Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * Memory Migration functionality - linux/mm/migration.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/memcontrol.h>
 
  34#include <linux/syscalls.h>
 
  35#include <linux/hugetlb.h>
  36#include <linux/hugetlb_cgroup.h>
  37#include <linux/gfp.h>
 
 
 
  38#include <linux/balloon_compaction.h>
  39#include <linux/mmu_notifier.h>
 
 
 
 
 
 
 
 
  40
  41#include <asm/tlbflush.h>
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/migrate.h>
  45
  46#include "internal.h"
  47
  48/*
  49 * migrate_prep() needs to be called before we start compiling a list of pages
  50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  51 * undesirable, use migrate_prep_local()
  52 */
  53int migrate_prep(void)
  54{
 
 
 
  55	/*
  56	 * Clear the LRU lists so pages can be isolated.
  57	 * Note that pages may be moved off the LRU after we have
  58	 * drained them. Those pages will fail to migrate like other
  59	 * pages that may be busy.
 
 
 
  60	 */
  61	lru_add_drain_all();
 
  62
  63	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64}
  65
  66/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  67int migrate_prep_local(void)
  68{
  69	lru_add_drain();
  70
  71	return 0;
 
  72}
  73
  74/*
  75 * Put previously isolated pages back onto the appropriate lists
  76 * from where they were once taken off for compaction/migration.
  77 *
  78 * This function shall be used whenever the isolated pageset has been
  79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
  80 * and isolate_huge_page().
  81 */
  82void putback_movable_pages(struct list_head *l)
  83{
  84	struct page *page;
  85	struct page *page2;
  86
  87	list_for_each_entry_safe(page, page2, l, lru) {
  88		if (unlikely(PageHuge(page))) {
  89			putback_active_hugepage(page);
  90			continue;
  91		}
  92		list_del(&page->lru);
  93		dec_zone_page_state(page, NR_ISOLATED_ANON +
  94				page_is_file_cache(page));
  95		if (unlikely(isolated_balloon_page(page)))
  96			balloon_page_putback(page);
  97		else
  98			putback_lru_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
  99	}
 100}
 101
 102/*
 103 * Restore a potential migration pte to a working pte entry
 104 */
 105static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
 106				 unsigned long addr, void *old)
 107{
 108	struct mm_struct *mm = vma->vm_mm;
 109	swp_entry_t entry;
 110 	pmd_t *pmd;
 111	pte_t *ptep, pte;
 112 	spinlock_t *ptl;
 113
 114	if (unlikely(PageHuge(new))) {
 115		ptep = huge_pte_offset(mm, addr);
 116		if (!ptep)
 117			goto out;
 118		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
 119	} else {
 120		pmd = mm_find_pmd(mm, addr);
 121		if (!pmd)
 122			goto out;
 123		if (pmd_trans_huge(*pmd))
 124			goto out;
 125
 126		ptep = pte_offset_map(pmd, addr);
 127
 128		/*
 129		 * Peek to check is_swap_pte() before taking ptlock?  No, we
 130		 * can race mremap's move_ptes(), which skips anon_vma lock.
 131		 */
 132
 133		ptl = pte_lockptr(mm, pmd);
 134	}
 135
 136 	spin_lock(ptl);
 137	pte = *ptep;
 138	if (!is_swap_pte(pte))
 139		goto unlock;
 140
 141	entry = pte_to_swp_entry(pte);
 142
 143	if (!is_migration_entry(entry) ||
 144	    migration_entry_to_page(entry) != old)
 145		goto unlock;
 146
 147	get_page(new);
 148	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
 149	if (pte_swp_soft_dirty(*ptep))
 150		pte = pte_mksoft_dirty(pte);
 151	if (is_write_migration_entry(entry))
 152		pte = pte_mkwrite(pte);
 153#ifdef CONFIG_HUGETLB_PAGE
 154	if (PageHuge(new)) {
 155		pte = pte_mkhuge(pte);
 156		pte = arch_make_huge_pte(pte, vma, new, 0);
 157	}
 158#endif
 159	flush_dcache_page(new);
 160	set_pte_at(mm, addr, ptep, pte);
 161
 162	if (PageHuge(new)) {
 163		if (PageAnon(new))
 164			hugepage_add_anon_rmap(new, vma, addr);
 
 
 
 
 
 
 
 
 165		else
 166			page_dup_rmap(new);
 167	} else if (PageAnon(new))
 168		page_add_anon_rmap(new, vma, addr);
 169	else
 170		page_add_file_rmap(new);
 171
 172	/* No need to invalidate - it was non-present before */
 173	update_mmu_cache(vma, addr, ptep);
 174unlock:
 175	pte_unmap_unlock(ptep, ptl);
 176out:
 177	return SWAP_AGAIN;
 178}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180/*
 181 * Congratulations to trinity for discovering this bug.
 182 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
 183 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
 184 * replace the specified range by file ptes throughout (maybe populated after).
 185 * If page migration finds a page within that range, while it's still located
 186 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
 187 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
 188 * But if the migrating page is in a part of the vma outside the range to be
 189 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
 190 * deal with it.  Fortunately, this part of the vma is of course still linear,
 191 * so we just need to use linear location on the nonlinear list.
 192 */
 193static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
 194		struct address_space *mapping, void *arg)
 195{
 196	struct vm_area_struct *vma;
 197	/* hugetlbfs does not support remap_pages, so no huge pgoff worries */
 198	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 199	unsigned long addr;
 
 
 
 
 
 
 200
 201	list_for_each_entry(vma,
 202		&mapping->i_mmap_nonlinear, shared.nonlinear) {
 203
 204		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 205		if (addr >= vma->vm_start && addr < vma->vm_end)
 206			remove_migration_pte(page, vma, addr, arg);
 207	}
 208	return SWAP_AGAIN;
 
 209}
 210
 211/*
 212 * Get rid of all migration entries and replace them by
 213 * references to the indicated page.
 214 */
 215static void remove_migration_ptes(struct page *old, struct page *new)
 216{
 217	struct rmap_walk_control rwc = {
 218		.rmap_one = remove_migration_pte,
 219		.arg = old,
 220		.file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
 221	};
 222
 223	rmap_walk(new, &rwc);
 
 
 
 224}
 225
 226/*
 227 * Something used the pte of a page under migration. We need to
 228 * get to the page and wait until migration is finished.
 229 * When we return from this function the fault will be retried.
 230 */
 231static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 232				spinlock_t *ptl)
 233{
 
 
 234	pte_t pte;
 235	swp_entry_t entry;
 236	struct page *page;
 237
 238	spin_lock(ptl);
 239	pte = *ptep;
 
 
 
 
 
 240	if (!is_swap_pte(pte))
 241		goto out;
 242
 243	entry = pte_to_swp_entry(pte);
 244	if (!is_migration_entry(entry))
 245		goto out;
 246
 247	page = migration_entry_to_page(entry);
 248
 249	/*
 250	 * Once radix-tree replacement of page migration started, page_count
 251	 * *must* be zero. And, we don't want to call wait_on_page_locked()
 252	 * against a page without get_page().
 253	 * So, we use get_page_unless_zero(), here. Even failed, page fault
 254	 * will occur again.
 255	 */
 256	if (!get_page_unless_zero(page))
 257		goto out;
 258	pte_unmap_unlock(ptep, ptl);
 259	wait_on_page_locked(page);
 260	put_page(page);
 261	return;
 262out:
 263	pte_unmap_unlock(ptep, ptl);
 264}
 265
 266void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 267				unsigned long address)
 
 
 
 
 
 
 268{
 269	spinlock_t *ptl = pte_lockptr(mm, pmd);
 270	pte_t *ptep = pte_offset_map(pmd, address);
 271	__migration_entry_wait(mm, ptep, ptl);
 272}
 273
 274void migration_entry_wait_huge(struct vm_area_struct *vma,
 275		struct mm_struct *mm, pte_t *pte)
 276{
 277	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 278	__migration_entry_wait(mm, pte, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 279}
 
 280
 281#ifdef CONFIG_BLOCK
 282/* Returns true if all buffers are successfully locked */
 283static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 284							enum migrate_mode mode)
 285{
 286	struct buffer_head *bh = head;
 287
 288	/* Simple case, sync compaction */
 289	if (mode != MIGRATE_ASYNC) {
 290		do {
 291			get_bh(bh);
 292			lock_buffer(bh);
 293			bh = bh->b_this_page;
 294
 295		} while (bh != head);
 
 
 
 
 
 
 
 
 296
 297		return true;
 298	}
 
 
 
 
 299
 300	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 301	do {
 302		get_bh(bh);
 303		if (!trylock_buffer(bh)) {
 304			/*
 305			 * We failed to lock the buffer and cannot stall in
 306			 * async migration. Release the taken locks
 307			 */
 308			struct buffer_head *failed_bh = bh;
 309			put_bh(failed_bh);
 310			bh = head;
 311			while (bh != failed_bh) {
 312				unlock_buffer(bh);
 313				put_bh(bh);
 314				bh = bh->b_this_page;
 315			}
 316			return false;
 317		}
 318
 319		bh = bh->b_this_page;
 320	} while (bh != head);
 321	return true;
 322}
 323#else
 324static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 325							enum migrate_mode mode)
 326{
 327	return true;
 328}
 329#endif /* CONFIG_BLOCK */
 330
 331/*
 332 * Replace the page in the mapping.
 333 *
 334 * The number of remaining references must be:
 335 * 1 for anonymous pages without a mapping
 336 * 2 for pages with a mapping
 337 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 338 */
 339int migrate_page_move_mapping(struct address_space *mapping,
 340		struct page *newpage, struct page *page,
 341		struct buffer_head *head, enum migrate_mode mode,
 342		int extra_count)
 343{
 344	int expected_count = 1 + extra_count;
 345	void **pslot;
 
 
 
 
 346
 347	if (!mapping) {
 348		/* Anonymous page without mapping */
 349		if (page_count(page) != expected_count)
 350			return -EAGAIN;
 351		return MIGRATEPAGE_SUCCESS;
 352	}
 353
 354	spin_lock_irq(&mapping->tree_lock);
 
 
 
 
 355
 356	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 357 					page_index(page));
 358
 359	expected_count += 1 + page_has_private(page);
 360	if (page_count(page) != expected_count ||
 361		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 362		spin_unlock_irq(&mapping->tree_lock);
 363		return -EAGAIN;
 364	}
 365
 366	if (!page_freeze_refs(page, expected_count)) {
 367		spin_unlock_irq(&mapping->tree_lock);
 368		return -EAGAIN;
 369	}
 370
 371	/*
 372	 * In the async migration case of moving a page with buffers, lock the
 373	 * buffers using trylock before the mapping is moved. If the mapping
 374	 * was moved, we later failed to lock the buffers and could not move
 375	 * the mapping back due to an elevated page count, we would have to
 376	 * block waiting on other references to be dropped.
 377	 */
 378	if (mode == MIGRATE_ASYNC && head &&
 379			!buffer_migrate_lock_buffers(head, mode)) {
 380		page_unfreeze_refs(page, expected_count);
 381		spin_unlock_irq(&mapping->tree_lock);
 382		return -EAGAIN;
 383	}
 384
 385	/*
 386	 * Now we know that no one else is looking at the page.
 
 387	 */
 388	get_page(newpage);	/* add cache reference */
 389	if (PageSwapCache(page)) {
 390		SetPageSwapCache(newpage);
 391		set_page_private(newpage, page_private(page));
 
 
 
 
 
 
 
 
 
 392	}
 393
 394	radix_tree_replace_slot(pslot, newpage);
 
 
 
 
 
 
 
 
 
 
 
 395
 396	/*
 397	 * Drop cache reference from old page by unfreezing
 398	 * to one less reference.
 399	 * We know this isn't the last reference.
 400	 */
 401	page_unfreeze_refs(page, expected_count - 1);
 
 
 
 402
 403	/*
 404	 * If moved to a different zone then also account
 405	 * the page for that zone. Other VM counters will be
 406	 * taken care of when we establish references to the
 407	 * new page and drop references to the old page.
 408	 *
 409	 * Note that anonymous pages are accounted for
 410	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
 411	 * are mapped to swap space.
 412	 */
 413	__dec_zone_page_state(page, NR_FILE_PAGES);
 414	__inc_zone_page_state(newpage, NR_FILE_PAGES);
 415	if (!PageSwapCache(page) && PageSwapBacked(page)) {
 416		__dec_zone_page_state(page, NR_SHMEM);
 417		__inc_zone_page_state(newpage, NR_SHMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 418	}
 419	spin_unlock_irq(&mapping->tree_lock);
 420
 421	return MIGRATEPAGE_SUCCESS;
 422}
 
 423
 424/*
 425 * The expected number of remaining references is the same as that
 426 * of migrate_page_move_mapping().
 427 */
 428int migrate_huge_page_move_mapping(struct address_space *mapping,
 429				   struct page *newpage, struct page *page)
 430{
 
 431	int expected_count;
 432	void **pslot;
 433
 434	if (!mapping) {
 435		if (page_count(page) != 1)
 436			return -EAGAIN;
 437		return MIGRATEPAGE_SUCCESS;
 438	}
 439
 440	spin_lock_irq(&mapping->tree_lock);
 441
 442	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 443					page_index(page));
 444
 445	expected_count = 2 + page_has_private(page);
 446	if (page_count(page) != expected_count ||
 447		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 448		spin_unlock_irq(&mapping->tree_lock);
 449		return -EAGAIN;
 450	}
 451
 452	if (!page_freeze_refs(page, expected_count)) {
 453		spin_unlock_irq(&mapping->tree_lock);
 454		return -EAGAIN;
 455	}
 456
 457	get_page(newpage);
 458
 459	radix_tree_replace_slot(pslot, newpage);
 460
 461	page_unfreeze_refs(page, expected_count - 1);
 462
 463	spin_unlock_irq(&mapping->tree_lock);
 464	return MIGRATEPAGE_SUCCESS;
 465}
 466
 467/*
 468 * Gigantic pages are so large that we do not guarantee that page++ pointer
 469 * arithmetic will work across the entire page.  We need something more
 470 * specialized.
 471 */
 472static void __copy_gigantic_page(struct page *dst, struct page *src,
 473				int nr_pages)
 474{
 475	int i;
 476	struct page *dst_base = dst;
 477	struct page *src_base = src;
 478
 479	for (i = 0; i < nr_pages; ) {
 480		cond_resched();
 481		copy_highpage(dst, src);
 482
 483		i++;
 484		dst = mem_map_next(dst, dst_base, i);
 485		src = mem_map_next(src, src_base, i);
 486	}
 487}
 488
 489static void copy_huge_page(struct page *dst, struct page *src)
 490{
 491	int i;
 492	int nr_pages;
 493
 494	if (PageHuge(src)) {
 495		/* hugetlbfs page */
 496		struct hstate *h = page_hstate(src);
 497		nr_pages = pages_per_huge_page(h);
 498
 499		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 500			__copy_gigantic_page(dst, src, nr_pages);
 501			return;
 502		}
 503	} else {
 504		/* thp page */
 505		BUG_ON(!PageTransHuge(src));
 506		nr_pages = hpage_nr_pages(src);
 507	}
 508
 509	for (i = 0; i < nr_pages; i++) {
 510		cond_resched();
 511		copy_highpage(dst + i, src + i);
 512	}
 513}
 514
 515/*
 516 * Copy the page to its new location
 517 */
 518void migrate_page_copy(struct page *newpage, struct page *page)
 519{
 520	int cpupid;
 521
 522	if (PageHuge(page) || PageTransHuge(page))
 523		copy_huge_page(newpage, page);
 524	else
 525		copy_highpage(newpage, page);
 526
 527	if (PageError(page))
 528		SetPageError(newpage);
 529	if (PageReferenced(page))
 530		SetPageReferenced(newpage);
 531	if (PageUptodate(page))
 532		SetPageUptodate(newpage);
 533	if (TestClearPageActive(page)) {
 534		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 535		SetPageActive(newpage);
 536	} else if (TestClearPageUnevictable(page))
 537		SetPageUnevictable(newpage);
 538	if (PageChecked(page))
 539		SetPageChecked(newpage);
 540	if (PageMappedToDisk(page))
 541		SetPageMappedToDisk(newpage);
 542
 543	if (PageDirty(page)) {
 544		clear_page_dirty_for_io(page);
 545		/*
 546		 * Want to mark the page and the radix tree as dirty, and
 547		 * redo the accounting that clear_page_dirty_for_io undid,
 548		 * but we can't use set_page_dirty because that function
 549		 * is actually a signal that all of the page has become dirty.
 550		 * Whereas only part of our page may be dirty.
 551		 */
 552		if (PageSwapBacked(page))
 553			SetPageDirty(newpage);
 554		else
 555			__set_page_dirty_nobuffers(newpage);
 556 	}
 557
 558	/*
 559	 * Copy NUMA information to the new page, to prevent over-eager
 560	 * future migrations of this same page.
 561	 */
 562	cpupid = page_cpupid_xchg_last(page, -1);
 563	page_cpupid_xchg_last(newpage, cpupid);
 
 
 
 
 
 
 
 564
 565	mlock_migrate_page(newpage, page);
 566	ksm_migrate_page(newpage, page);
 
 
 
 
 567	/*
 568	 * Please do not reorder this without considering how mm/ksm.c's
 569	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 570	 */
 571	ClearPageSwapCache(page);
 572	ClearPagePrivate(page);
 573	set_page_private(page, 0);
 
 
 
 
 574
 575	/*
 576	 * If any waiters have accumulated on the new page then
 577	 * wake them up.
 578	 */
 579	if (PageWriteback(newpage))
 580		end_page_writeback(newpage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581}
 
 582
 583/************************************************************
 584 *                    Migration functions
 585 ***********************************************************/
 586
 587/*
 588 * Common logic to directly migrate a single page suitable for
 589 * pages that do not use PagePrivate/PagePrivate2.
 590 *
 591 * Pages are locked upon entry and exit.
 592 */
 593int migrate_page(struct address_space *mapping,
 594		struct page *newpage, struct page *page,
 595		enum migrate_mode mode)
 596{
 597	int rc;
 598
 599	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 600
 601	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 602
 603	if (rc != MIGRATEPAGE_SUCCESS)
 604		return rc;
 605
 606	migrate_page_copy(newpage, page);
 
 
 
 607	return MIGRATEPAGE_SUCCESS;
 608}
 609EXPORT_SYMBOL(migrate_page);
 610
 611#ifdef CONFIG_BLOCK
 612/*
 613 * Migration function for pages with buffers. This function can only be used
 614 * if the underlying filesystem guarantees that no other references to "page"
 615 * exist.
 
