Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *	PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
 
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*	I think it would be in everyone's best interest to follow this
  24 *	guidelines when writing PDC wrappers:
  25 *
  26 *	 - the name of the pdc wrapper should match one of the macros
  27 *	   used for the first two arguments
  28 *	 - don't use caps for random parts of the name
  29 *	 - use the static PDC result buffers and "copyout" to structs
  30 *	   supplied by the caller to encapsulate alignment restrictions
  31 *	 - hold pdc_lock while in PDC or using static result buffers
  32 *	 - use __pa() to convert virtual (kernel) pointers to physical
  33 *	   ones.
  34 *	 - the name of the struct used for pdc return values should equal
  35 *	   one of the macros used for the first two arguments to the
  36 *	   corresponding PDC call
  37 *	 - keep the order of arguments
  38 *	 - don't be smart (setting trailing NUL bytes for strings, return
  39 *	   something useful even if the call failed) unless you are sure
  40 *	   it's not going to affect functionality or performance
  41 *
  42 *	Example:
  43 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *	{
  45 *		int retval;
  46 *
  47 *		spin_lock_irq(&pdc_lock);
  48 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *		convert_to_wide(pdc_result);
  50 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *		spin_unlock_irq(&pdc_lock);
  52 *
  53 *		return retval;
  54 *	}
  55 *					prumpf	991016	
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
  70#include <asm/processor.h>	/* for boot_cpu_data */
  71
 
 
 
 
 
 
  72static DEFINE_SPINLOCK(pdc_lock);
  73extern unsigned long pdc_result[NUM_PDC_RESULT];
  74extern unsigned long pdc_result2[NUM_PDC_RESULT];
 
 
  75
  76#ifdef CONFIG_64BIT
  77#define WIDE_FIRMWARE 0x1
  78#define NARROW_FIRMWARE 0x2
  79
  80/* Firmware needs to be initially set to narrow to determine the 
  81 * actual firmware width. */
  82int parisc_narrow_firmware __read_mostly = 1;
  83#endif
  84
  85/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  86 * and MEM_PDC calls are always the same width as the OS.
  87 * Some PAT boxes may have 64-bit IODC I/O.
  88 *
  89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  91 * This allowed wide kernels to run on Cxxx boxes.
  92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  94 */
  95
  96#ifdef CONFIG_64BIT
  97long real64_call(unsigned long function, ...);
  98#endif
  99long real32_call(unsigned long function, ...);
 100
 101#ifdef CONFIG_64BIT
 102#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 103#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 104#else
 105#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 106#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 107#endif
 108
 109
 110/**
 111 * f_extend - Convert PDC addresses to kernel addresses.
 112 * @address: Address returned from PDC.
 113 *
 114 * This function is used to convert PDC addresses into kernel addresses
 115 * when the PDC address size and kernel address size are different.
 116 */
 117static unsigned long f_extend(unsigned long address)
 118{
 119#ifdef CONFIG_64BIT
 120	if(unlikely(parisc_narrow_firmware)) {
 121		if((address & 0xff000000) == 0xf0000000)
 122			return 0xf0f0f0f000000000UL | (u32)address;
 123
 124		if((address & 0xf0000000) == 0xf0000000)
 125			return 0xffffffff00000000UL | (u32)address;
 126	}
 127#endif
 128	return address;
 129}
 130
 131/**
 132 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 133 * @address: The return buffer from PDC.
 134 *
 135 * This function is used to convert the return buffer addresses retrieved from PDC
 136 * into kernel addresses when the PDC address size and kernel address size are
 137 * different.
 138 */
 139static void convert_to_wide(unsigned long *addr)
 140{
 141#ifdef CONFIG_64BIT
 142	int i;
 143	unsigned int *p = (unsigned int *)addr;
 144
 145	if(unlikely(parisc_narrow_firmware)) {
 146		for(i = 31; i >= 0; --i)
 147			addr[i] = p[i];
 148	}
 149#endif
 150}
 151
 152#ifdef CONFIG_64BIT
 153void __cpuinit set_firmware_width_unlocked(void)
 154{
 155	int ret;
 156
 157	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 158		__pa(pdc_result), 0);
 
 
 159	convert_to_wide(pdc_result);
 160	if (pdc_result[0] != NARROW_FIRMWARE)
 161		parisc_narrow_firmware = 0;
 162}
 163	
 164/**
 165 * set_firmware_width - Determine if the firmware is wide or narrow.
 166 * 
 167 * This function must be called before any pdc_* function that uses the
 168 * convert_to_wide function.
 169 */
 170void __cpuinit set_firmware_width(void)
 171{
 172	unsigned long flags;
 
 
 
 
 
 173	spin_lock_irqsave(&pdc_lock, flags);
 174	set_firmware_width_unlocked();
 175	spin_unlock_irqrestore(&pdc_lock, flags);
 176}
 177#else
 178void __cpuinit set_firmware_width_unlocked(void) {
 
 179	return;
 180}
 181
 182void __cpuinit set_firmware_width(void) {
 
 183	return;
 184}
 185#endif /*CONFIG_64BIT*/
 186
 
 
 187/**
 188 * pdc_emergency_unlock - Unlock the linux pdc lock
 189 *
 190 * This call unlocks the linux pdc lock in case we need some PDC functions
 191 * (like pdc_add_valid) during kernel stack dump.
 192 */
 193void pdc_emergency_unlock(void)
 194{
 195 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 196        if (spin_is_locked(&pdc_lock))
 197		spin_unlock(&pdc_lock);
 198}
 199
 200
 201/**
 202 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 203 * @address: Address to be verified.
 204 *
 205 * This PDC call attempts to read from the specified address and verifies
 206 * if the address is valid.
 207 * 
 208 * The return value is PDC_OK (0) in case accessing this address is valid.
 209 */
 210int pdc_add_valid(unsigned long address)
 211{
 212        int retval;
 213	unsigned long flags;
 214
 215        spin_lock_irqsave(&pdc_lock, flags);
 216        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 217        spin_unlock_irqrestore(&pdc_lock, flags);
 218
 219        return retval;
 220}
 221EXPORT_SYMBOL(pdc_add_valid);
 222
 223/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224 * pdc_chassis_info - Return chassis information.
 225 * @result: The return buffer.
 226 * @chassis_info: The memory buffer address.
 
 227 * @len: The size of the memory buffer address.
 228 *
 229 * An HVERSION dependent call for returning the chassis information.
 230 */
 231int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 232{
 233        int retval;
 234	unsigned long flags;
 235
 236        spin_lock_irqsave(&pdc_lock, flags);
 237        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 238        memcpy(&pdc_result2, led_info, len);
 239        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 240                              __pa(pdc_result), __pa(pdc_result2), len);
 241        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 242        memcpy(led_info, pdc_result2, len);
 243        spin_unlock_irqrestore(&pdc_lock, flags);
 244
 245        return retval;
 246}
 247
 248/**
 249 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 250 * @retval: -1 on error, 0 on success. Other value are PDC errors
 
 251 * 
 252 * Must be correctly formatted or expect system crash
 253 */
 254#ifdef CONFIG_64BIT
 255int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 256{
 257	int retval = 0;
 258	unsigned long flags;
 259        
 260	if (!is_pdc_pat())
 261		return -1;
 262
 263	spin_lock_irqsave(&pdc_lock, flags);
 264	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 265	spin_unlock_irqrestore(&pdc_lock, flags);
 266
 267	return retval;
 268}
 269#endif
 270
 271/**
 272 * pdc_chassis_disp - Updates chassis code
 273 * @retval: -1 on error, 0 on success
 274 */
 275int pdc_chassis_disp(unsigned long disp)
 276{
 277	int retval = 0;
 278	unsigned long flags;
 279
 280	spin_lock_irqsave(&pdc_lock, flags);
 281	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 282	spin_unlock_irqrestore(&pdc_lock, flags);
 283
 284	return retval;
 285}
 286
 287/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288 * pdc_chassis_warn - Fetches chassis warnings
 289 * @retval: -1 on error, 0 on success
 290 */
 291int pdc_chassis_warn(unsigned long *warn)
 292{
 293	int retval = 0;
 294	unsigned long flags;
 295
 296	spin_lock_irqsave(&pdc_lock, flags);
 297	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 298	*warn = pdc_result[0];
 299	spin_unlock_irqrestore(&pdc_lock, flags);
 300
 301	return retval;
 302}
 303
 304int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 305{
 306	int ret;
 307
 308	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 309	convert_to_wide(pdc_result);
 310	pdc_coproc_info->ccr_functional = pdc_result[0];
 311	pdc_coproc_info->ccr_present = pdc_result[1];
 312	pdc_coproc_info->revision = pdc_result[17];
 313	pdc_coproc_info->model = pdc_result[18];
 314
 315	return ret;
 316}
 317
 318/**
 319 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 320 * @pdc_coproc_info: Return buffer address.
 321 *
 322 * This PDC call returns the presence and status of all the coprocessors
 323 * attached to the processor.
 324 */
 325int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 326{
 327	int ret;
 328	unsigned long flags;
 329
 330	spin_lock_irqsave(&pdc_lock, flags);
 331	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 332	spin_unlock_irqrestore(&pdc_lock, flags);
 333
 334	return ret;
 335}
 336
 337/**
 338 * pdc_iodc_read - Read data from the modules IODC.
 339 * @actcnt: The actual number of bytes.
 340 * @hpa: The HPA of the module for the iodc read.
 341 * @index: The iodc entry point.
 342 * @iodc_data: A buffer memory for the iodc options.
 343 * @iodc_data_size: Size of the memory buffer.
 344 *
 345 * This PDC call reads from the IODC of the module specified by the hpa
 346 * argument.
 347 */
 348int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 349		  void *iodc_data, unsigned int iodc_data_size)
 350{
 351	int retval;
 352	unsigned long flags;
 353
 354	spin_lock_irqsave(&pdc_lock, flags);
 355	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 356			      index, __pa(pdc_result2), iodc_data_size);
 357	convert_to_wide(pdc_result);
 358	*actcnt = pdc_result[0];
 359	memcpy(iodc_data, pdc_result2, iodc_data_size);
 360	spin_unlock_irqrestore(&pdc_lock, flags);
 361
 362	return retval;
 363}
 364EXPORT_SYMBOL(pdc_iodc_read);
 365
 366/**
 367 * pdc_system_map_find_mods - Locate unarchitected modules.
 368 * @pdc_mod_info: Return buffer address.
 369 * @mod_path: pointer to dev path structure.
 370 * @mod_index: fixed address module index.
 371 *
 372 * To locate and identify modules which reside at fixed I/O addresses, which
 373 * do not self-identify via architected bus walks.
 374 */
 375int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 376			     struct pdc_module_path *mod_path, long mod_index)
 377{
 378	int retval;
 379	unsigned long flags;
 380
 381	spin_lock_irqsave(&pdc_lock, flags);
 382	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 383			      __pa(pdc_result2), mod_index);
 384	convert_to_wide(pdc_result);
 385	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 386	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 387	spin_unlock_irqrestore(&pdc_lock, flags);
 388
 389	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 390	return retval;
 391}
 392
 393/**
 394 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 395 * @pdc_addr_info: Return buffer address.
 396 * @mod_index: Fixed address module index.
 397 * @addr_index: Address range index.
 398 * 
 399 * Retrieve additional information about subsequent address ranges for modules
 400 * with multiple address ranges.  
 401 */
 402int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 403			      long mod_index, long addr_index)
 404{
 405	int retval;
 406	unsigned long flags;
 407
 408	spin_lock_irqsave(&pdc_lock, flags);
 409	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 410			      mod_index, addr_index);
 411	convert_to_wide(pdc_result);
 412	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 413	spin_unlock_irqrestore(&pdc_lock, flags);
 414
 415	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 416	return retval;
 417}
 418
 419/**
 420 * pdc_model_info - Return model information about the processor.
 421 * @model: The return buffer.
 422 *
 423 * Returns the version numbers, identifiers, and capabilities from the processor module.
 424 */
 425int pdc_model_info(struct pdc_model *model) 
 426{
 427	int retval;
 428	unsigned long flags;
 429
 430	spin_lock_irqsave(&pdc_lock, flags);
 431	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 432	convert_to_wide(pdc_result);
 433	memcpy(model, pdc_result, sizeof(*model));
 434	spin_unlock_irqrestore(&pdc_lock, flags);
 435
 436	return retval;
 437}
 438
 439/**
 440 * pdc_model_sysmodel - Get the system model name.
 
