Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.9.4.
   1/* drivers/net/ethernet/micrel/ks8851.c
   2 *
   3 * Copyright 2009 Simtec Electronics
   4 *	http://www.simtec.co.uk/
   5 *	Ben Dooks <ben@simtec.co.uk>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#define DEBUG
  15
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/netdevice.h>
  20#include <linux/etherdevice.h>
  21#include <linux/ethtool.h>
  22#include <linux/cache.h>
  23#include <linux/crc32.h>
  24#include <linux/mii.h>
  25#include <linux/eeprom_93cx6.h>
  26#include <linux/regulator/consumer.h>
  27
  28#include <linux/spi/spi.h>
  29
  30#include "ks8851.h"
  31
  32/**
  33 * struct ks8851_rxctrl - KS8851 driver rx control
  34 * @mchash: Multicast hash-table data.
  35 * @rxcr1: KS_RXCR1 register setting
  36 * @rxcr2: KS_RXCR2 register setting
  37 *
  38 * Representation of the settings needs to control the receive filtering
  39 * such as the multicast hash-filter and the receive register settings. This
  40 * is used to make the job of working out if the receive settings change and
  41 * then issuing the new settings to the worker that will send the necessary
  42 * commands.
  43 */
  44struct ks8851_rxctrl {
  45	u16	mchash[4];
  46	u16	rxcr1;
  47	u16	rxcr2;
  48};
  49
  50/**
  51 * union ks8851_tx_hdr - tx header data
  52 * @txb: The header as bytes
  53 * @txw: The header as 16bit, little-endian words
  54 *
  55 * A dual representation of the tx header data to allow
  56 * access to individual bytes, and to allow 16bit accesses
  57 * with 16bit alignment.
  58 */
  59union ks8851_tx_hdr {
  60	u8	txb[6];
  61	__le16	txw[3];
  62};
  63
  64/**
  65 * struct ks8851_net - KS8851 driver private data
  66 * @netdev: The network device we're bound to
  67 * @spidev: The spi device we're bound to.
  68 * @lock: Lock to ensure that the device is not accessed when busy.
  69 * @statelock: Lock on this structure for tx list.
  70 * @mii: The MII state information for the mii calls.
  71 * @rxctrl: RX settings for @rxctrl_work.
  72 * @tx_work: Work queue for tx packets
  73 * @rxctrl_work: Work queue for updating RX mode and multicast lists
  74 * @txq: Queue of packets for transmission.
  75 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
  76 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
  77 * @txh: Space for generating packet TX header in DMA-able data
  78 * @rxd: Space for receiving SPI data, in DMA-able space.
  79 * @txd: Space for transmitting SPI data, in DMA-able space.
  80 * @msg_enable: The message flags controlling driver output (see ethtool).
  81 * @fid: Incrementing frame id tag.
  82 * @rc_ier: Cached copy of KS_IER.
  83 * @rc_ccr: Cached copy of KS_CCR.
  84 * @rc_rxqcr: Cached copy of KS_RXQCR.
  85 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
  86 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
  87 * @vdd_reg:	Optional regulator supplying the chip
  88 *
  89 * The @lock ensures that the chip is protected when certain operations are
  90 * in progress. When the read or write packet transfer is in progress, most
  91 * of the chip registers are not ccessible until the transfer is finished and
  92 * the DMA has been de-asserted.
  93 *
  94 * The @statelock is used to protect information in the structure which may
  95 * need to be accessed via several sources, such as the network driver layer
  96 * or one of the work queues.
  97 *
  98 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
  99 * wants to DMA map them, it will not have any problems with data the driver
 100 * modifies.
 101 */
 102struct ks8851_net {
 103	struct net_device	*netdev;
 104	struct spi_device	*spidev;
 105	struct mutex		lock;
 106	spinlock_t		statelock;
 107
 108	union ks8851_tx_hdr	txh ____cacheline_aligned;
 109	u8			rxd[8];
 110	u8			txd[8];
 111
 112	u32			msg_enable ____cacheline_aligned;
 113	u16			tx_space;
 114	u8			fid;
 115
 116	u16			rc_ier;
 117	u16			rc_rxqcr;
 118	u16			rc_ccr;
 119	u16			eeprom_size;
 120
 121	struct mii_if_info	mii;
 122	struct ks8851_rxctrl	rxctrl;
 123
 124	struct work_struct	tx_work;
 125	struct work_struct	rxctrl_work;
 126
 127	struct sk_buff_head	txq;
 128
 129	struct spi_message	spi_msg1;
 130	struct spi_message	spi_msg2;
 131	struct spi_transfer	spi_xfer1;
 132	struct spi_transfer	spi_xfer2[2];
 133
 134	struct eeprom_93cx6	eeprom;
 135	struct regulator	*vdd_reg;
 136};
 137
 138static int msg_enable;
 139
 140/* shift for byte-enable data */
 141#define BYTE_EN(_x)	((_x) << 2)
 142
 143/* turn register number and byte-enable mask into data for start of packet */
 144#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
 145
 146/* SPI register read/write calls.
 147 *
 148 * All these calls issue SPI transactions to access the chip's registers. They
 149 * all require that the necessary lock is held to prevent accesses when the
 150 * chip is busy transferring packet data (RX/TX FIFO accesses).
 151 */
 152
 153/**
 154 * ks8851_wrreg16 - write 16bit register value to chip
 155 * @ks: The chip state
 156 * @reg: The register address
 157 * @val: The value to write
 158 *
 159 * Issue a write to put the value @val into the register specified in @reg.
 160 */
 161static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
 162{
 163	struct spi_transfer *xfer = &ks->spi_xfer1;
 164	struct spi_message *msg = &ks->spi_msg1;
 165	__le16 txb[2];
 166	int ret;
 167
 168	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
 169	txb[1] = cpu_to_le16(val);
 170
 171	xfer->tx_buf = txb;
 172	xfer->rx_buf = NULL;
 173	xfer->len = 4;
 174
 175	ret = spi_sync(ks->spidev, msg);
 176	if (ret < 0)
 177		netdev_err(ks->netdev, "spi_sync() failed\n");
 178}
 179
 180/**
 181 * ks8851_wrreg8 - write 8bit register value to chip
 182 * @ks: The chip state
 183 * @reg: The register address
 184 * @val: The value to write
 185 *
 186 * Issue a write to put the value @val into the register specified in @reg.