 
 
 
 
 
 616 */
 617int buffer_migrate_page(struct address_space *mapping,
 618		struct page *newpage, struct page *page, enum migrate_mode mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619{
 620	struct buffer_head *bh, *head;
 621	int rc;
 
 622
 623	if (!page_has_buffers(page))
 624		return migrate_page(mapping, newpage, page, mode);
 
 
 
 
 
 
 625
 626	head = page_buffers(page);
 
 627
 628	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629
 
 630	if (rc != MIGRATEPAGE_SUCCESS)
 631		return rc;
 632
 633	/*
 634	 * In the async case, migrate_page_move_mapping locked the buffers
 635	 * with an IRQ-safe spinlock held. In the sync case, the buffers
 636	 * need to be locked now
 637	 */
 638	if (mode != MIGRATE_ASYNC)
 639		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 640
 641	ClearPagePrivate(page);
 642	set_page_private(newpage, page_private(page));
 643	set_page_private(page, 0);
 644	put_page(page);
 645	get_page(newpage);
 646
 647	bh = head;
 648	do {
 649		set_bh_page(bh, newpage, bh_offset(bh));
 650		bh = bh->b_this_page;
 651
 652	} while (bh != head);
 653
 654	SetPagePrivate(newpage);
 655
 656	migrate_page_copy(newpage, page);
 
 657
 
 
 
 
 658	bh = head;
 659	do {
 660		unlock_buffer(bh);
 661 		put_bh(bh);
 662		bh = bh->b_this_page;
 663
 664	} while (bh != head);
 665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666	return MIGRATEPAGE_SUCCESS;
 667}
 668EXPORT_SYMBOL(buffer_migrate_page);
 669#endif
 670
 671/*
 672 * Writeback a page to clean the dirty state
 673 */
 674static int writeout(struct address_space *mapping, struct page *page)
 675{
 676	struct writeback_control wbc = {
 677		.sync_mode = WB_SYNC_NONE,
 678		.nr_to_write = 1,
 679		.range_start = 0,
 680		.range_end = LLONG_MAX,
 681		.for_reclaim = 1
 682	};
 683	int rc;
 684
 685	if (!mapping->a_ops->writepage)
 686		/* No write method for the address space */
 687		return -EINVAL;
 688
 689	if (!clear_page_dirty_for_io(page))
 690		/* Someone else already triggered a write */
 691		return -EAGAIN;
 692
 693	/*
 694	 * A dirty page may imply that the underlying filesystem has
 695	 * the page on some queue. So the page must be clean for
 696	 * migration. Writeout may mean we loose the lock and the
 697	 * page state is no longer what we checked for earlier.
 698	 * At this point we know that the migration attempt cannot
 699	 * be successful.
 700	 */
 701	remove_migration_ptes(page, page);
 702
 703	rc = mapping->a_ops->writepage(page, &wbc);
 704
 705	if (rc != AOP_WRITEPAGE_ACTIVATE)
 706		/* unlocked. Relock */
 707		lock_page(page);
 708
 709	return (rc < 0) ? -EIO : -EAGAIN;
 710}
 711
 712/*
 713 * Default handling if a filesystem does not provide a migration function.
 714 */
 715static int fallback_migrate_page(struct address_space *mapping,
 716	struct page *newpage, struct page *page, enum migrate_mode mode)
 717{
 718	if (PageDirty(page)) {
 719		/* Only writeback pages in full synchronous migration */
 720		if (mode != MIGRATE_SYNC)
 
 
 
 
 721			return -EBUSY;
 722		return writeout(mapping, page);
 
 723	}
 724
 725	/*
 726	 * Buffers may be managed in a filesystem specific way.
 727	 * We must have no buffers or drop them.
 728	 */
 729	if (page_has_private(page) &&
 730	    !try_to_release_page(page, GFP_KERNEL))
 731		return -EAGAIN;
 732
 733	return migrate_page(mapping, newpage, page, mode);
 734}
 735
 736/*
 737 * Move a page to a newly allocated page
 738 * The page is locked and all ptes have been successfully removed.
 739 *
 740 * The new page will have replaced the old page if this function
 741 * is successful.
 742 *
 743 * Return value:
 744 *   < 0 - error code
 745 *  MIGRATEPAGE_SUCCESS - success
 746 */
 747static int move_to_new_page(struct page *newpage, struct page *page,
 748				int remap_swapcache, enum migrate_mode mode)
 749{
 750	struct address_space *mapping;
 751	int rc;
 752
 753	/*
 754	 * Block others from accessing the page when we get around to
 755	 * establishing additional references. We are the only one
 756	 * holding a reference to the new page at this point.
 757	 */
 758	if (!trylock_page(newpage))
 759		BUG();
 760
 761	/* Prepare mapping for the new page.*/
 762	newpage->index = page->index;
 763	newpage->mapping = page->mapping;
 764	if (PageSwapBacked(page))
 765		SetPageSwapBacked(newpage);
 
 
 
 
 
 
 
 
 
 
 
 766
 767	mapping = page_mapping(page);
 768	if (!mapping)
 769		rc = migrate_page(mapping, newpage, page, mode);
 770	else if (mapping->a_ops->migratepage)
 771		/*
 772		 * Most pages have a mapping and most filesystems provide a
 773		 * migratepage callback. Anonymous pages are part of swap
 774		 * space which also has its own migratepage callback. This
 775		 * is the most common path for page migration.
 776		 */
 777		rc = mapping->a_ops->migratepage(mapping,
 778						newpage, page, mode);
 779	else
 780		rc = fallback_migrate_page(mapping, newpage, page, mode);
 
 
 781
 782	if (rc != MIGRATEPAGE_SUCCESS) {
 783		newpage->mapping = NULL;
 784	} else {
 785		if (remap_swapcache)
 786			remove_migration_ptes(page, newpage);
 787		page->mapping = NULL;
 788	}
 789
 790	unlock_page(newpage);
 
 
 
 
 
 
 791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792	return rc;
 793}
 794
 795static int __unmap_and_move(struct page *page, struct page *newpage,
 796				int force, enum migrate_mode mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797{
 
 798	int rc = -EAGAIN;
 799	int remap_swapcache = 1;
 800	struct mem_cgroup *mem;
 801	struct anon_vma *anon_vma = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802
 803	if (!trylock_page(page)) {
 804		if (!force || mode == MIGRATE_ASYNC)
 
 
 805			goto out;
 806
 807		/*
 808		 * It's not safe for direct compaction to call lock_page.
 809		 * For example, during page readahead pages are added locked
 810		 * to the LRU. Later, when the IO completes the pages are
 811		 * marked uptodate and unlocked. However, the queueing
 812		 * could be merging multiple pages for one bio (e.g.
 813		 * mpage_readpages). If an allocation happens for the
 814		 * second or third page, the process can end up locking
 815		 * the same page twice and deadlocking. Rather than
 816		 * trying to be clever about what pages can be locked,
 817		 * avoid the use of lock_page for direct compaction
 818		 * altogether.
 819		 */
 820		if (current->flags & PF_MEMALLOC)
 821			goto out;
 822
 823		lock_page(page);
 824	}
 
 
 
 
 
 825
 826	/* charge against new page */
 827	mem_cgroup_prepare_migration(page, newpage, &mem);
 
 
 
 828
 829	if (PageWriteback(page)) {
 830		/*
 831		 * Only in the case of a full synchronous migration is it
 832		 * necessary to wait for PageWriteback. In the async case,
 833		 * the retry loop is too short and in the sync-light case,
 834		 * the overhead of stalling is too much
 835		 */
 836		if (mode != MIGRATE_SYNC) {
 
 
 
 
 837			rc = -EBUSY;
 838			goto uncharge;
 839		}
 840		if (!force)
 841			goto uncharge;
 842		wait_on_page_writeback(page);
 843	}
 
 844	/*
 845	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 846	 * we cannot notice that anon_vma is freed while we migrates a page.
 847	 * This get_anon_vma() delays freeing anon_vma pointer until the end
 848	 * of migration. File cache pages are no problem because of page_lock()
 849	 * File Caches may use write_page() or lock_page() in migration, then,
 850	 * just care Anon page here.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851	 */
 852	if (PageAnon(page) && !PageKsm(page)) {
 853		/*
 854		 * Only page_lock_anon_vma_read() understands the subtleties of
 855		 * getting a hold on an anon_vma from outside one of its mms.
 856		 */
 857		anon_vma = page_get_anon_vma(page);
 858		if (anon_vma) {
 859			/*
 860			 * Anon page
 861			 */
 862		} else if (PageSwapCache(page)) {
 863			/*
 864			 * We cannot be sure that the anon_vma of an unmapped
 865			 * swapcache page is safe to use because we don't
 866			 * know in advance if the VMA that this page belonged
 867			 * to still exists. If the VMA and others sharing the
 868			 * data have been freed, then the anon_vma could
 869			 * already be invalid.
 870			 *
 871			 * To avoid this possibility, swapcache pages get
 872			 * migrated but are not remapped when migration
 873			 * completes
 874			 */
 875			remap_swapcache = 0;
 876		} else {
 877			goto uncharge;
 878		}
 879	}
 880
 881	if (unlikely(balloon_page_movable(page))) {
 882		/*
 883		 * A ballooned page does not need any special attention from
 884		 * physical to virtual reverse mapping procedures.
 885		 * Skip any attempt to unmap PTEs or to remap swap cache,
 886		 * in order to avoid burning cycles at rmap level, and perform
 887		 * the page migration right away (proteced by page lock).
 888		 */
 889		rc = balloon_page_migrate(newpage, page, mode);
 890		goto uncharge;
 891	}
 892
 893	/*
 894	 * Corner case handling:
 895	 * 1. When a new swap-cache page is read into, it is added to the LRU
 896	 * and treated as swapcache but it has no rmap yet.
 897	 * Calling try_to_unmap() against a page->mapping==NULL page will
 898	 * trigger a BUG.  So handle it here.
 899	 * 2. An orphaned page (see truncate_complete_page) might have
 900	 * fs-private metadata. The page can be picked up due to memory
 901	 * offlining.  Everywhere else except page reclaim, the page is
 902	 * invisible to the vm, so the page can not be migrated.  So try to
 903	 * free the metadata, so the page can be freed.
 904	 */
 905	if (!page->mapping) {
 906		VM_BUG_ON_PAGE(PageAnon(page), page);
 907		if (page_has_private(page)) {
 908			try_to_free_buffers(page);
 909			goto uncharge;
 910		}
 911		goto skip_unmap;
 
 
 
 
 
 912	}
 913
 914	/* Establish migration ptes or remove ptes */
 915	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 916
 917skip_unmap:
 918	if (!page_mapped(page))
 919		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
 920
 921	if (rc && remap_swapcache)
 922		remove_migration_ptes(page, page);
 
 
 
 
 
 923
 924	/* Drop an anon_vma reference if we took one */
 925	if (anon_vma)
 926		put_anon_vma(anon_vma);
 927
 928uncharge:
 929	mem_cgroup_end_migration(mem, page, newpage,
 930				 (rc == MIGRATEPAGE_SUCCESS ||
 931				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
 932	unlock_page(page);
 933out:
 934	return rc;
 935}
 936
 937/*
 938 * Obtain the lock on page, remove all ptes and migrate the page
 939 * to the newly allocated page in newpage.
 940 */
 941static int unmap_and_move(new_page_t get_new_page, unsigned long private,
 942			struct page *page, int force, enum migrate_mode mode)
 943{
 944	int rc = 0;
 945	int *result = NULL;
 946	struct page *newpage = get_new_page(page, private, &result);
 
 
 947
 948	if (!newpage)
 949		return -ENOMEM;
 
 950
 951	if (page_count(page) == 1) {
 952		/* page was freed from under us. So we are done. */
 953		goto out;
 954	}
 955
 956	if (unlikely(PageTransHuge(page)))
 957		if (unlikely(split_huge_page(page)))
 958			goto out;
 959
 960	rc = __unmap_and_move(page, newpage, force, mode);
 
 
 
 
 
 
 
 
 
 
 
 961
 962	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
 963		/*
 964		 * A ballooned page has been migrated already.
 965		 * Now, it's the time to wrap-up counters,
 966		 * handle the page back to Buddy and return.
 967		 */
 968		dec_zone_page_state(page, NR_ISOLATED_ANON +
 969				    page_is_file_cache(page));
 970		balloon_page_free(page);
 971		return MIGRATEPAGE_SUCCESS;
 972	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973out:
 974	if (rc != -EAGAIN) {
 975		/*
 976		 * A page that has been migrated has all references
 977		 * removed and will be freed. A page that has not been
 978		 * migrated will have kepts its references and be
 979		 * restored.
 980		 */
 981		list_del(&page->lru);
 982		dec_zone_page_state(page, NR_ISOLATED_ANON +
 983				page_is_file_cache(page));
 984		putback_lru_page(page);
 985	}
 986	/*
 987	 * Move the new page to the LRU. If migration was not successful
 988	 * then this will free the page.
 989	 */
 990	putback_lru_page(newpage);
 991	if (result) {
 992		if (rc)
 993			*result = rc;
 994		else
 995			*result = page_to_nid(newpage);
 996	}
 
 
 
 
 
 997	return rc;
 998}
 999
1000/*
1001 * Counterpart of unmap_and_move_page() for hugepage migration.
1002 *
1003 * This function doesn't wait the completion of hugepage I/O
1004 * because there is no race between I/O and migration for hugepage.
1005 * Note that currently hugepage I/O occurs only in direct I/O
1006 * where no lock is held and PG_writeback is irrelevant,
1007 * and writeback status of all subpages are counted in the reference
1008 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1009 * under direct I/O, the reference of the head page is 512 and a bit more.)
1010 * This means that when we try to migrate hugepage whose subpages are
1011 * doing direct I/O, some references remain after try_to_unmap() and
1012 * hugepage migration fails without data corruption.
1013 *
1014 * There is also no race when direct I/O is issued on the page under migration,
1015 * because then pte is replaced with migration swap entry and direct I/O code
1016 * will wait in the page fault for migration to complete.
1017 */
1018static int unmap_and_move_huge_page(new_page_t get_new_page,
1019				unsigned long private, struct page *hpage,
1020				int force, enum migrate_mode mode)
1021{
1022	int rc = 0;
1023	int *result = NULL;
1024	struct page *new_hpage;
 
1025	struct anon_vma *anon_vma = NULL;
 
1026
1027	/*
1028	 * Movability of hugepages depends on architectures and hugepage size.
1029	 * This check is necessary because some callers of hugepage migration
1030	 * like soft offline and memory hotremove don't walk through page
1031	 * tables or check whether the hugepage is pmd-based or not before
1032	 * kicking migration.
1033	 */
1034	if (!hugepage_migration_support(page_hstate(hpage))) {
1035		putback_active_hugepage(hpage);
1036		return -ENOSYS;
1037	}
1038
1039	new_hpage = get_new_page(hpage, private, &result);
1040	if (!new_hpage)
1041		return -ENOMEM;
1042
1043	rc = -EAGAIN;
1044
1045	if (!trylock_page(hpage)) {
1046		if (!force || mode != MIGRATE_SYNC)
 
 
 
 
1047			goto out;
1048		lock_page(hpage);
 
1049	}
1050
1051	if (PageAnon(hpage))
1052		anon_vma = page_get_anon_vma(hpage);
 
 
 
 
 
 
 
1053
1054	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 
1055
1056	if (!page_mapped(hpage))
1057		rc = move_to_new_page(new_hpage, hpage, 1, mode);
1058
1059	if (rc)
1060		remove_migration_ptes(hpage, hpage);
1061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062	if (anon_vma)
1063		put_anon_vma(anon_vma);
1064
1065	if (!rc)
1066		hugetlb_cgroup_migrate(hpage, new_hpage);
 
 
1067
1068	unlock_page(hpage);
 
1069out:
1070	if (rc != -EAGAIN)
1071		putback_active_hugepage(hpage);
1072	put_page(new_hpage);
1073	if (result) {
1074		if (rc)
1075			*result = rc;
1076		else
1077			*result = page_to_nid(new_hpage);
1078	}
 
 
 
 
 
 
1079	return rc;
1080}
1081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082/*
1083 * migrate_pages - migrate the pages specified in a list, to the free pages
1084 *		   supplied as the target for the page migration
1085 *
1086 * @from:		The list of pages to be migrated.
1087 * @get_new_page:	The function used to allocate free pages to be used
1088 *			as the target of the page migration.
1089 * @private:		Private data to be passed on to get_new_page()
1090 * @mode:		The migration mode that specifies the constraints for
1091 *			page migration, if any.
1092 * @reason:		The reason for page migration.
1093 *
1094 * The function returns after 10 attempts or if no pages are movable any more
1095 * because the list has become empty or no retryable pages exist any more.
1096 * The caller should call putback_lru_pages() to return pages to the LRU
1097 * or free list only if ret != 0.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098 *
1099 * Returns the number of pages that were not migrated, or an error code.
1100 */
1101int migrate_pages(struct list_head *from, new_page_t get_new_page,
1102		unsigned long private, enum migrate_mode mode, int reason)
 
 
 
 
 
 
1103{
1104	int retry = 1;
 
