Loading...
1/*
2 * linux/kernel/irq/manage.c
3 *
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006 Thomas Gleixner
6 *
7 * This file contains driver APIs to the irq subsystem.
8 */
9
10#define pr_fmt(fmt) "genirq: " fmt
11
12#include <linux/irq.h>
13#include <linux/kthread.h>
14#include <linux/module.h>
15#include <linux/random.h>
16#include <linux/interrupt.h>
17#include <linux/slab.h>
18#include <linux/sched.h>
19#include <linux/sched/rt.h>
20#include <linux/task_work.h>
21
22#include "internals.h"
23
24#ifdef CONFIG_IRQ_FORCED_THREADING
25__read_mostly bool force_irqthreads;
26
27static int __init setup_forced_irqthreads(char *arg)
28{
29 force_irqthreads = true;
30 return 0;
31}
32early_param("threadirqs", setup_forced_irqthreads);
33#endif
34
35static void __synchronize_hardirq(struct irq_desc *desc)
36{
37 bool inprogress;
38
39 do {
40 unsigned long flags;
41
42 /*
43 * Wait until we're out of the critical section. This might
44 * give the wrong answer due to the lack of memory barriers.
45 */
46 while (irqd_irq_inprogress(&desc->irq_data))
47 cpu_relax();
48
49 /* Ok, that indicated we're done: double-check carefully. */
50 raw_spin_lock_irqsave(&desc->lock, flags);
51 inprogress = irqd_irq_inprogress(&desc->irq_data);
52 raw_spin_unlock_irqrestore(&desc->lock, flags);
53
54 /* Oops, that failed? */
55 } while (inprogress);
56}
57
58/**
59 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
60 * @irq: interrupt number to wait for
61 *
62 * This function waits for any pending hard IRQ handlers for this
63 * interrupt to complete before returning. If you use this
64 * function while holding a resource the IRQ handler may need you
65 * will deadlock. It does not take associated threaded handlers
66 * into account.
67 *
68 * Do not use this for shutdown scenarios where you must be sure
69 * that all parts (hardirq and threaded handler) have completed.
70 *
71 * This function may be called - with care - from IRQ context.
72 */
73void synchronize_hardirq(unsigned int irq)
74{
75 struct irq_desc *desc = irq_to_desc(irq);
76
77 if (desc)
78 __synchronize_hardirq(desc);
79}
80EXPORT_SYMBOL(synchronize_hardirq);
81
82/**
83 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
84 * @irq: interrupt number to wait for
85 *
86 * This function waits for any pending IRQ handlers for this interrupt
87 * to complete before returning. If you use this function while
88 * holding a resource the IRQ handler may need you will deadlock.
89 *
90 * This function may be called - with care - from IRQ context.
91 */
92void synchronize_irq(unsigned int irq)
93{
94 struct irq_desc *desc = irq_to_desc(irq);
95
96 if (desc) {
97 __synchronize_hardirq(desc);
98 /*
99 * We made sure that no hardirq handler is
100 * running. Now verify that no threaded handlers are
101 * active.
102 */
103 wait_event(desc->wait_for_threads,
104 !atomic_read(&desc->threads_active));
105 }
106}
107EXPORT_SYMBOL(synchronize_irq);
108
109#ifdef CONFIG_SMP
110cpumask_var_t irq_default_affinity;
111
112/**
113 * irq_can_set_affinity - Check if the affinity of a given irq can be set
114 * @irq: Interrupt to check
115 *
116 */
117int irq_can_set_affinity(unsigned int irq)
118{
119 struct irq_desc *desc = irq_to_desc(irq);
120
121 if (!desc || !irqd_can_balance(&desc->irq_data) ||
122 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
123 return 0;
124
125 return 1;
126}
127
128/**
129 * irq_set_thread_affinity - Notify irq threads to adjust affinity
130 * @desc: irq descriptor which has affitnity changed
131 *
132 * We just set IRQTF_AFFINITY and delegate the affinity setting
133 * to the interrupt thread itself. We can not call
134 * set_cpus_allowed_ptr() here as we hold desc->lock and this
135 * code can be called from hard interrupt context.
136 */
137void irq_set_thread_affinity(struct irq_desc *desc)
138{
139 struct irqaction *action = desc->action;
140
141 while (action) {
142 if (action->thread)
143 set_bit(IRQTF_AFFINITY, &action->thread_flags);
144 action = action->next;
145 }
146}
147
148#ifdef CONFIG_GENERIC_PENDING_IRQ
149static inline bool irq_can_move_pcntxt(struct irq_data *data)
150{
151 return irqd_can_move_in_process_context(data);
152}
153static inline bool irq_move_pending(struct irq_data *data)
154{
155 return irqd_is_setaffinity_pending(data);
156}
157static inline void
158irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask)
159{
160 cpumask_copy(desc->pending_mask, mask);
161}
162static inline void
163irq_get_pending(struct cpumask *mask, struct irq_desc *desc)
164{
165 cpumask_copy(mask, desc->pending_mask);
166}
167#else
168static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; }
169static inline bool irq_move_pending(struct irq_data *data) { return false; }
170static inline void
171irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { }
172static inline void
173irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { }
174#endif
175
176int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
177 bool force)
178{
179 struct irq_desc *desc = irq_data_to_desc(data);
180 struct irq_chip *chip = irq_data_get_irq_chip(data);
181 int ret;
182
183 ret = chip->irq_set_affinity(data, mask, force);
184 switch (ret) {
185 case IRQ_SET_MASK_OK:
186 cpumask_copy(data->affinity, mask);
187 case IRQ_SET_MASK_OK_NOCOPY:
188 irq_set_thread_affinity(desc);
189 ret = 0;
190 }
191
192 return ret;
193}
194
195int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
196 bool force)
197{
198 struct irq_chip *chip = irq_data_get_irq_chip(data);
199 struct irq_desc *desc = irq_data_to_desc(data);
200 int ret = 0;
201
202 if (!chip || !chip->irq_set_affinity)
203 return -EINVAL;
204
205 if (irq_can_move_pcntxt(data)) {
206 ret = irq_do_set_affinity(data, mask, force);
207 } else {
208 irqd_set_move_pending(data);
209 irq_copy_pending(desc, mask);
210 }
211
212 if (desc->affinity_notify) {
213 kref_get(&desc->affinity_notify->kref);
214 schedule_work(&desc->affinity_notify->work);
215 }
216 irqd_set(data, IRQD_AFFINITY_SET);
217
218 return ret;
219}
220
221int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
222{
223 struct irq_desc *desc = irq_to_desc(irq);
224 unsigned long flags;
225 int ret;
226
227 if (!desc)
228 return -EINVAL;
229
230 raw_spin_lock_irqsave(&desc->lock, flags);
231 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
232 raw_spin_unlock_irqrestore(&desc->lock, flags);
233 return ret;
234}
235
236int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
237{
238 unsigned long flags;
239 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
240
241 if (!desc)
242 return -EINVAL;
243 desc->affinity_hint = m;
244 irq_put_desc_unlock(desc, flags);
245 return 0;
246}
247EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
248
249static void irq_affinity_notify(struct work_struct *work)
250{
251 struct irq_affinity_notify *notify =
252 container_of(work, struct irq_affinity_notify, work);
253 struct irq_desc *desc = irq_to_desc(notify->irq);
254 cpumask_var_t cpumask;
255 unsigned long flags;
256
257 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
258 goto out;
259
260 raw_spin_lock_irqsave(&desc->lock, flags);
261 if (irq_move_pending(&desc->irq_data))
262 irq_get_pending(cpumask, desc);
263 else
264 cpumask_copy(cpumask, desc->irq_data.affinity);
265 raw_spin_unlock_irqrestore(&desc->lock, flags);
266
267 notify->notify(notify, cpumask);
268
269 free_cpumask_var(cpumask);
270out:
271 kref_put(¬ify->kref, notify->release);
272}
273
274/**
275 * irq_set_affinity_notifier - control notification of IRQ affinity changes
276 * @irq: Interrupt for which to enable/disable notification
277 * @notify: Context for notification, or %NULL to disable
278 * notification. Function pointers must be initialised;
279 * the other fields will be initialised by this function.
280 *
281 * Must be called in process context. Notification may only be enabled
282 * after the IRQ is allocated and must be disabled before the IRQ is
283 * freed using free_irq().
284 */
285int
286irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
287{
288 struct irq_desc *desc = irq_to_desc(irq);
289 struct irq_affinity_notify *old_notify;
290 unsigned long flags;
291
292 /* The release function is promised process context */
293 might_sleep();
294
295 if (!desc)
296 return -EINVAL;
297
298 /* Complete initialisation of *notify */
299 if (notify) {
300 notify->irq = irq;
301 kref_init(¬ify->kref);
302 INIT_WORK(¬ify->work, irq_affinity_notify);
303 }
304
305 raw_spin_lock_irqsave(&desc->lock, flags);
306 old_notify = desc->affinity_notify;
307 desc->affinity_notify = notify;
308 raw_spin_unlock_irqrestore(&desc->lock, flags);
309
310 if (old_notify)
311 kref_put(&old_notify->kref, old_notify->release);
312
313 return 0;
314}
315EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
316
317#ifndef CONFIG_AUTO_IRQ_AFFINITY
318/*
319 * Generic version of the affinity autoselector.
320 */
321static int
322setup_affinity(unsigned int irq, struct irq_desc *desc, struct cpumask *mask)
323{
324 struct cpumask *set = irq_default_affinity;
325 int node = desc->irq_data.node;
326
327 /* Excludes PER_CPU and NO_BALANCE interrupts */
328 if (!irq_can_set_affinity(irq))
329 return 0;
330
331 /*
332 * Preserve an userspace affinity setup, but make sure that
333 * one of the targets is online.
334 */
335 if (irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
336 if (cpumask_intersects(desc->irq_data.affinity,
337 cpu_online_mask))
338 set = desc->irq_data.affinity;
339 else
340 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
341 }
342
343 cpumask_and(mask, cpu_online_mask, set);
344 if (node != NUMA_NO_NODE) {
345 const struct cpumask *nodemask = cpumask_of_node(node);
346
347 /* make sure at least one of the cpus in nodemask is online */
348 if (cpumask_intersects(mask, nodemask))
349 cpumask_and(mask, mask, nodemask);
350 }
351 irq_do_set_affinity(&desc->irq_data, mask, false);
352 return 0;
353}
354#else
355static inline int
356setup_affinity(unsigned int irq, struct irq_desc *d, struct cpumask *mask)
357{
358 return irq_select_affinity(irq);
359}
360#endif
361
362/*
363 * Called when affinity is set via /proc/irq
364 */
365int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask)
366{
367 struct irq_desc *desc = irq_to_desc(irq);
368 unsigned long flags;
369 int ret;
370
371 raw_spin_lock_irqsave(&desc->lock, flags);
372 ret = setup_affinity(irq, desc, mask);
373 raw_spin_unlock_irqrestore(&desc->lock, flags);
374 return ret;
375}
376
377#else
378static inline int
379setup_affinity(unsigned int irq, struct irq_desc *desc, struct cpumask *mask)
380{
381 return 0;
382}
383#endif
384
385void __disable_irq(struct irq_desc *desc, unsigned int irq, bool suspend)
386{
387 if (suspend) {
388 if (!desc->action || (desc->action->flags & IRQF_NO_SUSPEND))
389 return;
390 desc->istate |= IRQS_SUSPENDED;
391 }
392
393 if (!desc->depth++)
394 irq_disable(desc);
395}
396
397static int __disable_irq_nosync(unsigned int irq)
398{
399 unsigned long flags;
400 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
401
402 if (!desc)
403 return -EINVAL;
404 __disable_irq(desc, irq, false);
405 irq_put_desc_busunlock(desc, flags);
406 return 0;
407}
408
409/**
410 * disable_irq_nosync - disable an irq without waiting
411 * @irq: Interrupt to disable
412 *
413 * Disable the selected interrupt line. Disables and Enables are
414 * nested.
415 * Unlike disable_irq(), this function does not ensure existing
416 * instances of the IRQ handler have completed before returning.
417 *
418 * This function may be called from IRQ context.
419 */
420void disable_irq_nosync(unsigned int irq)
421{
422 __disable_irq_nosync(irq);
423}
424EXPORT_SYMBOL(disable_irq_nosync);
425
426/**
427 * disable_irq - disable an irq and wait for completion
428 * @irq: Interrupt to disable
429 *
430 * Disable the selected interrupt line. Enables and Disables are
431 * nested.
432 * This function waits for any pending IRQ handlers for this interrupt
433 * to complete before returning. If you use this function while
434 * holding a resource the IRQ handler may need you will deadlock.
435 *
436 * This function may be called - with care - from IRQ context.
437 */
438void disable_irq(unsigned int irq)
439{
440 if (!__disable_irq_nosync(irq))
441 synchronize_irq(irq);
442}
443EXPORT_SYMBOL(disable_irq);
444
445void __enable_irq(struct irq_desc *desc, unsigned int irq, bool resume)
446{
447 if (resume) {
448 if (!(desc->istate & IRQS_SUSPENDED)) {
449 if (!desc->action)
450 return;
451 if (!(desc->action->flags & IRQF_FORCE_RESUME))
452 return;
453 /* Pretend that it got disabled ! */
454 desc->depth++;
455 }
456 desc->istate &= ~IRQS_SUSPENDED;
457 }
458
459 switch (desc->depth) {
460 case 0:
461 err_out:
462 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", irq);
463 break;
464 case 1: {
465 if (desc->istate & IRQS_SUSPENDED)
466 goto err_out;
467 /* Prevent probing on this irq: */
468 irq_settings_set_noprobe(desc);
469 irq_enable(desc);
470 check_irq_resend(desc, irq);
471 /* fall-through */
472 }
473 default:
474 desc->depth--;
475 }
476}
477
478/**
479 * enable_irq - enable handling of an irq
480 * @irq: Interrupt to enable
481 *
482 * Undoes the effect of one call to disable_irq(). If this
483 * matches the last disable, processing of interrupts on this
484 * IRQ line is re-enabled.
485 *
486 * This function may be called from IRQ context only when
487 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
488 */
489void enable_irq(unsigned int irq)
490{
491 unsigned long flags;
492 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
493
494 if (!desc)
495 return;
496 if (WARN(!desc->irq_data.chip,
497 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
498 goto out;
499
500 __enable_irq(desc, irq, false);
501out:
502 irq_put_desc_busunlock(desc, flags);
503}
504EXPORT_SYMBOL(enable_irq);
505
506static int set_irq_wake_real(unsigned int irq, unsigned int on)
507{
508 struct irq_desc *desc = irq_to_desc(irq);
509 int ret = -ENXIO;
510
511 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
512 return 0;
513
514 if (desc->irq_data.chip->irq_set_wake)
515 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
516
517 return ret;
518}
519
520/**
521 * irq_set_irq_wake - control irq power management wakeup
522 * @irq: interrupt to control
523 * @on: enable/disable power management wakeup
524 *
525 * Enable/disable power management wakeup mode, which is
526 * disabled by default. Enables and disables must match,
527 * just as they match for non-wakeup mode support.
528 *
529 * Wakeup mode lets this IRQ wake the system from sleep
530 * states like "suspend to RAM".
531 */
532int irq_set_irq_wake(unsigned int irq, unsigned int on)
533{
534 unsigned long flags;
535 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
536 int ret = 0;
537
538 if (!desc)
539 return -EINVAL;
540
541 /* wakeup-capable irqs can be shared between drivers that
542 * don't need to have the same sleep mode behaviors.
543 */
544 if (on) {
545 if (desc->wake_depth++ == 0) {
546 ret = set_irq_wake_real(irq, on);
547 if (ret)
548 desc->wake_depth = 0;
549 else
550 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
551 }
552 } else {
553 if (desc->wake_depth == 0) {
554 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
555 } else if (--desc->wake_depth == 0) {
556 ret = set_irq_wake_real(irq, on);
557 if (ret)
558 desc->wake_depth = 1;
559 else
560 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
561 }
562 }
563 irq_put_desc_busunlock(desc, flags);
564 return ret;
565}
566EXPORT_SYMBOL(irq_set_irq_wake);
567
568/*
569 * Internal function that tells the architecture code whether a
570 * particular irq has been exclusively allocated or is available
571 * for driver use.
572 */
573int can_request_irq(unsigned int irq, unsigned long irqflags)
574{
575 unsigned long flags;
576 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
577 int canrequest = 0;
578
579 if (!desc)
580 return 0;
581
582 if (irq_settings_can_request(desc)) {
583 if (!desc->action ||
584 irqflags & desc->action->flags & IRQF_SHARED)
585 canrequest = 1;
586 }
587 irq_put_desc_unlock(desc, flags);
588 return canrequest;
589}
590
591int __irq_set_trigger(struct irq_desc *desc, unsigned int irq,
592 unsigned long flags)
593{
594 struct irq_chip *chip = desc->irq_data.chip;
595 int ret, unmask = 0;
596
597 if (!chip || !chip->irq_set_type) {
598 /*
599 * IRQF_TRIGGER_* but the PIC does not support multiple
600 * flow-types?