 187 */
 188static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
 189{
 190	struct spi_transfer *xfer = &ks->spi_xfer1;
 191	struct spi_message *msg = &ks->spi_msg1;
 192	__le16 txb[2];
 193	int ret;
 194	int bit;
 195
 196	bit = 1 << (reg & 3);
 197
 198	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
 199	txb[1] = val;
 200
 201	xfer->tx_buf = txb;
 202	xfer->rx_buf = NULL;
 203	xfer->len = 3;
 204
 205	ret = spi_sync(ks->spidev, msg);
 206	if (ret < 0)
 207		netdev_err(ks->netdev, "spi_sync() failed\n");
 208}
 209
 210/**
 211 * ks8851_rx_1msg - select whether to use one or two messages for spi read
 212 * @ks: The device structure
 213 *
 214 * Return whether to generate a single message with a tx and rx buffer
 215 * supplied to spi_sync(), or alternatively send the tx and rx buffers
 216 * as separate messages.
 217 *
 218 * Depending on the hardware in use, a single message may be more efficient
 219 * on interrupts or work done by the driver.
 220 *
 221 * This currently always returns true until we add some per-device data passed
 222 * from the platform code to specify which mode is better.
 223 */
 224static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
 225{
 226	return true;
 227}
 228
 229/**
 230 * ks8851_rdreg - issue read register command and return the data
 231 * @ks: The device state
 232 * @op: The register address and byte enables in message format.
 233 * @rxb: The RX buffer to return the result into
 234 * @rxl: The length of data expected.
 235 *
 236 * This is the low level read call that issues the necessary spi message(s)
 237 * to read data from the register specified in @op.
 238 */
 239static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
 240			 u8 *rxb, unsigned rxl)
 241{
 242	struct spi_transfer *xfer;
 243	struct spi_message *msg;
 244	__le16 *txb = (__le16 *)ks->txd;
 245	u8 *trx = ks->rxd;
 246	int ret;
 247
 248	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
 249
 250	if (ks8851_rx_1msg(ks)) {
 251		msg = &ks->spi_msg1;
 252		xfer = &ks->spi_xfer1;
 253
 254		xfer->tx_buf = txb;
 255		xfer->rx_buf = trx;
 256		xfer->len = rxl + 2;
 257	} else {
 258		msg = &ks->spi_msg2;
 259		xfer = ks->spi_xfer2;
 260
 261		xfer->tx_buf = txb;
 262		xfer->rx_buf = NULL;
 263		xfer->len = 2;
 264
 265		xfer++;
 266		xfer->tx_buf = NULL;
 267		xfer->rx_buf = trx;
 268		xfer->len = rxl;
 269	}
 270
 271	ret = spi_sync(ks->spidev, msg);
 272	if (ret < 0)
 273		netdev_err(ks->netdev, "read: spi_sync() failed\n");
 274	else if (ks8851_rx_1msg(ks))
 275		memcpy(rxb, trx + 2, rxl);
 276	else
 277		memcpy(rxb, trx, rxl);
 278}
 279
 280/**
 281 * ks8851_rdreg8 - read 8 bit register from device
 282 * @ks: The chip information
 283 * @reg: The register address
 284 *
 285 * Read a 8bit register from the chip, returning the result
 286*/
 287static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
 288{
 289	u8 rxb[1];
 290
 291	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
 292	return rxb[0];
 293}
 294
 295/**
 296 * ks8851_rdreg16 - read 16 bit register from device
 297 * @ks: The chip information
 298 * @reg: The register address
 299 *
 300 * Read a 16bit register from the chip, returning the result
 301*/
 302static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
 303{
 304	__le16 rx = 0;
 305
 306	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
 307	return le16_to_cpu(rx);
 308}
 309
 310/**
 311 * ks8851_rdreg32 - read 32 bit register from device
 312 * @ks: The chip information
 313 * @reg: The register address
 314 *
 315 * Read a 32bit register from the chip.
 316 *
 317 * Note, this read requires the address be aligned to 4 bytes.
 318*/
 319static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
 320{
 321	__le32 rx = 0;
 322
 323	WARN_ON(reg & 3);
 324
 325	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
 326	return le32_to_cpu(rx);
 327}
 328
 329/**
 330 * ks8851_soft_reset - issue one of the soft reset to the device
 331 * @ks: The device state.
 332 * @op: The bit(s) to set in the GRR
 333 *
 334 * Issue the relevant soft-reset command to the device's GRR register
 335 * specified by @op.
 336 *
 337 * Note, the delays are in there as a caution to ensure that the reset
 338 * has time to take effect and then complete. Since the datasheet does
 339 * not currently specify the exact sequence, we have chosen something
 340 * that seems to work with our device.
 341 */
 342static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
 343{
 344	ks8851_wrreg16(ks, KS_GRR, op);
 345	mdelay(1);	/* wait a short time to effect reset */
 346	ks8851_wrreg16(ks, KS_GRR, 0);
 347	mdelay(1);	/* wait for condition to clear */
 348}
 349
 350/**
 351 * ks8851_set_powermode - set power mode of the device
 352 * @ks: The device state
 353 * @pwrmode: The power mode value to write to KS_PMECR.
 354 *
 355 * Change the power mode of the chip.
 356 */
 357static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 358{
 359	unsigned pmecr;
 360
 361	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 362
 363	pmecr = ks8851_rdreg16(ks, KS_PMECR);
 364	pmecr &= ~PMECR_PM_MASK;
 365	pmecr |= pwrmode;
 366
 367	ks8851_wrreg16(ks, KS_PMECR, pmecr);
 368}
 369
 370/**
 371 * ks8851_write_mac_addr - write mac address to device registers
 372 * @dev: The network device
 373 *
 374 * Update the KS8851 MAC address registers from the address in @dev.
 375 *
 376 * This call assumes that the chip is not running, so there is no need to
 377 * shutdown the RXQ process whilst setting this.