1105	int nr_failed = 0;
1106	int nr_succeeded = 0;
1107	int pass = 0;
1108	struct page *page;
1109	struct page *page2;
1110	int swapwrite = current->flags & PF_SWAPWRITE;
1111	int rc;
 
 
 
1112
1113	if (!swapwrite)
1114		current->flags |= PF_SWAPWRITE;
1115
1116	for(pass = 0; pass < 10 && retry; pass++) {
1117		retry = 0;
 
 
 
 
 
 
 
1118
1119		list_for_each_entry_safe(page, page2, from, lru) {
1120			cond_resched();
1121
1122			if (PageHuge(page))
1123				rc = unmap_and_move_huge_page(get_new_page,
1124						private, page, pass > 2, mode);
1125			else
1126				rc = unmap_and_move(get_new_page, private,
1127						page, pass > 2, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128
 
 
 
 
 
 
 
 
 
 
 
 
1129			switch(rc) {
1130			case -ENOMEM:
1131				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132			case -EAGAIN:
1133				retry++;
 
 
1134				break;
1135			case MIGRATEPAGE_SUCCESS:
1136				nr_succeeded++;
 
 
 
 
 
1137				break;
1138			default:
1139				/*
1140				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1141				 * unlike -EAGAIN case, the failed page is
1142				 * removed from migration page list and not
1143				 * retried in the next outer loop.
1144				 */
1145				nr_failed++;
 
 
1146				break;
1147			}
1148		}
1149	}
1150	rc = nr_failed + retry;
1151out:
1152	if (nr_succeeded)
1153		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1154	if (nr_failed)
1155		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1156	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1157
1158	if (!swapwrite)
1159		current->flags &= ~PF_SWAPWRITE;
 
 
 
1160
1161	return rc;
1162}
 
 
 
1163
1164#ifdef CONFIG_NUMA
1165/*
1166 * Move a list of individual pages
1167 */
1168struct page_to_node {
1169	unsigned long addr;
1170	struct page *page;
1171	int node;
1172	int status;
1173};
1174
1175static struct page *new_page_node(struct page *p, unsigned long private,
1176		int **result)
1177{
1178	struct page_to_node *pm = (struct page_to_node *)private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1179
1180	while (pm->node != MAX_NUMNODES && pm->page != p)
1181		pm++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182
1183	if (pm->node == MAX_NUMNODES)
1184		return NULL;
1185
1186	*result = &pm->status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187
1188	if (PageHuge(p))
1189		return alloc_huge_page_node(page_hstate(compound_head(p)),
1190					pm->node);
1191	else
1192		return alloc_pages_exact_node(pm->node,
1193				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1194}
1195
1196/*
1197 * Move a set of pages as indicated in the pm array. The addr
1198 * field must be set to the virtual address of the page to be moved
1199 * and the node number must contain a valid target node.
1200 * The pm array ends with node = MAX_NUMNODES.
1201 */
1202static int do_move_page_to_node_array(struct mm_struct *mm,
1203				      struct page_to_node *pm,
1204				      int migrate_all)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205{
1206	int err;
1207	struct page_to_node *pp;
1208	LIST_HEAD(pagelist);
 
 
 
 
 
 
 
 
 
 
 
 
 
1209
1210	down_read(&mm->mmap_sem);
 
 
 
 
 
 
 
1211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212	/*
1213	 * Build a list of pages to migrate
 
1214	 */
1215	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1216		struct vm_area_struct *vma;
1217		struct page *page;
1218
1219		err = -EFAULT;
1220		vma = find_vma(mm, pp->addr);
1221		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1222			goto set_status;
 
 
1223
1224		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
 
 
 
 
 
 
 
 
1225
1226		err = PTR_ERR(page);
1227		if (IS_ERR(page))
1228			goto set_status;
1229
1230		err = -ENOENT;
1231		if (!page)
1232			goto set_status;
1233
1234		/* Use PageReserved to check for zero page */
1235		if (PageReserved(page))
1236			goto put_and_set;
 
 
 
 
1237
1238		pp->page = page;
1239		err = page_to_nid(page);
 
 
 
1240
1241		if (err == pp->node)
1242			/*
1243			 * Node already in the right place
1244			 */
1245			goto put_and_set;
1246
1247		err = -EACCES;
1248		if (page_mapcount(page) > 1 &&
1249				!migrate_all)
1250			goto put_and_set;
1251
1252		if (PageHuge(page)) {
1253			isolate_huge_page(page, &pagelist);
1254			goto put_and_set;
1255		}
1256
1257		err = isolate_lru_page(page);
1258		if (!err) {
1259			list_add_tail(&page->lru, &pagelist);
1260			inc_zone_page_state(page, NR_ISOLATED_ANON +
1261					    page_is_file_cache(page));
1262		}
1263put_and_set:
1264		/*
1265		 * Either remove the duplicate refcount from
1266		 * isolate_lru_page() or drop the page ref if it was
1267		 * not isolated.
1268		 */
1269		put_page(page);
1270set_status:
1271		pp->status = err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272	}
1273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1274	err = 0;
1275	if (!list_empty(&pagelist)) {
1276		err = migrate_pages(&pagelist, new_page_node,
1277				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1278		if (err)
1279			putback_movable_pages(&pagelist);
1280	}
1281
1282	up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283	return err;
1284}
1285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286/*
1287 * Migrate an array of page address onto an array of nodes and fill
1288 * the corresponding array of status.
1289 */
1290static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1291			 unsigned long nr_pages,
1292			 const void __user * __user *pages,
1293			 const int __user *nodes,
1294			 int __user *status, int flags)
1295{
1296	struct page_to_node *pm;
1297	unsigned long chunk_nr_pages;
1298	unsigned long chunk_start;
1299	int err;
1300
1301	err = -ENOMEM;
1302	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1303	if (!pm)
1304		goto out;
1305
1306	migrate_prep();
1307
1308	/*
1309	 * Store a chunk of page_to_node array in a page,
1310	 * but keep the last one as a marker
1311	 */
1312	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1313
1314	for (chunk_start = 0;
1315	     chunk_start < nr_pages;
1316	     chunk_start += chunk_nr_pages) {
1317		int j;
1318
1319		if (chunk_start + chunk_nr_pages > nr_pages)
1320			chunk_nr_pages = nr_pages - chunk_start;
 
1321
1322		/* fill the chunk pm with addrs and nodes from user-space */
1323		for (j = 0; j < chunk_nr_pages; j++) {
1324			const void __user *p;
1325			int node;
1326
1327			err = -EFAULT;
1328			if (get_user(p, pages + j + chunk_start))
1329				goto out_pm;
1330			pm[j].addr = (unsigned long) p;
 
 
 
1331
1332			if (get_user(node, nodes + j + chunk_start))
1333				goto out_pm;
 
 
 
1334
1335			err = -ENODEV;
1336			if (node < 0 || node >= MAX_NUMNODES)
1337				goto out_pm;
1338
1339			if (!node_state(node, N_MEMORY))
1340				goto out_pm;
 
 
 
 
 
 
 
 
 
1341
1342			err = -EACCES;
1343			if (!node_isset(node, task_nodes))
1344				goto out_pm;
 
 
 
1345
1346			pm[j].node = node;
 
 
1347		}
1348
1349		/* End marker for this chunk */
1350		pm[chunk_nr_pages].node = MAX_NUMNODES;
 
 
 
 
1351
1352		/* Migrate this chunk */
1353		err = do_move_page_to_node_array(mm, pm,
1354						 flags & MPOL_MF_MOVE_ALL);
1355		if (err < 0)
1356			goto out_pm;
 
 
1357
1358		/* Return status information */
1359		for (j = 0; j < chunk_nr_pages; j++)
1360			if (put_user(pm[j].status, status + j + chunk_start)) {
1361				err = -EFAULT;
1362				goto out_pm;
1363			}
 
 
 
1364	}
1365	err = 0;
1366
1367out_pm:
1368	free_page((unsigned long)pm);
 
 
1369out:
 
1370	return err;
1371}
1372
1373/*
1374 * Determine the nodes of an array of pages and store it in an array of status.
1375 */
1376static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1377				const void __user **pages, int *status)
1378{
1379	unsigned long i;
1380
1381	down_read(&mm->mmap_sem);
1382
1383	for (i = 0; i < nr_pages; i++) {
1384		unsigned long addr = (unsigned long)(*pages);
1385		struct vm_area_struct *vma;
1386		struct page *page;
1387		int err = -EFAULT;
1388
1389		vma = find_vma(mm, addr);
1390		if (!vma || addr < vma->vm_start)
1391			goto set_status;
1392
1393		page = follow_page(vma, addr, 0);
 
1394
1395		err = PTR_ERR(page);
1396		if (IS_ERR(page))
1397			goto set_status;
1398
1399		err = -ENOENT;
1400		/* Use PageReserved to check for zero page */
1401		if (!page || PageReserved(page))
1402			goto set_status;
1403
1404		err = page_to_nid(page);
 
 
 
1405set_status:
1406		*status = err;
1407
1408		pages++;
1409		status++;
1410	}
1411
1412	up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413}
1414
1415/*
1416 * Determine the nodes of a user array of pages and store it in
1417 * a user array of status.
1418 */
1419static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1420			 const void __user * __user *pages,
1421			 int __user *status)
1422{
1423#define DO_PAGES_STAT_CHUNK_NR 16
1424	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1425	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1426
1427	while (nr_pages) {
1428		unsigned long chunk_nr;
1429
1430		chunk_nr = nr_pages;
1431		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1432			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1433
1434		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1435			break;
 
 
 
 
 
 
 
1436
1437		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1438
1439		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1440			break;
1441
1442		pages += chunk_nr;
1443		status += chunk_nr;
1444		nr_pages -= chunk_nr;
1445	}
1446	return nr_pages ? -EFAULT : 0;
1447}
1448
1449/*
1450 * Move a list of pages in the address space of the currently executing
1451 * process.
1452 */
1453SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1454		const void __user * __user *, pages,
1455		const int __user *, nodes,
1456		int __user *, status, int, flags)
1457{
1458	const struct cred *cred = current_cred(), *tcred;
1459	struct task_struct *task;
1460	struct mm_struct *mm;
1461	int err;
1462	nodemask_t task_nodes;
1463
1464	/* Check flags */
1465	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1466		return -EINVAL;
1467
1468	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1469		return -EPERM;
 
 
 
1470
1471	/* Find the mm_struct */
1472	rcu_read_lock();
1473	task = pid ? find_task_by_vpid(pid) : current;
1474	if (!task) {
1475		rcu_read_unlock();
1476		return -ESRCH;
1477	}
1478	get_task_struct(task);
1479
1480	/*
1481	 * Check if this process has the right to modify the specified
1482	 * process. The right exists if the process has administrative
1483	 * capabilities, superuser privileges or the same
1484	 * userid as the target process.
1485	 */
1486	tcred = __task_cred(task);
1487	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1488	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1489	    !capable(CAP_SYS_NICE)) {
1490		rcu_read_unlock();
1491		err = -EPERM;
1492		goto out;
1493	}
1494	rcu_read_unlock();
1495
1496 	err = security_task_movememory(task);
1497 	if (err)
1498		goto out;
1499
1500	task_nodes = cpuset_mems_allowed(task);
1501	mm = get_task_mm(task);
 
1502	put_task_struct(task);
1503
1504	if (!mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505		return -EINVAL;
1506
 
 
 
 
 
 
 
1507	if (nodes)
1508		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1509				    nodes, status, flags);
1510	else
1511		err = do_pages_stat(mm, nr_pages, pages, status);
1512
1513	mmput(mm);
1514	return err;
1515
1516out:
1517	put_task_struct(task);
1518	return err;
1519}
1520
1521/*
1522 * Call migration functions in the vma_ops that may prepare
1523 * memory in a vm for migration. migration functions may perform
1524 * the migration for vmas that do not have an underlying page struct.
1525 */
1526int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1527	const nodemask_t *from, unsigned long flags)
1528{
1529 	struct vm_area_struct *vma;
1530 	int err = 0;
1531
1532	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1533 		if (vma->vm_ops && vma->vm_ops->migrate) {
1534 			err = vma->vm_ops->migrate(vma, to, from, flags);
1535 			if (err)
1536 				break;
1537 		}
1538 	}
1539 	return err;
1540}
1541
1542#ifdef CONFIG_NUMA_BALANCING
1543/*
1544 * Returns true if this is a safe migration target node for misplaced NUMA
1545 * pages. Currently it only checks the watermarks which crude
1546 */
1547static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1548				   unsigned long nr_migrate_pages)
1549{
1550	int z;
 
1551	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1552		struct zone *zone = pgdat->node_zones + z;
1553
1554		if (!populated_zone(zone))
1555			continue;
1556
1557		if (!zone_reclaimable(zone))
1558			continue;
1559
1560		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1561		if (!zone_watermark_ok(zone, 0,
1562				       high_wmark_pages(zone) +
1563				       nr_migrate_pages,
1564				       0, 0))
1565			continue;
1566		return true;
1567	}
1568	return false;
1569}
1570
1571static struct page *alloc_misplaced_dst_page(struct page *page,
1572					   unsigned long data,
1573					   int **result)
1574{
1575	int nid = (int) data;
1576	struct page *newpage;
1577
1578	newpage = alloc_pages_exact_node(nid,
1579					 (GFP_HIGHUSER_MOVABLE |
1580					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1581					  __GFP_NORETRY | __GFP_NOWARN) &
1582					 ~GFP_IOFS, 0);
1583
1584	return newpage;
1585}
1586
1587/*
1588 * page migration rate limiting control.
1589 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1590 * window of time. Default here says do not migrate more than 1280M per second.
1591 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1592 * as it is faults that reset the window, pte updates will happen unconditionally
1593 * if there has not been a fault since @pteupdate_interval_millisecs after the
1594 * throttle window closed.
1595 */
1596static unsigned int migrate_interval_millisecs __read_mostly = 100;
1597static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1598static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1599
1600/* Returns true if NUMA migration is currently rate limited */
1601bool migrate_ratelimited(int node)
1602{
1603	pg_data_t *pgdat = NODE_DATA(node);
1604
1605	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1606				msecs_to_jiffies(pteupdate_interval_millisecs)))
1607		return false;
1608
1609	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1610		return false;
1611
1612	return true;
1613}
1614
1615/* Returns true if the node is migrate rate-limited after the update */
1616static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1617					unsigned long nr_pages)
1618{
1619	/*
1620	 * Rate-limit the amount of data that is being migrated to a node.
1621	 * Optimal placement is no good if the memory bus is saturated and
1622	 * all the time is being spent migrating!
1623	 */
1624	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1625		spin_lock(&pgdat->numabalancing_migrate_lock);
1626		pgdat->numabalancing_migrate_nr_pages = 0;
1627		pgdat->numabalancing_migrate_next_window = jiffies +
1628			msecs_to_jiffies(migrate_interval_millisecs);
1629		spin_unlock(&pgdat->numabalancing_migrate_lock);
1630	}
1631	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1632		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1633								nr_pages);
1634		return true;
1635	}
1636
1637	/*
1638	 * This is an unlocked non-atomic update so errors are possible.
1639	 * The consequences are failing to migrate when we potentiall should
1640	 * have which is not severe enough to warrant locking. If it is ever
1641	 * a problem, it can be converted to a per-cpu counter.
1642	 */
1643	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1644	return false;
1645}
1646
1647static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1648{
1649	int page_lru;
1650
1651	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1652
1653	/* Avoid migrating to a node that is nearly full */
1654	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1655		return 0;
1656
1657	if (isolate_lru_page(page))
1658		return 0;
 
 
 
 
1659
1660	/*
1661	 * migrate_misplaced_transhuge_page() skips page migration's usual
1662	 * check on page_count(), so we must do it here, now that the page
1663	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1664	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1665	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1666	 */
1667	if (PageTransHuge(page) && page_count(page) != 3) {
1668		putback_lru_page(page);
1669		return 0;
1670	}
1671
1672	page_lru = page_is_file_cache(page);
1673	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1674				hpage_nr_pages(page));
 
 
1675
1676	/*
1677	 * Isolating the page has taken another reference, so the
1678	 * caller's reference can be safely dropped without the page
1679	 * disappearing underneath us during migration.
1680	 */
1681	put_page(page);
1682	return 1;
1683}
1684
1685bool pmd_trans_migrating(pmd_t pmd)
1686{
1687	struct page *page = pmd_page(pmd);
1688	return PageLocked(page);
1689}
1690
1691void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1692{
1693	struct page *page = pmd_page(*pmd);
1694	wait_on_page_locked(page);
1695}
1696
1697/*
1698 * Attempt to migrate a misplaced page to the specified destination
1699 * node. Caller is expected to have an elevated reference count on
1700 * the page that will be dropped by this function before returning.
1701 */
1702int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1703			   int node)
1704{
1705	pg_data_t *pgdat = NODE_DATA(node);
1706	int isolated;
1707	int nr_remaining;
 
1708	LIST_HEAD(migratepages);
 
1709
1710	/*
1711	 * Don't migrate file pages that are mapped in multiple processes
1712	 * with execute permissions as they are probably shared libraries.
 