 441 * @name: A char array of at least 81 characters.
 442 *
 443 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 444 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 445 * on HP/UX.
 446 */
 447int pdc_model_sysmodel(char *name)
 448{
 449        int retval;
 450	unsigned long flags;
 451
 452        spin_lock_irqsave(&pdc_lock, flags);
 453        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 454                              OS_ID_HPUX, __pa(name));
 455        convert_to_wide(pdc_result);
 456
 457        if (retval == PDC_OK) {
 458                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 459        } else {
 460                name[0] = 0;
 461        }
 462        spin_unlock_irqrestore(&pdc_lock, flags);
 463
 464        return retval;
 465}
 466
 467/**
 468 * pdc_model_versions - Identify the version number of each processor.
 469 * @cpu_id: The return buffer.
 470 * @id: The id of the processor to check.
 471 *
 472 * Returns the version number for each processor component.
 473 *
 474 * This comment was here before, but I do not know what it means :( -RB
 475 * id: 0 = cpu revision, 1 = boot-rom-version
 476 */
 477int pdc_model_versions(unsigned long *versions, int id)
 478{
 479        int retval;
 480	unsigned long flags;
 481
 482        spin_lock_irqsave(&pdc_lock, flags);
 483        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 484        convert_to_wide(pdc_result);
 485        *versions = pdc_result[0];
 486        spin_unlock_irqrestore(&pdc_lock, flags);
 487
 488        return retval;
 489}
 490
 491/**
 492 * pdc_model_cpuid - Returns the CPU_ID.
 493 * @cpu_id: The return buffer.
 494 *
 495 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 496 * the processor module.
 497 */
 498int pdc_model_cpuid(unsigned long *cpu_id)
 499{
 500        int retval;
 501	unsigned long flags;
 502
 503        spin_lock_irqsave(&pdc_lock, flags);
 504        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 505        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 506        convert_to_wide(pdc_result);
 507        *cpu_id = pdc_result[0];
 508        spin_unlock_irqrestore(&pdc_lock, flags);
 509
 510        return retval;
 511}
 512
 513/**
 514 * pdc_model_capabilities - Returns the platform capabilities.
 515 * @capabilities: The return buffer.
 516 *
 517 * Returns information about platform support for 32- and/or 64-bit
 518 * OSes, IO-PDIR coherency, and virtual aliasing.
 519 */
 520int pdc_model_capabilities(unsigned long *capabilities)
 521{
 522        int retval;
 523	unsigned long flags;
 524
 525        spin_lock_irqsave(&pdc_lock, flags);
 526        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 527        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 528        convert_to_wide(pdc_result);
 529        if (retval == PDC_OK) {
 530                *capabilities = pdc_result[0];
 531        } else {
 532                *capabilities = PDC_MODEL_OS32;
 533        }
 534        spin_unlock_irqrestore(&pdc_lock, flags);
 535
 536        return retval;
 537}
 538
 539/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540 * pdc_cache_info - Return cache and TLB information.
 541 * @cache_info: The return buffer.
 542 *
 543 * Returns information about the processor's cache and TLB.
 544 */
 545int pdc_cache_info(struct pdc_cache_info *cache_info)
 546{
 547        int retval;
 548	unsigned long flags;
 549
 550        spin_lock_irqsave(&pdc_lock, flags);
 551        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 552        convert_to_wide(pdc_result);
 553        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 554        spin_unlock_irqrestore(&pdc_lock, flags);
 555
 556        return retval;
 557}
 558
 559/**
 560 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 561 * @space_bits: Should be 0, if not, bad mojo!
 562 *
 563 * Returns information about Space ID hashing.
 564 */
 565int pdc_spaceid_bits(unsigned long *space_bits)
 566{
 567	int retval;
 568	unsigned long flags;
 569
 570	spin_lock_irqsave(&pdc_lock, flags);
 571	pdc_result[0] = 0;
 572	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 573	convert_to_wide(pdc_result);
 574	*space_bits = pdc_result[0];
 575	spin_unlock_irqrestore(&pdc_lock, flags);
 576
 577	return retval;
 578}
 579
 580#ifndef CONFIG_PA20
 581/**
 582 * pdc_btlb_info - Return block TLB information.
 583 * @btlb: The return buffer.
 584 *
 585 * Returns information about the hardware Block TLB.
 586 */
 587int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 588{
 589        int retval;
 590	unsigned long flags;
 591
 592        spin_lock_irqsave(&pdc_lock, flags);
 593        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 594        memcpy(btlb, pdc_result, sizeof(*btlb));
 595        spin_unlock_irqrestore(&pdc_lock, flags);
 596
 597        if(retval < 0) {
 598                btlb->max_size = 0;
 599        }
 600        return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601}
 602
 603/**
 604 * pdc_mem_map_hpa - Find fixed module information.  
 605 * @address: The return buffer
 606 * @mod_path: pointer to dev path structure.
 607 *
 608 * This call was developed for S700 workstations to allow the kernel to find
 609 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 610 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 611 * call.
 612 *
 613 * This call is supported by all existing S700 workstations (up to  Gecko).
 614 */
 615int pdc_mem_map_hpa(struct pdc_memory_map *address,
 616		struct pdc_module_path *mod_path)
 617{
 618        int retval;
 619	unsigned long flags;
 620
 
 
 
 621        spin_lock_irqsave(&pdc_lock, flags);
 622        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 623        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 624				__pa(pdc_result2));
 625        memcpy(address, pdc_result, sizeof(*address));
 626        spin_unlock_irqrestore(&pdc_lock, flags);
 627
 628        return retval;
 629}
 630#endif	/* !CONFIG_PA20 */
 631
 632/**
 633 * pdc_lan_station_id - Get the LAN address.
 634 * @lan_addr: The return buffer.
 635 * @hpa: The network device HPA.
 636 *
 637 * Get the LAN station address when it is not directly available from the LAN hardware.
 638 */
 639int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 640{
 641	int retval;
 642	unsigned long flags;
 643
 644	spin_lock_irqsave(&pdc_lock, flags);
 645	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 646			__pa(pdc_result), hpa);
 647	if (retval < 0) {
 648		/* FIXME: else read MAC from NVRAM */
 649		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 650	} else {
 651		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 652	}
 653	spin_unlock_irqrestore(&pdc_lock, flags);
 654
 655	return retval;
 656}
 657EXPORT_SYMBOL(pdc_lan_station_id);
 658
 659/**
 660 * pdc_stable_read - Read data from Stable Storage.
 661 * @staddr: Stable Storage address to access.
 662 * @memaddr: The memory address where Stable Storage data shall be copied.
 663 * @count: number of bytes to transfer. count is multiple of 4.
 664 *
 665 * This PDC call reads from the Stable Storage address supplied in staddr
 666 * and copies count bytes to the memory address memaddr.
 667 * The call will fail if staddr+count > PDC_STABLE size.
 668 */
 669int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 670{
 671       int retval;
 672	unsigned long flags;
 673
 674       spin_lock_irqsave(&pdc_lock, flags);
 675       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 676               __pa(pdc_result), count);
 677       convert_to_wide(pdc_result);
 678       memcpy(memaddr, pdc_result, count);
 679       spin_unlock_irqrestore(&pdc_lock, flags);
 680
 681       return retval;
 682}
 683EXPORT_SYMBOL(pdc_stable_read);
 684
 685/**
 686 * pdc_stable_write - Write data to Stable Storage.
 687 * @staddr: Stable Storage address to access.
 688 * @memaddr: The memory address where Stable Storage data shall be read from.
 689 * @count: number of bytes to transfer. count is multiple of 4.
 690 *
 691 * This PDC call reads count bytes from the supplied memaddr address,
 692 * and copies count bytes to the Stable Storage address staddr.
 693 * The call will fail if staddr+count > PDC_STABLE size.
 694 */
 695int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 696{
 697       int retval;
 698	unsigned long flags;
 699
 700       spin_lock_irqsave(&pdc_lock, flags);
 701       memcpy(pdc_result, memaddr, count);
 702       convert_to_wide(pdc_result);
 703       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 704               __pa(pdc_result), count);
 705       spin_unlock_irqrestore(&pdc_lock, flags);
 706
 707       return retval;
 708}
 709EXPORT_SYMBOL(pdc_stable_write);
 710
 711/**
 712 * pdc_stable_get_size - Get Stable Storage size in bytes.
 713 * @size: pointer where the size will be stored.
 714 *
 715 * This PDC call returns the number of bytes in the processor's Stable
 716 * Storage, which is the number of contiguous bytes implemented in Stable
 717 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 718 * which is a multiple of four.
 719 */
 720int pdc_stable_get_size(unsigned long *size)
 721{
 722       int retval;
 723	unsigned long flags;
 724
 725       spin_lock_irqsave(&pdc_lock, flags);
 726       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 727       *size = pdc_result[0];
 728       spin_unlock_irqrestore(&pdc_lock, flags);
 729
 730       return retval;
 731}
 732EXPORT_SYMBOL(pdc_stable_get_size);
 733
 734/**
 735 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 736 *
 737 * This PDC call is meant to be used to check the integrity of the current
 738 * contents of Stable Storage.
 739 */
 740int pdc_stable_verify_contents(void)
 741{
 742       int retval;
 743	unsigned long flags;
 744
 745       spin_lock_irqsave(&pdc_lock, flags);
 746       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 747       spin_unlock_irqrestore(&pdc_lock, flags);
 748
 749       return retval;
 750}
 751EXPORT_SYMBOL(pdc_stable_verify_contents);
 752
 753/**
 754 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 755 * the validity indicator.
 756 *
 757 * This PDC call will erase all contents of Stable Storage. Use with care!
 758 */
 759int pdc_stable_initialize(void)
 760{
 761       int retval;
 762	unsigned long flags;
 763
 764       spin_lock_irqsave(&pdc_lock, flags);
 765       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 766       spin_unlock_irqrestore(&pdc_lock, flags);
 767
 768       return retval;
 769}
 770EXPORT_SYMBOL(pdc_stable_initialize);
 771
 772/**
 773 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 774 * @hwpath: fully bc.mod style path to the device.
 775 * @initiator: the array to return the result into
 776 *
 777 * Get the SCSI operational parameters from PDC.
 778 * Needed since HPUX never used BIOS or symbios card NVRAM.
 779 * Most ncr/sym cards won't have an entry and just use whatever
 780 * capabilities of the card are (eg Ultra, LVD). But there are
 781 * several cases where it's useful:
 782 *    o set SCSI id for Multi-initiator clusters,
 783 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 784 *    o bus width exported is less than what the interface chip supports.
 785 */
 786int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 787{
 788	int retval;
 789	unsigned long flags;
 790
 791	spin_lock_irqsave(&pdc_lock, flags);
 792
 793/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 794#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 795	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 796
 797	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 798			      __pa(pdc_result), __pa(hwpath));
 799	if (retval < PDC_OK)
 800		goto out;
 801
 802	if (pdc_result[0] < 16) {
 803		initiator->host_id = pdc_result[0];
 804	} else {
 805		initiator->host_id = -1;
 806	}
 807
 808	/*
 809	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 810	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 811	 */
 812	switch (pdc_result[1]) {
 813		case  1: initiator->factor = 50; break;
 814		case  2: initiator->factor = 25; break;
 815		case  5: initiator->factor = 12; break;
 816		case 25: initiator->factor = 10; break;
 817		case 20: initiator->factor = 12; break;
 818		case 40: initiator->factor = 10; break;
 819		default: initiator->factor = -1; break;
 820	}
 821
 822	if (IS_SPROCKETS()) {
 823		initiator->width = pdc_result[4];
 824		initiator->mode = pdc_result[5];
 825	} else {
 826		initiator->width = -1;
 827		initiator->mode = -1;
 828	}
 829
 830 out:
 831	spin_unlock_irqrestore(&pdc_lock, flags);
 832
 833	return (retval >= PDC_OK);
 834}
 835EXPORT_SYMBOL(pdc_get_initiator);
 836
 837
 838/**
 839 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 840 * @num_entries: The return value.
 841 * @hpa: The HPA for the device.
 842 *
 843 * This PDC function returns the number of entries in the specified cell's
 844 * interrupt table.
 845 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 846 */ 
 847int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 848{
 849	int retval;
 850	unsigned long flags;
 851
 852	spin_lock_irqsave(&pdc_lock, flags);
 853	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 854			      __pa(pdc_result), hpa);
 855	convert_to_wide(pdc_result);
 856	*num_entries = pdc_result[0];
 857	spin_unlock_irqrestore(&pdc_lock, flags);
 858
 859	return retval;
 860}
 861
 862/** 
 863 * pdc_pci_irt - Get the PCI interrupt routing table.
 864 * @num_entries: The number of entries in the table.
 865 * @hpa: The Hard Physical Address of the device.
 866 * @tbl: 
 867 *
 868 * Get the PCI interrupt routing table for the device at the given HPA.
 869 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 870 */
 871int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 872{
 873	int retval;
 874	unsigned long flags;
 875
 876	BUG_ON((unsigned long)tbl & 0x7);
 877
 878	spin_lock_irqsave(&pdc_lock, flags);
 879	pdc_result[0] = num_entries;
 880	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 881			      __pa(pdc_result), hpa, __pa(tbl));
 882	spin_unlock_irqrestore(&pdc_lock, flags);
 883
 884	return retval;
 885}
 886
 887
 888#if 0	/* UNTEST CODE - left here in case someone needs it */
 889
 890/** 
 891 * pdc_pci_config_read - read PCI config space.
 892 * @hpa		token from PDC to indicate which PCI device
 893 * @pci_addr	configuration space address to read from
 894 *
 895 * Read PCI Configuration space *before* linux PCI subsystem is running.
 896 */
 897unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 898{
 899	int retval;
 900	unsigned long flags;
 901
 902	spin_lock_irqsave(&pdc_lock, flags);
 903	pdc_result[0] = 0;
 904	pdc_result[1] = 0;
 905	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 906			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 907	spin_unlock_irqrestore(&pdc_lock, flags);
 908
 909	return retval ? ~0 : (unsigned int) pdc_result[0];
 910}
 911
 912
 913/** 
 914 * pdc_pci_config_write - read PCI config space.
 915 * @hpa		token from PDC to indicate which PCI device
 916 * @pci_addr	configuration space address to write
 917 * @val		value we want in the 32-bit register
 918 *
 919 * Write PCI Configuration space *before* linux PCI subsystem is running.
 920 */
 921void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 922{
 923	int retval;
 924	unsigned long flags;
 925
 926	spin_lock_irqsave(&pdc_lock, flags);
 927	pdc_result[0] = 0;
 928	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 929			      __pa(pdc_result), hpa,
 930			      cfg_addr&~3UL, 4UL, (unsigned long) val);
 931	spin_unlock_irqrestore(&pdc_lock, flags);
 932
 933	return retval;
 934}
 935#endif /* UNTESTED CODE */
 936
 937/**
 938 * pdc_tod_read - Read the Time-Of-Day clock.
 939 * @tod: The return buffer:
 940 *
 941 * Read the Time-Of-Day clock
 942 */
 943int pdc_tod_read(struct pdc_tod *tod)
 944{
 945        int retval;
 946	unsigned long flags;
 947
 948        spin_lock_irqsave(&pdc_lock, flags);
 949        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
 950        convert_to_wide(pdc_result);
 951        memcpy(tod, pdc_result, sizeof(*tod));
 952        spin_unlock_irqrestore(&pdc_lock, flags);
 953
 954        return retval;
 955}
 956EXPORT_SYMBOL(pdc_tod_read);
 957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958/**
 959 * pdc_tod_set - Set the Time-Of-Day clock.
 960 * @sec: The number of seconds since epoch.
 961 * @usec: The number of micro seconds.
 962 *
 963 * Set the Time-Of-Day clock.
 964 */ 
 965int pdc_tod_set(unsigned long sec, unsigned long usec)
 966{
 967        int retval;
 968	unsigned long flags;
 969
 970        spin_lock_irqsave(&pdc_lock, flags);
 971        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
 972        spin_unlock_irqrestore(&pdc_lock, flags);
 973
 974        return retval;
 975}
 976EXPORT_SYMBOL(pdc_tod_set);
 977
 978#ifdef CONFIG_64BIT
 979int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
 980		struct pdc_memory_table *tbl, unsigned long entries)
 981{
 982	int retval;
 983	unsigned long flags;
 984
 985	spin_lock_irqsave(&pdc_lock, flags);
 986	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
 987	convert_to_wide(pdc_result);
 988	memcpy(r_addr, pdc_result, sizeof(*r_addr));
 989	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
 990	spin_unlock_irqrestore(&pdc_lock, flags);
 991
 992	return retval;
 993}
 994#endif /* CONFIG_64BIT */
 995
 996/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
 997 * so I guessed at unsigned long.  Someone who knows what this does, can fix
 998 * it later. :)
 999 */
1000int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1001{
1002        int retval;
1003	unsigned long flags;
1004
1005        spin_lock_irqsave(&pdc_lock, flags);
1006        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1007                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1008        spin_unlock_irqrestore(&pdc_lock, flags);
1009
1010        return retval;
1011}
1012
1013/*
1014 * pdc_do_reset - Reset the system.
1015 *
1016 * Reset the system.
1017 */
1018int pdc_do_reset(void)
1019{
1020        int retval;
1021	unsigned long flags;
1022
1023        spin_lock_irqsave(&pdc_lock, flags);
1024        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1025        spin_unlock_irqrestore(&pdc_lock, flags);
1026
1027        return retval;
1028}
1029
1030/*
1031 * pdc_soft_power_info - Enable soft power switch.
1032 * @power_reg: address of soft power register
1033 *
1034 * Return the absolute address of the soft power switch register
1035 */
1036int __init pdc_soft_power_info(unsigned long *power_reg)
1037{
1038	int retval;
1039	unsigned long flags;
1040
1041	*power_reg = (unsigned long) (-1);
1042	
1043	spin_lock_irqsave(&pdc_lock, flags);
1044	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1045	if (retval == PDC_OK) {
1046                convert_to_wide(pdc_result);
1047                *power_reg = f_extend(pdc_result[0]);
1048	}
1049	spin_unlock_irqrestore(&pdc_lock, flags);
1050
1051	return retval;
1052}
1053
1054/*
1055 * pdc_soft_power_button - Control the soft power button behaviour
1056 * @sw_control: 0 for hardware control, 1 for software control 
1057 *
1058 *
1059 * This PDC function places the soft power button under software or
1060 * hardware control.
1061 * Under software control the OS may control to when to allow to shut 
1062 * down the system. Under hardware control pressing the power button 
1063 * powers off the system immediately.
 