 378*/
 379static int ks8851_write_mac_addr(struct net_device *dev)
 380{
 381	struct ks8851_net *ks = netdev_priv(dev);
 382	int i;
 383
 384	mutex_lock(&ks->lock);
 385
 386	/*
 387	 * Wake up chip in case it was powered off when stopped; otherwise,
 388	 * the first write to the MAC address does not take effect.
 389	 */
 390	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 391	for (i = 0; i < ETH_ALEN; i++)
 392		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
 393	if (!netif_running(dev))
 394		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 395
 396	mutex_unlock(&ks->lock);
 397
 398	return 0;
 399}
 400
 401/**
 402 * ks8851_read_mac_addr - read mac address from device registers
 403 * @dev: The network device
 404 *
 405 * Update our copy of the KS8851 MAC address from the registers of @dev.
 406*/
 407static void ks8851_read_mac_addr(struct net_device *dev)
 408{
 409	struct ks8851_net *ks = netdev_priv(dev);
 410	int i;
 411
 412	mutex_lock(&ks->lock);
 413
 414	for (i = 0; i < ETH_ALEN; i++)
 415		dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
 416
 417	mutex_unlock(&ks->lock);
 418}
 419
 420/**
 421 * ks8851_init_mac - initialise the mac address
 422 * @ks: The device structure
 423 *
 424 * Get or create the initial mac address for the device and then set that
 425 * into the station address register. If there is an EEPROM present, then
 426 * we try that. If no valid mac address is found we use eth_random_addr()
 427 * to create a new one.
 428 */
 429static void ks8851_init_mac(struct ks8851_net *ks)
 430{
 431	struct net_device *dev = ks->netdev;
 432
 433	/* first, try reading what we've got already */
 434	if (ks->rc_ccr & CCR_EEPROM) {
 435		ks8851_read_mac_addr(dev);
 436		if (is_valid_ether_addr(dev->dev_addr))
 437			return;
 438
 439		netdev_err(ks->netdev, "invalid mac address read %pM\n",
 440				dev->dev_addr);
 441	}
 442
 443	eth_hw_addr_random(dev);
 444	ks8851_write_mac_addr(dev);
 445}
 446
 447/**
 448 * ks8851_rdfifo - read data from the receive fifo
 449 * @ks: The device state.
 450 * @buff: The buffer address
 451 * @len: The length of the data to read
 452 *
 453 * Issue an RXQ FIFO read command and read the @len amount of data from
 454 * the FIFO into the buffer specified by @buff.
 455 */
 456static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
 457{
 458	struct spi_transfer *xfer = ks->spi_xfer2;
 459	struct spi_message *msg = &ks->spi_msg2;
 460	u8 txb[1];
 461	int ret;
 462
 463	netif_dbg(ks, rx_status, ks->netdev,
 464		  "%s: %d@%p\n", __func__, len, buff);
 465
 466	/* set the operation we're issuing */
 467	txb[0] = KS_SPIOP_RXFIFO;
 468
 469	xfer->tx_buf = txb;
 470	xfer->rx_buf = NULL;
 471	xfer->len = 1;
 472
 473	xfer++;
 474	xfer->rx_buf = buff;
 475	xfer->tx_buf = NULL;
 476	xfer->len = len;
 477
 478	ret = spi_sync(ks->spidev, msg);
 479	if (ret < 0)
 480		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 481}
 482
 483/**
 484 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 485 * @ks: The device state
 486 * @rxpkt: The data for the received packet
 487 *
 488 * Dump the initial data from the packet to dev_dbg().
 489*/
 490static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
 491{
 492	netdev_dbg(ks->netdev,
 493		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
 494		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
 495		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
 496		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
 497}
 498
 499/**
 500 * ks8851_rx_pkts - receive packets from the host
 501 * @ks: The device information.
 502 *
 503 * This is called from the IRQ work queue when the system detects that there
 504 * are packets in the receive queue. Find out how many packets there are and
 505 * read them from the FIFO.
 506 */
 507static void ks8851_rx_pkts(struct ks8851_net *ks)
 508{
 509	struct sk_buff *skb;
 510	unsigned rxfc;
 511	unsigned rxlen;
 512	unsigned rxstat;
 513	u32 rxh;
 514	u8 *rxpkt;
 515
 516	rxfc = ks8851_rdreg8(ks, KS_RXFC);
 517
 518	netif_dbg(ks, rx_status, ks->netdev,
 519		  "%s: %d packets\n", __func__, rxfc);
 520
 521	/* Currently we're issuing a read per packet, but we could possibly
 522	 * improve the code by issuing a single read, getting the receive
 523	 * header, allocating the packet and then reading the packet data
 524	 * out in one go.
 525	 *
 526	 * This form of operation would require us to hold the SPI bus'
 527	 * chipselect low during the entie transaction to avoid any
 528	 * reset to the data stream coming from the chip.
 529	 */
 530
 531	for (; rxfc != 0; rxfc--) {
 532		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
 533		rxstat = rxh & 0xffff;
 534		rxlen = (rxh >> 16) & 0xfff;
 535
 536		netif_dbg(ks, rx_status, ks->netdev,
 537			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
 538
 539		/* the length of the packet includes the 32bit CRC */
 540
 541		/* set dma read address */
 542		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 543
 544		/* start the packet dma process, and set auto-dequeue rx */
 545		ks8851_wrreg16(ks, KS_RXQCR,
 546			       ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
 547
 548		if (rxlen > 4) {
 549			unsigned int rxalign;
 550
 551			rxlen -= 4;
 552			rxalign = ALIGN(rxlen, 4);
 553			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
 554			if (skb) {
 555
 556				/* 4 bytes of status header + 4 bytes of
 557				 * garbage: we put them before ethernet
 558				 * header, so that they are copied,
 559				 * but ignored.
 560				 */
 561
 562				rxpkt = skb_put(skb, rxlen) - 8;
 563
 564				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
 565
 566				if (netif_msg_pktdata(ks))
 567					ks8851_dbg_dumpkkt(ks, rxpkt);
 568
 569				skb->protocol = eth_type_trans(skb, ks->netdev);
 570				netif_rx_ni(skb);
 571
 572				ks->netdev->stats.rx_packets++;
 573				ks->netdev->stats.rx_bytes += rxlen;
 574			}
 575		}
 576
 577		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 578	}
 579}
 580
 581/**
 582 * ks8851_irq - IRQ handler for dealing with interrupt requests
 583 * @irq: IRQ number
 584 * @_ks: cookie
 585 *
 586 * This handler is invoked when the IRQ line asserts to find out what happened.