 
 
1713	 */
1714	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1715	    (vma->vm_flags & VM_EXEC))
1716		goto out;
1717
1718	/*
1719	 * Rate-limit the amount of data that is being migrated to a node.
1720	 * Optimal placement is no good if the memory bus is saturated and
1721	 * all the time is being spent migrating!
1722	 */
1723	if (numamigrate_update_ratelimit(pgdat, 1))
1724		goto out;
1725
1726	isolated = numamigrate_isolate_page(pgdat, page);
1727	if (!isolated)
1728		goto out;
1729
1730	list_add(&page->lru, &migratepages);
1731	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1732				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
 
1733	if (nr_remaining) {
1734		if (!list_empty(&migratepages)) {
1735			list_del(&page->lru);
1736			dec_zone_page_state(page, NR_ISOLATED_ANON +
1737					page_is_file_cache(page));
1738			putback_lru_page(page);
1739		}
1740		isolated = 0;
1741	} else
1742		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1743	BUG_ON(!list_empty(&migratepages));
1744	return isolated;
1745
1746out:
1747	put_page(page);
1748	return 0;
1749}
1750#endif /* CONFIG_NUMA_BALANCING */
1751
1752#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1753/*
1754 * Migrates a THP to a given target node. page must be locked and is unlocked
1755 * before returning.
1756 */
1757int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1758				struct vm_area_struct *vma,
1759				pmd_t *pmd, pmd_t entry,
1760				unsigned long address,
1761				struct page *page, int node)
1762{
1763	spinlock_t *ptl;
1764	pg_data_t *pgdat = NODE_DATA(node);
1765	int isolated = 0;
1766	struct page *new_page = NULL;
1767	struct mem_cgroup *memcg = NULL;
1768	int page_lru = page_is_file_cache(page);
1769	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1770	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1771	pmd_t orig_entry;
1772
1773	/*
1774	 * Rate-limit the amount of data that is being migrated to a node.
1775	 * Optimal placement is no good if the memory bus is saturated and
1776	 * all the time is being spent migrating!
1777	 */
1778	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1779		goto out_dropref;
1780
1781	new_page = alloc_pages_node(node,
1782		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1783		HPAGE_PMD_ORDER);
1784	if (!new_page)
1785		goto out_fail;
1786
1787	isolated = numamigrate_isolate_page(pgdat, page);
1788	if (!isolated) {
1789		put_page(new_page);
1790		goto out_fail;
1791	}
1792
1793	if (mm_tlb_flush_pending(mm))
1794		flush_tlb_range(vma, mmun_start, mmun_end);
1795
1796	/* Prepare a page as a migration target */
1797	__set_page_locked(new_page);
1798	SetPageSwapBacked(new_page);
1799
1800	/* anon mapping, we can simply copy page->mapping to the new page: */
1801	new_page->mapping = page->mapping;
1802	new_page->index = page->index;
1803	migrate_page_copy(new_page, page);
1804	WARN_ON(PageLRU(new_page));
1805
1806	/* Recheck the target PMD */
1807	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1808	ptl = pmd_lock(mm, pmd);
1809	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1810fail_putback:
1811		spin_unlock(ptl);
1812		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1813
1814		/* Reverse changes made by migrate_page_copy() */
1815		if (TestClearPageActive(new_page))
1816			SetPageActive(page);
1817		if (TestClearPageUnevictable(new_page))
1818			SetPageUnevictable(page);
1819		mlock_migrate_page(page, new_page);
1820
1821		unlock_page(new_page);
1822		put_page(new_page);		/* Free it */
1823
1824		/* Retake the callers reference and putback on LRU */
1825		get_page(page);
1826		putback_lru_page(page);
1827		mod_zone_page_state(page_zone(page),
1828			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1829
1830		goto out_unlock;
1831	}
1832
1833	/*
1834	 * Traditional migration needs to prepare the memcg charge
1835	 * transaction early to prevent the old page from being
1836	 * uncharged when installing migration entries.  Here we can
1837	 * save the potential rollback and start the charge transfer
1838	 * only when migration is already known to end successfully.
1839	 */
1840	mem_cgroup_prepare_migration(page, new_page, &memcg);
1841
1842	orig_entry = *pmd;
1843	entry = mk_pmd(new_page, vma->vm_page_prot);
1844	entry = pmd_mkhuge(entry);
1845	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1846
1847	/*
1848	 * Clear the old entry under pagetable lock and establish the new PTE.
1849	 * Any parallel GUP will either observe the old page blocking on the
1850	 * page lock, block on the page table lock or observe the new page.
1851	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1852	 * guarantee the copy is visible before the pagetable update.
1853	 */
1854	flush_cache_range(vma, mmun_start, mmun_end);
1855	page_add_new_anon_rmap(new_page, vma, mmun_start);
1856	pmdp_clear_flush(vma, mmun_start, pmd);
1857	set_pmd_at(mm, mmun_start, pmd, entry);
1858	flush_tlb_range(vma, mmun_start, mmun_end);
1859	update_mmu_cache_pmd(vma, address, &entry);
1860
1861	if (page_count(page) != 2) {
1862		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1863		flush_tlb_range(vma, mmun_start, mmun_end);
1864		update_mmu_cache_pmd(vma, address, &entry);
1865		page_remove_rmap(new_page);
1866		goto fail_putback;
1867	}
1868
1869	page_remove_rmap(page);
1870
1871	/*
1872	 * Finish the charge transaction under the page table lock to
1873	 * prevent split_huge_page() from dividing up the charge
1874	 * before it's fully transferred to the new page.
1875	 */
1876	mem_cgroup_end_migration(memcg, page, new_page, true);
1877	spin_unlock(ptl);
1878	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1879
1880	unlock_page(new_page);
1881	unlock_page(page);
1882	put_page(page);			/* Drop the rmap reference */
1883	put_page(page);			/* Drop the LRU isolation reference */
1884
1885	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1886	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1887
1888	mod_zone_page_state(page_zone(page),
1889			NR_ISOLATED_ANON + page_lru,
1890			-HPAGE_PMD_NR);
1891	return isolated;
1892
1893out_fail:
1894	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1895out_dropref:
1896	ptl = pmd_lock(mm, pmd);
1897	if (pmd_same(*pmd, entry)) {
1898		entry = pmd_mknonnuma(entry);
1899		set_pmd_at(mm, mmun_start, pmd, entry);
1900		update_mmu_cache_pmd(vma, address, &entry);
1901	}
1902	spin_unlock(ptl);
1903
1904out_unlock:
1905	unlock_page(page);
1906	put_page(page);
1907	return 0;
1908}
1909#endif /* CONFIG_NUMA_BALANCING */
1910
1911#endif /* CONFIG_NUMA */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
 
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/backing-dev.h>
  34#include <linux/compaction.h>
  35#include <linux/syscalls.h>
  36#include <linux/compat.h>
  37#include <linux/hugetlb.h>
  38#include <linux/hugetlb_cgroup.h>
  39#include <linux/gfp.h>
  40#include <linux/pfn_t.h>
  41#include <linux/memremap.h>
  42#include <linux/userfaultfd_k.h>
  43#include <linux/balloon_compaction.h>
  44#include <linux/page_idle.h>
  45#include <linux/page_owner.h>
  46#include <linux/sched/mm.h>
  47#include <linux/ptrace.h>
  48#include <linux/oom.h>
  49#include <linux/memory.h>
  50#include <linux/random.h>
  51#include <linux/sched/sysctl.h>
  52#include <linux/memory-tiers.h>
  53
  54#include <asm/tlbflush.h>
  55
 
  56#include <trace/events/migrate.h>
  57
  58#include "internal.h"
  59
  60bool isolate_movable_page(struct page *page, isolate_mode_t mode)
 
 
 
 
 
  61{
  62	struct folio *folio = folio_get_nontail_page(page);
  63	const struct movable_operations *mops;
  64
  65	/*
  66	 * Avoid burning cycles with pages that are yet under __free_pages(),
  67	 * or just got freed under us.
  68	 *
  69	 * In case we 'win' a race for a movable page being freed under us and
  70	 * raise its refcount preventing __free_pages() from doing its job
  71	 * the put_page() at the end of this block will take care of
  72	 * release this page, thus avoiding a nasty leakage.
  73	 */
  74	if (!folio)
  75		goto out;
  76
  77	if (unlikely(folio_test_slab(folio)))
  78		goto out_putfolio;
  79	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
  80	smp_rmb();
  81	/*
  82	 * Check movable flag before taking the page lock because
  83	 * we use non-atomic bitops on newly allocated page flags so
  84	 * unconditionally grabbing the lock ruins page's owner side.
  85	 */
  86	if (unlikely(!__folio_test_movable(folio)))
  87		goto out_putfolio;
  88	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
  89	smp_rmb();
  90	if (unlikely(folio_test_slab(folio)))
  91		goto out_putfolio;
  92
  93	/*
  94	 * As movable pages are not isolated from LRU lists, concurrent
  95	 * compaction threads can race against page migration functions
  96	 * as well as race against the releasing a page.
  97	 *
  98	 * In order to avoid having an already isolated movable page
  99	 * being (wrongly) re-isolated while it is under migration,
 100	 * or to avoid attempting to isolate pages being released,
 101	 * lets be sure we have the page lock
 102	 * before proceeding with the movable page isolation steps.
 103	 */
 104	if (unlikely(!folio_trylock(folio)))
 105		goto out_putfolio;
 106
 107	if (!folio_test_movable(folio) || folio_test_isolated(folio))
 108		goto out_no_isolated;
 109
 110	mops = folio_movable_ops(folio);
 111	VM_BUG_ON_FOLIO(!mops, folio);
 112
 113	if (!mops->isolate_page(&folio->page, mode))
 114		goto out_no_isolated;
 115
 116	/* Driver shouldn't use PG_isolated bit of page->flags */
 117	WARN_ON_ONCE(folio_test_isolated(folio));
 118	folio_set_isolated(folio);
 119	folio_unlock(folio);
 120
 121	return true;
 122
 123out_no_isolated:
 124	folio_unlock(folio);
 125out_putfolio:
 126	folio_put(folio);
 127out:
 128	return false;
 129}
 130
 131static void putback_movable_folio(struct folio *folio)
 
 132{
 133	const struct movable_operations *mops = folio_movable_ops(folio);
 134
 135	mops->putback_page(&folio->page);
 136	folio_clear_isolated(folio);
 137}
 138
 139/*
 140 * Put previously isolated pages back onto the appropriate lists
 141 * from where they were once taken off for compaction/migration.
 142 *
 143 * This function shall be used whenever the isolated pageset has been
 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 145 * and isolate_hugetlb().
 146 */
 147void putback_movable_pages(struct list_head *l)
 148{
 149	struct folio *folio;
 150	struct folio *folio2;
 151
 152	list_for_each_entry_safe(folio, folio2, l, lru) {
 153		if (unlikely(folio_test_hugetlb(folio))) {
 154			folio_putback_active_hugetlb(folio);
 155			continue;
 156		}
 157		list_del(&folio->lru);
 158		/*
 159		 * We isolated non-lru movable folio so here we can use
 160		 * __folio_test_movable because LRU folio's mapping cannot
 161		 * have PAGE_MAPPING_MOVABLE.
 162		 */
 163		if (unlikely(__folio_test_movable(folio))) {
 164			VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
 165			folio_lock(folio);
 166			if (folio_test_movable(folio))
 167				putback_movable_folio(folio);
 168			else
 169				folio_clear_isolated(folio);
 170			folio_unlock(folio);
 171			folio_put(folio);
 172		} else {
 173			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
 174					folio_is_file_lru(folio), -folio_nr_pages(folio));
 175			folio_putback_lru(folio);
 176		}
 177	}
 178}
 179
 180/*
 181 * Restore a potential migration pte to a working pte entry
 182 */
 183static bool remove_migration_pte(struct folio *folio,
 184		struct vm_area_struct *vma, unsigned long addr, void *old)
 185{
 186	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187
 188	while (page_vma_mapped_walk(&pvmw)) {
 189		rmap_t rmap_flags = RMAP_NONE;
 190		pte_t old_pte;
 191		pte_t pte;
 192		swp_entry_t entry;
 193		struct page *new;
 194		unsigned long idx = 0;
 195
 196		/* pgoff is invalid for ksm pages, but they are never large */
 197		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
 198			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
 199		new = folio_page(folio, idx);
 200
 201#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 202		/* PMD-mapped THP migration entry */
 203		if (!pvmw.pte) {
 204			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
 205					!folio_test_pmd_mappable(folio), folio);
 206			remove_migration_pmd(&pvmw, new);
 207			continue;
 208		}
 
 
 
 
 
 
 
 
 
 209#endif
 
 
 210
 211		folio_get(folio);
 212		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
 213		old_pte = ptep_get(pvmw.pte);
 214
 215		entry = pte_to_swp_entry(old_pte);
 216		if (!is_migration_entry_young(entry))
 217			pte = pte_mkold(pte);
 218		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
 219			pte = pte_mkdirty(pte);
 220		if (pte_swp_soft_dirty(old_pte))
 221			pte = pte_mksoft_dirty(pte);
 222		else
 223			pte = pte_clear_soft_dirty(pte);
 
 
 
 
 224
 225		if (is_writable_migration_entry(entry))
 226			pte = pte_mkwrite(pte, vma);
 227		else if (pte_swp_uffd_wp(old_pte))
 228			pte = pte_mkuffd_wp(pte);
 229
 230		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
 231			rmap_flags |= RMAP_EXCLUSIVE;
 232
 233		if (unlikely(is_device_private_page(new))) {
 234			if (pte_write(pte))
 235				entry = make_writable_device_private_entry(
 236							page_to_pfn(new));
 237			else
 238				entry = make_readable_device_private_entry(
 239							page_to_pfn(new));
 240			pte = swp_entry_to_pte(entry);
 241			if (pte_swp_soft_dirty(old_pte))
 242				pte = pte_swp_mksoft_dirty(pte);
 243			if (pte_swp_uffd_wp(old_pte))
 244				pte = pte_swp_mkuffd_wp(pte);
 245		}
 246
 247#ifdef CONFIG_HUGETLB_PAGE
 248		if (folio_test_hugetlb(folio)) {
 249			struct hstate *h = hstate_vma(vma);
 250			unsigned int shift = huge_page_shift(h);
 251			unsigned long psize = huge_page_size(h);
 252
 253			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
 254			if (folio_test_anon(folio))
 255				hugetlb_add_anon_rmap(folio, vma, pvmw.address,
 256						      rmap_flags);
 257			else
 258				hugetlb_add_file_rmap(folio);
 259			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
 260					psize);
 261		} else
 262#endif
 263		{
 264			if (folio_test_anon(folio))
 265				folio_add_anon_rmap_pte(folio, new, vma,
 266							pvmw.address, rmap_flags);
 267			else
 268				folio_add_file_rmap_pte(folio, new, vma);
 269			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 270		}
 271		if (vma->vm_flags & VM_LOCKED)
 272			mlock_drain_local();
 273
 274		trace_remove_migration_pte(pvmw.address, pte_val(pte),
 275					   compound_order(new));
 276
 277		/* No need to invalidate - it was non-present before */
 278		update_mmu_cache(vma, pvmw.address, pvmw.pte);
 
 279	}
 280
 281	return true;
 282}
 283
 284/*
 285 * Get rid of all migration entries and replace them by
 286 * references to the indicated page.
 287 */
 288void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
 289{
 290	struct rmap_walk_control rwc = {
 291		.rmap_one = remove_migration_pte,
 292		.arg = src,
 
 293	};
 294
 295	if (locked)
 296		rmap_walk_locked(dst, &rwc);
 297	else
 298		rmap_walk(dst, &rwc);
 299}
 300
 301/*
 302 * Something used the pte of a page under migration. We need to
 303 * get to the page and wait until migration is finished.
 304 * When we return from this function the fault will be retried.
 305 */
 306void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 307			  unsigned long address)
 308{
 309	spinlock_t *ptl;
 310	pte_t *ptep;
 311	pte_t pte;
 312	swp_entry_t entry;
 
 313
 314	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 315	if (!ptep)
 316		return;
 317
 318	pte = ptep_get(ptep);
 319	pte_unmap(ptep);
 320
 321	if (!is_swap_pte(pte))
 322		goto out;
 323
 324	entry = pte_to_swp_entry(pte);
 325	if (!is_migration_entry(entry))
 326		goto out;
 327
 328	migration_entry_wait_on_locked(entry, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 329	return;
 330out:
 331	spin_unlock(ptl);
 332}
 333
 334#ifdef CONFIG_HUGETLB_PAGE
 335/*
 336 * The vma read lock must be held upon entry. Holding that lock prevents either
 337 * the pte or the ptl from being freed.
 338 *
 339 * This function will release the vma lock before returning.
 340 */
 341void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep)
 342{
 343	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
 344	pte_t pte;
 
 
 345
 346	hugetlb_vma_assert_locked(vma);
 347	spin_lock(ptl);
 348	pte = huge_ptep_get(ptep);
 349
 350	if (unlikely(!is_hugetlb_entry_migration(pte))) {
 351		spin_unlock(ptl);
 352		hugetlb_vma_unlock_read(vma);
 353	} else {
 354		/*
 355		 * If migration entry existed, safe to release vma lock
 356		 * here because the pgtable page won't be freed without the
 357		 * pgtable lock released.  See comment right above pgtable
 358		 * lock release in migration_entry_wait_on_locked().
 359		 */
 360		hugetlb_vma_unlock_read(vma);
 361		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
 362	}
 363}
 364#endif
 365
 366#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 367void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 
 
 368{
 369	spinlock_t *ptl;
 
 
 
 
 
 
 
 370
 371	ptl = pmd_lock(mm, pmd);
 372	if (!is_pmd_migration_entry(*pmd))
 373		goto unlock;
 374	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
 375	return;
 376unlock:
 377	spin_unlock(ptl);
 378}
 379#endif
 380
 381static int folio_expected_refs(struct address_space *mapping,
 382		struct folio *folio)
 383{
 384	int refs = 1;
 385	if (!mapping)
 386		return refs;
 387
 388	refs += folio_nr_pages(folio);
 389	if (folio_test_private(folio))
 390		refs++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391
 392	return refs;
 
 
 393}
 
 
 
 
 
 
 
 394
 395/*
 396 * Replace the page in the mapping.
 397 *
 398 * The number of remaining references must be:
 399 * 1 for anonymous pages without a mapping
 400 * 2 for pages with a mapping
 401 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 402 */
 403int folio_migrate_mapping(struct address_space *mapping,
 404		struct folio *newfolio, struct folio *folio, int extra_count)
 
 
 405{
 406	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
 407	struct zone *oldzone, *newzone;
 408	int dirty;
 409	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
 410	long nr = folio_nr_pages(folio);
 411	long entries, i;
 412
 413	if (!mapping) {
 414		/* Anonymous page without mapping */
 415		if (folio_ref_count(folio) != expected_count)
 416			return -EAGAIN;
 