601 */
602 pr_debug("No set_type function for IRQ %d (%s)\n", irq,
603 chip ? (chip->name ? : "unknown") : "unknown");
604 return 0;
605 }
606
607 flags &= IRQ_TYPE_SENSE_MASK;
608
609 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
610 if (!irqd_irq_masked(&desc->irq_data))
611 mask_irq(desc);
612 if (!irqd_irq_disabled(&desc->irq_data))
613 unmask = 1;
614 }
615
616 /* caller masked out all except trigger mode flags */
617 ret = chip->irq_set_type(&desc->irq_data, flags);
618
619 switch (ret) {
620 case IRQ_SET_MASK_OK:
621 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
622 irqd_set(&desc->irq_data, flags);
623
624 case IRQ_SET_MASK_OK_NOCOPY:
625 flags = irqd_get_trigger_type(&desc->irq_data);
626 irq_settings_set_trigger_mask(desc, flags);
627 irqd_clear(&desc->irq_data, IRQD_LEVEL);
628 irq_settings_clr_level(desc);
629 if (flags & IRQ_TYPE_LEVEL_MASK) {
630 irq_settings_set_level(desc);
631 irqd_set(&desc->irq_data, IRQD_LEVEL);
632 }
633
634 ret = 0;
635 break;
636 default:
637 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
638 flags, irq, chip->irq_set_type);
639 }
640 if (unmask)
641 unmask_irq(desc);
642 return ret;
643}
644
645#ifdef CONFIG_HARDIRQS_SW_RESEND
646int irq_set_parent(int irq, int parent_irq)
647{
648 unsigned long flags;
649 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
650
651 if (!desc)
652 return -EINVAL;
653
654 desc->parent_irq = parent_irq;
655
656 irq_put_desc_unlock(desc, flags);
657 return 0;
658}
659#endif
660
661/*
662 * Default primary interrupt handler for threaded interrupts. Is
663 * assigned as primary handler when request_threaded_irq is called
664 * with handler == NULL. Useful for oneshot interrupts.
665 */
666static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
667{
668 return IRQ_WAKE_THREAD;
669}
670
671/*
672 * Primary handler for nested threaded interrupts. Should never be
673 * called.
674 */
675static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
676{
677 WARN(1, "Primary handler called for nested irq %d\n", irq);
678 return IRQ_NONE;
679}
680
681static int irq_wait_for_interrupt(struct irqaction *action)
682{
683 set_current_state(TASK_INTERRUPTIBLE);
684
685 while (!kthread_should_stop()) {
686
687 if (test_and_clear_bit(IRQTF_RUNTHREAD,
688 &action->thread_flags)) {
689 __set_current_state(TASK_RUNNING);
690 return 0;
691 }
692 schedule();
693 set_current_state(TASK_INTERRUPTIBLE);
694 }
695 __set_current_state(TASK_RUNNING);
696 return -1;
697}
698
699/*
700 * Oneshot interrupts keep the irq line masked until the threaded
701 * handler finished. unmask if the interrupt has not been disabled and
702 * is marked MASKED.
703 */
704static void irq_finalize_oneshot(struct irq_desc *desc,
705 struct irqaction *action)
706{
707 if (!(desc->istate & IRQS_ONESHOT))
708 return;
709again:
710 chip_bus_lock(desc);
711 raw_spin_lock_irq(&desc->lock);
712
713 /*
714 * Implausible though it may be we need to protect us against
715 * the following scenario:
716 *
717 * The thread is faster done than the hard interrupt handler
718 * on the other CPU. If we unmask the irq line then the
719 * interrupt can come in again and masks the line, leaves due
720 * to IRQS_INPROGRESS and the irq line is masked forever.
721 *
722 * This also serializes the state of shared oneshot handlers
723 * versus "desc->threads_onehsot |= action->thread_mask;" in
724 * irq_wake_thread(). See the comment there which explains the
725 * serialization.
726 */
727 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
728 raw_spin_unlock_irq(&desc->lock);
729 chip_bus_sync_unlock(desc);
730 cpu_relax();
731 goto again;
732 }
733
734 /*
735 * Now check again, whether the thread should run. Otherwise
736 * we would clear the threads_oneshot bit of this thread which
737 * was just set.
738 */
739 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
740 goto out_unlock;
741
742 desc->threads_oneshot &= ~action->thread_mask;
743
744 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
745 irqd_irq_masked(&desc->irq_data))
746 unmask_threaded_irq(desc);
747
748out_unlock:
749 raw_spin_unlock_irq(&desc->lock);
750 chip_bus_sync_unlock(desc);
751}
752
753#ifdef CONFIG_SMP
754/*
755 * Check whether we need to change the affinity of the interrupt thread.
756 */
757static void
758irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
759{
760 cpumask_var_t mask;
761 bool valid = true;
762
763 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
764 return;
765
766 /*
767 * In case we are out of memory we set IRQTF_AFFINITY again and
768 * try again next time
769 */
770 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
771 set_bit(IRQTF_AFFINITY, &action->thread_flags);
772 return;
773 }
774
775 raw_spin_lock_irq(&desc->lock);
776 /*
777 * This code is triggered unconditionally. Check the affinity
778 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
779 */
780 if (desc->irq_data.affinity)
781 cpumask_copy(mask, desc->irq_data.affinity);
782 else
783 valid = false;
784 raw_spin_unlock_irq(&desc->lock);
785
786 if (valid)
787 set_cpus_allowed_ptr(current, mask);
788 free_cpumask_var(mask);
789}
790#else
791static inline void
792irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
793#endif
794
795/*
796 * Interrupts which are not explicitely requested as threaded
797 * interrupts rely on the implicit bh/preempt disable of the hard irq
798 * context. So we need to disable bh here to avoid deadlocks and other
799 * side effects.
800 */
801static irqreturn_t
802irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
803{
804 irqreturn_t ret;
805
806 local_bh_disable();
807 ret = action->thread_fn(action->irq, action->dev_id);
808 irq_finalize_oneshot(desc, action);
809 local_bh_enable();
810 return ret;
811}
812
813/*
814 * Interrupts explicitly requested as threaded interrupts want to be
815 * preemtible - many of them need to sleep and wait for slow busses to
816 * complete.
817 */
818static irqreturn_t irq_thread_fn(struct irq_desc *desc,
819 struct irqaction *action)
820{
821 irqreturn_t ret;
822
823 ret = action->thread_fn(action->irq, action->dev_id);
824 irq_finalize_oneshot(desc, action);
825 return ret;
826}
827
828static void wake_threads_waitq(struct irq_desc *desc)
829{
830 if (atomic_dec_and_test(&desc->threads_active))
831 wake_up(&desc->wait_for_threads);
832}
833
834static void irq_thread_dtor(struct callback_head *unused)
835{
836 struct task_struct *tsk = current;
837 struct irq_desc *desc;
838 struct irqaction *action;
839
840 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
841 return;
842
843 action = kthread_data(tsk);
844
845 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
846 tsk->comm, tsk->pid, action->irq);
847
848
849 desc = irq_to_desc(action->irq);
850 /*
851 * If IRQTF_RUNTHREAD is set, we need to decrement
852 * desc->threads_active and wake possible waiters.
853 */
854 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
855 wake_threads_waitq(desc);
856
857 /* Prevent a stale desc->threads_oneshot */
858 irq_finalize_oneshot(desc, action);
859}
860
861/*
862 * Interrupt handler thread
863 */
864static int irq_thread(void *data)
865{
866 struct callback_head on_exit_work;
867 struct irqaction *action = data;
868 struct irq_desc *desc = irq_to_desc(action->irq);
869 irqreturn_t (*handler_fn)(struct irq_desc *desc,
870 struct irqaction *action);
871
872 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
873 &action->thread_flags))
874 handler_fn = irq_forced_thread_fn;
875 else
876 handler_fn = irq_thread_fn;
877
878 init_task_work(&on_exit_work, irq_thread_dtor);
879 task_work_add(current, &on_exit_work, false);
880
881 irq_thread_check_affinity(desc, action);
882
883 while (!irq_wait_for_interrupt(action)) {
884 irqreturn_t action_ret;
885
886 irq_thread_check_affinity(desc, action);
887
888 action_ret = handler_fn(desc, action);
889 if (!noirqdebug)
890 note_interrupt(action->irq, desc, action_ret);
891
892 wake_threads_waitq(desc);
893 }
894
895 /*
896 * This is the regular exit path. __free_irq() is stopping the
897 * thread via kthread_stop() after calling
898 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
899 * oneshot mask bit can be set. We cannot verify that as we
900 * cannot touch the oneshot mask at this point anymore as
901 * __setup_irq() might have given out currents thread_mask
902 * again.
903 */
904 task_work_cancel(current, irq_thread_dtor);
905 return 0;
906}
907
908/**
909 * irq_wake_thread - wake the irq thread for the action identified by dev_id
910 * @irq: Interrupt line
911 * @dev_id: Device identity for which the thread should be woken
912 *
913 */
914void irq_wake_thread(unsigned int irq, void *dev_id)
915{
916 struct irq_desc *desc = irq_to_desc(irq);
917 struct irqaction *action;
918 unsigned long flags;
919
920 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
921 return;
922
923 raw_spin_lock_irqsave(&desc->lock, flags);
924 for (action = desc->action; action; action = action->next) {
925 if (action->dev_id == dev_id) {
926 if (action->thread)
927 __irq_wake_thread(desc, action);
928 break;
929 }
930 }
931 raw_spin_unlock_irqrestore(&desc->lock, flags);
932}
933EXPORT_SYMBOL_GPL(irq_wake_thread);
934
935static void irq_setup_forced_threading(struct irqaction *new)
936{
937 if (!force_irqthreads)
938 return;
939 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
940 return;
941
942 new->flags |= IRQF_ONESHOT;
943
944 if (!new->thread_fn) {
945 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
946 new->thread_fn = new->handler;
947 new->handler = irq_default_primary_handler;
948 }
949}
950
951static int irq_request_resources(struct irq_desc *desc)
952{
953 struct irq_data *d = &desc->irq_data;
954 struct irq_chip *c = d->chip;
955
956 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
957}
958
959static void irq_release_resources(struct irq_desc *desc)
960{
961 struct irq_data *d = &desc->irq_data;
962 struct irq_chip *c = d->chip;
963
964 if (c->irq_release_resources)
965 c->irq_release_resources(d);
966}
967
968/*
969 * Internal function to register an irqaction - typically used to
970 * allocate special interrupts that are part of the architecture.
971 */
972static int
973__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
974{
975 struct irqaction *old, **old_ptr;
976 unsigned long flags, thread_mask = 0;
977 int ret, nested, shared = 0;
978 cpumask_var_t mask;
979
980 if (!desc)
981 return -EINVAL;
982
983 if (desc->irq_data.chip == &no_irq_chip)
984 return -ENOSYS;
985 if (!try_module_get(desc->owner))
986 return -ENODEV;
987
988 /*
989 * Check whether the interrupt nests into another interrupt
990 * thread.
991 */
992 nested = irq_settings_is_nested_thread(desc);
993 if (nested) {
994 if (!new->thread_fn) {
995 ret = -EINVAL;
996 goto out_mput;
997 }
998 /*
999 * Replace the primary handler which was provided from
1000 * the driver for non nested interrupt handling by the
1001 * dummy function which warns when called.
1002 */
1003 new->handler = irq_nested_primary_handler;
1004 } else {
1005 if (irq_settings_can_thread(desc))
1006 irq_setup_forced_threading(new);
1007 }
1008
1009 /*
1010 * Create a handler thread when a thread function is supplied
1011 * and the interrupt does not nest into another interrupt
1012 * thread.
1013 */
1014 if (new->thread_fn && !nested) {
1015 struct task_struct *t;
1016 static const struct sched_param param = {
1017 .sched_priority = MAX_USER_RT_PRIO/2,
1018 };
1019
1020 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1021 new->name);
1022 if (IS_ERR(t)) {
1023 ret = PTR_ERR(t);
1024 goto out_mput;
1025 }
1026
1027 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m);
1028
1029 /*
1030 * We keep the reference to the task struct even if
1031 * the thread dies to avoid that the interrupt code
1032 * references an already freed task_struct.
1033 */
1034 get_task_struct(t);
1035 new->thread = t;
1036 /*
1037 * Tell the thread to set its affinity. This is
1038 * important for shared interrupt handlers as we do
1039 * not invoke setup_affinity() for the secondary
1040 * handlers as everything is already set up. Even for
1041 * interrupts marked with IRQF_NO_BALANCE this is
1042 * correct as we want the thread to move to the cpu(s)
1043 * on which the requesting code placed the interrupt.
1044 */
1045 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1046 }
1047
1048 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1049 ret = -ENOMEM;
1050 goto out_thread;
1051 }
1052
1053 /*
1054 * Drivers are often written to work w/o knowledge about the
1055 * underlying irq chip implementation, so a request for a
1056 * threaded irq without a primary hard irq context handler
1057 * requires the ONESHOT flag to be set. Some irq chips like
1058 * MSI based interrupts are per se one shot safe. Check the
1059 * chip flags, so we can avoid the unmask dance at the end of
1060 * the threaded handler for those.
1061 */
1062 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1063 new->flags &= ~IRQF_ONESHOT;
1064
1065 /*
1066 * The following block of code has to be executed atomically
1067 */
1068 raw_spin_lock_irqsave(&desc->lock, flags);
1069 old_ptr = &desc->action;
1070 old = *old_ptr;
1071 if (old) {
1072 /*
1073 * Can't share interrupts unless both agree to and are
1074 * the same type (level, edge, polarity). So both flag
1075 * fields must have IRQF_SHARED set and the bits which
1076 * set the trigger type must match. Also all must
1077 * agree on ONESHOT.
1078 */
1079 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1080 ((old->flags ^ new->flags) & IRQF_TRIGGER_MASK) ||
1081 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1082 goto mismatch;
1083
1084 /* All handlers must agree on per-cpuness */
1085 if ((old->flags & IRQF_PERCPU) !=
1086 (new->flags & IRQF_PERCPU))
1087 goto mismatch;
1088
1089 /* add new interrupt at end of irq queue */
1090 do {
1091 /*
1092 * Or all existing action->thread_mask bits,
1093 * so we can find the next zero bit for this
1094 * new action.
1095 */
1096 thread_mask |= old->thread_mask;
1097 old_ptr = &old->next;
1098 old = *old_ptr;
1099 } while (old);
1100 shared = 1;
1101 }
1102
1103 /*
1104 * Setup the thread mask for this irqaction for ONESHOT. For
1105 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1106 * conditional in irq_wake_thread().
1107 */
1108 if (new->flags & IRQF_ONESHOT) {
1109 /*
1110 * Unlikely to have 32 resp 64 irqs sharing one line,
1111 * but who knows.
1112 */
1113 if (thread_mask == ~0UL) {
1114 ret = -EBUSY;
1115 goto out_mask;
1116 }
1117 /*
1118 * The thread_mask for the action is or'ed to
1119 * desc->thread_active to indicate that the
1120 * IRQF_ONESHOT thread handler has been woken, but not
1121 * yet finished. The bit is cleared when a thread
1122 * completes. When all threads of a shared interrupt
1123 * line have completed desc->threads_active becomes
1124 * zero and the interrupt line is unmasked. See
1125 * handle.c:irq_wake_thread() for further information.
1126 *
1127 * If no thread is woken by primary (hard irq context)
1128 * interrupt handlers, then desc->threads_active is
1129 * also checked for zero to unmask the irq line in the
1130 * affected hard irq flow handlers
1131 * (handle_[fasteoi|level]_irq).
1132 *
1133 * The new action gets the first zero bit of
1134 * thread_mask assigned. See the loop above which or's
1135 * all existing action->thread_mask bits.
1136 */
1137 new->thread_mask = 1 << ffz(thread_mask);
1138
1139 } else if (new->handler == irq_default_primary_handler &&
1140 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1141 /*
1142 * The interrupt was requested with handler = NULL, so
1143 * we use the default primary handler for it. But it
1144 * does not have the oneshot flag set. In combination
1145 * with level interrupts this is deadly, because the
1146 * default primary handler just wakes the thread, then
1147 * the irq lines is reenabled, but the device still
1148 * has the level irq asserted. Rinse and repeat....
1149 *
1150 * While this works for edge type interrupts, we play
1151 * it safe and reject unconditionally because we can't
1152 * say for sure which type this interrupt really
1153 * has. The type flags are unreliable as the
1154 * underlying chip implementation can override them.
1155 */
1156 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1157 irq);
1158 ret = -EINVAL;
1159 goto out_mask;
1160 }
1161
1162 if (!shared) {
1163 ret = irq_request_resources(desc);
1164 if (ret) {
1165 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1166 new->name, irq, desc->irq_data.chip->name);
1167 goto out_mask;
1168 }
1169
1170 init_waitqueue_head(&desc->wait_for_threads);
1171
1172 /* Setup the type (level, edge polarity) if configured: */
1173 if (new->flags & IRQF_TRIGGER_MASK) {
1174 ret = __irq_set_trigger(desc, irq,
1175 new->flags & IRQF_TRIGGER_MASK);
1176
1177 if (ret)
1178 goto out_mask;
1179 }
1180
1181 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1182 IRQS_ONESHOT | IRQS_WAITING);
1183 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1184
1185 if (new->flags & IRQF_PERCPU) {
1186 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1187 irq_settings_set_per_cpu(desc);
1188 }
1189
1190 if (new->flags & IRQF_ONESHOT)
1191 desc->istate |= IRQS_ONESHOT;
1192
1193 if (irq_settings_can_autoenable(desc))
1194 irq_startup(desc, true);
1195 else
1196 /* Undo nested disables: */
1197 desc->depth = 1;
1198
1199 /* Exclude IRQ from balancing if requested */
1200 if (new->flags & IRQF_NOBALANCING) {
1201 irq_settings_set_no_balancing(desc);
1202 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1203 }
1204
1205 /* Set default affinity mask once everything is setup */
1206 setup_affinity(irq, desc, mask);
1207
1208 } else if (new->flags & IRQF_TRIGGER_MASK) {
1209 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1210 unsigned int omsk = irq_settings_get_trigger_mask(desc);
1211
1212 if (nmsk != omsk)
1213 /* hope the handler works with current trigger mode */
1214 pr_warning("irq %d uses trigger mode %u; requested %u\n",
1215 irq, nmsk, omsk);
1216 }
1217
1218 new->irq = irq;
1219 *old_ptr = new;
1220
1221 /* Reset broken irq detection when installing new handler */
1222 desc->irq_count = 0;
1223 desc->irqs_unhandled = 0;
1224
1225 /*
1226 * Check whether we disabled the irq via the spurious handler
1227 * before. Reenable it and give it another chance.