 587 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
 588 * in thread context.
 589 *
 590 * Read the interrupt status, work out what needs to be done and then clear
 591 * any of the interrupts that are not needed.
 592 */
 593static irqreturn_t ks8851_irq(int irq, void *_ks)
 594{
 595	struct ks8851_net *ks = _ks;
 596	unsigned status;
 597	unsigned handled = 0;
 598
 599	mutex_lock(&ks->lock);
 600
 601	status = ks8851_rdreg16(ks, KS_ISR);
 602
 603	netif_dbg(ks, intr, ks->netdev,
 604		  "%s: status 0x%04x\n", __func__, status);
 605
 606	if (status & IRQ_LCI)
 607		handled |= IRQ_LCI;
 608
 609	if (status & IRQ_LDI) {
 610		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 611		pmecr &= ~PMECR_WKEVT_MASK;
 612		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 613
 614		handled |= IRQ_LDI;
 615	}
 616
 617	if (status & IRQ_RXPSI)
 618		handled |= IRQ_RXPSI;
 619
 620	if (status & IRQ_TXI) {
 621		handled |= IRQ_TXI;
 622
 623		/* no lock here, tx queue should have been stopped */
 624
 625		/* update our idea of how much tx space is available to the
 626		 * system */
 627		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 628
 629		netif_dbg(ks, intr, ks->netdev,
 630			  "%s: txspace %d\n", __func__, ks->tx_space);
 631	}
 632
 633	if (status & IRQ_RXI)
 634		handled |= IRQ_RXI;
 635
 636	if (status & IRQ_SPIBEI) {
 637		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
 638		handled |= IRQ_SPIBEI;
 639	}
 640
 641	ks8851_wrreg16(ks, KS_ISR, handled);
 642
 643	if (status & IRQ_RXI) {
 644		/* the datasheet says to disable the rx interrupt during
 645		 * packet read-out, however we're masking the interrupt
 646		 * from the device so do not bother masking just the RX
 647		 * from the device. */
 648
 649		ks8851_rx_pkts(ks);
 650	}
 651
 652	/* if something stopped the rx process, probably due to wanting
 653	 * to change the rx settings, then do something about restarting
 654	 * it. */
 655	if (status & IRQ_RXPSI) {
 656		struct ks8851_rxctrl *rxc = &ks->rxctrl;
 657
 658		/* update the multicast hash table */
 659		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 660		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 661		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 662		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 663
 664		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 665		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 666	}
 667
 668	mutex_unlock(&ks->lock);
 669
 670	if (status & IRQ_LCI)
 671		mii_check_link(&ks->mii);
 672
 673	if (status & IRQ_TXI)
 674		netif_wake_queue(ks->netdev);
 675
 676	return IRQ_HANDLED;
 677}
 678
 679/**
 680 * calc_txlen - calculate size of message to send packet
 681 * @len: Length of data
 682 *
 683 * Returns the size of the TXFIFO message needed to send
 684 * this packet.
 685 */
 686static inline unsigned calc_txlen(unsigned len)
 687{
 688	return ALIGN(len + 4, 4);
 689}
 690
 691/**
 692 * ks8851_wrpkt - write packet to TX FIFO
 693 * @ks: The device state.
 694 * @txp: The sk_buff to transmit.
 695 * @irq: IRQ on completion of the packet.
 696 *
 697 * Send the @txp to the chip. This means creating the relevant packet header
 698 * specifying the length of the packet and the other information the chip
 699 * needs, such as IRQ on completion. Send the header and the packet data to
 700 * the device.
 701 */
 702static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
 703{
 704	struct spi_transfer *xfer = ks->spi_xfer2;
 705	struct spi_message *msg = &ks->spi_msg2;
 706	unsigned fid = 0;
 707	int ret;
 708
 709	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
 710		  __func__, txp, txp->len, txp->data, irq);
 711
 712	fid = ks->fid++;
 713	fid &= TXFR_TXFID_MASK;
 714
 715	if (irq)
 716		fid |= TXFR_TXIC;	/* irq on completion */
 717
 718	/* start header at txb[1] to align txw entries */
 719	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
 720	ks->txh.txw[1] = cpu_to_le16(fid);
 721	ks->txh.txw[2] = cpu_to_le16(txp->len);
 722
 723	xfer->tx_buf = &ks->txh.txb[1];
 724	xfer->rx_buf = NULL;
 725	xfer->len = 5;
 726
 727	xfer++;
 728	xfer->tx_buf = txp->data;
 729	xfer->rx_buf = NULL;
 730	xfer->len = ALIGN(txp->len, 4);
 731
 732	ret = spi_sync(ks->spidev, msg);
 733	if (ret < 0)
 734		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 735}
 736
 737/**
 738 * ks8851_done_tx - update and then free skbuff after transmitting
 739 * @ks: The device state
 740 * @txb: The buffer transmitted
 741 */
 742static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
 743{
 744	struct net_device *dev = ks->netdev;
 745
 746	dev->stats.tx_bytes += txb->len;
 747	dev->stats.tx_packets++;
 748
 749	dev_kfree_skb(txb);
 750}
 751
 752/**
 753 * ks8851_tx_work - process tx packet(s)
 754 * @work: The work strucutre what was scheduled.
 755 *
 756 * This is called when a number of packets have been scheduled for
 757 * transmission and need to be sent to the device.
 758 */
 759static void ks8851_tx_work(struct work_struct *work)
 760{
 761	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
 762	struct sk_buff *txb;
 763	bool last = skb_queue_empty(&ks->txq);
 764
 765	mutex_lock(&ks->lock);
 766
 767	while (!last) {
 768		txb = skb_dequeue(&ks->txq);
 769		last = skb_queue_empty(&ks->txq);
 770
 771		if (txb != NULL) {
 772			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 773			ks8851_wrpkt(ks, txb, last);
 774			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 775			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
 776
 777			ks8851_done_tx(ks, txb);
 778		}
 779	}
 780
 781	mutex_unlock(&ks->lock);
 782}
 783
 784/**
 785 * ks8851_net_open - open network device
 786 * @dev: The network device being opened.
