Loading...
1/*
2 * linux/arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2004 Russell King
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/signal.h>
13#include <linux/mm.h>
14#include <linux/hardirq.h>
15#include <linux/init.h>
16#include <linux/kprobes.h>
17#include <linux/uaccess.h>
18#include <linux/page-flags.h>
19#include <linux/sched.h>
20#include <linux/highmem.h>
21#include <linux/perf_event.h>
22
23#include <asm/exception.h>
24#include <asm/pgtable.h>
25#include <asm/system_misc.h>
26#include <asm/system_info.h>
27#include <asm/tlbflush.h>
28
29#include "fault.h"
30
31#ifdef CONFIG_MMU
32
33#ifdef CONFIG_KPROBES
34static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
35{
36 int ret = 0;
37
38 if (!user_mode(regs)) {
39 /* kprobe_running() needs smp_processor_id() */
40 preempt_disable();
41 if (kprobe_running() && kprobe_fault_handler(regs, fsr))
42 ret = 1;
43 preempt_enable();
44 }
45
46 return ret;
47}
48#else
49static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
50{
51 return 0;
52}
53#endif
54
55/*
56 * This is useful to dump out the page tables associated with
57 * 'addr' in mm 'mm'.
58 */
59void show_pte(struct mm_struct *mm, unsigned long addr)
60{
61 pgd_t *pgd;
62
63 if (!mm)
64 mm = &init_mm;
65
66 printk(KERN_ALERT "pgd = %p\n", mm->pgd);
67 pgd = pgd_offset(mm, addr);
68 printk(KERN_ALERT "[%08lx] *pgd=%08llx",
69 addr, (long long)pgd_val(*pgd));
70
71 do {
72 pud_t *pud;
73 pmd_t *pmd;
74 pte_t *pte;
75
76 if (pgd_none(*pgd))
77 break;
78
79 if (pgd_bad(*pgd)) {
80 printk("(bad)");
81 break;
82 }
83
84 pud = pud_offset(pgd, addr);
85 if (PTRS_PER_PUD != 1)
86 printk(", *pud=%08llx", (long long)pud_val(*pud));
87
88 if (pud_none(*pud))
89 break;
90
91 if (pud_bad(*pud)) {
92 printk("(bad)");
93 break;
94 }
95
96 pmd = pmd_offset(pud, addr);
97 if (PTRS_PER_PMD != 1)
98 printk(", *pmd=%08llx", (long long)pmd_val(*pmd));
99
100 if (pmd_none(*pmd))
101 break;
102
103 if (pmd_bad(*pmd)) {
104 printk("(bad)");
105 break;
106 }
107
108 /* We must not map this if we have highmem enabled */
109 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
110 break;
111
112 pte = pte_offset_map(pmd, addr);
113 printk(", *pte=%08llx", (long long)pte_val(*pte));
114#ifndef CONFIG_ARM_LPAE
115 printk(", *ppte=%08llx",
116 (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
117#endif
118 pte_unmap(pte);
119 } while(0);
120
121 printk("\n");
122}
123#else /* CONFIG_MMU */
124void show_pte(struct mm_struct *mm, unsigned long addr)
125{ }
126#endif /* CONFIG_MMU */
127
128/*
129 * Oops. The kernel tried to access some page that wasn't present.
130 */
131static void
132__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
133 struct pt_regs *regs)
134{
135 /*
136 * Are we prepared to handle this kernel fault?
137 */
138 if (fixup_exception(regs))
139 return;
140
141 /*
142 * No handler, we'll have to terminate things with extreme prejudice.
143 */
144 bust_spinlocks(1);
145 printk(KERN_ALERT
146 "Unable to handle kernel %s at virtual address %08lx\n",
147 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
148 "paging request", addr);
149
150 show_pte(mm, addr);
151 die("Oops", regs, fsr);
152 bust_spinlocks(0);
153 do_exit(SIGKILL);
154}
155
156/*
157 * Something tried to access memory that isn't in our memory map..