1228 */
1229 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1230 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1231 __enable_irq(desc, irq, false);
1232 }
1233
1234 raw_spin_unlock_irqrestore(&desc->lock, flags);
1235
1236 /*
1237 * Strictly no need to wake it up, but hung_task complains
1238 * when no hard interrupt wakes the thread up.
1239 */
1240 if (new->thread)
1241 wake_up_process(new->thread);
1242
1243 register_irq_proc(irq, desc);
1244 new->dir = NULL;
1245 register_handler_proc(irq, new);
1246 free_cpumask_var(mask);
1247
1248 return 0;
1249
1250mismatch:
1251 if (!(new->flags & IRQF_PROBE_SHARED)) {
1252 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1253 irq, new->flags, new->name, old->flags, old->name);
1254#ifdef CONFIG_DEBUG_SHIRQ
1255 dump_stack();
1256#endif
1257 }
1258 ret = -EBUSY;
1259
1260out_mask:
1261 raw_spin_unlock_irqrestore(&desc->lock, flags);
1262 free_cpumask_var(mask);
1263
1264out_thread:
1265 if (new->thread) {
1266 struct task_struct *t = new->thread;
1267
1268 new->thread = NULL;
1269 kthread_stop(t);
1270 put_task_struct(t);
1271 }
1272out_mput:
1273 module_put(desc->owner);
1274 return ret;
1275}
1276
1277/**
1278 * setup_irq - setup an interrupt
1279 * @irq: Interrupt line to setup
1280 * @act: irqaction for the interrupt
1281 *
1282 * Used to statically setup interrupts in the early boot process.
1283 */
1284int setup_irq(unsigned int irq, struct irqaction *act)
1285{
1286 int retval;
1287 struct irq_desc *desc = irq_to_desc(irq);
1288
1289 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1290 return -EINVAL;
1291 chip_bus_lock(desc);
1292 retval = __setup_irq(irq, desc, act);
1293 chip_bus_sync_unlock(desc);
1294
1295 return retval;
1296}
1297EXPORT_SYMBOL_GPL(setup_irq);
1298
1299/*
1300 * Internal function to unregister an irqaction - used to free
1301 * regular and special interrupts that are part of the architecture.
1302 */
1303static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1304{
1305 struct irq_desc *desc = irq_to_desc(irq);
1306 struct irqaction *action, **action_ptr;
1307 unsigned long flags;
1308
1309 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1310
1311 if (!desc)
1312 return NULL;
1313
1314 raw_spin_lock_irqsave(&desc->lock, flags);
1315
1316 /*
1317 * There can be multiple actions per IRQ descriptor, find the right
1318 * one based on the dev_id:
1319 */
1320 action_ptr = &desc->action;
1321 for (;;) {
1322 action = *action_ptr;
1323
1324 if (!action) {
1325 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1326 raw_spin_unlock_irqrestore(&desc->lock, flags);
1327
1328 return NULL;
1329 }
1330
1331 if (action->dev_id == dev_id)
1332 break;
1333 action_ptr = &action->next;
1334 }
1335
1336 /* Found it - now remove it from the list of entries: */
1337 *action_ptr = action->next;
1338
1339 /* If this was the last handler, shut down the IRQ line: */
1340 if (!desc->action) {
1341 irq_shutdown(desc);
1342 irq_release_resources(desc);
1343 }
1344
1345#ifdef CONFIG_SMP
1346 /* make sure affinity_hint is cleaned up */
1347 if (WARN_ON_ONCE(desc->affinity_hint))
1348 desc->affinity_hint = NULL;
1349#endif
1350
1351 raw_spin_unlock_irqrestore(&desc->lock, flags);
1352
1353 unregister_handler_proc(irq, action);
1354
1355 /* Make sure it's not being used on another CPU: */
1356 synchronize_irq(irq);
1357
1358#ifdef CONFIG_DEBUG_SHIRQ
1359 /*
1360 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1361 * event to happen even now it's being freed, so let's make sure that
1362 * is so by doing an extra call to the handler ....
1363 *
1364 * ( We do this after actually deregistering it, to make sure that a
1365 * 'real' IRQ doesn't run in * parallel with our fake. )
1366 */
1367 if (action->flags & IRQF_SHARED) {
1368 local_irq_save(flags);
1369 action->handler(irq, dev_id);
1370 local_irq_restore(flags);
1371 }
1372#endif
1373
1374 if (action->thread) {
1375 kthread_stop(action->thread);
1376 put_task_struct(action->thread);
1377 }
1378
1379 module_put(desc->owner);
1380 return action;
1381}
1382
1383/**
1384 * remove_irq - free an interrupt
1385 * @irq: Interrupt line to free
1386 * @act: irqaction for the interrupt
1387 *
1388 * Used to remove interrupts statically setup by the early boot process.
1389 */
1390void remove_irq(unsigned int irq, struct irqaction *act)
1391{
1392 struct irq_desc *desc = irq_to_desc(irq);
1393
1394 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1395 __free_irq(irq, act->dev_id);
1396}
1397EXPORT_SYMBOL_GPL(remove_irq);
1398
1399/**
1400 * free_irq - free an interrupt allocated with request_irq
1401 * @irq: Interrupt line to free
1402 * @dev_id: Device identity to free
1403 *
1404 * Remove an interrupt handler. The handler is removed and if the
1405 * interrupt line is no longer in use by any driver it is disabled.
1406 * On a shared IRQ the caller must ensure the interrupt is disabled
1407 * on the card it drives before calling this function. The function
1408 * does not return until any executing interrupts for this IRQ
1409 * have completed.
1410 *
1411 * This function must not be called from interrupt context.
1412 */
1413void free_irq(unsigned int irq, void *dev_id)
1414{
1415 struct irq_desc *desc = irq_to_desc(irq);
1416
1417 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1418 return;
1419
1420#ifdef CONFIG_SMP
1421 if (WARN_ON(desc->affinity_notify))
1422 desc->affinity_notify = NULL;
1423#endif
1424
1425 chip_bus_lock(desc);
1426 kfree(__free_irq(irq, dev_id));
1427 chip_bus_sync_unlock(desc);
1428}
1429EXPORT_SYMBOL(free_irq);
1430
1431/**
1432 * request_threaded_irq - allocate an interrupt line
1433 * @irq: Interrupt line to allocate
1434 * @handler: Function to be called when the IRQ occurs.
1435 * Primary handler for threaded interrupts
1436 * If NULL and thread_fn != NULL the default
1437 * primary handler is installed
1438 * @thread_fn: Function called from the irq handler thread
1439 * If NULL, no irq thread is created
1440 * @irqflags: Interrupt type flags
1441 * @devname: An ascii name for the claiming device
1442 * @dev_id: A cookie passed back to the handler function
1443 *
1444 * This call allocates interrupt resources and enables the
1445 * interrupt line and IRQ handling. From the point this
1446 * call is made your handler function may be invoked. Since
1447 * your handler function must clear any interrupt the board
1448 * raises, you must take care both to initialise your hardware
1449 * and to set up the interrupt handler in the right order.
1450 *
1451 * If you want to set up a threaded irq handler for your device
1452 * then you need to supply @handler and @thread_fn. @handler is
1453 * still called in hard interrupt context and has to check
1454 * whether the interrupt originates from the device. If yes it
1455 * needs to disable the interrupt on the device and return
1456 * IRQ_WAKE_THREAD which will wake up the handler thread and run
1457 * @thread_fn. This split handler design is necessary to support
1458 * shared interrupts.
1459 *
1460 * Dev_id must be globally unique. Normally the address of the
1461 * device data structure is used as the cookie. Since the handler
1462 * receives this value it makes sense to use it.
1463 *
1464 * If your interrupt is shared you must pass a non NULL dev_id
1465 * as this is required when freeing the interrupt.
1466 *
1467 * Flags:
1468 *
1469 * IRQF_SHARED Interrupt is shared
1470 * IRQF_TRIGGER_* Specify active edge(s) or level
1471 *
1472 */
1473int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1474 irq_handler_t thread_fn, unsigned long irqflags,
1475 const char *devname, void *dev_id)
1476{
1477 struct irqaction *action;
1478 struct irq_desc *desc;
1479 int retval;
1480
1481 /*
1482 * Sanity-check: shared interrupts must pass in a real dev-ID,
1483 * otherwise we'll have trouble later trying to figure out
1484 * which interrupt is which (messes up the interrupt freeing
1485 * logic etc).
1486 */
1487 if ((irqflags & IRQF_SHARED) && !dev_id)
1488 return -EINVAL;
1489
1490 desc = irq_to_desc(irq);
1491 if (!desc)
1492 return -EINVAL;
1493
1494 if (!irq_settings_can_request(desc) ||
1495 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1496 return -EINVAL;
1497
1498 if (!handler) {
1499 if (!thread_fn)
1500 return -EINVAL;
1501 handler = irq_default_primary_handler;
1502 }
1503
1504 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1505 if (!action)
1506 return -ENOMEM;
1507
1508 action->handler = handler;
1509 action->thread_fn = thread_fn;
1510 action->flags = irqflags;
1511 action->name = devname;
1512 action->dev_id = dev_id;
1513
1514 chip_bus_lock(desc);
1515 retval = __setup_irq(irq, desc, action);
1516 chip_bus_sync_unlock(desc);
1517
1518 if (retval)
1519 kfree(action);
1520
1521#ifdef CONFIG_DEBUG_SHIRQ_FIXME
1522 if (!retval && (irqflags & IRQF_SHARED)) {
1523 /*
1524 * It's a shared IRQ -- the driver ought to be prepared for it
1525 * to happen immediately, so let's make sure....
1526 * We disable the irq to make sure that a 'real' IRQ doesn't
1527 * run in parallel with our fake.
1528 */
1529 unsigned long flags;
1530
1531 disable_irq(irq);
1532 local_irq_save(flags);
1533
1534 handler(irq, dev_id);
1535
1536 local_irq_restore(flags);
1537 enable_irq(irq);
1538 }
1539#endif
1540 return retval;
1541}
1542EXPORT_SYMBOL(request_threaded_irq);
1543
1544/**
1545 * request_any_context_irq - allocate an interrupt line
1546 * @irq: Interrupt line to allocate
1547 * @handler: Function to be called when the IRQ occurs.
1548 * Threaded handler for threaded interrupts.
1549 * @flags: Interrupt type flags
1550 * @name: An ascii name for the claiming device
1551 * @dev_id: A cookie passed back to the handler function
1552 *
1553 * This call allocates interrupt resources and enables the
1554 * interrupt line and IRQ handling. It selects either a
1555 * hardirq or threaded handling method depending on the
1556 * context.
1557 *
1558 * On failure, it returns a negative value. On success,
1559 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1560 */
1561int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1562 unsigned long flags, const char *name, void *dev_id)
1563{
1564 struct irq_desc *desc = irq_to_desc(irq);
1565 int ret;
1566
1567 if (!desc)
1568 return -EINVAL;
1569
1570 if (irq_settings_is_nested_thread(desc)) {
1571 ret = request_threaded_irq(irq, NULL, handler,
1572 flags, name, dev_id);
1573 return !ret ? IRQC_IS_NESTED : ret;
1574 }
1575
1576 ret = request_irq(irq, handler, flags, name, dev_id);
1577 return !ret ? IRQC_IS_HARDIRQ : ret;
1578}
1579EXPORT_SYMBOL_GPL(request_any_context_irq);
1580
1581void enable_percpu_irq(unsigned int irq, unsigned int type)
1582{
1583 unsigned int cpu = smp_processor_id();
1584 unsigned long flags;
1585 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1586
1587 if (!desc)
1588 return;
1589
1590 type &= IRQ_TYPE_SENSE_MASK;
1591 if (type != IRQ_TYPE_NONE) {
1592 int ret;
1593
1594 ret = __irq_set_trigger(desc, irq, type);
1595
1596 if (ret) {
1597 WARN(1, "failed to set type for IRQ%d\n", irq);
1598 goto out;
1599 }
1600 }
1601
1602 irq_percpu_enable(desc, cpu);
1603out:
1604 irq_put_desc_unlock(desc, flags);
1605}
1606EXPORT_SYMBOL_GPL(enable_percpu_irq);
1607
1608void disable_percpu_irq(unsigned int irq)
1609{
1610 unsigned int cpu = smp_processor_id();
1611 unsigned long flags;
1612 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1613
1614 if (!desc)
1615 return;
1616
1617 irq_percpu_disable(desc, cpu);
1618 irq_put_desc_unlock(desc, flags);
1619}
1620EXPORT_SYMBOL_GPL(disable_percpu_irq);
1621
1622/*
1623 * Internal function to unregister a percpu irqaction.
1624 */
1625static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1626{
1627 struct irq_desc *desc = irq_to_desc(irq);
1628 struct irqaction *action;
1629 unsigned long flags;
1630
1631 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1632
1633 if (!desc)
1634 return NULL;
1635
1636 raw_spin_lock_irqsave(&desc->lock, flags);
1637
1638 action = desc->action;
1639 if (!action || action->percpu_dev_id != dev_id) {
1640 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1641 goto bad;
1642 }
1643
1644 if (!cpumask_empty(desc->percpu_enabled)) {
1645 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1646 irq, cpumask_first(desc->percpu_enabled));
1647 goto bad;
1648 }
1649
1650 /* Found it - now remove it from the list of entries: */
1651 desc->action = NULL;
1652
1653 raw_spin_unlock_irqrestore(&desc->lock, flags);
1654
1655 unregister_handler_proc(irq, action);
1656
1657 module_put(desc->owner);
1658 return action;
1659
1660bad:
1661 raw_spin_unlock_irqrestore(&desc->lock, flags);
1662 return NULL;
1663}
1664
1665/**
1666 * remove_percpu_irq - free a per-cpu interrupt
1667 * @irq: Interrupt line to free
1668 * @act: irqaction for the interrupt
1669 *
1670 * Used to remove interrupts statically setup by the early boot process.
1671 */
1672void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1673{
1674 struct irq_desc *desc = irq_to_desc(irq);
1675
1676 if (desc && irq_settings_is_per_cpu_devid(desc))
1677 __free_percpu_irq(irq, act->percpu_dev_id);
1678}
1679
1680/**
1681 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
1682 * @irq: Interrupt line to free
1683 * @dev_id: Device identity to free
1684 *
1685 * Remove a percpu interrupt handler. The handler is removed, but
1686 * the interrupt line is not disabled. This must be done on each
1687 * CPU before calling this function. The function does not return
1688 * until any executing interrupts for this IRQ have completed.
1689 *
1690 * This function must not be called from interrupt context.
1691 */
1692void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1693{
1694 struct irq_desc *desc = irq_to_desc(irq);
1695
1696 if (!desc || !irq_settings_is_per_cpu_devid(desc))
1697 return;
1698
1699 chip_bus_lock(desc);
1700 kfree(__free_percpu_irq(irq, dev_id));
1701 chip_bus_sync_unlock(desc);
1702}
1703
1704/**
1705 * setup_percpu_irq - setup a per-cpu interrupt
1706 * @irq: Interrupt line to setup
1707 * @act: irqaction for the interrupt
1708 *
1709 * Used to statically setup per-cpu interrupts in the early boot process.
1710 */
1711int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1712{
1713 struct irq_desc *desc = irq_to_desc(irq);
1714 int retval;
1715
1716 if (!desc || !irq_settings_is_per_cpu_devid(desc))
1717 return -EINVAL;
1718 chip_bus_lock(desc);
1719 retval = __setup_irq(irq, desc, act);
1720 chip_bus_sync_unlock(desc);
1721
1722 return retval;
1723}
1724
1725/**
1726 * request_percpu_irq - allocate a percpu interrupt line
1727 * @irq: Interrupt line to allocate
1728 * @handler: Function to be called when the IRQ occurs.
1729 * @devname: An ascii name for the claiming device
1730 * @dev_id: A percpu cookie passed back to the handler function
1731 *
1732 * This call allocates interrupt resources, but doesn't
1733 * automatically enable the interrupt. It has to be done on each
1734 * CPU using enable_percpu_irq().
1735 *
1736 * Dev_id must be globally unique. It is a per-cpu variable, and
1737 * the handler gets called with the interrupted CPU's instance of
1738 * that variable.