 787 *
 788 * Called when the network device is marked active, such as a user executing
 789 * 'ifconfig up' on the device.
 790 */
 791static int ks8851_net_open(struct net_device *dev)
 792{
 793	struct ks8851_net *ks = netdev_priv(dev);
 794
 795	/* lock the card, even if we may not actually be doing anything
 796	 * else at the moment */
 797	mutex_lock(&ks->lock);
 798
 799	netif_dbg(ks, ifup, ks->netdev, "opening\n");
 800
 801	/* bring chip out of any power saving mode it was in */
 802	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 803
 804	/* issue a soft reset to the RX/TX QMU to put it into a known
 805	 * state. */
 806	ks8851_soft_reset(ks, GRR_QMU);
 807
 808	/* setup transmission parameters */
 809
 810	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 811				     TXCR_TXPE | /* pad to min length */
 812				     TXCR_TXCRC | /* add CRC */
 813				     TXCR_TXFCE)); /* enable flow control */
 814
 815	/* auto-increment tx data, reset tx pointer */
 816	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 817
 818	/* setup receiver control */
 819
 820	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 821				      RXCR1_RXFCE | /* enable flow control */
 822				      RXCR1_RXBE | /* broadcast enable */
 823				      RXCR1_RXUE | /* unicast enable */
 824				      RXCR1_RXE)); /* enable rx block */
 825
 826	/* transfer entire frames out in one go */
 827	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 828
 829	/* set receive counter timeouts */
 830	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 831	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 832	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 833
 834	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 835			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 836			RXQCR_RXDTTE);  /* IRQ on time exceeded */
 837
 838	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 839
 840	/* clear then enable interrupts */
 841
 842#define STD_IRQ (IRQ_LCI |	/* Link Change */	\
 843		 IRQ_TXI |	/* TX done */		\
 844		 IRQ_RXI |	/* RX done */		\
 845		 IRQ_SPIBEI |	/* SPI bus error */	\
 846		 IRQ_TXPSI |	/* TX process stop */	\
 847		 IRQ_RXPSI)	/* RX process stop */
 848
 849	ks->rc_ier = STD_IRQ;
 850	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
 851	ks8851_wrreg16(ks, KS_IER, STD_IRQ);
 852
 853	netif_start_queue(ks->netdev);
 854
 855	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 856
 857	mutex_unlock(&ks->lock);
 858	return 0;
 859}
 860
 861/**
 862 * ks8851_net_stop - close network device
 863 * @dev: The device being closed.
 864 *
 865 * Called to close down a network device which has been active. Cancell any
 866 * work, shutdown the RX and TX process and then place the chip into a low
 867 * power state whilst it is not being used.
 868 */
 869static int ks8851_net_stop(struct net_device *dev)
 870{
 871	struct ks8851_net *ks = netdev_priv(dev);
 872
 873	netif_info(ks, ifdown, dev, "shutting down\n");
 874
 875	netif_stop_queue(dev);
 876
 877	mutex_lock(&ks->lock);
 878	/* turn off the IRQs and ack any outstanding */
 879	ks8851_wrreg16(ks, KS_IER, 0x0000);
 880	ks8851_wrreg16(ks, KS_ISR, 0xffff);
 881	mutex_unlock(&ks->lock);
 882
 883	/* stop any outstanding work */
 884	flush_work(&ks->tx_work);
 885	flush_work(&ks->rxctrl_work);
 886
 887	mutex_lock(&ks->lock);
 888	/* shutdown RX process */
 889	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 890
 891	/* shutdown TX process */
 892	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 893
 894	/* set powermode to soft power down to save power */
 895	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 896	mutex_unlock(&ks->lock);
 897
 898	/* ensure any queued tx buffers are dumped */
 899	while (!skb_queue_empty(&ks->txq)) {
 900		struct sk_buff *txb = skb_dequeue(&ks->txq);
 901
 902		netif_dbg(ks, ifdown, ks->netdev,
 903			  "%s: freeing txb %p\n", __func__, txb);
 904
 905		dev_kfree_skb(txb);
 906	}
 907
 908	return 0;
 909}
 910
 911/**
 912 * ks8851_start_xmit - transmit packet
 913 * @skb: The buffer to transmit
 914 * @dev: The device used to transmit the packet.
 915 *
 916 * Called by the network layer to transmit the @skb. Queue the packet for
 917 * the device and schedule the necessary work to transmit the packet when
 918 * it is free.
 919 *
 920 * We do this to firstly avoid sleeping with the network device locked,
 921 * and secondly so we can round up more than one packet to transmit which
 922 * means we can try and avoid generating too many transmit done interrupts.
 923 */
 924static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 925				     struct net_device *dev)
 926{
 927	struct ks8851_net *ks = netdev_priv(dev);
 928	unsigned needed = calc_txlen(skb->len);
 929	netdev_tx_t ret = NETDEV_TX_OK;
 930
 931	netif_dbg(ks, tx_queued, ks->netdev,
 932		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
 933
 934	spin_lock(&ks->statelock);
 935
 936	if (needed > ks->tx_space) {
 937		netif_stop_queue(dev);
 938		ret = NETDEV_TX_BUSY;
 939	} else {
 940		ks->tx_space -= needed;
 941		skb_queue_tail(&ks->txq, skb);
 942	}
 943
 944	spin_unlock(&ks->statelock);
 945	schedule_work(&ks->tx_work);
 946
 947	return ret;
 948}
 949
 950/**
 951 * ks8851_rxctrl_work - work handler to change rx mode
 952 * @work: The work structure this belongs to.
 953 *
 954 * Lock the device and issue the necessary changes to the receive mode from
 955 * the network device layer. This is done so that we can do this without
 956 * having to sleep whilst holding the network device lock.
 957 *
 958 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 959 * receive parameters are programmed, we issue a write to disable the RXQ and
 960 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 961 * complete. The interrupt handler then writes the new values into the chip.
