Loading...
1/*
2 * linux/arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2004 Russell King
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/signal.h>
13#include <linux/mm.h>
14#include <linux/hardirq.h>
15#include <linux/init.h>
16#include <linux/kprobes.h>
17#include <linux/uaccess.h>
18#include <linux/page-flags.h>
19#include <linux/sched.h>
20#include <linux/highmem.h>
21#include <linux/perf_event.h>
22
23#include <asm/exception.h>
24#include <asm/pgtable.h>
25#include <asm/system_misc.h>
26#include <asm/system_info.h>
27#include <asm/tlbflush.h>
28
29#include "fault.h"
30
31#ifdef CONFIG_MMU
32
33#ifdef CONFIG_KPROBES
34static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
35{
36 int ret = 0;
37
38 if (!user_mode(regs)) {
39 /* kprobe_running() needs smp_processor_id() */
40 preempt_disable();
41 if (kprobe_running() && kprobe_fault_handler(regs, fsr))
42 ret = 1;
43 preempt_enable();
44 }
45
46 return ret;
47}
48#else
49static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
50{
51 return 0;
52}
53#endif
54
55/*
56 * This is useful to dump out the page tables associated with
57 * 'addr' in mm 'mm'.
58 */
59void show_pte(struct mm_struct *mm, unsigned long addr)
60{
61 pgd_t *pgd;
62
63 if (!mm)
64 mm = &init_mm;
65
66 printk(KERN_ALERT "pgd = %p\n", mm->pgd);
67 pgd = pgd_offset(mm, addr);
68 printk(KERN_ALERT "[%08lx] *pgd=%08llx",
69 addr, (long long)pgd_val(*pgd));
70
71 do {
72 pud_t *pud;
73 pmd_t *pmd;
74 pte_t *pte;
75
76 if (pgd_none(*pgd))
77 break;
78
79 if (pgd_bad(*pgd)) {
80 printk("(bad)");
81 break;
82 }
83
84 pud = pud_offset(pgd, addr);
85 if (PTRS_PER_PUD != 1)
86 printk(", *pud=%08llx", (long long)pud_val(*pud));
87
88 if (pud_none(*pud))
89 break;
90
91 if (pud_bad(*pud)) {
92 printk("(bad)");
93 break;
94 }
95
96 pmd = pmd_offset(pud, addr);
97 if (PTRS_PER_PMD != 1)
98 printk(", *pmd=%08llx", (long long)pmd_val(*pmd));
99
100 if (pmd_none(*pmd))
101 break;
102
103 if (pmd_bad(*pmd)) {
104 printk("(bad)");
105 break;
106 }
107
108 /* We must not map this if we have highmem enabled */
109 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
110 break;
111
112 pte = pte_offset_map(pmd, addr);
113 printk(", *pte=%08llx", (long long)pte_val(*pte));
114#ifndef CONFIG_ARM_LPAE
115 printk(", *ppte=%08llx",
116 (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
117#endif
118 pte_unmap(pte);
119 } while(0);
120
121 printk("\n");
122}
123#else /* CONFIG_MMU */
124void show_pte(struct mm_struct *mm, unsigned long addr)
125{ }
126#endif /* CONFIG_MMU */
127
128/*
129 * Oops. The kernel tried to access some page that wasn't present.
130 */
131static void
132__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
133 struct pt_regs *regs)
134{
135 /*
136 * Are we prepared to handle this kernel fault?
137 */
138 if (fixup_exception(regs))
139 return;
140
141 /*
142 * No handler, we'll have to terminate things with extreme prejudice.
143 */
144 bust_spinlocks(1);
145 printk(KERN_ALERT
146 "Unable to handle kernel %s at virtual address %08lx\n",
147 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
148 "paging request", addr);
149
150 show_pte(mm, addr);
151 die("Oops", regs, fsr);
152 bust_spinlocks(0);
153 do_exit(SIGKILL);
154}
155
156/*
157 * Something tried to access memory that isn't in our memory map..