158 * User mode accesses just cause a SIGSEGV
159 */
160static void
161__do_user_fault(struct task_struct *tsk, unsigned long addr,
162 unsigned int fsr, unsigned int sig, int code,
163 struct pt_regs *regs)
164{
165 struct siginfo si;
166
167#ifdef CONFIG_DEBUG_USER
168 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
169 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) {
170 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
171 tsk->comm, sig, addr, fsr);
172 show_pte(tsk->mm, addr);
173 show_regs(regs);
174 }
175#endif
176
177 tsk->thread.address = addr;
178 tsk->thread.error_code = fsr;
179 tsk->thread.trap_no = 14;
180 si.si_signo = sig;
181 si.si_errno = 0;
182 si.si_code = code;
183 si.si_addr = (void __user *)addr;
184 force_sig_info(sig, &si, tsk);
185}
186
187void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
188{
189 struct task_struct *tsk = current;
190 struct mm_struct *mm = tsk->active_mm;
191
192 /*
193 * If we are in kernel mode at this point, we
194 * have no context to handle this fault with.
195 */
196 if (user_mode(regs))
197 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
198 else
199 __do_kernel_fault(mm, addr, fsr, regs);
200}
201
202#ifdef CONFIG_MMU
203#define VM_FAULT_BADMAP 0x010000
204#define VM_FAULT_BADACCESS 0x020000
205
206/*
207 * Check that the permissions on the VMA allow for the fault which occurred.
208 * If we encountered a write fault, we must have write permission, otherwise
209 * we allow any permission.
210 */
211static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
212{
213 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
214
215 if (fsr & FSR_WRITE)
216 mask = VM_WRITE;
217 if (fsr & FSR_LNX_PF)
218 mask = VM_EXEC;
219
220 return vma->vm_flags & mask ? false : true;
221}
222
223static int __kprobes
224__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
225 unsigned int flags, struct task_struct *tsk)
226{
227 struct vm_area_struct *vma;
228 int fault;
229
230 vma = find_vma(mm, addr);
231 fault = VM_FAULT_BADMAP;
232 if (unlikely(!vma))
233 goto out;
234 if (unlikely(vma->vm_start > addr))
235 goto check_stack;
236
237 /*
238 * Ok, we have a good vm_area for this
239 * memory access, so we can handle it.
240 */
241good_area:
242 if (access_error(fsr, vma)) {
243 fault = VM_FAULT_BADACCESS;
244 goto out;
245 }
246
247 return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
248
249check_stack:
250 /* Don't allow expansion below FIRST_USER_ADDRESS */
251 if (vma->vm_flags & VM_GROWSDOWN &&
252 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
253 goto good_area;
254out:
255 return fault;
256}
257
258static int __kprobes
259do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
260{
261 struct task_struct *tsk;
262 struct mm_struct *mm;
263 int fault, sig, code;
264 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
265
266 if (notify_page_fault(regs, fsr))
267 return 0;
268
269 tsk = current;
270 mm = tsk->mm;
271
272 /* Enable interrupts if they were enabled in the parent context. */
273 if (interrupts_enabled(regs))
274 local_irq_enable();
275
276 /*
277 * If we're in an interrupt or have no user
278 * context, we must not take the fault..
279 */
280 if (in_atomic() || !mm)
281 goto no_context;
282
283 if (user_mode(regs))
284 flags |= FAULT_FLAG_USER;
285 if (fsr & FSR_WRITE)
286 flags |= FAULT_FLAG_WRITE;
287
288 /*
289 * As per x86, we may deadlock here. However, since the kernel only
290 * validly references user space from well defined areas of the code,
291 * we can bug out early if this is from code which shouldn't.
292 */
293 if (!down_read_trylock(&mm->mmap_sem)) {
294 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
295 goto no_context;
296retry:
297 down_read(&mm->mmap_sem);
298 } else {
299 /*
300 * The above down_read_trylock() might have succeeded in
301 * which case, we'll have missed the might_sleep() from
302 * down_read()
303 */
304 might_sleep();
305#ifdef CONFIG_DEBUG_VM
306 if (!user_mode(regs) &&
307 !search_exception_tables(regs->ARM_pc))
308 goto no_context;
309#endif
310 }
311
312 fault = __do_page_fault(mm, addr, fsr, flags, tsk);
313
314 /* If we need to retry but a fatal signal is pending, handle the
315 * signal first. We do not need to release the mmap_sem because
316 * it would already be released in __lock_page_or_retry in
317 * mm/filemap.c. */
318 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
319 return 0;
320
321 /*
322 * Major/minor page fault accounting is only done on the
323 * initial attempt. If we go through a retry, it is extremely
324 * likely that the page will be found in page cache at that point.