 962 */
 963static void ks8851_rxctrl_work(struct work_struct *work)
 964{
 965	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 966
 967	mutex_lock(&ks->lock);
 968
 969	/* need to shutdown RXQ before modifying filter parameters */
 970	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 971
 972	mutex_unlock(&ks->lock);
 973}
 974
 975static void ks8851_set_rx_mode(struct net_device *dev)
 976{
 977	struct ks8851_net *ks = netdev_priv(dev);
 978	struct ks8851_rxctrl rxctrl;
 979
 980	memset(&rxctrl, 0, sizeof(rxctrl));
 981
 982	if (dev->flags & IFF_PROMISC) {
 983		/* interface to receive everything */
 984
 985		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
 986	} else if (dev->flags & IFF_ALLMULTI) {
 987		/* accept all multicast packets */
 988
 989		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
 990				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
 991	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
 992		struct netdev_hw_addr *ha;
 993		u32 crc;
 994
 995		/* accept some multicast */
 996
 997		netdev_for_each_mc_addr(ha, dev) {
 998			crc = ether_crc(ETH_ALEN, ha->addr);
 999			crc >>= (32 - 6);  /* get top six bits */
1000
1001			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
1002		}
1003
1004		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1005	} else {
1006		/* just accept broadcast / unicast */
1007		rxctrl.rxcr1 = RXCR1_RXPAFMA;
1008	}
1009
1010	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1011			 RXCR1_RXBE | /* broadcast enable */
1012			 RXCR1_RXE | /* RX process enable */
1013			 RXCR1_RXFCE); /* enable flow control */
1014
1015	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1016
1017	/* schedule work to do the actual set of the data if needed */
1018
1019	spin_lock(&ks->statelock);
1020
1021	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1022		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1023		schedule_work(&ks->rxctrl_work);
1024	}
1025
1026	spin_unlock(&ks->statelock);
1027}
1028
1029static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1030{
1031	struct sockaddr *sa = addr;
1032
1033	if (netif_running(dev))
1034		return -EBUSY;
1035
1036	if (!is_valid_ether_addr(sa->sa_data))
1037		return -EADDRNOTAVAIL;
1038
1039	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1040	return ks8851_write_mac_addr(dev);
1041}
1042
1043static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1044{
1045	struct ks8851_net *ks = netdev_priv(dev);
1046
1047	if (!netif_running(dev))
1048		return -EINVAL;
1049
1050	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1051}
1052
1053static const struct net_device_ops ks8851_netdev_ops = {
1054	.ndo_open		= ks8851_net_open,
1055	.ndo_stop		= ks8851_net_stop,
1056	.ndo_do_ioctl		= ks8851_net_ioctl,
1057	.ndo_start_xmit		= ks8851_start_xmit,
1058	.ndo_set_mac_address	= ks8851_set_mac_address,
1059	.ndo_set_rx_mode	= ks8851_set_rx_mode,
1060	.ndo_change_mtu		= eth_change_mtu,
1061	.ndo_validate_addr	= eth_validate_addr,
1062};
1063
1064/* ethtool support */
1065
1066static void ks8851_get_drvinfo(struct net_device *dev,
1067			       struct ethtool_drvinfo *di)
1068{
1069	strlcpy(di->driver, "KS8851", sizeof(di->driver));
1070	strlcpy(di->version, "1.00", sizeof(di->version));
1071	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1072}
1073
1074static u32 ks8851_get_msglevel(struct net_device *dev)
1075{
1076	struct ks8851_net *ks = netdev_priv(dev);
1077	return ks->msg_enable;
1078}
1079
1080static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1081{
1082	struct ks8851_net *ks = netdev_priv(dev);
1083	ks->msg_enable = to;
1084}
1085
1086static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1087{
1088	struct ks8851_net *ks = netdev_priv(dev);
1089	return mii_ethtool_gset(&ks->mii, cmd);
1090}
1091
1092static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1093{
1094	struct ks8851_net *ks = netdev_priv(dev);
1095	return mii_ethtool_sset(&ks->mii, cmd);
1096}
1097
1098static u32 ks8851_get_link(struct net_device *dev)
1099{
1100	struct ks8851_net *ks = netdev_priv(dev);
1101	return mii_link_ok(&ks->mii);
1102}
1103
1104static int ks8851_nway_reset(struct net_device *dev)
1105{
1106	struct ks8851_net *ks = netdev_priv(dev);
1107	return mii_nway_restart(&ks->mii);
1108}
1109
1110/* EEPROM support */
1111
1112static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1113{
1114	struct ks8851_net *ks = ee->data;
1115	unsigned val;
1116
1117	val = ks8851_rdreg16(ks, KS_EEPCR);
1118
1119	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1120	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1121	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1122}
1123
1124static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1125{
1126	struct ks8851_net *ks = ee->data;
1127	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
1128
1129	if (ee->drive_data)
1130		val |= EEPCR_EESRWA;
1131	if (ee->reg_data_in)
1132		val |= EEPCR_EEDO;
1133	if (ee->reg_data_clock)
1134		val |= EEPCR_EESCK;
1135	if (ee->reg_chip_select)
1136		val |= EEPCR_EECS;
1137
1138	ks8851_wrreg16(ks, KS_EEPCR, val);
1139}
1140
1141/**
1142 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1143 * @ks: The network device state.
1144 *
1145 * Check for the presence of an EEPROM, and then activate software access
1146 * to the device.
