigned long);
1480	real64_stack.arg5 = va_arg(args, unsigned long);
1481	real64_stack.arg6 = va_arg(args, unsigned long);
1482	real64_stack.arg7 = va_arg(args, unsigned long);
1483	real64_stack.arg8 = va_arg(args, unsigned long);
1484	real64_stack.arg9 = va_arg(args, unsigned long);
1485	real64_stack.arg10 = va_arg(args, unsigned long);
1486	real64_stack.arg11 = va_arg(args, unsigned long);
1487	real64_stack.arg12 = va_arg(args, unsigned long);
1488	real64_stack.arg13 = va_arg(args, unsigned long);
1489	va_end(args);
1490	
1491	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1492}
1493
1494#endif /* CONFIG_64BIT */
1495