158 * User mode accesses just cause a SIGSEGV
159 */
160static void
161__do_user_fault(struct task_struct *tsk, unsigned long addr,
162 unsigned int fsr, unsigned int sig, int code,
163 struct pt_regs *regs)
164{
165 struct siginfo si;
166
167#ifdef CONFIG_DEBUG_USER
168 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
169 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) {
170 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
171 tsk->comm, sig, addr, fsr);
172 show_pte(tsk->mm, addr);
173 show_regs(regs);
174 }
175#endif
176
177 tsk->thread.address = addr;
178 tsk->thread.error_code = fsr;
179 tsk->thread.trap_no = 14;
180 si.si_signo = sig;
181 si.si_errno = 0;
182 si.si_code = code;
183 si.si_addr = (void __user *)addr;
184 force_sig_info(sig, &si, tsk);
185}
186
187void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
188{
189 struct task_struct *tsk = current;
190 struct mm_struct *mm = tsk->active_mm;
191
192 /*
193 * If we are in kernel mode at this point, we
194 * have no context to handle this fault with.
195 */
196 if (user_mode(regs))
197 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
198 else
199 __do_kernel_fault(mm, addr, fsr, regs);
200}
201
202#ifdef CONFIG_MMU
203#define VM_FAULT_BADMAP 0x010000
204#define VM_FAULT_BADACCESS 0x020000
205
206/*
207 * Check that the permissions on the VMA allow for the fault which occurred.
208 * If we encountered a write fault, we must have write permission, otherwise
209 * we allow any permission.
210 */
211static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
212{
213 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
214
215 if (fsr & FSR_WRITE)
216 mask = VM_WRITE;
217 if (fsr & FSR_LNX_PF)
218 mask = VM_EXEC;
219
220 return vma->vm_flags & mask ? false : true;
221}
222
223static int __kprobes
224__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
225 unsigned int flags, struct task_struct *tsk)
226{
227 struct vm_area_struct *vma;
228 int fault;
229
230 vma = find_vma(mm, addr);
231 fault = VM_FAULT_BADMAP;
232 if (unlikely(!vma))
233 goto out;
234 if (unlikely(vma->vm_start > addr))
235 goto check_stack;
236
237 /*
238 * Ok, we have a good vm_area for this
239 * memory access, so we can handle it.
240 */
241good_area:
242 if (access_error(fsr, vma)) {
243 fault = VM_FAULT_BADACCESS;
244 goto out;
245 }
246
247 return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
248
249check_stack:
250 /* Don't allow expansion below FIRST_USER_ADDRESS */
251 if (vma->vm_flags & VM_GROWSDOWN &&
252 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
253 goto good_area;
254out:
255 return fault;
256}
257
258static int __kprobes
259do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
260{
261 struct task_struct *tsk;
262 struct mm_struct *mm;
263 int fault, sig, code;
264 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
265
266 if (notify_page_fault(regs, fsr))
267 return 0;
268
269 tsk = current;
270 mm = tsk->mm;
271
272 /* Enable interrupts if they were enabled in the parent context. */
273 if (interrupts_enabled(regs))
274 local_irq_enable();
275
276 /*
277 * If we're in an interrupt or have no user
278 * context, we must not take the fault..
279 */
280 if (in_atomic() || !mm)
281 goto no_context;
282
283 if (user_mode(regs))
284 flags |= FAULT_FLAG_USER;
285 if (fsr & FSR_WRITE)
286 flags |= FAULT_FLAG_WRITE;
287
288 /*
289 * As per x86, we may deadlock here. However, since the kernel only
290 * validly references user space from well defined areas of the code,
291 * we can bug out early if this is from code which shouldn't.
292 */
293 if (!down_read_trylock(&mm->mmap_sem)) {
294 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
295 goto no_context;
296retry:
297 down_read(&mm->mmap_sem);
298 } else {
299 /*
300 * The above down_read_trylock() might have succeeded in
301 * which case, we'll have missed the might_sleep() from
302 * down_read()
303 */
304 might_sleep();
305#ifdef CONFIG_DEBUG_VM
306 if (!user_mode(regs) &&
307 !search_exception_tables(regs->ARM_pc))
308 goto no_context;
309#endif
310 }
311
312 fault = __do_page_fault(mm, addr, fsr, flags, tsk);
313
314 /* If we need to retry but a fatal signal is pending, handle the
315 * signal first. We do not need to release the mmap_sem because
316 * it would already be released in __lock_page_or_retry in
317 * mm/filemap.c. */
318 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
319 return 0;
320
321 /*
322 * Major/minor page fault accounting is only done on the
323 * initial attempt. If we go through a retry, it is extremely
324 * likely that the page will be found in page cache at that point.