325 */
326
327 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
328 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
329 if (fault & VM_FAULT_MAJOR) {
330 tsk->maj_flt++;
331 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
332 regs, addr);
333 } else {
334 tsk->min_flt++;
335 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
336 regs, addr);
337 }
338 if (fault & VM_FAULT_RETRY) {
339 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
340 * of starvation. */
341 flags &= ~FAULT_FLAG_ALLOW_RETRY;
342 flags |= FAULT_FLAG_TRIED;
343 goto retry;
344 }
345 }
346
347 up_read(&mm->mmap_sem);
348
349 /*
350 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
351 */
352 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
353 return 0;
354
355 /*
356 * If we are in kernel mode at this point, we
357 * have no context to handle this fault with.
358 */
359 if (!user_mode(regs))
360 goto no_context;
361
362 if (fault & VM_FAULT_OOM) {
363 /*
364 * We ran out of memory, call the OOM killer, and return to
365 * userspace (which will retry the fault, or kill us if we
366 * got oom-killed)
367 */
368 pagefault_out_of_memory();
369 return 0;
370 }
371
372 if (fault & VM_FAULT_SIGBUS) {
373 /*
374 * We had some memory, but were unable to
375 * successfully fix up this page fault.
376 */
377 sig = SIGBUS;
378 code = BUS_ADRERR;
379 } else {
380 /*
381 * Something tried to access memory that
382 * isn't in our memory map..
383 */
384 sig = SIGSEGV;
385 code = fault == VM_FAULT_BADACCESS ?
386 SEGV_ACCERR : SEGV_MAPERR;
387 }
388
389 __do_user_fault(tsk, addr, fsr, sig, code, regs);
390 return 0;
391
392no_context:
393 __do_kernel_fault(mm, addr, fsr, regs);
394 return 0;
395}
396#else /* CONFIG_MMU */
397static int
398do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
399{
400 return 0;
401}
402#endif /* CONFIG_MMU */
403
404/*
405 * First Level Translation Fault Handler
406 *
407 * We enter here because the first level page table doesn't contain
408 * a valid entry for the address.
409 *
410 * If the address is in kernel space (>= TASK_SIZE), then we are
411 * probably faulting in the vmalloc() area.
412 *
413 * If the init_task's first level page tables contains the relevant
414 * entry, we copy the it to this task. If not, we send the process
415 * a signal, fixup the exception, or oops the kernel.
416 *
417 * NOTE! We MUST NOT take any locks for this case. We may be in an
418 * interrupt or a critical region, and should only copy the information
419 * from the master page table, nothing more.
420 */
421#ifdef CONFIG_MMU
422static int __kprobes
423do_translation_fault(unsigned long addr, unsigned int fsr,
424 struct pt_regs *regs)
425{
426 unsigned int index;
427 pgd_t *pgd, *pgd_k;
428 pud_t *pud, *pud_k;
429 pmd_t *pmd, *pmd_k;
430
431 if (addr < TASK_SIZE)
432 return do_page_fault(addr, fsr, regs);
433
434 if (user_mode(regs))
435 goto bad_area;
436
437 index = pgd_index(addr);
438
439 pgd = cpu_get_pgd() + index;
440 pgd_k = init_mm.pgd + index;
441
442 if (pgd_none(*pgd_k))
443 goto bad_area;
444 if (!pgd_present(*pgd))
445 set_pgd(pgd, *pgd_k);
446
447 pud = pud_offset(pgd, addr);
448 pud_k = pud_offset(pgd_k, addr);
449
450 if (pud_none(*pud_k))
451 goto bad_area;
452 if (!pud_present(*pud))
453 set_pud(pud, *pud_k);
454
455 pmd = pmd_offset(pud, addr);
456 pmd_k = pmd_offset(pud_k, addr);
457
458#ifdef CONFIG_ARM_LPAE
459 /*
460 * Only one hardware entry per PMD with LPAE.