 
 
1064 */
1065int pdc_soft_power_button(int sw_control)
1066{
1067	int retval;
1068	unsigned long flags;
1069
1070	spin_lock_irqsave(&pdc_lock, flags);
1071	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1072	spin_unlock_irqrestore(&pdc_lock, flags);
1073
1074	return retval;
1075}
1076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077/*
1078 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1079 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1080 * who knows what other platform firmware might do with this OS "hook".
1081 */
1082void pdc_io_reset(void)
1083{
1084	unsigned long flags;
1085
1086	spin_lock_irqsave(&pdc_lock, flags);
1087	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1088	spin_unlock_irqrestore(&pdc_lock, flags);
1089}
1090
1091/*
1092 * pdc_io_reset_devices - Hack to Stop USB controller
1093 *
1094 * If PDC used the usb controller, the usb controller
1095 * is still running and will crash the machines during iommu 
1096 * setup, because of still running DMA. This PDC call
1097 * stops the USB controller.
1098 * Normally called after calling pdc_io_reset().
1099 */
1100void pdc_io_reset_devices(void)
1101{
1102	unsigned long flags;
1103
1104	spin_lock_irqsave(&pdc_lock, flags);
1105	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1106	spin_unlock_irqrestore(&pdc_lock, flags);
1107}
1108
1109/* locked by pdc_console_lock */
1110static int __attribute__((aligned(8)))   iodc_retbuf[32];
1111static char __attribute__((aligned(64))) iodc_dbuf[4096];
 
1112
1113/**
1114 * pdc_iodc_print - Console print using IODC.
1115 * @str: the string to output.
1116 * @count: length of str
1117 *
1118 * Note that only these special chars are architected for console IODC io:
1119 * BEL, BS, CR, and LF. Others are passed through.
1120 * Since the HP console requires CR+LF to perform a 'newline', we translate
1121 * "\n" to "\r\n".
1122 */
1123int pdc_iodc_print(const unsigned char *str, unsigned count)
1124{
1125	unsigned int i;
1126	unsigned long flags;
1127
 
 
 
1128	for (i = 0; i < count;) {
1129		switch(str[i]) {
1130		case '\n':
1131			iodc_dbuf[i+0] = '\r';
1132			iodc_dbuf[i+1] = '\n';
1133			i += 2;
 
1134			goto print;
1135		default:
1136			iodc_dbuf[i] = str[i];
1137			i++;
1138			break;
1139		}
1140	}
1141
1142print:
1143        spin_lock_irqsave(&pdc_lock, flags);
1144        real32_call(PAGE0->mem_cons.iodc_io,
1145                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1146                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1147                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1148        spin_unlock_irqrestore(&pdc_lock, flags);
1149
1150	return i;
1151}
1152
 
1153/**
1154 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1155 *
1156 * Read a character (non-blocking) from the PDC console, returns -1 if
1157 * key is not present.
1158 */
1159int pdc_iodc_getc(void)
1160{
1161	int ch;
1162	int status;
1163	unsigned long flags;
1164
1165	/* Bail if no console input device. */
1166	if (!PAGE0->mem_kbd.iodc_io)
1167		return 0;
1168	
1169	/* wait for a keyboard (rs232)-input */
1170	spin_lock_irqsave(&pdc_lock, flags);
1171	real32_call(PAGE0->mem_kbd.iodc_io,
1172		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1173		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1174		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1175
1176	ch = *iodc_dbuf;
1177	status = *iodc_retbuf;
 
1178	spin_unlock_irqrestore(&pdc_lock, flags);
1179
1180	if (status == 0)
1181	    return -1;
1182	
1183	return ch;
1184}
1185
1186int pdc_sti_call(unsigned long func, unsigned long flags,
1187                 unsigned long inptr, unsigned long outputr,
1188                 unsigned long glob_cfg)
1189{
1190        int retval;
1191	unsigned long irqflags;
1192
1193        spin_lock_irqsave(&pdc_lock, irqflags);  
1194        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1195        spin_unlock_irqrestore(&pdc_lock, irqflags);
 
 
 
 
 
 
 
 
1196
1197        return retval;
1198}
1199EXPORT_SYMBOL(pdc_sti_call);
1200
1201#ifdef CONFIG_64BIT
1202/**
1203 * pdc_pat_cell_get_number - Returns the cell number.
1204 * @cell_info: The return buffer.
1205 *
1206 * This PDC call returns the cell number of the cell from which the call
1207 * is made.
1208 */
1209int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1210{
1211	int retval;
1212	unsigned long flags;
1213
1214	spin_lock_irqsave(&pdc_lock, flags);
1215	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1216	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1217	spin_unlock_irqrestore(&pdc_lock, flags);
1218
1219	return retval;
1220}
1221
1222/**
1223 * pdc_pat_cell_module - Retrieve the cell's module information.
1224 * @actcnt: The number of bytes written to mem_addr.
1225 * @ploc: The physical location.
1226 * @mod: The module index.
1227 * @view_type: The view of the address type.
1228 * @mem_addr: The return buffer.
1229 *
1230 * This PDC call returns information about each module attached to the cell
1231 * at the specified location.
1232 */
1233int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1234			unsigned long view_type, void *mem_addr)
1235{
1236	int retval;
1237	unsigned long flags;
1238	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1239
1240	spin_lock_irqsave(&pdc_lock, flags);
1241	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1242			      ploc, mod, view_type, __pa(&result));
1243	if(!retval) {
1244		*actcnt = pdc_result[0];
1245		memcpy(mem_addr, &result, *actcnt);
1246	}
1247	spin_unlock_irqrestore(&pdc_lock, flags);
1248
1249	return retval;
1250}
1251
1252/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1254 * @cpu_info: The return buffer.
1255 * @hpa: The Hard Physical Address of the CPU.
1256 *
1257 * Retrieve the cpu number for the cpu at the specified HPA.
1258 */
1259int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1260{
1261	int retval;
1262	unsigned long flags;
1263
1264	spin_lock_irqsave(&pdc_lock, flags);
1265	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1266			      __pa(&pdc_result), hpa);
1267	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1268	spin_unlock_irqrestore(&pdc_lock, flags);
1269
1270	return retval;
1271}
1272
1273/**
1274 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1275 * @num_entries: The return value.
1276 * @cell_num: The target cell.
1277 *
1278 * This PDC function returns the number of entries in the specified cell's
1279 * interrupt table.
1280 */
1281int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1282{
1283	int retval;
1284	unsigned long flags;
1285
1286	spin_lock_irqsave(&pdc_lock, flags);
1287	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1288			      __pa(pdc_result), cell_num);
1289	*num_entries = pdc_result[0];
1290	spin_unlock_irqrestore(&pdc_lock, flags);
1291
1292	return retval;
1293}
1294
1295/**
1296 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1297 * @r_addr: The return buffer.
1298 * @cell_num: The target cell.
1299 *
1300 * This PDC function returns the actual interrupt table for the specified cell.
1301 */
1302int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1303{
1304	int retval;
1305	unsigned long flags;
1306
1307	spin_lock_irqsave(&pdc_lock, flags);
1308	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1309			      __pa(r_addr), cell_num);
1310	spin_unlock_irqrestore(&pdc_lock, flags);
1311
1312	return retval;
1313}
1314
1315/**
1316 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1317 * @actlen: The return buffer.
1318 * @mem_addr: Pointer to the memory buffer.
1319 * @count: The number of bytes to read from the buffer.
1320 * @offset: The offset with respect to the beginning of the buffer.
1321 *
1322 */
1323int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1324			    unsigned long count, unsigned long offset)
1325{
1326	int retval;
1327	unsigned long flags;
1328
1329	spin_lock_irqsave(&pdc_lock, flags);
1330	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1331			      __pa(pdc_result2), count, offset);
1332	*actual_len = pdc_result[0];
1333	memcpy(mem_addr, pdc_result2, *actual_len);
1334	spin_unlock_irqrestore(&pdc_lock, flags);
1335
1336	return retval;
1337}
1338
1339/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1340 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1341 * @pci_addr: PCI configuration space address for which the read request is being made.
1342 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1343 * @mem_addr: Pointer to return memory buffer.
1344 *
1345 */
1346int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1347{
1348	int retval;
1349	unsigned long flags;
1350
1351	spin_lock_irqsave(&pdc_lock, flags);
1352	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1353					__pa(pdc_result), pci_addr, pci_size);
1354	switch(pci_size) {
1355		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1356		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1357		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1358	}
1359	spin_unlock_irqrestore(&pdc_lock, flags);
1360
1361	return retval;
1362}
1363
1364/**
1365 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1366 * @pci_addr: PCI configuration space address for which the write  request is being made.
1367 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1368 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1369 *         written to PCI Config space.
1370 *
1371 */
1372int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1373{
1374	int retval;
1375	unsigned long flags;
1376
1377	spin_lock_irqsave(&pdc_lock, flags);
1378	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1379				pci_addr, pci_size, val);
1380	spin_unlock_irqrestore(&pdc_lock, flags);
1381
1382	return retval;
1383}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1384#endif /* CONFIG_64BIT */
 