1147 */
1148static int ks8851_eeprom_claim(struct ks8851_net *ks)
1149{
1150	if (!(ks->rc_ccr & CCR_EEPROM))
1151		return -ENOENT;
1152
1153	mutex_lock(&ks->lock);
1154
1155	/* start with clock low, cs high */
1156	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1157	return 0;
1158}
1159
1160/**
1161 * ks8851_eeprom_release - release the EEPROM interface
1162 * @ks: The device state
1163 *
1164 * Release the software access to the device EEPROM
1165 */
1166static void ks8851_eeprom_release(struct ks8851_net *ks)
1167{
1168	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1169
1170	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1171	mutex_unlock(&ks->lock);
1172}
1173
1174#define KS_EEPROM_MAGIC (0x00008851)
1175
1176static int ks8851_set_eeprom(struct net_device *dev,
1177			     struct ethtool_eeprom *ee, u8 *data)
1178{
1179	struct ks8851_net *ks = netdev_priv(dev);
1180	int offset = ee->offset;
1181	int len = ee->len;
1182	u16 tmp;
1183
1184	/* currently only support byte writing */
1185	if (len != 1)
1186		return -EINVAL;
1187
1188	if (ee->magic != KS_EEPROM_MAGIC)
1189		return -EINVAL;
1190
1191	if (ks8851_eeprom_claim(ks))
1192		return -ENOENT;
1193
1194	eeprom_93cx6_wren(&ks->eeprom, true);
1195
1196	/* ethtool currently only supports writing bytes, which means
1197	 * we have to read/modify/write our 16bit EEPROMs */
1198
1199	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1200
1201	if (offset & 1) {
1202		tmp &= 0xff;
1203		tmp |= *data << 8;
1204	} else {
1205		tmp &= 0xff00;
1206		tmp |= *data;
1207	}
1208
1209	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1210	eeprom_93cx6_wren(&ks->eeprom, false);
1211
1212	ks8851_eeprom_release(ks);
1213
1214	return 0;
1215}
1216
1217static int ks8851_get_eeprom(struct net_device *dev,
1218			     struct ethtool_eeprom *ee, u8 *data)
1219{
1220	struct ks8851_net *ks = netdev_priv(dev);
1221	int offset = ee->offset;
1222	int len = ee->len;
1223
1224	/* must be 2 byte aligned */
1225	if (len & 1 || offset & 1)
1226		return -EINVAL;
1227
1228	if (ks8851_eeprom_claim(ks))
1229		return -ENOENT;
1230
1231	ee->magic = KS_EEPROM_MAGIC;
1232
1233	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1234	ks8851_eeprom_release(ks);
1235
1236	return 0;
1237}
1238
1239static int ks8851_get_eeprom_len(struct net_device *dev)
1240{
1241	struct ks8851_net *ks = netdev_priv(dev);
1242
1243	/* currently, we assume it is an 93C46 attached, so return 128 */
1244	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1245}
1246
1247static const struct ethtool_ops ks8851_ethtool_ops = {
1248	.get_drvinfo	= ks8851_get_drvinfo,
1249	.get_msglevel	= ks8851_get_msglevel,
1250	.set_msglevel	= ks8851_set_msglevel,
1251	.get_settings	= ks8851_get_settings,
1252	.set_settings	= ks8851_set_settings,
1253	.get_link	= ks8851_get_link,
1254	.nway_reset	= ks8851_nway_reset,
1255	.get_eeprom_len	= ks8851_get_eeprom_len,
1256	.get_eeprom	= ks8851_get_eeprom,
1257	.set_eeprom	= ks8851_set_eeprom,
1258};
1259
1260/* MII interface controls */
1261
1262/**
1263 * ks8851_phy_reg - convert MII register into a KS8851 register
1264 * @reg: MII register number.
1265 *
1266 * Return the KS8851 register number for the corresponding MII PHY register
1267 * if possible. Return zero if the MII register has no direct mapping to the
1268 * KS8851 register set.
1269 */
1270static int ks8851_phy_reg(int reg)
1271{
1272	switch (reg) {
1273	case MII_BMCR:
1274		return KS_P1MBCR;
1275	case MII_BMSR:
1276		return KS_P1MBSR;
1277	case MII_PHYSID1:
1278		return KS_PHY1ILR;
1279	case MII_PHYSID2:
1280		return KS_PHY1IHR;
1281	case MII_ADVERTISE:
1282		return KS_P1ANAR;
1283	case MII_LPA:
1284		return KS_P1ANLPR;
1285	}
1286
1287	return 0x0;
1288}
1289
1290/**
1291 * ks8851_phy_read - MII interface PHY register read.
1292 * @dev: The network device the PHY is on.
1293 * @phy_addr: Address of PHY (ignored as we only have one)
1294 * @reg: The register to read.
1295 *
1296 * This call reads data from the PHY register specified in @reg. Since the
1297 * device does not support all the MII registers, the non-existent values
1298 * are always returned as zero.
1299 *
1300 * We return zero for unsupported registers as the MII code does not check
1301 * the value returned for any error status, and simply returns it to the
1302 * caller. The mii-tool that the driver was tested with takes any -ve error
1303 * as real PHY capabilities, thus displaying incorrect data to the user.
1304 */
1305static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1306{
1307	struct ks8851_net *ks = netdev_priv(dev);
1308	int ksreg;
1309	int result;
1310
1311	ksreg = ks8851_phy_reg(reg);
1312	if (!ksreg)
1313		return 0x0;	/* no error return allowed, so use zero */
1314
1315	mutex_lock(&ks->lock);
1316	result = ks8851_rdreg16(ks, ksreg);
1317	mutex_unlock(&ks->lock);
1318
1319	return result;
1320}
1321
1322static void ks8851_phy_write(struct net_device *dev,
1323			     int phy, int reg, int value)
1324{
1325	struct ks8851_net *ks = netdev_priv(dev);
1326	int ksreg;
1327
1328	ksreg = ks8851_phy_reg(reg);
1329	if (ksreg) {
1330		mutex_lock(&ks->lock);
1331		ks8851_wrreg16(ks, ksreg, value);
1332		mutex_unlock(&ks->lock);
1333	}
1334}
1335
1336/**
1337 * ks8851_read_selftest - read the selftest memory info.
1338 * @ks: The device state
1339 *
1340 * Read and check the TX/RX memory selftest information.
