Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/freezer.h>
  29#include <linux/slab.h>
  30#include <linux/migrate.h>
  31#include <linux/ratelimit.h>
  32#include <linux/uuid.h>
  33#include <linux/semaphore.h>
 
 
 
  34#include <asm/unaligned.h>
 
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "hash.h"
  38#include "transaction.h"
  39#include "btrfs_inode.h"
  40#include "volumes.h"
  41#include "print-tree.h"
  42#include "async-thread.h"
  43#include "locking.h"
  44#include "tree-log.h"
  45#include "free-space-cache.h"
  46#include "inode-map.h"
  47#include "check-integrity.h"
  48#include "rcu-string.h"
  49#include "dev-replace.h"
  50#include "raid56.h"
  51#include "sysfs.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  52
  53#ifdef CONFIG_X86
  54#include <asm/cpufeature.h>
  55#endif
  56
  57static struct extent_io_ops btree_extent_io_ops;
  58static void end_workqueue_fn(struct btrfs_work *work);
  59static void free_fs_root(struct btrfs_root *root);
  60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  61				    int read_only);
  62static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  63					     struct btrfs_root *root);
  64static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  65static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  66				      struct btrfs_root *root);
  67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  69					struct extent_io_tree *dirty_pages,
  70					int mark);
  71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  72				       struct extent_io_tree *pinned_extents);
  73static int btrfs_cleanup_transaction(struct btrfs_root *root);
  74static void btrfs_error_commit_super(struct btrfs_root *root);
  75
  76/*
  77 * end_io_wq structs are used to do processing in task context when an IO is
  78 * complete.  This is used during reads to verify checksums, and it is used
  79 * by writes to insert metadata for new file extents after IO is complete.
  80 */
  81struct end_io_wq {
  82	struct bio *bio;
  83	bio_end_io_t *end_io;
  84	void *private;
  85	struct btrfs_fs_info *info;
  86	int error;
  87	int metadata;
  88	struct list_head list;
  89	struct btrfs_work work;
  90};
  91
  92/*
  93 * async submit bios are used to offload expensive checksumming
  94 * onto the worker threads.  They checksum file and metadata bios
  95 * just before they are sent down the IO stack.
  96 */
  97struct async_submit_bio {
  98	struct inode *inode;
  99	struct bio *bio;
 100	struct list_head list;
 101	extent_submit_bio_hook_t *submit_bio_start;
 102	extent_submit_bio_hook_t *submit_bio_done;
 103	int rw;
 104	int mirror_num;
 105	unsigned long bio_flags;
 106	/*
 107	 * bio_offset is optional, can be used if the pages in the bio
 108	 * can't tell us where in the file the bio should go
 109	 */
 110	u64 bio_offset;
 111	struct btrfs_work work;
 112	int error;
 113};
 114
 115/*
 116 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 118 * the level the eb occupies in the tree.
 119 *
 120 * Different roots are used for different purposes and may nest inside each
 121 * other and they require separate keysets.  As lockdep keys should be
 122 * static, assign keysets according to the purpose of the root as indicated
 123 * by btrfs_root->objectid.  This ensures that all special purpose roots
 124 * have separate keysets.
 125 *
 126 * Lock-nesting across peer nodes is always done with the immediate parent
 127 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 128 * subclass to avoid triggering lockdep warning in such cases.
 129 *
 130 * The key is set by the readpage_end_io_hook after the buffer has passed
 131 * csum validation but before the pages are unlocked.  It is also set by
 132 * btrfs_init_new_buffer on freshly allocated blocks.
 133 *
 134 * We also add a check to make sure the highest level of the tree is the
 135 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 136 * needs update as well.
 137 */
 138#ifdef CONFIG_DEBUG_LOCK_ALLOC
 139# if BTRFS_MAX_LEVEL != 8
 140#  error
 141# endif
 142
 143static struct btrfs_lockdep_keyset {
 144	u64			id;		/* root objectid */
 145	const char		*name_stem;	/* lock name stem */
 146	char			names[BTRFS_MAX_LEVEL + 1][20];
 147	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 148} btrfs_lockdep_keysets[] = {
 149	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 150	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 151	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 152	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 153	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 154	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 155	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 156	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 157	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 158	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 159	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 160	{ .id = 0,				.name_stem = "tree"	},
 161};
 162
 163void __init btrfs_init_lockdep(void)
 164{
 165	int i, j;
 166
 167	/* initialize lockdep class names */
 168	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 169		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 170
 171		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 172			snprintf(ks->names[j], sizeof(ks->names[j]),
 173				 "btrfs-%s-%02d", ks->name_stem, j);
 174	}
 175}
 176
 177void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 178				    int level)
 179{
 180	struct btrfs_lockdep_keyset *ks;
 181
 182	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 183
 184	/* find the matching keyset, id 0 is the default entry */
 185	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 186		if (ks->id == objectid)
 187			break;
 188
 189	lockdep_set_class_and_name(&eb->lock,
 190				   &ks->keys[level], ks->names[level]);
 191}
 192
 193#endif
 194
 195/*
 196 * extents on the btree inode are pretty simple, there's one extent
 197 * that covers the entire device
 198 */
 199static struct extent_map *btree_get_extent(struct inode *inode,
 200		struct page *page, size_t pg_offset, u64 start, u64 len,
 201		int create)
 202{
 203	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 204	struct extent_map *em;
 205	int ret;
 206
 207	read_lock(&em_tree->lock);
 208	em = lookup_extent_mapping(em_tree, start, len);
 209	if (em) {
 210		em->bdev =
 211			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 212		read_unlock(&em_tree->lock);
 213		goto out;
 214	}
 215	read_unlock(&em_tree->lock);
 216
 217	em = alloc_extent_map();
 218	if (!em) {
 219		em = ERR_PTR(-ENOMEM);
 220		goto out;
 221	}
 222	em->start = 0;
 223	em->len = (u64)-1;
 224	em->block_len = (u64)-1;
 225	em->block_start = 0;
 226	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 227
 228	write_lock(&em_tree->lock);
 229	ret = add_extent_mapping(em_tree, em, 0);
 230	if (ret == -EEXIST) {
 231		free_extent_map(em);
 232		em = lookup_extent_mapping(em_tree, start, len);
 233		if (!em)
 234			em = ERR_PTR(-EIO);
 235	} else if (ret) {
 236		free_extent_map(em);
 237		em = ERR_PTR(ret);
 238	}
 239	write_unlock(&em_tree->lock);
 240
 241out:
 242	return em;
 243}
 244
 245u32 btrfs_csum_data(char *data, u32 seed, size_t len)
 246{
 247	return btrfs_crc32c(seed, data, len);
 248}
 
 
 
 
 249
 250void btrfs_csum_final(u32 crc, char *result)
 251{
 252	put_unaligned_le32(~crc, result);
 253}
 254
 255/*
 256 * compute the csum for a btree block, and either verify it or write it
 257 * into the csum field of the block.
 258 */
 259static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
 260			   int verify)
 261{
 262	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 263	char *result = NULL;
 264	unsigned long len;
 265	unsigned long cur_len;
 266	unsigned long offset = BTRFS_CSUM_SIZE;
 267	char *kaddr;
 268	unsigned long map_start;
 269	unsigned long map_len;
 270	int err;
 271	u32 crc = ~(u32)0;
 272	unsigned long inline_result;
 273
 274	len = buf->len - offset;
 275	while (len > 0) {
 276		err = map_private_extent_buffer(buf, offset, 32,
 277					&kaddr, &map_start, &map_len);
 278		if (err)
 279			return 1;
 280		cur_len = min(len, map_len - (offset - map_start));
 281		crc = btrfs_csum_data(kaddr + offset - map_start,
 282				      crc, cur_len);
 283		len -= cur_len;
 284		offset += cur_len;
 285	}
 286	if (csum_size > sizeof(inline_result)) {
 287		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
 288		if (!result)
 289			return 1;
 290	} else {
 291		result = (char *)&inline_result;
 
 
 292	}
 293
 294	btrfs_csum_final(crc, result);
 
 295
 296	if (verify) {
 297		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 298			u32 val;
 299			u32 found = 0;
 300			memcpy(&found, result, csum_size);
 301
 302			read_extent_buffer(buf, &val, 0, csum_size);
 303			printk_ratelimited(KERN_INFO
 304				"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
 305				"level %d\n",
 306				root->fs_info->sb->s_id, buf->start,
 307				val, found, btrfs_header_level(buf));
 308			if (result != (char *)&inline_result)
 309				kfree(result);
 310			return 1;
 311		}
 312	} else {
 313		write_extent_buffer(buf, result, 0, csum_size);
 314	}
 315	if (result != (char *)&inline_result)
 316		kfree(result);
 317	return 0;
 318}
 319
 320/*
 321 * we can't consider a given block up to date unless the transid of the
 322 * block matches the transid in the parent node's pointer.  This is how we
 323 * detect blocks that either didn't get written at all or got written
 324 * in the wrong place.
 325 */
 326static int verify_parent_transid(struct extent_io_tree *io_tree,
 327				 struct extent_buffer *eb, u64 parent_transid,
 328				 int atomic)
 329{
 330	struct extent_state *cached_state = NULL;
 331	int ret;
 332	bool need_lock = (current->journal_info ==
 333			  (void *)BTRFS_SEND_TRANS_STUB);
 334
 335	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 336		return 0;
 337
 338	if (atomic)
 339		return -EAGAIN;
 340
 341	if (need_lock) {
 342		btrfs_tree_read_lock(eb);
 343		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 
 
 
 
 
 344	}
 
 
 345
 346	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 347			 0, &cached_state);
 348	if (extent_buffer_uptodate(eb) &&
 349	    btrfs_header_generation(eb) == parent_transid) {
 350		ret = 0;
 351		goto out;
 
 
 
 
 352	}
 353	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
 354		       "found %llu\n",
 355		       eb->start, parent_transid, btrfs_header_generation(eb));
 356	ret = 1;
 357
 358	/*
 359	 * Things reading via commit roots that don't have normal protection,
 360	 * like send, can have a really old block in cache that may point at a
 361	 * block that has been free'd and re-allocated.  So don't clear uptodate
 362	 * if we find an eb that is under IO (dirty/writeback) because we could
 363	 * end up reading in the stale data and then writing it back out and
 364	 * making everybody very sad.
 365	 */
 366	if (!extent_buffer_under_io(eb))
 367		clear_extent_buffer_uptodate(eb);
 368out:
 369	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 370			     &cached_state, GFP_NOFS);
 371	btrfs_tree_read_unlock_blocking(eb);
 372	return ret;
 373}
 374
 375/*
 376 * Return 0 if the superblock checksum type matches the checksum value of that
 377 * algorithm. Pass the raw disk superblock data.
 378 */
 379static int btrfs_check_super_csum(char *raw_disk_sb)
 
 380{
 381	struct btrfs_super_block *disk_sb =
 382		(struct btrfs_super_block *)raw_disk_sb;
 383	u16 csum_type = btrfs_super_csum_type(disk_sb);
 384	int ret = 0;
 385
 386	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 387		u32 crc = ~(u32)0;
 388		const int csum_size = sizeof(crc);
 389		char result[csum_size];
 390
 391		/*
 392		 * The super_block structure does not span the whole
 393		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 394		 * is filled with zeros and is included in the checkum.
 395		 */
 396		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 397				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 398		btrfs_csum_final(crc, result);
 399
 400		if (memcmp(raw_disk_sb, result, csum_size))
 401			ret = 1;
 402
 403		if (ret && btrfs_super_generation(disk_sb) < 10) {
 404			printk(KERN_WARNING
 405				"BTRFS: super block crcs don't match, older mkfs detected\n");
 406			ret = 0;
 407		}
 408	}
 
 
 
 
 
 409
 410	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 411		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
 412				csum_type);
 413		ret = 1;
 
 
 
 
 
 
 
 
 414	}
 415
 416	return ret;
 417}
 418
 419/*
 420 * helper to read a given tree block, doing retries as required when
 421 * the checksums don't match and we have alternate mirrors to try.
 
 
 
 422 */
 423static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 424					  struct extent_buffer *eb,
 425					  u64 start, u64 parent_transid)
 426{
 427	struct extent_io_tree *io_tree;
 428	int failed = 0;
 429	int ret;
 430	int num_copies = 0;
 431	int mirror_num = 0;
 432	int failed_mirror = 0;
 433
 434	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 435	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 436	while (1) {
 437		ret = read_extent_buffer_pages(io_tree, eb, start,
 438					       WAIT_COMPLETE,
 439					       btree_get_extent, mirror_num);
 440		if (!ret) {
 441			if (!verify_parent_transid(io_tree, eb,
 442						   parent_transid, 0))
 443				break;
 444			else
 445				ret = -EIO;
 446		}
 447
 448		/*
 449		 * This buffer's crc is fine, but its contents are corrupted, so
 450		 * there is no reason to read the other copies, they won't be
 451		 * any less wrong.
 452		 */
 453		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 454			break;
 455
 456		num_copies = btrfs_num_copies(root->fs_info,
 457					      eb->start, eb->len);
 458		if (num_copies == 1)
 459			break;
 460
 461		if (!failed_mirror) {
 462			failed = 1;
 463			failed_mirror = eb->read_mirror;
 464		}
 465
 466		mirror_num++;
 467		if (mirror_num == failed_mirror)
 468			mirror_num++;
 469
 470		if (mirror_num > num_copies)
 471			break;
 472	}
 473
 474	if (failed && !ret && failed_mirror)
 475		repair_eb_io_failure(root, eb, failed_mirror);
 476
 477	return ret;
 478}
 479
 480/*
 481 * checksum a dirty tree block before IO.  This has extra checks to make sure
 482 * we only fill in the checksum field in the first page of a multi-page block
 483 */
 484
 485static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
 486{
 487	u64 start = page_offset(page);
 488	u64 found_start;
 489	struct extent_buffer *eb;
 
 
 
 490
 491	eb = (struct extent_buffer *)page->private;
 492	if (page != eb->pages[0])
 493		return 0;
 494	found_start = btrfs_header_bytenr(eb);
 495	if (WARN_ON(found_start != start || !PageUptodate(page)))
 496		return 0;
 497	csum_tree_block(root, eb, 0);
 498	return 0;
 499}
 500
 501static int check_tree_block_fsid(struct btrfs_root *root,
 502				 struct extent_buffer *eb)
 503{
 504	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 505	u8 fsid[BTRFS_UUID_SIZE];
 506	int ret = 1;
 507
 508	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 509	while (fs_devices) {
 510		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 511			ret = 0;
 512			break;
 513		}
 514		fs_devices = fs_devices->seed;
 515	}
 516	return ret;
 517}
 
 
 
 518
 519#define CORRUPT(reason, eb, root, slot)				\
 520	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
 521		   "root=%llu, slot=%d", reason,			\
 522	       btrfs_header_bytenr(eb),	root->objectid, slot)
 523
 524static noinline int check_leaf(struct btrfs_root *root,
 525			       struct extent_buffer *leaf)
 526{
 527	struct btrfs_key key;
 528	struct btrfs_key leaf_key;
 529	u32 nritems = btrfs_header_nritems(leaf);
 530	int slot;
 531
 532	if (nritems == 0)
 533		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534
 535	/* Check the 0 item */
 536	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 537	    BTRFS_LEAF_DATA_SIZE(root)) {
 538		CORRUPT("invalid item offset size pair", leaf, root, 0);
 539		return -EIO;
 540	}
 541
 542	/*
 543	 * Check to make sure each items keys are in the correct order and their
 544	 * offsets make sense.  We only have to loop through nritems-1 because
 545	 * we check the current slot against the next slot, which verifies the
 546	 * next slot's offset+size makes sense and that the current's slot
 547	 * offset is correct.
 548	 */
 549	for (slot = 0; slot < nritems - 1; slot++) {
 550		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 551		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 552
 553		/* Make sure the keys are in the right order */
 554		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 555			CORRUPT("bad key order", leaf, root, slot);
 556			return -EIO;
 557		}
 558
 559		/*
 560		 * Make sure the offset and ends are right, remember that the
 561		 * item data starts at the end of the leaf and grows towards the
 562		 * front.
 563		 */
 564		if (btrfs_item_offset_nr(leaf, slot) !=
 565			btrfs_item_end_nr(leaf, slot + 1)) {
 566			CORRUPT("slot offset bad", leaf, root, slot);
 567			return -EIO;
 568		}
 569
 570		/*
 571		 * Check to make sure that we don't point outside of the leaf,
 572		 * just incase all the items are consistent to eachother, but
 573		 * all point outside of the leaf.
 574		 */
 575		if (btrfs_item_end_nr(leaf, slot) >
 576		    BTRFS_LEAF_DATA_SIZE(root)) {
 577			CORRUPT("slot end outside of leaf", leaf, root, slot);
 578			return -EIO;
 579		}
 580	}
 581
 582	return 0;
 583}
 584
 585static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 586				      u64 phy_offset, struct page *page,
 587				      u64 start, u64 end, int mirror)
 588{
 
 589	u64 found_start;
 590	int found_level;
 591	struct extent_buffer *eb;
 592	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 
 593	int ret = 0;
 594	int reads_done;
 595
 596	if (!page->private)
 597		goto out;
 598
 599	eb = (struct extent_buffer *)page->private;
 600
 601	/* the pending IO might have been the only thing that kept this buffer
 602	 * in memory.  Make sure we have a ref for all this other checks
 603	 */
 604	extent_buffer_get(eb);
 605
 606	reads_done = atomic_dec_and_test(&eb->io_pages);
 607	if (!reads_done)
 608		goto err;
 609
 610	eb->read_mirror = mirror;
 611	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
 612		ret = -EIO;
 613		goto err;
 614	}
 615
 616	found_start = btrfs_header_bytenr(eb);
 617	if (found_start != eb->start) {
 618		printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
 619			       "%llu %llu\n",
 620			       found_start, eb->start);
 621		ret = -EIO;
 622		goto err;
 623	}
 624	if (check_tree_block_fsid(root, eb)) {
 625		printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
 626			       eb->start);
 627		ret = -EIO;
 628		goto err;
 629	}
 630	found_level = btrfs_header_level(eb);
 631	if (found_level >= BTRFS_MAX_LEVEL) {
 632		btrfs_info(root->fs_info, "bad tree block level %d",
 633			   (int)btrfs_header_level(eb));
 
 634		ret = -EIO;
 635		goto err;
 636	}
 637
 638	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 639				       eb, found_level);
 640
 641	ret = csum_tree_block(root, eb, 1);
 642	if (ret) {
 643		ret = -EIO;
 644		goto err;
 
 
 
 
 
 
 645	}
 646
 647	/*
 648	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 649	 * that we don't try and read the other copies of this block, just
 650	 * return -EIO.
 651	 */
 652	if (found_level == 0 && check_leaf(root, eb)) {
 653		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 654		ret = -EIO;
 
 655	}
 656
 657	if (!ret)
 658		set_extent_buffer_uptodate(eb);
 659err:
 660	if (reads_done &&
 661	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 662		btree_readahead_hook(root, eb, eb->start, ret);
 663
 664	if (ret) {
 665		/*
 666		 * our io error hook is going to dec the io pages
 667		 * again, we have to make sure it has something
 668		 * to decrement
 669		 */
 670		atomic_inc(&eb->io_pages);
 671		clear_extent_buffer_uptodate(eb);
 672	}
 673	free_extent_buffer(eb);
 674out:
 675	return ret;
 676}
 677
 678static int btree_io_failed_hook(struct page *page, int failed_mirror)
 679{
 680	struct extent_buffer *eb;
 681	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 682
 683	eb = (struct extent_buffer *)page->private;
 684	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
 685	eb->read_mirror = failed_mirror;
 686	atomic_dec(&eb->io_pages);
 687	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 688		btree_readahead_hook(root, eb, eb->start, -EIO);
 689	return -EIO;	/* we fixed nothing */
 690}
 691
 692static void end_workqueue_bio(struct bio *bio, int err)
 693{
 694	struct end_io_wq *end_io_wq = bio->bi_private;
 695	struct btrfs_fs_info *fs_info;
 696
 697	fs_info = end_io_wq->info;
 698	end_io_wq->error = err;
 699	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
 700
 701	if (bio->bi_rw & REQ_WRITE) {
 702		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
 703			btrfs_queue_work(fs_info->endio_meta_write_workers,
 704					 &end_io_wq->work);
 705		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
 706			btrfs_queue_work(fs_info->endio_freespace_worker,
 707					 &end_io_wq->work);
 708		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 709			btrfs_queue_work(fs_info->endio_raid56_workers,
 710					 &end_io_wq->work);
 711		else
 712			btrfs_queue_work(fs_info->endio_write_workers,
 713					 &end_io_wq->work);
 714	} else {
 715		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 716			btrfs_queue_work(fs_info->endio_raid56_workers,
 717					 &end_io_wq->work);
 718		else if (end_io_wq->metadata)
 719			btrfs_queue_work(fs_info->endio_meta_workers,
 720					 &end_io_wq->work);
 721		else
 722			btrfs_queue_work(fs_info->endio_workers,
 723					 &end_io_wq->work);
 724	}
 725}
 726
 727/*
 728 * For the metadata arg you want
 729 *
 730 * 0 - if data
 731 * 1 - if normal metadta
 732 * 2 - if writing to the free space cache area
 733 * 3 - raid parity work
 734 */
 735int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 736			int metadata)
 737{
 738	struct end_io_wq *end_io_wq;
 739	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
 740	if (!end_io_wq)
 741		return -ENOMEM;
 742
 743	end_io_wq->private = bio->bi_private;
 744	end_io_wq->end_io = bio->bi_end_io;
 745	end_io_wq->info = info;
 746	end_io_wq->error = 0;
 747	end_io_wq->bio = bio;
 748	end_io_wq->metadata = metadata;
 749
 750	bio->bi_private = end_io_wq;
 751	bio->bi_end_io = end_workqueue_bio;
 752	return 0;
 753}
 754
 755unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 756{
 757	unsigned long limit = min_t(unsigned long,
 758				    info->thread_pool_size,
 759				    info->fs_devices->open_devices);
 760	return 256 * limit;
 761}
 762
 763static void run_one_async_start(struct btrfs_work *work)
 764{
 765	struct async_submit_bio *async;
 766	int ret;
 767
 768	async = container_of(work, struct  async_submit_bio, work);
 769	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 770				      async->mirror_num, async->bio_flags,
 771				      async->bio_offset);
 772	if (ret)
 773		async->error = ret;
 774}
 775
 776static void run_one_async_done(struct btrfs_work *work)
 777{
 778	struct btrfs_fs_info *fs_info;
 779	struct async_submit_bio *async;
 780	int limit;
 781
 782	async = container_of(work, struct  async_submit_bio, work);
 783	fs_info = BTRFS_I(async->inode)->root->fs_info;
 784
 785	limit = btrfs_async_submit_limit(fs_info);
 786	limit = limit * 2 / 3;
 787
 788	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 789	    waitqueue_active(&fs_info->async_submit_wait))
 790		wake_up(&fs_info->async_submit_wait);
 791
 792	/* If an error occured we just want to clean up the bio and move on */
 793	if (async->error) {
 794		bio_endio(async->bio, async->error);
 795		return;
 796	}
 797
 798	async->submit_bio_done(async->inode, async->rw, async->bio,
 799			       async->mirror_num, async->bio_flags,
 800			       async->bio_offset);
 801}
 802
 803static void run_one_async_free(struct btrfs_work *work)
 804{
 805	struct async_submit_bio *async;
 806
 807	async = container_of(work, struct  async_submit_bio, work);
 808	kfree(async);
 809}
 810
 811int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 812			int rw, struct bio *bio, int mirror_num,
 813			unsigned long bio_flags,
 814			u64 bio_offset,
 815			extent_submit_bio_hook_t *submit_bio_start,
 816			extent_submit_bio_hook_t *submit_bio_done)
 817{
 818	struct async_submit_bio *async;
 819
 820	async = kmalloc(sizeof(*async), GFP_NOFS);
 821	if (!async)
 822		return -ENOMEM;
 823
 824	async->inode = inode;
 825	async->rw = rw;
 826	async->bio = bio;
 827	async->mirror_num = mirror_num;
 828	async->submit_bio_start = submit_bio_start;
 829	async->submit_bio_done = submit_bio_done;
 830
 831	btrfs_init_work(&async->work, run_one_async_start,
 832			run_one_async_done, run_one_async_free);
 833
 834	async->bio_flags = bio_flags;
 835	async->bio_offset = bio_offset;
 836
 837	async->error = 0;
 838
 839	atomic_inc(&fs_info->nr_async_submits);
 840
 841	if (rw & REQ_SYNC)
 842		btrfs_set_work_high_priority(&async->work);
 843
 844	btrfs_queue_work(fs_info->workers, &async->work);
 845
 846	while (atomic_read(&fs_info->async_submit_draining) &&
 847	      atomic_read(&fs_info->nr_async_submits)) {
 848		wait_event(fs_info->async_submit_wait,
 849			   (atomic_read(&fs_info->nr_async_submits) == 0));
 850	}
 851
 852	return 0;
 853}
 854
 855static int btree_csum_one_bio(struct bio *bio)
 856{
 857	struct bio_vec *bvec;
 858	struct btrfs_root *root;
 859	int i, ret = 0;
 860
 861	bio_for_each_segment_all(bvec, bio, i) {
 862		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 863		ret = csum_dirty_buffer(root, bvec->bv_page);
 864		if (ret)
 865			break;
 866	}
 867
 868	return ret;
 869}
 870
 871static int __btree_submit_bio_start(struct inode *inode, int rw,
 872				    struct bio *bio, int mirror_num,
 873				    unsigned long bio_flags,
 874				    u64 bio_offset)
 875{
 876	/*
 877	 * when we're called for a write, we're already in the async
 878	 * submission context.  Just jump into btrfs_map_bio
 
 879	 */
 880	return btree_csum_one_bio(bio);
 881}
 
 
 882
 883static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 884				 int mirror_num, unsigned long bio_flags,
 885				 u64 bio_offset)
 886{
 887	int ret;
 888
 889	/*
 890	 * when we're called for a write, we're already in the async
 891	 * submission context.  Just jump into btrfs_map_bio
 892	 */
 893	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 894	if (ret)
 895		bio_endio(bio, ret);
 896	return ret;
 897}
 898
 899static int check_async_write(struct inode *inode, unsigned long bio_flags)
 900{
 901	if (bio_flags & EXTENT_BIO_TREE_LOG)
 902		return 0;
 903#ifdef CONFIG_X86
 904	if (cpu_has_xmm4_2)
 905		return 0;
 906#endif
 907	return 1;
 908}
 909
 910static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 911				 int mirror_num, unsigned long bio_flags,
 912				 u64 bio_offset)
 913{
 914	int async = check_async_write(inode, bio_flags);
 915	int ret;
 916
 917	if (!(rw & REQ_WRITE)) {
 918		/*
 919		 * called for a read, do the setup so that checksum validation
 920		 * can happen in the async kernel threads
 921		 */
 922		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 923					  bio, 1);
 924		if (ret)
 925			goto out_w_error;
 926		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 927				    mirror_num, 0);
 928	} else if (!async) {
 929		ret = btree_csum_one_bio(bio);
 930		if (ret)
 931			goto out_w_error;
 932		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 933				    mirror_num, 0);
 934	} else {
 935		/*
 936		 * kthread helpers are used to submit writes so that
 937		 * checksumming can happen in parallel across all CPUs
 938		 */
 939		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 940					  inode, rw, bio, mirror_num, 0,
 941					  bio_offset,
 942					  __btree_submit_bio_start,
 943					  __btree_submit_bio_done);
 944	}
 945
 946	if (ret) {
 947out_w_error:
 948		bio_endio(bio, ret);
 949	}
 950	return ret;
 951}
 952
 953#ifdef CONFIG_MIGRATION
 954static int btree_migratepage(struct address_space *mapping,
 955			struct page *newpage, struct page *page,
 956			enum migrate_mode mode)
 957{
 958	/*
 959	 * we can't safely write a btree page from here,
 960	 * we haven't done the locking hook
 961	 */
 962	if (PageDirty(page))
 963		return -EAGAIN;
 964	/*
 965	 * Buffers may be managed in a filesystem specific way.
 966	 * We must have no buffers or drop them.
 967	 */
 968	if (page_has_private(page) &&
 969	    !try_to_release_page(page, GFP_KERNEL))
 970		return -EAGAIN;
 971	return migrate_page(mapping, newpage, page, mode);
 972}
 
 
 973#endif
 974
 975
 976static int btree_writepages(struct address_space *mapping,
 977			    struct writeback_control *wbc)
 978{
 979	struct btrfs_fs_info *fs_info;
 980	int ret;
 981
 982	if (wbc->sync_mode == WB_SYNC_NONE) {
 
 983
 984		if (wbc->for_kupdate)
 985			return 0;
 986
 987		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 988		/* this is a bit racy, but that's ok */
 989		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 990					     BTRFS_DIRTY_METADATA_THRESH);
 
 991		if (ret < 0)
 992			return 0;
 993	}
 994	return btree_write_cache_pages(mapping, wbc);
 995}
 996
 997static int btree_readpage(struct file *file, struct page *page)
 998{
 999	struct extent_io_tree *tree;
1000	tree = &BTRFS_I(page->mapping->host)->io_tree;
1001	return extent_read_full_page(tree, page, btree_get_extent, 0);
1002}
1003
1004static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1005{
1006	if (PageWriteback(page) || PageDirty(page))
1007		return 0;
1008
1009	return try_release_extent_buffer(page);
1010}
1011
1012static void btree_invalidatepage(struct page *page, unsigned int offset,
1013				 unsigned int length)
1014{
1015	struct extent_io_tree *tree;
1016	tree = &BTRFS_I(page->mapping->host)->io_tree;
1017	extent_invalidatepage(tree, page, offset);
1018	btree_releasepage(page, GFP_NOFS);
1019	if (PagePrivate(page)) {
1020		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1021			   "page private not zero on page %llu",
1022			   (unsigned long long)page_offset(page));
1023		ClearPagePrivate(page);
1024		set_page_private(page, 0);
1025		page_cache_release(page);
1026	}
1027}
1028
1029static int btree_set_page_dirty(struct page *page)
1030{
1031#ifdef DEBUG
 
 
 
 
 
 
1032	struct extent_buffer *eb;
 
 
1033
1034	BUG_ON(!PagePrivate(page));
1035	eb = (struct extent_buffer *)page->private;
1036	BUG_ON(!eb);
1037	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038	BUG_ON(!atomic_read(&eb->refs));
1039	btrfs_assert_tree_locked(eb);
1040#endif
1041	return __set_page_dirty_nobuffers(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042}
 
 
 
1043
1044static const struct address_space_operations btree_aops = {
1045	.readpage	= btree_readpage,
1046	.writepages	= btree_writepages,
1047	.releasepage	= btree_releasepage,
1048	.invalidatepage = btree_invalidatepage,
1049#ifdef CONFIG_MIGRATION
1050	.migratepage	= btree_migratepage,
1051#endif
1052	.set_page_dirty = btree_set_page_dirty,
1053};
1054
1055int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1056			 u64 parent_transid)
1057{
1058	struct extent_buffer *buf = NULL;
1059	struct inode *btree_inode = root->fs_info->btree_inode;
1060	int ret = 0;
1061
1062	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1063	if (!buf)
1064		return 0;
1065	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1066				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1067	free_extent_buffer(buf);
1068	return ret;
1069}
1070
1071int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072			 int mirror_num, struct extent_buffer **eb)
 
 
 
 
 
 
 
1073{
1074	struct extent_buffer *buf = NULL;
1075	struct inode *btree_inode = root->fs_info->btree_inode;
1076	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1077	int ret;
1078
1079	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1080	if (!buf)
1081		return 0;
1082
1083	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
 
 
 
1084
1085	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086				       btree_get_extent, mirror_num);
1087	if (ret) {
1088		free_extent_buffer(buf);
1089		return ret;
1090	}
1091
1092	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093		free_extent_buffer(buf);
1094		return -EIO;
1095	} else if (extent_buffer_uptodate(buf)) {
1096		*eb = buf;
1097	} else {
1098		free_extent_buffer(buf);
1099	}
1100	return 0;
1101}
1102
1103struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104					    u64 bytenr, u32 blocksize)
1105{
1106	return find_extent_buffer(root->fs_info, bytenr);
1107}
1108
1109struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1110						 u64 bytenr, u32 blocksize)
1111{
1112	return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1113}
1114
1115
1116int btrfs_write_tree_block(struct extent_buffer *buf)
1117{
1118	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1119					buf->start + buf->len - 1);
1120}
1121
1122int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1123{
1124	return filemap_fdatawait_range(buf->pages[0]->mapping,
1125				       buf->start, buf->start + buf->len - 1);
1126}
1127
1128struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1129				      u32 blocksize, u64 parent_transid)
1130{
1131	struct extent_buffer *buf = NULL;
1132	int ret;
1133
1134	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1135	if (!buf)
1136		return NULL;
1137
1138	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1139	if (ret) {
1140		free_extent_buffer(buf);
1141		return NULL;
1142	}
1143	return buf;
1144
1145}
1146
1147void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1148		      struct extent_buffer *buf)
1149{
1150	struct btrfs_fs_info *fs_info = root->fs_info;
1151
1152	if (btrfs_header_generation(buf) ==
1153	    fs_info->running_transaction->transid) {
1154		btrfs_assert_tree_locked(buf);
1155
1156		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1157			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1158					     -buf->len,
1159					     fs_info->dirty_metadata_batch);
1160			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1161			btrfs_set_lock_blocking(buf);
1162			clear_extent_buffer_dirty(buf);
1163		}
1164	}
1165}
1166
1167static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1168{
1169	struct btrfs_subvolume_writers *writers;
1170	int ret;
1171
1172	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1173	if (!writers)
1174		return ERR_PTR(-ENOMEM);
1175
1176	ret = percpu_counter_init(&writers->counter, 0);
1177	if (ret < 0) {
1178		kfree(writers);
1179		return ERR_PTR(ret);
1180	}
1181
1182	init_waitqueue_head(&writers->wait);
1183	return writers;
1184}
1185
1186static void
1187btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1188{
1189	percpu_counter_destroy(&writers->counter);
1190	kfree(writers);
1191}
1192
1193static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1194			 u32 stripesize, struct btrfs_root *root,
1195			 struct btrfs_fs_info *fs_info,
1196			 u64 objectid)
1197{
 
 
 
 
 
 
 
1198	root->node = NULL;
1199	root->commit_root = NULL;
1200	root->sectorsize = sectorsize;
1201	root->nodesize = nodesize;
1202	root->leafsize = leafsize;
1203	root->stripesize = stripesize;
1204	root->ref_cows = 0;
1205	root->track_dirty = 0;
1206	root->in_radix = 0;
1207	root->orphan_item_inserted = 0;
1208	root->orphan_cleanup_state = 0;
1209
1210	root->objectid = objectid;
1211	root->last_trans = 0;
1212	root->highest_objectid = 0;
1213	root->nr_delalloc_inodes = 0;
1214	root->nr_ordered_extents = 0;
1215	root->name = NULL;
1216	root->inode_tree = RB_ROOT;
1217	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1218	root->block_rsv = NULL;
1219	root->orphan_block_rsv = NULL;
 