1739 */
1740int request_percpu_irq(unsigned int irq, irq_handler_t handler,
1741 const char *devname, void __percpu *dev_id)
1742{
1743 struct irqaction *action;
1744 struct irq_desc *desc;
1745 int retval;
1746
1747 if (!dev_id)
1748 return -EINVAL;
1749
1750 desc = irq_to_desc(irq);
1751 if (!desc || !irq_settings_can_request(desc) ||
1752 !irq_settings_is_per_cpu_devid(desc))
1753 return -EINVAL;
1754
1755 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1756 if (!action)
1757 return -ENOMEM;
1758
1759 action->handler = handler;
1760 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND;
1761 action->name = devname;
1762 action->percpu_dev_id = dev_id;
1763
1764 chip_bus_lock(desc);
1765 retval = __setup_irq(irq, desc, action);
1766 chip_bus_sync_unlock(desc);
1767
1768 if (retval)
1769 kfree(action);
1770
1771 return retval;
1772}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9#define pr_fmt(fmt) "genirq: " fmt
10
11#include <linux/irq.h>
12#include <linux/kthread.h>
13#include <linux/module.h>
14#include <linux/random.h>
15#include <linux/interrupt.h>
16#include <linux/irqdomain.h>
17#include <linux/slab.h>
18#include <linux/sched.h>
19#include <linux/sched/rt.h>
20#include <linux/sched/task.h>
21#include <linux/sched/isolation.h>
22#include <uapi/linux/sched/types.h>
23#include <linux/task_work.h>
24
25#include "internals.h"
26
27#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
30static int __init setup_forced_irqthreads(char *arg)
31{
32 static_branch_enable(&force_irqthreads_key);
33 return 0;
34}
35early_param("threadirqs", setup_forced_irqthreads);
36#endif
37
38static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39{
40 struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 bool inprogress;
42
43 do {
44 unsigned long flags;
45
46 /*
47 * Wait until we're out of the critical section. This might
48 * give the wrong answer due to the lack of memory barriers.
49 */
50 while (irqd_irq_inprogress(&desc->irq_data))
51 cpu_relax();
52
53 /* Ok, that indicated we're done: double-check carefully. */
54 raw_spin_lock_irqsave(&desc->lock, flags);
55 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57 /*
58 * If requested and supported, check at the chip whether it
59 * is in flight at the hardware level, i.e. already pending
60 * in a CPU and waiting for service and acknowledge.
61 */
62 if (!inprogress && sync_chip) {
63 /*
64 * Ignore the return code. inprogress is only updated
65 * when the chip supports it.
66 */
67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 &inprogress);
69 }
70 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72 /* Oops, that failed? */
73 } while (inprogress);
74}
75
76/**
77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78 * @irq: interrupt number to wait for
79 *
80 * This function waits for any pending hard IRQ handlers for this
81 * interrupt to complete before returning. If you use this
82 * function while holding a resource the IRQ handler may need you
83 * will deadlock. It does not take associated threaded handlers
84 * into account.
85 *
86 * Do not use this for shutdown scenarios where you must be sure
87 * that all parts (hardirq and threaded handler) have completed.
88 *
89 * Returns: false if a threaded handler is active.
90 *
91 * This function may be called - with care - from IRQ context.
92 *
93 * It does not check whether there is an interrupt in flight at the
94 * hardware level, but not serviced yet, as this might deadlock when
95 * called with interrupts disabled and the target CPU of the interrupt
96 * is the current CPU.
97 */
98bool synchronize_hardirq(unsigned int irq)
99{
100 struct irq_desc *desc = irq_to_desc(irq);
101
102 if (desc) {
103 __synchronize_hardirq(desc, false);
104 return !atomic_read(&desc->threads_active);
105 }
106
107 return true;
108}
109EXPORT_SYMBOL(synchronize_hardirq);
110
111static void __synchronize_irq(struct irq_desc *desc)
112{
113 __synchronize_hardirq(desc, true);
114 /*
115 * We made sure that no hardirq handler is running. Now verify that no
116 * threaded handlers are active.
117 */
118 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
119}
120
121/**
122 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
123 * @irq: interrupt number to wait for
124 *
125 * This function waits for any pending IRQ handlers for this interrupt
126 * to complete before returning. If you use this function while
127 * holding a resource the IRQ handler may need you will deadlock.
128 *
129 * Can only be called from preemptible code as it might sleep when
130 * an interrupt thread is associated to @irq.
131 *
132 * It optionally makes sure (when the irq chip supports that method)
133 * that the interrupt is not pending in any CPU and waiting for
134 * service.
135 */
136void synchronize_irq(unsigned int irq)
137{
138 struct irq_desc *desc = irq_to_desc(irq);
139
140 if (desc)
141 __synchronize_irq(desc);
142}
143EXPORT_SYMBOL(synchronize_irq);
144
145#ifdef CONFIG_SMP
146cpumask_var_t irq_default_affinity;
147
148static bool __irq_can_set_affinity(struct irq_desc *desc)
149{
150 if (!desc || !irqd_can_balance(&desc->irq_data) ||
151 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
152 return false;
153 return true;
154}
155
156/**
157 * irq_can_set_affinity - Check if the affinity of a given irq can be set
158 * @irq: Interrupt to check
159 *
160 */
161int irq_can_set_affinity(unsigned int irq)
162{
163 return __irq_can_set_affinity(irq_to_desc(irq));
164}
165
166/**
167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
168 * @irq: Interrupt to check
169 *
170 * Like irq_can_set_affinity() above, but additionally checks for the
171 * AFFINITY_MANAGED flag.
172 */
173bool irq_can_set_affinity_usr(unsigned int irq)
174{
175 struct irq_desc *desc = irq_to_desc(irq);
176
177 return __irq_can_set_affinity(desc) &&
178 !irqd_affinity_is_managed(&desc->irq_data);
179}
180
181/**
182 * irq_set_thread_affinity - Notify irq threads to adjust affinity
183 * @desc: irq descriptor which has affinity changed
184 *
185 * We just set IRQTF_AFFINITY and delegate the affinity setting
186 * to the interrupt thread itself. We can not call
187 * set_cpus_allowed_ptr() here as we hold desc->lock and this
188 * code can be called from hard interrupt context.
189 */
190void irq_set_thread_affinity(struct irq_desc *desc)
191{
192 struct irqaction *action;
193
194 for_each_action_of_desc(desc, action) {
195 if (action->thread) {
196 set_bit(IRQTF_AFFINITY, &action->thread_flags);
197 wake_up_process(action->thread);
198 }
199 if (action->secondary && action->secondary->thread) {
200 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
201 wake_up_process(action->secondary->thread);
202 }
203 }
204}
205
206#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
207static void irq_validate_effective_affinity(struct irq_data *data)
208{
209 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
210 struct irq_chip *chip = irq_data_get_irq_chip(data);
211
212 if (!cpumask_empty(m))
213 return;
214 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
215 chip->name, data->irq);
216}
217#else
218static inline void irq_validate_effective_affinity(struct irq_data *data) { }
219#endif
220
221int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222 bool force)
223{
224 struct irq_desc *desc = irq_data_to_desc(data);
225 struct irq_chip *chip = irq_data_get_irq_chip(data);
226 const struct cpumask *prog_mask;
227 int ret;
228
229 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
230 static struct cpumask tmp_mask;
231
232 if (!chip || !chip->irq_set_affinity)
233 return -EINVAL;
234
235 raw_spin_lock(&tmp_mask_lock);
236 /*
237 * If this is a managed interrupt and housekeeping is enabled on
238 * it check whether the requested affinity mask intersects with
239 * a housekeeping CPU. If so, then remove the isolated CPUs from
240 * the mask and just keep the housekeeping CPU(s). This prevents
241 * the affinity setter from routing the interrupt to an isolated
242 * CPU to avoid that I/O submitted from a housekeeping CPU causes
243 * interrupts on an isolated one.
244 *
245 * If the masks do not intersect or include online CPU(s) then
246 * keep the requested mask. The isolated target CPUs are only
247 * receiving interrupts when the I/O operation was submitted
248 * directly from them.
249 *
250 * If all housekeeping CPUs in the affinity mask are offline, the
251 * interrupt will be migrated by the CPU hotplug code once a
252 * housekeeping CPU which belongs to the affinity mask comes
253 * online.
254 */
255 if (irqd_affinity_is_managed(data) &&
256 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
257 const struct cpumask *hk_mask;
258
259 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
260
261 cpumask_and(&tmp_mask, mask, hk_mask);
262 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
263 prog_mask = mask;
264 else
265 prog_mask = &tmp_mask;
266 } else {
267 prog_mask = mask;
268 }
269
270 /*
271 * Make sure we only provide online CPUs to the irqchip,
272 * unless we are being asked to force the affinity (in which
273 * case we do as we are told).
274 */
275 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
276 if (!force && !cpumask_empty(&tmp_mask))
277 ret = chip->irq_set_affinity(data, &tmp_mask, force);
278 else if (force)
279 ret = chip->irq_set_affinity(data, mask, force);
280 else
281 ret = -EINVAL;
282
283 raw_spin_unlock(&tmp_mask_lock);
284
285 switch (ret) {
286 case IRQ_SET_MASK_OK:
287 case IRQ_SET_MASK_OK_DONE:
288 cpumask_copy(desc->irq_common_data.affinity, mask);
289 fallthrough;
290 case IRQ_SET_MASK_OK_NOCOPY:
291 irq_validate_effective_affinity(data);
292 irq_set_thread_affinity(desc);
293 ret = 0;
294 }
295
296 return ret;
297}
298
299#ifdef CONFIG_GENERIC_PENDING_IRQ
300static inline int irq_set_affinity_pending(struct irq_data *data,
301 const struct cpumask *dest)
302{
303 struct irq_desc *desc = irq_data_to_desc(data);
304
305 irqd_set_move_pending(data);
306 irq_copy_pending(desc, dest);
307 return 0;
308}
309#else
310static inline int irq_set_affinity_pending(struct irq_data *data,
311 const struct cpumask *dest)
312{
313 return -EBUSY;
314}
315#endif
316
317static int irq_try_set_affinity(struct irq_data *data,
318 const struct cpumask *dest, bool force)
319{
320 int ret = irq_do_set_affinity(data, dest, force);
321
322 /*
323 * In case that the underlying vector management is busy and the
324 * architecture supports the generic pending mechanism then utilize
325 * this to avoid returning an error to user space.
326 */
327 if (ret == -EBUSY && !force)
328 ret = irq_set_affinity_pending(data, dest);
329 return ret;
330}
331
332static bool irq_set_affinity_deactivated(struct irq_data *data,
333 const struct cpumask *mask)
334{
335 struct irq_desc *desc = irq_data_to_desc(data);
336
337 /*
338 * Handle irq chips which can handle affinity only in activated
339 * state correctly
340 *
341 * If the interrupt is not yet activated, just store the affinity
342 * mask and do not call the chip driver at all. On activation the
343 * driver has to make sure anyway that the interrupt is in a
344 * usable state so startup works.
345 */
346 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
347 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
348 return false;
349
350 cpumask_copy(desc->irq_common_data.affinity, mask);
351 irq_data_update_effective_affinity(data, mask);
352 irqd_set(data, IRQD_AFFINITY_SET);
353 return true;
354}
355
356int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
357 bool force)
358{
359 struct irq_chip *chip = irq_data_get_irq_chip(data);
360 struct irq_desc *desc = irq_data_to_desc(data);
361 int ret = 0;
362
363 if (!chip || !chip->irq_set_affinity)
364 return -EINVAL;
365
366 if (irq_set_affinity_deactivated(data, mask))
367 return 0;
368
369 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
370 ret = irq_try_set_affinity(data, mask, force);
371 } else {
372 irqd_set_move_pending(data);
373 irq_copy_pending(desc, mask);
374 }
375
376 if (desc->affinity_notify) {
377 kref_get(&desc->affinity_notify->kref);
378 if (!schedule_work(&desc->affinity_notify->work)) {
379 /* Work was already scheduled, drop our extra ref */
380 kref_put(&desc->affinity_notify->kref,
381 desc->affinity_notify->release);
382 }
383 }
384 irqd_set(data, IRQD_AFFINITY_SET);
385
386 return ret;
387}
388
389/**
390 * irq_update_affinity_desc - Update affinity management for an interrupt
391 * @irq: The interrupt number to update
392 * @affinity: Pointer to the affinity descriptor
393 *
394 * This interface can be used to configure the affinity management of
395 * interrupts which have been allocated already.
396 *
397 * There are certain limitations on when it may be used - attempts to use it
398 * for when the kernel is configured for generic IRQ reservation mode (in
399 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
400 * managed/non-managed interrupt accounting. In addition, attempts to use it on
401 * an interrupt which is already started or which has already been configured
402 * as managed will also fail, as these mean invalid init state or double init.
403 */
404int irq_update_affinity_desc(unsigned int irq,
405 struct irq_affinity_desc *affinity)
406{
407 struct irq_desc *desc;
408 unsigned long flags;
409 bool activated;
410 int ret = 0;
411
412 /*
413 * Supporting this with the reservation scheme used by x86 needs
414 * some more thought. Fail it for now.
415 */
416 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
417 return -EOPNOTSUPP;
418
419 desc = irq_get_desc_buslock(irq, &flags, 0);
420 if (!desc)
421 return -EINVAL;
422
423 /* Requires the interrupt to be shut down */
424 if (irqd_is_started(&desc->irq_data)) {
425 ret = -EBUSY;
426 goto out_unlock;
427 }
428
429 /* Interrupts which are already managed cannot be modified */
430 if (irqd_affinity_is_managed(&desc->irq_data)) {
431 ret = -EBUSY;
432 goto out_unlock;
433 }
434
435 /*
436 * Deactivate the interrupt. That's required to undo
437 * anything an earlier activation has established.
438 */
439 activated = irqd_is_activated(&desc->irq_data);
440 if (activated)
441 irq_domain_deactivate_irq(&desc->irq_data);
442
443 if (affinity->is_managed) {
444 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
445 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
446 }
447
448 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
449
450 /* Restore the activation state */
451 if (activated)
452 irq_domain_activate_irq(&desc->irq_data, false);
453
454out_unlock:
455 irq_put_desc_busunlock(desc, flags);
456 return ret;
457}
458
459static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
460 bool force)
461{
462 struct irq_desc *desc = irq_to_desc(irq);
463 unsigned long flags;
464 int ret;
465
466 if (!desc)
467 return -EINVAL;
468
469 raw_spin_lock_irqsave(&desc->lock, flags);
470 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
471 raw_spin_unlock_irqrestore(&desc->lock, flags);
472 return ret;
473}
474
475/**
476 * irq_set_affinity - Set the irq affinity of a given irq
477 * @irq: Interrupt to set affinity
478 * @cpumask: cpumask
479 *
480 * Fails if cpumask does not contain an online CPU
481 */
482int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
483{
484 return __irq_set_affinity(irq, cpumask, false);
485}
486EXPORT_SYMBOL_GPL(irq_set_affinity);
487
488/**
489 * irq_force_affinity - Force the irq affinity of a given irq
490 * @irq: Interrupt to set affinity
491 * @cpumask: cpumask
492 *
493 * Same as irq_set_affinity, but without checking the mask against
494 * online cpus.
495 *
496 * Solely for low level cpu hotplug code, where we need to make per
497 * cpu interrupts affine before the cpu becomes online.
498 */
499int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
500{
501 return __irq_set_affinity(irq, cpumask, true);
502}
503EXPORT_SYMBOL_GPL(irq_force_affinity);
504
505int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
506 bool setaffinity)
507{
508 unsigned long flags;
509 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
510
511 if (!desc)
512 return -EINVAL;
513 desc->affinity_hint = m;
514 irq_put_desc_unlock(desc, flags);
515 if (m && setaffinity)
516 __irq_set_affinity(irq, m, false);
517 return 0;
518}
519EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
520
521static void irq_affinity_notify(struct work_struct *work)
522{
523 struct irq_affinity_notify *notify =
524 container_of(work, struct irq_affinity_notify, work);
525 struct irq_desc *desc = irq_to_desc(notify->irq);
526 cpumask_var_t cpumask;
527 unsigned long flags;
528
529 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
530 goto out;
531
532 raw_spin_lock_irqsave(&desc->lock, flags);
533 if (irq_move_pending(&desc->irq_data))
534 irq_get_pending(cpumask, desc);
535 else
536 cpumask_copy(cpumask, desc->irq_common_data.affinity);
537 raw_spin_unlock_irqrestore(&desc->lock, flags);
538
539 notify->notify(notify, cpumask);
540
541 free_cpumask_var(cpumask);
542out:
543 kref_put(¬ify->kref, notify->release);
544}
545
546/**
547 * irq_set_affinity_notifier - control notification of IRQ affinity changes
548 * @irq: Interrupt for which to enable/disable notification
549 * @notify: Context for notification, or %NULL to disable
550 * notification. Function pointers must be initialised;
551 * the other fields will be initialised by this function.
552 *
553 * Must be called in process context. Notification may only be enabled
554 * after the IRQ is allocated and must be disabled before the IRQ is
555 * freed using free_irq().
556 */
557int
558irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
559{
560 struct irq_desc *desc = irq_to_desc(irq);
561 struct irq_affinity_notify *old_notify;
562 unsigned long flags;
563
564 /* The release function is promised process context */
565 might_sleep();
566
567 if (!desc || desc->istate & IRQS_NMI)
568 return -EINVAL;
569
570 /* Complete initialisation of *notify */
571 if (notify) {
572 notify->irq = irq;
573 kref_init(¬ify->kref);
574 INIT_WORK(¬ify->work, irq_affinity_notify);
575 }
576
577 raw_spin_lock_irqsave(&desc->lock, flags);
578 old_notify = desc->affinity_notify;
579 desc->affinity_notify = notify;
580 raw_spin_unlock_irqrestore(&desc->lock, flags);
581
582 if (old_notify) {
583 if (cancel_work_sync(&old_notify->work)) {
584 /* Pending work had a ref, put that one too */
585 kref_put(&old_notify->kref, old_notify->release);
586 }
587 kref_put(&old_notify->kref, old_notify->release);
588 }
589
590 return 0;
591}
592EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
593
594#ifndef CONFIG_AUTO_IRQ_AFFINITY
595/*
596 * Generic version of the affinity autoselector.
597 */
598int irq_setup_affinity(struct irq_desc *desc)
599{
600 struct cpumask *set = irq_default_affinity;
601 int ret, node = irq_desc_get_node(desc);
602 static DEFINE_RAW_SPINLOCK(mask_lock);
603 static struct cpumask mask;
604
605 /* Excludes PER_CPU and NO_BALANCE interrupts */
606 if (!__irq_can_set_affinity(desc))
607 return 0;
608
609 raw_spin_lock(&mask_lock);
610 /*
611 * Preserve the managed affinity setting and a userspace affinity
612 * setup, but make sure that one of the targets is online.