 
 417
 418		/* No turning back from here */
 419		newfolio->index = folio->index;
 420		newfolio->mapping = folio->mapping;
 421		if (folio_test_swapbacked(folio))
 422			__folio_set_swapbacked(newfolio);
 423
 424		return MIGRATEPAGE_SUCCESS;
 
 
 
 
 
 
 
 425	}
 426
 427	oldzone = folio_zone(folio);
 428	newzone = folio_zone(newfolio);
 
 
 429
 430	xas_lock_irq(&xas);
 431	if (!folio_ref_freeze(folio, expected_count)) {
 432		xas_unlock_irq(&xas);
 
 
 
 
 
 
 
 
 433		return -EAGAIN;
 434	}
 435
 436	/*
 437	 * Now we know that no one else is looking at the folio:
 438	 * no turning back from here.
 439	 */
 440	newfolio->index = folio->index;
 441	newfolio->mapping = folio->mapping;
 442	folio_ref_add(newfolio, nr); /* add cache reference */
 443	if (folio_test_swapbacked(folio)) {
 444		__folio_set_swapbacked(newfolio);
 445		if (folio_test_swapcache(folio)) {
 446			folio_set_swapcache(newfolio);
 447			newfolio->private = folio_get_private(folio);
 448		}
 449		entries = nr;
 450	} else {
 451		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
 452		entries = 1;
 453	}
 454
 455	/* Move dirty while page refs frozen and newpage not yet exposed */
 456	dirty = folio_test_dirty(folio);
 457	if (dirty) {
 458		folio_clear_dirty(folio);
 459		folio_set_dirty(newfolio);
 460	}
 461
 462	/* Swap cache still stores N entries instead of a high-order entry */
 463	for (i = 0; i < entries; i++) {
 464		xas_store(&xas, newfolio);
 465		xas_next(&xas);
 466	}
 467
 468	/*
 469	 * Drop cache reference from old page by unfreezing
 470	 * to one less reference.
 471	 * We know this isn't the last reference.
 472	 */
 473	folio_ref_unfreeze(folio, expected_count - nr);
 474
 475	xas_unlock(&xas);
 476	/* Leave irq disabled to prevent preemption while updating stats */
 477
 478	/*
 479	 * If moved to a different zone then also account
 480	 * the page for that zone. Other VM counters will be
 481	 * taken care of when we establish references to the
 482	 * new page and drop references to the old page.
 483	 *
 484	 * Note that anonymous pages are accounted for
 485	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 486	 * are mapped to swap space.
 487	 */
 488	if (newzone != oldzone) {
 489		struct lruvec *old_lruvec, *new_lruvec;
 490		struct mem_cgroup *memcg;
 491
 492		memcg = folio_memcg(folio);
 493		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
 494		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
 495
 496		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
 497		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
 498		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
 499			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
 500			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
 501
 502			if (folio_test_pmd_mappable(folio)) {
 503				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
 504				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
 505			}
 506		}
 507#ifdef CONFIG_SWAP
 508		if (folio_test_swapcache(folio)) {
 509			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
 510			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
 511		}
 512#endif
 513		if (dirty && mapping_can_writeback(mapping)) {
 514			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
 515			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
 516			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
 517			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
 518		}
 519	}
 520	local_irq_enable();
 521
 522	return MIGRATEPAGE_SUCCESS;
 523}
 524EXPORT_SYMBOL(folio_migrate_mapping);
 525
 526/*
 527 * The expected number of remaining references is the same as that
 528 * of folio_migrate_mapping().
 529 */
 530int migrate_huge_page_move_mapping(struct address_space *mapping,
 531				   struct folio *dst, struct folio *src)
 532{
 533	XA_STATE(xas, &mapping->i_pages, folio_index(src));
 534	int expected_count;
 
 
 
 
 
 
 
 535
 536	xas_lock_irq(&xas);
 537	expected_count = folio_expected_refs(mapping, src);
 538	if (!folio_ref_freeze(src, expected_count)) {
 539		xas_unlock_irq(&xas);
 
 
 
 
 
 540		return -EAGAIN;
 541	}
 542
 543	dst->index = src->index;
 544	dst->mapping = src->mapping;
 
 
 545
 546	folio_ref_add(dst, folio_nr_pages(dst));
 547
 548	xas_store(&xas, dst);
 549
 550	folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
 551
 552	xas_unlock_irq(&xas);
 
 
 553
 554	return MIGRATEPAGE_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555}
 556
 557/*
 558 * Copy the flags and some other ancillary information
 559 */
 560void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
 561{
 562	int cpupid;
 563
 564	if (folio_test_error(folio))
 565		folio_set_error(newfolio);
 566	if (folio_test_referenced(folio))
 567		folio_set_referenced(newfolio);
 568	if (folio_test_uptodate(folio))
 569		folio_mark_uptodate(newfolio);
 570	if (folio_test_clear_active(folio)) {
 571		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
 572		folio_set_active(newfolio);
 573	} else if (folio_test_clear_unevictable(folio))
 574		folio_set_unevictable(newfolio);
 575	if (folio_test_workingset(folio))
 576		folio_set_workingset(newfolio);
 577	if (folio_test_checked(folio))
 578		folio_set_checked(newfolio);
 579	/*
 580	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
 581	 * migration entries. We can still have PG_anon_exclusive set on an
 582	 * effectively unmapped and unreferenced first sub-pages of an
 583	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
 584	 */
 585	if (folio_test_mappedtodisk(folio))
 586		folio_set_mappedtodisk(newfolio);
 587
 588	/* Move dirty on pages not done by folio_migrate_mapping() */
 589	if (folio_test_dirty(folio))
 590		folio_set_dirty(newfolio);
 591
 592	if (folio_test_young(folio))
 593		folio_set_young(newfolio);
 594	if (folio_test_idle(folio))
 595		folio_set_idle(newfolio);
 
 
 
 596
 597	/*
 598	 * Copy NUMA information to the new page, to prevent over-eager
 599	 * future migrations of this same page.
 600	 */
 601	cpupid = folio_xchg_last_cpupid(folio, -1);
 602	/*
 603	 * For memory tiering mode, when migrate between slow and fast
 604	 * memory node, reset cpupid, because that is used to record
 605	 * page access time in slow memory node.
 606	 */
 607	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
 608		bool f_toptier = node_is_toptier(folio_nid(folio));
 609		bool t_toptier = node_is_toptier(folio_nid(newfolio));
 610
 611		if (f_toptier != t_toptier)
 612			cpupid = -1;
 613	}
 614	folio_xchg_last_cpupid(newfolio, cpupid);
 615
 616	folio_migrate_ksm(newfolio, folio);
 617	/*
 618	 * Please do not reorder this without considering how mm/ksm.c's
 619	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 620	 */
 621	if (folio_test_swapcache(folio))
 622		folio_clear_swapcache(folio);
 623	folio_clear_private(folio);
 624
 625	/* page->private contains hugetlb specific flags */
 626	if (!folio_test_hugetlb(folio))
 627		folio->private = NULL;
 628
 629	/*
 630	 * If any waiters have accumulated on the new page then
 631	 * wake them up.
 632	 */
 633	if (folio_test_writeback(newfolio))
 634		folio_end_writeback(newfolio);
 635
 636	/*
 637	 * PG_readahead shares the same bit with PG_reclaim.  The above
 638	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
 639	 * bit after that.
 640	 */
 641	if (folio_test_readahead(folio))
 642		folio_set_readahead(newfolio);
 643
 644	folio_copy_owner(newfolio, folio);
 645
 646	mem_cgroup_migrate(folio, newfolio);
 647}
 648EXPORT_SYMBOL(folio_migrate_flags);
 649
 650void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
 651{
 652	folio_copy(newfolio, folio);
 653	folio_migrate_flags(newfolio, folio);
 654}
 655EXPORT_SYMBOL(folio_migrate_copy);
 656
 657/************************************************************
 658 *                    Migration functions
 659 ***********************************************************/
 660
 661int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
 662		struct folio *src, enum migrate_mode mode, int extra_count)
 
 
 
 
 
 
 
 663{
 664	int rc;
 665
 666	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
 667
 668	rc = folio_migrate_mapping(mapping, dst, src, extra_count);
 669
 670	if (rc != MIGRATEPAGE_SUCCESS)
 671		return rc;
 672
 673	if (mode != MIGRATE_SYNC_NO_COPY)
 674		folio_migrate_copy(dst, src);
 675	else
 676		folio_migrate_flags(dst, src);
 677	return MIGRATEPAGE_SUCCESS;
 678}
 
 679
 680/**
 681 * migrate_folio() - Simple folio migration.
 682 * @mapping: The address_space containing the folio.
 683 * @dst: The folio to migrate the data to.
 684 * @src: The folio containing the current data.
 685 * @mode: How to migrate the page.
 686 *
 687 * Common logic to directly migrate a single LRU folio suitable for
 688 * folios that do not use PagePrivate/PagePrivate2.
 689 *
 690 * Folios are locked upon entry and exit.
 691 */
 692int migrate_folio(struct address_space *mapping, struct folio *dst,
 693		struct folio *src, enum migrate_mode mode)
 694{
 695	return migrate_folio_extra(mapping, dst, src, mode, 0);
 696}
 697EXPORT_SYMBOL(migrate_folio);
 698
 699#ifdef CONFIG_BUFFER_HEAD
 700/* Returns true if all buffers are successfully locked */
 701static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 702							enum migrate_mode mode)
 703{
 704	struct buffer_head *bh = head;
 705	struct buffer_head *failed_bh;
 706
 707	do {
 708		if (!trylock_buffer(bh)) {
 709			if (mode == MIGRATE_ASYNC)
 710				goto unlock;
 711			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
 712				goto unlock;
 713			lock_buffer(bh);
 714		}
 715
 716		bh = bh->b_this_page;
 717	} while (bh != head);
 718
 719	return true;
 720
 721unlock:
 722	/* We failed to lock the buffer and cannot stall. */
 723	failed_bh = bh;
 724	bh = head;
 725	while (bh != failed_bh) {
 726		unlock_buffer(bh);
 727		bh = bh->b_this_page;
 728	}
 729
 730	return false;
 731}
 732
 733static int __buffer_migrate_folio(struct address_space *mapping,
 734		struct folio *dst, struct folio *src, enum migrate_mode mode,
 735		bool check_refs)
 736{
 737	struct buffer_head *bh, *head;
 738	int rc;
 739	int expected_count;
 740
 741	head = folio_buffers(src);
 742	if (!head)
 743		return migrate_folio(mapping, dst, src, mode);
 744
 745	/* Check whether page does not have extra refs before we do more work */
 746	expected_count = folio_expected_refs(mapping, src);
 747	if (folio_ref_count(src) != expected_count)
 748		return -EAGAIN;
 749
 750	if (!buffer_migrate_lock_buffers(head, mode))
 751		return -EAGAIN;
 752
 753	if (check_refs) {
 754		bool busy;
 755		bool invalidated = false;
 756
 757recheck_buffers:
 758		busy = false;
 759		spin_lock(&mapping->i_private_lock);
 760		bh = head;
 761		do {
 762			if (atomic_read(&bh->b_count)) {
 763				busy = true;
 764				break;
 765			}
 766			bh = bh->b_this_page;
 767		} while (bh != head);
 768		if (busy) {
 769			if (invalidated) {
 770				rc = -EAGAIN;
 771				goto unlock_buffers;
 772			}
 773			spin_unlock(&mapping->i_private_lock);
 774			invalidate_bh_lrus();
 775			invalidated = true;
 776			goto recheck_buffers;
 777		}
 778	}
 779
 780	rc = folio_migrate_mapping(mapping, dst, src, 0);
 781	if (rc != MIGRATEPAGE_SUCCESS)
 782		goto unlock_buffers;
 783
 784	folio_attach_private(dst, folio_detach_private(src));
 
 
 
 
 
 
 
 
 
 
 
 
 785
 786	bh = head;
 787	do {
 788		folio_set_bh(bh, dst, bh_offset(bh));
 789		bh = bh->b_this_page;
 
 790	} while (bh != head);
 791
 792	if (mode != MIGRATE_SYNC_NO_COPY)
 793		folio_migrate_copy(dst, src);
 794	else
 795		folio_migrate_flags(dst, src);
 796
 797	rc = MIGRATEPAGE_SUCCESS;
 798unlock_buffers:
 799	if (check_refs)
 800		spin_unlock(&mapping->i_private_lock);
 801	bh = head;
 802	do {
 803		unlock_buffer(bh);
 
 804		bh = bh->b_this_page;
 
 805	} while (bh != head);
 806
 807	return rc;
 808}
 809
 810/**
 811 * buffer_migrate_folio() - Migration function for folios with buffers.
 812 * @mapping: The address space containing @src.
 813 * @dst: The folio to migrate to.
 814 * @src: The folio to migrate from.
 815 * @mode: How to migrate the folio.
 816 *
 817 * This function can only be used if the underlying filesystem guarantees
 818 * that no other references to @src exist. For example attached buffer
 819 * heads are accessed only under the folio lock.  If your filesystem cannot
 820 * provide this guarantee, buffer_migrate_folio_norefs() may be more
 821 * appropriate.
 822 *
 823 * Return: 0 on success or a negative errno on failure.
 824 */
 825int buffer_migrate_folio(struct address_space *mapping,
 826		struct folio *dst, struct folio *src, enum migrate_mode mode)
 827{
 828	return __buffer_migrate_folio(mapping, dst, src, mode, false);
 829}
 830EXPORT_SYMBOL(buffer_migrate_folio);
 831
 832/**
 833 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
 834 * @mapping: The address space containing @src.
 835 * @dst: The folio to migrate to.
 836 * @src: The folio to migrate from.
 837 * @mode: How to migrate the folio.
 838 *
 839 * Like buffer_migrate_folio() except that this variant is more careful
 840 * and checks that there are also no buffer head references. This function
 841 * is the right one for mappings where buffer heads are directly looked
 842 * up and referenced (such as block device mappings).
 843 *
 844 * Return: 0 on success or a negative errno on failure.
 845 */
 846int buffer_migrate_folio_norefs(struct address_space *mapping,
 847		struct folio *dst, struct folio *src, enum migrate_mode mode)
 848{
 849	return __buffer_migrate_folio(mapping, dst, src, mode, true);
 850}
 851EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
 852#endif /* CONFIG_BUFFER_HEAD */
 853
 854int filemap_migrate_folio(struct address_space *mapping,
 855		struct folio *dst, struct folio *src, enum migrate_mode mode)
 856{
 857	int ret;
 858
 859	ret = folio_migrate_mapping(mapping, dst, src, 0);
 860	if (ret != MIGRATEPAGE_SUCCESS)
 861		return ret;
 862
 863	if (folio_get_private(src))
 864		folio_attach_private(dst, folio_detach_private(src));
 865
 866	if (mode != MIGRATE_SYNC_NO_COPY)
 867		folio_migrate_copy(dst, src);
 868	else
 869		folio_migrate_flags(dst, src);
 870	return MIGRATEPAGE_SUCCESS;
 871}
 872EXPORT_SYMBOL_GPL(filemap_migrate_folio);
 
 873
 874/*
 875 * Writeback a folio to clean the dirty state
 876 */
 877static int writeout(struct address_space *mapping, struct folio *folio)
 878{
 879	struct writeback_control wbc = {
 880		.sync_mode = WB_SYNC_NONE,
 881		.nr_to_write = 1,
 882		.range_start = 0,
 883		.range_end = LLONG_MAX,
 884		.for_reclaim = 1
 885	};
 886	int rc;
 887
 888	if (!mapping->a_ops->writepage)
 889		/* No write method for the address space */
 890		return -EINVAL;
 891
 892	if (!folio_clear_dirty_for_io(folio))
 893		/* Someone else already triggered a write */
 894		return -EAGAIN;
 895
 896	/*
 897	 * A dirty folio may imply that the underlying filesystem has
 898	 * the folio on some queue. So the folio must be clean for
 899	 * migration. Writeout may mean we lose the lock and the
 900	 * folio state is no longer what we checked for earlier.
 901	 * At this point we know that the migration attempt cannot
 902	 * be successful.
 903	 */
 904	remove_migration_ptes(folio, folio, false);
 905
 906	rc = mapping->a_ops->writepage(&folio->page, &wbc);
 907
 908	if (rc != AOP_WRITEPAGE_ACTIVATE)
 909		/* unlocked. Relock */
 910		folio_lock(folio);
 911
 912	return (rc < 0) ? -EIO : -EAGAIN;
 913}
 914
 915/*
 916 * Default handling if a filesystem does not provide a migration function.
 917 */
 918static int fallback_migrate_folio(struct address_space *mapping,
 919		struct folio *dst, struct folio *src, enum migrate_mode mode)
 920{
 921	if (folio_test_dirty(src)) {
 922		/* Only writeback folios in full synchronous migration */
 923		switch (mode) {
 924		case MIGRATE_SYNC:
 925		case MIGRATE_SYNC_NO_COPY:
 926			break;
 927		default:
 928			return -EBUSY;
 929		}
 930		return writeout(mapping, src);
 931	}
 932
 933	/*
 934	 * Buffers may be managed in a filesystem specific way.
 935	 * We must have no buffers or drop them.
 936	 */
 937	if (!filemap_release_folio(src, GFP_KERNEL))
 938		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 
 939
 940	return migrate_folio(mapping, dst, src, mode);
 941}
 942
 943/*
 944 * Move a page to a newly allocated page
 945 * The page is locked and all ptes have been successfully removed.
 946 *
 947 * The new page will have replaced the old page if this function
 948 * is successful.
 949 *
 950 * Return value:
 951 *   < 0 - error code
 952 *  MIGRATEPAGE_SUCCESS - success
 953 */
 954static int move_to_new_folio(struct folio *dst, struct folio *src,
 955				enum migrate_mode mode)
 956{
 957	int rc = -EAGAIN;
 958	bool is_lru = !__folio_test_movable(src);
 959
 960	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
 961	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
 962
 963	if (likely(is_lru)) {
 964		struct address_space *mapping = folio_mapping(src);
 965
 966		if (!mapping)
 967			rc = migrate_folio(mapping, dst, src, mode);
 968		else if (mapping_unmovable(mapping))
 969			rc = -EOPNOTSUPP;
 970		else if (mapping->a_ops->migrate_folio)
 971			/*
 972			 * Most folios have a mapping and most filesystems
 973			 * provide a migrate_folio callback. Anonymous folios
 974			 * are part of swap space which also has its own
 975			 * migrate_folio callback. This is the most common path
 976			 * for page migration.
 977			 */
 978			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
 979								mode);
 980		else
 981			rc = fallback_migrate_folio(mapping, dst, src, mode);
 982	} else {
 983		const struct movable_operations *mops;
 984
 
 
 
 
 985		/*
 986		 * In case of non-lru page, it could be released after
 987		 * isolation step. In that case, we shouldn't try migration.
 