325 */
326
327 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
328 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
329 if (fault & VM_FAULT_MAJOR) {
330 tsk->maj_flt++;
331 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
332 regs, addr);
333 } else {
334 tsk->min_flt++;
335 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
336 regs, addr);
337 }
338 if (fault & VM_FAULT_RETRY) {
339 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
340 * of starvation. */
341 flags &= ~FAULT_FLAG_ALLOW_RETRY;
342 flags |= FAULT_FLAG_TRIED;
343 goto retry;
344 }
345 }
346
347 up_read(&mm->mmap_sem);
348
349 /*
350 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
351 */
352 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
353 return 0;
354
355 /*
356 * If we are in kernel mode at this point, we
357 * have no context to handle this fault with.
358 */
359 if (!user_mode(regs))
360 goto no_context;
361
362 if (fault & VM_FAULT_OOM) {
363 /*
364 * We ran out of memory, call the OOM killer, and return to
365 * userspace (which will retry the fault, or kill us if we
366 * got oom-killed)
367 */
368 pagefault_out_of_memory();
369 return 0;
370 }
371
372 if (fault & VM_FAULT_SIGBUS) {
373 /*
374 * We had some memory, but were unable to
375 * successfully fix up this page fault.
376 */
377 sig = SIGBUS;
378 code = BUS_ADRERR;
379 } else {
380 /*
381 * Something tried to access memory that
382 * isn't in our memory map..
383 */
384 sig = SIGSEGV;
385 code = fault == VM_FAULT_BADACCESS ?
386 SEGV_ACCERR : SEGV_MAPERR;
387 }
388
389 __do_user_fault(tsk, addr, fsr, sig, code, regs);
390 return 0;
391
392no_context:
393 __do_kernel_fault(mm, addr, fsr, regs);
394 return 0;
395}
396#else /* CONFIG_MMU */
397static int
398do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
399{
400 return 0;
401}
402#endif /* CONFIG_MMU */
403
404/*
405 * First Level Translation Fault Handler
406 *
407 * We enter here because the first level page table doesn't contain
408 * a valid entry for the address.
409 *
410 * If the address is in kernel space (>= TASK_SIZE), then we are
411 * probably faulting in the vmalloc() area.
412 *
413 * If the init_task's first level page tables contains the relevant
414 * entry, we copy the it to this task. If not, we send the process
415 * a signal, fixup the exception, or oops the kernel.
416 *
417 * NOTE! We MUST NOT take any locks for this case. We may be in an
418 * interrupt or a critical region, and should only copy the information
419 * from the master page table, nothing more.
420 */
421#ifdef CONFIG_MMU
422static int __kprobes
423do_translation_fault(unsigned long addr, unsigned int fsr,
424 struct pt_regs *regs)
425{
426 unsigned int index;
427 pgd_t *pgd, *pgd_k;
428 pud_t *pud, *pud_k;
429 pmd_t *pmd, *pmd_k;
430
431 if (addr < TASK_SIZE)
432 return do_page_fault(addr, fsr, regs);
433
434 if (user_mode(regs))
435 goto bad_area;
436
437 index = pgd_index(addr);
438
439 pgd = cpu_get_pgd() + index;
440 pgd_k = init_mm.pgd + index;
441
442 if (pgd_none(*pgd_k))
443 goto bad_area;
444 if (!pgd_present(*pgd))
445 set_pgd(pgd, *pgd_k);
446
447 pud = pud_offset(pgd, addr);
448 pud_k = pud_offset(pgd_k, addr);
449
450 if (pud_none(*pud_k))
451 goto bad_area;
452 if (!pud_present(*pud))
453 set_pud(pud, *pud_k);
454
455 pmd = pmd_offset(pud, addr);
456 pmd_k = pmd_offset(pud_k, addr);
457
458#ifdef CONFIG_ARM_LPAE
459 /*
460 * Only one hardware entry per PMD with LPAE.
461 */
462 index = 0;
463#else
464 /*
465 * On ARM one Linux PGD entry contains two hardware entries (see page
466 * tables layout in pgtable.h). We normally guarantee that we always
467 * fill both L1 entries. But create_mapping() doesn't follow the rule.