613 */
614 if (irqd_affinity_is_managed(&desc->irq_data) ||
615 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
616 if (cpumask_intersects(desc->irq_common_data.affinity,
617 cpu_online_mask))
618 set = desc->irq_common_data.affinity;
619 else
620 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
621 }
622
623 cpumask_and(&mask, cpu_online_mask, set);
624 if (cpumask_empty(&mask))
625 cpumask_copy(&mask, cpu_online_mask);
626
627 if (node != NUMA_NO_NODE) {
628 const struct cpumask *nodemask = cpumask_of_node(node);
629
630 /* make sure at least one of the cpus in nodemask is online */
631 if (cpumask_intersects(&mask, nodemask))
632 cpumask_and(&mask, &mask, nodemask);
633 }
634 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
635 raw_spin_unlock(&mask_lock);
636 return ret;
637}
638#else
639/* Wrapper for ALPHA specific affinity selector magic */
640int irq_setup_affinity(struct irq_desc *desc)
641{
642 return irq_select_affinity(irq_desc_get_irq(desc));
643}
644#endif /* CONFIG_AUTO_IRQ_AFFINITY */
645#endif /* CONFIG_SMP */
646
647
648/**
649 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
650 * @irq: interrupt number to set affinity
651 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
652 * specific data for percpu_devid interrupts
653 *
654 * This function uses the vCPU specific data to set the vCPU
655 * affinity for an irq. The vCPU specific data is passed from
656 * outside, such as KVM. One example code path is as below:
657 * KVM -> IOMMU -> irq_set_vcpu_affinity().
658 */
659int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
660{
661 unsigned long flags;
662 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
663 struct irq_data *data;
664 struct irq_chip *chip;
665 int ret = -ENOSYS;
666
667 if (!desc)
668 return -EINVAL;
669
670 data = irq_desc_get_irq_data(desc);
671 do {
672 chip = irq_data_get_irq_chip(data);
673 if (chip && chip->irq_set_vcpu_affinity)
674 break;
675#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
676 data = data->parent_data;
677#else
678 data = NULL;
679#endif
680 } while (data);
681
682 if (data)
683 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
684 irq_put_desc_unlock(desc, flags);
685
686 return ret;
687}
688EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
689
690void __disable_irq(struct irq_desc *desc)
691{
692 if (!desc->depth++)
693 irq_disable(desc);
694}
695
696static int __disable_irq_nosync(unsigned int irq)
697{
698 unsigned long flags;
699 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
700
701 if (!desc)
702 return -EINVAL;
703 __disable_irq(desc);
704 irq_put_desc_busunlock(desc, flags);
705 return 0;
706}
707
708/**
709 * disable_irq_nosync - disable an irq without waiting
710 * @irq: Interrupt to disable
711 *
712 * Disable the selected interrupt line. Disables and Enables are
713 * nested.
714 * Unlike disable_irq(), this function does not ensure existing
715 * instances of the IRQ handler have completed before returning.
716 *
717 * This function may be called from IRQ context.
718 */
719void disable_irq_nosync(unsigned int irq)
720{
721 __disable_irq_nosync(irq);
722}
723EXPORT_SYMBOL(disable_irq_nosync);
724
725/**
726 * disable_irq - disable an irq and wait for completion
727 * @irq: Interrupt to disable
728 *
729 * Disable the selected interrupt line. Enables and Disables are
730 * nested.
731 * This function waits for any pending IRQ handlers for this interrupt
732 * to complete before returning. If you use this function while
733 * holding a resource the IRQ handler may need you will deadlock.
734 *
735 * Can only be called from preemptible code as it might sleep when
736 * an interrupt thread is associated to @irq.
737 *
738 */
739void disable_irq(unsigned int irq)
740{
741 might_sleep();
742 if (!__disable_irq_nosync(irq))
743 synchronize_irq(irq);
744}
745EXPORT_SYMBOL(disable_irq);
746
747/**
748 * disable_hardirq - disables an irq and waits for hardirq completion
749 * @irq: Interrupt to disable
750 *
751 * Disable the selected interrupt line. Enables and Disables are
752 * nested.
753 * This function waits for any pending hard IRQ handlers for this
754 * interrupt to complete before returning. If you use this function while
755 * holding a resource the hard IRQ handler may need you will deadlock.
756 *
757 * When used to optimistically disable an interrupt from atomic context
758 * the return value must be checked.
759 *
760 * Returns: false if a threaded handler is active.
761 *
762 * This function may be called - with care - from IRQ context.
763 */
764bool disable_hardirq(unsigned int irq)
765{
766 if (!__disable_irq_nosync(irq))
767 return synchronize_hardirq(irq);
768
769 return false;
770}
771EXPORT_SYMBOL_GPL(disable_hardirq);
772
773/**
774 * disable_nmi_nosync - disable an nmi without waiting
775 * @irq: Interrupt to disable
776 *
777 * Disable the selected interrupt line. Disables and enables are
778 * nested.
779 * The interrupt to disable must have been requested through request_nmi.
780 * Unlike disable_nmi(), this function does not ensure existing
781 * instances of the IRQ handler have completed before returning.
782 */
783void disable_nmi_nosync(unsigned int irq)
784{
785 disable_irq_nosync(irq);
786}
787
788void __enable_irq(struct irq_desc *desc)
789{
790 switch (desc->depth) {
791 case 0:
792 err_out:
793 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
794 irq_desc_get_irq(desc));
795 break;
796 case 1: {
797 if (desc->istate & IRQS_SUSPENDED)
798 goto err_out;
799 /* Prevent probing on this irq: */
800 irq_settings_set_noprobe(desc);
801 /*
802 * Call irq_startup() not irq_enable() here because the
803 * interrupt might be marked NOAUTOEN. So irq_startup()
804 * needs to be invoked when it gets enabled the first
805 * time. If it was already started up, then irq_startup()
806 * will invoke irq_enable() under the hood.
807 */
808 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
809 break;
810 }
811 default:
812 desc->depth--;
813 }
814}
815
816/**
817 * enable_irq - enable handling of an irq
818 * @irq: Interrupt to enable
819 *
820 * Undoes the effect of one call to disable_irq(). If this
821 * matches the last disable, processing of interrupts on this
822 * IRQ line is re-enabled.
823 *
824 * This function may be called from IRQ context only when
825 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
826 */
827void enable_irq(unsigned int irq)
828{
829 unsigned long flags;
830 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
831
832 if (!desc)
833 return;
834 if (WARN(!desc->irq_data.chip,
835 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
836 goto out;
837
838 __enable_irq(desc);
839out:
840 irq_put_desc_busunlock(desc, flags);
841}
842EXPORT_SYMBOL(enable_irq);
843
844/**
845 * enable_nmi - enable handling of an nmi
846 * @irq: Interrupt to enable
847 *
848 * The interrupt to enable must have been requested through request_nmi.
849 * Undoes the effect of one call to disable_nmi(). If this
850 * matches the last disable, processing of interrupts on this
851 * IRQ line is re-enabled.
852 */
853void enable_nmi(unsigned int irq)
854{
855 enable_irq(irq);
856}
857
858static int set_irq_wake_real(unsigned int irq, unsigned int on)
859{
860 struct irq_desc *desc = irq_to_desc(irq);
861 int ret = -ENXIO;
862
863 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
864 return 0;
865
866 if (desc->irq_data.chip->irq_set_wake)
867 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
868
869 return ret;
870}
871
872/**
873 * irq_set_irq_wake - control irq power management wakeup
874 * @irq: interrupt to control
875 * @on: enable/disable power management wakeup
876 *
877 * Enable/disable power management wakeup mode, which is
878 * disabled by default. Enables and disables must match,
879 * just as they match for non-wakeup mode support.
880 *
881 * Wakeup mode lets this IRQ wake the system from sleep
882 * states like "suspend to RAM".
883 *
884 * Note: irq enable/disable state is completely orthogonal
885 * to the enable/disable state of irq wake. An irq can be
886 * disabled with disable_irq() and still wake the system as
887 * long as the irq has wake enabled. If this does not hold,
888 * then the underlying irq chip and the related driver need
889 * to be investigated.
890 */
891int irq_set_irq_wake(unsigned int irq, unsigned int on)
892{
893 unsigned long flags;
894 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
895 int ret = 0;
896
897 if (!desc)
898 return -EINVAL;
899
900 /* Don't use NMIs as wake up interrupts please */
901 if (desc->istate & IRQS_NMI) {
902 ret = -EINVAL;
903 goto out_unlock;
904 }
905
906 /* wakeup-capable irqs can be shared between drivers that
907 * don't need to have the same sleep mode behaviors.
908 */
909 if (on) {
910 if (desc->wake_depth++ == 0) {
911 ret = set_irq_wake_real(irq, on);
912 if (ret)
913 desc->wake_depth = 0;
914 else
915 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
916 }
917 } else {
918 if (desc->wake_depth == 0) {
919 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
920 } else if (--desc->wake_depth == 0) {
921 ret = set_irq_wake_real(irq, on);
922 if (ret)
923 desc->wake_depth = 1;
924 else
925 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
926 }
927 }
928
929out_unlock:
930 irq_put_desc_busunlock(desc, flags);
931 return ret;
932}
933EXPORT_SYMBOL(irq_set_irq_wake);
934
935/*
936 * Internal function that tells the architecture code whether a
937 * particular irq has been exclusively allocated or is available
938 * for driver use.
939 */
940int can_request_irq(unsigned int irq, unsigned long irqflags)
941{
942 unsigned long flags;
943 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
944 int canrequest = 0;
945
946 if (!desc)
947 return 0;
948
949 if (irq_settings_can_request(desc)) {
950 if (!desc->action ||
951 irqflags & desc->action->flags & IRQF_SHARED)
952 canrequest = 1;
953 }
954 irq_put_desc_unlock(desc, flags);
955 return canrequest;
956}
957
958int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
959{
960 struct irq_chip *chip = desc->irq_data.chip;
961 int ret, unmask = 0;
962
963 if (!chip || !chip->irq_set_type) {
964 /*
965 * IRQF_TRIGGER_* but the PIC does not support multiple
966 * flow-types?
967 */
968 pr_debug("No set_type function for IRQ %d (%s)\n",
969 irq_desc_get_irq(desc),
970 chip ? (chip->name ? : "unknown") : "unknown");
971 return 0;
972 }
973
974 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
975 if (!irqd_irq_masked(&desc->irq_data))
976 mask_irq(desc);
977 if (!irqd_irq_disabled(&desc->irq_data))
978 unmask = 1;
979 }
980
981 /* Mask all flags except trigger mode */
982 flags &= IRQ_TYPE_SENSE_MASK;
983 ret = chip->irq_set_type(&desc->irq_data, flags);
984
985 switch (ret) {
986 case IRQ_SET_MASK_OK:
987 case IRQ_SET_MASK_OK_DONE:
988 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
989 irqd_set(&desc->irq_data, flags);
990 fallthrough;
991
992 case IRQ_SET_MASK_OK_NOCOPY:
993 flags = irqd_get_trigger_type(&desc->irq_data);
994 irq_settings_set_trigger_mask(desc, flags);
995 irqd_clear(&desc->irq_data, IRQD_LEVEL);
996 irq_settings_clr_level(desc);
997 if (flags & IRQ_TYPE_LEVEL_MASK) {
998 irq_settings_set_level(desc);
999 irqd_set(&desc->irq_data, IRQD_LEVEL);
1000 }
1001
1002 ret = 0;
1003 break;
1004 default:
1005 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1006 flags, irq_desc_get_irq(desc), chip->irq_set_type);
1007 }
1008 if (unmask)
1009 unmask_irq(desc);
1010 return ret;
1011}
1012
1013#ifdef CONFIG_HARDIRQS_SW_RESEND
1014int irq_set_parent(int irq, int parent_irq)
1015{
1016 unsigned long flags;
1017 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1018
1019 if (!desc)
1020 return -EINVAL;
1021
1022 desc->parent_irq = parent_irq;
1023
1024 irq_put_desc_unlock(desc, flags);
1025 return 0;
1026}
1027EXPORT_SYMBOL_GPL(irq_set_parent);
1028#endif
1029
1030/*
1031 * Default primary interrupt handler for threaded interrupts. Is
1032 * assigned as primary handler when request_threaded_irq is called
1033 * with handler == NULL. Useful for oneshot interrupts.
1034 */
1035static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1036{
1037 return IRQ_WAKE_THREAD;
1038}
1039
1040/*
1041 * Primary handler for nested threaded interrupts. Should never be
1042 * called.
1043 */
1044static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1045{
1046 WARN(1, "Primary handler called for nested irq %d\n", irq);
1047 return IRQ_NONE;
1048}
1049
1050static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1051{
1052 WARN(1, "Secondary action handler called for irq %d\n", irq);
1053 return IRQ_NONE;
1054}
1055
1056#ifdef CONFIG_SMP
1057/*
1058 * Check whether we need to change the affinity of the interrupt thread.
1059 */
1060static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1061{
1062 cpumask_var_t mask;
1063 bool valid = false;
1064
1065 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1066 return;
1067
1068 __set_current_state(TASK_RUNNING);
1069
1070 /*
1071 * In case we are out of memory we set IRQTF_AFFINITY again and
1072 * try again next time
1073 */
1074 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1075 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1076 return;
1077 }
1078
1079 raw_spin_lock_irq(&desc->lock);
1080 /*
1081 * This code is triggered unconditionally. Check the affinity
1082 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1083 */
1084 if (cpumask_available(desc->irq_common_data.affinity)) {
1085 const struct cpumask *m;
1086
1087 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1088 cpumask_copy(mask, m);
1089 valid = true;
1090 }
1091 raw_spin_unlock_irq(&desc->lock);
1092
1093 if (valid)
1094 set_cpus_allowed_ptr(current, mask);
1095 free_cpumask_var(mask);
1096}
1097#else
1098static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1099#endif
1100
1101static int irq_wait_for_interrupt(struct irq_desc *desc,
1102 struct irqaction *action)
1103{
1104 for (;;) {
1105 set_current_state(TASK_INTERRUPTIBLE);
1106 irq_thread_check_affinity(desc, action);
1107
1108 if (kthread_should_stop()) {
1109 /* may need to run one last time */
1110 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1111 &action->thread_flags)) {
1112 __set_current_state(TASK_RUNNING);
1113 return 0;
1114 }
1115 __set_current_state(TASK_RUNNING);
1116 return -1;
1117 }
1118
1119 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1120 &action->thread_flags)) {
1121 __set_current_state(TASK_RUNNING);
1122 return 0;
1123 }
1124 schedule();
1125 }
1126}
1127
1128/*
1129 * Oneshot interrupts keep the irq line masked until the threaded
1130 * handler finished. unmask if the interrupt has not been disabled and
1131 * is marked MASKED.
1132 */
1133static void irq_finalize_oneshot(struct irq_desc *desc,
1134 struct irqaction *action)
1135{
1136 if (!(desc->istate & IRQS_ONESHOT) ||
1137 action->handler == irq_forced_secondary_handler)
1138 return;
1139again:
1140 chip_bus_lock(desc);
1141 raw_spin_lock_irq(&desc->lock);
1142
1143 /*
1144 * Implausible though it may be we need to protect us against
1145 * the following scenario:
1146 *
1147 * The thread is faster done than the hard interrupt handler
1148 * on the other CPU. If we unmask the irq line then the
1149 * interrupt can come in again and masks the line, leaves due
1150 * to IRQS_INPROGRESS and the irq line is masked forever.
1151 *
1152 * This also serializes the state of shared oneshot handlers
1153 * versus "desc->threads_oneshot |= action->thread_mask;" in
1154 * irq_wake_thread(). See the comment there which explains the
1155 * serialization.
1156 */
1157 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1158 raw_spin_unlock_irq(&desc->lock);
1159 chip_bus_sync_unlock(desc);
1160 cpu_relax();
1161 goto again;
1162 }
1163
1164 /*
1165 * Now check again, whether the thread should run. Otherwise
1166 * we would clear the threads_oneshot bit of this thread which
1167 * was just set.
1168 */
1169 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1170 goto out_unlock;
1171
1172 desc->threads_oneshot &= ~action->thread_mask;
1173
1174 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1175 irqd_irq_masked(&desc->irq_data))
1176 unmask_threaded_irq(desc);
1177
1178out_unlock:
1179 raw_spin_unlock_irq(&desc->lock);
1180 chip_bus_sync_unlock(desc);
1181}
1182
1183/*
1184 * Interrupts which are not explicitly requested as threaded
1185 * interrupts rely on the implicit bh/preempt disable of the hard irq
1186 * context. So we need to disable bh here to avoid deadlocks and other
1187 * side effects.
1188 */
1189static irqreturn_t
1190irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1191{
1192 irqreturn_t ret;
1193
1194 local_bh_disable();
1195 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1196 local_irq_disable();
1197 ret = action->thread_fn(action->irq, action->dev_id);
1198 if (ret == IRQ_HANDLED)
1199 atomic_inc(&desc->threads_handled);
1200
1201 irq_finalize_oneshot(desc, action);
1202 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1203 local_irq_enable();
1204 local_bh_enable();
1205 return ret;
1206}
1207
1208/*
1209 * Interrupts explicitly requested as threaded interrupts want to be
1210 * preemptible - many of them need to sleep and wait for slow busses to
1211 * complete.