 
 988		 */
 989		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
 990		if (!folio_test_movable(src)) {
 991			rc = MIGRATEPAGE_SUCCESS;
 992			folio_clear_isolated(src);
 993			goto out;
 994		}
 995
 996		mops = folio_movable_ops(src);
 997		rc = mops->migrate_page(&dst->page, &src->page, mode);
 998		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 999				!folio_test_isolated(src));
 
 
1000	}
1001
1002	/*
1003	 * When successful, old pagecache src->mapping must be cleared before
1004	 * src is freed; but stats require that PageAnon be left as PageAnon.
1005	 */
1006	if (rc == MIGRATEPAGE_SUCCESS) {
1007		if (__folio_test_movable(src)) {
1008			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1009
1010			/*
1011			 * We clear PG_movable under page_lock so any compactor
1012			 * cannot try to migrate this page.
1013			 */
1014			folio_clear_isolated(src);
1015		}
1016
1017		/*
1018		 * Anonymous and movable src->mapping will be cleared by
1019		 * free_pages_prepare so don't reset it here for keeping
1020		 * the type to work PageAnon, for example.
1021		 */
1022		if (!folio_mapping_flags(src))
1023			src->mapping = NULL;
1024
1025		if (likely(!folio_is_zone_device(dst)))
1026			flush_dcache_folio(dst);
1027	}
1028out:
1029	return rc;
1030}
1031
1032/*
1033 * To record some information during migration, we use unused private
1034 * field of struct folio of the newly allocated destination folio.
1035 * This is safe because nobody is using it except us.
1036 */
1037enum {
1038	PAGE_WAS_MAPPED = BIT(0),
1039	PAGE_WAS_MLOCKED = BIT(1),
1040	PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1041};
1042
1043static void __migrate_folio_record(struct folio *dst,
1044				   int old_page_state,
1045				   struct anon_vma *anon_vma)
1046{
1047	dst->private = (void *)anon_vma + old_page_state;
1048}
1049
1050static void __migrate_folio_extract(struct folio *dst,
1051				   int *old_page_state,
1052				   struct anon_vma **anon_vmap)
1053{
1054	unsigned long private = (unsigned long)dst->private;
1055
1056	*anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1057	*old_page_state = private & PAGE_OLD_STATES;
1058	dst->private = NULL;
1059}
1060
1061/* Restore the source folio to the original state upon failure */
1062static void migrate_folio_undo_src(struct folio *src,
1063				   int page_was_mapped,
1064				   struct anon_vma *anon_vma,
1065				   bool locked,
1066				   struct list_head *ret)
1067{
1068	if (page_was_mapped)
1069		remove_migration_ptes(src, src, false);
1070	/* Drop an anon_vma reference if we took one */
1071	if (anon_vma)
1072		put_anon_vma(anon_vma);
1073	if (locked)
1074		folio_unlock(src);
1075	if (ret)
1076		list_move_tail(&src->lru, ret);
1077}
1078
1079/* Restore the destination folio to the original state upon failure */
1080static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1081		free_folio_t put_new_folio, unsigned long private)
1082{
1083	if (locked)
1084		folio_unlock(dst);
1085	if (put_new_folio)
1086		put_new_folio(dst, private);
1087	else
1088		folio_put(dst);
1089}
1090
1091/* Cleanup src folio upon migration success */
1092static void migrate_folio_done(struct folio *src,
1093			       enum migrate_reason reason)
1094{
1095	/*
1096	 * Compaction can migrate also non-LRU pages which are
1097	 * not accounted to NR_ISOLATED_*. They can be recognized
1098	 * as __folio_test_movable
1099	 */
1100	if (likely(!__folio_test_movable(src)))
1101		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1102				    folio_is_file_lru(src), -folio_nr_pages(src));
1103
1104	if (reason != MR_MEMORY_FAILURE)
1105		/* We release the page in page_handle_poison. */
1106		folio_put(src);
1107}
1108
1109/* Obtain the lock on page, remove all ptes. */
1110static int migrate_folio_unmap(new_folio_t get_new_folio,
1111		free_folio_t put_new_folio, unsigned long private,
1112		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1113		enum migrate_reason reason, struct list_head *ret)
1114{
1115	struct folio *dst;
1116	int rc = -EAGAIN;
1117	int old_page_state = 0;
 
1118	struct anon_vma *anon_vma = NULL;
1119	bool is_lru = !__folio_test_movable(src);
1120	bool locked = false;
1121	bool dst_locked = false;
1122
1123	if (folio_ref_count(src) == 1) {
1124		/* Folio was freed from under us. So we are done. */
1125		folio_clear_active(src);
1126		folio_clear_unevictable(src);
1127		/* free_pages_prepare() will clear PG_isolated. */
1128		list_del(&src->lru);
1129		migrate_folio_done(src, reason);
1130		return MIGRATEPAGE_SUCCESS;
1131	}
1132
1133	dst = get_new_folio(src, private);
1134	if (!dst)
1135		return -ENOMEM;
1136	*dstp = dst;
1137
1138	dst->private = NULL;
1139
1140	if (!folio_trylock(src)) {
1141		if (mode == MIGRATE_ASYNC)
1142			goto out;
1143
1144		/*
1145		 * It's not safe for direct compaction to call lock_page.
1146		 * For example, during page readahead pages are added locked
1147		 * to the LRU. Later, when the IO completes the pages are
1148		 * marked uptodate and unlocked. However, the queueing
1149		 * could be merging multiple pages for one bio (e.g.
1150		 * mpage_readahead). If an allocation happens for the
1151		 * second or third page, the process can end up locking
1152		 * the same page twice and deadlocking. Rather than
1153		 * trying to be clever about what pages can be locked,
1154		 * avoid the use of lock_page for direct compaction
1155		 * altogether.
1156		 */
1157		if (current->flags & PF_MEMALLOC)
1158			goto out;
1159
1160		/*
1161		 * In "light" mode, we can wait for transient locks (eg
1162		 * inserting a page into the page table), but it's not
1163		 * worth waiting for I/O.
1164		 */
1165		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1166			goto out;
1167
1168		folio_lock(src);
1169	}
1170	locked = true;
1171	if (folio_test_mlocked(src))
1172		old_page_state |= PAGE_WAS_MLOCKED;
1173
1174	if (folio_test_writeback(src)) {
1175		/*
1176		 * Only in the case of a full synchronous migration is it
1177		 * necessary to wait for PageWriteback. In the async case,
1178		 * the retry loop is too short and in the sync-light case,
1179		 * the overhead of stalling is too much
1180		 */
1181		switch (mode) {
1182		case MIGRATE_SYNC:
1183		case MIGRATE_SYNC_NO_COPY:
1184			break;
1185		default:
1186			rc = -EBUSY;
1187			goto out;
1188		}
1189		folio_wait_writeback(src);
 
 
1190	}
1191
1192	/*
1193	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1194	 * we cannot notice that anon_vma is freed while we migrate a page.
1195	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1196	 * of migration. File cache pages are no problem because of page_lock()
1197	 * File Caches may use write_page() or lock_page() in migration, then,
1198	 * just care Anon page here.
1199	 *
1200	 * Only folio_get_anon_vma() understands the subtleties of
1201	 * getting a hold on an anon_vma from outside one of its mms.
1202	 * But if we cannot get anon_vma, then we won't need it anyway,
1203	 * because that implies that the anon page is no longer mapped
1204	 * (and cannot be remapped so long as we hold the page lock).
1205	 */
1206	if (folio_test_anon(src) && !folio_test_ksm(src))
1207		anon_vma = folio_get_anon_vma(src);
1208
1209	/*
1210	 * Block others from accessing the new page when we get around to
1211	 * establishing additional references. We are usually the only one
1212	 * holding a reference to dst at this point. We used to have a BUG
1213	 * here if folio_trylock(dst) fails, but would like to allow for
1214	 * cases where there might be a race with the previous use of dst.
1215	 * This is much like races on refcount of oldpage: just don't BUG().
1216	 */
1217	if (unlikely(!folio_trylock(dst)))
1218		goto out;
1219	dst_locked = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1220
1221	if (unlikely(!is_lru)) {
1222		__migrate_folio_record(dst, old_page_state, anon_vma);
1223		return MIGRATEPAGE_UNMAP;
 
 
 
 
 
 
 
1224	}
1225
1226	/*
1227	 * Corner case handling:
1228	 * 1. When a new swap-cache page is read into, it is added to the LRU
1229	 * and treated as swapcache but it has no rmap yet.
1230	 * Calling try_to_unmap() against a src->mapping==NULL page will
1231	 * trigger a BUG.  So handle it here.
1232	 * 2. An orphaned page (see truncate_cleanup_page) might have
1233	 * fs-private metadata. The page can be picked up due to memory
1234	 * offlining.  Everywhere else except page reclaim, the page is
1235	 * invisible to the vm, so the page can not be migrated.  So try to
1236	 * free the metadata, so the page can be freed.
1237	 */
1238	if (!src->mapping) {
1239		if (folio_test_private(src)) {
1240			try_to_free_buffers(src);
1241			goto out;
 
1242		}
1243	} else if (folio_mapped(src)) {
1244		/* Establish migration ptes */
1245		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1246			       !folio_test_ksm(src) && !anon_vma, src);
1247		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1248		old_page_state |= PAGE_WAS_MAPPED;
1249	}
1250
1251	if (!folio_mapped(src)) {
1252		__migrate_folio_record(dst, old_page_state, anon_vma);
1253		return MIGRATEPAGE_UNMAP;
1254	}
 
 
1255
1256out:
1257	/*
1258	 * A folio that has not been unmapped will be restored to
1259	 * right list unless we want to retry.
1260	 */
1261	if (rc == -EAGAIN)
1262		ret = NULL;
1263
1264	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1265			       anon_vma, locked, ret);
1266	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1267
 
 
 
 
 
 
1268	return rc;
1269}
1270
1271/* Migrate the folio to the newly allocated folio in dst. */
1272static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1273			      struct folio *src, struct folio *dst,
1274			      enum migrate_mode mode, enum migrate_reason reason,
1275			      struct list_head *ret)
 
1276{
1277	int rc;
1278	int old_page_state = 0;
1279	struct anon_vma *anon_vma = NULL;
1280	bool is_lru = !__folio_test_movable(src);
1281	struct list_head *prev;
1282
1283	__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1284	prev = dst->lru.prev;
1285	list_del(&dst->lru);
1286
1287	rc = move_to_new_folio(dst, src, mode);
1288	if (rc)
1289		goto out;
 
1290
1291	if (unlikely(!is_lru))
1292		goto out_unlock_both;
 
1293
1294	/*
1295	 * When successful, push dst to LRU immediately: so that if it
1296	 * turns out to be an mlocked page, remove_migration_ptes() will
1297	 * automatically build up the correct dst->mlock_count for it.
1298	 *
1299	 * We would like to do something similar for the old page, when
1300	 * unsuccessful, and other cases when a page has been temporarily
1301	 * isolated from the unevictable LRU: but this case is the easiest.
1302	 */
1303	folio_add_lru(dst);
1304	if (old_page_state & PAGE_WAS_MLOCKED)
1305		lru_add_drain();
1306
1307	if (old_page_state & PAGE_WAS_MAPPED)
1308		remove_migration_ptes(src, dst, false);
1309
1310out_unlock_both:
1311	folio_unlock(dst);
1312	set_page_owner_migrate_reason(&dst->page, reason);
1313	/*
1314	 * If migration is successful, decrease refcount of dst,
1315	 * which will not free the page because new page owner increased
1316	 * refcounter.
1317	 */
1318	folio_put(dst);
1319
1320	/*
1321	 * A folio that has been migrated has all references removed
1322	 * and will be freed.
1323	 */
1324	list_del(&src->lru);
1325	/* Drop an anon_vma reference if we took one */
1326	if (anon_vma)
1327		put_anon_vma(anon_vma);
1328	folio_unlock(src);
1329	migrate_folio_done(src, reason);
1330
1331	return rc;
1332out:
 
 
 
 
 
 
 
 
 
 
 
 
1333	/*
1334	 * A folio that has not been migrated will be restored to
1335	 * right list unless we want to retry.
1336	 */
1337	if (rc == -EAGAIN) {
1338		list_add(&dst->lru, prev);
1339		__migrate_folio_record(dst, old_page_state, anon_vma);
1340		return rc;
 
 
1341	}
1342
1343	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1344			       anon_vma, true, ret);
1345	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1346
1347	return rc;
1348}
1349
1350/*
1351 * Counterpart of unmap_and_move_page() for hugepage migration.
1352 *
1353 * This function doesn't wait the completion of hugepage I/O
1354 * because there is no race between I/O and migration for hugepage.
1355 * Note that currently hugepage I/O occurs only in direct I/O
1356 * where no lock is held and PG_writeback is irrelevant,
1357 * and writeback status of all subpages are counted in the reference
1358 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1359 * under direct I/O, the reference of the head page is 512 and a bit more.)
1360 * This means that when we try to migrate hugepage whose subpages are
1361 * doing direct I/O, some references remain after try_to_unmap() and
1362 * hugepage migration fails without data corruption.
1363 *
1364 * There is also no race when direct I/O is issued on the page under migration,
1365 * because then pte is replaced with migration swap entry and direct I/O code
1366 * will wait in the page fault for migration to complete.
1367 */
1368static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1369		free_folio_t put_new_folio, unsigned long private,
1370		struct folio *src, int force, enum migrate_mode mode,
1371		int reason, struct list_head *ret)
1372{
1373	struct folio *dst;
1374	int rc = -EAGAIN;
1375	int page_was_mapped = 0;
1376	struct anon_vma *anon_vma = NULL;
1377	struct address_space *mapping = NULL;
1378
1379	if (folio_ref_count(src) == 1) {
1380		/* page was freed from under us. So we are done. */
1381		folio_putback_active_hugetlb(src);
1382		return MIGRATEPAGE_SUCCESS;
 
 
 
 
 