1385
1386
1387/***************** 32-bit real-mode calls ***********/
1388/* The struct below is used
1389 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1390 * real32_call_asm() then uses this stack in narrow real mode
1391 */
1392
1393struct narrow_stack {
1394	/* use int, not long which is 64 bits */
1395	unsigned int arg13;
1396	unsigned int arg12;
1397	unsigned int arg11;
1398	unsigned int arg10;
1399	unsigned int arg9;
1400	unsigned int arg8;
1401	unsigned int arg7;
1402	unsigned int arg6;
1403	unsigned int arg5;
1404	unsigned int arg4;
1405	unsigned int arg3;
1406	unsigned int arg2;
1407	unsigned int arg1;
1408	unsigned int arg0;
1409	unsigned int frame_marker[8];
1410	unsigned int sp;
1411	/* in reality, there's nearly 8k of stack after this */
1412};
1413
1414long real32_call(unsigned long fn, ...)
1415{
1416	va_list args;
1417	extern struct narrow_stack real_stack;
1418	extern unsigned long real32_call_asm(unsigned int *,
1419					     unsigned int *, 
1420					     unsigned int);
1421	
1422	va_start(args, fn);
1423	real_stack.arg0 = va_arg(args, unsigned int);
1424	real_stack.arg1 = va_arg(args, unsigned int);
1425	real_stack.arg2 = va_arg(args, unsigned int);
1426	real_stack.arg3 = va_arg(args, unsigned int);
1427	real_stack.arg4 = va_arg(args, unsigned int);
1428	real_stack.arg5 = va_arg(args, unsigned int);
1429	real_stack.arg6 = va_arg(args, unsigned int);
1430	real_stack.arg7 = va_arg(args, unsigned int);
1431	real_stack.arg8 = va_arg(args, unsigned int);
1432	real_stack.arg9 = va_arg(args, unsigned int);
1433	real_stack.arg10 = va_arg(args, unsigned int);
1434	real_stack.arg11 = va_arg(args, unsigned int);
1435	real_stack.arg12 = va_arg(args, unsigned int);
1436	real_stack.arg13 = va_arg(args, unsigned int);
1437	va_end(args);
1438	
1439	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1440}
1441
1442#ifdef CONFIG_64BIT
1443/***************** 64-bit real-mode calls ***********/
1444
1445struct wide_stack {
1446	unsigned long arg0;
1447	unsigned long arg1;
1448	unsigned long arg2;
1449	unsigned long arg3;
1450	unsigned long arg4;
1451	unsigned long arg5;
1452	unsigned long arg6;
1453	unsigned long arg7;
1454	unsigned long arg8;
1455	unsigned long arg9;
1456	unsigned long arg10;
1457	unsigned long arg11;
1458	unsigned long arg12;
1459	unsigned long arg13;
1460	unsigned long frame_marker[2];	/* rp, previous sp */
1461	unsigned long sp;
1462	/* in reality, there's nearly 8k of stack after this */
1463};
1464
1465long real64_call(unsigned long fn, ...)
1466{
1467	va_list args;
1468	extern struct wide_stack real64_stack;
1469	extern unsigned long real64_call_asm(unsigned long *,
1470					     unsigned long *, 
1471					     unsigned long);
1472    
1473	va_start(args, fn);
1474	real64_stack.arg0 = va_arg(args, unsigned long);
1475	real64_stack.arg1 = va_arg(args, unsigned long);
1476	real64_stack.arg2 = va_arg(args, unsigned long);
1477	real64_stack.arg3 = va_arg(args, unsigned long);
1478	real64_stack.arg4 = va_arg(args, unsigned long);
1479	real64_stack.arg5 = va_arg(args, unsigned long);
1480	real64_stack.arg6 = va_arg(args, unsigned long);
1481	real64_stack.arg7 = va_arg(args, unsigned long);
1482	real64_stack.arg8 = va_arg(args, unsigned long);
1483	real64_stack.arg9 = va_arg(args, unsigned long);
1484	real64_stack.arg10 = va_arg(args, unsigned long);
1485	real64_stack.arg11 = va_arg(args, unsigned long);
1486	real64_stack.arg12 = va_arg(args, unsigned long);
1487	real64_stack.arg13 = va_arg(args, unsigned long);
1488	va_end(args);
1489	
1490	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1491}
1492
1493#endif /* CONFIG_64BIT */
1494
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   4 *
   5 *	PDC == Processor Dependent Code
   6 *
   7 * See PDC documentation at
   8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
   9 * for documentation describing the entry points and calling
  10 * conventions defined below.
  11 *
  12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  14 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
 
 
 
 
 
 
  17 */
  18
  19/*	I think it would be in everyone's best interest to follow this
  20 *	guidelines when writing PDC wrappers:
  21 *
  22 *	 - the name of the pdc wrapper should match one of the macros
  23 *	   used for the first two arguments
  24 *	 - don't use caps for random parts of the name
  25 *	 - use the static PDC result buffers and "copyout" to structs
  26 *	   supplied by the caller to encapsulate alignment restrictions
  27 *	 - hold pdc_lock while in PDC or using static result buffers
  28 *	 - use __pa() to convert virtual (kernel) pointers to physical
  29 *	   ones.
  30 *	 - the name of the struct used for pdc return values should equal
  31 *	   one of the macros used for the first two arguments to the
  32 *	   corresponding PDC call
  33 *	 - keep the order of arguments
  34 *	 - don't be smart (setting trailing NUL bytes for strings, return
  35 *	   something useful even if the call failed) unless you are sure
  36 *	   it's not going to affect functionality or performance
  37 *
  38 *	Example:
  39 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  40 *	{
  41 *		int retval;
  42 *
  43 *		spin_lock_irq(&pdc_lock);
  44 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  45 *		convert_to_wide(pdc_result);
  46 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  47 *		spin_unlock_irq(&pdc_lock);
  48 *
  49 *		return retval;
  50 *	}
  51 *					prumpf	991016	
  52 */
  53
  54#include <linux/stdarg.h>
  55
  56#include <linux/delay.h>
  57#include <linux/init.h>
  58#include <linux/kernel.h>
  59#include <linux/module.h>
  60#include <linux/string.h>
  61#include <linux/spinlock.h>
  62
  63#include <asm/page.h>
  64#include <asm/pdc.h>
  65#include <asm/pdcpat.h>
  66#include <asm/processor.h>	/* for boot_cpu_data */
  67
  68#if defined(BOOTLOADER)
  69# undef  spin_lock_irqsave
  70# define spin_lock_irqsave(a, b) { b = 1; }
  71# undef  spin_unlock_irqrestore
  72# define spin_unlock_irqrestore(a, b)
  73#else
  74static DEFINE_SPINLOCK(pdc_lock);
  75#endif
  76
  77static unsigned long pdc_result[NUM_PDC_RESULT]  __aligned(8);
  78static unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8);
  79
  80#ifdef CONFIG_64BIT
  81#define WIDE_FIRMWARE		PDC_MODEL_OS64
  82#define NARROW_FIRMWARE		PDC_MODEL_OS32
  83
  84/* Firmware needs to be initially set to narrow to determine the
  85 * actual firmware width. */
  86int parisc_narrow_firmware __ro_after_init = NARROW_FIRMWARE;
  87#endif
  88
  89/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  90 * and MEM_PDC calls are always the same width as the OS.
  91 * Some PAT boxes may have 64-bit IODC I/O.
  92 *
  93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  95 * This allowed wide kernels to run on Cxxx boxes.
  96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  98 */
  99
 100#ifdef CONFIG_64BIT
 101long real64_call(unsigned long function, ...);
 102#endif
 103long real32_call(unsigned long function, ...);
 104
 105#ifdef CONFIG_64BIT
 106#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 107#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 108#else
 109#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 110#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 111#endif
 112
 113
 114/**
 115 * f_extend - Convert PDC addresses to kernel addresses.
 116 * @address: Address returned from PDC.
 117 *
 118 * This function is used to convert PDC addresses into kernel addresses
 119 * when the PDC address size and kernel address size are different.
 120 */
 121static unsigned long f_extend(unsigned long address)
 122{
 123#ifdef CONFIG_64BIT
 124	if(unlikely(parisc_narrow_firmware)) {
 125		if((address & 0xff000000) == 0xf0000000)
 126			return (0xfffffff0UL << 32) | (u32)address;
 127
 128		if((address & 0xf0000000) == 0xf0000000)
 129			return (0xffffffffUL << 32) | (u32)address;
 130	}
 131#endif
 132	return address;
 133}
 134
 135/**
 136 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 137 * @addr: The return buffer from PDC.
 138 *
 139 * This function is used to convert the return buffer addresses retrieved from PDC
 140 * into kernel addresses when the PDC address size and kernel address size are
 141 * different.
 142 */
 143static void convert_to_wide(unsigned long *addr)
 144{
 145#ifdef CONFIG_64BIT
 146	int i;
 147	unsigned int *p = (unsigned int *)addr;
 148
 149	if (unlikely(parisc_narrow_firmware)) {
 150		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 151			addr[i] = p[i];
 152	}
 153#endif
 154}
 155
 156#ifdef CONFIG_64BIT
 157void set_firmware_width_unlocked(void)
 158{
 159	int ret;
 160
 161	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 162		__pa(pdc_result), 0);
 163	if (ret < 0)
 164		return;
 165	convert_to_wide(pdc_result);
 166	if (pdc_result[0] != NARROW_FIRMWARE)
 167		parisc_narrow_firmware = 0;
 168}
 169
 170/**
 171 * set_firmware_width - Determine if the firmware is wide or narrow.
 172 *
 173 * This function must be called before any pdc_* function that uses the
 174 * convert_to_wide function.
 175 */
 176void set_firmware_width(void)
 177{
 178	unsigned long flags;
 179
 180	/* already initialized? */
 181	if (parisc_narrow_firmware != NARROW_FIRMWARE)
 182		return;
 183
 184	spin_lock_irqsave(&pdc_lock, flags);
 185	set_firmware_width_unlocked();
 186	spin_unlock_irqrestore(&pdc_lock, flags);
 187}
 188#else
 189void set_firmware_width_unlocked(void)
 190{
 191	return;
 192}
 193
 194void set_firmware_width(void)
 195{
 196	return;
 197}
 198#endif /*CONFIG_64BIT*/
 199
 200
 201#if !defined(BOOTLOADER)
 202/**
 203 * pdc_emergency_unlock - Unlock the linux pdc lock
 204 *
 205 * This call unlocks the linux pdc lock in case we need some PDC functions
 206 * (like pdc_add_valid) during kernel stack dump.
 207 */
 208void pdc_emergency_unlock(void)
 209{
 210 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 211        if (spin_is_locked(&pdc_lock))
 212		spin_unlock(&pdc_lock);
 213}
 214
 215
 216/**
 217 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 218 * @address: Address to be verified.
 219 *
 220 * This PDC call attempts to read from the specified address and verifies
 221 * if the address is valid.
 222 * 
 223 * The return value is PDC_OK (0) in case accessing this address is valid.
 224 */
 225int pdc_add_valid(unsigned long address)
 226{
 227        int retval;
 228	unsigned long flags;
 229
 230        spin_lock_irqsave(&pdc_lock, flags);
 231        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 232        spin_unlock_irqrestore(&pdc_lock, flags);
 233
 234        return retval;
 235}
 236EXPORT_SYMBOL(pdc_add_valid);
 237
 238/**
 239 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 240 * @instr: Pointer to variable which will get instruction opcode.
 241 *
 242 * The return value is PDC_OK (0) in case call succeeded.
 243 */
 244int __init pdc_instr(unsigned int *instr)
 245{
 246	int retval;
 247	unsigned long flags;
 248
 249	spin_lock_irqsave(&pdc_lock, flags);
 250	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 251	convert_to_wide(pdc_result);
 252	*instr = pdc_result[0];
 253	spin_unlock_irqrestore(&pdc_lock, flags);
 254
 255	return retval;
 256}
 257
 258/**
 259 * pdc_chassis_info - Return chassis information.
 