1220
1221	INIT_LIST_HEAD(&root->dirty_list);
1222	INIT_LIST_HEAD(&root->root_list);
1223	INIT_LIST_HEAD(&root->delalloc_inodes);
1224	INIT_LIST_HEAD(&root->delalloc_root);
1225	INIT_LIST_HEAD(&root->ordered_extents);
1226	INIT_LIST_HEAD(&root->ordered_root);
1227	INIT_LIST_HEAD(&root->logged_list[0]);
1228	INIT_LIST_HEAD(&root->logged_list[1]);
1229	spin_lock_init(&root->orphan_lock);
1230	spin_lock_init(&root->inode_lock);
1231	spin_lock_init(&root->delalloc_lock);
1232	spin_lock_init(&root->ordered_extent_lock);
1233	spin_lock_init(&root->accounting_lock);
1234	spin_lock_init(&root->log_extents_lock[0]);
1235	spin_lock_init(&root->log_extents_lock[1]);
1236	mutex_init(&root->objectid_mutex);
1237	mutex_init(&root->log_mutex);
1238	mutex_init(&root->ordered_extent_mutex);
1239	mutex_init(&root->delalloc_mutex);
 
1240	init_waitqueue_head(&root->log_writer_wait);
1241	init_waitqueue_head(&root->log_commit_wait[0]);
1242	init_waitqueue_head(&root->log_commit_wait[1]);
1243	INIT_LIST_HEAD(&root->log_ctxs[0]);
1244	INIT_LIST_HEAD(&root->log_ctxs[1]);
1245	atomic_set(&root->log_commit[0], 0);
1246	atomic_set(&root->log_commit[1], 0);
1247	atomic_set(&root->log_writers, 0);
1248	atomic_set(&root->log_batch, 0);
1249	atomic_set(&root->orphan_inodes, 0);
1250	atomic_set(&root->refs, 1);
1251	atomic_set(&root->will_be_snapshoted, 0);
1252	root->log_transid = 0;
1253	root->log_transid_committed = -1;
1254	root->last_log_commit = 0;
1255	if (fs_info)
1256		extent_io_tree_init(&root->dirty_log_pages,
1257				     fs_info->btree_inode->i_mapping);
1258
1259	memset(&root->root_key, 0, sizeof(root->root_key));
1260	memset(&root->root_item, 0, sizeof(root->root_item));
1261	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1262	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1263	if (fs_info)
1264		root->defrag_trans_start = fs_info->generation;
1265	else
1266		root->defrag_trans_start = 0;
1267	init_completion(&root->kobj_unregister);
1268	root->defrag_running = 0;
1269	root->root_key.objectid = objectid;
1270	root->anon_dev = 0;
 
 
 
 
 
 
1271
1272	spin_lock_init(&root->root_item_lock);
 
 
 
 
 
 
 
1273}
1274
1275static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
 
1276{
1277	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1278	if (root)
1279		root->fs_info = fs_info;
1280	return root;
1281}
1282
1283#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1284/* Should only be used by the testing infrastructure */
1285struct btrfs_root *btrfs_alloc_dummy_root(void)
1286{
1287	struct btrfs_root *root;
1288
1289	root = btrfs_alloc_root(NULL);
 
 
 
1290	if (!root)
1291		return ERR_PTR(-ENOMEM);
1292	__setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1293	root->dummy_root = 1;
 
1294
1295	return root;
1296}
1297#endif
1298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1300				     struct btrfs_fs_info *fs_info,
1301				     u64 objectid)
1302{
 
1303	struct extent_buffer *leaf;
1304	struct btrfs_root *tree_root = fs_info->tree_root;
1305	struct btrfs_root *root;
1306	struct btrfs_key key;
 
1307	int ret = 0;
1308	uuid_le uuid;
1309
1310	root = btrfs_alloc_root(fs_info);
 
 
 
 
 
 
1311	if (!root)
1312		return ERR_PTR(-ENOMEM);
1313
1314	__setup_root(tree_root->nodesize, tree_root->leafsize,
1315		     tree_root->sectorsize, tree_root->stripesize,
1316		     root, fs_info, objectid);
1317	root->root_key.objectid = objectid;
1318	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1319	root->root_key.offset = 0;
1320
1321	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1322				      0, objectid, NULL, 0, 0, 0);
1323	if (IS_ERR(leaf)) {
1324		ret = PTR_ERR(leaf);
1325		leaf = NULL;
1326		goto fail;
1327	}
1328
1329	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1330	btrfs_set_header_bytenr(leaf, leaf->start);
1331	btrfs_set_header_generation(leaf, trans->transid);
1332	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1333	btrfs_set_header_owner(leaf, objectid);
1334	root->node = leaf;
1335
1336	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1337			    BTRFS_FSID_SIZE);
1338	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1339			    btrfs_header_chunk_tree_uuid(leaf),
1340			    BTRFS_UUID_SIZE);
1341	btrfs_mark_buffer_dirty(leaf);
1342
1343	root->commit_root = btrfs_root_node(root);
1344	root->track_dirty = 1;
1345
1346
1347	root->root_item.flags = 0;
1348	root->root_item.byte_limit = 0;
1349	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1350	btrfs_set_root_generation(&root->root_item, trans->transid);
1351	btrfs_set_root_level(&root->root_item, 0);
1352	btrfs_set_root_refs(&root->root_item, 1);
1353	btrfs_set_root_used(&root->root_item, leaf->len);
1354	btrfs_set_root_last_snapshot(&root->root_item, 0);
1355	btrfs_set_root_dirid(&root->root_item, 0);
1356	uuid_le_gen(&uuid);
1357	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1358	root->root_item.drop_level = 0;
 
 
 
 
1359
1360	key.objectid = objectid;
1361	key.type = BTRFS_ROOT_ITEM_KEY;
1362	key.offset = 0;
1363	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1364	if (ret)
1365		goto fail;
1366
1367	btrfs_tree_unlock(leaf);
1368
1369	return root;
1370
1371fail:
1372	if (leaf) {
1373		btrfs_tree_unlock(leaf);
1374		free_extent_buffer(leaf);
1375	}
1376	kfree(root);
1377
1378	return ERR_PTR(ret);
1379}
1380
1381static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1382					 struct btrfs_fs_info *fs_info)
1383{
1384	struct btrfs_root *root;
1385	struct btrfs_root *tree_root = fs_info->tree_root;
1386	struct extent_buffer *leaf;
1387
1388	root = btrfs_alloc_root(fs_info);
1389	if (!root)
1390		return ERR_PTR(-ENOMEM);
1391
1392	__setup_root(tree_root->nodesize, tree_root->leafsize,
1393		     tree_root->sectorsize, tree_root->stripesize,
1394		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1395
1396	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1397	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1398	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
 
 
 
 
 
 
 
 
 
1399	/*
1400	 * log trees do not get reference counted because they go away
1401	 * before a real commit is actually done.  They do store pointers
1402	 * to file data extents, and those reference counts still get
1403	 * updated (along with back refs to the log tree).
1404	 */
1405	root->ref_cows = 0;
1406
1407	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1408				      BTRFS_TREE_LOG_OBJECTID, NULL,
1409				      0, 0, 0);
1410	if (IS_ERR(leaf)) {
1411		kfree(root);
1412		return ERR_CAST(leaf);
1413	}
1414
1415	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1416	btrfs_set_header_bytenr(leaf, leaf->start);
1417	btrfs_set_header_generation(leaf, trans->transid);
1418	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1419	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1420	root->node = leaf;
1421
1422	write_extent_buffer(root->node, root->fs_info->fsid,
1423			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1424	btrfs_mark_buffer_dirty(root->node);
1425	btrfs_tree_unlock(root->node);
1426	return root;
 
1427}
1428
1429int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1430			     struct btrfs_fs_info *fs_info)
1431{
1432	struct btrfs_root *log_root;
1433
1434	log_root = alloc_log_tree(trans, fs_info);
1435	if (IS_ERR(log_root))
1436		return PTR_ERR(log_root);
 
 
 
 
 
 
 
 
 
 
1437	WARN_ON(fs_info->log_root_tree);
1438	fs_info->log_root_tree = log_root;
1439	return 0;
1440}
1441
1442int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1443		       struct btrfs_root *root)
1444{
 
1445	struct btrfs_root *log_root;
1446	struct btrfs_inode_item *inode_item;
 
1447
1448	log_root = alloc_log_tree(trans, root->fs_info);
1449	if (IS_ERR(log_root))
1450		return PTR_ERR(log_root);
1451
 
 
 
 
 
 
1452	log_root->last_trans = trans->transid;
1453	log_root->root_key.offset = root->root_key.objectid;
1454
1455	inode_item = &log_root->root_item.inode;
1456	btrfs_set_stack_inode_generation(inode_item, 1);
1457	btrfs_set_stack_inode_size(inode_item, 3);
1458	btrfs_set_stack_inode_nlink(inode_item, 1);
1459	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
 
1460	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1461
1462	btrfs_set_root_node(&log_root->root_item, log_root->node);
1463
1464	WARN_ON(root->log_root);
1465	root->log_root = log_root;
1466	root->log_transid = 0;
1467	root->log_transid_committed = -1;
1468	root->last_log_commit = 0;
1469	return 0;
1470}
1471
1472static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1473					       struct btrfs_key *key)
 
1474{
1475	struct btrfs_root *root;
 
1476	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1477	struct btrfs_path *path;
1478	u64 generation;
1479	u32 blocksize;
1480	int ret;
 
1481
1482	path = btrfs_alloc_path();
1483	if (!path)
1484		return ERR_PTR(-ENOMEM);
1485
1486	root = btrfs_alloc_root(fs_info);
1487	if (!root) {
1488		ret = -ENOMEM;
1489		goto alloc_fail;
1490	}
1491
1492	__setup_root(tree_root->nodesize, tree_root->leafsize,
1493		     tree_root->sectorsize, tree_root->stripesize,
1494		     root, fs_info, key->objectid);
1495
1496	ret = btrfs_find_root(tree_root, key, path,
1497			      &root->root_item, &root->root_key);
1498	if (ret) {
1499		if (ret > 0)
1500			ret = -ENOENT;
1501		goto find_fail;
1502	}
1503
1504	generation = btrfs_root_generation(&root->root_item);
1505	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1506	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1507				     blocksize, generation);
1508	if (!root->node) {
1509		ret = -ENOMEM;
1510		goto find_fail;
1511	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
 
 
 
 
 
1512		ret = -EIO;
1513		goto read_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1514	}
1515	root->commit_root = btrfs_root_node(root);
1516out:
1517	btrfs_free_path(path);
1518	return root;
1519
1520read_fail:
1521	free_extent_buffer(root->node);
1522find_fail:
1523	kfree(root);
1524alloc_fail:
1525	root = ERR_PTR(ret);
1526	goto out;
1527}
1528
1529struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1530				      struct btrfs_key *location)
1531{
1532	struct btrfs_root *root;
 
1533
1534	root = btrfs_read_tree_root(tree_root, location);
1535	if (IS_ERR(root))
1536		return root;
1537
1538	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1539		root->ref_cows = 1;
1540		btrfs_check_and_init_root_item(&root->root_item);
1541	}
1542
1543	return root;
1544}
1545
1546int btrfs_init_fs_root(struct btrfs_root *root)
 
 
 
 
 
1547{
1548	int ret;
1549	struct btrfs_subvolume_writers *writers;
1550
1551	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1552	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1553					GFP_NOFS);
1554	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1555		ret = -ENOMEM;
1556		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1557	}
1558
1559	writers = btrfs_alloc_subvolume_writers();
1560	if (IS_ERR(writers)) {
1561		ret = PTR_ERR(writers);
 
1562		goto fail;
1563	}
1564	root->subv_writers = writers;
1565
1566	btrfs_init_free_ino_ctl(root);
1567	spin_lock_init(&root->cache_lock);
1568	init_waitqueue_head(&root->cache_wait);
1569
1570	ret = get_anon_bdev(&root->anon_dev);
1571	if (ret)
1572		goto free_writers;
1573	return 0;
1574
1575free_writers:
1576	btrfs_free_subvolume_writers(root->subv_writers);
1577fail:
1578	kfree(root->free_ino_ctl);
1579	kfree(root->free_ino_pinned);
1580	return ret;
1581}
1582
1583static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1584					       u64 root_id)
1585{
1586	struct btrfs_root *root;
1587
1588	spin_lock(&fs_info->fs_roots_radix_lock);
1589	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1590				 (unsigned long)root_id);
 
1591	spin_unlock(&fs_info->fs_roots_radix_lock);
1592	return root;
1593}
1594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1596			 struct btrfs_root *root)
1597{
1598	int ret;
1599
1600	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1601	if (ret)
1602		return ret;
1603
1604	spin_lock(&fs_info->fs_roots_radix_lock);
1605	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1606				(unsigned long)root->root_key.objectid,
1607				root);
1608	if (ret == 0)
1609		root->in_radix = 1;
 
 
1610	spin_unlock(&fs_info->fs_roots_radix_lock);
1611	radix_tree_preload_end();
1612
1613	return ret;
1614}
1615
1616struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1617				     struct btrfs_key *location,
1618				     bool check_ref)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619{
1620	struct btrfs_root *root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621	int ret;
1622
1623	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1624		return fs_info->tree_root;
1625	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1626		return fs_info->extent_root;
1627	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1628		return fs_info->chunk_root;
1629	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1630		return fs_info->dev_root;
1631	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1632		return fs_info->csum_root;
1633	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1634		return fs_info->quota_root ? fs_info->quota_root :
1635					     ERR_PTR(-ENOENT);
1636	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1637		return fs_info->uuid_root ? fs_info->uuid_root :
1638					    ERR_PTR(-ENOENT);
1639again:
1640	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1641	if (root) {
1642		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
1643			return ERR_PTR(-ENOENT);
 
1644		return root;
1645	}
1646
1647	root = btrfs_read_fs_root(fs_info->tree_root, location);
 
 
 
1648	if (IS_ERR(root))
1649		return root;
1650
1651	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1652		ret = -ENOENT;
1653		goto fail;
1654	}
1655
1656	ret = btrfs_init_fs_root(root);
1657	if (ret)
1658		goto fail;
1659
1660	ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1661			location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
 
 
 
 
 
 
 
 
 
1662	if (ret < 0)
1663		goto fail;
1664	if (ret == 0)
1665		root->orphan_item_inserted = 1;
1666
1667	ret = btrfs_insert_fs_root(fs_info, root);
1668	if (ret) {
1669		if (ret == -EEXIST) {
1670			free_fs_root(root);
1671			goto again;
1672		}
1673		goto fail;
1674	}
1675	return root;
1676fail:
1677	free_fs_root(root);
 
 
 
 
 
 
 
 
1678	return ERR_PTR(ret);
1679}
1680
1681static int btrfs_congested_fn(void *congested_data, int bdi_bits)
 
 
 
 
 
 
 
 
1682{
1683	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1684	int ret = 0;
1685	struct btrfs_device *device;
1686	struct backing_dev_info *bdi;
1687
1688	rcu_read_lock();
1689	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1690		if (!device->bdev)
1691			continue;
1692		bdi = blk_get_backing_dev_info(device->bdev);
1693		if (bdi && bdi_congested(bdi, bdi_bits)) {
1694			ret = 1;
1695			break;
1696		}
1697	}
1698	rcu_read_unlock();
1699	return ret;
1700}
1701
1702/*
1703 * If this fails, caller must call bdi_destroy() to get rid of the
1704 * bdi again.
 
 
 
 
1705 */
1706static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
 
1707{
1708	int err;
1709
1710	bdi->capabilities = BDI_CAP_MAP_COPY;
1711	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1712	if (err)
1713		return err;
1714
1715	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1716	bdi->congested_fn	= btrfs_congested_fn;
1717	bdi->congested_data	= info;
1718	return 0;
1719}
1720
1721/*
1722 * called by the kthread helper functions to finally call the bio end_io
1723 * functions.  This is where read checksum verification actually happens
 
 
 
 
 
 
 
 
 
 
 
1724 */
1725static void end_workqueue_fn(struct btrfs_work *work)
 
 
1726{
1727	struct bio *bio;
1728	struct end_io_wq *end_io_wq;
1729	int error;
1730
1731	end_io_wq = container_of(work, struct end_io_wq, work);
1732	bio = end_io_wq->bio;
1733
1734	error = end_io_wq->error;
1735	bio->bi_private = end_io_wq->private;
1736	bio->bi_end_io = end_io_wq->end_io;
1737	kfree(end_io_wq);
1738	bio_endio_nodec(bio, error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1739}
1740
1741static int cleaner_kthread(void *arg)
1742{
1743	struct btrfs_root *root = arg;
1744	int again;
1745
1746	do {
1747		again = 0;
1748
 
 
1749		/* Make the cleaner go to sleep early. */
1750		if (btrfs_need_cleaner_sleep(root))
1751			goto sleep;
1752
1753		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
 
 
 
 
 
 
 
1754			goto sleep;
1755
1756		/*
1757		 * Avoid the problem that we change the status of the fs
1758		 * during the above check and trylock.
1759		 */
1760		if (btrfs_need_cleaner_sleep(root)) {
1761			mutex_unlock(&root->fs_info->cleaner_mutex);
1762			goto sleep;
1763		}
1764
1765		btrfs_run_delayed_iputs(root);
1766		again = btrfs_clean_one_deleted_snapshot(root);
1767		mutex_unlock(&root->fs_info->cleaner_mutex);
 
 
 
 
1768
1769		/*
1770		 * The defragger has dealt with the R/O remount and umount,
1771		 * needn't do anything special here.
1772		 */
1773		btrfs_run_defrag_inodes(root->fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774sleep:
1775		if (!try_to_freeze() && !again) {
 
 
 
 
 
1776			set_current_state(TASK_INTERRUPTIBLE);
1777			if (!kthread_should_stop())
1778				schedule();
1779			__set_current_state(TASK_RUNNING);
1780		}
1781	} while (!kthread_should_stop());
1782	return 0;
1783}
1784
1785static int transaction_kthread(void *arg)
1786{
1787	struct btrfs_root *root = arg;
 
1788	struct btrfs_trans_handle *trans;
1789	struct btrfs_transaction *cur;
1790	u64 transid;
1791	unsigned long now;
1792	unsigned long delay;
1793	bool cannot_commit;
1794
1795	do {
1796		cannot_commit = false;
1797		delay = HZ * root->fs_info->commit_interval;
1798		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1799
1800		spin_lock(&root->fs_info->trans_lock);
1801		cur = root->fs_info->running_transaction;
1802		if (!cur) {
1803			spin_unlock(&root->fs_info->trans_lock);
1804			goto sleep;
1805		}
1806
1807		now = get_seconds();
1808		if (cur->state < TRANS_STATE_BLOCKED &&
1809		    (now < cur->start_time ||
1810		     now - cur->start_time < root->fs_info->commit_interval)) {
1811			spin_unlock(&root->fs_info->trans_lock);
1812			delay = HZ * 5;
 
 
1813			goto sleep;
1814		}
1815		transid = cur->transid;
1816		spin_unlock(&root->fs_info->trans_lock);
1817
1818		/* If the file system is aborted, this will always fail. */
1819		trans = btrfs_attach_transaction(root);
1820		if (IS_ERR(trans)) {
1821			if (PTR_ERR(trans) != -ENOENT)
1822				cannot_commit = true;
1823			goto sleep;
1824		}
1825		if (transid == trans->transid) {
1826			btrfs_commit_transaction(trans, root);
1827		} else {
1828			btrfs_end_transaction(trans, root);
1829		}
1830sleep:
1831		wake_up_process(root->fs_info->cleaner_kthread);
1832		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1833
1834		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1835				      &root->fs_info->fs_state)))
1836			btrfs_cleanup_transaction(root);
1837		if (!try_to_freeze()) {
1838			set_current_state(TASK_INTERRUPTIBLE);
1839			if (!kthread_should_stop() &&
1840			    (!btrfs_transaction_blocked(root->fs_info) ||
1841			     cannot_commit))
1842				schedule_timeout(delay);
1843			__set_current_state(TASK_RUNNING);
1844		}
1845	} while (!kthread_should_stop());
1846	return 0;
1847}
1848
1849/*
1850 * this will find the highest generation in the array of
1851 * root backups.  The index of the highest array is returned,
1852 * or -1 if we can't find anything.
1853 *
1854 * We check to make sure the array is valid by comparing the
1855 * generation of the latest  root in the array with the generation
1856 * in the super block.  If they don't match we pitch it.
1857 */
1858static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1859{
 
1860	u64 cur;
1861	int newest_index = -1;
1862	struct btrfs_root_backup *root_backup;
1863	int i;
1864
1865	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1866		root_backup = info->super_copy->super_roots + i;
1867		cur = btrfs_backup_tree_root_gen(root_backup);
1868		if (cur == newest_gen)
1869			newest_index = i;
1870	}
1871
1872	/* check to see if we actually wrapped around */
1873	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1874		root_backup = info->super_copy->super_roots;
1875		cur = btrfs_backup_tree_root_gen(root_backup);
1876		if (cur == newest_gen)
1877			newest_index = 0;
1878	}
1879	return newest_index;
1880}
1881
1882
1883/*
1884 * find the oldest backup so we know where to store new entries
1885 * in the backup array.  This will set the backup_root_index
1886 * field in the fs_info struct
1887 */
1888static void find_oldest_super_backup(struct btrfs_fs_info *info,
1889				     u64 newest_gen)
1890{
1891	int newest_index = -1;
1892
1893	newest_index = find_newest_super_backup(info, newest_gen);
1894	/* if there was garbage in there, just move along */
1895	if (newest_index == -1) {
1896		info->backup_root_index = 0;
1897	} else {
1898		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1899	}
1900}
1901
1902/*
1903 * copy all the root pointers into the super backup array.
1904 * this will bump the backup pointer by one when it is
1905 * done
1906 */
1907static void backup_super_roots(struct btrfs_fs_info *info)
1908{
1909	int next_backup;
1910	struct btrfs_root_backup *root_backup;
1911	int last_backup;
1912
1913	next_backup = info->backup_root_index;
1914	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1915		BTRFS_NUM_BACKUP_ROOTS;
1916
1917	/*
1918	 * just overwrite the last backup if we're at the same generation
1919	 * this happens only at umount
1920	 */
1921	root_backup = info->super_for_commit->super_roots + last_backup;
1922	if (btrfs_backup_tree_root_gen(root_backup) ==
1923	    btrfs_header_generation(info->tree_root->node))
1924		next_backup = last_backup;
1925
1926	root_backup = info->super_for_commit->super_roots + next_backup;
1927
1928	/*
1929	 * make sure all of our padding and empty slots get zero filled
1930	 * regardless of which ones we use today
1931	 */
1932	memset(root_backup, 0, sizeof(*root_backup));
1933
1934	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1935
1936	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1937	btrfs_set_backup_tree_root_gen(root_backup,
1938			       btrfs_header_generation(info->tree_root->node));
1939
1940	btrfs_set_backup_tree_root_level(root_backup,
1941			       btrfs_header_level(info->tree_root->node));
1942
1943	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1944	btrfs_set_backup_chunk_root_gen(root_backup,
1945			       btrfs_header_generation(info->chunk_root->node));
1946	btrfs_set_backup_chunk_root_level(root_backup,
1947			       btrfs_header_level(info->chunk_root->node));
1948
1949	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1950	btrfs_set_backup_extent_root_gen(root_backup,
1951			       btrfs_header_generation(info->extent_root->node));
1952	btrfs_set_backup_extent_root_level(root_backup,
1953			       btrfs_header_level(info->extent_root->node));
 
 
 
 
 
 
 
 
 
 
 
 
1954
1955	/*
1956	 * we might commit during log recovery, which happens before we set
1957	 * the fs_root.  Make sure it is valid before we fill it in.
1958	 */
1959	if (info->fs_root && info->fs_root->node) {
1960		btrfs_set_backup_fs_root(root_backup,
1961					 info->fs_root->node->start);
1962		btrfs_set_backup_fs_root_gen(root_backup,
1963			       btrfs_header_generation(info->fs_root->node));
1964		btrfs_set_backup_fs_root_level(root_backup,
1965			       btrfs_header_level(info->fs_root->node));
1966	}
1967
1968	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1969	btrfs_set_backup_dev_root_gen(root_backup,
1970			       btrfs_header_generation(info->dev_root->node));
1971	btrfs_set_backup_dev_root_level(root_backup,
1972				       btrfs_header_level(info->dev_root->node));
1973
1974	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1975	btrfs_set_backup_csum_root_gen(root_backup,
1976			       btrfs_header_generation(info->csum_root->node));
1977	btrfs_set_backup_csum_root_level(root_backup,
1978			       btrfs_header_level(info->csum_root->node));
1979
1980	btrfs_set_backup_total_bytes(root_backup,
1981			     btrfs_super_total_bytes(info->super_copy));
1982	btrfs_set_backup_bytes_used(root_backup,
1983			     btrfs_super_bytes_used(info->super_copy));
1984	btrfs_set_backup_num_devices(root_backup,
1985			     btrfs_super_num_devices(info->super_copy));
1986
1987	/*
1988	 * if we don't copy this out to the super_copy, it won't get remembered
1989	 * for the next commit
1990	 */
1991	memcpy(&info->super_copy->super_roots,
1992	       &info->super_for_commit->super_roots,
1993	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1994}
1995
1996/*
1997 * this copies info out of the root backup array and back into
1998 * the in-memory super block.  It is meant to help iterate through
1999 * the array, so you send it the number of backups you've already
2000 * tried and the last backup index you used.
 
2001 *
2002 * this returns -1 when it has tried all the backups
2003 */
2004static noinline int next_root_backup(struct btrfs_fs_info *info,
2005				     struct btrfs_super_block *super,
2006				     int *num_backups_tried, int *backup_index)
2007{
 
 
2008	struct btrfs_root_backup *root_backup;
2009	int newest = *backup_index;
2010
2011	if (*num_backups_tried == 0) {
2012		u64 gen = btrfs_super_generation(super);
 
2013
2014		newest = find_newest_super_backup(info, gen);
2015		if (newest == -1)
2016			return -1;
2017
2018		*backup_index = newest;
2019		*num_backups_tried = 1;
2020	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2021		/* we've tried all the backups, all done */
2022		return -1;
2023	} else {
2024		/* jump to the next oldest backup */
2025		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2026			BTRFS_NUM_BACKUP_ROOTS;
2027		*backup_index = newest;
2028		*num_backups_tried += 1;
2029	}
2030	root_backup = super->super_roots + newest;
 
2031
2032	btrfs_set_super_generation(super,
2033				   btrfs_backup_tree_root_gen(root_backup));
2034	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2035	btrfs_set_super_root_level(super,
2036				   btrfs_backup_tree_root_level(root_backup));
2037	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2038
2039	/*
2040	 * fixme: the total bytes and num_devices need to match or we should
2041	 * need a fsck
2042	 */
2043	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2044	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2045	return 0;
 
2046}
2047
2048/* helper to cleanup workers */
2049static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2050{
2051	btrfs_destroy_workqueue(fs_info->fixup_workers);
2052	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2053	btrfs_destroy_workqueue(fs_info->workers);
2054	btrfs_destroy_workqueue(fs_info->endio_workers);
2055	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2056	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2057	btrfs_destroy_workqueue(fs_info->rmw_workers);
2058	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
 
2059	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2060	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2061	btrfs_destroy_workqueue(fs_info->submit_workers);
2062	btrfs_destroy_workqueue(fs_info->delayed_workers);
2063	btrfs_destroy_workqueue(fs_info->caching_workers);
2064	btrfs_destroy_workqueue(fs_info->readahead_workers);
2065	btrfs_destroy_workqueue(fs_info->flush_workers);
2066	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
 
 
 
 
 
 
 
 
 
2067}
2068
2069static void free_root_extent_buffers(struct btrfs_root *root)
2070{
2071	if (root) {
2072		free_extent_buffer(root->node);
2073		free_extent_buffer(root->commit_root);
2074		root->node = NULL;
2075		root->commit_root = NULL;
2076	}
2077}
2078
 
 
 
 
 
 
 
 
 
 
2079/* helper to cleanup tree roots */
2080static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2081{
2082	free_root_extent_buffers(info->tree_root);
2083
 
2084	free_root_extent_buffers(info->dev_root);
2085	free_root_extent_buffers(info->extent_root);
2086	free_root_extent_buffers(info->csum_root);
2087	free_root_extent_buffers(info->quota_root);
2088	free_root_extent_buffers(info->uuid_root);
2089	if (chunk_root)
 
 
 
 
2090		free_root_extent_buffers(info->chunk_root);
2091}
2092
2093static void del_fs_roots(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2094{
2095	int ret;
2096	struct btrfs_root *gang[8];
2097	int i;
2098
2099	while (!list_empty(&fs_info->dead_roots)) {
2100		gang[0] = list_entry(fs_info->dead_roots.next,
2101				     struct btrfs_root, root_list);
2102		list_del(&gang[0]->root_list);
2103
2104		if (gang[0]->in_radix) {
2105			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2106		} else {
2107			free_extent_buffer(gang[0]->node);
2108			free_extent_buffer(gang[0]->commit_root);
2109			btrfs_put_fs_root(gang[0]);
2110		}
2111	}
2112
2113	while (1) {
2114		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2115					     (void **)gang, 0,
2116					     ARRAY_SIZE(gang));
2117		if (!ret)
2118			break;
2119		for (i = 0; i < ret; i++)
2120			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2121	}
 
2122
2123	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2124		btrfs_free_log_root_tree(NULL, fs_info);
2125		btrfs_destroy_pinned_extent(fs_info->tree_root,
2126					    fs_info->pinned_extents);
2127	}
 
 
 
 
2128}
2129
2130int open_ctree(struct super_block *sb,
2131	       struct btrfs_fs_devices *fs_devices,
2132	       char *options)
 
 
 
 
 
 
 
 
 
2133{
2134	u32 sectorsize;
2135	u32 nodesize;
2136	u32 leafsize;
2137	u32 blocksize;
2138	u32 stripesize;
2139	u64 generation;
2140	u64 features;
2141	struct btrfs_key location;
2142	struct buffer_head *bh;
2143	struct btrfs_super_block *disk_super;
2144	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2145	struct btrfs_root *tree_root;
2146	struct btrfs_root *extent_root;
2147	struct btrfs_root *csum_root;
2148	struct btrfs_root *chunk_root;
2149	struct btrfs_root *dev_root;
2150	struct btrfs_root *quota_root;
2151	struct btrfs_root *uuid_root;
2152	struct btrfs_root *log_tree_root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153	int ret;
2154	int err = -EINVAL;
2155	int num_backups_tried = 0;
2156	int backup_index = 0;
2157	int max_active;
2158	int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2159	bool create_uuid_tree;
2160	bool check_uuid_tree;
2161
2162	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2163	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2164	if (!tree_root || !chunk_root) {
2165		err = -ENOMEM;
2166		goto fail;
2167	}
2168
2169	ret = init_srcu_struct(&fs_info->subvol_srcu);
2170	if (ret) {
2171		err = ret;
2172		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2173	}
2174
2175	ret = setup_bdi(fs_info, &fs_info->bdi);
 
2176	if (ret) {
2177		err = ret;
2178		goto fail_srcu;
 
 
2179	}
2180
2181	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2182	if (ret) {
2183		err = ret;
2184		goto fail_bdi;
2185	}
2186	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2187					(1 + ilog2(nr_cpu_ids));
2188
2189	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2190	if (ret) {
2191		err = ret;
2192		goto fail_dirty_metadata_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2193	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2194
2195	ret = percpu_counter_init(&fs_info->bio_counter, 0);
 
 
 
 
 
 
 
 
 
2196	if (ret) {
2197		err = ret;
2198		goto fail_delalloc_bytes;
2199	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200
2201	fs_info->btree_inode = new_inode(sb);
2202	if (!fs_info->btree_inode) {
2203		err = -ENOMEM;
2204		goto fail_bio_counter;
 
 
 
 
 
 
 
 
 
2205	}
2206
2207	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
 
2208
 
 
2209	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2210	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2211	INIT_LIST_HEAD(&fs_info->trans_list);
2212	INIT_LIST_HEAD(&fs_info->dead_roots);
2213	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2214	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2215	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2216	spin_lock_init(&fs_info->delalloc_root_lock);
2217	spin_lock_init(&fs_info->trans_lock);
2218	spin_lock_init(&fs_info->fs_roots_radix_lock);
2219	spin_lock_init(&fs_info->delayed_iput_lock);
2220	spin_lock_init(&fs_info->defrag_inodes_lock);
2221	spin_lock_init(&fs_info->free_chunk_lock);
2222	spin_lock_init(&fs_info->tree_mod_seq_lock);
2223	spin_lock_init(&fs_info->super_lock);
2224	spin_lock_init(&fs_info->buffer_lock);
 
 
 
 
2225	rwlock_init(&fs_info->tree_mod_log_lock);
 
 
 
2226	mutex_init(&fs_info->reloc_mutex);
2227	mutex_init(&fs_info->delalloc_root_mutex);
 
 
2228	seqlock_init(&fs_info->profiles_lock);
2229
2230	init_completion(&fs_info->kobj_unregister);
 
 
 
 
 
 
 
 
 
 
 
 
2231	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2232	INIT_LIST_HEAD(&fs_info->space_info);
2233	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2234	btrfs_mapping_init(&fs_info->mapping_tree);
 
 
 
 
 
 
 
 
 
2235	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2236			     BTRFS_BLOCK_RSV_GLOBAL);
2237	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2238			     BTRFS_BLOCK_RSV_DELALLOC);
2239	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2240	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2241	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2242	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2243			     BTRFS_BLOCK_RSV_DELOPS);
2244	atomic_set(&fs_info->nr_async_submits, 0);
 
 
2245	atomic_set(&fs_info->async_delalloc_pages, 0);
2246	atomic_set(&fs_info->async_submit_draining, 0);
2247	atomic_set(&fs_info->nr_async_bios, 0);
2248	atomic_set(&fs_info->defrag_running, 0);
 
2249	atomic64_set(&fs_info->tree_mod_seq, 0);
2250	fs_info->sb = sb;
2251	fs_info->max_inline = 8192 * 1024;
2252	fs_info->metadata_ratio = 0;
2253	fs_info->defrag_inodes = RB_ROOT;
2254	fs_info->free_chunk_space = 0;
2255	fs_info->tree_mod_log = RB_ROOT;
2256	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2257	fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2258	/* readahead state */
2259	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2260	spin_lock_init(&fs_info->reada_lock);
2261
2262	fs_info->thread_pool_size = min_t(unsigned long,
2263					  num_online_cpus() + 2, 8);
2264
2265	INIT_LIST_HEAD(&fs_info->ordered_roots);
2266	spin_lock_init(&fs_info->ordered_root_lock);
2267	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2268					GFP_NOFS);
2269	if (!fs_info->delayed_root) {
2270		err = -ENOMEM;
2271		goto fail_iput;
2272	}
2273	btrfs_init_delayed_root(fs_info->delayed_root);
2274
2275	mutex_init(&fs_info->scrub_lock);
2276	atomic_set(&fs_info->scrubs_running, 0);
2277	atomic_set(&fs_info->scrub_pause_req, 0);
2278	atomic_set(&fs_info->scrubs_paused, 0);
2279	atomic_set(&fs_info->scrub_cancel_req, 0);
2280	init_waitqueue_head(&fs_info->replace_wait);
2281	init_waitqueue_head(&fs_info->scrub_pause_wait);
2282	fs_info->scrub_workers_refcnt = 0;
2283#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2284	fs_info->check_integrity_print_mask = 0;
2285#endif
2286
2287	spin_lock_init(&fs_info->balance_lock);
2288	mutex_init(&fs_info->balance_mutex);
2289	atomic_set(&fs_info->balance_running, 0);
2290	atomic_set(&fs_info->balance_pause_req, 0);
2291	atomic_set(&fs_info->balance_cancel_req, 0);
2292	fs_info->balance_ctl = NULL;
2293	init_waitqueue_head(&fs_info->balance_wait_q);
2294
2295	sb->s_blocksize = 4096;
2296	sb->s_blocksize_bits = blksize_bits(4096);
2297	sb->s_bdi = &fs_info->bdi;
2298
2299	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2300	set_nlink(fs_info->btree_inode, 1);
2301	/*
2302	 * we set the i_size on the btree inode to the max possible int.
2303	 * the real end of the address space is determined by all of
2304	 * the devices in the system
2305	 */
2306	fs_info->btree_inode->i_size = OFFSET_MAX;
2307	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2308	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2309
2310	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2311	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2312			     fs_info->btree_inode->i_mapping);
2313	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2314	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2315
2316	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2317
2318	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2319	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2320	       sizeof(struct btrfs_key));
2321	set_bit(BTRFS_INODE_DUMMY,
2322		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2323	btrfs_insert_inode_hash(fs_info->btree_inode);
2324
2325	spin_lock_init(&fs_info->block_group_cache_lock);
2326	fs_info->block_group_cache_tree = RB_ROOT;
2327	fs_info->first_logical_byte = (u64)-1;
2328
2329	extent_io_tree_init(&fs_info->freed_extents[0],
2330			     fs_info->btree_inode->i_mapping);
2331	extent_io_tree_init(&fs_info->freed_extents[1],
2332			     fs_info->btree_inode->i_mapping);
2333	fs_info->pinned_extents = &fs_info->freed_extents[0];
2334	fs_info->do_barriers = 1;
2335
 
 
2336
2337	mutex_init(&fs_info->ordered_operations_mutex);
2338	mutex_init(&fs_info->ordered_extent_flush_mutex);
2339	mutex_init(&fs_info->tree_log_mutex);
2340	mutex_init(&fs_info->chunk_mutex);
2341	mutex_init(&fs_info->transaction_kthread_mutex);
2342	mutex_init(&fs_info->cleaner_mutex);
2343	mutex_init(&fs_info->volume_mutex);
2344	init_rwsem(&fs_info->commit_root_sem);
2345	init_rwsem(&fs_info->cleanup_work_sem);
2346	init_rwsem(&fs_info->subvol_sem);
2347	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2348	fs_info->dev_replace.lock_owner = 0;
2349	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2350	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2351	mutex_init(&fs_info->dev_replace.lock_management_lock);
2352	mutex_init(&fs_info->dev_replace.lock);
2353
2354	spin_lock_init(&fs_info->qgroup_lock);
2355	mutex_init(&fs_info->qgroup_ioctl_lock);
2356	fs_info->qgroup_tree = RB_ROOT;
2357	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2358	fs_info->qgroup_seq = 1;
2359	fs_info->quota_enabled = 0;
2360	fs_info->pending_quota_state = 0;
2361	fs_info->qgroup_ulist = NULL;
2362	mutex_init(&fs_info->qgroup_rescan_lock);
2363
2364	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2365	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2366
2367	init_waitqueue_head(&fs_info->transaction_throttle);
2368	init_waitqueue_head(&fs_info->transaction_wait);
2369	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2370	init_waitqueue_head(&fs_info->async_submit_wait);
 
2371
2372	ret = btrfs_alloc_stripe_hash_table(fs_info);
2373	if (ret) {
2374		err = ret;
2375		goto fail_alloc;
2376	}
 
 
 
 
 
 
 
 
 
 
 
 
2377
2378	__setup_root(4096, 4096, 4096, 4096, tree_root,
2379		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
 
2380
2381	invalidate_bdev(fs_devices->latest_bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2382
2383	/*
2384	 * Read super block and check the signature bytes only
 
 
2385	 */
2386	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2387	if (!bh) {
2388		err = -EINVAL;
2389		goto fail_alloc;
 
 
 
2390	}
 
 
2391
2392	/*
2393	 * We want to check superblock checksum, the type is stored inside.
2394	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2395	 */
2396	if (btrfs_check_super_csum(bh->b_data)) {
2397		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2398		err = -EINVAL;
2399		goto fail_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2400	}
2401
2402	/*
2403	 * super_copy is zeroed at allocation time and we never touch the
2404	 * following bytes up to INFO_SIZE, the checksum is calculated from
2405	 * the whole block of INFO_SIZE
 
 
 
 
 
 
2406	 */
2407	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2408	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2409	       sizeof(*fs_info->super_for_commit));
2410	brelse(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411
2412	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
 
 
2413
2414	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2415	if (ret) {
2416		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2417		err = -EINVAL;
2418		goto fail_alloc;
2419	}
2420
2421	disk_super = fs_info->super_copy;
2422	if (!btrfs_super_root(disk_super))
2423		goto fail_alloc;
2424
2425	/* check FS state, whether FS is broken. */
2426	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2427		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2428
2429	/*
2430	 * run through our array of backup supers and setup
2431	 * our ring pointer to the oldest one
2432	 */
2433	generation = btrfs_super_generation(disk_super);
2434	find_oldest_super_backup(fs_info, generation);
 
 
 
 
 
 
 
2435
2436	/*
2437	 * In the long term, we'll store the compression type in the super
2438	 * block, and it'll be used for per file compression control.
 