 
1383	}
1384
1385	dst = get_new_folio(src, private);
1386	if (!dst)
1387		return -ENOMEM;
1388
1389	if (!folio_trylock(src)) {
1390		if (!force)
1391			goto out;
1392		switch (mode) {
1393		case MIGRATE_SYNC:
1394		case MIGRATE_SYNC_NO_COPY:
1395			break;
1396		default:
1397			goto out;
1398		}
1399		folio_lock(src);
1400	}
1401
1402	/*
1403	 * Check for pages which are in the process of being freed.  Without
1404	 * folio_mapping() set, hugetlbfs specific move page routine will not
1405	 * be called and we could leak usage counts for subpools.
1406	 */
1407	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1408		rc = -EBUSY;
1409		goto out_unlock;
1410	}
1411
1412	if (folio_test_anon(src))
1413		anon_vma = folio_get_anon_vma(src);
1414
1415	if (unlikely(!folio_trylock(dst)))
1416		goto put_anon;
1417
1418	if (folio_mapped(src)) {
1419		enum ttu_flags ttu = 0;
1420
1421		if (!folio_test_anon(src)) {
1422			/*
1423			 * In shared mappings, try_to_unmap could potentially
1424			 * call huge_pmd_unshare.  Because of this, take
1425			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1426			 * to let lower levels know we have taken the lock.
1427			 */
1428			mapping = hugetlb_page_mapping_lock_write(&src->page);
1429			if (unlikely(!mapping))
1430				goto unlock_put_anon;
1431
1432			ttu = TTU_RMAP_LOCKED;
1433		}
1434
1435		try_to_migrate(src, ttu);
1436		page_was_mapped = 1;
1437
1438		if (ttu & TTU_RMAP_LOCKED)
1439			i_mmap_unlock_write(mapping);
1440	}
1441
1442	if (!folio_mapped(src))
1443		rc = move_to_new_folio(dst, src, mode);
1444
1445	if (page_was_mapped)
1446		remove_migration_ptes(src,
1447			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1448
1449unlock_put_anon:
1450	folio_unlock(dst);
1451
1452put_anon:
1453	if (anon_vma)
1454		put_anon_vma(anon_vma);
1455
1456	if (rc == MIGRATEPAGE_SUCCESS) {
1457		move_hugetlb_state(src, dst, reason);
1458		put_new_folio = NULL;
1459	}
1460
1461out_unlock:
1462	folio_unlock(src);
1463out:
1464	if (rc == MIGRATEPAGE_SUCCESS)
1465		folio_putback_active_hugetlb(src);
1466	else if (rc != -EAGAIN)
1467		list_move_tail(&src->lru, ret);
1468
1469	/*
1470	 * If migration was not successful and there's a freeing callback, use
1471	 * it.  Otherwise, put_page() will drop the reference grabbed during
1472	 * isolation.
1473	 */
1474	if (put_new_folio)
1475		put_new_folio(dst, private);
1476	else
1477		folio_putback_active_hugetlb(dst);
1478
1479	return rc;
1480}
1481
1482static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1483{
1484	int rc;
1485
1486	folio_lock(folio);
1487	rc = split_folio_to_list(folio, split_folios);
1488	folio_unlock(folio);
1489	if (!rc)
1490		list_move_tail(&folio->lru, split_folios);
1491
1492	return rc;
1493}
1494
1495#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1496#define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1497#else
1498#define NR_MAX_BATCHED_MIGRATION	512
1499#endif
1500#define NR_MAX_MIGRATE_PAGES_RETRY	10
1501#define NR_MAX_MIGRATE_ASYNC_RETRY	3
1502#define NR_MAX_MIGRATE_SYNC_RETRY					\
1503	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1504
1505struct migrate_pages_stats {
1506	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1507				   units of base pages */
1508	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1509				   units of base pages.  Untried folios aren't counted */
1510	int nr_thp_succeeded;	/* THP migrated successfully */
1511	int nr_thp_failed;	/* THP failed to be migrated */
1512	int nr_thp_split;	/* THP split before migrating */
1513	int nr_split;	/* Large folio (include THP) split before migrating */
1514};
1515
1516/*
1517 * Returns the number of hugetlb folios that were not migrated, or an error code
1518 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1519 * any more because the list has become empty or no retryable hugetlb folios
1520 * exist any more. It is caller's responsibility to call putback_movable_pages()
1521 * only if ret != 0.
1522 */
1523static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1524			    free_folio_t put_new_folio, unsigned long private,
1525			    enum migrate_mode mode, int reason,
1526			    struct migrate_pages_stats *stats,
1527			    struct list_head *ret_folios)
1528{
1529	int retry = 1;
1530	int nr_failed = 0;
1531	int nr_retry_pages = 0;
1532	int pass = 0;
1533	struct folio *folio, *folio2;
1534	int rc, nr_pages;
1535
1536	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1537		retry = 0;
1538		nr_retry_pages = 0;
1539
1540		list_for_each_entry_safe(folio, folio2, from, lru) {
1541			if (!folio_test_hugetlb(folio))
1542				continue;
1543
1544			nr_pages = folio_nr_pages(folio);
1545
1546			cond_resched();
1547
1548			/*
1549			 * Migratability of hugepages depends on architectures and
1550			 * their size.  This check is necessary because some callers
1551			 * of hugepage migration like soft offline and memory
1552			 * hotremove don't walk through page tables or check whether
1553			 * the hugepage is pmd-based or not before kicking migration.
1554			 */
1555			if (!hugepage_migration_supported(folio_hstate(folio))) {
1556				nr_failed++;
1557				stats->nr_failed_pages += nr_pages;
1558				list_move_tail(&folio->lru, ret_folios);
1559				continue;
1560			}
1561
1562			rc = unmap_and_move_huge_page(get_new_folio,
1563						      put_new_folio, private,
1564						      folio, pass > 2, mode,
1565						      reason, ret_folios);
1566			/*
1567			 * The rules are:
1568			 *	Success: hugetlb folio will be put back
1569			 *	-EAGAIN: stay on the from list
1570			 *	-ENOMEM: stay on the from list
1571			 *	Other errno: put on ret_folios list
1572			 */
1573			switch(rc) {
1574			case -ENOMEM:
1575				/*
1576				 * When memory is low, don't bother to try to migrate
1577				 * other folios, just exit.
1578				 */
1579				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1580				return -ENOMEM;
1581			case -EAGAIN:
1582				retry++;
1583				nr_retry_pages += nr_pages;
1584				break;
1585			case MIGRATEPAGE_SUCCESS:
1586				stats->nr_succeeded += nr_pages;
1587				break;
1588			default:
1589				/*
1590				 * Permanent failure (-EBUSY, etc.):
1591				 * unlike -EAGAIN case, the failed folio is
1592				 * removed from migration folio list and not
1593				 * retried in the next outer loop.
1594				 */
1595				nr_failed++;
1596				stats->nr_failed_pages += nr_pages;
1597				break;
1598			}
1599		}
1600	}
1601	/*
1602	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1603	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1604	 * folios as failed.
1605	 */
1606	nr_failed += retry;
1607	stats->nr_failed_pages += nr_retry_pages;
1608
1609	return nr_failed;
1610}
1611
1612/*
1613 * migrate_pages_batch() first unmaps folios in the from list as many as
1614 * possible, then move the unmapped folios.
1615 *
1616 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1617 * lock or bit when we have locked more than one folio.  Which may cause
1618 * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1619 * length of the from list must be <= 1.
1620 */
1621static int migrate_pages_batch(struct list_head *from,
1622		new_folio_t get_new_folio, free_folio_t put_new_folio,
1623		unsigned long private, enum migrate_mode mode, int reason,
1624		struct list_head *ret_folios, struct list_head *split_folios,
1625		struct migrate_pages_stats *stats, int nr_pass)
1626{
1627	int retry = 1;
1628	int thp_retry = 1;
1629	int nr_failed = 0;
1630	int nr_retry_pages = 0;
1631	int pass = 0;
1632	bool is_thp = false;
1633	bool is_large = false;
1634	struct folio *folio, *folio2, *dst = NULL, *dst2;
1635	int rc, rc_saved = 0, nr_pages;
1636	LIST_HEAD(unmap_folios);
1637	LIST_HEAD(dst_folios);
1638	bool nosplit = (reason == MR_NUMA_MISPLACED);
1639
1640	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1641			!list_empty(from) && !list_is_singular(from));
1642
1643	for (pass = 0; pass < nr_pass && retry; pass++) {
1644		retry = 0;
1645		thp_retry = 0;
1646		nr_retry_pages = 0;
1647
1648		list_for_each_entry_safe(folio, folio2, from, lru) {
1649			is_large = folio_test_large(folio);
1650			is_thp = is_large && folio_test_pmd_mappable(folio);
1651			nr_pages = folio_nr_pages(folio);
1652
 
1653			cond_resched();
1654
1655			/*
1656			 * Large folio migration might be unsupported or
1657			 * the allocation might be failed so we should retry
1658			 * on the same folio with the large folio split
1659			 * to normal folios.
1660			 *
1661			 * Split folios are put in split_folios, and
1662			 * we will migrate them after the rest of the
1663			 * list is processed.
1664			 */
1665			if (!thp_migration_supported() && is_thp) {
1666				nr_failed++;
1667				stats->nr_thp_failed++;
1668				if (!try_split_folio(folio, split_folios)) {
1669					stats->nr_thp_split++;
1670					stats->nr_split++;
1671					continue;
1672				}
1673				stats->nr_failed_pages += nr_pages;
1674				list_move_tail(&folio->lru, ret_folios);
1675				continue;
1676			}
1677
1678			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1679					private, folio, &dst, mode, reason,
1680					ret_folios);
1681			/*
1682			 * The rules are:
1683			 *	Success: folio will be freed
1684			 *	Unmap: folio will be put on unmap_folios list,
1685			 *	       dst folio put on dst_folios list
1686			 *	-EAGAIN: stay on the from list
1687			 *	-ENOMEM: stay on the from list
1688			 *	Other errno: put on ret_folios list
1689			 */
1690			switch(rc) {
1691			case -ENOMEM:
1692				/*
1693				 * When memory is low, don't bother to try to migrate
1694				 * other folios, move unmapped folios, then exit.
1695				 */
1696				nr_failed++;
1697				stats->nr_thp_failed += is_thp;
1698				/* Large folio NUMA faulting doesn't split to retry. */
1699				if (is_large && !nosplit) {
1700					int ret = try_split_folio(folio, split_folios);
1701
1702					if (!ret) {
1703						stats->nr_thp_split += is_thp;
1704						stats->nr_split++;
1705						break;
1706					} else if (reason == MR_LONGTERM_PIN &&
1707						   ret == -EAGAIN) {
1708						/*
1709						 * Try again to split large folio to
1710						 * mitigate the failure of longterm pinning.
1711						 */
1712						retry++;
1713						thp_retry += is_thp;
1714						nr_retry_pages += nr_pages;
1715						/* Undo duplicated failure counting. */
1716						nr_failed--;
1717						stats->nr_thp_failed -= is_thp;
1718						break;
1719					}
1720				}
1721
1722				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1723				/* nr_failed isn't updated for not used */
1724				stats->nr_thp_failed += thp_retry;
1725				rc_saved = rc;
1726				if (list_empty(&unmap_folios))
1727					goto out;
1728				else
1729					goto move;
1730			case -EAGAIN:
1731				retry++;
1732				thp_retry += is_thp;
1733				nr_retry_pages += nr_pages;
1734				break;
1735			case MIGRATEPAGE_SUCCESS:
1736				stats->nr_succeeded += nr_pages;
1737				stats->nr_thp_succeeded += is_thp;
1738				break;
1739			case MIGRATEPAGE_UNMAP:
1740				list_move_tail(&folio->lru, &unmap_folios);
1741				list_add_tail(&dst->lru, &dst_folios);
1742				break;
1743			default:
1744				/*
1745				 * Permanent failure (-EBUSY, etc.):
1746				 * unlike -EAGAIN case, the failed folio is
1747				 * removed from migration folio list and not
1748				 * retried in the next outer loop.
1749				 */
1750				nr_failed++;
1751				stats->nr_thp_failed += is_thp;
1752				stats->nr_failed_pages += nr_pages;
1753				break;
1754			}
1755		}
1756	}
1757	nr_failed += retry;
1758	stats->nr_thp_failed += thp_retry;
1759	stats->nr_failed_pages += nr_retry_pages;
1760move:
1761	/* Flush TLBs for all unmapped folios */
1762	try_to_unmap_flush();
 
1763
1764	retry = 1;
1765	for (pass = 0; pass < nr_pass && retry; pass++) {
1766		retry = 0;
1767		thp_retry = 0;
1768		nr_retry_pages = 0;
1769
1770		dst = list_first_entry(&dst_folios, struct folio, lru);
1771		dst2 = list_next_entry(dst, lru);
1772		list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1773			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1774			nr_pages = folio_nr_pages(folio);
1775
1776			cond_resched();
 
 
 
 
 
 
 
 
 
1777
1778			rc = migrate_folio_move(put_new_folio, private,
1779						folio, dst, mode,
1780						reason, ret_folios);
1781			/*
1782			 * The rules are:
1783			 *	Success: folio will be freed
1784			 *	-EAGAIN: stay on the unmap_folios list
1785			 *	Other errno: put on ret_folios list
1786			 */
1787			switch(rc) {
1788			case -EAGAIN:
1789				retry++;
1790				thp_retry += is_thp;
1791				nr_retry_pages += nr_pages;
1792				break;
1793			case MIGRATEPAGE_SUCCESS:
1794				stats->nr_succeeded += nr_pages;
1795				stats->nr_thp_succeeded += is_thp;
1796				break;
1797			default:
1798				nr_failed++;
1799				stats->nr_thp_failed += is_thp;
1800				stats->nr_failed_pages += nr_pages;
1801				break;
1802			}
1803			dst = dst2;
1804			dst2 = list_next_entry(dst, lru);
1805		}
1806	}
1807	nr_failed += retry;
1808	stats->nr_thp_failed += thp_retry;
1809	stats->nr_failed_pages += nr_retry_pages;
1810
1811	rc = rc_saved ? : nr_failed;
1812out:
1813	/* Cleanup remaining folios */
1814	dst = list_first_entry(&dst_folios, struct folio, lru);
1815	dst2 = list_next_entry(dst, lru);
1816	list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1817		int old_page_state = 0;
1818		struct anon_vma *anon_vma = NULL;
1819
1820		__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1821		migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1822				       anon_vma, true, ret_folios);
1823		list_del(&dst->lru);
1824		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1825		dst = dst2;
1826		dst2 = list_next_entry(dst, lru);
1827	}
1828
1829	return rc;
1830}
1831
1832static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1833		free_folio_t put_new_folio, unsigned long private,
1834		enum migrate_mode mode, int reason,
1835		struct list_head *ret_folios, struct list_head *split_folios,
1836		struct migrate_pages_stats *stats)
1837{
1838	int rc, nr_failed = 0;
1839	LIST_HEAD(folios);
1840	struct migrate_pages_stats astats;
1841
1842	memset(&astats, 0, sizeof(astats));
1843	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1844	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1845				 reason, &folios, split_folios, &astats,
1846				 NR_MAX_MIGRATE_ASYNC_RETRY);
1847	stats->nr_succeeded += astats.nr_succeeded;
1848	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1849	stats->nr_thp_split += astats.nr_thp_split;
1850	stats->nr_split += astats.nr_split;
1851	if (rc < 0) {
1852		stats->nr_failed_pages += astats.nr_failed_pages;
1853		stats->nr_thp_failed += astats.nr_thp_failed;
1854		list_splice_tail(&folios, ret_folios);
1855		return rc;
1856	}
1857	stats->nr_thp_failed += astats.nr_thp_split;
1858	/*
1859	 * Do not count rc, as pages will be retried below.
1860	 * Count nr_split only, since it includes nr_thp_split.
1861	 */
1862	nr_failed += astats.nr_split;
1863	/*
1864	 * Fall back to migrate all failed folios one by one synchronously. All
1865	 * failed folios except split THPs will be retried, so their failure
1866	 * isn't counted
1867	 */
1868	list_splice_tail_init(&folios, from);
1869	while (!list_empty(from)) {
1870		list_move(from->next, &folios);
1871		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1872					 private, mode, reason, ret_folios,
1873					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1874		list_splice_tail_init(&folios, ret_folios);
1875		if (rc < 0)
1876			return rc;
1877		nr_failed += rc;
1878	}
1879
1880	return nr_failed;
 
 
 
 
 
1881}
1882
1883/*
1884 * migrate_pages - migrate the folios specified in a list, to the free folios
1885 *		   supplied as the target for the page migration
1886 *
1887 * @from:		The list of folios to be migrated.
1888 * @get_new_folio:	The function used to allocate free folios to be used
1889 *			as the target of the folio migration.
1890 * @put_new_folio:	The function used to free target folios if migration
1891 *			fails, or NULL if no special handling is necessary.
1892 * @private:		Private data to be passed on to get_new_folio()
1893 * @mode:		The migration mode that specifies the constraints for
1894 *			folio migration, if any.
1895 * @reason:		The reason for folio migration.
1896 * @ret_succeeded:	Set to the number of folios migrated successfully if
1897 *			the caller passes a non-NULL pointer.
1898 *
1899 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1900 * are movable any more because the list has become empty or no retryable folios
1901 * exist any more. It is caller's responsibility to call putback_movable_pages()
1902 * only if ret != 0.
1903 *
1904 * Returns the number of {normal folio, large folio, hugetlb} that were not
1905 * migrated, or an error code. The number of large folio splits will be
1906 * considered as the number of non-migrated large folio, no matter how many
1907 * split folios of the large folio are migrated successfully.
1908 */
1909int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
1910		free_folio_t put_new_folio, unsigned long private,
1911		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1912{
1913	int rc, rc_gather;
1914	int nr_pages;
1915	struct folio *folio, *folio2;
1916	LIST_HEAD(folios);
1917	LIST_HEAD(ret_folios);
1918	LIST_HEAD(split_folios);
1919	struct migrate_pages_stats stats;
1920
1921	trace_mm_migrate_pages_start(mode, reason);
1922
1923	memset(&stats, 0, sizeof(stats));
1924
1925	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
1926				     mode, reason, &stats, &ret_folios);
1927	if (rc_gather < 0)
1928		goto out;
1929
1930again:
1931	nr_pages = 0;
1932	list_for_each_entry_safe(folio, folio2, from, lru) {
1933		/* Retried hugetlb folios will be kept in list  */
1934		if (folio_test_hugetlb(folio)) {
1935			list_move_tail(&folio->lru, &ret_folios);
1936			continue;
1937		}
1938
1939		nr_pages += folio_nr_pages(folio);
1940		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1941			break;
1942	}
1943	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1944		list_cut_before(&folios, from, &folio2->lru);
1945	else
1946		list_splice_init(from, &folios);
1947	if (mode == MIGRATE_ASYNC)
1948		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1949				private, mode, reason, &ret_folios,
1950				&split_folios, &stats,
1951				NR_MAX_MIGRATE_PAGES_RETRY);
1952	else
1953		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
1954				private, mode, reason, &ret_folios,
1955				&split_folios, &stats);
1956	list_splice_tail_init(&folios, &ret_folios);
1957	if (rc < 0) {
1958		rc_gather = rc;
1959		list_splice_tail(&split_folios, &ret_folios);
1960		goto out;
1961	}
1962	if (!list_empty(&split_folios)) {
1963		/*
1964		 * Failure isn't counted since all split folios of a large folio
1965		 * is counted as 1 failure already.  And, we only try to migrate
1966		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
1967		 */
1968		migrate_pages_batch(&split_folios, get_new_folio,
1969				put_new_folio, private, MIGRATE_ASYNC, reason,
1970				&ret_folios, NULL, &stats, 1);
1971		list_splice_tail_init(&split_folios, &ret_folios);
1972	}
1973	rc_gather += rc;
1974	if (!list_empty(from))
1975		goto again;
1976out:
1977	/*
1978	 * Put the permanent failure folio back to migration list, they
1979	 * will be put back to the right list by the caller.
1980	 */
1981	list_splice(&ret_folios, from);
 
 
1982
1983	/*
1984	 * Return 0 in case all split folios of fail-to-migrate large folios
1985	 * are migrated successfully.
1986	 */
1987	if (list_empty(from))
1988		rc_gather = 0;
1989
1990	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
1991	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
1992	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
1993	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
1994	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
1995	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
1996			       stats.nr_thp_succeeded, stats.nr_thp_failed,
1997			       stats.nr_thp_split, stats.nr_split, mode,
1998			       reason);
1999
2000	if (ret_succeeded)
2001		*ret_succeeded = stats.nr_succeeded;
 
2002
2003	return rc_gather;
2004}
 
2005
2006struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2007{
2008	struct migration_target_control *mtc;
2009	gfp_t gfp_mask;
2010	unsigned int order = 0;
2011	int nid;
2012	int zidx;
2013
2014	mtc = (struct migration_target_control *)private;
2015	gfp_mask = mtc->gfp_mask;
2016	nid = mtc->nid;
2017	if (nid == NUMA_NO_NODE)
2018		nid = folio_nid(src);
2019
2020	if (folio_test_hugetlb(src)) {
2021		struct hstate *h = folio_hstate(src);
 
 
 
2022
2023		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2024		return alloc_hugetlb_folio_nodemask(h, nid,
2025						mtc->nmask, gfp_mask);
2026	}
2027
2028	if (folio_test_large(src)) {
 
 
 
 
 
 
 
 
 
 
 
2029		/*
2030		 * clear __GFP_RECLAIM to make the migration callback
2031		 * consistent with regular THP allocations.
 