1212 */
1213static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1214 struct irqaction *action)
1215{
1216 irqreturn_t ret;
1217
1218 ret = action->thread_fn(action->irq, action->dev_id);
1219 if (ret == IRQ_HANDLED)
1220 atomic_inc(&desc->threads_handled);
1221
1222 irq_finalize_oneshot(desc, action);
1223 return ret;
1224}
1225
1226void wake_threads_waitq(struct irq_desc *desc)
1227{
1228 if (atomic_dec_and_test(&desc->threads_active))
1229 wake_up(&desc->wait_for_threads);
1230}
1231
1232static void irq_thread_dtor(struct callback_head *unused)
1233{
1234 struct task_struct *tsk = current;
1235 struct irq_desc *desc;
1236 struct irqaction *action;
1237
1238 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1239 return;
1240
1241 action = kthread_data(tsk);
1242
1243 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1244 tsk->comm, tsk->pid, action->irq);
1245
1246
1247 desc = irq_to_desc(action->irq);
1248 /*
1249 * If IRQTF_RUNTHREAD is set, we need to decrement
1250 * desc->threads_active and wake possible waiters.
1251 */
1252 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1253 wake_threads_waitq(desc);
1254
1255 /* Prevent a stale desc->threads_oneshot */
1256 irq_finalize_oneshot(desc, action);
1257}
1258
1259static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1260{
1261 struct irqaction *secondary = action->secondary;
1262
1263 if (WARN_ON_ONCE(!secondary))
1264 return;
1265
1266 raw_spin_lock_irq(&desc->lock);
1267 __irq_wake_thread(desc, secondary);
1268 raw_spin_unlock_irq(&desc->lock);
1269}
1270
1271/*
1272 * Internal function to notify that a interrupt thread is ready.
1273 */
1274static void irq_thread_set_ready(struct irq_desc *desc,
1275 struct irqaction *action)
1276{
1277 set_bit(IRQTF_READY, &action->thread_flags);
1278 wake_up(&desc->wait_for_threads);
1279}
1280
1281/*
1282 * Internal function to wake up a interrupt thread and wait until it is
1283 * ready.
1284 */
1285static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1286 struct irqaction *action)
1287{
1288 if (!action || !action->thread)
1289 return;
1290
1291 wake_up_process(action->thread);
1292 wait_event(desc->wait_for_threads,
1293 test_bit(IRQTF_READY, &action->thread_flags));
1294}
1295
1296/*
1297 * Interrupt handler thread
1298 */
1299static int irq_thread(void *data)
1300{
1301 struct callback_head on_exit_work;
1302 struct irqaction *action = data;
1303 struct irq_desc *desc = irq_to_desc(action->irq);
1304 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1305 struct irqaction *action);
1306
1307 irq_thread_set_ready(desc, action);
1308
1309 sched_set_fifo(current);
1310
1311 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1312 &action->thread_flags))
1313 handler_fn = irq_forced_thread_fn;
1314 else
1315 handler_fn = irq_thread_fn;
1316
1317 init_task_work(&on_exit_work, irq_thread_dtor);
1318 task_work_add(current, &on_exit_work, TWA_NONE);
1319
1320 while (!irq_wait_for_interrupt(desc, action)) {
1321 irqreturn_t action_ret;
1322
1323 action_ret = handler_fn(desc, action);
1324 if (action_ret == IRQ_WAKE_THREAD)
1325 irq_wake_secondary(desc, action);
1326
1327 wake_threads_waitq(desc);
1328 }
1329
1330 /*
1331 * This is the regular exit path. __free_irq() is stopping the
1332 * thread via kthread_stop() after calling
1333 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1334 * oneshot mask bit can be set.
1335 */
1336 task_work_cancel(current, irq_thread_dtor);
1337 return 0;
1338}
1339
1340/**
1341 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1342 * @irq: Interrupt line
1343 * @dev_id: Device identity for which the thread should be woken
1344 *
1345 */
1346void irq_wake_thread(unsigned int irq, void *dev_id)
1347{
1348 struct irq_desc *desc = irq_to_desc(irq);
1349 struct irqaction *action;
1350 unsigned long flags;
1351
1352 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1353 return;
1354
1355 raw_spin_lock_irqsave(&desc->lock, flags);
1356 for_each_action_of_desc(desc, action) {
1357 if (action->dev_id == dev_id) {
1358 if (action->thread)
1359 __irq_wake_thread(desc, action);
1360 break;
1361 }
1362 }
1363 raw_spin_unlock_irqrestore(&desc->lock, flags);
1364}
1365EXPORT_SYMBOL_GPL(irq_wake_thread);
1366
1367static int irq_setup_forced_threading(struct irqaction *new)
1368{
1369 if (!force_irqthreads())
1370 return 0;
1371 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1372 return 0;
1373
1374 /*
1375 * No further action required for interrupts which are requested as
1376 * threaded interrupts already
1377 */
1378 if (new->handler == irq_default_primary_handler)
1379 return 0;
1380
1381 new->flags |= IRQF_ONESHOT;
1382
1383 /*
1384 * Handle the case where we have a real primary handler and a
1385 * thread handler. We force thread them as well by creating a
1386 * secondary action.
1387 */
1388 if (new->handler && new->thread_fn) {
1389 /* Allocate the secondary action */
1390 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1391 if (!new->secondary)
1392 return -ENOMEM;
1393 new->secondary->handler = irq_forced_secondary_handler;
1394 new->secondary->thread_fn = new->thread_fn;
1395 new->secondary->dev_id = new->dev_id;
1396 new->secondary->irq = new->irq;
1397 new->secondary->name = new->name;
1398 }
1399 /* Deal with the primary handler */
1400 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1401 new->thread_fn = new->handler;
1402 new->handler = irq_default_primary_handler;
1403 return 0;
1404}
1405
1406static int irq_request_resources(struct irq_desc *desc)
1407{
1408 struct irq_data *d = &desc->irq_data;
1409 struct irq_chip *c = d->chip;
1410
1411 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1412}
1413
1414static void irq_release_resources(struct irq_desc *desc)
1415{
1416 struct irq_data *d = &desc->irq_data;
1417 struct irq_chip *c = d->chip;
1418
1419 if (c->irq_release_resources)
1420 c->irq_release_resources(d);
1421}
1422
1423static bool irq_supports_nmi(struct irq_desc *desc)
1424{
1425 struct irq_data *d = irq_desc_get_irq_data(desc);
1426
1427#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1428 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1429 if (d->parent_data)
1430 return false;
1431#endif
1432 /* Don't support NMIs for chips behind a slow bus */
1433 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1434 return false;
1435
1436 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1437}
1438
1439static int irq_nmi_setup(struct irq_desc *desc)
1440{
1441 struct irq_data *d = irq_desc_get_irq_data(desc);
1442 struct irq_chip *c = d->chip;
1443
1444 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1445}
1446
1447static void irq_nmi_teardown(struct irq_desc *desc)
1448{
1449 struct irq_data *d = irq_desc_get_irq_data(desc);
1450 struct irq_chip *c = d->chip;
1451
1452 if (c->irq_nmi_teardown)
1453 c->irq_nmi_teardown(d);
1454}
1455
1456static int
1457setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1458{
1459 struct task_struct *t;
1460
1461 if (!secondary) {
1462 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1463 new->name);
1464 } else {
1465 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1466 new->name);
1467 }
1468
1469 if (IS_ERR(t))
1470 return PTR_ERR(t);
1471
1472 /*
1473 * We keep the reference to the task struct even if
1474 * the thread dies to avoid that the interrupt code
1475 * references an already freed task_struct.
1476 */
1477 new->thread = get_task_struct(t);
1478 /*
1479 * Tell the thread to set its affinity. This is
1480 * important for shared interrupt handlers as we do
1481 * not invoke setup_affinity() for the secondary
1482 * handlers as everything is already set up. Even for
1483 * interrupts marked with IRQF_NO_BALANCE this is
1484 * correct as we want the thread to move to the cpu(s)
1485 * on which the requesting code placed the interrupt.
1486 */
1487 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1488 return 0;
1489}
1490
1491/*
1492 * Internal function to register an irqaction - typically used to
1493 * allocate special interrupts that are part of the architecture.
1494 *
1495 * Locking rules:
1496 *
1497 * desc->request_mutex Provides serialization against a concurrent free_irq()
1498 * chip_bus_lock Provides serialization for slow bus operations
1499 * desc->lock Provides serialization against hard interrupts
1500 *
1501 * chip_bus_lock and desc->lock are sufficient for all other management and
1502 * interrupt related functions. desc->request_mutex solely serializes
1503 * request/free_irq().
1504 */
1505static int
1506__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1507{
1508 struct irqaction *old, **old_ptr;
1509 unsigned long flags, thread_mask = 0;
1510 int ret, nested, shared = 0;
1511
1512 if (!desc)
1513 return -EINVAL;
1514
1515 if (desc->irq_data.chip == &no_irq_chip)
1516 return -ENOSYS;
1517 if (!try_module_get(desc->owner))
1518 return -ENODEV;
1519
1520 new->irq = irq;
1521
1522 /*
1523 * If the trigger type is not specified by the caller,
1524 * then use the default for this interrupt.
1525 */
1526 if (!(new->flags & IRQF_TRIGGER_MASK))
1527 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1528
1529 /*
1530 * Check whether the interrupt nests into another interrupt
1531 * thread.
1532 */
1533 nested = irq_settings_is_nested_thread(desc);
1534 if (nested) {
1535 if (!new->thread_fn) {
1536 ret = -EINVAL;
1537 goto out_mput;
1538 }
1539 /*
1540 * Replace the primary handler which was provided from
1541 * the driver for non nested interrupt handling by the
1542 * dummy function which warns when called.
1543 */
1544 new->handler = irq_nested_primary_handler;
1545 } else {
1546 if (irq_settings_can_thread(desc)) {
1547 ret = irq_setup_forced_threading(new);
1548 if (ret)
1549 goto out_mput;
1550 }
1551 }
1552
1553 /*
1554 * Create a handler thread when a thread function is supplied
1555 * and the interrupt does not nest into another interrupt
1556 * thread.
1557 */
1558 if (new->thread_fn && !nested) {
1559 ret = setup_irq_thread(new, irq, false);
1560 if (ret)
1561 goto out_mput;
1562 if (new->secondary) {
1563 ret = setup_irq_thread(new->secondary, irq, true);
1564 if (ret)
1565 goto out_thread;
1566 }
1567 }
1568
1569 /*
1570 * Drivers are often written to work w/o knowledge about the
1571 * underlying irq chip implementation, so a request for a
1572 * threaded irq without a primary hard irq context handler
1573 * requires the ONESHOT flag to be set. Some irq chips like
1574 * MSI based interrupts are per se one shot safe. Check the
1575 * chip flags, so we can avoid the unmask dance at the end of
1576 * the threaded handler for those.
1577 */
1578 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1579 new->flags &= ~IRQF_ONESHOT;
1580
1581 /*
1582 * Protects against a concurrent __free_irq() call which might wait
1583 * for synchronize_hardirq() to complete without holding the optional
1584 * chip bus lock and desc->lock. Also protects against handing out
1585 * a recycled oneshot thread_mask bit while it's still in use by
1586 * its previous owner.
1587 */
1588 mutex_lock(&desc->request_mutex);
1589
1590 /*
1591 * Acquire bus lock as the irq_request_resources() callback below
1592 * might rely on the serialization or the magic power management
1593 * functions which are abusing the irq_bus_lock() callback,
1594 */
1595 chip_bus_lock(desc);
1596
1597 /* First installed action requests resources. */
1598 if (!desc->action) {
1599 ret = irq_request_resources(desc);
1600 if (ret) {
1601 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1602 new->name, irq, desc->irq_data.chip->name);
1603 goto out_bus_unlock;
1604 }
1605 }
1606
1607 /*
1608 * The following block of code has to be executed atomically
1609 * protected against a concurrent interrupt and any of the other
1610 * management calls which are not serialized via
1611 * desc->request_mutex or the optional bus lock.
1612 */
1613 raw_spin_lock_irqsave(&desc->lock, flags);
1614 old_ptr = &desc->action;
1615 old = *old_ptr;
1616 if (old) {
1617 /*
1618 * Can't share interrupts unless both agree to and are
1619 * the same type (level, edge, polarity). So both flag
1620 * fields must have IRQF_SHARED set and the bits which
1621 * set the trigger type must match. Also all must
1622 * agree on ONESHOT.
1623 * Interrupt lines used for NMIs cannot be shared.
1624 */
1625 unsigned int oldtype;
1626
1627 if (desc->istate & IRQS_NMI) {
1628 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1629 new->name, irq, desc->irq_data.chip->name);
1630 ret = -EINVAL;
1631 goto out_unlock;
1632 }
1633
1634 /*
1635 * If nobody did set the configuration before, inherit
1636 * the one provided by the requester.
1637 */
1638 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1639 oldtype = irqd_get_trigger_type(&desc->irq_data);
1640 } else {
1641 oldtype = new->flags & IRQF_TRIGGER_MASK;
1642 irqd_set_trigger_type(&desc->irq_data, oldtype);
1643 }
1644
1645 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1646 (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1647 goto mismatch;
1648
1649 if ((old->flags & IRQF_ONESHOT) &&
1650 (new->flags & IRQF_COND_ONESHOT))
1651 new->flags |= IRQF_ONESHOT;
1652 else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1653 goto mismatch;
1654
1655 /* All handlers must agree on per-cpuness */
1656 if ((old->flags & IRQF_PERCPU) !=
1657 (new->flags & IRQF_PERCPU))
1658 goto mismatch;
1659
1660 /* add new interrupt at end of irq queue */
1661 do {
1662 /*
1663 * Or all existing action->thread_mask bits,
1664 * so we can find the next zero bit for this
1665 * new action.
1666 */
1667 thread_mask |= old->thread_mask;
1668 old_ptr = &old->next;
1669 old = *old_ptr;
1670 } while (old);
1671 shared = 1;
1672 }
1673
1674 /*
1675 * Setup the thread mask for this irqaction for ONESHOT. For
1676 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1677 * conditional in irq_wake_thread().
1678 */
1679 if (new->flags & IRQF_ONESHOT) {
1680 /*
1681 * Unlikely to have 32 resp 64 irqs sharing one line,
1682 * but who knows.
1683 */
1684 if (thread_mask == ~0UL) {
1685 ret = -EBUSY;
1686 goto out_unlock;
1687 }
1688 /*
1689 * The thread_mask for the action is or'ed to
1690 * desc->thread_active to indicate that the
1691 * IRQF_ONESHOT thread handler has been woken, but not
1692 * yet finished. The bit is cleared when a thread
1693 * completes. When all threads of a shared interrupt
1694 * line have completed desc->threads_active becomes
1695 * zero and the interrupt line is unmasked. See
1696 * handle.c:irq_wake_thread() for further information.
1697 *
1698 * If no thread is woken by primary (hard irq context)
1699 * interrupt handlers, then desc->threads_active is
1700 * also checked for zero to unmask the irq line in the
1701 * affected hard irq flow handlers
1702 * (handle_[fasteoi|level]_irq).
1703 *
1704 * The new action gets the first zero bit of
1705 * thread_mask assigned. See the loop above which or's
1706 * all existing action->thread_mask bits.
1707 */
1708 new->thread_mask = 1UL << ffz(thread_mask);
1709
1710 } else if (new->handler == irq_default_primary_handler &&
1711 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1712 /*
1713 * The interrupt was requested with handler = NULL, so
1714 * we use the default primary handler for it. But it
1715 * does not have the oneshot flag set. In combination
1716 * with level interrupts this is deadly, because the
1717 * default primary handler just wakes the thread, then
1718 * the irq lines is reenabled, but the device still
1719 * has the level irq asserted. Rinse and repeat....
1720 *
1721 * While this works for edge type interrupts, we play
1722 * it safe and reject unconditionally because we can't
1723 * say for sure which type this interrupt really
1724 * has. The type flags are unreliable as the
1725 * underlying chip implementation can override them.
1726 */
1727 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1728 new->name, irq);
1729 ret = -EINVAL;
1730 goto out_unlock;
1731 }
1732
1733 if (!shared) {
1734 /* Setup the type (level, edge polarity) if configured: */
1735 if (new->flags & IRQF_TRIGGER_MASK) {
1736 ret = __irq_set_trigger(desc,
1737 new->flags & IRQF_TRIGGER_MASK);
1738
1739 if (ret)
1740 goto out_unlock;
1741 }
1742
1743 /*
1744 * Activate the interrupt. That activation must happen
1745 * independently of IRQ_NOAUTOEN. request_irq() can fail
1746 * and the callers are supposed to handle
1747 * that. enable_irq() of an interrupt requested with
1748 * IRQ_NOAUTOEN is not supposed to fail. The activation
1749 * keeps it in shutdown mode, it merily associates
1750 * resources if necessary and if that's not possible it
1751 * fails. Interrupts which are in managed shutdown mode
1752 * will simply ignore that activation request.
1753 */
1754 ret = irq_activate(desc);
1755 if (ret)
1756 goto out_unlock;
1757
1758 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1759 IRQS_ONESHOT | IRQS_WAITING);
1760 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1761
1762 if (new->flags & IRQF_PERCPU) {
1763 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1764 irq_settings_set_per_cpu(desc);
1765 if (new->flags & IRQF_NO_DEBUG)
1766 irq_settings_set_no_debug(desc);
1767 }
1768
1769 if (noirqdebug)
1770 irq_settings_set_no_debug(desc);
1771
1772 if (new->flags & IRQF_ONESHOT)
1773 desc->istate |= IRQS_ONESHOT;
1774
1775 /* Exclude IRQ from balancing if requested */
1776 if (new->flags & IRQF_NOBALANCING) {
1777 irq_settings_set_no_balancing(desc);
1778 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1779 }
1780
1781 if (!(new->flags & IRQF_NO_AUTOEN) &&
1782 irq_settings_can_autoenable(desc)) {
1783 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1784 } else {
1785 /*
1786 * Shared interrupts do not go well with disabling
1787 * auto enable. The sharing interrupt might request
1788 * it while it's still disabled and then wait for
1789 * interrupts forever.