2439	 */
2440	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
 
 
 
 
 
 
2441
2442	ret = btrfs_parse_options(tree_root, options);
2443	if (ret) {
2444		err = ret;
2445		goto fail_alloc;
 
 
 
 
 
 
2446	}
2447
2448	features = btrfs_super_incompat_flags(disk_super) &
2449		~BTRFS_FEATURE_INCOMPAT_SUPP;
2450	if (features) {
2451		printk(KERN_ERR "BTRFS: couldn't mount because of "
2452		       "unsupported optional features (%Lx).\n",
2453		       features);
2454		err = -EINVAL;
2455		goto fail_alloc;
 
 
 
 
2456	}
2457
2458	if (btrfs_super_leafsize(disk_super) !=
2459	    btrfs_super_nodesize(disk_super)) {
2460		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2461		       "blocksizes don't match.  node %d leaf %d\n",
2462		       btrfs_super_nodesize(disk_super),
2463		       btrfs_super_leafsize(disk_super));
2464		err = -EINVAL;
2465		goto fail_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466	}
2467	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2468		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2469		       "blocksize (%d) was too large\n",
2470		       btrfs_super_leafsize(disk_super));
2471		err = -EINVAL;
 
 
 
 
 
 
 
 
2472		goto fail_alloc;
2473	}
2474
2475	features = btrfs_super_incompat_flags(disk_super);
2476	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2477	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2478		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2479
2480	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2481		printk(KERN_ERR "BTRFS: has skinny extents\n");
2482
2483	/*
2484	 * flag our filesystem as having big metadata blocks if
2485	 * they are bigger than the page size
2486	 */
2487	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2488		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2489			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2490		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2491	}
2492
2493	nodesize = btrfs_super_nodesize(disk_super);
2494	leafsize = btrfs_super_leafsize(disk_super);
2495	sectorsize = btrfs_super_sectorsize(disk_super);
2496	stripesize = btrfs_super_stripesize(disk_super);
2497	fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2498	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
 
2499
2500	/*
2501	 * mixed block groups end up with duplicate but slightly offset
2502	 * extent buffers for the same range.  It leads to corruptions
2503	 */
2504	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2505	    (sectorsize != leafsize)) {
2506		printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2507				"are not allowed for mixed block groups on %s\n",
2508				sb->s_id);
2509		goto fail_alloc;
2510	}
2511
2512	/*
2513	 * Needn't use the lock because there is no other task which will
2514	 * update the flag.
 
2515	 */
2516	btrfs_set_super_incompat_flags(disk_super, features);
 
2517
2518	features = btrfs_super_compat_ro_flags(disk_super) &
2519		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2520	if (!(sb->s_flags & MS_RDONLY) && features) {
2521		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2522		       "unsupported option features (%Lx).\n",
2523		       features);
2524		err = -EINVAL;
 
 
2525		goto fail_alloc;
2526	}
2527
2528	max_active = fs_info->thread_pool_size;
2529
2530	fs_info->workers =
2531		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2532				      max_active, 16);
2533
2534	fs_info->delalloc_workers =
2535		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
 
2536
2537	fs_info->flush_workers =
2538		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
 
 
 
 
2539
2540	fs_info->caching_workers =
2541		btrfs_alloc_workqueue("cache", flags, max_active, 0);
 
 
 
2542
2543	/*
2544	 * a higher idle thresh on the submit workers makes it much more
2545	 * likely that bios will be send down in a sane order to the
2546	 * devices
2547	 */
2548	fs_info->submit_workers =
2549		btrfs_alloc_workqueue("submit", flags,
2550				      min_t(u64, fs_devices->num_devices,
2551					    max_active), 64);
2552
2553	fs_info->fixup_workers =
2554		btrfs_alloc_workqueue("fixup", flags, 1, 0);
 
 
 
 
 
 
2555
2556	/*
2557	 * endios are largely parallel and should have a very
2558	 * low idle thresh
2559	 */
2560	fs_info->endio_workers =
2561		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2562	fs_info->endio_meta_workers =
2563		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2564	fs_info->endio_meta_write_workers =
2565		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2566	fs_info->endio_raid56_workers =
2567		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2568	fs_info->rmw_workers =
2569		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2570	fs_info->endio_write_workers =
2571		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2572	fs_info->endio_freespace_worker =
2573		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2574	fs_info->delayed_workers =
2575		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2576	fs_info->readahead_workers =
2577		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2578	fs_info->qgroup_rescan_workers =
2579		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2580
2581	if (!(fs_info->workers && fs_info->delalloc_workers &&
2582	      fs_info->submit_workers && fs_info->flush_workers &&
2583	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2584	      fs_info->endio_meta_write_workers &&
2585	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2586	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2587	      fs_info->caching_workers && fs_info->readahead_workers &&
2588	      fs_info->fixup_workers && fs_info->delayed_workers &&
2589	      fs_info->qgroup_rescan_workers)) {
2590		err = -ENOMEM;
2591		goto fail_sb_buffer;
 
 
2592	}
2593
2594	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2595	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2596				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2597
2598	tree_root->nodesize = nodesize;
2599	tree_root->leafsize = leafsize;
2600	tree_root->sectorsize = sectorsize;
2601	tree_root->stripesize = stripesize;
2602
 
 
 
 
2603	sb->s_blocksize = sectorsize;
2604	sb->s_blocksize_bits = blksize_bits(sectorsize);
2605
2606	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2607		printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2608		goto fail_sb_buffer;
2609	}
2610
2611	if (sectorsize != PAGE_SIZE) {
2612		printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2613		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2614		goto fail_sb_buffer;
2615	}
2616
2617	mutex_lock(&fs_info->chunk_mutex);
2618	ret = btrfs_read_sys_array(tree_root);
2619	mutex_unlock(&fs_info->chunk_mutex);
2620	if (ret) {
2621		printk(KERN_WARNING "BTRFS: failed to read the system "
2622		       "array on %s\n", sb->s_id);
2623		goto fail_sb_buffer;
2624	}
2625
2626	blocksize = btrfs_level_size(tree_root,
2627				     btrfs_super_chunk_root_level(disk_super));
2628	generation = btrfs_super_chunk_root_generation(disk_super);
2629
2630	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2631		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2632
2633	chunk_root->node = read_tree_block(chunk_root,
2634					   btrfs_super_chunk_root(disk_super),
2635					   blocksize, generation);
2636	if (!chunk_root->node ||
2637	    !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2638		printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2639		       sb->s_id);
2640		goto fail_tree_roots;
2641	}
2642	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2643	chunk_root->commit_root = btrfs_root_node(chunk_root);
2644
2645	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2646	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
 
2647
2648	ret = btrfs_read_chunk_tree(chunk_root);
2649	if (ret) {
2650		printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2651		       sb->s_id);
2652		goto fail_tree_roots;
2653	}
2654
2655	/*
2656	 * keep the device that is marked to be the target device for the
2657	 * dev_replace procedure
 
 
 
2658	 */
2659	btrfs_close_extra_devices(fs_info, fs_devices, 0);
2660
2661	if (!fs_devices->latest_bdev) {
2662		printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2663		       sb->s_id);
2664		goto fail_tree_roots;
2665	}
2666
2667retry_root_backup:
2668	blocksize = btrfs_level_size(tree_root,
2669				     btrfs_super_root_level(disk_super));
2670	generation = btrfs_super_generation(disk_super);
2671
2672	tree_root->node = read_tree_block(tree_root,
2673					  btrfs_super_root(disk_super),
2674					  blocksize, generation);
2675	if (!tree_root->node ||
2676	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2677		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2678		       sb->s_id);
2679
2680		goto recovery_tree_root;
2681	}
2682
2683	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2684	tree_root->commit_root = btrfs_root_node(tree_root);
2685	btrfs_set_root_refs(&tree_root->root_item, 1);
2686
2687	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2688	location.type = BTRFS_ROOT_ITEM_KEY;
2689	location.offset = 0;
2690
2691	extent_root = btrfs_read_tree_root(tree_root, &location);
2692	if (IS_ERR(extent_root)) {
2693		ret = PTR_ERR(extent_root);
2694		goto recovery_tree_root;
2695	}
2696	extent_root->track_dirty = 1;
2697	fs_info->extent_root = extent_root;
2698
2699	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2700	dev_root = btrfs_read_tree_root(tree_root, &location);
2701	if (IS_ERR(dev_root)) {
2702		ret = PTR_ERR(dev_root);
2703		goto recovery_tree_root;
2704	}
2705	dev_root->track_dirty = 1;
2706	fs_info->dev_root = dev_root;
2707	btrfs_init_devices_late(fs_info);
2708
2709	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2710	csum_root = btrfs_read_tree_root(tree_root, &location);
2711	if (IS_ERR(csum_root)) {
2712		ret = PTR_ERR(csum_root);
2713		goto recovery_tree_root;
2714	}
2715	csum_root->track_dirty = 1;
2716	fs_info->csum_root = csum_root;
2717
2718	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2719	quota_root = btrfs_read_tree_root(tree_root, &location);
2720	if (!IS_ERR(quota_root)) {
2721		quota_root->track_dirty = 1;
2722		fs_info->quota_enabled = 1;
2723		fs_info->pending_quota_state = 1;
2724		fs_info->quota_root = quota_root;
2725	}
 
 
 
2726
2727	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2728	uuid_root = btrfs_read_tree_root(tree_root, &location);
2729	if (IS_ERR(uuid_root)) {
2730		ret = PTR_ERR(uuid_root);
2731		if (ret != -ENOENT)
2732			goto recovery_tree_root;
2733		create_uuid_tree = true;
2734		check_uuid_tree = false;
2735	} else {
2736		uuid_root->track_dirty = 1;
2737		fs_info->uuid_root = uuid_root;
2738		create_uuid_tree = false;
2739		check_uuid_tree =
2740		    generation != btrfs_super_uuid_tree_generation(disk_super);
2741	}
2742
2743	fs_info->generation = generation;
2744	fs_info->last_trans_committed = generation;
2745
2746	ret = btrfs_recover_balance(fs_info);
2747	if (ret) {
2748		printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2749		goto fail_block_groups;
2750	}
2751
2752	ret = btrfs_init_dev_stats(fs_info);
2753	if (ret) {
2754		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2755		       ret);
2756		goto fail_block_groups;
2757	}
2758
2759	ret = btrfs_init_dev_replace(fs_info);
2760	if (ret) {
2761		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2762		goto fail_block_groups;
2763	}
2764
2765	btrfs_close_extra_devices(fs_info, fs_devices, 1);
 
 
 
 
 
2766
2767	ret = btrfs_sysfs_add_one(fs_info);
2768	if (ret) {
2769		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
 
2770		goto fail_block_groups;
2771	}
2772
 
 
 
 
 
 
2773	ret = btrfs_init_space_info(fs_info);
2774	if (ret) {
2775		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2776		goto fail_sysfs;
2777	}
2778
2779	ret = btrfs_read_block_groups(extent_root);
2780	if (ret) {
2781		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2782		goto fail_sysfs;
2783	}
2784	fs_info->num_tolerated_disk_barrier_failures =
2785		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2786	if (fs_info->fs_devices->missing_devices >
2787	     fs_info->num_tolerated_disk_barrier_failures &&
2788	    !(sb->s_flags & MS_RDONLY)) {
2789		printk(KERN_WARNING "BTRFS: "
2790			"too many missing devices, writeable mount is not allowed\n");
 
 
 
2791		goto fail_sysfs;
2792	}
2793
2794	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2795					       "btrfs-cleaner");
2796	if (IS_ERR(fs_info->cleaner_kthread))
 
2797		goto fail_sysfs;
 
2798
2799	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2800						   tree_root,
2801						   "btrfs-transaction");
2802	if (IS_ERR(fs_info->transaction_kthread))
 
2803		goto fail_cleaner;
2804
2805	if (!btrfs_test_opt(tree_root, SSD) &&
2806	    !btrfs_test_opt(tree_root, NOSSD) &&
2807	    !fs_info->fs_devices->rotating) {
2808		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2809		       "mode\n");
2810		btrfs_set_opt(fs_info->mount_opt, SSD);
2811	}
2812
2813	/* Set the real inode map cache flag */
2814	if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2815		btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2816
2817#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2818	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2819		ret = btrfsic_mount(tree_root, fs_devices,
2820				    btrfs_test_opt(tree_root,
2821					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2822				    1 : 0,
2823				    fs_info->check_integrity_print_mask);
2824		if (ret)
2825			printk(KERN_WARNING "BTRFS: failed to initialize"
2826			       " integrity check module %s\n", sb->s_id);
2827	}
2828#endif
2829	ret = btrfs_read_qgroup_config(fs_info);
2830	if (ret)
2831		goto fail_trans_kthread;
2832
2833	/* do not make disk changes in broken FS */
2834	if (btrfs_super_log_root(disk_super) != 0) {
2835		u64 bytenr = btrfs_super_log_root(disk_super);
2836
2837		if (fs_devices->rw_devices == 0) {
2838			printk(KERN_WARNING "BTRFS: log replay required "
2839			       "on RO media\n");
2840			err = -EIO;
2841			goto fail_qgroup;
2842		}
2843		blocksize =
2844		     btrfs_level_size(tree_root,
2845				      btrfs_super_log_root_level(disk_super));
2846
2847		log_tree_root = btrfs_alloc_root(fs_info);
2848		if (!log_tree_root) {
2849			err = -ENOMEM;
2850			goto fail_qgroup;
2851		}
2852
2853		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2854			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2855
2856		log_tree_root->node = read_tree_block(tree_root, bytenr,
2857						      blocksize,
2858						      generation + 1);
2859		if (!log_tree_root->node ||
2860		    !extent_buffer_uptodate(log_tree_root->node)) {
2861			printk(KERN_ERR "BTRFS: failed to read log tree\n");
2862			free_extent_buffer(log_tree_root->node);
2863			kfree(log_tree_root);
2864			goto fail_qgroup;
2865		}
2866		/* returns with log_tree_root freed on success */
2867		ret = btrfs_recover_log_trees(log_tree_root);
2868		if (ret) {
2869			btrfs_error(tree_root->fs_info, ret,
2870				    "Failed to recover log tree");
2871			free_extent_buffer(log_tree_root->node);
2872			kfree(log_tree_root);
2873			goto fail_qgroup;
2874		}
2875
2876		if (sb->s_flags & MS_RDONLY) {
2877			ret = btrfs_commit_super(tree_root);
2878			if (ret)
2879				goto fail_qgroup;
2880		}
2881	}
2882
2883	ret = btrfs_find_orphan_roots(tree_root);
2884	if (ret)
2885		goto fail_qgroup;
2886
2887	if (!(sb->s_flags & MS_RDONLY)) {
2888		ret = btrfs_cleanup_fs_roots(fs_info);
 
 
 
2889		if (ret)
2890			goto fail_qgroup;
2891
2892		ret = btrfs_recover_relocation(tree_root);
2893		if (ret < 0) {
2894			printk(KERN_WARNING
2895			       "BTRFS: failed to recover relocation\n");
2896			err = -EINVAL;
2897			goto fail_qgroup;
2898		}
2899	}
2900
2901	location.objectid = BTRFS_FS_TREE_OBJECTID;
2902	location.type = BTRFS_ROOT_ITEM_KEY;
2903	location.offset = 0;
2904
2905	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2906	if (IS_ERR(fs_info->fs_root)) {
2907		err = PTR_ERR(fs_info->fs_root);
 
 
2908		goto fail_qgroup;
2909	}
2910
2911	if (sb->s_flags & MS_RDONLY)
2912		return 0;
2913
2914	down_read(&fs_info->cleanup_work_sem);
2915	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2916	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2917		up_read(&fs_info->cleanup_work_sem);
2918		close_ctree(tree_root);
2919		return ret;
2920	}
2921	up_read(&fs_info->cleanup_work_sem);
2922
2923	ret = btrfs_resume_balance_async(fs_info);
2924	if (ret) {
2925		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2926		close_ctree(tree_root);
2927		return ret;
2928	}
2929
2930	ret = btrfs_resume_dev_replace_async(fs_info);
2931	if (ret) {
2932		pr_warn("BTRFS: failed to resume dev_replace\n");
2933		close_ctree(tree_root);
2934		return ret;
2935	}
 
2936
2937	btrfs_qgroup_rescan_resume(fs_info);
2938
2939	if (create_uuid_tree) {
2940		pr_info("BTRFS: creating UUID tree\n");
2941		ret = btrfs_create_uuid_tree(fs_info);
2942		if (ret) {
2943			pr_warn("BTRFS: failed to create the UUID tree %d\n",
2944				ret);
2945			close_ctree(tree_root);
2946			return ret;
2947		}
2948	} else if (check_uuid_tree ||
2949		   btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2950		pr_info("BTRFS: checking UUID tree\n");
2951		ret = btrfs_check_uuid_tree(fs_info);
2952		if (ret) {
2953			pr_warn("BTRFS: failed to check the UUID tree %d\n",
2954				ret);
2955			close_ctree(tree_root);
2956			return ret;
2957		}
2958	} else {
2959		fs_info->update_uuid_tree_gen = 1;
2960	}
2961
 
 
 
 
 
 
2962	return 0;
2963
2964fail_qgroup:
2965	btrfs_free_qgroup_config(fs_info);
2966fail_trans_kthread:
2967	kthread_stop(fs_info->transaction_kthread);
2968	btrfs_cleanup_transaction(fs_info->tree_root);
2969	del_fs_roots(fs_info);
2970fail_cleaner:
2971	kthread_stop(fs_info->cleaner_kthread);
2972
2973	/*
2974	 * make sure we're done with the btree inode before we stop our
2975	 * kthreads
2976	 */
2977	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2978
2979fail_sysfs:
2980	btrfs_sysfs_remove_one(fs_info);
 
 
 
2981
2982fail_block_groups:
2983	btrfs_put_block_group_cache(fs_info);
2984	btrfs_free_block_groups(fs_info);
2985
2986fail_tree_roots:
2987	free_root_pointers(fs_info, 1);
 
 
2988	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2989
2990fail_sb_buffer:
2991	btrfs_stop_all_workers(fs_info);
 
2992fail_alloc:
2993fail_iput:
2994	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2995
2996	iput(fs_info->btree_inode);
2997fail_bio_counter:
2998	percpu_counter_destroy(&fs_info->bio_counter);
2999fail_delalloc_bytes:
3000	percpu_counter_destroy(&fs_info->delalloc_bytes);
3001fail_dirty_metadata_bytes:
3002	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3003fail_bdi:
3004	bdi_destroy(&fs_info->bdi);
3005fail_srcu:
3006	cleanup_srcu_struct(&fs_info->subvol_srcu);
3007fail:
3008	btrfs_free_stripe_hash_table(fs_info);
3009	btrfs_close_devices(fs_info->fs_devices);
3010	return err;
 
 
 
3011
3012recovery_tree_root:
3013	if (!btrfs_test_opt(tree_root, RECOVERY))
3014		goto fail_tree_roots;
 
 
 
3015
3016	free_root_pointers(fs_info, 0);
 
3017
3018	/* don't use the log in recovery mode, it won't be valid */
3019	btrfs_set_super_log_root(disk_super, 0);
 
 
 
 
 
 
 
 
 
 
3020
3021	/* we can't trust the free space cache either */
3022	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
 
3023
3024	ret = next_root_backup(fs_info, fs_info->super_copy,
3025			       &num_backups_tried, &backup_index);
3026	if (ret == -1)
3027		goto fail_block_groups;
3028	goto retry_root_backup;
3029}
3030
3031static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 
3032{
3033	if (uptodate) {
3034		set_buffer_uptodate(bh);
3035	} else {
3036		struct btrfs_device *device = (struct btrfs_device *)
3037			bh->b_private;
 
 
 
 
 
 
 
 
 
 
3038
3039		printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3040					  "I/O error on %s\n",
3041					  rcu_str_deref(device->name));
3042		/* note, we dont' set_buffer_write_io_error because we have
3043		 * our own ways of dealing with the IO errors
 
 
3044		 */
3045		clear_buffer_uptodate(bh);
3046		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3047	}
3048	unlock_buffer(bh);
3049	put_bh(bh);
3050}
3051
3052struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
 
3053{
3054	struct buffer_head *bh;
3055	struct buffer_head *latest = NULL;
3056	struct btrfs_super_block *super;
3057	int i;
3058	u64 transid = 0;
3059	u64 bytenr;
3060
3061	/* we would like to check all the supers, but that would make
3062	 * a btrfs mount succeed after a mkfs from a different FS.
3063	 * So, we need to add a special mount option to scan for
3064	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3065	 */
3066	for (i = 0; i < 1; i++) {
3067		bytenr = btrfs_sb_offset(i);
3068		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3069					i_size_read(bdev->bd_inode))
3070			break;
3071		bh = __bread(bdev, bytenr / 4096,
3072					BTRFS_SUPER_INFO_SIZE);
3073		if (!bh)
3074			continue;
3075
3076		super = (struct btrfs_super_block *)bh->b_data;
3077		if (btrfs_super_bytenr(super) != bytenr ||
3078		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3079			brelse(bh);
3080			continue;
3081		}
3082
3083		if (!latest || btrfs_super_generation(super) > transid) {
3084			brelse(latest);
3085			latest = bh;
 
 
3086			transid = btrfs_super_generation(super);
3087		} else {
3088			brelse(bh);
3089		}
3090	}
3091	return latest;
 
3092}
3093
3094/*
3095 * this should be called twice, once with wait == 0 and
3096 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3097 * we write are pinned.
3098 *
3099 * They are released when wait == 1 is done.
3100 * max_mirrors must be the same for both runs, and it indicates how
3101 * many supers on this one device should be written.
3102 *
3103 * max_mirrors == 0 means to write them all.
3104 */
3105static int write_dev_supers(struct btrfs_device *device,
3106			    struct btrfs_super_block *sb,
3107			    int do_barriers, int wait, int max_mirrors)
3108{
3109	struct buffer_head *bh;
 
 
3110	int i;
3111	int ret;
3112	int errors = 0;
3113	u32 crc;
3114	u64 bytenr;
3115
3116	if (max_mirrors == 0)
3117		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3118
 
 
3119	for (i = 0; i < max_mirrors; i++) {
3120		bytenr = btrfs_sb_offset(i);
3121		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3122			break;
3123
3124		if (wait) {
3125			bh = __find_get_block(device->bdev, bytenr / 4096,
3126					      BTRFS_SUPER_INFO_SIZE);
3127			if (!bh) {
3128				errors++;
3129				continue;
3130			}
3131			wait_on_buffer(bh);
3132			if (!buffer_uptodate(bh))
3133				errors++;
3134
3135			/* drop our reference */
3136			brelse(bh);
3137
3138			/* drop the reference from the wait == 0 run */
3139			brelse(bh);
 
 
 
 
 
 
3140			continue;
3141		} else {
3142			btrfs_set_super_bytenr(sb, bytenr);
3143
3144			crc = ~(u32)0;
3145			crc = btrfs_csum_data((char *)sb +
3146					      BTRFS_CSUM_SIZE, crc,
3147					      BTRFS_SUPER_INFO_SIZE -
3148					      BTRFS_CSUM_SIZE);
3149			btrfs_csum_final(crc, sb->csum);
3150
3151			/*
3152			 * one reference for us, and we leave it for the
3153			 * caller
3154			 */
3155			bh = __getblk(device->bdev, bytenr / 4096,
3156				      BTRFS_SUPER_INFO_SIZE);
3157			if (!bh) {
3158				printk(KERN_ERR "BTRFS: couldn't get super "
3159				       "buffer head for bytenr %Lu\n", bytenr);
3160				errors++;
3161				continue;
3162			}
3163
3164			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
 
3165
3166			/* one reference for submit_bh */
3167			get_bh(bh);
3168
3169			set_buffer_uptodate(bh);
3170			lock_buffer(bh);
3171			bh->b_end_io = btrfs_end_buffer_write_sync;
3172			bh->b_private = device;
3173		}
 
 
 
 
 
 
 
 
3174
3175		/*
3176		 * we fua the first super.  The others we allow
3177		 * to go down lazy.
 
3178		 */
3179		if (i == 0)
3180			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3181		else
3182			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3183		if (ret)
3184			errors++;
3185	}
3186	return errors < i ? 0 : -1;
3187}
3188
3189/*
3190 * endio for the write_dev_flush, this will wake anyone waiting
3191 * for the barrier when it is done
3192 */
3193static void btrfs_end_empty_barrier(struct bio *bio, int err)
3194{
3195	if (err) {
3196		if (err == -EOPNOTSUPP)
3197			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3198		clear_bit(BIO_UPTODATE, &bio->bi_flags);
3199	}
3200	if (bio->bi_private)
3201		complete(bio->bi_private);
3202	bio_put(bio);
3203}
3204
3205/*
3206 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3207 * sent down.  With wait == 1, it waits for the previous flush.
3208 *
3209 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3210 * capable
3211 */
3212static int write_dev_flush(struct btrfs_device *device, int wait)
3213{
3214	struct bio *bio;
3215	int ret = 0;
 
 
 
3216
3217	if (device->nobarriers)
3218		return 0;
3219
3220	if (wait) {
3221		bio = device->flush_bio;
3222		if (!bio)
3223			return 0;
3224
3225		wait_for_completion(&device->flush_wait);
 
 
 
 
 
 
 
 
 
 
 
3226
3227		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3228			printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3229				      rcu_str_deref(device->name));
3230			device->nobarriers = 1;
3231		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
3232			ret = -EIO;
3233			btrfs_dev_stat_inc_and_print(device,
3234				BTRFS_DEV_STAT_FLUSH_ERRS);
 
 
 
 
 
 
3235		}
3236
3237		/* drop the reference from the wait == 0 run */
3238		bio_put(bio);
3239		device->flush_bio = NULL;
3240
3241		return ret;
 
3242	}
3243
3244	/*
3245	 * one reference for us, and we leave it for the
3246	 * caller
3247	 */
3248	device->flush_bio = NULL;
3249	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3250	if (!bio)
3251		return -ENOMEM;
 
3252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3253	bio->bi_end_io = btrfs_end_empty_barrier;
3254	bio->bi_bdev = device->bdev;
3255	init_completion(&device->flush_wait);
3256	bio->bi_private = &device->flush_wait;
3257	device->flush_bio = bio;
 
 
3258
3259	bio_get(bio);
3260	btrfsic_submit_bio(WRITE_FLUSH, bio);
 
 
 
 
 
3261
3262	return 0;
 
 
 
 
 
 
 
 
 
 
 
3263}
3264
3265/*
3266 * send an empty flush down to each device in parallel,
3267 * then wait for them
3268 */
3269static int barrier_all_devices(struct btrfs_fs_info *info)
3270{
3271	struct list_head *head;
3272	struct btrfs_device *dev;
3273	int errors_send = 0;
3274	int errors_wait = 0;
3275	int ret;
3276
 
3277	/* send down all the barriers */
3278	head = &info->fs_devices->devices;
3279	list_for_each_entry_rcu(dev, head, dev_list) {
3280		if (dev->missing)
3281			continue;
3282		if (!dev->bdev) {
3283			errors_send++;
3284			continue;
3285		}
3286		if (!dev->in_fs_metadata || !dev->writeable)
3287			continue;
3288
3289		ret = write_dev_flush(dev, 0);
3290		if (ret)
3291			errors_send++;
3292	}
3293
3294	/* wait for all the barriers */
3295	list_for_each_entry_rcu(dev, head, dev_list) {
3296		if (dev->missing)
3297			continue;
3298		if (!dev->bdev) {
3299			errors_wait++;
3300			continue;
3301		}
3302		if (!dev->in_fs_metadata || !dev->writeable)
 
3303			continue;
3304
3305		ret = write_dev_flush(dev, 1);
3306		if (ret)
3307			errors_wait++;
3308	}
3309	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3310	    errors_wait > info->num_tolerated_disk_barrier_failures)
 
 
 
 
3311		return -EIO;
 
3312	return 0;
3313}
3314
3315int btrfs_calc_num_tolerated_disk_barrier_failures(
3316	struct btrfs_fs_info *fs_info)
3317{
3318	struct btrfs_ioctl_space_info space;
3319	struct btrfs_space_info *sinfo;
3320	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3321		       BTRFS_BLOCK_GROUP_SYSTEM,
3322		       BTRFS_BLOCK_GROUP_METADATA,
3323		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3324	int num_types = 4;
3325	int i;
3326	int c;
3327	int num_tolerated_disk_barrier_failures =
3328		(int)fs_info->fs_devices->num_devices;
3329
3330	for (i = 0; i < num_types; i++) {
3331		struct btrfs_space_info *tmp;
3332
3333		sinfo = NULL;
3334		rcu_read_lock();
3335		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3336			if (tmp->flags == types[i]) {
3337				sinfo = tmp;
3338				break;
3339			}
3340		}
3341		rcu_read_unlock();
3342
3343		if (!sinfo)
 
3344			continue;
 
 
 
 
 
 
3345
3346		down_read(&sinfo->groups_sem);
3347		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3348			if (!list_empty(&sinfo->block_groups[c])) {
3349				u64 flags;
3350
3351				btrfs_get_block_group_info(
3352					&sinfo->block_groups[c], &space);
3353				if (space.total_bytes == 0 ||
3354				    space.used_bytes == 0)
3355					continue;
3356				flags = space.flags;
3357				/*
3358				 * return
3359				 * 0: if dup, single or RAID0 is configured for
3360				 *    any of metadata, system or data, else
3361				 * 1: if RAID5 is configured, or if RAID1 or
3362				 *    RAID10 is configured and only two mirrors
3363				 *    are used, else
3364				 * 2: if RAID6 is configured, else
3365				 * num_mirrors - 1: if RAID1 or RAID10 is
3366				 *                  configured and more than
3367				 *                  2 mirrors are used.
3368				 */
3369				if (num_tolerated_disk_barrier_failures > 0 &&
3370				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3371					       BTRFS_BLOCK_GROUP_RAID0)) ||
3372				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3373				      == 0)))
3374					num_tolerated_disk_barrier_failures = 0;
3375				else if (num_tolerated_disk_barrier_failures > 1) {
3376					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3377					    BTRFS_BLOCK_GROUP_RAID5 |
3378					    BTRFS_BLOCK_GROUP_RAID10)) {
3379						num_tolerated_disk_barrier_failures = 1;
3380					} else if (flags &
3381						   BTRFS_BLOCK_GROUP_RAID6) {
3382						num_tolerated_disk_barrier_failures = 2;
3383					}
3384				}
3385			}
3386		}
3387		up_read(&sinfo->groups_sem);
3388	}
3389
3390	return num_tolerated_disk_barrier_failures;
3391}
3392
3393static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3394{
3395	struct list_head *head;
3396	struct btrfs_device *dev;
3397	struct btrfs_super_block *sb;
3398	struct btrfs_dev_item *dev_item;
3399	int ret;
3400	int do_barriers;
3401	int max_errors;
3402	int total_errors = 0;
3403	u64 flags;
3404
3405	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3406	backup_super_roots(root->fs_info);
 