2032		 */
2033		gfp_mask &= ~__GFP_RECLAIM;
2034		gfp_mask |= GFP_TRANSHUGE;
2035		order = folio_order(src);
2036	}
2037	zidx = zone_idx(folio_zone(src));
2038	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2039		gfp_mask |= __GFP_HIGHMEM;
2040
2041	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2042}
2043
2044#ifdef CONFIG_NUMA
2045
2046static int store_status(int __user *status, int start, int value, int nr)
2047{
2048	while (nr-- > 0) {
2049		if (put_user(value, status + start))
2050			return -EFAULT;
2051		start++;
2052	}
2053
2054	return 0;
2055}
2056
2057static int do_move_pages_to_node(struct list_head *pagelist, int node)
2058{
2059	int err;
2060	struct migration_target_control mtc = {
2061		.nid = node,
2062		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2063	};
2064
2065	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2066		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2067	if (err)
2068		putback_movable_pages(pagelist);
2069	return err;
2070}
2071
2072/*
2073 * Resolves the given address to a struct page, isolates it from the LRU and
2074 * puts it to the given pagelist.
2075 * Returns:
2076 *     errno - if the page cannot be found/isolated
2077 *     0 - when it doesn't have to be migrated because it is already on the
2078 *         target node
2079 *     1 - when it has been queued
2080 */
2081static int add_page_for_migration(struct mm_struct *mm, const void __user *p,
2082		int node, struct list_head *pagelist, bool migrate_all)
2083{
2084	struct vm_area_struct *vma;
2085	unsigned long addr;
2086	struct page *page;
2087	struct folio *folio;
2088	int err;
2089
2090	mmap_read_lock(mm);
2091	addr = (unsigned long)untagged_addr_remote(mm, p);
2092
2093	err = -EFAULT;
2094	vma = vma_lookup(mm, addr);
2095	if (!vma || !vma_migratable(vma))
2096		goto out;
2097
2098	/* FOLL_DUMP to ignore special (like zero) pages */
2099	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2100
2101	err = PTR_ERR(page);
2102	if (IS_ERR(page))
2103		goto out;
2104
2105	err = -ENOENT;
2106	if (!page)
2107		goto out;
2108
2109	folio = page_folio(page);
2110	if (folio_is_zone_device(folio))
2111		goto out_putfolio;
2112
2113	err = 0;
2114	if (folio_nid(folio) == node)
2115		goto out_putfolio;
 
 
 
 
2116
2117	err = -EACCES;
2118	if (page_mapcount(page) > 1 && !migrate_all)
2119		goto out_putfolio;
2120
2121	err = -EBUSY;
2122	if (folio_test_hugetlb(folio)) {
2123		if (isolate_hugetlb(folio, pagelist))
2124			err = 1;
2125	} else {
2126		if (!folio_isolate_lru(folio))
2127			goto out_putfolio;
2128
2129		err = 1;
2130		list_add_tail(&folio->lru, pagelist);
2131		node_stat_mod_folio(folio,
2132			NR_ISOLATED_ANON + folio_is_file_lru(folio),
2133			folio_nr_pages(folio));
2134	}
2135out_putfolio:
2136	/*
2137	 * Either remove the duplicate refcount from folio_isolate_lru()
2138	 * or drop the folio ref if it was not isolated.
2139	 */
2140	folio_put(folio);
2141out:
2142	mmap_read_unlock(mm);
2143	return err;
2144}
2145
2146static int move_pages_and_store_status(int node,
2147		struct list_head *pagelist, int __user *status,
2148		int start, int i, unsigned long nr_pages)
2149{
2150	int err;
2151
2152	if (list_empty(pagelist))
2153		return 0;
2154
2155	err = do_move_pages_to_node(pagelist, node);
2156	if (err) {
2157		/*
2158		 * Positive err means the number of failed
2159		 * pages to migrate.  Since we are going to
2160		 * abort and return the number of non-migrated
2161		 * pages, so need to include the rest of the
2162		 * nr_pages that have not been attempted as
2163		 * well.
2164		 */
2165		if (err > 0)
2166			err += nr_pages - i;
2167		return err;
2168	}
2169	return store_status(status, start, node, i - start);
2170}
2171
2172/*
2173 * Migrate an array of page address onto an array of nodes and fill
2174 * the corresponding array of status.
2175 */
2176static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2177			 unsigned long nr_pages,
2178			 const void __user * __user *pages,
2179			 const int __user *nodes,
2180			 int __user *status, int flags)
2181{
2182	compat_uptr_t __user *compat_pages = (void __user *)pages;
2183	int current_node = NUMA_NO_NODE;
2184	LIST_HEAD(pagelist);
2185	int start, i;
2186	int err = 0, err1;
 
 
 
 
 
 
2187
2188	lru_cache_disable();
 
 
 
 
2189
2190	for (i = start = 0; i < nr_pages; i++) {
2191		const void __user *p;
2192		int node;
 
2193
2194		err = -EFAULT;
2195		if (in_compat_syscall()) {
2196			compat_uptr_t cp;
2197
2198			if (get_user(cp, compat_pages + i))
2199				goto out_flush;
 
 
2200
2201			p = compat_ptr(cp);
2202		} else {
2203			if (get_user(p, pages + i))
2204				goto out_flush;
2205		}
2206		if (get_user(node, nodes + i))
2207			goto out_flush;
2208
2209		err = -ENODEV;
2210		if (node < 0 || node >= MAX_NUMNODES)
2211			goto out_flush;
2212		if (!node_state(node, N_MEMORY))
2213			goto out_flush;
2214
2215		err = -EACCES;
2216		if (!node_isset(node, task_nodes))
2217			goto out_flush;
2218
2219		if (current_node == NUMA_NO_NODE) {
2220			current_node = node;
2221			start = i;
2222		} else if (node != current_node) {
2223			err = move_pages_and_store_status(current_node,
2224					&pagelist, status, start, i, nr_pages);
2225			if (err)
2226				goto out;
2227			start = i;
2228			current_node = node;
2229		}
2230
2231		/*
2232		 * Errors in the page lookup or isolation are not fatal and we simply
2233		 * report them via status
2234		 */
2235		err = add_page_for_migration(mm, p, current_node, &pagelist,
2236					     flags & MPOL_MF_MOVE_ALL);
2237
2238		if (err > 0) {
2239			/* The page is successfully queued for migration */
2240			continue;
2241		}
2242
2243		/*
2244		 * The move_pages() man page does not have an -EEXIST choice, so
2245		 * use -EFAULT instead.
2246		 */
2247		if (err == -EEXIST)
2248			err = -EFAULT;
2249
2250		/*
2251		 * If the page is already on the target node (!err), store the
2252		 * node, otherwise, store the err.
2253		 */
2254		err = store_status(status, i, err ? : current_node, 1);
2255		if (err)
2256			goto out_flush;
2257
2258		err = move_pages_and_store_status(current_node, &pagelist,
2259				status, start, i, nr_pages);
2260		if (err) {
2261			/* We have accounted for page i */
2262			if (err > 0)
2263				err--;
2264			goto out;
2265		}
2266		current_node = NUMA_NO_NODE;
2267	}
2268out_flush:
2269	/* Make sure we do not overwrite the existing error */
2270	err1 = move_pages_and_store_status(current_node, &pagelist,
2271				status, start, i, nr_pages);
2272	if (err >= 0)
2273		err = err1;
2274out:
2275	lru_cache_enable();
2276	return err;
2277}
2278
2279/*
2280 * Determine the nodes of an array of pages and store it in an array of status.
2281 */
2282static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2283				const void __user **pages, int *status)
2284{
2285	unsigned long i;
2286
2287	mmap_read_lock(mm);
2288
2289	for (i = 0; i < nr_pages; i++) {
2290		unsigned long addr = (unsigned long)(*pages);
2291		struct vm_area_struct *vma;
2292		struct page *page;
2293		int err = -EFAULT;
2294
2295		vma = vma_lookup(mm, addr);
2296		if (!vma)
2297			goto set_status;
2298
2299		/* FOLL_DUMP to ignore special (like zero) pages */
2300		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2301
2302		err = PTR_ERR(page);
2303		if (IS_ERR(page))
2304			goto set_status;
2305
2306		err = -ENOENT;
2307		if (!page)
 
2308			goto set_status;
2309
2310		if (!is_zone_device_page(page))
2311			err = page_to_nid(page);
2312
2313		put_page(page);
2314set_status:
2315		*status = err;
2316
2317		pages++;
2318		status++;
2319	}
2320
2321	mmap_read_unlock(mm);
2322}
2323
2324static int get_compat_pages_array(const void __user *chunk_pages[],
2325				  const void __user * __user *pages,
2326				  unsigned long chunk_nr)
2327{
2328	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2329	compat_uptr_t p;
2330	int i;
2331
2332	for (i = 0; i < chunk_nr; i++) {
2333		if (get_user(p, pages32 + i))
2334			return -EFAULT;
2335		chunk_pages[i] = compat_ptr(p);
2336	}
2337
2338	return 0;
2339}
2340
2341/*
2342 * Determine the nodes of a user array of pages and store it in
2343 * a user array of status.
2344 */
2345static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2346			 const void __user * __user *pages,
2347			 int __user *status)
2348{
2349#define DO_PAGES_STAT_CHUNK_NR 16UL
2350	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2351	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2352
2353	while (nr_pages) {
2354		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
 
 
 
 
2355
2356		if (in_compat_syscall()) {
2357			if (get_compat_pages_array(chunk_pages, pages,
2358						   chunk_nr))
2359				break;
2360		} else {
2361			if (copy_from_user(chunk_pages, pages,
2362				      chunk_nr * sizeof(*chunk_pages)))
2363				break;
2364		}
2365
2366		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2367
2368		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2369			break;
2370
2371		pages += chunk_nr;
2372		status += chunk_nr;
2373		nr_pages -= chunk_nr;
2374	}
2375	return nr_pages ? -EFAULT : 0;
2376}
2377
2378static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
 
 
 
 
 
 
 
2379{
 
2380	struct task_struct *task;
2381	struct mm_struct *mm;
 
 
2382
2383	/*
2384	 * There is no need to check if current process has the right to modify
2385	 * the specified process when they are same.
2386	 */
2387	if (!pid) {
2388		mmget(current->mm);
2389		*mem_nodes = cpuset_mems_allowed(current);
2390		return current->mm;
2391	}
2392
2393	/* Find the mm_struct */
2394	rcu_read_lock();
2395	task = find_task_by_vpid(pid);
2396	if (!task) {
2397		rcu_read_unlock();
2398		return ERR_PTR(-ESRCH);
2399	}
2400	get_task_struct(task);
2401
2402	/*
2403	 * Check if this process has the right to modify the specified
2404	 * process. Use the regular "ptrace_may_access()" checks.
2405	 */
2406	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 
 
 
 
 
2407		rcu_read_unlock();
2408		mm = ERR_PTR(-EPERM);
2409		goto out;
2410	}
2411	rcu_read_unlock();
2412
2413	mm = ERR_PTR(security_task_movememory(task));
2414	if (IS_ERR(mm))
2415		goto out;
2416	*mem_nodes = cpuset_mems_allowed(task);
 
2417	mm = get_task_mm(task);
2418out:
2419	put_task_struct(task);
 
2420	if (!mm)
2421		mm = ERR_PTR(-EINVAL);
2422	return mm;
2423}
2424
2425/*
2426 * Move a list of pages in the address space of the currently executing
2427 * process.
2428 */
2429static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2430			     const void __user * __user *pages,
2431			     const int __user *nodes,
2432			     int __user *status, int flags)
2433{
2434	struct mm_struct *mm;
2435	int err;
2436	nodemask_t task_nodes;
2437
2438	/* Check flags */
2439	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2440		return -EINVAL;
2441
2442	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2443		return -EPERM;
2444
2445	mm = find_mm_struct(pid, &task_nodes);
2446	if (IS_ERR(mm))
2447		return PTR_ERR(mm);
2448
2449	if (nodes)
2450		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2451				    nodes, status, flags);
2452	else
2453		err = do_pages_stat(mm, nr_pages, pages, status);
2454
2455	mmput(mm);
2456	return err;
 
 
 
 
2457}
2458
2459SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2460		const void __user * __user *, pages,
2461		const int __user *, nodes,
2462		int __user *, status, int, flags)
2463{
2464	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
2465}
2466
2467#ifdef CONFIG_NUMA_BALANCING
2468/*
2469 * Returns true if this is a safe migration target node for misplaced NUMA
2470 * pages. Currently it only checks the watermarks which is crude.
2471 */
2472static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2473				   unsigned long nr_migrate_pages)
2474{
2475	int z;
2476
2477	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2478		struct zone *zone = pgdat->node_zones + z;
2479
2480		if (!managed_zone(zone))
 
 
 
2481			continue;
2482
2483		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2484		if (!zone_watermark_ok(zone, 0,
2485				       high_wmark_pages(zone) +
2486				       nr_migrate_pages,
2487				       ZONE_MOVABLE, 0))
2488			continue;
2489		return true;
2490	}
2491	return false;
2492}
2493
2494static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2495					   unsigned long data)
 
2496{
2497	int nid = (int) data;
2498	int order = folio_order(src);
2499	gfp_t gfp = __GFP_THISNODE;
 
 
 
 
 
 
 
 
2500
2501	if (order > 0)
2502		gfp |= GFP_TRANSHUGE_LIGHT;
2503	else {
2504		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2505			__GFP_NOWARN;
2506		gfp &= ~__GFP_RECLAIM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2507	}
2508	return __folio_alloc_node(gfp, order, nid);
 
 
 
 
 
 
 
 
2509}
2510
2511static int numamigrate_isolate_folio(pg_data_t *pgdat, struct folio *folio)
2512{
2513	int nr_pages = folio_nr_pages(folio);
 
 
2514
2515	/* Avoid migrating to a node that is nearly full */
2516	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2517		int z;
2518
2519		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2520			return 0;
2521		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2522			if (managed_zone(pgdat->node_zones + z))
2523				break;
2524		}
2525
2526		/*
2527		 * If there are no managed zones, it should not proceed
2528		 * further.
2529		 */
2530		if (z < 0)
2531			return 0;
2532
2533		wakeup_kswapd(pgdat->node_zones + z, 0,
2534			      folio_order(folio), ZONE_MOVABLE);
2535		return 0;
2536	}
2537
2538	if (!folio_isolate_lru(folio))
2539		return 0;
2540
2541	node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2542			    nr_pages);
2543
2544	/*
2545	 * Isolating the folio has taken another reference, so the
2546	 * caller's reference can be safely dropped without the folio
2547	 * disappearing underneath us during migration.
2548	 */
2549	folio_put(folio);
2550	return 1;
2551}
2552
 
 
 
 
 
 
 
 
 
 
 
 
2553/*
2554 * Attempt to migrate a misplaced folio to the specified destination
2555 * node. Caller is expected to have an elevated reference count on
2556 * the folio that will be dropped by this function before returning.
2557 */
2558int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma,
2559			    int node)
2560{
2561	pg_data_t *pgdat = NODE_DATA(node);
2562	int isolated;
2563	int nr_remaining;
2564	unsigned int nr_succeeded;
2565	LIST_HEAD(migratepages);
2566	int nr_pages = folio_nr_pages(folio);
2567
2568	/*
2569	 * Don't migrate file folios that are mapped in multiple processes
2570	 * with execute permissions as they are probably shared libraries.
2571	 * To check if the folio is shared, ideally we want to make sure
2572	 * every page is mapped to the same process. Doing that is very
2573	 * expensive, so check the estimated mapcount of the folio instead.
2574	 */
2575	if (folio_estimated_sharers(folio) != 1 && folio_is_file_lru(folio) &&
2576	    (vma->vm_flags & VM_EXEC))
2577		goto out;
2578
2579	/*
2580	 * Also do not migrate dirty folios as not all filesystems can move
2581	 * dirty folios in MIGRATE_ASYNC mode which is a waste of cycles.
 
2582	 */
2583	if (folio_is_file_lru(folio) && folio_test_dirty(folio))
2584		goto out;
2585
2586	isolated = numamigrate_isolate_folio(pgdat, folio);
2587	if (!isolated)
2588		goto out;
2589
2590	list_add(&folio->lru, &migratepages);
2591	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2592				     NULL, node, MIGRATE_ASYNC,
2593				     MR_NUMA_MISPLACED, &nr_succeeded);
2594	if (nr_remaining) {
2595		if (!list_empty(&migratepages)) {
2596			list_del(&folio->lru);
2597			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
2598					folio_is_file_lru(folio), -nr_pages);
2599			folio_putback_lru(folio);
2600		}
2601		isolated = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2602	}
2603	if (nr_succeeded) {
2604		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2605		if (!node_is_toptier(folio_nid(folio)) && node_is_toptier(node))
2606			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2607					    nr_succeeded);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2608	}
2609	BUG_ON(!list_empty(&migratepages));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2610	return isolated;
2611
2612out:
2613	folio_put(folio);
 
 
 
 
 
 
 
 
 
 
 
 
2614	return 0;
2615}
2616#endif /* CONFIG_NUMA_BALANCING */
 
2617#endif /* CONFIG_NUMA */