468 * It can create inidividual L1 entries, so here we have to call
469 * pmd_none() check for the entry really corresponded to address, not
470 * for the first of pair.
471 */
472 index = (addr >> SECTION_SHIFT) & 1;
473#endif
474 if (pmd_none(pmd_k[index]))
475 goto bad_area;
476
477 copy_pmd(pmd, pmd_k);
478 return 0;
479
480bad_area:
481 do_bad_area(addr, fsr, regs);
482 return 0;
483}
484#else /* CONFIG_MMU */
485static int
486do_translation_fault(unsigned long addr, unsigned int fsr,
487 struct pt_regs *regs)
488{
489 return 0;
490}
491#endif /* CONFIG_MMU */
492
493/*
494 * Some section permission faults need to be handled gracefully.
495 * They can happen due to a __{get,put}_user during an oops.
496 */
497#ifndef CONFIG_ARM_LPAE
498static int
499do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
500{
501 do_bad_area(addr, fsr, regs);
502 return 0;
503}
504#endif /* CONFIG_ARM_LPAE */
505
506/*
507 * This abort handler always returns "fault".
508 */
509static int
510do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
511{
512 return 1;
513}
514
515struct fsr_info {
516 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
517 int sig;
518 int code;
519 const char *name;
520};
521
522/* FSR definition */
523#ifdef CONFIG_ARM_LPAE
524#include "fsr-3level.c"
525#else
526#include "fsr-2level.c"
527#endif
528
529void __init
530hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
531 int sig, int code, const char *name)
532{
533 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
534 BUG();
535
536 fsr_info[nr].fn = fn;
537 fsr_info[nr].sig = sig;
538 fsr_info[nr].code = code;
539 fsr_info[nr].name = name;
540}
541
542/*
543 * Dispatch a data abort to the relevant handler.
544 */
545asmlinkage void __exception
546do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
547{
548 const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
549 struct siginfo info;
550
551 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
552 return;
553
554 printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
555 inf->name, fsr, addr);
556
557 info.si_signo = inf->sig;
558 info.si_errno = 0;
559 info.si_code = inf->code;
560 info.si_addr = (void __user *)addr;
561 arm_notify_die("", regs, &info, fsr, 0);
562}
563
564void __init
565hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
566 int sig, int code, const char *name)
567{
568 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
569 BUG();
570
571 ifsr_info[nr].fn = fn;
572 ifsr_info[nr].sig = sig;
573 ifsr_info[nr].code = code;
574 ifsr_info[nr].name = name;
575}
576
577asmlinkage void __exception
578do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
579{
580 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
581 struct siginfo info;
582
583 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
584 return;
585
586 printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
587 inf->name, ifsr, addr);
588
589 info.si_signo = inf->sig;
590 info.si_errno = 0;
591 info.si_code = inf->code;
592 info.si_addr = (void __user *)addr;
593 arm_notify_die("", regs, &info, ifsr, 0);
594}
595
596#ifndef CONFIG_ARM_LPAE
597static int __init exceptions_init(void)
598{
599 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
600 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
601 "I-cache maintenance fault");
602 }
603
604 if (cpu_architecture() >= CPU_ARCH_ARMv7) {
605 /*
606 * TODO: Access flag faults introduced in ARMv6K.
607 * Runtime check for 'K' extension is needed
608 */
609 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
610 "section access flag fault");
611 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
612 "section access flag fault");
613 }
614
615 return 0;
616}
617
618arch_initcall(exceptions_init);
619#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/mm/fault.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Modifications for ARM processor (c) 1995-2004 Russell King
7 */
8#include <linux/extable.h>
9#include <linux/signal.h>
10#include <linux/mm.h>
11#include <linux/hardirq.h>
12#include <linux/init.h>
13#include <linux/kprobes.h>
14#include <linux/uaccess.h>
15#include <linux/page-flags.h>
16#include <linux/sched/signal.h>
17#include <linux/sched/debug.h>
18#include <linux/highmem.h>
19#include <linux/perf_event.h>
20#include <linux/kfence.h>
21
22#include <asm/system_misc.h>
23#include <asm/system_info.h>
24#include <asm/tlbflush.h>
25
26#include "fault.h"
27
28bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size)
29{
30 unsigned long addr = (unsigned long)unsafe_src;
31
32 return addr >= TASK_SIZE && ULONG_MAX - addr >= size;
33}
34
35#ifdef CONFIG_MMU
36
37/*
38 * This is useful to dump out the page tables associated with
39 * 'addr' in mm 'mm'.