1790 */
1791 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1792 /* Undo nested disables: */
1793 desc->depth = 1;
1794 }
1795
1796 } else if (new->flags & IRQF_TRIGGER_MASK) {
1797 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1798 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1799
1800 if (nmsk != omsk)
1801 /* hope the handler works with current trigger mode */
1802 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1803 irq, omsk, nmsk);
1804 }
1805
1806 *old_ptr = new;
1807
1808 irq_pm_install_action(desc, new);
1809
1810 /* Reset broken irq detection when installing new handler */
1811 desc->irq_count = 0;
1812 desc->irqs_unhandled = 0;
1813
1814 /*
1815 * Check whether we disabled the irq via the spurious handler
1816 * before. Reenable it and give it another chance.
1817 */
1818 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1819 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1820 __enable_irq(desc);
1821 }
1822
1823 raw_spin_unlock_irqrestore(&desc->lock, flags);
1824 chip_bus_sync_unlock(desc);
1825 mutex_unlock(&desc->request_mutex);
1826
1827 irq_setup_timings(desc, new);
1828
1829 wake_up_and_wait_for_irq_thread_ready(desc, new);
1830 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1831
1832 register_irq_proc(irq, desc);
1833 new->dir = NULL;
1834 register_handler_proc(irq, new);
1835 return 0;
1836
1837mismatch:
1838 if (!(new->flags & IRQF_PROBE_SHARED)) {
1839 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1840 irq, new->flags, new->name, old->flags, old->name);
1841#ifdef CONFIG_DEBUG_SHIRQ
1842 dump_stack();
1843#endif
1844 }
1845 ret = -EBUSY;
1846
1847out_unlock:
1848 raw_spin_unlock_irqrestore(&desc->lock, flags);
1849
1850 if (!desc->action)
1851 irq_release_resources(desc);
1852out_bus_unlock:
1853 chip_bus_sync_unlock(desc);
1854 mutex_unlock(&desc->request_mutex);
1855
1856out_thread:
1857 if (new->thread) {
1858 struct task_struct *t = new->thread;
1859
1860 new->thread = NULL;
1861 kthread_stop_put(t);
1862 }
1863 if (new->secondary && new->secondary->thread) {
1864 struct task_struct *t = new->secondary->thread;
1865
1866 new->secondary->thread = NULL;
1867 kthread_stop_put(t);
1868 }
1869out_mput:
1870 module_put(desc->owner);
1871 return ret;
1872}
1873
1874/*
1875 * Internal function to unregister an irqaction - used to free
1876 * regular and special interrupts that are part of the architecture.
1877 */
1878static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1879{
1880 unsigned irq = desc->irq_data.irq;
1881 struct irqaction *action, **action_ptr;
1882 unsigned long flags;
1883
1884 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1885
1886 mutex_lock(&desc->request_mutex);
1887 chip_bus_lock(desc);
1888 raw_spin_lock_irqsave(&desc->lock, flags);
1889
1890 /*
1891 * There can be multiple actions per IRQ descriptor, find the right
1892 * one based on the dev_id:
1893 */
1894 action_ptr = &desc->action;
1895 for (;;) {
1896 action = *action_ptr;
1897
1898 if (!action) {
1899 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1900 raw_spin_unlock_irqrestore(&desc->lock, flags);
1901 chip_bus_sync_unlock(desc);
1902 mutex_unlock(&desc->request_mutex);
1903 return NULL;
1904 }
1905
1906 if (action->dev_id == dev_id)
1907 break;
1908 action_ptr = &action->next;
1909 }
1910
1911 /* Found it - now remove it from the list of entries: */
1912 *action_ptr = action->next;
1913
1914 irq_pm_remove_action(desc, action);
1915
1916 /* If this was the last handler, shut down the IRQ line: */
1917 if (!desc->action) {
1918 irq_settings_clr_disable_unlazy(desc);
1919 /* Only shutdown. Deactivate after synchronize_hardirq() */
1920 irq_shutdown(desc);
1921 }
1922
1923#ifdef CONFIG_SMP
1924 /* make sure affinity_hint is cleaned up */
1925 if (WARN_ON_ONCE(desc->affinity_hint))
1926 desc->affinity_hint = NULL;
1927#endif
1928
1929 raw_spin_unlock_irqrestore(&desc->lock, flags);
1930 /*
1931 * Drop bus_lock here so the changes which were done in the chip
1932 * callbacks above are synced out to the irq chips which hang
1933 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1934 *
1935 * Aside of that the bus_lock can also be taken from the threaded
1936 * handler in irq_finalize_oneshot() which results in a deadlock
1937 * because kthread_stop() would wait forever for the thread to
1938 * complete, which is blocked on the bus lock.
1939 *
1940 * The still held desc->request_mutex() protects against a
1941 * concurrent request_irq() of this irq so the release of resources
1942 * and timing data is properly serialized.
1943 */
1944 chip_bus_sync_unlock(desc);
1945
1946 unregister_handler_proc(irq, action);
1947
1948 /*
1949 * Make sure it's not being used on another CPU and if the chip
1950 * supports it also make sure that there is no (not yet serviced)
1951 * interrupt in flight at the hardware level.
1952 */
1953 __synchronize_irq(desc);
1954
1955#ifdef CONFIG_DEBUG_SHIRQ
1956 /*
1957 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1958 * event to happen even now it's being freed, so let's make sure that
1959 * is so by doing an extra call to the handler ....
1960 *
1961 * ( We do this after actually deregistering it, to make sure that a
1962 * 'real' IRQ doesn't run in parallel with our fake. )
1963 */
1964 if (action->flags & IRQF_SHARED) {
1965 local_irq_save(flags);
1966 action->handler(irq, dev_id);
1967 local_irq_restore(flags);
1968 }
1969#endif
1970
1971 /*
1972 * The action has already been removed above, but the thread writes
1973 * its oneshot mask bit when it completes. Though request_mutex is
1974 * held across this which prevents __setup_irq() from handing out
1975 * the same bit to a newly requested action.
1976 */
1977 if (action->thread) {
1978 kthread_stop_put(action->thread);
1979 if (action->secondary && action->secondary->thread)
1980 kthread_stop_put(action->secondary->thread);
1981 }
1982
1983 /* Last action releases resources */
1984 if (!desc->action) {
1985 /*
1986 * Reacquire bus lock as irq_release_resources() might
1987 * require it to deallocate resources over the slow bus.
1988 */
1989 chip_bus_lock(desc);
1990 /*
1991 * There is no interrupt on the fly anymore. Deactivate it
1992 * completely.
1993 */
1994 raw_spin_lock_irqsave(&desc->lock, flags);
1995 irq_domain_deactivate_irq(&desc->irq_data);
1996 raw_spin_unlock_irqrestore(&desc->lock, flags);
1997
1998 irq_release_resources(desc);
1999 chip_bus_sync_unlock(desc);
2000 irq_remove_timings(desc);
2001 }
2002
2003 mutex_unlock(&desc->request_mutex);
2004
2005 irq_chip_pm_put(&desc->irq_data);
2006 module_put(desc->owner);
2007 kfree(action->secondary);
2008 return action;
2009}
2010
2011/**
2012 * free_irq - free an interrupt allocated with request_irq
2013 * @irq: Interrupt line to free
2014 * @dev_id: Device identity to free
2015 *
2016 * Remove an interrupt handler. The handler is removed and if the
2017 * interrupt line is no longer in use by any driver it is disabled.
2018 * On a shared IRQ the caller must ensure the interrupt is disabled
2019 * on the card it drives before calling this function. The function
2020 * does not return until any executing interrupts for this IRQ
2021 * have completed.
2022 *
2023 * This function must not be called from interrupt context.
2024 *
2025 * Returns the devname argument passed to request_irq.
2026 */
2027const void *free_irq(unsigned int irq, void *dev_id)
2028{
2029 struct irq_desc *desc = irq_to_desc(irq);
2030 struct irqaction *action;
2031 const char *devname;
2032
2033 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2034 return NULL;
2035
2036#ifdef CONFIG_SMP
2037 if (WARN_ON(desc->affinity_notify))
2038 desc->affinity_notify = NULL;
2039#endif
2040
2041 action = __free_irq(desc, dev_id);
2042
2043 if (!action)
2044 return NULL;
2045
2046 devname = action->name;
2047 kfree(action);
2048 return devname;
2049}
2050EXPORT_SYMBOL(free_irq);
2051
2052/* This function must be called with desc->lock held */
2053static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2054{
2055 const char *devname = NULL;
2056
2057 desc->istate &= ~IRQS_NMI;
2058
2059 if (!WARN_ON(desc->action == NULL)) {
2060 irq_pm_remove_action(desc, desc->action);
2061 devname = desc->action->name;
2062 unregister_handler_proc(irq, desc->action);
2063
2064 kfree(desc->action);
2065 desc->action = NULL;
2066 }
2067
2068 irq_settings_clr_disable_unlazy(desc);
2069 irq_shutdown_and_deactivate(desc);
2070
2071 irq_release_resources(desc);
2072
2073 irq_chip_pm_put(&desc->irq_data);
2074 module_put(desc->owner);
2075
2076 return devname;
2077}
2078
2079const void *free_nmi(unsigned int irq, void *dev_id)
2080{
2081 struct irq_desc *desc = irq_to_desc(irq);
2082 unsigned long flags;
2083 const void *devname;
2084
2085 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2086 return NULL;
2087
2088 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2089 return NULL;
2090
2091 /* NMI still enabled */
2092 if (WARN_ON(desc->depth == 0))
2093 disable_nmi_nosync(irq);
2094
2095 raw_spin_lock_irqsave(&desc->lock, flags);
2096
2097 irq_nmi_teardown(desc);
2098 devname = __cleanup_nmi(irq, desc);
2099
2100 raw_spin_unlock_irqrestore(&desc->lock, flags);
2101
2102 return devname;
2103}
2104
2105/**
2106 * request_threaded_irq - allocate an interrupt line
2107 * @irq: Interrupt line to allocate
2108 * @handler: Function to be called when the IRQ occurs.
2109 * Primary handler for threaded interrupts.
2110 * If handler is NULL and thread_fn != NULL
2111 * the default primary handler is installed.
2112 * @thread_fn: Function called from the irq handler thread
2113 * If NULL, no irq thread is created
2114 * @irqflags: Interrupt type flags
2115 * @devname: An ascii name for the claiming device
2116 * @dev_id: A cookie passed back to the handler function
2117 *
2118 * This call allocates interrupt resources and enables the
2119 * interrupt line and IRQ handling. From the point this
2120 * call is made your handler function may be invoked. Since
2121 * your handler function must clear any interrupt the board
2122 * raises, you must take care both to initialise your hardware
2123 * and to set up the interrupt handler in the right order.
2124 *
2125 * If you want to set up a threaded irq handler for your device
2126 * then you need to supply @handler and @thread_fn. @handler is
2127 * still called in hard interrupt context and has to check
2128 * whether the interrupt originates from the device. If yes it
2129 * needs to disable the interrupt on the device and return
2130 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2131 * @thread_fn. This split handler design is necessary to support
2132 * shared interrupts.
2133 *
2134 * Dev_id must be globally unique. Normally the address of the
2135 * device data structure is used as the cookie. Since the handler
2136 * receives this value it makes sense to use it.
2137 *
2138 * If your interrupt is shared you must pass a non NULL dev_id
2139 * as this is required when freeing the interrupt.
2140 *
2141 * Flags:
2142 *
2143 * IRQF_SHARED Interrupt is shared
2144 * IRQF_TRIGGER_* Specify active edge(s) or level
2145 * IRQF_ONESHOT Run thread_fn with interrupt line masked
2146 */
2147int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2148 irq_handler_t thread_fn, unsigned long irqflags,
2149 const char *devname, void *dev_id)
2150{
2151 struct irqaction *action;
2152 struct irq_desc *desc;
2153 int retval;
2154
2155 if (irq == IRQ_NOTCONNECTED)
2156 return -ENOTCONN;
2157
2158 /*
2159 * Sanity-check: shared interrupts must pass in a real dev-ID,
2160 * otherwise we'll have trouble later trying to figure out
2161 * which interrupt is which (messes up the interrupt freeing
2162 * logic etc).
2163 *
2164 * Also shared interrupts do not go well with disabling auto enable.
2165 * The sharing interrupt might request it while it's still disabled
2166 * and then wait for interrupts forever.
2167 *
2168 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2169 * it cannot be set along with IRQF_NO_SUSPEND.
2170 */
2171 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2172 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2173 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2174 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2175 return -EINVAL;
2176
2177 desc = irq_to_desc(irq);
2178 if (!desc)
2179 return -EINVAL;
2180
2181 if (!irq_settings_can_request(desc) ||
2182 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2183 return -EINVAL;
2184
2185 if (!handler) {
2186 if (!thread_fn)
2187 return -EINVAL;
2188 handler = irq_default_primary_handler;
2189 }
2190
2191 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2192 if (!action)
2193 return -ENOMEM;
2194
2195 action->handler = handler;
2196 action->thread_fn = thread_fn;
2197 action->flags = irqflags;
2198 action->name = devname;
2199 action->dev_id = dev_id;
2200
2201 retval = irq_chip_pm_get(&desc->irq_data);
2202 if (retval < 0) {
2203 kfree(action);
2204 return retval;
2205 }
2206
2207 retval = __setup_irq(irq, desc, action);
2208
2209 if (retval) {
2210 irq_chip_pm_put(&desc->irq_data);
2211 kfree(action->secondary);
2212 kfree(action);
2213 }
2214
2215#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2216 if (!retval && (irqflags & IRQF_SHARED)) {
2217 /*
2218 * It's a shared IRQ -- the driver ought to be prepared for it
2219 * to happen immediately, so let's make sure....
2220 * We disable the irq to make sure that a 'real' IRQ doesn't
2221 * run in parallel with our fake.
2222 */
2223 unsigned long flags;
2224
2225 disable_irq(irq);
2226 local_irq_save(flags);
2227
2228 handler(irq, dev_id);
2229
2230 local_irq_restore(flags);
2231 enable_irq(irq);
2232 }
2233#endif
2234 return retval;
2235}
2236EXPORT_SYMBOL(request_threaded_irq);
2237
2238/**
2239 * request_any_context_irq - allocate an interrupt line
2240 * @irq: Interrupt line to allocate
2241 * @handler: Function to be called when the IRQ occurs.
2242 * Threaded handler for threaded interrupts.
2243 * @flags: Interrupt type flags
2244 * @name: An ascii name for the claiming device
2245 * @dev_id: A cookie passed back to the handler function
2246 *
2247 * This call allocates interrupt resources and enables the
2248 * interrupt line and IRQ handling. It selects either a
2249 * hardirq or threaded handling method depending on the
2250 * context.
2251 *
2252 * On failure, it returns a negative value. On success,
2253 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2254 */
2255int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2256 unsigned long flags, const char *name, void *dev_id)
2257{
2258 struct irq_desc *desc;
2259 int ret;
2260
2261 if (irq == IRQ_NOTCONNECTED)
2262 return -ENOTCONN;
2263
2264 desc = irq_to_desc(irq);
2265 if (!desc)
2266 return -EINVAL;
2267
2268 if (irq_settings_is_nested_thread(desc)) {
2269 ret = request_threaded_irq(irq, NULL, handler,
2270 flags, name, dev_id);
2271 return !ret ? IRQC_IS_NESTED : ret;
2272 }
2273
2274 ret = request_irq(irq, handler, flags, name, dev_id);
2275 return !ret ? IRQC_IS_HARDIRQ : ret;
2276}
2277EXPORT_SYMBOL_GPL(request_any_context_irq);
2278
2279/**
2280 * request_nmi - allocate an interrupt line for NMI delivery
2281 * @irq: Interrupt line to allocate
2282 * @handler: Function to be called when the IRQ occurs.
2283 * Threaded handler for threaded interrupts.
2284 * @irqflags: Interrupt type flags
2285 * @name: An ascii name for the claiming device
2286 * @dev_id: A cookie passed back to the handler function
2287 *
2288 * This call allocates interrupt resources and enables the
2289 * interrupt line and IRQ handling. It sets up the IRQ line
2290 * to be handled as an NMI.
2291 *
2292 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2293 * cannot be threaded.
2294 *
2295 * Interrupt lines requested for NMI delivering must produce per cpu
2296 * interrupts and have auto enabling setting disabled.
2297 *
2298 * Dev_id must be globally unique. Normally the address of the
2299 * device data structure is used as the cookie. Since the handler
2300 * receives this value it makes sense to use it.
2301 *
2302 * If the interrupt line cannot be used to deliver NMIs, function
2303 * will fail and return a negative value.