 260 * @chassis_info: The memory buffer address.
 261 * @led_info: The size of the memory buffer address.
 262 * @len: The size of the memory buffer address.
 263 *
 264 * An HVERSION dependent call for returning the chassis information.
 265 */
 266int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 267{
 268        int retval;
 269	unsigned long flags;
 270
 271        spin_lock_irqsave(&pdc_lock, flags);
 272        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 273        memcpy(&pdc_result2, led_info, len);
 274        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 275                              __pa(pdc_result), __pa(pdc_result2), len);
 276        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 277        memcpy(led_info, pdc_result2, len);
 278        spin_unlock_irqrestore(&pdc_lock, flags);
 279
 280        return retval;
 281}
 282
 283/**
 284 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 285 * @state: state of the machine
 286 * @data: value for that state
 287 * 
 288 * Must be correctly formatted or expect system crash
 289 */
 290#ifdef CONFIG_64BIT
 291int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 292{
 293	int retval = 0;
 294	unsigned long flags;
 295        
 296	if (!is_pdc_pat())
 297		return -1;
 298
 299	spin_lock_irqsave(&pdc_lock, flags);
 300	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 301	spin_unlock_irqrestore(&pdc_lock, flags);
 302
 303	return retval;
 304}
 305#endif
 306
 307/**
 308 * pdc_chassis_disp - Updates chassis code
 309 * @disp: value to show on display
 310 */
 311int pdc_chassis_disp(unsigned long disp)
 312{
 313	int retval = 0;
 314	unsigned long flags;
 315
 316	spin_lock_irqsave(&pdc_lock, flags);
 317	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 318	spin_unlock_irqrestore(&pdc_lock, flags);
 319
 320	return retval;
 321}
 322
 323/**
 324 * __pdc_cpu_rendezvous - Stop currently executing CPU and do not return.
 325 */
 326int __pdc_cpu_rendezvous(void)
 327{
 328	if (is_pdc_pat())
 329		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
 330	else
 331		return mem_pdc_call(PDC_PROC, 1, 0);
 332}
 333
 334/**
 335 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
 336 */
 337void pdc_cpu_rendezvous_lock(void) __acquires(&pdc_lock)
 338{
 339	spin_lock(&pdc_lock);
 340}
 341
 342/**
 343 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
 344 */
 345void pdc_cpu_rendezvous_unlock(void) __releases(&pdc_lock)
 346{
 347	spin_unlock(&pdc_lock);
 348}
 349
 350/**
 351 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
 352 * @pdc_entry: pointer to where the PDC entry point should be stored
 353 */
 354int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
 355{
 356	int retval = 0;
 357	unsigned long flags;
 358
 359	if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
 360		*pdc_entry = MEM_PDC;
 361		return 0;
 362	}
 363
 364	spin_lock_irqsave(&pdc_lock, flags);
 365	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
 366			__pa(pdc_result));
 367	*pdc_entry = pdc_result[0];
 368	spin_unlock_irqrestore(&pdc_lock, flags);
 369
 370	return retval;
 371}
 372/**
 373 * pdc_chassis_warn - Fetches chassis warnings
 374 * @warn: The warning value to be shown
 375 */
 376int pdc_chassis_warn(unsigned long *warn)
 377{
 378	int retval = 0;
 379	unsigned long flags;
 380
 381	spin_lock_irqsave(&pdc_lock, flags);
 382	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 383	*warn = pdc_result[0];
 384	spin_unlock_irqrestore(&pdc_lock, flags);
 385
 386	return retval;
 387}
 388
 389int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 390{
 391	int ret;
 392
 393	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 394	convert_to_wide(pdc_result);
 395	pdc_coproc_info->ccr_functional = pdc_result[0];
 396	pdc_coproc_info->ccr_present = pdc_result[1];
 397	pdc_coproc_info->revision = pdc_result[17];
 398	pdc_coproc_info->model = pdc_result[18];
 399
 400	return ret;
 401}
 402
 403/**
 404 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 405 * @pdc_coproc_info: Return buffer address.
 406 *
 407 * This PDC call returns the presence and status of all the coprocessors
 408 * attached to the processor.
 409 */
 410int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 411{
 412	int ret;
 413	unsigned long flags;
 414
 415	spin_lock_irqsave(&pdc_lock, flags);
 416	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 417	spin_unlock_irqrestore(&pdc_lock, flags);
 418
 419	return ret;
 420}
 421
 422/**
 423 * pdc_iodc_read - Read data from the modules IODC.
 424 * @actcnt: The actual number of bytes.
 425 * @hpa: The HPA of the module for the iodc read.
 426 * @index: The iodc entry point.
 427 * @iodc_data: A buffer memory for the iodc options.
 428 * @iodc_data_size: Size of the memory buffer.
 429 *
 430 * This PDC call reads from the IODC of the module specified by the hpa
 431 * argument.
 432 */
 433int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 434		  void *iodc_data, unsigned int iodc_data_size)
 435{
 436	int retval;
 437	unsigned long flags;
 438
 439	spin_lock_irqsave(&pdc_lock, flags);
 440	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 441			      index, __pa(pdc_result2), iodc_data_size);
 442	convert_to_wide(pdc_result);
 443	*actcnt = pdc_result[0];
 444	memcpy(iodc_data, pdc_result2, iodc_data_size);
 445	spin_unlock_irqrestore(&pdc_lock, flags);
 446
 447	return retval;
 448}
 449EXPORT_SYMBOL(pdc_iodc_read);
 450
 451/**
 452 * pdc_system_map_find_mods - Locate unarchitected modules.
 453 * @pdc_mod_info: Return buffer address.
 454 * @mod_path: pointer to dev path structure.
 455 * @mod_index: fixed address module index.
 456 *
 457 * To locate and identify modules which reside at fixed I/O addresses, which
 458 * do not self-identify via architected bus walks.
 459 */
 460int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 461			     struct pdc_module_path *mod_path, long mod_index)
 462{
 463	int retval;
 464	unsigned long flags;
 465
 466	spin_lock_irqsave(&pdc_lock, flags);
 467	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 468			      __pa(pdc_result2), mod_index);
 469	convert_to_wide(pdc_result);
 470	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 471	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 472	spin_unlock_irqrestore(&pdc_lock, flags);
 473
 474	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 475	return retval;
 476}
 477
 478/**
 479 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 480 * @pdc_addr_info: Return buffer address.
 481 * @mod_index: Fixed address module index.
 482 * @addr_index: Address range index.
 483 * 
 484 * Retrieve additional information about subsequent address ranges for modules
 485 * with multiple address ranges.  
 486 */
 487int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 488			      long mod_index, long addr_index)
 489{
 490	int retval;
 491	unsigned long flags;
 492
 493	spin_lock_irqsave(&pdc_lock, flags);
 494	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 495			      mod_index, addr_index);
 496	convert_to_wide(pdc_result);
 497	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 498	spin_unlock_irqrestore(&pdc_lock, flags);
 499
 500	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 501	return retval;
 502}
 503
 504/**
 505 * pdc_model_info - Return model information about the processor.
 506 * @model: The return buffer.
 507 *
 508 * Returns the version numbers, identifiers, and capabilities from the processor module.
 509 */
 510int pdc_model_info(struct pdc_model *model) 
 511{
 512	int retval;
 513	unsigned long flags;
 514
 515	spin_lock_irqsave(&pdc_lock, flags);
 516	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 517	convert_to_wide(pdc_result);
 518	memcpy(model, pdc_result, sizeof(*model));
 519	spin_unlock_irqrestore(&pdc_lock, flags);
 520
 521	return retval;
 522}
 523
 524/**
 525 * pdc_model_sysmodel - Get the system model name.
 526 * @os_id: The operating system ID asked for (an OS_ID_* value)
 527 * @name: A char array of at least 81 characters.
 528 *
 529 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 530 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 531 * on HP/UX.
 532 */
 533int pdc_model_sysmodel(unsigned int os_id, char *name)
 534{
 535        int retval;
 536	unsigned long flags;
 537
 538        spin_lock_irqsave(&pdc_lock, flags);
 539        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 540                              os_id, __pa(name));
 541        convert_to_wide(pdc_result);
 542
 543        if (retval == PDC_OK) {
 544                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 545        } else {
 546                name[0] = 0;
 547        }
 548        spin_unlock_irqrestore(&pdc_lock, flags);
 549
 550        return retval;
 551}
 552
 553/**
 554 * pdc_model_versions - Identify the version number of each processor.
 555 * @versions: The return buffer.
 556 * @id: The id of the processor to check.
 557 *
 558 * Returns the version number for each processor component.
 559 *
 560 * This comment was here before, but I do not know what it means :( -RB
 561 * id: 0 = cpu revision, 1 = boot-rom-version
 562 */
 563int pdc_model_versions(unsigned long *versions, int id)
 564{
 565        int retval;
 566	unsigned long flags;
 567
 568        spin_lock_irqsave(&pdc_lock, flags);
 569        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 570        convert_to_wide(pdc_result);
 571        *versions = pdc_result[0];
 572        spin_unlock_irqrestore(&pdc_lock, flags);
 573
 574        return retval;
 575}
 576
 577/**
 578 * pdc_model_cpuid - Returns the CPU_ID.
 579 * @cpu_id: The return buffer.
 580 *
 581 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 582 * the processor module.
 583 */
 584int pdc_model_cpuid(unsigned long *cpu_id)
 585{
 586        int retval;
 587	unsigned long flags;
 588
 589        spin_lock_irqsave(&pdc_lock, flags);
 590        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 591        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 592        convert_to_wide(pdc_result);
 593        *cpu_id = pdc_result[0];
 594        spin_unlock_irqrestore(&pdc_lock, flags);
 595
 596        return retval;
 597}
 598
 599/**
 600 * pdc_model_capabilities - Returns the platform capabilities.
 601 * @capabilities: The return buffer.
 602 *
 603 * Returns information about platform support for 32- and/or 64-bit
 604 * OSes, IO-PDIR coherency, and virtual aliasing.
 605 */
 606int pdc_model_capabilities(unsigned long *capabilities)
 607{
 608        int retval;
 609	unsigned long flags;
 610
 611        spin_lock_irqsave(&pdc_lock, flags);
 612        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 613        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 614        convert_to_wide(pdc_result);
 615        if (retval == PDC_OK) {
 616                *capabilities = pdc_result[0];
 617        } else {
 618                *capabilities = PDC_MODEL_OS32;
 619        }
 620        spin_unlock_irqrestore(&pdc_lock, flags);
 621
 622        return retval;
 623}
 624
 625/**
 626 * pdc_model_platform_info - Returns machine product and serial number.
 627 * @orig_prod_num: Return buffer for original product number.
 628 * @current_prod_num: Return buffer for current product number.
 629 * @serial_no: Return buffer for serial number.
 630 *
 631 * Returns strings containing the original and current product numbers and the
 632 * serial number of the system.
 633 */
 634int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
 635		char *serial_no)
 636{
 637	int retval;
 638	unsigned long flags;
 639
 640	spin_lock_irqsave(&pdc_lock, flags);
 641	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
 642		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
 643	convert_to_wide(pdc_result);
 644	spin_unlock_irqrestore(&pdc_lock, flags);
 645
 646	return retval;
 647}
 648
 649/**
 650 * pdc_cache_info - Return cache and TLB information.
 651 * @cache_info: The return buffer.
 652 *
 653 * Returns information about the processor's cache and TLB.
 654 */
 655int pdc_cache_info(struct pdc_cache_info *cache_info)
 656{
 657        int retval;
 658	unsigned long flags;
 659
 660        spin_lock_irqsave(&pdc_lock, flags);
 661        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 662        convert_to_wide(pdc_result);
 663        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 664        spin_unlock_irqrestore(&pdc_lock, flags);
 665
 666        return retval;
 667}
 668
 669/**
 670 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 671 * @space_bits: Should be 0, if not, bad mojo!
 672 *
 673 * Returns information about Space ID hashing.
 674 */
 675int pdc_spaceid_bits(unsigned long *space_bits)
 676{
 677	int retval;
 678	unsigned long flags;
 679
 680	spin_lock_irqsave(&pdc_lock, flags);
 681	pdc_result[0] = 0;
 682	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 683	convert_to_wide(pdc_result);
 684	*space_bits = pdc_result[0];
 685	spin_unlock_irqrestore(&pdc_lock, flags);
 686
 687	return retval;
 688}
 689
 