40 */
41void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
42{
43 pgd_t *pgd;
44
45 if (!mm)
46 mm = &init_mm;
47
48 pgd = pgd_offset(mm, addr);
49 printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
50
51 do {
52 p4d_t *p4d;
53 pud_t *pud;
54 pmd_t *pmd;
55 pte_t *pte;
56
57 p4d = p4d_offset(pgd, addr);
58 if (p4d_none(*p4d))
59 break;
60
61 if (p4d_bad(*p4d)) {
62 pr_cont("(bad)");
63 break;
64 }
65
66 pud = pud_offset(p4d, addr);
67 if (PTRS_PER_PUD != 1)
68 pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
69
70 if (pud_none(*pud))
71 break;
72
73 if (pud_bad(*pud)) {
74 pr_cont("(bad)");
75 break;
76 }
77
78 pmd = pmd_offset(pud, addr);
79 if (PTRS_PER_PMD != 1)
80 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
81
82 if (pmd_none(*pmd))
83 break;
84
85 if (pmd_bad(*pmd)) {
86 pr_cont("(bad)");
87 break;
88 }
89
90 /* We must not map this if we have highmem enabled */
91 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
92 break;
93
94 pte = pte_offset_map(pmd, addr);
95 if (!pte)
96 break;
97
98 pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
99#ifndef CONFIG_ARM_LPAE
100 pr_cont(", *ppte=%08llx",
101 (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
102#endif
103 pte_unmap(pte);
104 } while(0);
105
106 pr_cont("\n");
107}
108#else /* CONFIG_MMU */
109void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
110{ }
111#endif /* CONFIG_MMU */
112
113static inline bool is_write_fault(unsigned int fsr)
114{
115 return (fsr & FSR_WRITE) && !(fsr & FSR_CM);
116}
117
118static inline bool is_translation_fault(unsigned int fsr)
119{
120 int fs = fsr_fs(fsr);
121#ifdef CONFIG_ARM_LPAE
122 if ((fs & FS_MMU_NOLL_MASK) == FS_TRANS_NOLL)
123 return true;
124#else
125 if (fs == FS_L1_TRANS || fs == FS_L2_TRANS)
126 return true;
127#endif
128 return false;
129}
130
131static void die_kernel_fault(const char *msg, struct mm_struct *mm,
132 unsigned long addr, unsigned int fsr,
133 struct pt_regs *regs)
134{
135 bust_spinlocks(1);
136 pr_alert("8<--- cut here ---\n");
137 pr_alert("Unable to handle kernel %s at virtual address %08lx when %s\n",
138 msg, addr, fsr & FSR_LNX_PF ? "execute" :
139 fsr & FSR_WRITE ? "write" : "read");
140
141 show_pte(KERN_ALERT, mm, addr);
142 die("Oops", regs, fsr);
143 bust_spinlocks(0);
144 make_task_dead(SIGKILL);
145}
146
147/*
148 * Oops. The kernel tried to access some page that wasn't present.
149 */
150static void
151__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
152 struct pt_regs *regs)
153{
154 const char *msg;
155 /*
156 * Are we prepared to handle this kernel fault?
157 */
158 if (fixup_exception(regs))
159 return;
160
161 /*
162 * No handler, we'll have to terminate things with extreme prejudice.
163 */
164 if (addr < PAGE_SIZE) {
165 msg = "NULL pointer dereference";
166 } else {
167 if (is_translation_fault(fsr) &&
168 kfence_handle_page_fault(addr, is_write_fault(fsr), regs))
169 return;
170
171 msg = "paging request";
172 }
173
174 die_kernel_fault(msg, mm, addr, fsr, regs);
175}
176
177/*
178 * Something tried to access memory that isn't in our memory map..