 
 
 
 
 
 
3407
3408	sb = root->fs_info->super_for_commit;
3409	dev_item = &sb->dev_item;
3410
3411	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3412	head = &root->fs_info->fs_devices->devices;
3413	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3414
3415	if (do_barriers) {
3416		ret = barrier_all_devices(root->fs_info);
3417		if (ret) {
3418			mutex_unlock(
3419				&root->fs_info->fs_devices->device_list_mutex);
3420			btrfs_error(root->fs_info, ret,
3421				    "errors while submitting device barriers.");
3422			return ret;
3423		}
3424	}
3425
3426	list_for_each_entry_rcu(dev, head, dev_list) {
3427		if (!dev->bdev) {
3428			total_errors++;
3429			continue;
3430		}
3431		if (!dev->in_fs_metadata || !dev->writeable)
 
3432			continue;
3433
3434		btrfs_set_stack_device_generation(dev_item, 0);
3435		btrfs_set_stack_device_type(dev_item, dev->type);
3436		btrfs_set_stack_device_id(dev_item, dev->devid);
3437		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3438		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
 
 
3439		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3440		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3441		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3442		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3443		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
 
3444
3445		flags = btrfs_super_flags(sb);
3446		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3447
3448		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
 
 
 
 
 
 
 
 
3449		if (ret)
3450			total_errors++;
3451	}
3452	if (total_errors > max_errors) {
3453		btrfs_err(root->fs_info, "%d errors while writing supers",
3454		       total_errors);
3455		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3456
3457		/* FUA is masked off if unsupported and can't be the reason */
3458		btrfs_error(root->fs_info, -EIO,
3459			    "%d errors while writing supers", total_errors);
 
3460		return -EIO;
3461	}
3462
3463	total_errors = 0;
3464	list_for_each_entry_rcu(dev, head, dev_list) {
3465		if (!dev->bdev)
3466			continue;
3467		if (!dev->in_fs_metadata || !dev->writeable)
 
3468			continue;
3469
3470		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3471		if (ret)
3472			total_errors++;
3473	}
3474	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3475	if (total_errors > max_errors) {
3476		btrfs_error(root->fs_info, -EIO,
3477			    "%d errors while writing supers", total_errors);
 
3478		return -EIO;
3479	}
3480	return 0;
3481}
3482
3483int write_ctree_super(struct btrfs_trans_handle *trans,
3484		      struct btrfs_root *root, int max_mirrors)
3485{
3486	return write_all_supers(root, max_mirrors);
3487}
3488
3489/* Drop a fs root from the radix tree and free it. */
3490void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3491				  struct btrfs_root *root)
3492{
 
 
3493	spin_lock(&fs_info->fs_roots_radix_lock);
3494	radix_tree_delete(&fs_info->fs_roots_radix,
3495			  (unsigned long)root->root_key.objectid);
 
 
3496	spin_unlock(&fs_info->fs_roots_radix_lock);
3497
3498	if (btrfs_root_refs(&root->root_item) == 0)
3499		synchronize_srcu(&fs_info->subvol_srcu);
3500
3501	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3502		btrfs_free_log(NULL, root);
 
 
3503
3504	__btrfs_remove_free_space_cache(root->free_ino_pinned);
3505	__btrfs_remove_free_space_cache(root->free_ino_ctl);
3506	free_fs_root(root);
3507}
3508
3509static void free_fs_root(struct btrfs_root *root)
3510{
3511	iput(root->cache_inode);
3512	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3513	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3514	root->orphan_block_rsv = NULL;
3515	if (root->anon_dev)
3516		free_anon_bdev(root->anon_dev);
3517	if (root->subv_writers)
3518		btrfs_free_subvolume_writers(root->subv_writers);
3519	free_extent_buffer(root->node);
3520	free_extent_buffer(root->commit_root);
3521	kfree(root->free_ino_ctl);
3522	kfree(root->free_ino_pinned);
3523	kfree(root->name);
3524	btrfs_put_fs_root(root);
3525}
3526
3527void btrfs_free_fs_root(struct btrfs_root *root)
3528{
3529	free_fs_root(root);
 
 
 
 
 
 
 
 
 
 
3530}
3531
3532int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3533{
3534	u64 root_objectid = 0;
3535	struct btrfs_root *gang[8];
3536	int i;
3537	int ret;
3538
3539	while (1) {
3540		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3541					     (void **)gang, root_objectid,
3542					     ARRAY_SIZE(gang));
3543		if (!ret)
3544			break;
3545
3546		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3547		for (i = 0; i < ret; i++) {
3548			int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3549
3550			root_objectid = gang[i]->root_key.objectid;
3551			err = btrfs_orphan_cleanup(gang[i]);
3552			if (err)
3553				return err;
3554		}
3555		root_objectid++;
3556	}
3557	return 0;
3558}
3559
3560int btrfs_commit_super(struct btrfs_root *root)
3561{
3562	struct btrfs_trans_handle *trans;
3563
3564	mutex_lock(&root->fs_info->cleaner_mutex);
3565	btrfs_run_delayed_iputs(root);
3566	mutex_unlock(&root->fs_info->cleaner_mutex);
3567	wake_up_process(root->fs_info->cleaner_kthread);
3568
3569	/* wait until ongoing cleanup work done */
3570	down_write(&root->fs_info->cleanup_work_sem);
3571	up_write(&root->fs_info->cleanup_work_sem);
3572
3573	trans = btrfs_join_transaction(root);
3574	if (IS_ERR(trans))
3575		return PTR_ERR(trans);
3576	return btrfs_commit_transaction(trans, root);
3577}
 
 
 
 
 
3578
3579int close_ctree(struct btrfs_root *root)
3580{
3581	struct btrfs_fs_info *fs_info = root->fs_info;
3582	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
3583
3584	fs_info->closing = 1;
3585	smp_mb();
3586
3587	/* wait for the uuid_scan task to finish */
3588	down(&fs_info->uuid_tree_rescan_sem);
3589	/* avoid complains from lockdep et al., set sem back to initial state */
3590	up(&fs_info->uuid_tree_rescan_sem);
3591
3592	/* pause restriper - we want to resume on mount */
3593	btrfs_pause_balance(fs_info);
3594
3595	btrfs_dev_replace_suspend_for_unmount(fs_info);
3596
3597	btrfs_scrub_cancel(fs_info);
3598
3599	/* wait for any defraggers to finish */
3600	wait_event(fs_info->transaction_wait,
3601		   (atomic_read(&fs_info->defrag_running) == 0));
3602
3603	/* clear out the rbtree of defraggable inodes */
3604	btrfs_cleanup_defrag_inodes(fs_info);
3605
3606	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3607		ret = btrfs_commit_super(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3608		if (ret)
3609			btrfs_err(root->fs_info, "commit super ret %d", ret);
3610	}
3611
3612	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3613		btrfs_error_commit_super(root);
3614
3615	kthread_stop(fs_info->transaction_kthread);
3616	kthread_stop(fs_info->cleaner_kthread);
3617
3618	fs_info->closing = 2;
3619	smp_mb();
 
 
 
 
 
3620
3621	btrfs_free_qgroup_config(root->fs_info);
 
3622
3623	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3624		btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3625		       percpu_counter_sum(&fs_info->delalloc_bytes));
3626	}
3627
3628	btrfs_sysfs_remove_one(fs_info);
 
 
3629
3630	del_fs_roots(fs_info);
 
3631
3632	btrfs_put_block_group_cache(fs_info);
3633
3634	btrfs_free_block_groups(fs_info);
3635
 
 
 
3636	btrfs_stop_all_workers(fs_info);
3637
3638	free_root_pointers(fs_info, 1);
3639
3640	iput(fs_info->btree_inode);
3641
3642#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3643	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3644		btrfsic_unmount(root, fs_info->fs_devices);
3645#endif
3646
3647	btrfs_close_devices(fs_info->fs_devices);
3648	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3649
3650	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3651	percpu_counter_destroy(&fs_info->delalloc_bytes);
3652	percpu_counter_destroy(&fs_info->bio_counter);
3653	bdi_destroy(&fs_info->bdi);
3654	cleanup_srcu_struct(&fs_info->subvol_srcu);
3655
3656	btrfs_free_stripe_hash_table(fs_info);
3657
3658	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3659	root->orphan_block_rsv = NULL;
3660
3661	return 0;
3662}
 
3663
3664int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3665			  int atomic)
3666{
3667	int ret;
3668	struct inode *btree_inode = buf->pages[0]->mapping->host;
3669
3670	ret = extent_buffer_uptodate(buf);
3671	if (!ret)
3672		return ret;
3673
3674	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3675				    parent_transid, atomic);
3676	if (ret == -EAGAIN)
3677		return ret;
3678	return !ret;
3679}
3680
3681int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3682{
3683	return set_extent_buffer_uptodate(buf);
3684}
3685
3686void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
 
3687{
3688	struct btrfs_root *root;
3689	u64 transid = btrfs_header_generation(buf);
3690	int was_dirty;
3691
3692#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3693	/*
3694	 * This is a fast path so only do this check if we have sanity tests
3695	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3696	 * outside of the sanity tests.
3697	 */
3698	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3699		return;
3700#endif
3701	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3702	btrfs_assert_tree_locked(buf);
3703	if (transid != root->fs_info->generation)
3704		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3705		       "found %llu running %llu\n",
3706			buf->start, transid, root->fs_info->generation);
3707	was_dirty = set_extent_buffer_dirty(buf);
3708	if (!was_dirty)
3709		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3710				     buf->len,
3711				     root->fs_info->dirty_metadata_batch);
3712}
3713
3714static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3715					int flush_delayed)
3716{
3717	/*
3718	 * looks as though older kernels can get into trouble with
3719	 * this code, they end up stuck in balance_dirty_pages forever
3720	 */
3721	int ret;
3722
3723	if (current->flags & PF_MEMALLOC)
3724		return;
3725
3726	if (flush_delayed)
3727		btrfs_balance_delayed_items(root);
3728
3729	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3730				     BTRFS_DIRTY_METADATA_THRESH);
 
3731	if (ret > 0) {
3732		balance_dirty_pages_ratelimited(
3733				   root->fs_info->btree_inode->i_mapping);
3734	}
3735	return;
3736}
3737
3738void btrfs_btree_balance_dirty(struct btrfs_root *root)
3739{
3740	__btrfs_btree_balance_dirty(root, 1);
3741}
3742
3743void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3744{
3745	__btrfs_btree_balance_dirty(root, 0);
3746}
3747
3748int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3749{
3750	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3751	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3752}
3753
3754static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3755			      int read_only)
3756{
3757	/*
3758	 * Placeholder for checks
3759	 */
3760	return 0;
3761}
3762
3763static void btrfs_error_commit_super(struct btrfs_root *root)
3764{
3765	mutex_lock(&root->fs_info->cleaner_mutex);
3766	btrfs_run_delayed_iputs(root);
3767	mutex_unlock(&root->fs_info->cleaner_mutex);
3768
3769	down_write(&root->fs_info->cleanup_work_sem);
3770	up_write(&root->fs_info->cleanup_work_sem);
 
3771
3772	/* cleanup FS via transaction */
3773	btrfs_cleanup_transaction(root);
3774}
3775
3776static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3777					     struct btrfs_root *root)
3778{
3779	struct btrfs_inode *btrfs_inode;
3780	struct list_head splice;
3781
3782	INIT_LIST_HEAD(&splice);
3783
3784	mutex_lock(&root->fs_info->ordered_operations_mutex);
3785	spin_lock(&root->fs_info->ordered_root_lock);
3786
3787	list_splice_init(&t->ordered_operations, &splice);
3788	while (!list_empty(&splice)) {
3789		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3790					 ordered_operations);
3791
3792		list_del_init(&btrfs_inode->ordered_operations);
3793		spin_unlock(&root->fs_info->ordered_root_lock);
 
 
 
3794
3795		btrfs_invalidate_inodes(btrfs_inode->root);
 
 
3796
3797		spin_lock(&root->fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
3798	}
3799
3800	spin_unlock(&root->fs_info->ordered_root_lock);
3801	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3802}
3803
3804static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3805{
3806	struct btrfs_ordered_extent *ordered;
3807
3808	spin_lock(&root->ordered_extent_lock);
3809	/*
3810	 * This will just short circuit the ordered completion stuff which will
3811	 * make sure the ordered extent gets properly cleaned up.
3812	 */
3813	list_for_each_entry(ordered, &root->ordered_extents,
3814			    root_extent_list)
3815		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3816	spin_unlock(&root->ordered_extent_lock);
3817}
3818
3819static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3820{
3821	struct btrfs_root *root;
3822	struct list_head splice;
3823
3824	INIT_LIST_HEAD(&splice);
3825
3826	spin_lock(&fs_info->ordered_root_lock);
3827	list_splice_init(&fs_info->ordered_roots, &splice);
3828	while (!list_empty(&splice)) {
3829		root = list_first_entry(&splice, struct btrfs_root,
3830					ordered_root);
3831		list_move_tail(&root->ordered_root,
3832			       &fs_info->ordered_roots);
3833
3834		spin_unlock(&fs_info->ordered_root_lock);
3835		btrfs_destroy_ordered_extents(root);
3836
3837		cond_resched();
3838		spin_lock(&fs_info->ordered_root_lock);
3839	}
3840	spin_unlock(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
3841}
3842
3843static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3844				      struct btrfs_root *root)
3845{
3846	struct rb_node *node;
3847	struct btrfs_delayed_ref_root *delayed_refs;
3848	struct btrfs_delayed_ref_node *ref;
3849	int ret = 0;
3850
3851	delayed_refs = &trans->delayed_refs;
3852
3853	spin_lock(&delayed_refs->lock);
3854	if (atomic_read(&delayed_refs->num_entries) == 0) {
3855		spin_unlock(&delayed_refs->lock);
3856		btrfs_info(root->fs_info, "delayed_refs has NO entry");
3857		return ret;
3858	}
3859
3860	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3861		struct btrfs_delayed_ref_head *head;
 
3862		bool pin_bytes = false;
3863
3864		head = rb_entry(node, struct btrfs_delayed_ref_head,
3865				href_node);
3866		if (!mutex_trylock(&head->mutex)) {
3867			atomic_inc(&head->node.refs);
3868			spin_unlock(&delayed_refs->lock);
3869
3870			mutex_lock(&head->mutex);
3871			mutex_unlock(&head->mutex);
3872			btrfs_put_delayed_ref(&head->node);
3873			spin_lock(&delayed_refs->lock);
3874			continue;
3875		}
3876		spin_lock(&head->lock);
3877		while ((node = rb_first(&head->ref_root)) != NULL) {
3878			ref = rb_entry(node, struct btrfs_delayed_ref_node,
3879				       rb_node);
3880			ref->in_tree = 0;
3881			rb_erase(&ref->rb_node, &head->ref_root);
 
 
3882			atomic_dec(&delayed_refs->num_entries);
3883			btrfs_put_delayed_ref(ref);
 
3884		}
3885		if (head->must_insert_reserved)
3886			pin_bytes = true;
3887		btrfs_free_delayed_extent_op(head->extent_op);
3888		delayed_refs->num_heads--;
3889		if (head->processing == 0)
3890			delayed_refs->num_heads_ready--;
3891		atomic_dec(&delayed_refs->num_entries);
3892		head->node.in_tree = 0;
3893		rb_erase(&head->href_node, &delayed_refs->href_root);
3894		spin_unlock(&head->lock);
3895		spin_unlock(&delayed_refs->lock);
3896		mutex_unlock(&head->mutex);
3897
3898		if (pin_bytes)
3899			btrfs_pin_extent(root, head->node.bytenr,
3900					 head->node.num_bytes, 1);
3901		btrfs_put_delayed_ref(&head->node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3902		cond_resched();
3903		spin_lock(&delayed_refs->lock);
3904	}
 
3905
3906	spin_unlock(&delayed_refs->lock);
3907
3908	return ret;
3909}
3910
3911static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3912{
3913	struct btrfs_inode *btrfs_inode;
3914	struct list_head splice;
3915
3916	INIT_LIST_HEAD(&splice);
3917
3918	spin_lock(&root->delalloc_lock);
3919	list_splice_init(&root->delalloc_inodes, &splice);
3920
3921	while (!list_empty(&splice)) {
 
3922		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3923					       delalloc_inodes);
3924
3925		list_del_init(&btrfs_inode->delalloc_inodes);
3926		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3927			  &btrfs_inode->runtime_flags);
3928		spin_unlock(&root->delalloc_lock);
3929
3930		btrfs_invalidate_inodes(btrfs_inode->root);
3931
 
 
 
 
 
 
 
 
 
 
 
3932		spin_lock(&root->delalloc_lock);
3933	}
3934
3935	spin_unlock(&root->delalloc_lock);
3936}
3937
3938static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3939{
3940	struct btrfs_root *root;
3941	struct list_head splice;
3942
3943	INIT_LIST_HEAD(&splice);
3944
3945	spin_lock(&fs_info->delalloc_root_lock);
3946	list_splice_init(&fs_info->delalloc_roots, &splice);
3947	while (!list_empty(&splice)) {
3948		root = list_first_entry(&splice, struct btrfs_root,
3949					 delalloc_root);
3950		list_del_init(&root->delalloc_root);
3951		root = btrfs_grab_fs_root(root);
3952		BUG_ON(!root);
3953		spin_unlock(&fs_info->delalloc_root_lock);
3954
3955		btrfs_destroy_delalloc_inodes(root);
3956		btrfs_put_fs_root(root);
3957
3958		spin_lock(&fs_info->delalloc_root_lock);
3959	}
3960	spin_unlock(&fs_info->delalloc_root_lock);
3961}
3962
3963static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3964					struct extent_io_tree *dirty_pages,
3965					int mark)
3966{
3967	int ret;
3968	struct extent_buffer *eb;
3969	u64 start = 0;
3970	u64 end;
3971
3972	while (1) {
3973		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3974					    mark, NULL);
3975		if (ret)
3976			break;
3977
3978		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3979		while (start <= end) {
3980			eb = btrfs_find_tree_block(root, start,
3981						   root->leafsize);
3982			start += root->leafsize;
3983			if (!eb)
3984				continue;
 
 
3985			wait_on_extent_buffer_writeback(eb);
 
 
3986
3987			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3988					       &eb->bflags))
3989				clear_extent_buffer_dirty(eb);
3990			free_extent_buffer_stale(eb);
3991		}
3992	}
3993
3994	return ret;
3995}
3996
3997static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3998				       struct extent_io_tree *pinned_extents)
3999{
4000	struct extent_io_tree *unpin;
4001	u64 start;
4002	u64 end;
4003	int ret;
4004	bool loop = true;
4005
4006	unpin = pinned_extents;
4007again:
4008	while (1) {
4009		ret = find_first_extent_bit(unpin, 0, &start, &end,
4010					    EXTENT_DIRTY, NULL);
4011		if (ret)
4012			break;
4013
4014		/* opt_discard */
4015		if (btrfs_test_opt(root, DISCARD))
4016			ret = btrfs_error_discard_extent(root, start,
4017							 end + 1 - start,
4018							 NULL);
 
 
 
 
 
 
 
4019
4020		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4021		btrfs_error_unpin_extent_range(root, start, end);
 
 
4022		cond_resched();
4023	}
 
4024
4025	if (loop) {
4026		if (unpin == &root->fs_info->freed_extents[0])
4027			unpin = &root->fs_info->freed_extents[1];
4028		else
4029			unpin = &root->fs_info->freed_extents[0];
4030		loop = false;
4031		goto again;
 
 
 
 
 
 
 
 
4032	}
 
 
 
4033
4034	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4035}
4036
4037void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4038				   struct btrfs_root *root)
4039{
4040	btrfs_destroy_ordered_operations(cur_trans, root);
 
 
 
 
4041
4042	btrfs_destroy_delayed_refs(cur_trans, root);
 
 
 
 
 
4043
4044	cur_trans->state = TRANS_STATE_COMMIT_START;
4045	wake_up(&root->fs_info->transaction_blocked_wait);
4046
4047	cur_trans->state = TRANS_STATE_UNBLOCKED;
4048	wake_up(&root->fs_info->transaction_wait);
4049
4050	btrfs_destroy_delayed_inodes(root);
4051	btrfs_assert_delayed_root_empty(root);
4052
4053	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4054				     EXTENT_DIRTY);
4055	btrfs_destroy_pinned_extent(root,
4056				    root->fs_info->pinned_extents);
 
4057
4058	cur_trans->state =TRANS_STATE_COMPLETED;
4059	wake_up(&cur_trans->commit_wait);
4060
4061	/*
4062	memset(cur_trans, 0, sizeof(*cur_trans));
4063	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4064	*/
4065}
4066
4067static int btrfs_cleanup_transaction(struct btrfs_root *root)
4068{
4069	struct btrfs_transaction *t;
4070
4071	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4072
4073	spin_lock(&root->fs_info->trans_lock);
4074	while (!list_empty(&root->fs_info->trans_list)) {
4075		t = list_first_entry(&root->fs_info->trans_list,
4076				     struct btrfs_transaction, list);
4077		if (t->state >= TRANS_STATE_COMMIT_START) {
4078			atomic_inc(&t->use_count);
4079			spin_unlock(&root->fs_info->trans_lock);
4080			btrfs_wait_for_commit(root, t->transid);
4081			btrfs_put_transaction(t);
4082			spin_lock(&root->fs_info->trans_lock);
4083			continue;
4084		}
4085		if (t == root->fs_info->running_transaction) {
4086			t->state = TRANS_STATE_COMMIT_DOING;
4087			spin_unlock(&root->fs_info->trans_lock);
4088			/*
4089			 * We wait for 0 num_writers since we don't hold a trans
4090			 * handle open currently for this transaction.
4091			 */
4092			wait_event(t->writer_wait,
4093				   atomic_read(&t->num_writers) == 0);
4094		} else {
4095			spin_unlock(&root->fs_info->trans_lock);
4096		}
4097		btrfs_cleanup_one_transaction(t, root);
4098
4099		spin_lock(&root->fs_info->trans_lock);
4100		if (t == root->fs_info->running_transaction)
4101			root->fs_info->running_transaction = NULL;
4102		list_del_init(&t->list);
4103		spin_unlock(&root->fs_info->trans_lock);
4104
4105		btrfs_put_transaction(t);
4106		trace_btrfs_transaction_commit(root);
4107		spin_lock(&root->fs_info->trans_lock);
4108	}
4109	spin_unlock(&root->fs_info->trans_lock);
4110	btrfs_destroy_all_ordered_extents(root->fs_info);
4111	btrfs_destroy_delayed_inodes(root);
4112	btrfs_assert_delayed_root_empty(root);
4113	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4114	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4115	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4116
4117	return 0;
4118}
4119
4120static struct extent_io_ops btree_extent_io_ops = {
4121	.readpage_end_io_hook = btree_readpage_end_io_hook,
4122	.readpage_io_failed_hook = btree_io_failed_hook,
4123	.submit_bio_hook = btree_submit_bio_hook,
4124	/* note we're sharing with inode.c for the merge bio hook */
4125	.merge_bio_hook = btrfs_merge_bio_hook,
4126};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
 
 
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
 
  10#include <linux/workqueue.h>
  11#include <linux/kthread.h>
 
  12#include <linux/slab.h>
  13#include <linux/migrate.h>
  14#include <linux/ratelimit.h>
  15#include <linux/uuid.h>
  16#include <linux/semaphore.h>
  17#include <linux/error-injection.h>
  18#include <linux/crc32c.h>
  19#include <linux/sched/mm.h>
  20#include <asm/unaligned.h>
  21#include <crypto/hash.h>
  22#include "ctree.h"
  23#include "disk-io.h"
 
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "bio.h"
  27#include "print-tree.h"
 
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "free-space-cache.h"
  31#include "free-space-tree.h"
 
 
  32#include "dev-replace.h"
  33#include "raid56.h"
  34#include "sysfs.h"
  35#include "qgroup.h"
  36#include "compression.h"
  37#include "tree-checker.h"
  38#include "ref-verify.h"
  39#include "block-group.h"
  40#include "discard.h"
  41#include "space-info.h"
  42#include "zoned.h"
  43#include "subpage.h"
  44#include "fs.h"
  45#include "accessors.h"
  46#include "extent-tree.h"
  47#include "root-tree.h"
  48#include "defrag.h"
  49#include "uuid-tree.h"
  50#include "relocation.h"
  51#include "scrub.h"
  52#include "super.h"
  53
  54#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  55				 BTRFS_HEADER_FLAG_RELOC |\
  56				 BTRFS_SUPER_FLAG_ERROR |\
  57				 BTRFS_SUPER_FLAG_SEEDING |\
  58				 BTRFS_SUPER_FLAG_METADUMP |\
  59				 BTRFS_SUPER_FLAG_METADUMP_V2)
  60
  61static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  62static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
 
  65{
  66	if (fs_info->csum_shash)
  67		crypto_free_shash(fs_info->csum_shash);
 
 
 
 
 
 
 
 
 
  68}
  69
 
 
  70/*
  71 * Compute the csum of a btree block and store the result to provided buffer.
 
  72 */
  73static void csum_tree_block(struct extent_buffer *buf, u8 *result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74{
  75	struct btrfs_fs_info *fs_info = buf->fs_info;
  76	int num_pages;
  77	u32 first_page_part;
  78	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
  79	char *kaddr;
  80	int i;
  81
  82	shash->tfm = fs_info->csum_shash;
  83	crypto_shash_init(shash);
 
 
  84
  85	if (buf->addr) {
  86		/* Pages are contiguous, handle them as a big one. */
  87		kaddr = buf->addr;
  88		first_page_part = fs_info->nodesize;
  89		num_pages = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90	} else {
  91		kaddr = folio_address(buf->folios[0]);
  92		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
  93		num_pages = num_extent_pages(buf);
  94	}
  95
  96	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
  97			    first_page_part - BTRFS_CSUM_SIZE);
  98
  99	/*
 100	 * Multiple single-page folios case would reach here.
 101	 *
 102	 * nodesize <= PAGE_SIZE and large folio all handled by above
 103	 * crypto_shash_update() already.
 104	 */
 105	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
 106		kaddr = folio_address(buf->folios[i]);
 107		crypto_shash_update(shash, kaddr, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 108	}
 109	memset(result, 0, BTRFS_CSUM_SIZE);
 110	crypto_shash_final(shash, result);
 
 111}
 112
 113/*
 114 * we can't consider a given block up to date unless the transid of the
 115 * block matches the transid in the parent node's pointer.  This is how we
 116 * detect blocks that either didn't get written at all or got written
 117 * in the wrong place.
 118 */
 119int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
 
 
 120{
 121	if (!extent_buffer_uptodate(eb))
 122		return 0;
 
 
 123
 124	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 125		return 1;
 126
 127	if (atomic)
 128		return -EAGAIN;
 129
 130	if (!extent_buffer_uptodate(eb) ||
 131	    btrfs_header_generation(eb) != parent_transid) {
 132		btrfs_err_rl(eb->fs_info,
 133"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
 134			eb->start, eb->read_mirror,
 135			parent_transid, btrfs_header_generation(eb));
 136		clear_extent_buffer_uptodate(eb);
 137		return 0;
 138	}
 139	return 1;
 140}
 141
 142static bool btrfs_supported_super_csum(u16 csum_type)
 143{
 144	switch (csum_type) {
 145	case BTRFS_CSUM_TYPE_CRC32:
 146	case BTRFS_CSUM_TYPE_XXHASH:
 147	case BTRFS_CSUM_TYPE_SHA256:
 148	case BTRFS_CSUM_TYPE_BLAKE2:
 149		return true;
 150	default:
 151		return false;
 152	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153}
 154
 155/*
 156 * Return 0 if the superblock checksum type matches the checksum value of that
 157 * algorithm. Pass the raw disk superblock data.
 158 */
 159int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 160			   const struct btrfs_super_block *disk_sb)
 161{
 162	char result[BTRFS_CSUM_SIZE];
 163	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 
 
 164
 165	shash->tfm = fs_info->csum_shash;
 
 
 
 166
 167	/*
 168	 * The super_block structure does not span the whole
 169	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 170	 * filled with zeros and is included in the checksum.
 171	 */
 172	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
 173			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
 174
 175	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
 176		return 1;
 177
 178	return 0;
 179}
 180
 181static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
 182				      int mirror_num)
 183{
 184	struct btrfs_fs_info *fs_info = eb->fs_info;
 185	int num_folios = num_extent_folios(eb);
 186	int ret = 0;
 187
 188	if (sb_rdonly(fs_info->sb))
 189		return -EROFS;
 190
 191	for (int i = 0; i < num_folios; i++) {
 192		struct folio *folio = eb->folios[i];
 193		u64 start = max_t(u64, eb->start, folio_pos(folio));
 194		u64 end = min_t(u64, eb->start + eb->len,
 195				folio_pos(folio) + eb->folio_size);
 196		u32 len = end - start;
 197
 198		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
 199					      start, folio, offset_in_folio(folio, start),
 200					      mirror_num);
 201		if (ret)
 202			break;
 203	}
 204
 205	return ret;
 206}
 207
 208/*
 209 * helper to read a given tree block, doing retries as required when
 210 * the checksums don't match and we have alternate mirrors to try.
 211 *
 212 * @check:		expected tree parentness check, see the comments of the
 213 *			structure for details.
 214 */
 215int btrfs_read_extent_buffer(struct extent_buffer *eb,
 216			     struct btrfs_tree_parent_check *check)
 
 217{
 218	struct btrfs_fs_info *fs_info = eb->fs_info;
 219	int failed = 0;
 220	int ret;
 221	int num_copies = 0;
 222	int mirror_num = 0;
 223	int failed_mirror = 0;
 224
 225	ASSERT(check);
 
 
 
 
 
 
 
 
 
 
 
 
 226
 227	while (1) {
 228		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 229		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
 230		if (!ret)
 
 
 231			break;
 232
 233		num_copies = btrfs_num_copies(fs_info,
 234					      eb->start, eb->len);
 235		if (num_copies == 1)
 236			break;
 237
 238		if (!failed_mirror) {
 239			failed = 1;
 240			failed_mirror = eb->read_mirror;
 241		}
 242
 243		mirror_num++;
 244		if (mirror_num == failed_mirror)
 245			mirror_num++;
 246
 247		if (mirror_num > num_copies)
 248			break;
 249	}
 250
 251	if (failed && !ret && failed_mirror)
 252		btrfs_repair_eb_io_failure(eb, failed_mirror);
 253
 254	return ret;
 255}
 256
 257/*
 258 * Checksum a dirty tree block before IO.
 