 690/**
 691 * pdc_btlb_info - Return block TLB information.
 692 * @btlb: The return buffer.
 693 *
 694 * Returns information about the hardware Block TLB.
 695 */
 696int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 697{
 698	int retval;
 699	unsigned long flags;
 700
 701	if (IS_ENABLED(CONFIG_PA20))
 702		return PDC_BAD_PROC;
 
 
 703
 704	spin_lock_irqsave(&pdc_lock, flags);
 705	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 706	memcpy(btlb, pdc_result, sizeof(*btlb));
 707	spin_unlock_irqrestore(&pdc_lock, flags);
 708
 709	if(retval < 0) {
 710		btlb->max_size = 0;
 711	}
 712	return retval;
 713}
 714
 715int pdc_btlb_insert(unsigned long long vpage, unsigned long physpage, unsigned long len,
 716		    unsigned long entry_info, unsigned long slot)
 717{
 718	int retval;
 719	unsigned long flags;
 720
 721	if (IS_ENABLED(CONFIG_PA20))
 722		return PDC_BAD_PROC;
 723
 724	spin_lock_irqsave(&pdc_lock, flags);
 725	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INSERT, (unsigned long) (vpage >> 32),
 726			      (unsigned long) vpage, physpage, len, entry_info, slot);
 727	spin_unlock_irqrestore(&pdc_lock, flags);
 728	return retval;
 729}
 730
 731int pdc_btlb_purge_all(void)
 732{
 733	int retval;
 734	unsigned long flags;
 735
 736	if (IS_ENABLED(CONFIG_PA20))
 737		return PDC_BAD_PROC;
 738
 739	spin_lock_irqsave(&pdc_lock, flags);
 740	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_PURGE_ALL);
 741	spin_unlock_irqrestore(&pdc_lock, flags);
 742	return retval;
 743}
 744
 745/**
 746 * pdc_mem_map_hpa - Find fixed module information.  
 747 * @address: The return buffer
 748 * @mod_path: pointer to dev path structure.
 749 *
 750 * This call was developed for S700 workstations to allow the kernel to find
 751 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 752 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 753 * call.
 754 *
 755 * This call is supported by all existing S700 workstations (up to  Gecko).
 756 */
 757int pdc_mem_map_hpa(struct pdc_memory_map *address,
 758		struct pdc_module_path *mod_path)
 759{
 760        int retval;
 761	unsigned long flags;
 762
 763	if (IS_ENABLED(CONFIG_PA20))
 764		return PDC_BAD_PROC;
 765
 766        spin_lock_irqsave(&pdc_lock, flags);
 767        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 768        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 769				__pa(pdc_result2));
 770        memcpy(address, pdc_result, sizeof(*address));
 771        spin_unlock_irqrestore(&pdc_lock, flags);
 772
 773        return retval;
 774}
 
 775
 776/**
 777 * pdc_lan_station_id - Get the LAN address.
 778 * @lan_addr: The return buffer.
 779 * @hpa: The network device HPA.
 780 *
 781 * Get the LAN station address when it is not directly available from the LAN hardware.
 782 */
 783int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 784{
 785	int retval;
 786	unsigned long flags;
 787
 788	spin_lock_irqsave(&pdc_lock, flags);
 789	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 790			__pa(pdc_result), hpa);
 791	if (retval < 0) {
 792		/* FIXME: else read MAC from NVRAM */
 793		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 794	} else {
 795		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 796	}
 797	spin_unlock_irqrestore(&pdc_lock, flags);
 798
 799	return retval;
 800}
 801EXPORT_SYMBOL(pdc_lan_station_id);
 802
 803/**
 804 * pdc_stable_read - Read data from Stable Storage.
 805 * @staddr: Stable Storage address to access.
 806 * @memaddr: The memory address where Stable Storage data shall be copied.
 807 * @count: number of bytes to transfer. count is multiple of 4.
 808 *
 809 * This PDC call reads from the Stable Storage address supplied in staddr
 810 * and copies count bytes to the memory address memaddr.
 811 * The call will fail if staddr+count > PDC_STABLE size.
 812 */
 813int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 814{
 815       int retval;
 816	unsigned long flags;
 817
 818       spin_lock_irqsave(&pdc_lock, flags);
 819       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 820               __pa(pdc_result), count);
 821       convert_to_wide(pdc_result);
 822       memcpy(memaddr, pdc_result, count);
 823       spin_unlock_irqrestore(&pdc_lock, flags);
 824
 825       return retval;
 826}
 827EXPORT_SYMBOL(pdc_stable_read);
 828
 829/**
 830 * pdc_stable_write - Write data to Stable Storage.
 831 * @staddr: Stable Storage address to access.
 832 * @memaddr: The memory address where Stable Storage data shall be read from.
 833 * @count: number of bytes to transfer. count is multiple of 4.
 834 *
 835 * This PDC call reads count bytes from the supplied memaddr address,
 836 * and copies count bytes to the Stable Storage address staddr.
 837 * The call will fail if staddr+count > PDC_STABLE size.
 838 */
 839int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 840{
 841       int retval;
 842	unsigned long flags;
 843
 844       spin_lock_irqsave(&pdc_lock, flags);
 845       memcpy(pdc_result, memaddr, count);
 846       convert_to_wide(pdc_result);
 847       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 848               __pa(pdc_result), count);
 849       spin_unlock_irqrestore(&pdc_lock, flags);
 850
 851       return retval;
 852}
 853EXPORT_SYMBOL(pdc_stable_write);
 854
 855/**
 856 * pdc_stable_get_size - Get Stable Storage size in bytes.
 857 * @size: pointer where the size will be stored.
 858 *
 859 * This PDC call returns the number of bytes in the processor's Stable
 860 * Storage, which is the number of contiguous bytes implemented in Stable
 861 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 862 * which is a multiple of four.
 863 */
 864int pdc_stable_get_size(unsigned long *size)
 865{
 866       int retval;
 867	unsigned long flags;
 868
 869       spin_lock_irqsave(&pdc_lock, flags);
 870       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 871       *size = pdc_result[0];
 872       spin_unlock_irqrestore(&pdc_lock, flags);
 873
 874       return retval;
 875}
 876EXPORT_SYMBOL(pdc_stable_get_size);
 877
 878/**
 879 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 880 *
 881 * This PDC call is meant to be used to check the integrity of the current
 882 * contents of Stable Storage.
 883 */
 884int pdc_stable_verify_contents(void)
 885{
 886       int retval;
 887	unsigned long flags;
 888
 889       spin_lock_irqsave(&pdc_lock, flags);
 890       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 891       spin_unlock_irqrestore(&pdc_lock, flags);
 892
 893       return retval;
 894}
 895EXPORT_SYMBOL(pdc_stable_verify_contents);
 896
 897/**
 898 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 899 * the validity indicator.
 900 *
 901 * This PDC call will erase all contents of Stable Storage. Use with care!
 902 */
 903int pdc_stable_initialize(void)
 904{
 905       int retval;
 906	unsigned long flags;
 907
 908       spin_lock_irqsave(&pdc_lock, flags);
 909       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 910       spin_unlock_irqrestore(&pdc_lock, flags);
 911
 912       return retval;
 913}
 914EXPORT_SYMBOL(pdc_stable_initialize);
 915
 916/**
 917 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 918 * @hwpath: fully bc.mod style path to the device.
 919 * @initiator: the array to return the result into
 920 *
 921 * Get the SCSI operational parameters from PDC.
 922 * Needed since HPUX never used BIOS or symbios card NVRAM.
 923 * Most ncr/sym cards won't have an entry and just use whatever
 924 * capabilities of the card are (eg Ultra, LVD). But there are
 925 * several cases where it's useful:
 926 *    o set SCSI id for Multi-initiator clusters,
 927 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 928 *    o bus width exported is less than what the interface chip supports.
 929 */
 930int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 931{
 932	int retval;
 933	unsigned long flags;
 934
 935	spin_lock_irqsave(&pdc_lock, flags);
 936
 937/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 938#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 939	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 940
 941	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 942			      __pa(pdc_result), __pa(hwpath));
 943	if (retval < PDC_OK)
 944		goto out;
 945
 946	if (pdc_result[0] < 16) {
 947		initiator->host_id = pdc_result[0];
 948	} else {
 949		initiator->host_id = -1;
 950	}
 951
 952	/*
 953	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 954	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 955	 */
 956	switch (pdc_result[1]) {
 957		case  1: initiator->factor = 50; break;
 958		case  2: initiator->factor = 25; break;
 959		case  5: initiator->factor = 12; break;
 960		case 25: initiator->factor = 10; break;
 961		case 20: initiator->factor = 12; break;
 962		case 40: initiator->factor = 10; break;
 963		default: initiator->factor = -1; break;
 964	}
 965
 966	if (IS_SPROCKETS()) {
 967		initiator->width = pdc_result[4];
 968		initiator->mode = pdc_result[5];
 969	} else {
 970		initiator->width = -1;
 971		initiator->mode = -1;
 972	}
 973
 974 out:
 975	spin_unlock_irqrestore(&pdc_lock, flags);
 976
 977	return (retval >= PDC_OK);
 978}
 979EXPORT_SYMBOL(pdc_get_initiator);
 980
 981
 982/**
 983 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 984 * @num_entries: The return value.
 985 * @hpa: The HPA for the device.
 986 *
 987 * This PDC function returns the number of entries in the specified cell's
 988 * interrupt table.
 989 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 990 */ 
 991int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 992{
 993	int retval;
 994	unsigned long flags;
 995
 996	spin_lock_irqsave(&pdc_lock, flags);
 997	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 998			      __pa(pdc_result), hpa);
 999	convert_to_wide(pdc_result);
1000	*num_entries = pdc_result[0];
1001	spin_unlock_irqrestore(&pdc_lock, flags);
1002
1003	return retval;
1004}
1005
1006/** 
1007 * pdc_pci_irt - Get the PCI interrupt routing table.
1008 * @num_entries: The number of entries in the table.
1009 * @hpa: The Hard Physical Address of the device.
1010 * @tbl: 
1011 *
1012 * Get the PCI interrupt routing table for the device at the given HPA.
1013 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
1014 */
1015int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
1016{
1017	int retval;
1018	unsigned long flags;
1019
1020	BUG_ON((unsigned long)tbl & 0x7);
1021
1022	spin_lock_irqsave(&pdc_lock, flags);
1023	pdc_result[0] = num_entries;