179 * User mode accesses just cause a SIGSEGV
180 */
181static void
182__do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
183 int code, struct pt_regs *regs)
184{
185 struct task_struct *tsk = current;
186
187 if (addr > TASK_SIZE)
188 harden_branch_predictor();
189
190#ifdef CONFIG_DEBUG_USER
191 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
192 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) {
193 pr_err("8<--- cut here ---\n");
194 pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
195 tsk->comm, sig, addr, fsr);
196 show_pte(KERN_ERR, tsk->mm, addr);
197 show_regs(regs);
198 }
199#endif
200#ifndef CONFIG_KUSER_HELPERS
201 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
202 printk_ratelimited(KERN_DEBUG
203 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
204 tsk->comm, addr);
205#endif
206
207 tsk->thread.address = addr;
208 tsk->thread.error_code = fsr;
209 tsk->thread.trap_no = 14;
210 force_sig_fault(sig, code, (void __user *)addr);
211}
212
213void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
214{
215 struct task_struct *tsk = current;
216 struct mm_struct *mm = tsk->active_mm;
217
218 /*
219 * If we are in kernel mode at this point, we
220 * have no context to handle this fault with.
221 */
222 if (user_mode(regs))
223 __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
224 else
225 __do_kernel_fault(mm, addr, fsr, regs);
226}
227
228#ifdef CONFIG_MMU
229#define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000)
230#define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000)
231
232static inline bool is_permission_fault(unsigned int fsr)
233{
234 int fs = fsr_fs(fsr);
235#ifdef CONFIG_ARM_LPAE
236 if ((fs & FS_MMU_NOLL_MASK) == FS_PERM_NOLL)
237 return true;
238#else
239 if (fs == FS_L1_PERM || fs == FS_L2_PERM)
240 return true;
241#endif
242 return false;
243}
244
245static int __kprobes
246do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
247{
248 struct mm_struct *mm = current->mm;
249 struct vm_area_struct *vma;
250 int sig, code;
251 vm_fault_t fault;
252 unsigned int flags = FAULT_FLAG_DEFAULT;
253 unsigned long vm_flags = VM_ACCESS_FLAGS;
254
255 if (kprobe_page_fault(regs, fsr))
256 return 0;
257
258
259 /* Enable interrupts if they were enabled in the parent context. */
260 if (interrupts_enabled(regs))
261 local_irq_enable();
262
263 /*
264 * If we're in an interrupt or have no user
265 * context, we must not take the fault..
266 */
267 if (faulthandler_disabled() || !mm)
268 goto no_context;
269
270 if (user_mode(regs))
271 flags |= FAULT_FLAG_USER;
272
273 if (is_write_fault(fsr)) {
274 flags |= FAULT_FLAG_WRITE;
275 vm_flags = VM_WRITE;
276 }
277
278 if (fsr & FSR_LNX_PF) {
279 vm_flags = VM_EXEC;
280
281 if (is_permission_fault(fsr) && !user_mode(regs))
282 die_kernel_fault("execution of memory",
283 mm, addr, fsr, regs);
284 }
285
286 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
287
288 if (!(flags & FAULT_FLAG_USER))
289 goto lock_mmap;
290
291 vma = lock_vma_under_rcu(mm, addr);
292 if (!vma)
293 goto lock_mmap;
294
295 if (!(vma->vm_flags & vm_flags)) {
296 vma_end_read(vma);
297 goto lock_mmap;
298 }
299 fault = handle_mm_fault(vma, addr, flags | FAULT_FLAG_VMA_LOCK, regs);
300 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
301 vma_end_read(vma);
302
303 if (!(fault & VM_FAULT_RETRY)) {
304 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
305 goto done;
306 }
307 count_vm_vma_lock_event(VMA_LOCK_RETRY);
308 if (fault & VM_FAULT_MAJOR)
309 flags |= FAULT_FLAG_TRIED;
310
311 /* Quick path to respond to signals */
312 if (fault_signal_pending(fault, regs)) {
313 if (!user_mode(regs))
314 goto no_context;
315 return 0;
316 }
317lock_mmap:
318
319retry:
320 vma = lock_mm_and_find_vma(mm, addr, regs);
321 if (unlikely(!vma)) {
322 fault = VM_FAULT_BADMAP;
323 goto bad_area;
324 }
325
326 /*
327 * ok, we have a good vm_area for this memory access, check the
328 * permissions on the VMA allow for the fault which occurred.