 259 */
 260blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
 
 261{
 262	struct extent_buffer *eb = bbio->private;
 263	struct btrfs_fs_info *fs_info = eb->fs_info;
 264	u64 found_start = btrfs_header_bytenr(eb);
 265	u64 last_trans;
 266	u8 result[BTRFS_CSUM_SIZE];
 267	int ret;
 268
 269	/* Btree blocks are always contiguous on disk. */
 270	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
 271		return BLK_STS_IOERR;
 272	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
 273		return BLK_STS_IOERR;
 
 
 
 
 274
 275	/*
 276	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
 277	 * checksum it but zero-out its content. This is done to preserve
 278	 * ordering of I/O without unnecessarily writing out data.
 279	 */
 280	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
 281		memzero_extent_buffer(eb, 0, eb->len);
 282		return BLK_STS_OK;
 283	}
 284
 285	if (WARN_ON_ONCE(found_start != eb->start))
 286		return BLK_STS_IOERR;
 287	if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
 288					       eb->start, eb->len)))
 289		return BLK_STS_IOERR;
 290
 291	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 292				    offsetof(struct btrfs_header, fsid),
 293				    BTRFS_FSID_SIZE) == 0);
 294	csum_tree_block(eb, result);
 295
 296	if (btrfs_header_level(eb))
 297		ret = btrfs_check_node(eb);
 298	else
 299		ret = btrfs_check_leaf(eb);
 300
 301	if (ret < 0)
 302		goto error;
 
 
 
 
 
 303
 304	/*
 305	 * Also check the generation, the eb reached here must be newer than
 306	 * last committed. Or something seriously wrong happened.
 307	 */
 308	last_trans = btrfs_get_last_trans_committed(fs_info);
 309	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
 310		ret = -EUCLEAN;
 311		btrfs_err(fs_info,
 312			"block=%llu bad generation, have %llu expect > %llu",
 313			  eb->start, btrfs_header_generation(eb), last_trans);
 314		goto error;
 315	}
 316	write_extent_buffer(eb, result, 0, fs_info->csum_size);
 317	return BLK_STS_OK;
 318
 319error:
 320	btrfs_print_tree(eb, 0);
 321	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
 322		  eb->start);
 323	/*
 324	 * Be noisy if this is an extent buffer from a log tree. We don't abort
 325	 * a transaction in case there's a bad log tree extent buffer, we just
 326	 * fallback to a transaction commit. Still we want to know when there is
 327	 * a bad log tree extent buffer, as that may signal a bug somewhere.
 328	 */
 329	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
 330		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
 331	return errno_to_blk_status(ret);
 332}
 333
 334static bool check_tree_block_fsid(struct extent_buffer *eb)
 335{
 336	struct btrfs_fs_info *fs_info = eb->fs_info;
 337	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 338	u8 fsid[BTRFS_FSID_SIZE];
 
 339
 340	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
 341			   BTRFS_FSID_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342
 343	/*
 344	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
 345	 * This is then overwritten by metadata_uuid if it is present in the
 346	 * device_list_add(). The same true for a seed device as well. So use of
 347	 * fs_devices::metadata_uuid is appropriate here.
 348	 */
 349	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
 350		return false;
 
 
 351
 352	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
 353		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
 354			return false;
 
 
 
 
 
 
 
 
 355
 356	return true;
 357}
 358
 359/* Do basic extent buffer checks at read time */
 360int btrfs_validate_extent_buffer(struct extent_buffer *eb,
 361				 struct btrfs_tree_parent_check *check)
 362{
 363	struct btrfs_fs_info *fs_info = eb->fs_info;
 364	u64 found_start;
 365	const u32 csum_size = fs_info->csum_size;
 366	u8 found_level;
 367	u8 result[BTRFS_CSUM_SIZE];
 368	const u8 *header_csum;
 369	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 370
 371	ASSERT(check);
 
 
 
 
 
 
 
 
 372
 373	found_start = btrfs_header_bytenr(eb);
 374	if (found_start != eb->start) {
 375		btrfs_err_rl(fs_info,
 376			"bad tree block start, mirror %u want %llu have %llu",
 377			     eb->read_mirror, eb->start, found_start);
 378		ret = -EIO;
 379		goto out;
 380	}
 381	if (check_tree_block_fsid(eb)) {
 382		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
 383			     eb->start, eb->read_mirror);
 384		ret = -EIO;
 385		goto out;
 386	}
 387	found_level = btrfs_header_level(eb);
 388	if (found_level >= BTRFS_MAX_LEVEL) {
 389		btrfs_err(fs_info,
 390			"bad tree block level, mirror %u level %d on logical %llu",
 391			eb->read_mirror, btrfs_header_level(eb), eb->start);
 392		ret = -EIO;
 393		goto out;
 394	}
 395
 396	csum_tree_block(eb, result);
 397	header_csum = folio_address(eb->folios[0]) +
 398		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
 399
 400	if (memcmp(result, header_csum, csum_size) != 0) {
 401		btrfs_warn_rl(fs_info,
 402"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
 403			      eb->start, eb->read_mirror,
 404			      CSUM_FMT_VALUE(csum_size, header_csum),
 405			      CSUM_FMT_VALUE(csum_size, result),
 406			      btrfs_header_level(eb));
 407		ret = -EUCLEAN;
 408		goto out;
 409	}
 410
 411	if (found_level != check->level) {
 412		btrfs_err(fs_info,
 413		"level verify failed on logical %llu mirror %u wanted %u found %u",
 414			  eb->start, eb->read_mirror, check->level, found_level);
 
 
 
 415		ret = -EIO;
 416		goto out;
 417	}
 418	if (unlikely(check->transid &&
 419		     btrfs_header_generation(eb) != check->transid)) {
 420		btrfs_err_rl(eb->fs_info,
 421"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
 422				eb->start, eb->read_mirror, check->transid,
 423				btrfs_header_generation(eb));
 424		ret = -EIO;
 425		goto out;
 
 
 
 
 
 
 
 
 426	}
 427	if (check->has_first_key) {
 428		struct btrfs_key *expect_key = &check->first_key;
 429		struct btrfs_key found_key;
 
 430
 431		if (found_level)
 432			btrfs_node_key_to_cpu(eb, &found_key, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433		else
 434			btrfs_item_key_to_cpu(eb, &found_key, 0);
 435		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
 436			btrfs_err(fs_info,
 437"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 438				  eb->start, check->transid,
 439				  expect_key->objectid,
 440				  expect_key->type, expect_key->offset,
 441				  found_key.objectid, found_key.type,
 442				  found_key.offset);
 443			ret = -EUCLEAN;
 444			goto out;
 445		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446	}
 447	if (check->owner_root) {
 448		ret = btrfs_check_eb_owner(eb, check->owner_root);
 449		if (ret < 0)
 450			goto out;
 
 
 
 
 
 
 
 
 
 
 
 451	}
 452
 
 
 
 
 
 
 
 
 453	/*
 454	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 455	 * that we don't try and read the other copies of this block, just
 456	 * return -EIO.
 457	 */
 458	if (found_level == 0 && btrfs_check_leaf(eb)) {
 459		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 460		ret = -EIO;
 461	}
 462
 463	if (found_level > 0 && btrfs_check_node(eb))
 464		ret = -EIO;
 
 
 
 465
 
 
 
 
 
 466	if (ret)
 467		btrfs_err(fs_info,
 468		"read time tree block corruption detected on logical %llu mirror %u",
 469			  eb->start, eb->read_mirror);
 470out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471	return ret;
 472}
 473
 474#ifdef CONFIG_MIGRATION
 475static int btree_migrate_folio(struct address_space *mapping,
 476		struct folio *dst, struct folio *src, enum migrate_mode mode)
 
 477{
 478	/*
 479	 * we can't safely write a btree page from here,
 480	 * we haven't done the locking hook
 481	 */
 482	if (folio_test_dirty(src))
 483		return -EAGAIN;
 484	/*
 485	 * Buffers may be managed in a filesystem specific way.
 486	 * We must have no buffers or drop them.
 487	 */
 488	if (folio_get_private(src) &&
 489	    !filemap_release_folio(src, GFP_KERNEL))
 490		return -EAGAIN;
 491	return migrate_folio(mapping, dst, src, mode);
 492}
 493#else
 494#define btree_migrate_folio NULL
 495#endif
 496
 
 497static int btree_writepages(struct address_space *mapping,
 498			    struct writeback_control *wbc)
 499{
 
 500	int ret;
 501
 502	if (wbc->sync_mode == WB_SYNC_NONE) {
 503		struct btrfs_fs_info *fs_info;
 504
 505		if (wbc->for_kupdate)
 506			return 0;
 507
 508		fs_info = inode_to_fs_info(mapping->host);
 509		/* this is a bit racy, but that's ok */
 510		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 511					     BTRFS_DIRTY_METADATA_THRESH,
 512					     fs_info->dirty_metadata_batch);
 513		if (ret < 0)
 514			return 0;
 515	}
 516	return btree_write_cache_pages(mapping, wbc);
 517}
 518
 519static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
 
 
 
 
 
 
 
 520{
 521	if (folio_test_writeback(folio) || folio_test_dirty(folio))
 522		return false;
 523
 524	return try_release_extent_buffer(&folio->page);
 525}
 526
 527static void btree_invalidate_folio(struct folio *folio, size_t offset,
 528				 size_t length)
 529{
 530	struct extent_io_tree *tree;
 531
 532	tree = &folio_to_inode(folio)->io_tree;
 533	extent_invalidate_folio(tree, folio, offset);
 534	btree_release_folio(folio, GFP_NOFS);
 535	if (folio_get_private(folio)) {
 536		btrfs_warn(folio_to_fs_info(folio),
 537			   "folio private not zero on folio %llu",
 538			   (unsigned long long)folio_pos(folio));
 539		folio_detach_private(folio);
 
 540	}
 541}
 542
 
 
 543#ifdef DEBUG
 544static bool btree_dirty_folio(struct address_space *mapping,
 545		struct folio *folio)
 546{
 547	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
 548	struct btrfs_subpage_info *spi = fs_info->subpage_info;
 549	struct btrfs_subpage *subpage;
 550	struct extent_buffer *eb;
 551	int cur_bit = 0;
 552	u64 page_start = folio_pos(folio);
 553
 554	if (fs_info->sectorsize == PAGE_SIZE) {
 555		eb = folio_get_private(folio);
 556		BUG_ON(!eb);
 557		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 558		BUG_ON(!atomic_read(&eb->refs));
 559		btrfs_assert_tree_write_locked(eb);
 560		return filemap_dirty_folio(mapping, folio);
 561	}
 562
 563	ASSERT(spi);
 564	subpage = folio_get_private(folio);
 565
 566	for (cur_bit = spi->dirty_offset;
 567	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
 568	     cur_bit++) {
 569		unsigned long flags;
 570		u64 cur;
 571
 572		spin_lock_irqsave(&subpage->lock, flags);
 573		if (!test_bit(cur_bit, subpage->bitmaps)) {
 574			spin_unlock_irqrestore(&subpage->lock, flags);
 575			continue;
 576		}
 577		spin_unlock_irqrestore(&subpage->lock, flags);
 578		cur = page_start + cur_bit * fs_info->sectorsize;
 579
 580		eb = find_extent_buffer(fs_info, cur);
 581		ASSERT(eb);
 582		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 583		ASSERT(atomic_read(&eb->refs));
 584		btrfs_assert_tree_write_locked(eb);
 585		free_extent_buffer(eb);
 586
 587		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
 588	}
 589	return filemap_dirty_folio(mapping, folio);
 590}
 591#else
 592#define btree_dirty_folio filemap_dirty_folio
 593#endif
 594
 595static const struct address_space_operations btree_aops = {
 
 596	.writepages	= btree_writepages,
 597	.release_folio	= btree_release_folio,
 598	.invalidate_folio = btree_invalidate_folio,
 599	.migrate_folio	= btree_migrate_folio,
 600	.dirty_folio	= btree_dirty_folio,
 
 
 601};
 602
 603struct extent_buffer *btrfs_find_create_tree_block(
 604						struct btrfs_fs_info *fs_info,
 605						u64 bytenr, u64 owner_root,
 606						int level)
 607{
 608	if (btrfs_is_testing(fs_info))
 609		return alloc_test_extent_buffer(fs_info, bytenr);
 610	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
 
 
 
 
 
 
 611}
 612
 613/*
 614 * Read tree block at logical address @bytenr and do variant basic but critical
 615 * verification.
 616 *
 617 * @check:		expected tree parentness check, see comments of the
 618 *			structure for details.
 619 */
 620struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
 621				      struct btrfs_tree_parent_check *check)
 622{
 623	struct extent_buffer *buf = NULL;
 
 
 624	int ret;
 625
 626	ASSERT(check);
 
 
 627
 628	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
 629					   check->level);
 630	if (IS_ERR(buf))
 631		return buf;
 632
 633	ret = btrfs_read_extent_buffer(buf, check);
 
 634	if (ret) {
 635		free_extent_buffer_stale(buf);
 636		return ERR_PTR(ret);
 637	}
 638	if (btrfs_check_eb_owner(buf, check->owner_root)) {
 639		free_extent_buffer_stale(buf);
 640		return ERR_PTR(-EUCLEAN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641	}
 642	return buf;
 643
 644}
 645
 646static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 647			 u64 objectid)
 648{
 649	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
 650
 651	memset(&root->root_key, 0, sizeof(root->root_key));
 652	memset(&root->root_item, 0, sizeof(root->root_item));
 653	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
 654	root->fs_info = fs_info;
 655	root->root_key.objectid = objectid;
 656	root->node = NULL;
 657	root->commit_root = NULL;
 658	root->state = 0;
 659	RB_CLEAR_NODE(&root->rb_node);
 
 
 
 
 
 
 
 660
 
 661	root->last_trans = 0;
 662	root->free_objectid = 0;
 663	root->nr_delalloc_inodes = 0;
 664	root->nr_ordered_extents = 0;
 
 665	root->inode_tree = RB_ROOT;
 666	/* GFP flags are compatible with XA_FLAGS_*. */
 667	xa_init_flags(&root->delayed_nodes, GFP_ATOMIC);
 668
 669	btrfs_init_root_block_rsv(root);
 670
 671	INIT_LIST_HEAD(&root->dirty_list);
 672	INIT_LIST_HEAD(&root->root_list);
 673	INIT_LIST_HEAD(&root->delalloc_inodes);
 674	INIT_LIST_HEAD(&root->delalloc_root);
 675	INIT_LIST_HEAD(&root->ordered_extents);
 676	INIT_LIST_HEAD(&root->ordered_root);
 677	INIT_LIST_HEAD(&root->reloc_dirty_list);
 
 
 678	spin_lock_init(&root->inode_lock);
 679	spin_lock_init(&root->delalloc_lock);
 680	spin_lock_init(&root->ordered_extent_lock);
 681	spin_lock_init(&root->accounting_lock);
 682	spin_lock_init(&root->qgroup_meta_rsv_lock);
 
 683	mutex_init(&root->objectid_mutex);
 684	mutex_init(&root->log_mutex);
 685	mutex_init(&root->ordered_extent_mutex);
 686	mutex_init(&root->delalloc_mutex);
 687	init_waitqueue_head(&root->qgroup_flush_wait);
 688	init_waitqueue_head(&root->log_writer_wait);
 689	init_waitqueue_head(&root->log_commit_wait[0]);
 690	init_waitqueue_head(&root->log_commit_wait[1]);
 691	INIT_LIST_HEAD(&root->log_ctxs[0]);
 692	INIT_LIST_HEAD(&root->log_ctxs[1]);
 693	atomic_set(&root->log_commit[0], 0);
 694	atomic_set(&root->log_commit[1], 0);
 695	atomic_set(&root->log_writers, 0);
 696	atomic_set(&root->log_batch, 0);
 697	refcount_set(&root->refs, 1);
 698	atomic_set(&root->snapshot_force_cow, 0);
 699	atomic_set(&root->nr_swapfiles, 0);
 700	btrfs_set_root_log_transid(root, 0);
 701	root->log_transid_committed = -1;
 702	btrfs_set_root_last_log_commit(root, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703	root->anon_dev = 0;
 704	if (!dummy) {
 705		extent_io_tree_init(fs_info, &root->dirty_log_pages,
 706				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
 707		extent_io_tree_init(fs_info, &root->log_csum_range,
 708				    IO_TREE_LOG_CSUM_RANGE);
 709	}
 710
 711	spin_lock_init(&root->root_item_lock);
 712	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
 713#ifdef CONFIG_BTRFS_DEBUG
 714	INIT_LIST_HEAD(&root->leak_list);
 715	spin_lock(&fs_info->fs_roots_radix_lock);
 716	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
 717	spin_unlock(&fs_info->fs_roots_radix_lock);
 718#endif
 719}
 720
 721static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
 722					   u64 objectid, gfp_t flags)
 723{
 724	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
 725	if (root)
 726		__setup_root(root, fs_info, objectid);
 727	return root;
 728}
 729
 730#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 731/* Should only be used by the testing infrastructure */
 732struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
 733{
 734	struct btrfs_root *root;
 735
 736	if (!fs_info)
 737		return ERR_PTR(-EINVAL);
 738
 739	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
 740	if (!root)
 741		return ERR_PTR(-ENOMEM);
 742
 743	/* We don't use the stripesize in selftest, set it as sectorsize */
 744	root->alloc_bytenr = 0;
 745
 746	return root;
 747}
 748#endif
 749
 750static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
 751{
 752	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
 753	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
 754
 755	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
 756}
 757
 758static int global_root_key_cmp(const void *k, const struct rb_node *node)
 759{
 760	const struct btrfs_key *key = k;
 761	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
 762
 763	return btrfs_comp_cpu_keys(key, &root->root_key);
 764}
 765
 766int btrfs_global_root_insert(struct btrfs_root *root)
 767{
 768	struct btrfs_fs_info *fs_info = root->fs_info;
 769	struct rb_node *tmp;
 770	int ret = 0;
 771
 772	write_lock(&fs_info->global_root_lock);
 773	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
 774	write_unlock(&fs_info->global_root_lock);
 775
 776	if (tmp) {
 777		ret = -EEXIST;
 778		btrfs_warn(fs_info, "global root %llu %llu already exists",
 779				root->root_key.objectid, root->root_key.offset);
 780	}
 781	return ret;
 782}
 783
 784void btrfs_global_root_delete(struct btrfs_root *root)
 785{
 786	struct btrfs_fs_info *fs_info = root->fs_info;
 787
 788	write_lock(&fs_info->global_root_lock);
 789	rb_erase(&root->rb_node, &fs_info->global_root_tree);
 790	write_unlock(&fs_info->global_root_lock);
 791}
 792
 793struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
 794				     struct btrfs_key *key)
 795{
 796	struct rb_node *node;
 797	struct btrfs_root *root = NULL;
 798
 799	read_lock(&fs_info->global_root_lock);
 800	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
 801	if (node)
 802		root = container_of(node, struct btrfs_root, rb_node);
 803	read_unlock(&fs_info->global_root_lock);
 804
 805	return root;
 806}
 807
 808static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
 809{
 810	struct btrfs_block_group *block_group;
 811	u64 ret;
 812
 813	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
 814		return 0;
 815
 816	if (bytenr)
 817		block_group = btrfs_lookup_block_group(fs_info, bytenr);
 818	else
 819		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
 820	ASSERT(block_group);
 821	if (!block_group)
 822		return 0;
 823	ret = block_group->global_root_id;
 824	btrfs_put_block_group(block_group);
 825
 826	return ret;
 827}
 828
 829struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 830{
 831	struct btrfs_key key = {
 832		.objectid = BTRFS_CSUM_TREE_OBJECTID,
 833		.type = BTRFS_ROOT_ITEM_KEY,
 834		.offset = btrfs_global_root_id(fs_info, bytenr),
 835	};
 836
 837	return btrfs_global_root(fs_info, &key);
 838}
 839
 840struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 841{
 842	struct btrfs_key key = {
 843		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
 844		.type = BTRFS_ROOT_ITEM_KEY,
 845		.offset = btrfs_global_root_id(fs_info, bytenr),
 846	};
 847
 848	return btrfs_global_root(fs_info, &key);
 849}
 850
 851struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
 852{
 853	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
 854		return fs_info->block_group_root;
 855	return btrfs_extent_root(fs_info, 0);
 856}
 857
 858struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
 
 859				     u64 objectid)
 860{
 861	struct btrfs_fs_info *fs_info = trans->fs_info;
 862	struct extent_buffer *leaf;
 863	struct btrfs_root *tree_root = fs_info->tree_root;
 864	struct btrfs_root *root;
 865	struct btrfs_key key;
 866	unsigned int nofs_flag;
 867	int ret = 0;
 
 868
 869	/*
 870	 * We're holding a transaction handle, so use a NOFS memory allocation
 871	 * context to avoid deadlock if reclaim happens.
 872	 */
 873	nofs_flag = memalloc_nofs_save();
 874	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
 875	memalloc_nofs_restore(nofs_flag);
 876	if (!root)
 877		return ERR_PTR(-ENOMEM);
 878
 
 
 
 879	root->root_key.objectid = objectid;
 880	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
 881	root->root_key.offset = 0;
 882
 883	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 884				      0, BTRFS_NESTING_NORMAL);
 885	if (IS_ERR(leaf)) {
 886		ret = PTR_ERR(leaf);
 887		leaf = NULL;
 888		goto fail;
 889	}
 890
 
 
 
 
 
 891	root->node = leaf;
 892	btrfs_mark_buffer_dirty(trans, leaf);
 
 
 
 
 
 
 893
 894	root->commit_root = btrfs_root_node(root);
 895	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 
 896
 897	btrfs_set_root_flags(&root->root_item, 0);
 898	btrfs_set_root_limit(&root->root_item, 0);
 899	btrfs_set_root_bytenr(&root->root_item, leaf->start);
 900	btrfs_set_root_generation(&root->root_item, trans->transid);
 901	btrfs_set_root_level(&root->root_item, 0);
 902	btrfs_set_root_refs(&root->root_item, 1);
 903	btrfs_set_root_used(&root->root_item, leaf->len);
 904	btrfs_set_root_last_snapshot(&root->root_item, 0);
 905	btrfs_set_root_dirid(&root->root_item, 0);
 906	if (is_fstree(objectid))
 907		generate_random_guid(root->root_item.uuid);
 908	else
 909		export_guid(root->root_item.uuid, &guid_null);
 910	btrfs_set_root_drop_level(&root->root_item, 0);
 911
 912	btrfs_tree_unlock(leaf);
 913
 914	key.objectid = objectid;
 915	key.type = BTRFS_ROOT_ITEM_KEY;
 916	key.offset = 0;
 917	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
 918	if (ret)
 919		goto fail;
 920
 
 
 921	return root;
 922
 923fail:
 924	btrfs_put_root(root);
 
 
 
 
 925
 926	return ERR_PTR(ret);
 927}
 928
 929static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
 930					 struct btrfs_fs_info *fs_info)
 931{
 932	struct btrfs_root *root;
 
 
 933
 934	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
 935	if (!root)
 936		return ERR_PTR(-ENOMEM);
 937
 
 
 
 
 938	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
 939	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
 940	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
 941
 942	return root;
 943}
 944
 945int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
 946			      struct btrfs_root *root)
 947{
 948	struct extent_buffer *leaf;
 949
 950	/*
 951	 * DON'T set SHAREABLE bit for log trees.
 952	 *
 953	 * Log trees are not exposed to user space thus can't be snapshotted,
 954	 * and they go away before a real commit is actually done.
 955	 *
 956	 * They do store pointers to file data extents, and those reference
 957	 * counts still get updated (along with back refs to the log tree).
 958	 */
 959
 960	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
 961			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
 962	if (IS_ERR(leaf))
 963		return PTR_ERR(leaf);
 
 964
 
 
 
 
 
 965	root->node = leaf;
 966
 967	btrfs_mark_buffer_dirty(trans, root->node);
 
 
 968	btrfs_tree_unlock(root->node);
 969
 970	return 0;
 971}
 972
 973int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
 974			     struct btrfs_fs_info *fs_info)
 975{
 976	struct btrfs_root *log_root;
 977
 978	log_root = alloc_log_tree(trans, fs_info);
 979	if (IS_ERR(log_root))
 980		return PTR_ERR(log_root);
 981
 982	if (!btrfs_is_zoned(fs_info)) {
 983		int ret = btrfs_alloc_log_tree_node(trans, log_root);
 984
 985		if (ret) {
 986			btrfs_put_root(log_root);
 987			return ret;
 988		}
 989	}
 990
 991	WARN_ON(fs_info->log_root_tree);
 992	fs_info->log_root_tree = log_root;
 993	return 0;
 994}
 995
 996int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
 997		       struct btrfs_root *root)
 998{
 999	struct btrfs_fs_info *fs_info = root->fs_info;
1000	struct btrfs_root *log_root;
1001	struct btrfs_inode_item *inode_item;
1002	int ret;
1003
1004	log_root = alloc_log_tree(trans, fs_info);
1005	if (IS_ERR(log_root))
1006		return PTR_ERR(log_root);
1007
1008	ret = btrfs_alloc_log_tree_node(trans, log_root);
1009	if (ret) {
1010		btrfs_put_root(log_root);
1011		return ret;
1012	}
1013
1014	log_root->last_trans = trans->transid;
1015	log_root->root_key.offset = root->root_key.objectid;
1016
1017	inode_item = &log_root->root_item.inode;
1018	btrfs_set_stack_inode_generation(inode_item, 1);
1019	btrfs_set_stack_inode_size(inode_item, 3);
1020	btrfs_set_stack_inode_nlink(inode_item, 1);
1021	btrfs_set_stack_inode_nbytes(inode_item,
1022				     fs_info->nodesize);
1023	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1024
1025	btrfs_set_root_node(&log_root->root_item, log_root->node);
1026
1027	WARN_ON(root->log_root);
1028	root->log_root = log_root;
1029	btrfs_set_root_log_transid(root, 0);
1030	root->log_transid_committed = -1;
1031	btrfs_set_root_last_log_commit(root, 0);
1032	return 0;
1033}
1034
1035static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1036					      struct btrfs_path *path,
1037					      struct btrfs_key *key)
1038{
1039	struct btrfs_root *root;
1040	struct btrfs_tree_parent_check check = { 0 };
1041	struct btrfs_fs_info *fs_info = tree_root->fs_info;
 
1042	u64 generation;
 
1043	int ret;
1044	int level;
1045
1046	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1047	if (!root)
1048		return ERR_PTR(-ENOMEM);
1049
 
 
 
 
 
 
 
 
 
 
1050	ret = btrfs_find_root(tree_root, key, path,
1051			      &root->root_item, &root->root_key);
1052	if (ret) {
1053		if (ret > 0)
1054			ret = -ENOENT;
1055		goto fail;
1056	}
1057
1058	generation = btrfs_root_generation(&root->root_item);
1059	level = btrfs_root_level(&root->root_item);
1060	check.level = level;
1061	check.transid = generation;
1062	check.owner_root = key->objectid;
1063	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1064				     &check);
1065	if (IS_ERR(root->node)) {
1066		ret = PTR_ERR(root->node);
1067		root->node = NULL;
1068		goto fail;
1069	}
1070	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1071		ret = -EIO;
1072		goto fail;
1073	}
1074
1075	/*
1076	 * For real fs, and not log/reloc trees, root owner must
1077	 * match its root node owner
1078	 */
1079	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1080	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1081	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1082	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1083		btrfs_crit(fs_info,
1084"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1085			   root->root_key.objectid, root->node->start,
1086			   btrfs_header_owner(root->node),
1087			   root->root_key.objectid);
1088		ret = -EUCLEAN;
1089		goto fail;
1090	}
1091	root->commit_root = btrfs_root_node(root);
 
 
1092	return root;
1093fail:
1094	btrfs_put_root(root);
1095	return ERR_PTR(ret);
 
 
 
 
 
1096}
1097
1098struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1099					struct btrfs_key *key)
1100{
1101	struct btrfs_root *root;
1102	struct btrfs_path *path;
1103
1104	path = btrfs_alloc_path();
1105	if (!path)
1106		return ERR_PTR(-ENOMEM);
1107	root = read_tree_root_path(tree_root, path, key);
1108	btrfs_free_path(path);
 
 
 
1109
1110	return root;
1111}
1112
1113/*
1114 * Initialize subvolume root in-memory structure
1115 *
1116 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1117 */
1118static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1119{
1120	int ret;
 
1121
1122	btrfs_drew_lock_init(&root->snapshot_lock);
1123
1124	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1125	    !btrfs_is_data_reloc_root(root) &&
1126	    is_fstree(root->root_key.objectid)) {
1127		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1128		btrfs_check_and_init_root_item(&root->root_item);
1129	}
1130
1131	/*
1132	 * Don't assign anonymous block device to roots that are not exposed to
1133	 * userspace, the id pool is limited to 1M
1134	 */
1135	if (is_fstree(root->root_key.objectid) &&
1136	    btrfs_root_refs(&root->root_item) > 0) {
1137		if (!anon_dev) {
1138			ret = get_anon_bdev(&root->anon_dev);
1139			if (ret)
1140				goto fail;
1141		} else {
1142			root->anon_dev = anon_dev;
1143		}
1144	}
1145
1146	mutex_lock(&root->objectid_mutex);
1147	ret = btrfs_init_root_free_objectid(root);
1148	if (ret) {
1149		mutex_unlock(&root->objectid_mutex);
1150		goto fail;
1151	}
 
1152
1153	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
 
 
1154
1155	mutex_unlock(&root->objectid_mutex);
 
 
 
1156
1157	return 0;
 
1158fail:
1159	/* The caller is responsible to call btrfs_free_fs_root */
 
1160	return ret;
1161}
1162
1163static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1164					       u64 root_id)
1165{
1166	struct btrfs_root *root;
1167
1168	spin_lock(&fs_info->fs_roots_radix_lock);
1169	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1170				 (unsigned long)root_id);
1171	root = btrfs_grab_root(root);
1172	spin_unlock(&fs_info->fs_roots_radix_lock);
1173	return root;
1174}
1175
1176static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1177						u64 objectid)
1178{
1179	struct btrfs_key key = {
1180		.objectid = objectid,
1181		.type = BTRFS_ROOT_ITEM_KEY,
1182		.offset = 0,
1183	};
1184
1185	switch (objectid) {
1186	case BTRFS_ROOT_TREE_OBJECTID:
1187		return btrfs_grab_root(fs_info->tree_root);
1188	case BTRFS_EXTENT_TREE_OBJECTID:
1189		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1190	case BTRFS_CHUNK_TREE_OBJECTID:
1191		return btrfs_grab_root(fs_info->chunk_root);
1192	case BTRFS_DEV_TREE_OBJECTID:
1193		return btrfs_grab_root(fs_info->dev_root);
1194	case BTRFS_CSUM_TREE_OBJECTID:
1195		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1196	case BTRFS_QUOTA_TREE_OBJECTID:
1197		return btrfs_grab_root(fs_info->quota_root);
1198	case BTRFS_UUID_TREE_OBJECTID:
1199		return btrfs_grab_root(fs_info->uuid_root);
1200	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1201		return btrfs_grab_root(fs_info->block_group_root);
1202	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1203		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1204	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1205		return btrfs_grab_root(fs_info->stripe_root);
1206	default:
1207		return NULL;
1208	}
1209}
1210
1211int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1212			 struct btrfs_root *root)
1213{
1214	int ret;
1215
1216	ret = radix_tree_preload(GFP_NOFS);
1217	if (ret)
1218		return ret;
1219
1220	spin_lock(&fs_info->fs_roots_radix_lock);
1221	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1222				(unsigned long)root->root_key.objectid,
1223				root);
1224	if (ret == 0) {
1225		btrfs_grab_root(root);
1226		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1227	}
1228	spin_unlock(&fs_info->fs_roots_radix_lock);
1229	radix_tree_preload_end();
1230
1231	return ret;
1232}
1233
1234void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1235{
1236#ifdef CONFIG_BTRFS_DEBUG
1237	struct btrfs_root *root;
1238
1239	while (!list_empty(&fs_info->allocated_roots)) {
1240		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1241
1242		root = list_first_entry(&fs_info->allocated_roots,
1243					struct btrfs_root, leak_list);
1244		btrfs_err(fs_info, "leaked root %s refcount %d",
1245			  btrfs_root_name(&root->root_key, buf),
1246			  refcount_read(&root->refs));
1247		WARN_ON_ONCE(1);
1248		while (refcount_read(&root->refs) > 1)
1249			btrfs_put_root(root);
1250		btrfs_put_root(root);
1251	}
1252#endif
1253}
1254
1255static void free_global_roots(struct btrfs_fs_info *fs_info)
1256{
1257	struct btrfs_root *root;
1258	struct rb_node *node;
1259
1260	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1261		root = rb_entry(node, struct btrfs_root, rb_node);
1262		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1263		btrfs_put_root(root);
1264	}
1265}
1266
1267void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1268{
1269	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1270	percpu_counter_destroy(&fs_info->delalloc_bytes);
1271	percpu_counter_destroy(&fs_info->ordered_bytes);
1272	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1273	btrfs_free_csum_hash(fs_info);
1274	btrfs_free_stripe_hash_table(fs_info);
1275	btrfs_free_ref_cache(fs_info);
1276	kfree(fs_info->balance_ctl);
1277	kfree(fs_info->delayed_root);
1278	free_global_roots(fs_info);
1279	btrfs_put_root(fs_info->tree_root);
1280	btrfs_put_root(fs_info->chunk_root);
1281	btrfs_put_root(fs_info->dev_root);
1282	btrfs_put_root(fs_info->quota_root);
1283	btrfs_put_root(fs_info->uuid_root);
1284	btrfs_put_root(fs_info->fs_root);
1285	btrfs_put_root(fs_info->data_reloc_root);
1286	btrfs_put_root(fs_info->block_group_root);
1287	btrfs_put_root(fs_info->stripe_root);
1288	btrfs_check_leaked_roots(fs_info);
1289	btrfs_extent_buffer_leak_debug_check(fs_info);
1290	kfree(fs_info->super_copy);
1291	kfree(fs_info->super_for_commit);
1292	kfree(fs_info->subpage_info);
1293	kvfree(fs_info);
1294}
1295
1296
1297/*
1298 * Get an in-memory reference of a root structure.
1299 *
1300 * For essential trees like root/extent tree, we grab it from fs_info directly.
1301 * For subvolume trees, we check the cached filesystem roots first. If not
1302 * found, then read it from disk and add it to cached fs roots.
1303 *
1304 * Caller should release the root by calling btrfs_put_root() after the usage.
1305 *
1306 * NOTE: Reloc and log trees can't be read by this function as they share the
1307 *	 same root objectid.
1308 *
1309 * @objectid:	root id
1310 * @anon_dev:	preallocated anonymous block device number for new roots,
1311 *		pass NULL for a new allocation.
1312 * @check_ref:	whether to check root item references, If true, return -ENOENT
1313 *		for orphan roots
1314 */
1315static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1316					     u64 objectid, dev_t *anon_dev,
1317					     bool check_ref)
1318{
1319	struct btrfs_root *root;
1320	struct btrfs_path *path;
1321	struct btrfs_key key;
1322	int ret;
1323
1324	root = btrfs_get_global_root(fs_info, objectid);
1325	if (root)
1326		return root;
1327
1328	/*
1329	 * If we're called for non-subvolume trees, and above function didn't
1330	 * find one, do not try to read it from disk.
1331	 *
1332	 * This is namely for free-space-tree and quota tree, which can change
1333	 * at runtime and should only be grabbed from fs_info.
1334	 */
1335	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1336		return ERR_PTR(-ENOENT);
 
 
 
1337again:
1338	root = btrfs_lookup_fs_root(fs_info, objectid);
1339	if (root) {
1340		/*
1341		 * Some other caller may have read out the newly inserted
1342		 * subvolume already (for things like backref walk etc).  Not
1343		 * that common but still possible.  In that case, we just need
1344		 * to free the anon_dev.
1345		 */
1346		if (unlikely(anon_dev && *anon_dev)) {
1347			free_anon_bdev(*anon_dev);
1348			*anon_dev = 0;
1349		}
1350
1351		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1352			btrfs_put_root(root);
1353			return ERR_PTR(-ENOENT);
1354		}
1355		return root;
1356	}
1357
1358	key.objectid = objectid;
1359	key.type = BTRFS_ROOT_ITEM_KEY;
1360	key.offset = (u64)-1;
1361	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1362	if (IS_ERR(root))
1363		return root;
1364
1365	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1366		ret = -ENOENT;
1367		goto fail;
1368	}
1369
1370	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1371	if (ret)
1372		goto fail;
1373
1374	path = btrfs_alloc_path();
1375	if (!path) {
1376		ret = -ENOMEM;
1377		goto fail;
1378	}
1379	key.objectid = BTRFS_ORPHAN_OBJECTID;
1380	key.type = BTRFS_ORPHAN_ITEM_KEY;
1381	key.offset = objectid;
1382
1383	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1384	btrfs_free_path(path);
1385	if (ret < 0)
1386		goto fail;
1387	if (ret == 0)
1388		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1389
1390	ret = btrfs_insert_fs_root(fs_info, root);
1391	if (ret) {
1392		if (ret == -EEXIST) {
1393			btrfs_put_root(root);
1394			goto again;
1395		}
1396		goto fail;
1397	}
1398	return root;
1399fail:
1400	/*
1401	 * If our caller provided us an anonymous device, then it's his
1402	 * responsibility to free it in case we fail. So we have to set our
1403	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1404	 * and once again by our caller.
1405	 */
1406	if (anon_dev && *anon_dev)
1407		root->anon_dev = 0;
1408	btrfs_put_root(root);
1409	return ERR_PTR(ret);
1410}
1411
1412/*
1413 * Get in-memory reference of a root structure
1414 *
1415 * @objectid:	tree objectid
1416 * @check_ref:	if set, verify that the tree exists and the item has at least
1417 *		one reference
1418 */
1419struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1420				     u64 objectid, bool check_ref)
1421{
1422	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1423}
1424
1425/*
1426 * Get in-memory reference of a root structure, created as new, optionally pass
1427 * the anonymous block device id
1428 *
1429 * @objectid:	tree objectid
1430 * @anon_dev:	if NULL, allocate a new anonymous block device or use the
1431 *		parameter value if not NULL
1432 */
1433struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1434					 u64 objectid, dev_t *anon_dev)
1435{
1436	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
 
 
 
 
 
 
 
 
 