461 */
462 index = 0;
463#else
464 /*
465 * On ARM one Linux PGD entry contains two hardware entries (see page
466 * tables layout in pgtable.h). We normally guarantee that we always
467 * fill both L1 entries. But create_mapping() doesn't follow the rule.
468 * It can create inidividual L1 entries, so here we have to call
469 * pmd_none() check for the entry really corresponded to address, not
470 * for the first of pair.
471 */
472 index = (addr >> SECTION_SHIFT) & 1;
473#endif
474 if (pmd_none(pmd_k[index]))
475 goto bad_area;
476
477 copy_pmd(pmd, pmd_k);
478 return 0;
479
480bad_area:
481 do_bad_area(addr, fsr, regs);
482 return 0;
483}
484#else /* CONFIG_MMU */
485static int
486do_translation_fault(unsigned long addr, unsigned int fsr,
487 struct pt_regs *regs)
488{
489 return 0;
490}
491#endif /* CONFIG_MMU */
492
493/*
494 * Some section permission faults need to be handled gracefully.
495 * They can happen due to a __{get,put}_user during an oops.
496 */
497#ifndef CONFIG_ARM_LPAE
498static int
499do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
500{
501 do_bad_area(addr, fsr, regs);
502 return 0;
503}
504#endif /* CONFIG_ARM_LPAE */
505
506/*
507 * This abort handler always returns "fault".
508 */
509static int
510do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
511{
512 return 1;
513}
514
515struct fsr_info {
516 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
517 int sig;
518 int code;
519 const char *name;
520};
521
522/* FSR definition */
523#ifdef CONFIG_ARM_LPAE
524#include "fsr-3level.c"
525#else
526#include "fsr-2level.c"
527#endif
528
529void __init
530hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
531 int sig, int code, const char *name)
532{
533 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
534 BUG();
535
536 fsr_info[nr].fn = fn;
537 fsr_info[nr].sig = sig;
538 fsr_info[nr].code = code;
539 fsr_info[nr].name = name;
540}
541
542/*
543 * Dispatch a data abort to the relevant handler.
544 */
545asmlinkage void __exception
546do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
547{
548 const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
549 struct siginfo info;
550
551 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
552 return;
553
554 printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
555 inf->name, fsr, addr);
556
557 info.si_signo = inf->sig;
558 info.si_errno = 0;
559 info.si_code = inf->code;
560 info.si_addr = (void __user *)addr;
561 arm_notify_die("", regs, &info, fsr, 0);
562}
563
564void __init
565hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
566 int sig, int code, const char *name)
567{
568 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
569 BUG();
570
571 ifsr_info[nr].fn = fn;
572 ifsr_info[nr].sig = sig;
573 ifsr_info[nr].code = code;
574 ifsr_info[nr].name = name;
575}
576
577asmlinkage void __exception
578do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
579{
580 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
581 struct siginfo info;
582
583 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
584 return;
585
586 printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
587 inf->name, ifsr, addr);
588
589 info.si_signo = inf->sig;
590 info.si_errno = 0;
591 info.si_code = inf->code;
592 info.si_addr = (void __user *)addr;
593 arm_notify_die("", regs, &info, ifsr, 0);
594}
595
596#ifndef CONFIG_ARM_LPAE
597static int __init exceptions_init(void)
598{
599 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
600 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
601 "I-cache maintenance fault");
602 }
603
604 if (cpu_architecture() >= CPU_ARCH_ARMv7) {
605 /*
606 * TODO: Access flag faults introduced in ARMv6K.