1341 */
1342static int ks8851_read_selftest(struct ks8851_net *ks)
1343{
1344	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1345	int ret = 0;
1346	unsigned rd;
1347
1348	rd = ks8851_rdreg16(ks, KS_MBIR);
1349
1350	if ((rd & both_done) != both_done) {
1351		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1352		return 0;
1353	}
1354
1355	if (rd & MBIR_TXMBFA) {
1356		netdev_err(ks->netdev, "TX memory selftest fail\n");
1357		ret |= 1;
1358	}
1359
1360	if (rd & MBIR_RXMBFA) {
1361		netdev_err(ks->netdev, "RX memory selftest fail\n");
1362		ret |= 2;
1363	}
1364
1365	return 0;
1366}
1367
1368/* driver bus management functions */
1369
1370#ifdef CONFIG_PM_SLEEP
1371
1372static int ks8851_suspend(struct device *dev)
1373{
1374	struct ks8851_net *ks = dev_get_drvdata(dev);
1375	struct net_device *netdev = ks->netdev;
1376
1377	if (netif_running(netdev)) {
1378		netif_device_detach(netdev);
1379		ks8851_net_stop(netdev);
1380	}
1381
1382	return 0;
1383}
1384
1385static int ks8851_resume(struct device *dev)
1386{
1387	struct ks8851_net *ks = dev_get_drvdata(dev);
1388	struct net_device *netdev = ks->netdev;
1389
1390	if (netif_running(netdev)) {
1391		ks8851_net_open(netdev);
1392		netif_device_attach(netdev);
1393	}
1394
1395	return 0;
1396}
1397#endif
1398
1399static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1400
1401static int ks8851_probe(struct spi_device *spi)
1402{
1403	struct net_device *ndev;
1404	struct ks8851_net *ks;
1405	int ret;
1406	unsigned cider;
1407
1408	ndev = alloc_etherdev(sizeof(struct ks8851_net));
1409	if (!ndev)
1410		return -ENOMEM;
1411
1412	spi->bits_per_word = 8;
1413
1414	ks = netdev_priv(ndev);
1415
1416	ks->netdev = ndev;
1417	ks->spidev = spi;
1418	ks->tx_space = 6144;
1419
1420	ks->vdd_reg = regulator_get_optional(&spi->dev, "vdd");
1421	if (IS_ERR(ks->vdd_reg)) {
1422		ret = PTR_ERR(ks->vdd_reg);
1423		if (ret == -EPROBE_DEFER)
1424			goto err_reg;
1425	} else {
1426		ret = regulator_enable(ks->vdd_reg);
1427		if (ret) {
1428			dev_err(&spi->dev, "regulator enable fail: %d\n",
1429				ret);
1430			goto err_reg_en;
1431		}
1432	}
1433
1434
1435	mutex_init(&ks->lock);
1436	spin_lock_init(&ks->statelock);
1437
1438	INIT_WORK(&ks->tx_work, ks8851_tx_work);
1439	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1440
1441	/* initialise pre-made spi transfer messages */
1442
1443	spi_message_init(&ks->spi_msg1);
1444	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1445
1446	spi_message_init(&ks->spi_msg2);
1447	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1448	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1449
1450	/* setup EEPROM state */
1451
1452	ks->eeprom.data = ks;
1453	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1454	ks->eeprom.register_read = ks8851_eeprom_regread;
1455	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1456
1457	/* setup mii state */
1458	ks->mii.dev		= ndev;
1459	ks->mii.phy_id		= 1,
1460	ks->mii.phy_id_mask	= 1;
1461	ks->mii.reg_num_mask	= 0xf;
1462	ks->mii.mdio_read	= ks8851_phy_read;
1463	ks->mii.mdio_write	= ks8851_phy_write;
1464
1465	dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1466
1467	/* set the default message enable */
1468	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1469						     NETIF_MSG_PROBE |
1470						     NETIF_MSG_LINK));
1471
1472	skb_queue_head_init(&ks->txq);
1473
1474	SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1475	SET_NETDEV_DEV(ndev, &spi->dev);
1476
1477	spi_set_drvdata(spi, ks);
1478
1479	ndev->if_port = IF_PORT_100BASET;
1480	ndev->netdev_ops = &ks8851_netdev_ops;
1481	ndev->irq = spi->irq;
1482
1483	/* issue a global soft reset to reset the device. */
1484	ks8851_soft_reset(ks, GRR_GSR);
1485
1486	/* simple check for a valid chip being connected to the bus */
1487	cider = ks8851_rdreg16(ks, KS_CIDER);
1488	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1489		dev_err(&spi->dev, "failed to read device ID\n");
1490		ret = -ENODEV;
1491		goto err_id;
1492	}
1493
1494	/* cache the contents of the CCR register for EEPROM, etc. */
1495	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1496
1497	if (ks->rc_ccr & CCR_EEPROM)
1498		ks->eeprom_size = 128;
1499	else
1500		ks->eeprom_size = 0;
1501
1502	ks8851_read_selftest(ks);
1503	ks8851_init_mac(ks);
1504
1505	ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
1506				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1507				   ndev->name, ks);
1508	if (ret < 0) {
1509		dev_err(&spi->dev, "failed to get irq\n");
1510		goto err_irq;
1511	}
1512
1513	ret = register_netdev(ndev);
1514	if (ret) {
1515		dev_err(&spi->dev, "failed to register network device\n");
1516		goto err_netdev;
1517	}
1518
1519	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1520		    CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1521		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1522
1523	return 0;
1524
1525
1526err_netdev:
1527	free_irq(ndev->irq, ks);
1528
1529err_irq:
1530err_id:
1531	if (!IS_ERR(ks->vdd_reg))
1532		regulator_disable(ks->vdd_reg);
1533err_reg_en:
1534	if (!IS_ERR(ks->vdd_reg))
1535		regulator_put(ks->vdd_reg);
1536err_reg:
1537	free_netdev(ndev);
1538	return ret;
1539}
1540
1541static int ks8851_remove(struct spi_device *spi)
1542{
1543	struct ks8851_net *priv = spi_get_drvdata(spi);
1544
1545	if (netif_msg_drv(priv))
1546		dev_info(&spi->dev, "remove\n");
1547
1548	unregister_netdev(priv->netdev);
1549	free_irq(spi->irq, priv);
1550	if (!IS_ERR(priv->vdd_reg)) {
1551		regulator_disable(priv->vdd_reg);
1552		regulator_put(priv->vdd_reg);
1553	}
1554	free_netdev(priv->netdev);
1555
1556	return 0;
1557}
1558
1559static struct spi_driver ks8851_driver = {
1560	.driver = {
1561		.name = "ks8851",
1562		.owner = THIS_MODULE,
1563		.pm = &ks8851_pm_ops,
1564	},
1565	.probe = ks8851_probe,
1566	.remove = ks8851_remove,
1567};
1568module_spi_driver(ks8851_driver);
1569
1570MODULE_DESCRIPTION("KS8851 Network driver");
1571MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1572MODULE_LICENSE("GPL");
1573
1574module_param_named(message, msg_enable, int, 0);
1575MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1576MODULE_ALIAS("spi:ks8851");