 
1437}
1438
1439/*
1440 * Return a root for the given objectid.
1441 *
1442 * @fs_info:	the fs_info
1443 * @objectid:	the objectid we need to lookup
1444 *
1445 * This is exclusively used for backref walking, and exists specifically because
1446 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1447 * creation time, which means we may have to read the tree_root in order to look
1448 * up a fs root that is not in memory.  If the root is not in memory we will
1449 * read the tree root commit root and look up the fs root from there.  This is a
1450 * temporary root, it will not be inserted into the radix tree as it doesn't
1451 * have the most uptodate information, it'll simply be discarded once the
1452 * backref code is finished using the root.
1453 */
1454struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1455						 struct btrfs_path *path,
1456						 u64 objectid)
1457{
1458	struct btrfs_root *root;
1459	struct btrfs_key key;
1460
1461	ASSERT(path->search_commit_root && path->skip_locking);
1462
1463	/*
1464	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1465	 * since this is called via the backref walking code we won't be looking
1466	 * up a root that doesn't exist, unless there's corruption.  So if root
1467	 * != NULL just return it.
1468	 */
1469	root = btrfs_get_global_root(fs_info, objectid);
1470	if (root)
1471		return root;
1472
1473	root = btrfs_lookup_fs_root(fs_info, objectid);
1474	if (root)
1475		return root;
1476
1477	key.objectid = objectid;
1478	key.type = BTRFS_ROOT_ITEM_KEY;
1479	key.offset = (u64)-1;
1480	root = read_tree_root_path(fs_info->tree_root, path, &key);
1481	btrfs_release_path(path);
1482
1483	return root;
1484}
1485
1486static int cleaner_kthread(void *arg)
1487{
1488	struct btrfs_fs_info *fs_info = arg;
1489	int again;
1490
1491	while (1) {
1492		again = 0;
1493
1494		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1495
1496		/* Make the cleaner go to sleep early. */
1497		if (btrfs_need_cleaner_sleep(fs_info))
1498			goto sleep;
1499
1500		/*
1501		 * Do not do anything if we might cause open_ctree() to block
1502		 * before we have finished mounting the filesystem.
1503		 */
1504		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1505			goto sleep;
1506
1507		if (!mutex_trylock(&fs_info->cleaner_mutex))
1508			goto sleep;
1509
1510		/*
1511		 * Avoid the problem that we change the status of the fs
1512		 * during the above check and trylock.
1513		 */
1514		if (btrfs_need_cleaner_sleep(fs_info)) {
1515			mutex_unlock(&fs_info->cleaner_mutex);
1516			goto sleep;
1517		}
1518
1519		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1520			btrfs_sysfs_feature_update(fs_info);
1521
1522		btrfs_run_delayed_iputs(fs_info);
1523
1524		again = btrfs_clean_one_deleted_snapshot(fs_info);
1525		mutex_unlock(&fs_info->cleaner_mutex);
1526
1527		/*
1528		 * The defragger has dealt with the R/O remount and umount,
1529		 * needn't do anything special here.
1530		 */
1531		btrfs_run_defrag_inodes(fs_info);
1532
1533		/*
1534		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1535		 * with relocation (btrfs_relocate_chunk) and relocation
1536		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1537		 * after acquiring fs_info->reclaim_bgs_lock. So we
1538		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1539		 * unused block groups.
1540		 */
1541		btrfs_delete_unused_bgs(fs_info);
1542
1543		/*
1544		 * Reclaim block groups in the reclaim_bgs list after we deleted
1545		 * all unused block_groups. This possibly gives us some more free
1546		 * space.
1547		 */
1548		btrfs_reclaim_bgs(fs_info);
1549sleep:
1550		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1551		if (kthread_should_park())
1552			kthread_parkme();
1553		if (kthread_should_stop())
1554			return 0;
1555		if (!again) {
1556			set_current_state(TASK_INTERRUPTIBLE);
1557			schedule();
 
1558			__set_current_state(TASK_RUNNING);
1559		}
1560	}
 
1561}
1562
1563static int transaction_kthread(void *arg)
1564{
1565	struct btrfs_root *root = arg;
1566	struct btrfs_fs_info *fs_info = root->fs_info;
1567	struct btrfs_trans_handle *trans;
1568	struct btrfs_transaction *cur;
1569	u64 transid;
1570	time64_t delta;
1571	unsigned long delay;
1572	bool cannot_commit;
1573
1574	do {
1575		cannot_commit = false;
1576		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1577		mutex_lock(&fs_info->transaction_kthread_mutex);
1578
1579		spin_lock(&fs_info->trans_lock);
1580		cur = fs_info->running_transaction;
1581		if (!cur) {
1582			spin_unlock(&fs_info->trans_lock);
1583			goto sleep;
1584		}
1585
1586		delta = ktime_get_seconds() - cur->start_time;
1587		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1588		    cur->state < TRANS_STATE_COMMIT_PREP &&
1589		    delta < fs_info->commit_interval) {
1590			spin_unlock(&fs_info->trans_lock);
1591			delay -= msecs_to_jiffies((delta - 1) * 1000);
1592			delay = min(delay,
1593				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1594			goto sleep;
1595		}
1596		transid = cur->transid;
1597		spin_unlock(&fs_info->trans_lock);
1598
1599		/* If the file system is aborted, this will always fail. */
1600		trans = btrfs_attach_transaction(root);
1601		if (IS_ERR(trans)) {
1602			if (PTR_ERR(trans) != -ENOENT)
1603				cannot_commit = true;
1604			goto sleep;
1605		}
1606		if (transid == trans->transid) {
1607			btrfs_commit_transaction(trans);
1608		} else {
1609			btrfs_end_transaction(trans);
1610		}
1611sleep:
1612		wake_up_process(fs_info->cleaner_kthread);
1613		mutex_unlock(&fs_info->transaction_kthread_mutex);
1614
1615		if (BTRFS_FS_ERROR(fs_info))
1616			btrfs_cleanup_transaction(fs_info);
1617		if (!kthread_should_stop() &&
1618				(!btrfs_transaction_blocked(fs_info) ||
1619				 cannot_commit))
1620			schedule_timeout_interruptible(delay);
 
 
 
 
 
1621	} while (!kthread_should_stop());
1622	return 0;
1623}
1624
1625/*
1626 * This will find the highest generation in the array of root backups.  The
1627 * index of the highest array is returned, or -EINVAL if we can't find
1628 * anything.
1629 *
1630 * We check to make sure the array is valid by comparing the
1631 * generation of the latest  root in the array with the generation
1632 * in the super block.  If they don't match we pitch it.
1633 */
1634static int find_newest_super_backup(struct btrfs_fs_info *info)
1635{
1636	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1637	u64 cur;
 
1638	struct btrfs_root_backup *root_backup;
1639	int i;
1640
1641	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1642		root_backup = info->super_copy->super_roots + i;
1643		cur = btrfs_backup_tree_root_gen(root_backup);
1644		if (cur == newest_gen)
1645			return i;
1646	}
1647
1648	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1649}
1650
1651/*
1652 * copy all the root pointers into the super backup array.
1653 * this will bump the backup pointer by one when it is
1654 * done
1655 */
1656static void backup_super_roots(struct btrfs_fs_info *info)
1657{
1658	const int next_backup = info->backup_root_index;
1659	struct btrfs_root_backup *root_backup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660
1661	root_backup = info->super_for_commit->super_roots + next_backup;
1662
1663	/*
1664	 * make sure all of our padding and empty slots get zero filled
1665	 * regardless of which ones we use today
1666	 */
1667	memset(root_backup, 0, sizeof(*root_backup));
1668
1669	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1670
1671	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1672	btrfs_set_backup_tree_root_gen(root_backup,
1673			       btrfs_header_generation(info->tree_root->node));
1674
1675	btrfs_set_backup_tree_root_level(root_backup,
1676			       btrfs_header_level(info->tree_root->node));
1677
1678	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1679	btrfs_set_backup_chunk_root_gen(root_backup,
1680			       btrfs_header_generation(info->chunk_root->node));
1681	btrfs_set_backup_chunk_root_level(root_backup,
1682			       btrfs_header_level(info->chunk_root->node));
1683
1684	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1685		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1686		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1687
1688		btrfs_set_backup_extent_root(root_backup,
1689					     extent_root->node->start);
1690		btrfs_set_backup_extent_root_gen(root_backup,
1691				btrfs_header_generation(extent_root->node));
1692		btrfs_set_backup_extent_root_level(root_backup,
1693					btrfs_header_level(extent_root->node));
1694
1695		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1696		btrfs_set_backup_csum_root_gen(root_backup,
1697					       btrfs_header_generation(csum_root->node));
1698		btrfs_set_backup_csum_root_level(root_backup,
1699						 btrfs_header_level(csum_root->node));
1700	}
1701
1702	/*
1703	 * we might commit during log recovery, which happens before we set
1704	 * the fs_root.  Make sure it is valid before we fill it in.
1705	 */
1706	if (info->fs_root && info->fs_root->node) {
1707		btrfs_set_backup_fs_root(root_backup,
1708					 info->fs_root->node->start);
1709		btrfs_set_backup_fs_root_gen(root_backup,
1710			       btrfs_header_generation(info->fs_root->node));
1711		btrfs_set_backup_fs_root_level(root_backup,
1712			       btrfs_header_level(info->fs_root->node));
1713	}
1714
1715	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1716	btrfs_set_backup_dev_root_gen(root_backup,
1717			       btrfs_header_generation(info->dev_root->node));
1718	btrfs_set_backup_dev_root_level(root_backup,
1719				       btrfs_header_level(info->dev_root->node));
1720
 
 
 
 
 
 
1721	btrfs_set_backup_total_bytes(root_backup,
1722			     btrfs_super_total_bytes(info->super_copy));
1723	btrfs_set_backup_bytes_used(root_backup,
1724			     btrfs_super_bytes_used(info->super_copy));
1725	btrfs_set_backup_num_devices(root_backup,
1726			     btrfs_super_num_devices(info->super_copy));
1727
1728	/*
1729	 * if we don't copy this out to the super_copy, it won't get remembered
1730	 * for the next commit
1731	 */
1732	memcpy(&info->super_copy->super_roots,
1733	       &info->super_for_commit->super_roots,
1734	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1735}
1736
1737/*
1738 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1739 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1740 *
1741 * @fs_info:  filesystem whose backup roots need to be read
1742 * @priority: priority of backup root required
1743 *
1744 * Returns backup root index on success and -EINVAL otherwise.
1745 */
1746static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
 
 
1747{
1748	int backup_index = find_newest_super_backup(fs_info);
1749	struct btrfs_super_block *super = fs_info->super_copy;
1750	struct btrfs_root_backup *root_backup;
 
1751
1752	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1753		if (priority == 0)
1754			return backup_index;
1755
1756		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1757		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
 
 
 
 
 
 
 
1758	} else {
1759		return -EINVAL;
 
 
 
 
1760	}
1761
1762	root_backup = super->super_roots + backup_index;
1763
1764	btrfs_set_super_generation(super,
1765				   btrfs_backup_tree_root_gen(root_backup));
1766	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1767	btrfs_set_super_root_level(super,
1768				   btrfs_backup_tree_root_level(root_backup));
1769	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1770
1771	/*
1772	 * Fixme: the total bytes and num_devices need to match or we should
1773	 * need a fsck
1774	 */
1775	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1776	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1777
1778	return backup_index;
1779}
1780
1781/* helper to cleanup workers */
1782static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1783{
1784	btrfs_destroy_workqueue(fs_info->fixup_workers);
1785	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1786	btrfs_destroy_workqueue(fs_info->workers);
1787	if (fs_info->endio_workers)
1788		destroy_workqueue(fs_info->endio_workers);
1789	if (fs_info->rmw_workers)
1790		destroy_workqueue(fs_info->rmw_workers);
1791	if (fs_info->compressed_write_workers)
1792		destroy_workqueue(fs_info->compressed_write_workers);
1793	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1794	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
 
1795	btrfs_destroy_workqueue(fs_info->delayed_workers);
1796	btrfs_destroy_workqueue(fs_info->caching_workers);
 
1797	btrfs_destroy_workqueue(fs_info->flush_workers);
1798	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1799	if (fs_info->discard_ctl.discard_workers)
1800		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1801	/*
1802	 * Now that all other work queues are destroyed, we can safely destroy
1803	 * the queues used for metadata I/O, since tasks from those other work
1804	 * queues can do metadata I/O operations.
1805	 */
1806	if (fs_info->endio_meta_workers)
1807		destroy_workqueue(fs_info->endio_meta_workers);
1808}
1809
1810static void free_root_extent_buffers(struct btrfs_root *root)
1811{
1812	if (root) {
1813		free_extent_buffer(root->node);
1814		free_extent_buffer(root->commit_root);
1815		root->node = NULL;
1816		root->commit_root = NULL;
1817	}
1818}
1819
1820static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1821{
1822	struct btrfs_root *root, *tmp;
1823
1824	rbtree_postorder_for_each_entry_safe(root, tmp,
1825					     &fs_info->global_root_tree,
1826					     rb_node)
1827		free_root_extent_buffers(root);
1828}
1829
1830/* helper to cleanup tree roots */
1831static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1832{
1833	free_root_extent_buffers(info->tree_root);
1834
1835	free_global_root_pointers(info);
1836	free_root_extent_buffers(info->dev_root);
 
 
1837	free_root_extent_buffers(info->quota_root);
1838	free_root_extent_buffers(info->uuid_root);
1839	free_root_extent_buffers(info->fs_root);
1840	free_root_extent_buffers(info->data_reloc_root);
1841	free_root_extent_buffers(info->block_group_root);
1842	free_root_extent_buffers(info->stripe_root);
1843	if (free_chunk_root)
1844		free_root_extent_buffers(info->chunk_root);
1845}
1846
1847void btrfs_put_root(struct btrfs_root *root)
1848{
1849	if (!root)
1850		return;
1851
1852	if (refcount_dec_and_test(&root->refs)) {
1853		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1854		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1855		if (root->anon_dev)
1856			free_anon_bdev(root->anon_dev);
1857		free_root_extent_buffers(root);
1858#ifdef CONFIG_BTRFS_DEBUG
1859		spin_lock(&root->fs_info->fs_roots_radix_lock);
1860		list_del_init(&root->leak_list);
1861		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1862#endif
1863		kfree(root);
1864	}
1865}
1866
1867void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1868{
1869	int ret;
1870	struct btrfs_root *gang[8];
1871	int i;
1872
1873	while (!list_empty(&fs_info->dead_roots)) {
1874		gang[0] = list_entry(fs_info->dead_roots.next,
1875				     struct btrfs_root, root_list);
1876		list_del(&gang[0]->root_list);
1877
1878		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1879			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1880		btrfs_put_root(gang[0]);
 
 
 
 
1881	}
1882
1883	while (1) {
1884		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1885					     (void **)gang, 0,
1886					     ARRAY_SIZE(gang));
1887		if (!ret)
1888			break;
1889		for (i = 0; i < ret; i++)
1890			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1891	}
1892}
1893
1894static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1895{
1896	mutex_init(&fs_info->scrub_lock);
1897	atomic_set(&fs_info->scrubs_running, 0);
1898	atomic_set(&fs_info->scrub_pause_req, 0);
1899	atomic_set(&fs_info->scrubs_paused, 0);
1900	atomic_set(&fs_info->scrub_cancel_req, 0);
1901	init_waitqueue_head(&fs_info->scrub_pause_wait);
1902	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1903}
1904
1905static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1906{
1907	spin_lock_init(&fs_info->balance_lock);
1908	mutex_init(&fs_info->balance_mutex);
1909	atomic_set(&fs_info->balance_pause_req, 0);
1910	atomic_set(&fs_info->balance_cancel_req, 0);
1911	fs_info->balance_ctl = NULL;
1912	init_waitqueue_head(&fs_info->balance_wait_q);
1913	atomic_set(&fs_info->reloc_cancel_req, 0);
1914}
1915
1916static int btrfs_init_btree_inode(struct super_block *sb)
1917{
 
 
 
 
 
 
 
 
 
 
1918	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1919	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1920					      fs_info->tree_root);
1921	struct inode *inode;
1922
1923	inode = new_inode(sb);
1924	if (!inode)
1925		return -ENOMEM;
1926
1927	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1928	set_nlink(inode, 1);
1929	/*
1930	 * we set the i_size on the btree inode to the max possible int.
1931	 * the real end of the address space is determined by all of
1932	 * the devices in the system
1933	 */
1934	inode->i_size = OFFSET_MAX;
1935	inode->i_mapping->a_ops = &btree_aops;
1936	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1937
1938	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1939	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1940			    IO_TREE_BTREE_INODE_IO);
1941	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1942
1943	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1944	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1945	BTRFS_I(inode)->location.type = 0;
1946	BTRFS_I(inode)->location.offset = 0;
1947	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1948	__insert_inode_hash(inode, hash);
1949	fs_info->btree_inode = inode;
1950
1951	return 0;
1952}
1953
1954static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1955{
1956	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1957	init_rwsem(&fs_info->dev_replace.rwsem);
1958	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1959}
1960
1961static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1962{
1963	spin_lock_init(&fs_info->qgroup_lock);
1964	mutex_init(&fs_info->qgroup_ioctl_lock);
1965	fs_info->qgroup_tree = RB_ROOT;
1966	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1967	fs_info->qgroup_seq = 1;
1968	fs_info->qgroup_ulist = NULL;
1969	fs_info->qgroup_rescan_running = false;
1970	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1971	mutex_init(&fs_info->qgroup_rescan_lock);
1972}
1973
1974static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1975{
1976	u32 max_active = fs_info->thread_pool_size;
1977	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1978	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1979
1980	fs_info->workers =
1981		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1982
1983	fs_info->delalloc_workers =
1984		btrfs_alloc_workqueue(fs_info, "delalloc",
1985				      flags, max_active, 2);
1986
1987	fs_info->flush_workers =
1988		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1989				      flags, max_active, 0);
1990
1991	fs_info->caching_workers =
1992		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1993
1994	fs_info->fixup_workers =
1995		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1996
1997	fs_info->endio_workers =
1998		alloc_workqueue("btrfs-endio", flags, max_active);
1999	fs_info->endio_meta_workers =
2000		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2001	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2002	fs_info->endio_write_workers =
2003		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2004				      max_active, 2);
2005	fs_info->compressed_write_workers =
2006		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2007	fs_info->endio_freespace_worker =
2008		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2009				      max_active, 0);
2010	fs_info->delayed_workers =
2011		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2012				      max_active, 0);
2013	fs_info->qgroup_rescan_workers =
2014		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2015					      ordered_flags);
2016	fs_info->discard_ctl.discard_workers =
2017		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2018
2019	if (!(fs_info->workers &&
2020	      fs_info->delalloc_workers && fs_info->flush_workers &&
2021	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2022	      fs_info->compressed_write_workers &&
2023	      fs_info->endio_write_workers &&
2024	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2025	      fs_info->caching_workers && fs_info->fixup_workers &&
2026	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2027	      fs_info->discard_ctl.discard_workers)) {
2028		return -ENOMEM;
2029	}
2030
2031	return 0;
2032}
2033
2034static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2035{
2036	struct crypto_shash *csum_shash;
2037	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2038
2039	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2040
2041	if (IS_ERR(csum_shash)) {
2042		btrfs_err(fs_info, "error allocating %s hash for checksum",
2043			  csum_driver);
2044		return PTR_ERR(csum_shash);
2045	}
2046
2047	fs_info->csum_shash = csum_shash;
2048
2049	/*
2050	 * Check if the checksum implementation is a fast accelerated one.
2051	 * As-is this is a bit of a hack and should be replaced once the csum
2052	 * implementations provide that information themselves.
2053	 */
2054	switch (csum_type) {
2055	case BTRFS_CSUM_TYPE_CRC32:
2056		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2057			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2058		break;
2059	case BTRFS_CSUM_TYPE_XXHASH:
2060		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2061		break;
2062	default:
2063		break;
2064	}
2065
2066	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2067			btrfs_super_csum_name(csum_type),
2068			crypto_shash_driver_name(csum_shash));
2069	return 0;
2070}
2071
2072static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2073			    struct btrfs_fs_devices *fs_devices)
2074{
2075	int ret;
2076	struct btrfs_tree_parent_check check = { 0 };
2077	struct btrfs_root *log_tree_root;
2078	struct btrfs_super_block *disk_super = fs_info->super_copy;
2079	u64 bytenr = btrfs_super_log_root(disk_super);
2080	int level = btrfs_super_log_root_level(disk_super);
 
 
2081
2082	if (fs_devices->rw_devices == 0) {
2083		btrfs_warn(fs_info, "log replay required on RO media");
2084		return -EIO;
 
 
2085	}
2086
2087	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2088					 GFP_KERNEL);
2089	if (!log_tree_root)
2090		return -ENOMEM;
2091
2092	check.level = level;
2093	check.transid = fs_info->generation + 1;
2094	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2095	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2096	if (IS_ERR(log_tree_root->node)) {
2097		btrfs_warn(fs_info, "failed to read log tree");
2098		ret = PTR_ERR(log_tree_root->node);
2099		log_tree_root->node = NULL;
2100		btrfs_put_root(log_tree_root);
2101		return ret;
2102	}
2103	if (!extent_buffer_uptodate(log_tree_root->node)) {
2104		btrfs_err(fs_info, "failed to read log tree");
2105		btrfs_put_root(log_tree_root);
2106		return -EIO;
2107	}
2108
2109	/* returns with log_tree_root freed on success */
2110	ret = btrfs_recover_log_trees(log_tree_root);
2111	if (ret) {
2112		btrfs_handle_fs_error(fs_info, ret,
2113				      "Failed to recover log tree");
2114		btrfs_put_root(log_tree_root);
2115		return ret;
2116	}
2117
2118	if (sb_rdonly(fs_info->sb)) {
2119		ret = btrfs_commit_super(fs_info);
2120		if (ret)
2121			return ret;
2122	}
 
 
2123
2124	return 0;
2125}
2126
2127static int load_global_roots_objectid(struct btrfs_root *tree_root,
2128				      struct btrfs_path *path, u64 objectid,
2129				      const char *name)
2130{
2131	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2132	struct btrfs_root *root;
2133	u64 max_global_id = 0;
2134	int ret;
2135	struct btrfs_key key = {
2136		.objectid = objectid,
2137		.type = BTRFS_ROOT_ITEM_KEY,
2138		.offset = 0,
2139	};
2140	bool found = false;
2141
2142	/* If we have IGNOREDATACSUMS skip loading these roots. */
2143	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2144	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2145		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2146		return 0;
2147	}
2148
2149	while (1) {
2150		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2151		if (ret < 0)
2152			break;
2153
2154		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2155			ret = btrfs_next_leaf(tree_root, path);
2156			if (ret) {
2157				if (ret > 0)
2158					ret = 0;
2159				break;
2160			}
2161		}
2162		ret = 0;
2163
2164		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2165		if (key.objectid != objectid)
2166			break;
2167		btrfs_release_path(path);
2168
2169		/*
2170		 * Just worry about this for extent tree, it'll be the same for
2171		 * everybody.
2172		 */
2173		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2174			max_global_id = max(max_global_id, key.offset);
2175
2176		found = true;
2177		root = read_tree_root_path(tree_root, path, &key);
2178		if (IS_ERR(root)) {
2179			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2180				ret = PTR_ERR(root);
2181			break;
2182		}
2183		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2184		ret = btrfs_global_root_insert(root);
2185		if (ret) {
2186			btrfs_put_root(root);
2187			break;
2188		}
2189		key.offset++;
2190	}
2191	btrfs_release_path(path);
2192
2193	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2194		fs_info->nr_global_roots = max_global_id + 1;
2195
2196	if (!found || ret) {
2197		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2198			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2199
2200		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2201			ret = ret ? ret : -ENOENT;
2202		else
2203			ret = 0;
2204		btrfs_err(fs_info, "failed to load root %s", name);
2205	}
2206	return ret;
2207}
2208
2209static int load_global_roots(struct btrfs_root *tree_root)
2210{
2211	struct btrfs_path *path;
2212	int ret = 0;
2213
2214	path = btrfs_alloc_path();
2215	if (!path)
2216		return -ENOMEM;
2217
2218	ret = load_global_roots_objectid(tree_root, path,
2219					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2220	if (ret)
2221		goto out;
2222	ret = load_global_roots_objectid(tree_root, path,
2223					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2224	if (ret)
2225		goto out;
2226	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2227		goto out;
2228	ret = load_global_roots_objectid(tree_root, path,
2229					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2230					 "free space");
2231out:
2232	btrfs_free_path(path);
2233	return ret;
2234}
2235
2236static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2237{
2238	struct btrfs_root *tree_root = fs_info->tree_root;
2239	struct btrfs_root *root;
2240	struct btrfs_key location;
2241	int ret;
2242
2243	ASSERT(fs_info->tree_root);
2244
2245	ret = load_global_roots(tree_root);
2246	if (ret)
2247		return ret;
2248
2249	location.type = BTRFS_ROOT_ITEM_KEY;
2250	location.offset = 0;
2251
2252	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2253		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2254		root = btrfs_read_tree_root(tree_root, &location);
2255		if (IS_ERR(root)) {
2256			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2257				ret = PTR_ERR(root);
2258				goto out;
2259			}
2260		} else {
2261			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2262			fs_info->block_group_root = root;
2263		}
2264	}
2265
2266	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2267	root = btrfs_read_tree_root(tree_root, &location);
2268	if (IS_ERR(root)) {
2269		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2270			ret = PTR_ERR(root);
2271			goto out;
2272		}
2273	} else {
2274		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2275		fs_info->dev_root = root;
2276	}
2277	/* Initialize fs_info for all devices in any case */
2278	ret = btrfs_init_devices_late(fs_info);
2279	if (ret)
2280		goto out;
2281
2282	/*
2283	 * This tree can share blocks with some other fs tree during relocation
2284	 * and we need a proper setup by btrfs_get_fs_root
2285	 */
2286	root = btrfs_get_fs_root(tree_root->fs_info,
2287				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2288	if (IS_ERR(root)) {
2289		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2290			ret = PTR_ERR(root);
2291			goto out;
2292		}
2293	} else {
2294		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2295		fs_info->data_reloc_root = root;
2296	}
2297
2298	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2299	root = btrfs_read_tree_root(tree_root, &location);
2300	if (!IS_ERR(root)) {
2301		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2302		fs_info->quota_root = root;
2303	}
2304
2305	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2306	root = btrfs_read_tree_root(tree_root, &location);
2307	if (IS_ERR(root)) {
2308		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2309			ret = PTR_ERR(root);
2310			if (ret != -ENOENT)
2311				goto out;
2312		}
2313	} else {
2314		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2315		fs_info->uuid_root = root;
2316	}
2317
2318	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2319		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2320		root = btrfs_read_tree_root(tree_root, &location);
2321		if (IS_ERR(root)) {
2322			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2323				ret = PTR_ERR(root);
2324				goto out;
2325			}
2326		} else {
2327			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2328			fs_info->stripe_root = root;
2329		}
2330	}
2331
2332	return 0;
2333out:
2334	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2335		   location.objectid, ret);
2336	return ret;
2337}
2338
2339/*
2340 * Real super block validation
2341 * NOTE: super csum type and incompat features will not be checked here.
2342 *
2343 * @sb:		super block to check
2344 * @mirror_num:	the super block number to check its bytenr:
2345 * 		0	the primary (1st) sb
2346 * 		1, 2	2nd and 3rd backup copy
2347 * 	       -1	skip bytenr check
2348 */
2349int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2350			 struct btrfs_super_block *sb, int mirror_num)
2351{
2352	u64 nodesize = btrfs_super_nodesize(sb);
2353	u64 sectorsize = btrfs_super_sectorsize(sb);
2354	int ret = 0;
2355
2356	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2357		btrfs_err(fs_info, "no valid FS found");
2358		ret = -EINVAL;
2359	}
2360	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2361		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2362				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2363		ret = -EINVAL;
2364	}
2365	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2366		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2367				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2368		ret = -EINVAL;
2369	}
2370	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2371		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2372				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2373		ret = -EINVAL;
2374	}
2375	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2376		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2377				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2378		ret = -EINVAL;
2379	}
2380
2381	/*
2382	 * Check sectorsize and nodesize first, other check will need it.
2383	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2384	 */
2385	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2386	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2387		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2388		ret = -EINVAL;
2389	}
2390
2391	/*
2392	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2393	 *
2394	 * We can support 16K sectorsize with 64K page size without problem,
2395	 * but such sectorsize/pagesize combination doesn't make much sense.
2396	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2397	 * beginning.
2398	 */
2399	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2400		btrfs_err(fs_info,
2401			"sectorsize %llu not yet supported for page size %lu",
2402			sectorsize, PAGE_SIZE);
2403		ret = -EINVAL;
2404	}
2405
2406	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2407	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2408		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2409		ret = -EINVAL;
2410	}
2411	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2412		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2413			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2414		ret = -EINVAL;
2415	}
2416
2417	/* Root alignment check */
2418	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2419		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2420			   btrfs_super_root(sb));
2421		ret = -EINVAL;
2422	}
2423	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2424		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2425			   btrfs_super_chunk_root(sb));
2426		ret = -EINVAL;
2427	}
2428	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2429		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2430			   btrfs_super_log_root(sb));
2431		ret = -EINVAL;
2432	}
2433
2434	if (!fs_info->fs_devices->temp_fsid &&
2435	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2436		btrfs_err(fs_info,
2437		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2438			  sb->fsid, fs_info->fs_devices->fsid);
2439		ret = -EINVAL;
2440	}
2441
2442	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2443		   BTRFS_FSID_SIZE) != 0) {
2444		btrfs_err(fs_info,
2445"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2446			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2447		ret = -EINVAL;
2448	}
2449
2450	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2451		   BTRFS_FSID_SIZE) != 0) {
2452		btrfs_err(fs_info,
2453			"dev_item UUID does not match metadata fsid: %pU != %pU",
2454			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2455		ret = -EINVAL;
2456	}
2457
2458	/*
2459	 * Artificial requirement for block-group-tree to force newer features
2460	 * (free-space-tree, no-holes) so the test matrix is smaller.
2461	 */
2462	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2463	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2464	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2465		btrfs_err(fs_info,
2466		"block-group-tree feature requires fres-space-tree and no-holes");
2467		ret = -EINVAL;
2468	}
2469
2470	/*
2471	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2472	 * done later
2473	 */
2474	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2475		btrfs_err(fs_info, "bytes_used is too small %llu",
2476			  btrfs_super_bytes_used(sb));
2477		ret = -EINVAL;
2478	}
2479	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2480		btrfs_err(fs_info, "invalid stripesize %u",
2481			  btrfs_super_stripesize(sb));
2482		ret = -EINVAL;
2483	}
2484	if (btrfs_super_num_devices(sb) > (1UL << 31))
2485		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2486			   btrfs_super_num_devices(sb));
2487	if (btrfs_super_num_devices(sb) == 0) {
2488		btrfs_err(fs_info, "number of devices is 0");
2489		ret = -EINVAL;
2490	}
2491
2492	if (mirror_num >= 0 &&
2493	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2494		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2495			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2496		ret = -EINVAL;
2497	}
2498
2499	/*
2500	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2501	 * and one chunk
2502	 */
2503	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2504		btrfs_err(fs_info, "system chunk array too big %u > %u",
2505			  btrfs_super_sys_array_size(sb),
2506			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2507		ret = -EINVAL;
2508	}
2509	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2510			+ sizeof(struct btrfs_chunk)) {
2511		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2512			  btrfs_super_sys_array_size(sb),
2513			  sizeof(struct btrfs_disk_key)
2514			  + sizeof(struct btrfs_chunk));
2515		ret = -EINVAL;
2516	}
2517
2518	/*
2519	 * The generation is a global counter, we'll trust it more than the others
2520	 * but it's still possible that it's the one that's wrong.
2521	 */
2522	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2523		btrfs_warn(fs_info,
2524			"suspicious: generation < chunk_root_generation: %llu < %llu",
2525			btrfs_super_generation(sb),
2526			btrfs_super_chunk_root_generation(sb));
2527	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2528	    && btrfs_super_cache_generation(sb) != (u64)-1)
2529		btrfs_warn(fs_info,
2530			"suspicious: generation < cache_generation: %llu < %llu",
2531			btrfs_super_generation(sb),
2532			btrfs_super_cache_generation(sb));
2533
2534	return ret;
2535}
2536
2537/*
2538 * Validation of super block at mount time.
2539 * Some checks already done early at mount time, like csum type and incompat
2540 * flags will be skipped.
2541 */
2542static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2543{
2544	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2545}
2546
2547/*
2548 * Validation of super block at write time.
2549 * Some checks like bytenr check will be skipped as their values will be
2550 * overwritten soon.
2551 * Extra checks like csum type and incompat flags will be done here.
2552 */
2553static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2554				      struct btrfs_super_block *sb)
2555{
2556	int ret;
2557
2558	ret = btrfs_validate_super(fs_info, sb, -1);
2559	if (ret < 0)
2560		goto out;
2561	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2562		ret = -EUCLEAN;
2563		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2564			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2565		goto out;
2566	}
2567	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2568		ret = -EUCLEAN;
2569		btrfs_err(fs_info,
2570		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2571			  btrfs_super_incompat_flags(sb),
2572			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2573		goto out;
2574	}
2575out:
2576	if (ret < 0)
2577		btrfs_err(fs_info,
2578		"super block corruption detected before writing it to disk");
2579	return ret;
2580}
2581
2582static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2583{
2584	struct btrfs_tree_parent_check check = {
2585		.level = level,
2586		.transid = gen,
2587		.owner_root = root->root_key.objectid
2588	};
2589	int ret = 0;
2590
2591	root->node = read_tree_block(root->fs_info, bytenr, &check);
2592	if (IS_ERR(root->node)) {
2593		ret = PTR_ERR(root->node);
2594		root->node = NULL;
2595		return ret;
2596	}
2597	if (!extent_buffer_uptodate(root->node)) {
2598		free_extent_buffer(root->node);
2599		root->node = NULL;
2600		return -EIO;
2601	}
2602
2603	btrfs_set_root_node(&root->root_item, root->node);
2604	root->commit_root = btrfs_root_node(root);
2605	btrfs_set_root_refs(&root->root_item, 1);
2606	return ret;
2607}
2608
2609static int load_important_roots(struct btrfs_fs_info *fs_info)
2610{
2611	struct btrfs_super_block *sb = fs_info->super_copy;
2612	u64 gen, bytenr;
2613	int level, ret;
2614
2615	bytenr = btrfs_super_root(sb);
2616	gen = btrfs_super_generation(sb);
2617	level = btrfs_super_root_level(sb);
2618	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2619	if (ret) {
2620		btrfs_warn(fs_info, "couldn't read tree root");
2621		return ret;
2622	}
2623	return 0;
2624}
2625
2626static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2627{
2628	int backup_index = find_newest_super_backup(fs_info);
2629	struct btrfs_super_block *sb = fs_info->super_copy;
2630	struct btrfs_root *tree_root = fs_info->tree_root;
2631	bool handle_error = false;
2632	int ret = 0;
2633	int i;
2634
2635	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2636		if (handle_error) {
2637			if (!IS_ERR(tree_root->node))
2638				free_extent_buffer(tree_root->node);
2639			tree_root->node = NULL;
2640
2641			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2642				break;
2643
2644			free_root_pointers(fs_info, 0);
2645
2646			/*
2647			 * Don't use the log in recovery mode, it won't be
2648			 * valid
2649			 */
2650			btrfs_set_super_log_root(sb, 0);
2651
2652			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2653			ret = read_backup_root(fs_info, i);
2654			backup_index = ret;
2655			if (ret < 0)
2656				return ret;
2657		}
2658
2659		ret = load_important_roots(fs_info);
2660		if (ret) {
2661			handle_error = true;
2662			continue;
2663		}
2664
2665		/*
2666		 * No need to hold btrfs_root::objectid_mutex since the fs
2667		 * hasn't been fully initialised and we are the only user
2668		 */
2669		ret = btrfs_init_root_free_objectid(tree_root);
2670		if (ret < 0) {
2671			handle_error = true;
2672			continue;
2673		}
2674
2675		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2676
2677		ret = btrfs_read_roots(fs_info);
2678		if (ret < 0) {
2679			handle_error = true;
2680			continue;
2681		}
2682
2683		/* All successful */
2684		fs_info->generation = btrfs_header_generation(tree_root->node);
2685		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2686		fs_info->last_reloc_trans = 0;
2687
2688		/* Always begin writing backup roots after the one being used */
2689		if (backup_index < 0) {
2690			fs_info->backup_root_index = 0;
2691		} else {
2692			fs_info->backup_root_index = backup_index + 1;
2693			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2694		}
2695		break;
2696	}
2697
2698	return ret;
2699}
2700
2701void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2702{
2703	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2704	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2705	INIT_LIST_HEAD(&fs_info->trans_list);
2706	INIT_LIST_HEAD(&fs_info->dead_roots);
2707	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2708	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2709	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2710	spin_lock_init(&fs_info->delalloc_root_lock);
2711	spin_lock_init(&fs_info->trans_lock);
2712	spin_lock_init(&fs_info->fs_roots_radix_lock);
2713	spin_lock_init(&fs_info->delayed_iput_lock);
2714	spin_lock_init(&fs_info->defrag_inodes_lock);
 