1024	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
1025			      __pa(pdc_result), hpa, __pa(tbl));
1026	spin_unlock_irqrestore(&pdc_lock, flags);
1027
1028	return retval;
1029}
1030
1031
1032#if 0	/* UNTEST CODE - left here in case someone needs it */
1033
1034/** 
1035 * pdc_pci_config_read - read PCI config space.
1036 * @hpa: Token from PDC to indicate which PCI device
1037 * @cfg_addr: Configuration space address to read from
1038 *
1039 * Read PCI Configuration space *before* linux PCI subsystem is running.
1040 */
1041unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
1042{
1043	int retval;
1044	unsigned long flags;
1045
1046	spin_lock_irqsave(&pdc_lock, flags);
1047	pdc_result[0] = 0;
1048	pdc_result[1] = 0;
1049	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
1050			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
1051	spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053	return retval ? ~0 : (unsigned int) pdc_result[0];
1054}
1055
1056
1057/** 
1058 * pdc_pci_config_write - read PCI config space.
1059 * @hpa: Token from PDC to indicate which PCI device
1060 * @cfg_addr: Configuration space address to write
1061 * @val: Value we want in the 32-bit register
1062 *
1063 * Write PCI Configuration space *before* linux PCI subsystem is running.
1064 */
1065void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
1066{
1067	int retval;
1068	unsigned long flags;
1069
1070	spin_lock_irqsave(&pdc_lock, flags);
1071	pdc_result[0] = 0;
1072	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
1073			      __pa(pdc_result), hpa,
1074			      cfg_addr&~3UL, 4UL, (unsigned long) val);
1075	spin_unlock_irqrestore(&pdc_lock, flags);
1076
1077	return retval;
1078}
1079#endif /* UNTESTED CODE */
1080
1081/**
1082 * pdc_tod_read - Read the Time-Of-Day clock.
1083 * @tod: The return buffer:
1084 *
1085 * Read the Time-Of-Day clock
1086 */
1087int pdc_tod_read(struct pdc_tod *tod)
1088{
1089        int retval;
1090	unsigned long flags;
1091
1092        spin_lock_irqsave(&pdc_lock, flags);
1093        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1094        convert_to_wide(pdc_result);
1095        memcpy(tod, pdc_result, sizeof(*tod));
1096        spin_unlock_irqrestore(&pdc_lock, flags);
1097
1098        return retval;
1099}
1100EXPORT_SYMBOL(pdc_tod_read);
1101
1102int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1103{
1104	int retval;
1105	unsigned long flags;
1106
1107	spin_lock_irqsave(&pdc_lock, flags);
1108	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1109	convert_to_wide(pdc_result);
1110	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1111	spin_unlock_irqrestore(&pdc_lock, flags);
1112
1113	return retval;
1114}
1115
1116int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1117		unsigned long *pdt_entries_ptr)
1118{
1119	int retval;
1120	unsigned long flags;
1121
1122	spin_lock_irqsave(&pdc_lock, flags);
1123	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1124			__pa(pdt_entries_ptr));
1125	if (retval == PDC_OK) {
1126		convert_to_wide(pdc_result);
1127		memcpy(pret, pdc_result, sizeof(*pret));
1128	}
1129	spin_unlock_irqrestore(&pdc_lock, flags);
1130
1131#ifdef CONFIG_64BIT
1132	/*
1133	 * 64-bit kernels should not call this PDT function in narrow mode.
1134	 * The pdt_entries_ptr array above will now contain 32-bit values
1135	 */
1136	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1137		return PDC_ERROR;
1138#endif
1139
1140	return retval;
1141}
1142
1143/**
1144 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1145 * @ret: pointer to return buffer
1146 */
1147int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1148{
1149	int retval;
1150	unsigned long flags;
1151
1152	spin_lock_irqsave(&pdc_lock, flags);
1153	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1154			      __pa(ret), sizeof(*ret));
1155	spin_unlock_irqrestore(&pdc_lock, flags);
1156	return retval;
1157}
1158
1159/**
1160 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1161 * @ret: pointer to return buffer
1162 */
1163int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1164{
1165	int retval;
1166	unsigned long flags;
1167
1168	spin_lock_irqsave(&pdc_lock, flags);
1169	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1170			      __pa(ret), sizeof(*ret));
1171	spin_unlock_irqrestore(&pdc_lock, flags);
1172	return retval;
1173}
1174
1175/**
1176 * pdc_tod_set - Set the Time-Of-Day clock.
1177 * @sec: The number of seconds since epoch.
1178 * @usec: The number of micro seconds.
1179 *
1180 * Set the Time-Of-Day clock.
1181 */ 
1182int pdc_tod_set(unsigned long sec, unsigned long usec)
1183{
1184        int retval;
1185	unsigned long flags;
1186
1187        spin_lock_irqsave(&pdc_lock, flags);
1188        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1189        spin_unlock_irqrestore(&pdc_lock, flags);
1190
1191        return retval;
1192}
1193EXPORT_SYMBOL(pdc_tod_set);
1194
1195#ifdef CONFIG_64BIT
1196int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1197		struct pdc_memory_table *tbl, unsigned long entries)
1198{
1199	int retval;
1200	unsigned long flags;
1201
1202	spin_lock_irqsave(&pdc_lock, flags);
1203	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1204	convert_to_wide(pdc_result);
1205	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1206	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1207	spin_unlock_irqrestore(&pdc_lock, flags);
1208
1209	return retval;
1210}
1211#endif /* CONFIG_64BIT */
1212
1213/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1214 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1215 * it later. :)
1216 */
1217int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1218{
1219        int retval;
1220	unsigned long flags;
1221
1222        spin_lock_irqsave(&pdc_lock, flags);
1223        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1224                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1225        spin_unlock_irqrestore(&pdc_lock, flags);
1226
1227        return retval;
1228}
1229
1230/*
1231 * pdc_do_reset - Reset the system.
1232 *
1233 * Reset the system.
1234 */
1235int pdc_do_reset(void)
1236{
1237        int retval;
1238	unsigned long flags;
1239
1240        spin_lock_irqsave(&pdc_lock, flags);
1241        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1242        spin_unlock_irqrestore(&pdc_lock, flags);
1243
1244        return retval;
1245}
1246
1247/*
1248 * pdc_soft_power_info - Enable soft power switch.
1249 * @power_reg: address of soft power register
1250 *
1251 * Return the absolute address of the soft power switch register
1252 */
1253int __init pdc_soft_power_info(unsigned long *power_reg)
1254{
1255	int retval;
1256	unsigned long flags;
1257
1258	*power_reg = (unsigned long) (-1);
1259	
1260	spin_lock_irqsave(&pdc_lock, flags);
1261	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1262	if (retval == PDC_OK) {
1263                convert_to_wide(pdc_result);
1264                *power_reg = f_extend(pdc_result[0]);
1265	}
1266	spin_unlock_irqrestore(&pdc_lock, flags);
1267
1268	return retval;
1269}
1270
1271/*
1272 * pdc_soft_power_button{_panic} - Control the soft power button behaviour
1273 * @sw_control: 0 for hardware control, 1 for software control
1274 *
1275 *
1276 * This PDC function places the soft power button under software or
1277 * hardware control.
1278 * Under software control the OS may control to when to allow to shut
1279 * down the system. Under hardware control pressing the power button
1280 * powers off the system immediately.
1281 *
1282 * The _panic version relies on spin_trylock to prevent deadlock
1283 * on panic path.
1284 */
1285int pdc_soft_power_button(int sw_control)
1286{
1287	int retval;
1288	unsigned long flags;
1289
1290	spin_lock_irqsave(&pdc_lock, flags);
1291	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1292	spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294	return retval;
1295}
1296
1297int pdc_soft_power_button_panic(int sw_control)
1298{
1299	int retval;
1300	unsigned long flags;
1301
1302	if (!spin_trylock_irqsave(&pdc_lock, flags)) {
1303		pr_emerg("Couldn't enable soft power button\n");
1304		return -EBUSY; /* ignored by the panic notifier */
1305	}
1306
1307	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1308	spin_unlock_irqrestore(&pdc_lock, flags);
1309
1310	return retval;
1311}
1312
1313/*
1314 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1315 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1316 * who knows what other platform firmware might do with this OS "hook".
1317 */
1318void pdc_io_reset(void)
1319{
1320	unsigned long flags;
1321
1322	spin_lock_irqsave(&pdc_lock, flags);
1323	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1324	spin_unlock_irqrestore(&pdc_lock, flags);
1325}
1326
1327/*
1328 * pdc_io_reset_devices - Hack to Stop USB controller
1329 *
1330 * If PDC used the usb controller, the usb controller
1331 * is still running and will crash the machines during iommu 
1332 * setup, because of still running DMA. This PDC call
1333 * stops the USB controller.
1334 * Normally called after calling pdc_io_reset().
1335 */
1336void pdc_io_reset_devices(void)
1337{
1338	unsigned long flags;
1339
1340	spin_lock_irqsave(&pdc_lock, flags);
1341	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1342	spin_unlock_irqrestore(&pdc_lock, flags);
1343}
1344
1345#endif /* defined(BOOTLOADER) */
1346
1347/* locked by pdc_lock */
1348static char iodc_dbuf[4096] __page_aligned_bss;
1349
1350/**
1351 * pdc_iodc_print - Console print using IODC.
1352 * @str: the string to output.
1353 * @count: length of str
1354 *
1355 * Note that only these special chars are architected for console IODC io:
1356 * BEL, BS, CR, and LF. Others are passed through.
1357 * Since the HP console requires CR+LF to perform a 'newline', we translate
1358 * "\n" to "\r\n".
1359 */
1360int pdc_iodc_print(const unsigned char *str, unsigned count)
1361{
1362	unsigned int i, found = 0;
1363	unsigned long flags;
1364
1365	count = min_t(unsigned int, count, sizeof(iodc_dbuf));
1366
1367	spin_lock_irqsave(&pdc_lock, flags);
1368	for (i = 0; i < count;) {
1369		switch(str[i]) {
1370		case '\n':
1371			iodc_dbuf[i+0] = '\r';
1372			iodc_dbuf[i+1] = '\n';
1373			i += 2;
1374			found = 1;
1375			goto print;
1376		default:
1377			iodc_dbuf[i] = str[i];
1378			i++;
1379			break;
1380		}
1381	}
1382
1383print:
1384	real32_call(PAGE0->mem_cons.iodc_io,
1385		(unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1386		PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1387		__pa(pdc_result), 0, __pa(iodc_dbuf), i, 0);
1388	spin_unlock_irqrestore(&pdc_lock, flags);
 