329 */
330 if (!(vma->vm_flags & vm_flags))
331 fault = VM_FAULT_BADACCESS;
332 else
333 fault = handle_mm_fault(vma, addr & PAGE_MASK, flags, regs);
334
335 /* If we need to retry but a fatal signal is pending, handle the
336 * signal first. We do not need to release the mmap_lock because
337 * it would already be released in __lock_page_or_retry in
338 * mm/filemap.c. */
339 if (fault_signal_pending(fault, regs)) {
340 if (!user_mode(regs))
341 goto no_context;
342 return 0;
343 }
344
345 /* The fault is fully completed (including releasing mmap lock) */
346 if (fault & VM_FAULT_COMPLETED)
347 return 0;
348
349 if (!(fault & VM_FAULT_ERROR)) {
350 if (fault & VM_FAULT_RETRY) {
351 flags |= FAULT_FLAG_TRIED;
352 goto retry;
353 }
354 }
355
356 mmap_read_unlock(mm);
357done:
358
359 /*
360 * Handle the "normal" case first - VM_FAULT_MAJOR
361 */
362 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
363 return 0;
364
365bad_area:
366 /*
367 * If we are in kernel mode at this point, we
368 * have no context to handle this fault with.
369 */
370 if (!user_mode(regs))
371 goto no_context;
372
373 if (fault & VM_FAULT_OOM) {
374 /*
375 * We ran out of memory, call the OOM killer, and return to
376 * userspace (which will retry the fault, or kill us if we
377 * got oom-killed)
378 */
379 pagefault_out_of_memory();
380 return 0;
381 }
382
383 if (fault & VM_FAULT_SIGBUS) {
384 /*
385 * We had some memory, but were unable to
386 * successfully fix up this page fault.
387 */
388 sig = SIGBUS;
389 code = BUS_ADRERR;
390 } else {
391 /*
392 * Something tried to access memory that
393 * isn't in our memory map..
394 */
395 sig = SIGSEGV;
396 code = fault == VM_FAULT_BADACCESS ?
397 SEGV_ACCERR : SEGV_MAPERR;
398 }
399
400 __do_user_fault(addr, fsr, sig, code, regs);
401 return 0;
402
403no_context:
404 __do_kernel_fault(mm, addr, fsr, regs);
405 return 0;
406}
407#else /* CONFIG_MMU */
408static int
409do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
410{
411 return 0;
412}
413#endif /* CONFIG_MMU */
414
415/*
416 * First Level Translation Fault Handler
417 *
418 * We enter here because the first level page table doesn't contain
419 * a valid entry for the address.
420 *
421 * If the address is in kernel space (>= TASK_SIZE), then we are
422 * probably faulting in the vmalloc() area.
423 *
424 * If the init_task's first level page tables contains the relevant
425 * entry, we copy the it to this task. If not, we send the process
426 * a signal, fixup the exception, or oops the kernel.
427 *
428 * NOTE! We MUST NOT take any locks for this case. We may be in an
429 * interrupt or a critical region, and should only copy the information
430 * from the master page table, nothing more.
431 */
432#ifdef CONFIG_MMU
433static int __kprobes
434do_translation_fault(unsigned long addr, unsigned int fsr,
435 struct pt_regs *regs)
436{
437 unsigned int index;
438 pgd_t *pgd, *pgd_k;
439 p4d_t *p4d, *p4d_k;
440 pud_t *pud, *pud_k;
441 pmd_t *pmd, *pmd_k;
442
443 if (addr < TASK_SIZE)
444 return do_page_fault(addr, fsr, regs);
445
446 if (user_mode(regs))
447 goto bad_area;
448
449 index = pgd_index(addr);
450
451 pgd = cpu_get_pgd() + index;
452 pgd_k = init_mm.pgd + index;
453
454 p4d = p4d_offset(pgd, addr);
455 p4d_k = p4d_offset(pgd_k, addr);
456
457 if (p4d_none(*p4d_k))
458 goto bad_area;
459 if (!p4d_present(*p4d))
460 set_p4d(p4d, *p4d_k);
461
462 pud = pud_offset(p4d, addr);
463 pud_k = pud_offset(p4d_k, addr);
464
465 if (pud_none(*pud_k))
466 goto bad_area;
467 if (!pud_present(*pud))
468 set_pud(pud, *pud_k);
469
470 pmd = pmd_offset(pud, addr);
471 pmd_k = pmd_offset(pud_k, addr);
472
473#ifdef CONFIG_ARM_LPAE
474 /*
475 * Only one hardware entry per PMD with LPAE.