607 * Runtime check for 'K' extension is needed
608 */
609 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
610 "section access flag fault");
611 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
612 "section access flag fault");
613 }
614
615 return 0;
616}
617
618arch_initcall(exceptions_init);
619#endif
1/*
2 * linux/arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2004 Russell King
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/extable.h>
12#include <linux/signal.h>
13#include <linux/mm.h>
14#include <linux/hardirq.h>
15#include <linux/init.h>
16#include <linux/kprobes.h>
17#include <linux/uaccess.h>
18#include <linux/page-flags.h>
19#include <linux/sched/signal.h>
20#include <linux/sched/debug.h>
21#include <linux/highmem.h>
22#include <linux/perf_event.h>
23
24#include <asm/pgtable.h>
25#include <asm/system_misc.h>
26#include <asm/system_info.h>
27#include <asm/tlbflush.h>
28
29#include "fault.h"
30
31#ifdef CONFIG_MMU
32
33#ifdef CONFIG_KPROBES
34static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
35{
36 int ret = 0;
37
38 if (!user_mode(regs)) {
39 /* kprobe_running() needs smp_processor_id() */
40 preempt_disable();
41 if (kprobe_running() && kprobe_fault_handler(regs, fsr))
42 ret = 1;
43 preempt_enable();
44 }
45
46 return ret;
47}
48#else
49static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
50{
51 return 0;
52}
53#endif
54
55/*
56 * This is useful to dump out the page tables associated with
57 * 'addr' in mm 'mm'.
58 */
59void show_pte(struct mm_struct *mm, unsigned long addr)
60{
61 pgd_t *pgd;
62
63 if (!mm)
64 mm = &init_mm;
65
66 pr_alert("pgd = %p\n", mm->pgd);
67 pgd = pgd_offset(mm, addr);
68 pr_alert("[%08lx] *pgd=%08llx",
69 addr, (long long)pgd_val(*pgd));
70
71 do {
72 pud_t *pud;
73 pmd_t *pmd;
74 pte_t *pte;
75
76 if (pgd_none(*pgd))
77 break;
78
79 if (pgd_bad(*pgd)) {
80 pr_cont("(bad)");
81 break;
82 }
83
84 pud = pud_offset(pgd, addr);
85 if (PTRS_PER_PUD != 1)
86 pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
87
88 if (pud_none(*pud))
89 break;
90
91 if (pud_bad(*pud)) {
92 pr_cont("(bad)");
93 break;
94 }
95
96 pmd = pmd_offset(pud, addr);
97 if (PTRS_PER_PMD != 1)
98 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
99
100 if (pmd_none(*pmd))
101 break;
102
103 if (pmd_bad(*pmd)) {
104 pr_cont("(bad)");
105 break;
106 }
107
108 /* We must not map this if we have highmem enabled */
109 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
110 break;
111
112 pte = pte_offset_map(pmd, addr);
113 pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
114#ifndef CONFIG_ARM_LPAE
115 pr_cont(", *ppte=%08llx",
116 (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
117#endif
118 pte_unmap(pte);
119 } while(0);
120
121 pr_cont("\n");
122}
123#else /* CONFIG_MMU */
124void show_pte(struct mm_struct *mm, unsigned long addr)
125{ }
126#endif /* CONFIG_MMU */
127
128/*
129 * Oops. The kernel tried to access some page that wasn't present.
130 */
131static void
132__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
133 struct pt_regs *regs)
134{
135 /*
136 * Are we prepared to handle this kernel fault?
137 */
138 if (fixup_exception(regs))
139 return;
140
141 /*
142 * No handler, we'll have to terminate things with extreme prejudice.
143 */
144 bust_spinlocks(1);
145 pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
146 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
147 "paging request", addr);
148
149 show_pte(mm, addr);
150 die("Oops", regs, fsr);
151 bust_spinlocks(0);
152 do_exit(SIGKILL);
153}
154
155/*
156 * Something tried to access memory that isn't in our memory map..