2304 */
2305int request_nmi(unsigned int irq, irq_handler_t handler,
2306 unsigned long irqflags, const char *name, void *dev_id)
2307{
2308 struct irqaction *action;
2309 struct irq_desc *desc;
2310 unsigned long flags;
2311 int retval;
2312
2313 if (irq == IRQ_NOTCONNECTED)
2314 return -ENOTCONN;
2315
2316 /* NMI cannot be shared, used for Polling */
2317 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2318 return -EINVAL;
2319
2320 if (!(irqflags & IRQF_PERCPU))
2321 return -EINVAL;
2322
2323 if (!handler)
2324 return -EINVAL;
2325
2326 desc = irq_to_desc(irq);
2327
2328 if (!desc || (irq_settings_can_autoenable(desc) &&
2329 !(irqflags & IRQF_NO_AUTOEN)) ||
2330 !irq_settings_can_request(desc) ||
2331 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2332 !irq_supports_nmi(desc))
2333 return -EINVAL;
2334
2335 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2336 if (!action)
2337 return -ENOMEM;
2338
2339 action->handler = handler;
2340 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2341 action->name = name;
2342 action->dev_id = dev_id;
2343
2344 retval = irq_chip_pm_get(&desc->irq_data);
2345 if (retval < 0)
2346 goto err_out;
2347
2348 retval = __setup_irq(irq, desc, action);
2349 if (retval)
2350 goto err_irq_setup;
2351
2352 raw_spin_lock_irqsave(&desc->lock, flags);
2353
2354 /* Setup NMI state */
2355 desc->istate |= IRQS_NMI;
2356 retval = irq_nmi_setup(desc);
2357 if (retval) {
2358 __cleanup_nmi(irq, desc);
2359 raw_spin_unlock_irqrestore(&desc->lock, flags);
2360 return -EINVAL;
2361 }
2362
2363 raw_spin_unlock_irqrestore(&desc->lock, flags);
2364
2365 return 0;
2366
2367err_irq_setup:
2368 irq_chip_pm_put(&desc->irq_data);
2369err_out:
2370 kfree(action);
2371
2372 return retval;
2373}
2374
2375void enable_percpu_irq(unsigned int irq, unsigned int type)
2376{
2377 unsigned int cpu = smp_processor_id();
2378 unsigned long flags;
2379 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2380
2381 if (!desc)
2382 return;
2383
2384 /*
2385 * If the trigger type is not specified by the caller, then
2386 * use the default for this interrupt.
2387 */
2388 type &= IRQ_TYPE_SENSE_MASK;
2389 if (type == IRQ_TYPE_NONE)
2390 type = irqd_get_trigger_type(&desc->irq_data);
2391
2392 if (type != IRQ_TYPE_NONE) {
2393 int ret;
2394
2395 ret = __irq_set_trigger(desc, type);
2396
2397 if (ret) {
2398 WARN(1, "failed to set type for IRQ%d\n", irq);
2399 goto out;
2400 }
2401 }
2402
2403 irq_percpu_enable(desc, cpu);
2404out:
2405 irq_put_desc_unlock(desc, flags);
2406}
2407EXPORT_SYMBOL_GPL(enable_percpu_irq);
2408
2409void enable_percpu_nmi(unsigned int irq, unsigned int type)
2410{
2411 enable_percpu_irq(irq, type);
2412}
2413
2414/**
2415 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2416 * @irq: Linux irq number to check for
2417 *
2418 * Must be called from a non migratable context. Returns the enable
2419 * state of a per cpu interrupt on the current cpu.
2420 */
2421bool irq_percpu_is_enabled(unsigned int irq)
2422{
2423 unsigned int cpu = smp_processor_id();
2424 struct irq_desc *desc;
2425 unsigned long flags;
2426 bool is_enabled;
2427
2428 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2429 if (!desc)
2430 return false;
2431
2432 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2433 irq_put_desc_unlock(desc, flags);
2434
2435 return is_enabled;
2436}
2437EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2438
2439void disable_percpu_irq(unsigned int irq)
2440{
2441 unsigned int cpu = smp_processor_id();
2442 unsigned long flags;
2443 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2444
2445 if (!desc)
2446 return;
2447
2448 irq_percpu_disable(desc, cpu);
2449 irq_put_desc_unlock(desc, flags);
2450}
2451EXPORT_SYMBOL_GPL(disable_percpu_irq);
2452
2453void disable_percpu_nmi(unsigned int irq)
2454{
2455 disable_percpu_irq(irq);
2456}
2457
2458/*
2459 * Internal function to unregister a percpu irqaction.
2460 */
2461static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2462{
2463 struct irq_desc *desc = irq_to_desc(irq);
2464 struct irqaction *action;
2465 unsigned long flags;
2466
2467 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2468
2469 if (!desc)
2470 return NULL;
2471
2472 raw_spin_lock_irqsave(&desc->lock, flags);
2473
2474 action = desc->action;
2475 if (!action || action->percpu_dev_id != dev_id) {
2476 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2477 goto bad;
2478 }
2479
2480 if (!cpumask_empty(desc->percpu_enabled)) {
2481 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2482 irq, cpumask_first(desc->percpu_enabled));
2483 goto bad;
2484 }
2485
2486 /* Found it - now remove it from the list of entries: */
2487 desc->action = NULL;
2488
2489 desc->istate &= ~IRQS_NMI;
2490
2491 raw_spin_unlock_irqrestore(&desc->lock, flags);
2492
2493 unregister_handler_proc(irq, action);
2494
2495 irq_chip_pm_put(&desc->irq_data);
2496 module_put(desc->owner);
2497 return action;
2498
2499bad:
2500 raw_spin_unlock_irqrestore(&desc->lock, flags);
2501 return NULL;
2502}
2503
2504/**
2505 * remove_percpu_irq - free a per-cpu interrupt
2506 * @irq: Interrupt line to free
2507 * @act: irqaction for the interrupt
2508 *
2509 * Used to remove interrupts statically setup by the early boot process.
2510 */
2511void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2512{
2513 struct irq_desc *desc = irq_to_desc(irq);
2514
2515 if (desc && irq_settings_is_per_cpu_devid(desc))
2516 __free_percpu_irq(irq, act->percpu_dev_id);
2517}
2518
2519/**
2520 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2521 * @irq: Interrupt line to free
2522 * @dev_id: Device identity to free
2523 *
2524 * Remove a percpu interrupt handler. The handler is removed, but
2525 * the interrupt line is not disabled. This must be done on each
2526 * CPU before calling this function. The function does not return
2527 * until any executing interrupts for this IRQ have completed.
2528 *
2529 * This function must not be called from interrupt context.
2530 */
2531void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2532{
2533 struct irq_desc *desc = irq_to_desc(irq);
2534
2535 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2536 return;
2537
2538 chip_bus_lock(desc);
2539 kfree(__free_percpu_irq(irq, dev_id));
2540 chip_bus_sync_unlock(desc);
2541}
2542EXPORT_SYMBOL_GPL(free_percpu_irq);
2543
2544void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2545{
2546 struct irq_desc *desc = irq_to_desc(irq);
2547
2548 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2549 return;
2550
2551 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2552 return;
2553
2554 kfree(__free_percpu_irq(irq, dev_id));
2555}
2556
2557/**
2558 * setup_percpu_irq - setup a per-cpu interrupt
2559 * @irq: Interrupt line to setup
2560 * @act: irqaction for the interrupt
2561 *
2562 * Used to statically setup per-cpu interrupts in the early boot process.
2563 */
2564int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2565{
2566 struct irq_desc *desc = irq_to_desc(irq);
2567 int retval;
2568
2569 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2570 return -EINVAL;
2571
2572 retval = irq_chip_pm_get(&desc->irq_data);
2573 if (retval < 0)
2574 return retval;
2575
2576 retval = __setup_irq(irq, desc, act);
2577
2578 if (retval)
2579 irq_chip_pm_put(&desc->irq_data);
2580
2581 return retval;
2582}
2583
2584/**
2585 * __request_percpu_irq - allocate a percpu interrupt line
2586 * @irq: Interrupt line to allocate
2587 * @handler: Function to be called when the IRQ occurs.
2588 * @flags: Interrupt type flags (IRQF_TIMER only)
2589 * @devname: An ascii name for the claiming device
2590 * @dev_id: A percpu cookie passed back to the handler function
2591 *
2592 * This call allocates interrupt resources and enables the
2593 * interrupt on the local CPU. If the interrupt is supposed to be
2594 * enabled on other CPUs, it has to be done on each CPU using
2595 * enable_percpu_irq().
2596 *
2597 * Dev_id must be globally unique. It is a per-cpu variable, and
2598 * the handler gets called with the interrupted CPU's instance of
2599 * that variable.
2600 */
2601int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2602 unsigned long flags, const char *devname,
2603 void __percpu *dev_id)
2604{
2605 struct irqaction *action;
2606 struct irq_desc *desc;
2607 int retval;
2608
2609 if (!dev_id)
2610 return -EINVAL;
2611
2612 desc = irq_to_desc(irq);
2613 if (!desc || !irq_settings_can_request(desc) ||
2614 !irq_settings_is_per_cpu_devid(desc))
2615 return -EINVAL;
2616
2617 if (flags && flags != IRQF_TIMER)
2618 return -EINVAL;
2619
2620 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2621 if (!action)
2622 return -ENOMEM;
2623
2624 action->handler = handler;
2625 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2626 action->name = devname;
2627 action->percpu_dev_id = dev_id;
2628
2629 retval = irq_chip_pm_get(&desc->irq_data);
2630 if (retval < 0) {
2631 kfree(action);
2632 return retval;
2633 }
2634
2635 retval = __setup_irq(irq, desc, action);
2636
2637 if (retval) {
2638 irq_chip_pm_put(&desc->irq_data);
2639 kfree(action);
2640 }
2641
2642 return retval;
2643}
2644EXPORT_SYMBOL_GPL(__request_percpu_irq);
2645
2646/**
2647 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2648 * @irq: Interrupt line to allocate
2649 * @handler: Function to be called when the IRQ occurs.
2650 * @name: An ascii name for the claiming device
2651 * @dev_id: A percpu cookie passed back to the handler function
2652 *
2653 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2654 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2655 * being enabled on the same CPU by using enable_percpu_nmi().
2656 *
2657 * Dev_id must be globally unique. It is a per-cpu variable, and
2658 * the handler gets called with the interrupted CPU's instance of
2659 * that variable.
2660 *
2661 * Interrupt lines requested for NMI delivering should have auto enabling
2662 * setting disabled.
2663 *
2664 * If the interrupt line cannot be used to deliver NMIs, function
2665 * will fail returning a negative value.
2666 */
2667int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2668 const char *name, void __percpu *dev_id)
2669{
2670 struct irqaction *action;
2671 struct irq_desc *desc;
2672 unsigned long flags;
2673 int retval;
2674
2675 if (!handler)
2676 return -EINVAL;
2677
2678 desc = irq_to_desc(irq);
2679
2680 if (!desc || !irq_settings_can_request(desc) ||
2681 !irq_settings_is_per_cpu_devid(desc) ||
2682 irq_settings_can_autoenable(desc) ||
2683 !irq_supports_nmi(desc))
2684 return -EINVAL;
2685
2686 /* The line cannot already be NMI */
2687 if (desc->istate & IRQS_NMI)
2688 return -EINVAL;
2689
2690 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2691 if (!action)
2692 return -ENOMEM;
2693
2694 action->handler = handler;
2695 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2696 | IRQF_NOBALANCING;
2697 action->name = name;
2698 action->percpu_dev_id = dev_id;
2699
2700 retval = irq_chip_pm_get(&desc->irq_data);
2701 if (retval < 0)
2702 goto err_out;
2703
2704 retval = __setup_irq(irq, desc, action);
2705 if (retval)
2706 goto err_irq_setup;
2707
2708 raw_spin_lock_irqsave(&desc->lock, flags);
2709 desc->istate |= IRQS_NMI;
2710 raw_spin_unlock_irqrestore(&desc->lock, flags);
2711
2712 return 0;
2713
2714err_irq_setup:
2715 irq_chip_pm_put(&desc->irq_data);
2716err_out:
2717 kfree(action);
2718
2719 return retval;
2720}
2721
2722/**
2723 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2724 * @irq: Interrupt line to prepare for NMI delivery
2725 *
2726 * This call prepares an interrupt line to deliver NMI on the current CPU,
2727 * before that interrupt line gets enabled with enable_percpu_nmi().
2728 *
2729 * As a CPU local operation, this should be called from non-preemptible
2730 * context.
2731 *
2732 * If the interrupt line cannot be used to deliver NMIs, function
2733 * will fail returning a negative value.
2734 */
2735int prepare_percpu_nmi(unsigned int irq)
2736{
2737 unsigned long flags;
2738 struct irq_desc *desc;
2739 int ret = 0;
2740
2741 WARN_ON(preemptible());
2742
2743 desc = irq_get_desc_lock(irq, &flags,
2744 IRQ_GET_DESC_CHECK_PERCPU);
2745 if (!desc)
2746 return -EINVAL;
2747
2748 if (WARN(!(desc->istate & IRQS_NMI),
2749 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2750 irq)) {
2751 ret = -EINVAL;
2752 goto out;
2753 }
2754
2755 ret = irq_nmi_setup(desc);
2756 if (ret) {
2757 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2758 goto out;
2759 }
2760
2761out:
2762 irq_put_desc_unlock(desc, flags);
2763 return ret;
2764}
2765
2766/**
2767 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2768 * @irq: Interrupt line from which CPU local NMI configuration should be
2769 * removed
2770 *
2771 * This call undoes the setup done by prepare_percpu_nmi().
2772 *
2773 * IRQ line should not be enabled for the current CPU.
2774 *
2775 * As a CPU local operation, this should be called from non-preemptible
2776 * context.
2777 */
2778void teardown_percpu_nmi(unsigned int irq)
2779{
2780 unsigned long flags;
2781 struct irq_desc *desc;
2782
2783 WARN_ON(preemptible());
2784
2785 desc = irq_get_desc_lock(irq, &flags,
2786 IRQ_GET_DESC_CHECK_PERCPU);
2787 if (!desc)
2788 return;
2789
2790 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2791 goto out;
2792
2793 irq_nmi_teardown(desc);
2794out:
2795 irq_put_desc_unlock(desc, flags);
2796}
2797
2798int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2799 bool *state)
2800{
2801 struct irq_chip *chip;
2802 int err = -EINVAL;
2803
2804 do {
2805 chip = irq_data_get_irq_chip(data);
2806 if (WARN_ON_ONCE(!chip))
2807 return -ENODEV;
2808 if (chip->irq_get_irqchip_state)
2809 break;
2810#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2811 data = data->parent_data;
2812#else
2813 data = NULL;
2814#endif
2815 } while (data);
2816
2817 if (data)
2818 err = chip->irq_get_irqchip_state(data, which, state);
2819 return err;
2820}
2821
2822/**
2823 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2824 * @irq: Interrupt line that is forwarded to a VM
2825 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2826 * @state: a pointer to a boolean where the state is to be stored
2827 *
2828 * This call snapshots the internal irqchip state of an
2829 * interrupt, returning into @state the bit corresponding to
2830 * stage @which
2831 *
2832 * This function should be called with preemption disabled if the
2833 * interrupt controller has per-cpu registers.
2834 */
2835int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2836 bool *state)
2837{
2838 struct irq_desc *desc;
2839 struct irq_data *data;
2840 unsigned long flags;
2841 int err = -EINVAL;
2842
2843 desc = irq_get_desc_buslock(irq, &flags, 0);
2844 if (!desc)
2845 return err;
2846
2847 data = irq_desc_get_irq_data(desc);
2848
2849 err = __irq_get_irqchip_state(data, which, state);
2850
2851 irq_put_desc_busunlock(desc, flags);
2852 return err;
2853}
2854EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2855
2856/**
2857 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2858 * @irq: Interrupt line that is forwarded to a VM
2859 * @which: State to be restored (one of IRQCHIP_STATE_*)
2860 * @val: Value corresponding to @which
2861 *
2862 * This call sets the internal irqchip state of an interrupt,
2863 * depending on the value of @which.
2864 *
2865 * This function should be called with migration disabled if the
2866 * interrupt controller has per-cpu registers.
2867 */
2868int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2869 bool val)
2870{
2871 struct irq_desc *desc;
2872 struct irq_data *data;
2873 struct irq_chip *chip;
2874 unsigned long flags;
2875 int err = -EINVAL;
2876
2877 desc = irq_get_desc_buslock(irq, &flags, 0);
2878 if (!desc)
2879 return err;
2880
2881 data = irq_desc_get_irq_data(desc);
2882
2883 do {
2884 chip = irq_data_get_irq_chip(data);
2885 if (WARN_ON_ONCE(!chip)) {
2886 err = -ENODEV;
2887 goto out_unlock;
2888 }
2889 if (chip->irq_set_irqchip_state)
2890 break;
2891#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2892 data = data->parent_data;
2893#else
2894 data = NULL;
2895#endif
2896 } while (data);
2897
2898 if (data)
2899 err = chip->irq_set_irqchip_state(data, which, val);
2900
2901out_unlock:
2902 irq_put_desc_busunlock(desc, flags);
2903 return err;
2904}
2905EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2906
2907/**
2908 * irq_has_action - Check whether an interrupt is requested
2909 * @irq: The linux irq number
2910 *
2911 * Returns: A snapshot of the current state
2912 */
2913bool irq_has_action(unsigned int irq)
2914{
2915 bool res;
2916
2917 rcu_read_lock();
2918 res = irq_desc_has_action(irq_to_desc(irq));
2919 rcu_read_unlock();
2920 return res;
2921}
2922EXPORT_SYMBOL_GPL(irq_has_action);
2923
2924/**
2925 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2926 * @irq: The linux irq number
2927 * @bitmask: The bitmask to evaluate
2928 *
2929 * Returns: True if one of the bits in @bitmask is set
2930 */
2931bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2932{
2933 struct irq_desc *desc;
2934 bool res = false;
2935
2936 rcu_read_lock();
2937 desc = irq_to_desc(irq);
2938 if (desc)
2939 res = !!(desc->status_use_accessors & bitmask);
2940 rcu_read_unlock();
2941 return res;
2942}
2943EXPORT_SYMBOL_GPL(irq_check_status_bit);