476 */
477 index = 0;
478#else
479 /*
480 * On ARM one Linux PGD entry contains two hardware entries (see page
481 * tables layout in pgtable.h). We normally guarantee that we always
482 * fill both L1 entries. But create_mapping() doesn't follow the rule.
483 * It can create inidividual L1 entries, so here we have to call
484 * pmd_none() check for the entry really corresponded to address, not
485 * for the first of pair.
486 */
487 index = (addr >> SECTION_SHIFT) & 1;
488#endif
489 if (pmd_none(pmd_k[index]))
490 goto bad_area;
491
492 copy_pmd(pmd, pmd_k);
493 return 0;
494
495bad_area:
496 do_bad_area(addr, fsr, regs);
497 return 0;
498}
499#else /* CONFIG_MMU */
500static int
501do_translation_fault(unsigned long addr, unsigned int fsr,
502 struct pt_regs *regs)
503{
504 return 0;
505}
506#endif /* CONFIG_MMU */
507
508/*
509 * Some section permission faults need to be handled gracefully.
510 * They can happen due to a __{get,put}_user during an oops.
511 */
512#ifndef CONFIG_ARM_LPAE
513static int
514do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
515{
516 do_bad_area(addr, fsr, regs);
517 return 0;
518}
519#endif /* CONFIG_ARM_LPAE */
520
521/*
522 * This abort handler always returns "fault".
523 */
524static int
525do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
526{
527 return 1;
528}
529
530struct fsr_info {
531 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
532 int sig;
533 int code;
534 const char *name;
535};
536
537/* FSR definition */
538#ifdef CONFIG_ARM_LPAE
539#include "fsr-3level.c"
540#else
541#include "fsr-2level.c"
542#endif
543
544void __init
545hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
546 int sig, int code, const char *name)
547{
548 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
549 BUG();
550
551 fsr_info[nr].fn = fn;
552 fsr_info[nr].sig = sig;
553 fsr_info[nr].code = code;
554 fsr_info[nr].name = name;
555}
556
557/*
558 * Dispatch a data abort to the relevant handler.
559 */
560asmlinkage void
561do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
562{
563 const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
564
565 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
566 return;
567
568 pr_alert("8<--- cut here ---\n");
569 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
570 inf->name, fsr, addr);
571 show_pte(KERN_ALERT, current->mm, addr);
572
573 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
574 fsr, 0);
575}
576
577void __init
578hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
579 int sig, int code, const char *name)
580{
581 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
582 BUG();
583
584 ifsr_info[nr].fn = fn;
585 ifsr_info[nr].sig = sig;
586 ifsr_info[nr].code = code;
587 ifsr_info[nr].name = name;
588}
589
590asmlinkage void
591do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
592{
593 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
594
595 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
596 return;
597
598 pr_alert("8<--- cut here ---\n");
599 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
600 inf->name, ifsr, addr);
601
602 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
603 ifsr, 0);
604}
605
606/*
607 * Abort handler to be used only during first unmasking of asynchronous aborts
608 * on the boot CPU. This makes sure that the machine will not die if the
609 * firmware/bootloader left an imprecise abort pending for us to trip over.
610 */
611static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
612 struct pt_regs *regs)
613{
614 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
615 "first unmask, this is most likely caused by a "
616 "firmware/bootloader bug.\n", fsr);
617
618 return 0;
619}
620
621void __init early_abt_enable(void)
622{
623 fsr_info[FSR_FS_AEA].fn = early_abort_handler;
624 local_abt_enable();
625 fsr_info[FSR_FS_AEA].fn = do_bad;
626}
627
628#ifndef CONFIG_ARM_LPAE
629static int __init exceptions_init(void)
630{
631 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
632 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
633 "I-cache maintenance fault");
634 }
635
636 if (cpu_architecture() >= CPU_ARCH_ARMv7) {
637 /*
638 * TODO: Access flag faults introduced in ARMv6K.
639 * Runtime check for 'K' extension is needed
640 */
641 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
642 "section access flag fault");
643 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
644 "section access flag fault");
645 }
646
647 return 0;
648}
649
650arch_initcall(exceptions_init);
651#endif