157 * User mode accesses just cause a SIGSEGV
158 */
159static void
160__do_user_fault(struct task_struct *tsk, unsigned long addr,
161 unsigned int fsr, unsigned int sig, int code,
162 struct pt_regs *regs)
163{
164 struct siginfo si;
165
166#ifdef CONFIG_DEBUG_USER
167 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
168 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) {
169 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
170 tsk->comm, sig, addr, fsr);
171 show_pte(tsk->mm, addr);
172 show_regs(regs);
173 }
174#endif
175
176 tsk->thread.address = addr;
177 tsk->thread.error_code = fsr;
178 tsk->thread.trap_no = 14;
179 si.si_signo = sig;
180 si.si_errno = 0;
181 si.si_code = code;
182 si.si_addr = (void __user *)addr;
183 force_sig_info(sig, &si, tsk);
184}
185
186void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
187{
188 struct task_struct *tsk = current;
189 struct mm_struct *mm = tsk->active_mm;
190
191 /*
192 * If we are in kernel mode at this point, we
193 * have no context to handle this fault with.
194 */
195 if (user_mode(regs))
196 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
197 else
198 __do_kernel_fault(mm, addr, fsr, regs);
199}
200
201#ifdef CONFIG_MMU
202#define VM_FAULT_BADMAP 0x010000
203#define VM_FAULT_BADACCESS 0x020000
204
205/*
206 * Check that the permissions on the VMA allow for the fault which occurred.
207 * If we encountered a write fault, we must have write permission, otherwise
208 * we allow any permission.
209 */
210static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
211{
212 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
213
214 if (fsr & FSR_WRITE)
215 mask = VM_WRITE;
216 if (fsr & FSR_LNX_PF)
217 mask = VM_EXEC;
218
219 return vma->vm_flags & mask ? false : true;
220}
221
222static int __kprobes
223__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
224 unsigned int flags, struct task_struct *tsk)
225{
226 struct vm_area_struct *vma;
227 int fault;
228
229 vma = find_vma(mm, addr);
230 fault = VM_FAULT_BADMAP;
231 if (unlikely(!vma))
232 goto out;
233 if (unlikely(vma->vm_start > addr))
234 goto check_stack;
235
236 /*
237 * Ok, we have a good vm_area for this
238 * memory access, so we can handle it.
239 */
240good_area:
241 if (access_error(fsr, vma)) {
242 fault = VM_FAULT_BADACCESS;
243 goto out;
244 }
245
246 return handle_mm_fault(vma, addr & PAGE_MASK, flags);
247
248check_stack:
249 /* Don't allow expansion below FIRST_USER_ADDRESS */
250 if (vma->vm_flags & VM_GROWSDOWN &&
251 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
252 goto good_area;
253out:
254 return fault;
255}
256
257static int __kprobes
258do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
259{
260 struct task_struct *tsk;
261 struct mm_struct *mm;
262 int fault, sig, code;
263 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
264
265 if (notify_page_fault(regs, fsr))
266 return 0;
267
268 tsk = current;
269 mm = tsk->mm;
270
271 /* Enable interrupts if they were enabled in the parent context. */
272 if (interrupts_enabled(regs))
273 local_irq_enable();
274
275 /*
276 * If we're in an interrupt or have no user
277 * context, we must not take the fault..
278 */
279 if (faulthandler_disabled() || !mm)
280 goto no_context;
281
282 if (user_mode(regs))
283 flags |= FAULT_FLAG_USER;
284 if (fsr & FSR_WRITE)
285 flags |= FAULT_FLAG_WRITE;
286
287 /*
288 * As per x86, we may deadlock here. However, since the kernel only
289 * validly references user space from well defined areas of the code,
290 * we can bug out early if this is from code which shouldn't.
291 */
292 if (!down_read_trylock(&mm->mmap_sem)) {
293 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
294 goto no_context;
295retry:
296 down_read(&mm->mmap_sem);
297 } else {
298 /*
299 * The above down_read_trylock() might have succeeded in
300 * which case, we'll have missed the might_sleep() from
301 * down_read()
302 */
303 might_sleep();
304#ifdef CONFIG_DEBUG_VM
305 if (!user_mode(regs) &&
306 !search_exception_tables(regs->ARM_pc))
307 goto no_context;
308#endif
309 }
310
311 fault = __do_page_fault(mm, addr, fsr, flags, tsk);
312
313 /* If we need to retry but a fatal signal is pending, handle the
314 * signal first. We do not need to release the mmap_sem because
315 * it would already be released in __lock_page_or_retry in
316 * mm/filemap.c. */
317 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
318 if (!user_mode(regs))
319 goto no_context;
320 return 0;
321 }
322
323 /*
324 * Major/minor page fault accounting is only done on the
325 * initial attempt. If we go through a retry, it is extremely
326 * likely that the page will be found in page cache at that point.