1389
1390	return i - found;
1391}
1392
1393#if !defined(BOOTLOADER)
1394/**
1395 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1396 *
1397 * Read a character (non-blocking) from the PDC console, returns -1 if
1398 * key is not present.
1399 */
1400int pdc_iodc_getc(void)
1401{
1402	int ch;
1403	int status;
1404	unsigned long flags;
1405
1406	/* Bail if no console input device. */
1407	if (!PAGE0->mem_kbd.iodc_io)
1408		return 0;
1409	
1410	/* wait for a keyboard (rs232)-input */
1411	spin_lock_irqsave(&pdc_lock, flags);
1412	real32_call(PAGE0->mem_kbd.iodc_io,
1413		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1414		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1415		    __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0);
1416
1417	ch = *iodc_dbuf;
1418	/* like convert_to_wide() but for first return value only: */
1419	status = *(int *)&pdc_result;
1420	spin_unlock_irqrestore(&pdc_lock, flags);
1421
1422	if (status == 0)
1423	    return -1;
1424	
1425	return ch;
1426}
1427
1428int pdc_sti_call(unsigned long func, unsigned long flags,
1429		unsigned long inptr, unsigned long outputr,
1430		unsigned long glob_cfg, int do_call64)
1431{
1432	int retval = 0;
1433	unsigned long irqflags;
1434
1435	spin_lock_irqsave(&pdc_lock, irqflags);
1436	if (IS_ENABLED(CONFIG_64BIT) && do_call64) {
1437#ifdef CONFIG_64BIT
1438		retval = real64_call(func, flags, inptr, outputr, glob_cfg);
1439#else
1440		WARN_ON(1);
1441#endif
1442	} else {
1443		retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1444	}
1445	spin_unlock_irqrestore(&pdc_lock, irqflags);
1446
1447	return retval;
1448}
1449EXPORT_SYMBOL(pdc_sti_call);
1450
1451#ifdef CONFIG_64BIT
1452/**
1453 * pdc_pat_cell_get_number - Returns the cell number.
1454 * @cell_info: The return buffer.
1455 *
1456 * This PDC call returns the cell number of the cell from which the call
1457 * is made.
1458 */
1459int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1460{
1461	int retval;
1462	unsigned long flags;
1463
1464	spin_lock_irqsave(&pdc_lock, flags);
1465	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1466	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1467	spin_unlock_irqrestore(&pdc_lock, flags);
1468
1469	return retval;
1470}
1471
1472/**
1473 * pdc_pat_cell_module - Retrieve the cell's module information.
1474 * @actcnt: The number of bytes written to mem_addr.
1475 * @ploc: The physical location.
1476 * @mod: The module index.
1477 * @view_type: The view of the address type.
1478 * @mem_addr: The return buffer.
1479 *
1480 * This PDC call returns information about each module attached to the cell
1481 * at the specified location.
1482 */
1483int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1484			unsigned long view_type, void *mem_addr)
1485{
1486	int retval;
1487	unsigned long flags;
1488	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1489
1490	spin_lock_irqsave(&pdc_lock, flags);
1491	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1492			      ploc, mod, view_type, __pa(&result));
1493	if(!retval) {
1494		*actcnt = pdc_result[0];
1495		memcpy(mem_addr, &result, *actcnt);
1496	}
1497	spin_unlock_irqrestore(&pdc_lock, flags);
1498
1499	return retval;
1500}
1501
1502/**
1503 * pdc_pat_cell_info - Retrieve the cell's information.
1504 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1505 * @actcnt: The number of bytes which should be written to info.
1506 * @offset: offset of the structure.
1507 * @cell_number: The cell number which should be asked, or -1 for current cell.
1508 *
1509 * This PDC call returns information about the given cell (or all cells).
1510 */
1511int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1512		unsigned long *actcnt, unsigned long offset,
1513		unsigned long cell_number)
1514{
1515	int retval;
1516	unsigned long flags;
1517	struct pdc_pat_cell_info_rtn_block result;
1518
1519	spin_lock_irqsave(&pdc_lock, flags);
1520	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1521			__pa(pdc_result), __pa(&result), *actcnt,
1522			offset, cell_number);
1523	if (!retval) {
1524		*actcnt = pdc_result[0];
1525		memcpy(info, &result, *actcnt);
1526	}
1527	spin_unlock_irqrestore(&pdc_lock, flags);
1528
1529	return retval;
1530}
1531
1532/**
1533 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1534 * @cpu_info: The return buffer.
1535 * @hpa: The Hard Physical Address of the CPU.
1536 *
1537 * Retrieve the cpu number for the cpu at the specified HPA.
1538 */
1539int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1540{
1541	int retval;
1542	unsigned long flags;
1543
1544	spin_lock_irqsave(&pdc_lock, flags);
1545	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1546			      __pa(&pdc_result), hpa);
1547	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1548	spin_unlock_irqrestore(&pdc_lock, flags);
1549
1550	return retval;
1551}
1552
1553/**
1554 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1555 * @num_entries: The return value.
1556 * @cell_num: The target cell.
1557 *
1558 * This PDC function returns the number of entries in the specified cell's
1559 * interrupt table.
1560 */
1561int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1562{
1563	int retval;
1564	unsigned long flags;
1565
1566	spin_lock_irqsave(&pdc_lock, flags);
1567	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1568			      __pa(pdc_result), cell_num);
1569	*num_entries = pdc_result[0];
1570	spin_unlock_irqrestore(&pdc_lock, flags);
1571
1572	return retval;
1573}
1574
1575/**
1576 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1577 * @r_addr: The return buffer.
1578 * @cell_num: The target cell.
1579 *
1580 * This PDC function returns the actual interrupt table for the specified cell.
1581 */
1582int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1583{
1584	int retval;
1585	unsigned long flags;
1586
1587	spin_lock_irqsave(&pdc_lock, flags);
1588	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1589			      __pa(r_addr), cell_num);
1590	spin_unlock_irqrestore(&pdc_lock, flags);
1591
1592	return retval;
1593}
1594
1595/**
1596 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1597 * @actual_len: The return buffer.
1598 * @mem_addr: Pointer to the memory buffer.
1599 * @count: The number of bytes to read from the buffer.
1600 * @offset: The offset with respect to the beginning of the buffer.
1601 *
1602 */
1603int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1604			    unsigned long count, unsigned long offset)
1605{
1606	int retval;
1607	unsigned long flags;
1608
1609	spin_lock_irqsave(&pdc_lock, flags);
1610	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1611			      __pa(pdc_result2), count, offset);
1612	*actual_len = pdc_result[0];
1613	memcpy(mem_addr, pdc_result2, *actual_len);
1614	spin_unlock_irqrestore(&pdc_lock, flags);
1615
1616	return retval;
1617}
1618
1619/**
1620 * pdc_pat_pd_get_pdc_revisions - Retrieve PDC interface revisions.
1621 * @legacy_rev: The legacy revision.
1622 * @pat_rev: The PAT revision.
1623 * @pdc_cap: The PDC capabilities.
1624 *
1625 */
1626int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1627		unsigned long *pat_rev, unsigned long *pdc_cap)
1628{
1629	int retval;
1630	unsigned long flags;
1631
1632	spin_lock_irqsave(&pdc_lock, flags);
1633	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1634				__pa(pdc_result));
1635	if (retval == PDC_OK) {
1636		*legacy_rev = pdc_result[0];
1637		*pat_rev = pdc_result[1];
1638		*pdc_cap = pdc_result[2];
1639	}
1640	spin_unlock_irqrestore(&pdc_lock, flags);
1641
1642	return retval;
1643}
1644
1645
1646/**
1647 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1648 * @pci_addr: PCI configuration space address for which the read request is being made.
1649 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1650 * @mem_addr: Pointer to return memory buffer.
1651 *
1652 */
1653int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1654{
1655	int retval;
1656	unsigned long flags;
1657
1658	spin_lock_irqsave(&pdc_lock, flags);
1659	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1660					__pa(pdc_result), pci_addr, pci_size);
1661	switch(pci_size) {
1662		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1663		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1664		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1665	}
1666	spin_unlock_irqrestore(&pdc_lock, flags);
1667
1668	return retval;
1669}
1670
1671/**
1672 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1673 * @pci_addr: PCI configuration space address for which the write  request is being made.
1674 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1675 * @val: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1676 *         written to PCI Config space.
1677 *
1678 */
1679int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1680{
1681	int retval;
1682	unsigned long flags;
1683
1684	spin_lock_irqsave(&pdc_lock, flags);
1685	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1686				pci_addr, pci_size, val);
1687	spin_unlock_irqrestore(&pdc_lock, flags);
1688
1689	return retval;
1690}
1691
1692/**
1693 * pdc_pat_mem_pdt_info - Retrieve information about page deallocation table
1694 * @rinfo: memory pdt information
1695 *
1696 */
1697int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1698{
1699	int retval;
1700	unsigned long flags;
1701
1702	spin_lock_irqsave(&pdc_lock, flags);
1703	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1704			__pa(&pdc_result));
1705	if (retval == PDC_OK)
1706		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1707	spin_unlock_irqrestore(&pdc_lock, flags);
1708
1709	return retval;
1710}
1711
1712/**
1713 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1714 *				table of a cell
1715 * @rinfo: memory pdt information
1716 * @cell: cell number
1717 *
1718 */
1719int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1720		unsigned long cell)
1721{
1722	int retval;
1723	unsigned long flags;
1724
1725	spin_lock_irqsave(&pdc_lock, flags);
1726	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1727			__pa(&pdc_result), cell);
1728	if (retval == PDC_OK)
1729		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1730	spin_unlock_irqrestore(&pdc_lock, flags);
1731
1732	return retval;
1733}
1734
1735/**
1736 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1737 * @pret: array of PDT entries
1738 * @pdt_entries_ptr: ptr to hold number of PDT entries
1739 * @max_entries: maximum number of entries to be read
1740 *
1741 */
1742int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1743		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1744{
1745	int retval;
1746	unsigned long flags, entries;
1747
1748	spin_lock_irqsave(&pdc_lock, flags);
1749	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1750	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1751			__pa(&pdc_result), parisc_cell_num,
1752			__pa(pdt_entries_ptr));
1753
1754	if (retval == PDC_OK) {
1755		/* build up return value as for PDC_PAT_MEM_PD_READ */
1756		entries = min(pdc_result[0], max_entries);
1757		pret->pdt_entries = entries;
1758		pret->actual_count_bytes = entries * sizeof(unsigned long);
1759	}
1760
1761	spin_unlock_irqrestore(&pdc_lock, flags);
1762	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1763
1764	return retval;
1765}
1766/**
1767 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1768 * @pret: array of PDT entries
1769 * @pdt_entries_ptr: ptr to hold number of PDT entries
1770 * @count: number of bytes to read
1771 * @offset: offset to start (in bytes)
1772 *
1773 */
1774int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1775		unsigned long *pdt_entries_ptr, unsigned long count,
1776		unsigned long offset)
1777{
1778	int retval;
1779	unsigned long flags, entries;
1780
1781	spin_lock_irqsave(&pdc_lock, flags);
1782	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1783		__pa(&pdc_result), __pa(pdt_entries_ptr),
1784		count, offset);
1785
1786	if (retval == PDC_OK) {
1787		entries = min(pdc_result[0], count);
1788		pret->actual_count_bytes = entries;
1789		pret->pdt_entries = entries / sizeof(unsigned long);
1790	}
1791
1792	spin_unlock_irqrestore(&pdc_lock, flags);
1793
1794	return retval;
1795}
1796
1797/**
1798 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1799 * @pret: ptr to hold returned information
1800 * @phys_addr: physical address to examine
1801 *
1802 */
1803int pdc_pat_mem_get_dimm_phys_location(
1804		struct pdc_pat_mem_phys_mem_location *pret,
1805		unsigned long phys_addr)
1806{
1807	int retval;
1808	unsigned long flags;
1809
1810	spin_lock_irqsave(&pdc_lock, flags);
1811	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1812		__pa(&pdc_result), phys_addr);
1813
1814	if (retval == PDC_OK)
1815		memcpy(pret, &pdc_result, sizeof(*pret));
1816
1817	spin_unlock_irqrestore(&pdc_lock, flags);
1818
1819	return retval;
1820}
1821#endif /* CONFIG_64BIT */
1822#endif /* defined(BOOTLOADER) */
1823
1824
1825/***************** 32-bit real-mode calls ***********/
1826/* The struct below is used
1827 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1828 * real32_call_asm() then uses this stack in narrow real mode
1829 */
1830
1831struct narrow_stack {
1832	/* use int, not long which is 64 bits */
1833	unsigned int arg13;
1834	unsigned int arg12;
1835	unsigned int arg11;
1836	unsigned int arg10;
1837	unsigned int arg9;
1838	unsigned int arg8;
1839	unsigned int arg7;
1840	unsigned int arg6;
1841	unsigned int arg5;
1842	unsigned int arg4;
1843	unsigned int arg3;
1844	unsigned int arg2;
1845	unsigned int arg1;
1846	unsigned int arg0;
1847	unsigned int frame_marker[8];
1848	unsigned int sp;
1849	/* in reality, there's nearly 8k of stack after this */
1850};
1851
1852long real32_call(unsigned long fn, ...)
1853{
1854	va_list args;
1855	extern struct narrow_stack real_stack;
1856	extern unsigned long real32_call_asm(unsigned int *,
1857					     unsigned int *, 
1858					     unsigned int);
1859	
1860	va_start(args, fn);
1861	real_stack.arg0 = va_arg(args, unsigned int);
1862	real_stack.arg1 = va_arg(args, unsigned int);
1863	real_stack.arg2 = va_arg(args, unsigned int);
1864	real_stack.arg3 = va_arg(args, unsigned int);
1865	real_stack.arg4 = va_arg(args, unsigned int);
1866	real_stack.arg5 = va_arg(args, unsigned int);
1867	real_stack.arg6 = va_arg(args, unsigned int);
1868	real_stack.arg7 = va_arg(args, unsigned int);
1869	real_stack.arg8 = va_arg(args, unsigned int);
1870	real_stack.arg9 = va_arg(args, unsigned int);
1871	real_stack.arg10 = va_arg(args, unsigned int);
1872	real_stack.arg11 = va_arg(args, unsigned int);
1873	real_stack.arg12 = va_arg(args, unsigned int);
1874	real_stack.arg13 = va_arg(args, unsigned int);
1875	va_end(args);
1876	
1877	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1878}
1879
1880#ifdef CONFIG_64BIT
1881/***************** 64-bit real-mode calls ***********/
1882
1883struct wide_stack {
1884	unsigned long arg0;
1885	unsigned long arg1;
1886	unsigned long arg2;
1887	unsigned long arg3;
1888	unsigned long arg4;
1889	unsigned long arg5;
1890	unsigned long arg6;
1891	unsigned long arg7;
1892	unsigned long arg8;
1893	unsigned long arg9;
1894	unsigned long arg10;
1895	unsigned long arg11;
1896	unsigned long arg12;
1897	unsigned long arg13;
1898	unsigned long frame_marker[2];	/* rp, previous sp */
1899	unsigned long sp;
1900	/* in reality, there's nearly 8k of stack after this */
1901};
1902
1903long real64_call(unsigned long fn, ...)
1904{
1905	va_list args;
1906	extern struct wide_stack real64_stack;
1907	extern unsigned long real64_call_asm(unsigned long *,
1908					     unsigned long *, 
1909					     unsigned long);
1910    
1911	va_start(args, fn);
1912	real64_stack.arg0 = va_arg(args, unsigned long);
1913	real64_stack.arg1 = va_arg(args, unsigned long);
1914	real64_stack.arg2 = va_arg(args, unsigned long);
1915	real64_stack.arg3 = va_arg(args, unsigned long);
1916	real64_stack.arg4 = va_arg(args, unsigned long);
1917	real64_stack.arg5 = va_arg(args, unsigned long);
1918	real64_stack.arg6 = va_arg(args, unsigned long);
1919	real64_stack.arg7 = va_arg(args, unsigned long);
1920	real64_stack.arg8 = va_arg(args, unsigned long);
1921	real64_stack.arg9 = va_arg(args, unsigned long);
1922	real64_stack.arg10 = va_arg(args, unsigned long);
1923	real64_stack.arg11 = va_arg(args, unsigned long);
1924	real64_stack.arg12 = va_arg(args, unsigned long);
1925	real64_stack.arg13 = va_arg(args, unsigned long);
1926	va_end(args);
1927	
1928	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1929}
1930
1931#endif /* CONFIG_64BIT */