 
2715	spin_lock_init(&fs_info->super_lock);
2716	spin_lock_init(&fs_info->buffer_lock);
2717	spin_lock_init(&fs_info->unused_bgs_lock);
2718	spin_lock_init(&fs_info->treelog_bg_lock);
2719	spin_lock_init(&fs_info->zone_active_bgs_lock);
2720	spin_lock_init(&fs_info->relocation_bg_lock);
2721	rwlock_init(&fs_info->tree_mod_log_lock);
2722	rwlock_init(&fs_info->global_root_lock);
2723	mutex_init(&fs_info->unused_bg_unpin_mutex);
2724	mutex_init(&fs_info->reclaim_bgs_lock);
2725	mutex_init(&fs_info->reloc_mutex);
2726	mutex_init(&fs_info->delalloc_root_mutex);
2727	mutex_init(&fs_info->zoned_meta_io_lock);
2728	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2729	seqlock_init(&fs_info->profiles_lock);
2730
2731	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2732	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2733	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2734	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2735	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2736				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2737	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2738				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2739	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2740				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2741	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2742				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2743
2744	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2745	INIT_LIST_HEAD(&fs_info->space_info);
2746	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2747	INIT_LIST_HEAD(&fs_info->unused_bgs);
2748	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2749	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2750#ifdef CONFIG_BTRFS_DEBUG
2751	INIT_LIST_HEAD(&fs_info->allocated_roots);
2752	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2753	spin_lock_init(&fs_info->eb_leak_lock);
2754#endif
2755	fs_info->mapping_tree = RB_ROOT_CACHED;
2756	rwlock_init(&fs_info->mapping_tree_lock);
2757	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2758			     BTRFS_BLOCK_RSV_GLOBAL);
 
 
2759	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2760	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2761	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2762	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2763			     BTRFS_BLOCK_RSV_DELOPS);
2764	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2765			     BTRFS_BLOCK_RSV_DELREFS);
2766
2767	atomic_set(&fs_info->async_delalloc_pages, 0);
 
 
2768	atomic_set(&fs_info->defrag_running, 0);
2769	atomic_set(&fs_info->nr_delayed_iputs, 0);
2770	atomic64_set(&fs_info->tree_mod_seq, 0);
2771	fs_info->global_root_tree = RB_ROOT;
2772	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2773	fs_info->metadata_ratio = 0;
2774	fs_info->defrag_inodes = RB_ROOT;
2775	atomic64_set(&fs_info->free_chunk_space, 0);
2776	fs_info->tree_mod_log = RB_ROOT;
2777	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2778	btrfs_init_ref_verify(fs_info);
 
 
 
2779
2780	fs_info->thread_pool_size = min_t(unsigned long,
2781					  num_online_cpus() + 2, 8);
2782
2783	INIT_LIST_HEAD(&fs_info->ordered_roots);
2784	spin_lock_init(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2785
2786	btrfs_init_scrub(fs_info);
2787	btrfs_init_balance(fs_info);
2788	btrfs_init_async_reclaim_work(fs_info);
2789
2790	rwlock_init(&fs_info->block_group_cache_lock);
2791	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2792
2793	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2794			    IO_TREE_FS_EXCLUDED_EXTENTS);
2795
2796	mutex_init(&fs_info->ordered_operations_mutex);
 
2797	mutex_init(&fs_info->tree_log_mutex);
2798	mutex_init(&fs_info->chunk_mutex);
2799	mutex_init(&fs_info->transaction_kthread_mutex);
2800	mutex_init(&fs_info->cleaner_mutex);
2801	mutex_init(&fs_info->ro_block_group_mutex);
2802	init_rwsem(&fs_info->commit_root_sem);
2803	init_rwsem(&fs_info->cleanup_work_sem);
2804	init_rwsem(&fs_info->subvol_sem);
2805	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
 
 
 
 
 
2806
2807	btrfs_init_dev_replace_locks(fs_info);
2808	btrfs_init_qgroup(fs_info);
2809	btrfs_discard_init(fs_info);
 
 
 
 
 
 
2810
2811	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2812	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2813
2814	init_waitqueue_head(&fs_info->transaction_throttle);
2815	init_waitqueue_head(&fs_info->transaction_wait);
2816	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2817	init_waitqueue_head(&fs_info->async_submit_wait);
2818	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2819
2820	/* Usable values until the real ones are cached from the superblock */
2821	fs_info->nodesize = 4096;
2822	fs_info->sectorsize = 4096;
2823	fs_info->sectorsize_bits = ilog2(4096);
2824	fs_info->stripesize = 4096;
2825
2826	/* Default compress algorithm when user does -o compress */
2827	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2828
2829	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2830
2831	spin_lock_init(&fs_info->swapfile_pins_lock);
2832	fs_info->swapfile_pins = RB_ROOT;
2833
2834	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2835	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2836}
2837
2838static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2839{
2840	int ret;
2841
2842	fs_info->sb = sb;
2843	/* Temporary fixed values for block size until we read the superblock. */
2844	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2845	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2846
2847	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2848	if (ret)
2849		return ret;
2850
2851	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2852	if (ret)
2853		return ret;
2854
2855	fs_info->dirty_metadata_batch = PAGE_SIZE *
2856					(1 + ilog2(nr_cpu_ids));
2857
2858	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2859	if (ret)
2860		return ret;
2861
2862	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2863			GFP_KERNEL);
2864	if (ret)
2865		return ret;
2866
2867	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2868					GFP_KERNEL);
2869	if (!fs_info->delayed_root)
2870		return -ENOMEM;
2871	btrfs_init_delayed_root(fs_info->delayed_root);
2872
2873	if (sb_rdonly(sb))
2874		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2875
2876	return btrfs_alloc_stripe_hash_table(fs_info);
2877}
2878
2879static int btrfs_uuid_rescan_kthread(void *data)
2880{
2881	struct btrfs_fs_info *fs_info = data;
2882	int ret;
2883
2884	/*
2885	 * 1st step is to iterate through the existing UUID tree and
2886	 * to delete all entries that contain outdated data.
2887	 * 2nd step is to add all missing entries to the UUID tree.
2888	 */
2889	ret = btrfs_uuid_tree_iterate(fs_info);
2890	if (ret < 0) {
2891		if (ret != -EINTR)
2892			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2893				   ret);
2894		up(&fs_info->uuid_tree_rescan_sem);
2895		return ret;
2896	}
2897	return btrfs_uuid_scan_kthread(data);
2898}
2899
2900static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2901{
2902	struct task_struct *task;
2903
2904	down(&fs_info->uuid_tree_rescan_sem);
2905	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2906	if (IS_ERR(task)) {
2907		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2908		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2909		up(&fs_info->uuid_tree_rescan_sem);
2910		return PTR_ERR(task);
2911	}
2912
2913	return 0;
2914}
2915
2916static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2917{
2918	u64 root_objectid = 0;
2919	struct btrfs_root *gang[8];
2920	int i = 0;
2921	int err = 0;
2922	unsigned int ret = 0;
2923
2924	while (1) {
2925		spin_lock(&fs_info->fs_roots_radix_lock);
2926		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2927					     (void **)gang, root_objectid,
2928					     ARRAY_SIZE(gang));
2929		if (!ret) {
2930			spin_unlock(&fs_info->fs_roots_radix_lock);
2931			break;
2932		}
2933		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2934
2935		for (i = 0; i < ret; i++) {
2936			/* Avoid to grab roots in dead_roots. */
2937			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2938				gang[i] = NULL;
2939				continue;
2940			}
2941			/* Grab all the search result for later use. */
2942			gang[i] = btrfs_grab_root(gang[i]);
2943		}
2944		spin_unlock(&fs_info->fs_roots_radix_lock);
2945
2946		for (i = 0; i < ret; i++) {
2947			if (!gang[i])
2948				continue;
2949			root_objectid = gang[i]->root_key.objectid;
2950			err = btrfs_orphan_cleanup(gang[i]);
2951			if (err)
2952				goto out;
2953			btrfs_put_root(gang[i]);
2954		}
2955		root_objectid++;
2956	}
2957out:
2958	/* Release the uncleaned roots due to error. */
2959	for (; i < ret; i++) {
2960		if (gang[i])
2961			btrfs_put_root(gang[i]);
2962	}
2963	return err;
2964}
2965
2966/*
2967 * Mounting logic specific to read-write file systems. Shared by open_ctree
2968 * and btrfs_remount when remounting from read-only to read-write.
2969 */
2970int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2971{
2972	int ret;
2973	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2974	bool rebuild_free_space_tree = false;
2975
2976	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2977	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2978		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2979			btrfs_warn(fs_info,
2980				   "'clear_cache' option is ignored with extent tree v2");
2981		else
2982			rebuild_free_space_tree = true;
2983	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2984		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2985		btrfs_warn(fs_info, "free space tree is invalid");
2986		rebuild_free_space_tree = true;
2987	}
2988
2989	if (rebuild_free_space_tree) {
2990		btrfs_info(fs_info, "rebuilding free space tree");
2991		ret = btrfs_rebuild_free_space_tree(fs_info);
2992		if (ret) {
2993			btrfs_warn(fs_info,
2994				   "failed to rebuild free space tree: %d", ret);
2995			goto out;
2996		}
2997	}
2998
2999	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3000	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3001		btrfs_info(fs_info, "disabling free space tree");
3002		ret = btrfs_delete_free_space_tree(fs_info);
3003		if (ret) {
3004			btrfs_warn(fs_info,
3005				   "failed to disable free space tree: %d", ret);
3006			goto out;
3007		}
3008	}
3009
3010	/*
3011	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3012	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3013	 * them into the fs_info->fs_roots_radix tree. This must be done before
3014	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3015	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3016	 * item before the root's tree is deleted - this means that if we unmount
3017	 * or crash before the deletion completes, on the next mount we will not
3018	 * delete what remains of the tree because the orphan item does not
3019	 * exists anymore, which is what tells us we have a pending deletion.
3020	 */
3021	ret = btrfs_find_orphan_roots(fs_info);
3022	if (ret)
3023		goto out;
3024
3025	ret = btrfs_cleanup_fs_roots(fs_info);
3026	if (ret)
3027		goto out;
3028
3029	down_read(&fs_info->cleanup_work_sem);
3030	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3031	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3032		up_read(&fs_info->cleanup_work_sem);
3033		goto out;
3034	}
3035	up_read(&fs_info->cleanup_work_sem);
3036
3037	mutex_lock(&fs_info->cleaner_mutex);
3038	ret = btrfs_recover_relocation(fs_info);
3039	mutex_unlock(&fs_info->cleaner_mutex);
3040	if (ret < 0) {
3041		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3042		goto out;
3043	}
3044
3045	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3046	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3047		btrfs_info(fs_info, "creating free space tree");
3048		ret = btrfs_create_free_space_tree(fs_info);
3049		if (ret) {
3050			btrfs_warn(fs_info,
3051				"failed to create free space tree: %d", ret);
3052			goto out;
3053		}
3054	}
3055
3056	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3057		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3058		if (ret)
3059			goto out;
3060	}
3061
3062	ret = btrfs_resume_balance_async(fs_info);
3063	if (ret)
3064		goto out;
3065
3066	ret = btrfs_resume_dev_replace_async(fs_info);
3067	if (ret) {
3068		btrfs_warn(fs_info, "failed to resume dev_replace");
3069		goto out;
 
3070	}
3071
3072	btrfs_qgroup_rescan_resume(fs_info);
 
 
3073
3074	if (!fs_info->uuid_root) {
3075		btrfs_info(fs_info, "creating UUID tree");
3076		ret = btrfs_create_uuid_tree(fs_info);
3077		if (ret) {
3078			btrfs_warn(fs_info,
3079				   "failed to create the UUID tree %d", ret);
3080			goto out;
3081		}
3082	}
3083
3084out:
3085	return ret;
3086}
3087
3088/*
3089 * Do various sanity and dependency checks of different features.
3090 *
3091 * @is_rw_mount:	If the mount is read-write.
3092 *
3093 * This is the place for less strict checks (like for subpage or artificial
3094 * feature dependencies).
3095 *
3096 * For strict checks or possible corruption detection, see
3097 * btrfs_validate_super().
3098 *
3099 * This should be called after btrfs_parse_options(), as some mount options
3100 * (space cache related) can modify on-disk format like free space tree and
3101 * screw up certain feature dependencies.
3102 */
3103int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3104{
3105	struct btrfs_super_block *disk_super = fs_info->super_copy;
3106	u64 incompat = btrfs_super_incompat_flags(disk_super);
3107	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3108	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3109
3110	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3111		btrfs_err(fs_info,
3112		"cannot mount because of unknown incompat features (0x%llx)",
3113		    incompat);
3114		return -EINVAL;
3115	}
3116
3117	/* Runtime limitation for mixed block groups. */
3118	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3119	    (fs_info->sectorsize != fs_info->nodesize)) {
3120		btrfs_err(fs_info,
3121"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3122			fs_info->nodesize, fs_info->sectorsize);
3123		return -EINVAL;
3124	}
3125
3126	/* Mixed backref is an always-enabled feature. */
3127	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3128
3129	/* Set compression related flags just in case. */
3130	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3131		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3132	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3133		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3134
3135	/*
3136	 * An ancient flag, which should really be marked deprecated.
3137	 * Such runtime limitation doesn't really need a incompat flag.
3138	 */
3139	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3140		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3141
3142	if (compat_ro_unsupp && is_rw_mount) {
3143		btrfs_err(fs_info,
3144	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3145		       compat_ro);
3146		return -EINVAL;
3147	}
3148
3149	/*
3150	 * We have unsupported RO compat features, although RO mounted, we
3151	 * should not cause any metadata writes, including log replay.
3152	 * Or we could screw up whatever the new feature requires.
3153	 */
3154	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3155	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3156		btrfs_err(fs_info,
3157"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3158			  compat_ro);
3159		return -EINVAL;
3160	}
3161
3162	/*
3163	 * Artificial limitations for block group tree, to force
3164	 * block-group-tree to rely on no-holes and free-space-tree.
3165	 */
3166	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3167	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3168	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3169		btrfs_err(fs_info,
3170"block-group-tree feature requires no-holes and free-space-tree features");
3171		return -EINVAL;
3172	}
3173
3174	/*
3175	 * Subpage runtime limitation on v1 cache.
3176	 *
3177	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3178	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3179	 * going to be deprecated anyway.
3180	 */
3181	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3182		btrfs_warn(fs_info,
3183	"v1 space cache is not supported for page size %lu with sectorsize %u",
3184			   PAGE_SIZE, fs_info->sectorsize);
3185		return -EINVAL;
3186	}
3187
3188	/* This can be called by remount, we need to protect the super block. */
3189	spin_lock(&fs_info->super_lock);
3190	btrfs_set_super_incompat_flags(disk_super, incompat);
3191	spin_unlock(&fs_info->super_lock);
3192
3193	return 0;
3194}
3195
3196int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3197		      char *options)
3198{
3199	u32 sectorsize;
3200	u32 nodesize;
3201	u32 stripesize;
3202	u64 generation;
3203	u16 csum_type;
3204	struct btrfs_super_block *disk_super;
3205	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3206	struct btrfs_root *tree_root;
3207	struct btrfs_root *chunk_root;
3208	int ret;
3209	int level;
3210
3211	ret = init_mount_fs_info(fs_info, sb);
3212	if (ret)
3213		goto fail;
3214
3215	/* These need to be init'ed before we start creating inodes and such. */
3216	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3217				     GFP_KERNEL);
3218	fs_info->tree_root = tree_root;
3219	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3220				      GFP_KERNEL);
3221	fs_info->chunk_root = chunk_root;
3222	if (!tree_root || !chunk_root) {
3223		ret = -ENOMEM;
3224		goto fail;
3225	}
3226
3227	ret = btrfs_init_btree_inode(sb);
3228	if (ret)
3229		goto fail;
3230
3231	invalidate_bdev(fs_devices->latest_dev->bdev);
3232
3233	/*
3234	 * Read super block and check the signature bytes only
3235	 */
3236	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3237	if (IS_ERR(disk_super)) {
3238		ret = PTR_ERR(disk_super);
3239		goto fail_alloc;
3240	}
3241
3242	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3243	/*
3244	 * Verify the type first, if that or the checksum value are
3245	 * corrupted, we'll find out
3246	 */
3247	csum_type = btrfs_super_csum_type(disk_super);
3248	if (!btrfs_supported_super_csum(csum_type)) {
3249		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3250			  csum_type);
3251		ret = -EINVAL;
3252		btrfs_release_disk_super(disk_super);
3253		goto fail_alloc;
 
 
 
 
3254	}
3255
3256	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3257
3258	ret = btrfs_init_csum_hash(fs_info, csum_type);
3259	if (ret) {
3260		btrfs_release_disk_super(disk_super);
3261		goto fail_alloc;
3262	}
3263
3264	/*
3265	 * We want to check superblock checksum, the type is stored inside.
3266	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3267	 */
3268	if (btrfs_check_super_csum(fs_info, disk_super)) {
3269		btrfs_err(fs_info, "superblock checksum mismatch");
3270		ret = -EINVAL;
3271		btrfs_release_disk_super(disk_super);
 
3272		goto fail_alloc;
3273	}
3274
3275	/*
3276	 * super_copy is zeroed at allocation time and we never touch the
3277	 * following bytes up to INFO_SIZE, the checksum is calculated from
3278	 * the whole block of INFO_SIZE
3279	 */
3280	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3281	btrfs_release_disk_super(disk_super);
3282
3283	disk_super = fs_info->super_copy;
3284
3285	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3286	       sizeof(*fs_info->super_for_commit));
3287
3288	ret = btrfs_validate_mount_super(fs_info);
3289	if (ret) {
3290		btrfs_err(fs_info, "superblock contains fatal errors");
3291		ret = -EINVAL;
3292		goto fail_alloc;
3293	}
3294
3295	if (!btrfs_super_root(disk_super)) {
3296		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3297		ret = -EINVAL;
3298		goto fail_alloc;
3299	}
3300
3301	/* check FS state, whether FS is broken. */
3302	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3303		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3304
3305	/* Set up fs_info before parsing mount options */
3306	nodesize = btrfs_super_nodesize(disk_super);
3307	sectorsize = btrfs_super_sectorsize(disk_super);
3308	stripesize = sectorsize;
3309	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3310	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3311
3312	fs_info->nodesize = nodesize;
3313	fs_info->sectorsize = sectorsize;
3314	fs_info->sectorsize_bits = ilog2(sectorsize);
3315	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3316	fs_info->stripesize = stripesize;
3317
3318	/*
3319	 * Handle the space caching options appropriately now that we have the
3320	 * super block loaded and validated.
 
3321	 */
3322	btrfs_set_free_space_cache_settings(fs_info);
 
 
 
3323
3324	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3325		ret = -EINVAL;
3326		goto fail_alloc;
3327	}
3328
3329	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3330	if (ret < 0)
3331		goto fail_alloc;
3332
3333	/*
3334	 * At this point our mount options are validated, if we set ->max_inline
3335	 * to something non-standard make sure we truncate it to sectorsize.
3336	 */
3337	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3338
3339	if (sectorsize < PAGE_SIZE) {
3340		struct btrfs_subpage_info *subpage_info;
3341
3342		btrfs_warn(fs_info,
3343		"read-write for sector size %u with page size %lu is experimental",
3344			   sectorsize, PAGE_SIZE);
3345		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3346		if (!subpage_info) {
3347			ret = -ENOMEM;
3348			goto fail_alloc;
3349		}
3350		btrfs_init_subpage_info(subpage_info, sectorsize);
3351		fs_info->subpage_info = subpage_info;
3352	}
3353
3354	ret = btrfs_init_workqueues(fs_info);
3355	if (ret)
3356		goto fail_sb_buffer;
 
 
 
 
 
3357
3358	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3359	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3360
3361	/* Update the values for the current filesystem. */
3362	sb->s_blocksize = sectorsize;
3363	sb->s_blocksize_bits = blksize_bits(sectorsize);
3364	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
 
 
 
 
 
 
 
 
 
 
3365
3366	mutex_lock(&fs_info->chunk_mutex);
3367	ret = btrfs_read_sys_array(fs_info);
3368	mutex_unlock(&fs_info->chunk_mutex);
3369	if (ret) {
3370		btrfs_err(fs_info, "failed to read the system array: %d", ret);
 
3371		goto fail_sb_buffer;
3372	}
3373
 
 
3374	generation = btrfs_super_chunk_root_generation(disk_super);
3375	level = btrfs_super_chunk_root_level(disk_super);
3376	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3377			      generation, level);
3378	if (ret) {
3379		btrfs_err(fs_info, "failed to read chunk root");
 
 
 
 
 
 
3380		goto fail_tree_roots;
3381	}
 
 
3382
3383	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3384			   offsetof(struct btrfs_header, chunk_tree_uuid),
3385			   BTRFS_UUID_SIZE);
3386
3387	ret = btrfs_read_chunk_tree(fs_info);
3388	if (ret) {
3389		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
 
3390		goto fail_tree_roots;
3391	}
3392
3393	/*
3394	 * At this point we know all the devices that make this filesystem,
3395	 * including the seed devices but we don't know yet if the replace
3396	 * target is required. So free devices that are not part of this
3397	 * filesystem but skip the replace target device which is checked
3398	 * below in btrfs_init_dev_replace().
3399	 */
3400	btrfs_free_extra_devids(fs_devices);
3401	if (!fs_devices->latest_dev->bdev) {
3402		btrfs_err(fs_info, "failed to read devices");
3403		ret = -EIO;
 
3404		goto fail_tree_roots;
3405	}
3406
3407	ret = init_tree_roots(fs_info);
3408	if (ret)
3409		goto fail_tree_roots;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3410
3411	/*
3412	 * Get zone type information of zoned block devices. This will also
3413	 * handle emulation of a zoned filesystem if a regular device has the
3414	 * zoned incompat feature flag set.
3415	 */
3416	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3417	if (ret) {
3418		btrfs_err(fs_info,
3419			  "zoned: failed to read device zone info: %d", ret);
3420		goto fail_block_groups;
 
 
 
 
 
3421	}
 
 
3422
3423	/*
3424	 * If we have a uuid root and we're not being told to rescan we need to
3425	 * check the generation here so we can set the
3426	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3427	 * transaction during a balance or the log replay without updating the
3428	 * uuid generation, and then if we crash we would rescan the uuid tree,
3429	 * even though it was perfectly fine.
3430	 */
3431	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3432	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3433		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3434
3435	ret = btrfs_verify_dev_extents(fs_info);
3436	if (ret) {
3437		btrfs_err(fs_info,
3438			  "failed to verify dev extents against chunks: %d",
3439			  ret);
3440		goto fail_block_groups;
 
 
 
 
 
 
 
 
3441	}
 
 
 
 
3442	ret = btrfs_recover_balance(fs_info);
3443	if (ret) {
3444		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3445		goto fail_block_groups;
3446	}
3447
3448	ret = btrfs_init_dev_stats(fs_info);
3449	if (ret) {
3450		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
 
3451		goto fail_block_groups;
3452	}
3453
3454	ret = btrfs_init_dev_replace(fs_info);
3455	if (ret) {
3456		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3457		goto fail_block_groups;
3458	}
3459
3460	ret = btrfs_check_zoned_mode(fs_info);
3461	if (ret) {
3462		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3463			  ret);
3464		goto fail_block_groups;
3465	}
3466
3467	ret = btrfs_sysfs_add_fsid(fs_devices);
3468	if (ret) {
3469		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3470				ret);
3471		goto fail_block_groups;
3472	}
3473
3474	ret = btrfs_sysfs_add_mounted(fs_info);
3475	if (ret) {
3476		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3477		goto fail_fsdev_sysfs;
3478	}
3479
3480	ret = btrfs_init_space_info(fs_info);
3481	if (ret) {
3482		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3483		goto fail_sysfs;
3484	}
3485
3486	ret = btrfs_read_block_groups(fs_info);
3487	if (ret) {
3488		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3489		goto fail_sysfs;
3490	}
3491
3492	btrfs_free_zone_cache(fs_info);
3493
3494	btrfs_check_active_zone_reservation(fs_info);
3495
3496	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3497	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3498		btrfs_warn(fs_info,
3499		"writable mount is not allowed due to too many missing devices");
3500		ret = -EINVAL;
3501		goto fail_sysfs;
3502	}
3503
3504	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3505					       "btrfs-cleaner");
3506	if (IS_ERR(fs_info->cleaner_kthread)) {
3507		ret = PTR_ERR(fs_info->cleaner_kthread);
3508		goto fail_sysfs;
3509	}
3510
3511	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3512						   tree_root,
3513						   "btrfs-transaction");
3514	if (IS_ERR(fs_info->transaction_kthread)) {
3515		ret = PTR_ERR(fs_info->transaction_kthread);
3516		goto fail_cleaner;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3517	}
3518
3519	ret = btrfs_read_qgroup_config(fs_info);
3520	if (ret)
3521		goto fail_trans_kthread;
3522
3523	if (btrfs_build_ref_tree(fs_info))
3524		btrfs_err(fs_info, "couldn't build ref tree");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3525
3526	/* do not make disk changes in broken FS or nologreplay is given */
3527	if (btrfs_super_log_root(disk_super) != 0 &&
3528	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3529		btrfs_info(fs_info, "start tree-log replay");
3530		ret = btrfs_replay_log(fs_info, fs_devices);
3531		if (ret)
3532			goto fail_qgroup;
 
 
 
 
 
 
 
 
3533	}
3534
3535	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
 
 
 
 
3536	if (IS_ERR(fs_info->fs_root)) {
3537		ret = PTR_ERR(fs_info->fs_root);
3538		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3539		fs_info->fs_root = NULL;
3540		goto fail_qgroup;
3541	}
3542
3543	if (sb_rdonly(sb))
3544		return 0;
3545
3546	ret = btrfs_start_pre_rw_mount(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3547	if (ret) {
3548		close_ctree(fs_info);
 
3549		return ret;
3550	}
3551	btrfs_discard_resume(fs_info);
3552
3553	if (fs_info->uuid_root &&
3554	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3555	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3556		btrfs_info(fs_info, "checking UUID tree");
 
 
 
 
 
 
 
 
 
 
3557		ret = btrfs_check_uuid_tree(fs_info);
3558		if (ret) {
3559			btrfs_warn(fs_info,
3560				"failed to check the UUID tree: %d", ret);
3561			close_ctree(fs_info);
3562			return ret;
3563		}
 
 
3564	}
3565
3566	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3567
3568	/* Kick the cleaner thread so it'll start deleting snapshots. */
3569	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3570		wake_up_process(fs_info->cleaner_kthread);
3571
3572	return 0;
3573
3574fail_qgroup:
3575	btrfs_free_qgroup_config(fs_info);
3576fail_trans_kthread:
3577	kthread_stop(fs_info->transaction_kthread);
3578	btrfs_cleanup_transaction(fs_info);
3579	btrfs_free_fs_roots(fs_info);
3580fail_cleaner:
3581	kthread_stop(fs_info->cleaner_kthread);
3582
3583	/*
3584	 * make sure we're done with the btree inode before we stop our
3585	 * kthreads
3586	 */
3587	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3588
3589fail_sysfs:
3590	btrfs_sysfs_remove_mounted(fs_info);
3591
3592fail_fsdev_sysfs:
3593	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3594
3595fail_block_groups:
3596	btrfs_put_block_group_cache(fs_info);
 
3597
3598fail_tree_roots:
3599	if (fs_info->data_reloc_root)
3600		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3601	free_root_pointers(fs_info, true);
3602	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3603
3604fail_sb_buffer:
3605	btrfs_stop_all_workers(fs_info);
3606	btrfs_free_block_groups(fs_info);
3607fail_alloc:
3608	btrfs_mapping_tree_free(fs_info);
 
3609
3610	iput(fs_info->btree_inode);
 
 
 
 
 
 
 
 
 
 
3611fail:
 
3612	btrfs_close_devices(fs_info->fs_devices);
3613	ASSERT(ret < 0);
3614	return ret;
3615}
3616ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3617
3618static void btrfs_end_super_write(struct bio *bio)
3619{
3620	struct btrfs_device *device = bio->bi_private;
3621	struct bio_vec *bvec;
3622	struct bvec_iter_all iter_all;
3623	struct page *page;
3624
3625	bio_for_each_segment_all(bvec, bio, iter_all) {
3626		page = bvec->bv_page;
3627
3628		if (bio->bi_status) {
3629			btrfs_warn_rl_in_rcu(device->fs_info,
3630				"lost page write due to IO error on %s (%d)",
3631				btrfs_dev_name(device),
3632				blk_status_to_errno(bio->bi_status));
3633			ClearPageUptodate(page);
3634			SetPageError(page);
3635			btrfs_dev_stat_inc_and_print(device,
3636						     BTRFS_DEV_STAT_WRITE_ERRS);
3637		} else {
3638			SetPageUptodate(page);
3639		}
3640
3641		put_page(page);
3642		unlock_page(page);
3643	}
3644
3645	bio_put(bio);
 
 
 
 
3646}
3647
3648struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3649						   int copy_num, bool drop_cache)
3650{
3651	struct btrfs_super_block *super;
3652	struct page *page;
3653	u64 bytenr, bytenr_orig;
3654	struct address_space *mapping = bdev->bd_inode->i_mapping;
3655	int ret;
3656
3657	bytenr_orig = btrfs_sb_offset(copy_num);
3658	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3659	if (ret == -ENOENT)
3660		return ERR_PTR(-EINVAL);
3661	else if (ret)
3662		return ERR_PTR(ret);
3663
3664	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3665		return ERR_PTR(-EINVAL);
3666
3667	if (drop_cache) {
3668		/* This should only be called with the primary sb. */
3669		ASSERT(copy_num == 0);
3670
3671		/*
3672		 * Drop the page of the primary superblock, so later read will
3673		 * always read from the device.
3674		 */
3675		invalidate_inode_pages2_range(mapping,
3676				bytenr >> PAGE_SHIFT,
3677				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3678	}
3679
3680	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3681	if (IS_ERR(page))
3682		return ERR_CAST(page);
3683
3684	super = page_address(page);
3685	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3686		btrfs_release_disk_super(super);
3687		return ERR_PTR(-ENODATA);
3688	}
3689
3690	if (btrfs_super_bytenr(super) != bytenr_orig) {
3691		btrfs_release_disk_super(super);
3692		return ERR_PTR(-EINVAL);
3693	}
3694
3695	return super;
3696}
3697
3698
3699struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3700{
3701	struct btrfs_super_block *super, *latest = NULL;
 
 
3702	int i;
3703	u64 transid = 0;
 
3704
3705	/* we would like to check all the supers, but that would make
3706	 * a btrfs mount succeed after a mkfs from a different FS.
3707	 * So, we need to add a special mount option to scan for
3708	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3709	 */
3710	for (i = 0; i < 1; i++) {
3711		super = btrfs_read_dev_one_super(bdev, i, false);
3712		if (IS_ERR(super))
 
 
 
 
 
 
 
 
 
 
 
3713			continue;
 
3714
3715		if (!latest || btrfs_super_generation(super) > transid) {
3716			if (latest)
3717				btrfs_release_disk_super(super);
3718
3719			latest = super;
3720			transid = btrfs_super_generation(super);
 
 
3721		}
3722	}
3723
3724	return super;
3725}
3726
3727/*
3728 * Write superblock @sb to the @device. Do not wait for completion, all the
3729 * pages we use for writing are locked.
 