327 */
328
329 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
330 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
331 if (fault & VM_FAULT_MAJOR) {
332 tsk->maj_flt++;
333 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
334 regs, addr);
335 } else {
336 tsk->min_flt++;
337 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
338 regs, addr);
339 }
340 if (fault & VM_FAULT_RETRY) {
341 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
342 * of starvation. */
343 flags &= ~FAULT_FLAG_ALLOW_RETRY;
344 flags |= FAULT_FLAG_TRIED;
345 goto retry;
346 }
347 }
348
349 up_read(&mm->mmap_sem);
350
351 /*
352 * Handle the "normal" case first - VM_FAULT_MAJOR
353 */
354 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
355 return 0;
356
357 /*
358 * If we are in kernel mode at this point, we
359 * have no context to handle this fault with.
360 */
361 if (!user_mode(regs))
362 goto no_context;
363
364 if (fault & VM_FAULT_OOM) {
365 /*
366 * We ran out of memory, call the OOM killer, and return to
367 * userspace (which will retry the fault, or kill us if we
368 * got oom-killed)
369 */
370 pagefault_out_of_memory();
371 return 0;
372 }
373
374 if (fault & VM_FAULT_SIGBUS) {
375 /*
376 * We had some memory, but were unable to
377 * successfully fix up this page fault.
378 */
379 sig = SIGBUS;
380 code = BUS_ADRERR;
381 } else {
382 /*
383 * Something tried to access memory that
384 * isn't in our memory map..
385 */
386 sig = SIGSEGV;
387 code = fault == VM_FAULT_BADACCESS ?
388 SEGV_ACCERR : SEGV_MAPERR;
389 }
390
391 __do_user_fault(tsk, addr, fsr, sig, code, regs);
392 return 0;
393
394no_context:
395 __do_kernel_fault(mm, addr, fsr, regs);
396 return 0;
397}
398#else /* CONFIG_MMU */
399static int
400do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
401{
402 return 0;
403}
404#endif /* CONFIG_MMU */
405
406/*
407 * First Level Translation Fault Handler
408 *
409 * We enter here because the first level page table doesn't contain
410 * a valid entry for the address.
411 *
412 * If the address is in kernel space (>= TASK_SIZE), then we are
413 * probably faulting in the vmalloc() area.
414 *
415 * If the init_task's first level page tables contains the relevant
416 * entry, we copy the it to this task. If not, we send the process
417 * a signal, fixup the exception, or oops the kernel.
418 *
419 * NOTE! We MUST NOT take any locks for this case. We may be in an
420 * interrupt or a critical region, and should only copy the information
421 * from the master page table, nothing more.
422 */
423#ifdef CONFIG_MMU
424static int __kprobes
425do_translation_fault(unsigned long addr, unsigned int fsr,
426 struct pt_regs *regs)
427{
428 unsigned int index;
429 pgd_t *pgd, *pgd_k;
430 pud_t *pud, *pud_k;
431 pmd_t *pmd, *pmd_k;
432
433 if (addr < TASK_SIZE)
434 return do_page_fault(addr, fsr, regs);
435
436 if (user_mode(regs))
437 goto bad_area;
438
439 index = pgd_index(addr);
440
441 pgd = cpu_get_pgd() + index;
442 pgd_k = init_mm.pgd + index;
443
444 if (pgd_none(*pgd_k))
445 goto bad_area;
446 if (!pgd_present(*pgd))
447 set_pgd(pgd, *pgd_k);
448
449 pud = pud_offset(pgd, addr);
450 pud_k = pud_offset(pgd_k, addr);
451
452 if (pud_none(*pud_k))
453 goto bad_area;
454 if (!pud_present(*pud))
455 set_pud(pud, *pud_k);
456
457 pmd = pmd_offset(pud, addr);
458 pmd_k = pmd_offset(pud_k, addr);
459
460#ifdef CONFIG_ARM_LPAE
461 /*
462 * Only one hardware entry per PMD with LPAE.