3730 *
3731 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3732 * the expected device size at commit time. Note that max_mirrors must be
3733 * same for write and wait phases.
3734 *
3735 * Return number of errors when page is not found or submission fails.
3736 */
3737static int write_dev_supers(struct btrfs_device *device,
3738			    struct btrfs_super_block *sb, int max_mirrors)
 
3739{
3740	struct btrfs_fs_info *fs_info = device->fs_info;
3741	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3742	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3743	int i;
 
3744	int errors = 0;
3745	int ret;
3746	u64 bytenr, bytenr_orig;
3747
3748	if (max_mirrors == 0)
3749		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3750
3751	shash->tfm = fs_info->csum_shash;
3752
3753	for (i = 0; i < max_mirrors; i++) {
3754		struct page *page;
3755		struct bio *bio;
3756		struct btrfs_super_block *disk_super;
3757
3758		bytenr_orig = btrfs_sb_offset(i);
3759		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3760		if (ret == -ENOENT) {
3761			continue;
3762		} else if (ret < 0) {
3763			btrfs_err(device->fs_info,
3764				"couldn't get super block location for mirror %d",
3765				i);
3766			errors++;
3767			continue;
3768		}
3769		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3770		    device->commit_total_bytes)
3771			break;
3772
3773		btrfs_set_super_bytenr(sb, bytenr_orig);
 
 
 
 
 
 
 
 
 
3774
3775		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3776				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3777				    sb->csum);
3778
3779		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3780					   GFP_NOFS);
3781		if (!page) {
3782			btrfs_err(device->fs_info,
3783			    "couldn't get super block page for bytenr %llu",
3784			    bytenr);
3785			errors++;
3786			continue;
3787		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3788
3789		/* Bump the refcount for wait_dev_supers() */
3790		get_page(page);
3791
3792		disk_super = page_address(page);
3793		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3794
3795		/*
3796		 * Directly use bios here instead of relying on the page cache
3797		 * to do I/O, so we don't lose the ability to do integrity
3798		 * checking.
3799		 */
3800		bio = bio_alloc(device->bdev, 1,
3801				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3802				GFP_NOFS);
3803		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3804		bio->bi_private = device;
3805		bio->bi_end_io = btrfs_end_super_write;
3806		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3807			       offset_in_page(bytenr));
3808
3809		/*
3810		 * We FUA only the first super block.  The others we allow to
3811		 * go down lazy and there's a short window where the on-disk
3812		 * copies might still contain the older version.
3813		 */
3814		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3815			bio->bi_opf |= REQ_FUA;
3816		submit_bio(bio);
3817
3818		if (btrfs_advance_sb_log(device, i))
3819			errors++;
3820	}
3821	return errors < i ? 0 : -1;
3822}
3823
3824/*
3825 * Wait for write completion of superblocks done by write_dev_supers,
3826 * @max_mirrors same for write and wait phases.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3827 *
3828 * Return number of errors when page is not found or not marked up to
3829 * date.
3830 */
3831static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3832{
3833	int i;
3834	int errors = 0;
3835	bool primary_failed = false;
3836	int ret;
3837	u64 bytenr;
3838
3839	if (max_mirrors == 0)
3840		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3841
3842	for (i = 0; i < max_mirrors; i++) {
3843		struct page *page;
 
 
3844
3845		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3846		if (ret == -ENOENT) {
3847			break;
3848		} else if (ret < 0) {
3849			errors++;
3850			if (i == 0)
3851				primary_failed = true;
3852			continue;
3853		}
3854		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3855		    device->commit_total_bytes)
3856			break;
3857
3858		page = find_get_page(device->bdev->bd_inode->i_mapping,
3859				     bytenr >> PAGE_SHIFT);
3860		if (!page) {
3861			errors++;
3862			if (i == 0)
3863				primary_failed = true;
3864			continue;
3865		}
3866		/* Page is submitted locked and unlocked once the IO completes */
3867		wait_on_page_locked(page);
3868		if (PageError(page)) {
3869			errors++;
3870			if (i == 0)
3871				primary_failed = true;
3872		}
3873
3874		/* Drop our reference */
3875		put_page(page);
 
3876
3877		/* Drop the reference from the writing run */
3878		put_page(page);
3879	}
3880
3881	/* log error, force error return */
3882	if (primary_failed) {
3883		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3884			  device->devid);
3885		return -1;
3886	}
3887
3888	return errors < i ? 0 : -1;
3889}
3890
3891/*
3892 * endio for the write_dev_flush, this will wake anyone waiting
3893 * for the barrier when it is done
3894 */
3895static void btrfs_end_empty_barrier(struct bio *bio)
3896{
3897	bio_uninit(bio);
3898	complete(bio->bi_private);
3899}
3900
3901/*
3902 * Submit a flush request to the device if it supports it. Error handling is
3903 * done in the waiting counterpart.
3904 */
3905static void write_dev_flush(struct btrfs_device *device)
3906{
3907	struct bio *bio = &device->flush_bio;
3908
3909	device->last_flush_error = BLK_STS_OK;
3910
3911	bio_init(bio, device->bdev, NULL, 0,
3912		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3913	bio->bi_end_io = btrfs_end_empty_barrier;
 
3914	init_completion(&device->flush_wait);
3915	bio->bi_private = &device->flush_wait;
3916	submit_bio(bio);
3917	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3918}
3919
3920/*
3921 * If the flush bio has been submitted by write_dev_flush, wait for it.
3922 * Return true for any error, and false otherwise.
3923 */
3924static bool wait_dev_flush(struct btrfs_device *device)
3925{
3926	struct bio *bio = &device->flush_bio;
3927
3928	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3929		return false;
3930
3931	wait_for_completion_io(&device->flush_wait);
3932
3933	if (bio->bi_status) {
3934		device->last_flush_error = bio->bi_status;
3935		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3936		return true;
3937	}
3938
3939	return false;
3940}
3941
3942/*
3943 * send an empty flush down to each device in parallel,
3944 * then wait for them
3945 */
3946static int barrier_all_devices(struct btrfs_fs_info *info)
3947{
3948	struct list_head *head;
3949	struct btrfs_device *dev;
 
3950	int errors_wait = 0;
 
3951
3952	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3953	/* send down all the barriers */
3954	head = &info->fs_devices->devices;
3955	list_for_each_entry(dev, head, dev_list) {
3956		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3957			continue;
3958		if (!dev->bdev)
 
3959			continue;
3960		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3961		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3962			continue;
3963
3964		write_dev_flush(dev);
 
 
3965	}
3966
3967	/* wait for all the barriers */
3968	list_for_each_entry(dev, head, dev_list) {
3969		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3970			continue;
3971		if (!dev->bdev) {
3972			errors_wait++;
3973			continue;
3974		}
3975		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3976		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3977			continue;
3978
3979		if (wait_dev_flush(dev))
 
3980			errors_wait++;
3981	}
3982
3983	/*
3984	 * Checks last_flush_error of disks in order to determine the device
3985	 * state.
3986	 */
3987	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3988		return -EIO;
3989
3990	return 0;
3991}
3992
3993int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
 
3994{
3995	int raid_type;
3996	int min_tolerated = INT_MAX;
3997
3998	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3999	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4000		min_tolerated = min_t(int, min_tolerated,
4001				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4002				    tolerated_failures);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4003
4004	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4005		if (raid_type == BTRFS_RAID_SINGLE)
4006			continue;
4007		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4008			continue;
4009		min_tolerated = min_t(int, min_tolerated,
4010				    btrfs_raid_array[raid_type].
4011				    tolerated_failures);
4012	}
4013
4014	if (min_tolerated == INT_MAX) {
4015		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4016		min_tolerated = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4017	}
4018
4019	return min_tolerated;
4020}
4021
4022int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4023{
4024	struct list_head *head;
4025	struct btrfs_device *dev;
4026	struct btrfs_super_block *sb;
4027	struct btrfs_dev_item *dev_item;
4028	int ret;
4029	int do_barriers;
4030	int max_errors;
4031	int total_errors = 0;
4032	u64 flags;
4033
4034	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4035
4036	/*
4037	 * max_mirrors == 0 indicates we're from commit_transaction,
4038	 * not from fsync where the tree roots in fs_info have not
4039	 * been consistent on disk.
4040	 */
4041	if (max_mirrors == 0)
4042		backup_super_roots(fs_info);
4043
4044	sb = fs_info->super_for_commit;
4045	dev_item = &sb->dev_item;
4046
4047	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4048	head = &fs_info->fs_devices->devices;
4049	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4050
4051	if (do_barriers) {
4052		ret = barrier_all_devices(fs_info);
4053		if (ret) {
4054			mutex_unlock(
4055				&fs_info->fs_devices->device_list_mutex);
4056			btrfs_handle_fs_error(fs_info, ret,
4057					      "errors while submitting device barriers.");
4058			return ret;
4059		}
4060	}
4061
4062	list_for_each_entry(dev, head, dev_list) {
4063		if (!dev->bdev) {
4064			total_errors++;
4065			continue;
4066		}
4067		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4068		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4069			continue;
4070
4071		btrfs_set_stack_device_generation(dev_item, 0);
4072		btrfs_set_stack_device_type(dev_item, dev->type);
4073		btrfs_set_stack_device_id(dev_item, dev->devid);
4074		btrfs_set_stack_device_total_bytes(dev_item,
4075						   dev->commit_total_bytes);
4076		btrfs_set_stack_device_bytes_used(dev_item,
4077						  dev->commit_bytes_used);
4078		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4079		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4080		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4081		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4082		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4083		       BTRFS_FSID_SIZE);
4084
4085		flags = btrfs_super_flags(sb);
4086		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4087
4088		ret = btrfs_validate_write_super(fs_info, sb);
4089		if (ret < 0) {
4090			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4091			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4092				"unexpected superblock corruption detected");
4093			return -EUCLEAN;
4094		}
4095
4096		ret = write_dev_supers(dev, sb, max_mirrors);
4097		if (ret)
4098			total_errors++;
4099	}
4100	if (total_errors > max_errors) {
4101		btrfs_err(fs_info, "%d errors while writing supers",
4102			  total_errors);
4103		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4104
4105		/* FUA is masked off if unsupported and can't be the reason */
4106		btrfs_handle_fs_error(fs_info, -EIO,
4107				      "%d errors while writing supers",
4108				      total_errors);
4109		return -EIO;
4110	}
4111
4112	total_errors = 0;
4113	list_for_each_entry(dev, head, dev_list) {
4114		if (!dev->bdev)
4115			continue;
4116		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4117		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4118			continue;
4119
4120		ret = wait_dev_supers(dev, max_mirrors);
4121		if (ret)
4122			total_errors++;
4123	}
4124	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4125	if (total_errors > max_errors) {
4126		btrfs_handle_fs_error(fs_info, -EIO,
4127				      "%d errors while writing supers",
4128				      total_errors);
4129		return -EIO;
4130	}
4131	return 0;
4132}
4133
 
 
 
 
 
 
4134/* Drop a fs root from the radix tree and free it. */
4135void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4136				  struct btrfs_root *root)
4137{
4138	bool drop_ref = false;
4139
4140	spin_lock(&fs_info->fs_roots_radix_lock);
4141	radix_tree_delete(&fs_info->fs_roots_radix,
4142			  (unsigned long)root->root_key.objectid);
4143	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4144		drop_ref = true;
4145	spin_unlock(&fs_info->fs_roots_radix_lock);
4146
4147	if (BTRFS_FS_ERROR(fs_info)) {
4148		ASSERT(root->log_root == NULL);
4149		if (root->reloc_root) {
4150			btrfs_put_root(root->reloc_root);
4151			root->reloc_root = NULL;
4152		}
4153	}
4154
4155	if (drop_ref)
4156		btrfs_put_root(root);
 
4157}
4158
4159int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4160{
4161	struct btrfs_root *root = fs_info->tree_root;
4162	struct btrfs_trans_handle *trans;
 
 
 
 
 
 
 
 
 
 
 
 
 
4163
4164	mutex_lock(&fs_info->cleaner_mutex);
4165	btrfs_run_delayed_iputs(fs_info);
4166	mutex_unlock(&fs_info->cleaner_mutex);
4167	wake_up_process(fs_info->cleaner_kthread);
4168
4169	/* wait until ongoing cleanup work done */
4170	down_write(&fs_info->cleanup_work_sem);
4171	up_write(&fs_info->cleanup_work_sem);
4172
4173	trans = btrfs_join_transaction(root);
4174	if (IS_ERR(trans))
4175		return PTR_ERR(trans);
4176	return btrfs_commit_transaction(trans);
4177}
4178
4179static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4180{
4181	struct btrfs_transaction *trans;
4182	struct btrfs_transaction *tmp;
4183	bool found = false;
 
4184
4185	if (list_empty(&fs_info->trans_list))
4186		return;
 
 
 
 
4187
4188	/*
4189	 * This function is only called at the very end of close_ctree(),
4190	 * thus no other running transaction, no need to take trans_lock.
4191	 */
4192	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4193	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4194		struct extent_state *cached = NULL;
4195		u64 dirty_bytes = 0;
4196		u64 cur = 0;
4197		u64 found_start;
4198		u64 found_end;
4199
4200		found = true;
4201		while (find_first_extent_bit(&trans->dirty_pages, cur,
4202			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4203			dirty_bytes += found_end + 1 - found_start;
4204			cur = found_end + 1;
4205		}
4206		btrfs_warn(fs_info,
4207	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4208			   trans->transid, dirty_bytes);
4209		btrfs_cleanup_one_transaction(trans, fs_info);
4210
4211		if (trans == fs_info->running_transaction)
4212			fs_info->running_transaction = NULL;
4213		list_del_init(&trans->list);
4214
4215		btrfs_put_transaction(trans);
4216		trace_btrfs_transaction_commit(fs_info);
 
 
 
 
4217	}
4218	ASSERT(!found);
4219}
4220
4221void __cold close_ctree(struct btrfs_fs_info *fs_info)
4222{
4223	int ret;
 
 
 
 
 
4224
4225	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
 
 
4226
4227	/*
4228	 * If we had UNFINISHED_DROPS we could still be processing them, so
4229	 * clear that bit and wake up relocation so it can stop.
4230	 * We must do this before stopping the block group reclaim task, because
4231	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4232	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4233	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4234	 * return 1.
4235	 */
4236	btrfs_wake_unfinished_drop(fs_info);
4237
4238	/*
4239	 * We may have the reclaim task running and relocating a data block group,
4240	 * in which case it may create delayed iputs. So stop it before we park
4241	 * the cleaner kthread otherwise we can get new delayed iputs after
4242	 * parking the cleaner, and that can make the async reclaim task to hang
4243	 * if it's waiting for delayed iputs to complete, since the cleaner is
4244	 * parked and can not run delayed iputs - this will make us hang when
4245	 * trying to stop the async reclaim task.
4246	 */
4247	cancel_work_sync(&fs_info->reclaim_bgs_work);
4248	/*
4249	 * We don't want the cleaner to start new transactions, add more delayed
4250	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4251	 * because that frees the task_struct, and the transaction kthread might
4252	 * still try to wake up the cleaner.
4253	 */
4254	kthread_park(fs_info->cleaner_kthread);
4255
4256	/* wait for the qgroup rescan worker to stop */
4257	btrfs_qgroup_wait_for_completion(fs_info, false);
4258
4259	/* wait for the uuid_scan task to finish */
4260	down(&fs_info->uuid_tree_rescan_sem);
4261	/* avoid complains from lockdep et al., set sem back to initial state */
4262	up(&fs_info->uuid_tree_rescan_sem);
4263
4264	/* pause restriper - we want to resume on mount */
4265	btrfs_pause_balance(fs_info);
4266
4267	btrfs_dev_replace_suspend_for_unmount(fs_info);
4268
4269	btrfs_scrub_cancel(fs_info);
4270
4271	/* wait for any defraggers to finish */
4272	wait_event(fs_info->transaction_wait,
4273		   (atomic_read(&fs_info->defrag_running) == 0));
4274
4275	/* clear out the rbtree of defraggable inodes */
4276	btrfs_cleanup_defrag_inodes(fs_info);
4277
4278	/*
4279	 * After we parked the cleaner kthread, ordered extents may have
4280	 * completed and created new delayed iputs. If one of the async reclaim
4281	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4282	 * can hang forever trying to stop it, because if a delayed iput is
4283	 * added after it ran btrfs_run_delayed_iputs() and before it called
4284	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4285	 * no one else to run iputs.
4286	 *
4287	 * So wait for all ongoing ordered extents to complete and then run
4288	 * delayed iputs. This works because once we reach this point no one
4289	 * can either create new ordered extents nor create delayed iputs
4290	 * through some other means.
4291	 *
4292	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4293	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4294	 * but the delayed iput for the respective inode is made only when doing
4295	 * the final btrfs_put_ordered_extent() (which must happen at
4296	 * btrfs_finish_ordered_io() when we are unmounting).
4297	 */
4298	btrfs_flush_workqueue(fs_info->endio_write_workers);
4299	/* Ordered extents for free space inodes. */
4300	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4301	btrfs_run_delayed_iputs(fs_info);
4302
4303	cancel_work_sync(&fs_info->async_reclaim_work);
4304	cancel_work_sync(&fs_info->async_data_reclaim_work);
4305	cancel_work_sync(&fs_info->preempt_reclaim_work);
4306
4307	/* Cancel or finish ongoing discard work */
4308	btrfs_discard_cleanup(fs_info);
4309
4310	if (!sb_rdonly(fs_info->sb)) {
4311		/*
4312		 * The cleaner kthread is stopped, so do one final pass over
4313		 * unused block groups.
4314		 */
4315		btrfs_delete_unused_bgs(fs_info);
4316
4317		/*
4318		 * There might be existing delayed inode workers still running
4319		 * and holding an empty delayed inode item. We must wait for
4320		 * them to complete first because they can create a transaction.
4321		 * This happens when someone calls btrfs_balance_delayed_items()
4322		 * and then a transaction commit runs the same delayed nodes
4323		 * before any delayed worker has done something with the nodes.
4324		 * We must wait for any worker here and not at transaction
4325		 * commit time since that could cause a deadlock.
4326		 * This is a very rare case.
4327		 */
4328		btrfs_flush_workqueue(fs_info->delayed_workers);
4329
4330		ret = btrfs_commit_super(fs_info);
4331		if (ret)
4332			btrfs_err(fs_info, "commit super ret %d", ret);
4333	}
4334
4335	if (BTRFS_FS_ERROR(fs_info))
4336		btrfs_error_commit_super(fs_info);
4337
4338	kthread_stop(fs_info->transaction_kthread);
4339	kthread_stop(fs_info->cleaner_kthread);
4340
4341	ASSERT(list_empty(&fs_info->delayed_iputs));
4342	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4343
4344	if (btrfs_check_quota_leak(fs_info)) {
4345		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4346		btrfs_err(fs_info, "qgroup reserved space leaked");
4347	}
4348
4349	btrfs_free_qgroup_config(fs_info);
4350	ASSERT(list_empty(&fs_info->delalloc_roots));
4351
4352	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4353		btrfs_info(fs_info, "at unmount delalloc count %lld",
4354		       percpu_counter_sum(&fs_info->delalloc_bytes));
4355	}
4356
4357	if (percpu_counter_sum(&fs_info->ordered_bytes))
4358		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4359			   percpu_counter_sum(&fs_info->ordered_bytes));
4360
4361	btrfs_sysfs_remove_mounted(fs_info);
4362	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4363
4364	btrfs_put_block_group_cache(fs_info);
4365
4366	/*
4367	 * we must make sure there is not any read request to
4368	 * submit after we stopping all workers.
4369	 */
4370	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4371	btrfs_stop_all_workers(fs_info);
4372
4373	/* We shouldn't have any transaction open at this point */
4374	warn_about_uncommitted_trans(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4375
4376	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4377	free_root_pointers(fs_info, true);
4378	btrfs_free_fs_roots(fs_info);
4379
4380	/*
4381	 * We must free the block groups after dropping the fs_roots as we could
4382	 * have had an IO error and have left over tree log blocks that aren't
4383	 * cleaned up until the fs roots are freed.  This makes the block group
4384	 * accounting appear to be wrong because there's pending reserved bytes,
4385	 * so make sure we do the block group cleanup afterwards.
4386	 */
4387	btrfs_free_block_groups(fs_info);
 
4388
4389	iput(fs_info->btree_inode);
 
 
 
 
 
4390
4391	btrfs_mapping_tree_free(fs_info);
4392	btrfs_close_devices(fs_info->fs_devices);
 
4393}
4394
4395void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4396			     struct extent_buffer *buf)
4397{
4398	struct btrfs_fs_info *fs_info = buf->fs_info;
4399	u64 transid = btrfs_header_generation(buf);
 
4400
4401#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4402	/*
4403	 * This is a fast path so only do this check if we have sanity tests
4404	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4405	 * outside of the sanity tests.
4406	 */
4407	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4408		return;
4409#endif
4410	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4411	ASSERT(trans->transid == fs_info->generation);
4412	btrfs_assert_tree_write_locked(buf);
4413	if (unlikely(transid != fs_info->generation)) {
4414		btrfs_abort_transaction(trans, -EUCLEAN);
4415		btrfs_crit(fs_info,
4416"dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4417			   buf->start, transid, fs_info->generation);
4418	}
4419	set_extent_buffer_dirty(buf);
 
4420}
4421
4422static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4423					int flush_delayed)
4424{
4425	/*
4426	 * looks as though older kernels can get into trouble with
4427	 * this code, they end up stuck in balance_dirty_pages forever
4428	 */
4429	int ret;
4430
4431	if (current->flags & PF_MEMALLOC)
4432		return;
4433
4434	if (flush_delayed)
4435		btrfs_balance_delayed_items(fs_info);
4436
4437	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4438				     BTRFS_DIRTY_METADATA_THRESH,
4439				     fs_info->dirty_metadata_batch);
4440	if (ret > 0) {
4441		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
 
4442	}
 
 
 
 
 
 
 
 
 
 
 
4443}
4444
4445void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4446{
4447	__btrfs_btree_balance_dirty(fs_info, 1);
 
4448}
4449
4450void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
 
4451{
4452	__btrfs_btree_balance_dirty(fs_info, 0);
 
 
 
4453}
4454
4455static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4456{
4457	/* cleanup FS via transaction */
4458	btrfs_cleanup_transaction(fs_info);
 
4459
4460	mutex_lock(&fs_info->cleaner_mutex);
4461	btrfs_run_delayed_iputs(fs_info);
4462	mutex_unlock(&fs_info->cleaner_mutex);
4463
4464	down_write(&fs_info->cleanup_work_sem);
4465	up_write(&fs_info->cleanup_work_sem);
4466}
4467
4468static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
 
4469{
4470	struct btrfs_root *gang[8];
4471	u64 root_objectid = 0;
4472	int ret;
 
 
 
 
 
 
 
 
 
4473
4474	spin_lock(&fs_info->fs_roots_radix_lock);
4475	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4476					     (void **)gang, root_objectid,
4477					     ARRAY_SIZE(gang))) != 0) {
4478		int i;
4479
4480		for (i = 0; i < ret; i++)
4481			gang[i] = btrfs_grab_root(gang[i]);
4482		spin_unlock(&fs_info->fs_roots_radix_lock);
4483
4484		for (i = 0; i < ret; i++) {
4485			if (!gang[i])
4486				continue;
4487			root_objectid = gang[i]->root_key.objectid;
4488			btrfs_free_log(NULL, gang[i]);
4489			btrfs_put_root(gang[i]);
4490		}
4491		root_objectid++;
4492		spin_lock(&fs_info->fs_roots_radix_lock);
4493	}
4494	spin_unlock(&fs_info->fs_roots_radix_lock);
4495	btrfs_free_log_root_tree(NULL, fs_info);
 
4496}
4497
4498static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4499{
4500	struct btrfs_ordered_extent *ordered;
4501
4502	spin_lock(&root->ordered_extent_lock);
4503	/*
4504	 * This will just short circuit the ordered completion stuff which will
4505	 * make sure the ordered extent gets properly cleaned up.
4506	 */
4507	list_for_each_entry(ordered, &root->ordered_extents,
4508			    root_extent_list)
4509		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4510	spin_unlock(&root->ordered_extent_lock);
4511}
4512
4513static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4514{
4515	struct btrfs_root *root;
4516	LIST_HEAD(splice);
 
 
4517
4518	spin_lock(&fs_info->ordered_root_lock);
4519	list_splice_init(&fs_info->ordered_roots, &splice);
4520	while (!list_empty(&splice)) {
4521		root = list_first_entry(&splice, struct btrfs_root,
4522					ordered_root);
4523		list_move_tail(&root->ordered_root,
4524			       &fs_info->ordered_roots);
4525
4526		spin_unlock(&fs_info->ordered_root_lock);
4527		btrfs_destroy_ordered_extents(root);
4528
4529		cond_resched();
4530		spin_lock(&fs_info->ordered_root_lock);
4531	}
4532	spin_unlock(&fs_info->ordered_root_lock);
4533
4534	/*
4535	 * We need this here because if we've been flipped read-only we won't
4536	 * get sync() from the umount, so we need to make sure any ordered
4537	 * extents that haven't had their dirty pages IO start writeout yet
4538	 * actually get run and error out properly.
4539	 */
4540	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4541}
4542
4543static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4544				       struct btrfs_fs_info *fs_info)
4545{
4546	struct rb_node *node;
4547	struct btrfs_delayed_ref_root *delayed_refs;
4548	struct btrfs_delayed_ref_node *ref;
 
4549
4550	delayed_refs = &trans->delayed_refs;
4551
4552	spin_lock(&delayed_refs->lock);
4553	if (atomic_read(&delayed_refs->num_entries) == 0) {
4554		spin_unlock(&delayed_refs->lock);
4555		btrfs_debug(fs_info, "delayed_refs has NO entry");
4556		return;
4557	}
4558
4559	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4560		struct btrfs_delayed_ref_head *head;
4561		struct rb_node *n;
4562		bool pin_bytes = false;
4563
4564		head = rb_entry(node, struct btrfs_delayed_ref_head,
4565				href_node);
4566		if (btrfs_delayed_ref_lock(delayed_refs, head))
 
 
 
 
 
 
 
4567			continue;
4568
4569		spin_lock(&head->lock);
4570		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4571			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4572				       ref_node);
4573			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4574			RB_CLEAR_NODE(&ref->ref_node);
4575			if (!list_empty(&ref->add_list))
4576				list_del(&ref->add_list);
4577			atomic_dec(&delayed_refs->num_entries);
4578			btrfs_put_delayed_ref(ref);
4579			btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4580		}
4581		if (head->must_insert_reserved)
4582			pin_bytes = true;
4583		btrfs_free_delayed_extent_op(head->extent_op);
4584		btrfs_delete_ref_head(delayed_refs, head);
 
 
 
 
 
4585		spin_unlock(&head->lock);
4586		spin_unlock(&delayed_refs->lock);
4587		mutex_unlock(&head->mutex);
4588
4589		if (pin_bytes) {
4590			struct btrfs_block_group *cache;
4591
4592			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4593			BUG_ON(!cache);
4594
4595			spin_lock(&cache->space_info->lock);
4596			spin_lock(&cache->lock);
4597			cache->pinned += head->num_bytes;
4598			btrfs_space_info_update_bytes_pinned(fs_info,
4599				cache->space_info, head->num_bytes);
4600			cache->reserved -= head->num_bytes;
4601			cache->space_info->bytes_reserved -= head->num_bytes;
4602			spin_unlock(&cache->lock);
4603			spin_unlock(&cache->space_info->lock);
4604
4605			btrfs_put_block_group(cache);
4606
4607			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4608				head->bytenr + head->num_bytes - 1);
4609		}
4610		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4611		btrfs_put_delayed_ref_head(head);
4612		cond_resched();
4613		spin_lock(&delayed_refs->lock);
4614	}
4615	btrfs_qgroup_destroy_extent_records(trans);
4616
4617	spin_unlock(&delayed_refs->lock);
 
 
4618}
4619
4620static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4621{
4622	struct btrfs_inode *btrfs_inode;
4623	LIST_HEAD(splice);
 
 
4624
4625	spin_lock(&root->delalloc_lock);
4626	list_splice_init(&root->delalloc_inodes, &splice);
4627
4628	while (!list_empty(&splice)) {
4629		struct inode *inode = NULL;
4630		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4631					       delalloc_inodes);
4632		btrfs_del_delalloc_inode(btrfs_inode);
 
 
 
4633		spin_unlock(&root->delalloc_lock);
4634
4635		/*
4636		 * Make sure we get a live inode and that it'll not disappear
4637		 * meanwhile.
4638		 */
4639		inode = igrab(&btrfs_inode->vfs_inode);
4640		if (inode) {
4641			unsigned int nofs_flag;
4642
4643			nofs_flag = memalloc_nofs_save();
4644			invalidate_inode_pages2(inode->i_mapping);
4645			memalloc_nofs_restore(nofs_flag);
4646			iput(inode);
4647		}
4648		spin_lock(&root->delalloc_lock);
4649	}
 
4650	spin_unlock(&root->delalloc_lock);
4651}
4652
4653static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4654{
4655	struct btrfs_root *root;
4656	LIST_HEAD(splice);
 
 
4657
4658	spin_lock(&fs_info->delalloc_root_lock);
4659	list_splice_init(&fs_info->delalloc_roots, &splice);
4660	while (!list_empty(&splice)) {
4661		root = list_first_entry(&splice, struct btrfs_root,
4662					 delalloc_root);
4663		root = btrfs_grab_root(root);
 
4664		BUG_ON(!root);
4665		spin_unlock(&fs_info->delalloc_root_lock);
4666
4667		btrfs_destroy_delalloc_inodes(root);
4668		btrfs_put_root(root);
4669
4670		spin_lock(&fs_info->delalloc_root_lock);
4671	}
4672	spin_unlock(&fs_info->delalloc_root_lock);
4673}
4674
4675static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4676					 struct extent_io_tree *dirty_pages,
4677					 int mark)
4678{
 
4679	struct extent_buffer *eb;
4680	u64 start = 0;
4681	u64 end;
4682
4683	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4684				     mark, NULL)) {
4685		clear_extent_bits(dirty_pages, start, end, mark);
 
 
 
 
4686		while (start <= end) {
4687			eb = find_extent_buffer(fs_info, start);
4688			start += fs_info->nodesize;
 
4689			if (!eb)
4690				continue;
4691
4692			btrfs_tree_lock(eb);
4693			wait_on_extent_buffer_writeback(eb);
4694			btrfs_clear_buffer_dirty(NULL, eb);
4695			btrfs_tree_unlock(eb);
4696
 
 
 
4697			free_extent_buffer_stale(eb);
4698		}
4699	}
 
 
4700}
4701
4702static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4703					struct extent_io_tree *unpin)
4704{
 
4705	u64 start;
4706	u64 end;
 
 
4707
 
 
4708	while (1) {
4709		struct extent_state *cached_state = NULL;
 
 
 
4710
4711		/*
4712		 * The btrfs_finish_extent_commit() may get the same range as
4713		 * ours between find_first_extent_bit and clear_extent_dirty.
4714		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4715		 * the same extent range.
4716		 */
4717		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4718		if (!find_first_extent_bit(unpin, 0, &start, &end,
4719					   EXTENT_DIRTY, &cached_state)) {
4720			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4721			break;
4722		}
4723
4724		clear_extent_dirty(unpin, start, end, &cached_state);
4725		free_extent_state(cached_state);
4726		btrfs_error_unpin_extent_range(fs_info, start, end);
4727		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4728		cond_resched();
4729	}
4730}
4731
4732static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4733{
4734	struct inode *inode;
4735
4736	inode = cache->io_ctl.inode;
4737	if (inode) {
4738		unsigned int nofs_flag;
4739
4740		nofs_flag = memalloc_nofs_save();
4741		invalidate_inode_pages2(inode->i_mapping);
4742		memalloc_nofs_restore(nofs_flag);
4743
4744		BTRFS_I(inode)->generation = 0;
4745		cache->io_ctl.inode = NULL;
4746		iput(inode);
4747	}
4748	ASSERT(cache->io_ctl.pages == NULL);
4749	btrfs_put_block_group(cache);
4750}
4751
4752void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4753			     struct btrfs_fs_info *fs_info)
4754{
4755	struct btrfs_block_group *cache;
4756
4757	spin_lock(&cur_trans->dirty_bgs_lock);
4758	while (!list_empty(&cur_trans->dirty_bgs)) {
4759		cache = list_first_entry(&cur_trans->dirty_bgs,
4760					 struct btrfs_block_group,
4761					 dirty_list);
4762
4763		if (!list_empty(&cache->io_list)) {
4764			spin_unlock(&cur_trans->dirty_bgs_lock);
4765			list_del_init(&cache->io_list);
4766			btrfs_cleanup_bg_io(cache);
4767			spin_lock(&cur_trans->dirty_bgs_lock);
4768		}
4769
4770		list_del_init(&cache->dirty_list);
4771		spin_lock(&cache->lock);
4772		cache->disk_cache_state = BTRFS_DC_ERROR;
4773		spin_unlock(&cache->lock);
4774
4775		spin_unlock(&cur_trans->dirty_bgs_lock);
4776		btrfs_put_block_group(cache);
4777		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4778		spin_lock(&cur_trans->dirty_bgs_lock);
4779	}
4780	spin_unlock(&cur_trans->dirty_bgs_lock);
4781
4782	/*
4783	 * Refer to the definition of io_bgs member for details why it's safe
4784	 * to use it without any locking
4785	 */
4786	while (!list_empty(&cur_trans->io_bgs)) {
4787		cache = list_first_entry(&cur_trans->io_bgs,
4788					 struct btrfs_block_group,
4789					 io_list);
4790
4791		list_del_init(&cache->io_list);
4792		spin_lock(&cache->lock);
4793		cache->disk_cache_state = BTRFS_DC_ERROR;
4794		spin_unlock(&cache->lock);
4795		btrfs_cleanup_bg_io(cache);
4796	}
4797}
4798
4799static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4800{
4801	struct btrfs_root *gang[8];
4802	int i;
4803	int ret;
4804
4805	spin_lock(&fs_info->fs_roots_radix_lock);
4806	while (1) {
4807		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4808						 (void **)gang, 0,
4809						 ARRAY_SIZE(gang),
4810						 BTRFS_ROOT_TRANS_TAG);
4811		if (ret == 0)
4812			break;
4813		for (i = 0; i < ret; i++) {
4814			struct btrfs_root *root = gang[i];
4815
4816			btrfs_qgroup_free_meta_all_pertrans(root);
4817			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4818					(unsigned long)root->root_key.objectid,
4819					BTRFS_ROOT_TRANS_TAG);
4820		}
4821	}
4822	spin_unlock(&fs_info->fs_roots_radix_lock);
4823}
4824
4825void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4826				   struct btrfs_fs_info *fs_info)
4827{
4828	struct btrfs_device *dev, *tmp;
4829
4830	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4831	ASSERT(list_empty(&cur_trans->dirty_bgs));
4832	ASSERT(list_empty(&cur_trans->io_bgs));
4833
4834	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4835				 post_commit_list) {
4836		list_del_init(&dev->post_commit_list);
4837	}
4838
4839	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4840
4841	cur_trans->state = TRANS_STATE_COMMIT_START;
4842	wake_up(&fs_info->transaction_blocked_wait);
4843
4844	cur_trans->state = TRANS_STATE_UNBLOCKED;
4845	wake_up(&fs_info->transaction_wait);
4846
4847	btrfs_destroy_delayed_inodes(fs_info);
 
4848
4849	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4850				     EXTENT_DIRTY);
4851	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4852
4853	btrfs_free_all_qgroup_pertrans(fs_info);
4854
4855	cur_trans->state =TRANS_STATE_COMPLETED;
4856	wake_up(&cur_trans->commit_wait);
 
 
 
 
 
4857}
4858
4859static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4860{
4861	struct btrfs_transaction *t;
4862
4863	mutex_lock(&fs_info->transaction_kthread_mutex);
4864
4865	spin_lock(&fs_info->trans_lock);
4866	while (!list_empty(&fs_info->trans_list)) {
4867		t = list_first_entry(&fs_info->trans_list,
4868				     struct btrfs_transaction, list);
4869		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4870			refcount_inc(&t->use_count);
4871			spin_unlock(&fs_info->trans_lock);
4872			btrfs_wait_for_commit(fs_info, t->transid);
4873			btrfs_put_transaction(t);
4874			spin_lock(&fs_info->trans_lock);
4875			continue;
4876		}
4877		if (t == fs_info->running_transaction) {
4878			t->state = TRANS_STATE_COMMIT_DOING;
4879			spin_unlock(&fs_info->trans_lock);
4880			/*
4881			 * We wait for 0 num_writers since we don't hold a trans
4882			 * handle open currently for this transaction.
4883			 */
4884			wait_event(t->writer_wait,
4885				   atomic_read(&t->num_writers) == 0);
4886		} else {
4887			spin_unlock(&fs_info->trans_lock);
4888		}
4889		btrfs_cleanup_one_transaction(t, fs_info);
4890
4891		spin_lock(&fs_info->trans_lock);
4892		if (t == fs_info->running_transaction)
4893			fs_info->running_transaction = NULL;
4894		list_del_init(&t->list);
4895		spin_unlock(&fs_info->trans_lock);
4896
4897		btrfs_put_transaction(t);
4898		trace_btrfs_transaction_commit(fs_info);
4899		spin_lock(&fs_info->trans_lock);
4900	}
4901	spin_unlock(&fs_info->trans_lock);
4902	btrfs_destroy_all_ordered_extents(fs_info);
4903	btrfs_destroy_delayed_inodes(fs_info);
4904	btrfs_assert_delayed_root_empty(fs_info);
4905	btrfs_destroy_all_delalloc_inodes(fs_info);
4906	btrfs_drop_all_logs(fs_info);
4907	mutex_unlock(&fs_info->transaction_kthread_mutex);
4908
4909	return 0;
4910}
4911
4912int btrfs_init_root_free_objectid(struct btrfs_root *root)
4913{
4914	struct btrfs_path *path;
4915	int ret;
4916	struct extent_buffer *l;
4917	struct btrfs_key search_key;
4918	struct btrfs_key found_key;
4919	int slot;
4920
4921	path = btrfs_alloc_path();
4922	if (!path)
4923		return -ENOMEM;
4924
4925	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4926	search_key.type = -1;
4927	search_key.offset = (u64)-1;
4928	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4929	if (ret < 0)
4930		goto error;
4931	if (ret == 0) {
4932		/*
4933		 * Key with offset -1 found, there would have to exist a root
4934		 * with such id, but this is out of valid range.
4935		 */
4936		ret = -EUCLEAN;
4937		goto error;
4938	}
4939	if (path->slots[0] > 0) {
4940		slot = path->slots[0] - 1;
4941		l = path->nodes[0];
4942		btrfs_item_key_to_cpu(l, &found_key, slot);
4943		root->free_objectid = max_t(u64, found_key.objectid + 1,
4944					    BTRFS_FIRST_FREE_OBJECTID);
4945	} else {
4946		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4947	}
4948	ret = 0;
4949error:
4950	btrfs_free_path(path);
4951	return ret;
4952}
4953
4954int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4955{
4956	int ret;
4957	mutex_lock(&root->objectid_mutex);
4958
4959	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4960		btrfs_warn(root->fs_info,
4961			   "the objectid of root %llu reaches its highest value",
4962			   root->root_key.objectid);
4963		ret = -ENOSPC;
4964		goto out;
4965	}
4966
4967	*objectid = root->free_objectid++;
4968	ret = 0;
4969out:
4970	mutex_unlock(&root->objectid_mutex);
4971	return ret;
4972}