463 */
464 index = 0;
465#else
466 /*
467 * On ARM one Linux PGD entry contains two hardware entries (see page
468 * tables layout in pgtable.h). We normally guarantee that we always
469 * fill both L1 entries. But create_mapping() doesn't follow the rule.
470 * It can create inidividual L1 entries, so here we have to call
471 * pmd_none() check for the entry really corresponded to address, not
472 * for the first of pair.
473 */
474 index = (addr >> SECTION_SHIFT) & 1;
475#endif
476 if (pmd_none(pmd_k[index]))
477 goto bad_area;
478
479 copy_pmd(pmd, pmd_k);
480 return 0;
481
482bad_area:
483 do_bad_area(addr, fsr, regs);
484 return 0;
485}
486#else /* CONFIG_MMU */
487static int
488do_translation_fault(unsigned long addr, unsigned int fsr,
489 struct pt_regs *regs)
490{
491 return 0;
492}
493#endif /* CONFIG_MMU */
494
495/*
496 * Some section permission faults need to be handled gracefully.
497 * They can happen due to a __{get,put}_user during an oops.
498 */
499#ifndef CONFIG_ARM_LPAE
500static int
501do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
502{
503 do_bad_area(addr, fsr, regs);
504 return 0;
505}
506#endif /* CONFIG_ARM_LPAE */
507
508/*
509 * This abort handler always returns "fault".
510 */
511static int
512do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
513{
514 return 1;
515}
516
517struct fsr_info {
518 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
519 int sig;
520 int code;
521 const char *name;
522};
523
524/* FSR definition */
525#ifdef CONFIG_ARM_LPAE
526#include "fsr-3level.c"
527#else
528#include "fsr-2level.c"
529#endif
530
531void __init
532hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
533 int sig, int code, const char *name)
534{
535 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
536 BUG();
537
538 fsr_info[nr].fn = fn;
539 fsr_info[nr].sig = sig;
540 fsr_info[nr].code = code;
541 fsr_info[nr].name = name;
542}
543
544/*
545 * Dispatch a data abort to the relevant handler.
546 */
547asmlinkage void
548do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
549{
550 const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
551 struct siginfo info;
552
553 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
554 return;
555
556 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
557 inf->name, fsr, addr);
558 show_pte(current->mm, addr);
559
560 info.si_signo = inf->sig;
561 info.si_errno = 0;
562 info.si_code = inf->code;
563 info.si_addr = (void __user *)addr;
564 arm_notify_die("", regs, &info, fsr, 0);
565}
566
567void __init
568hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
569 int sig, int code, const char *name)
570{
571 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
572 BUG();
573
574 ifsr_info[nr].fn = fn;
575 ifsr_info[nr].sig = sig;
576 ifsr_info[nr].code = code;
577 ifsr_info[nr].name = name;
578}
579
580asmlinkage void
581do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
582{
583 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
584 struct siginfo info;
585
586 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
587 return;
588
589 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
590 inf->name, ifsr, addr);
591
592 info.si_signo = inf->sig;
593 info.si_errno = 0;
594 info.si_code = inf->code;
595 info.si_addr = (void __user *)addr;
596 arm_notify_die("", regs, &info, ifsr, 0);
597}
598
599/*
600 * Abort handler to be used only during first unmasking of asynchronous aborts
601 * on the boot CPU. This makes sure that the machine will not die if the
602 * firmware/bootloader left an imprecise abort pending for us to trip over.
603 */
604static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
605 struct pt_regs *regs)
606{
607 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
608 "first unmask, this is most likely caused by a "
609 "firmware/bootloader bug.\n", fsr);
610
611 return 0;
612}
613
614void __init early_abt_enable(void)
615{
616 fsr_info[FSR_FS_AEA].fn = early_abort_handler;
617 local_abt_enable();
618 fsr_info[FSR_FS_AEA].fn = do_bad;
619}
620
621#ifndef CONFIG_ARM_LPAE
622static int __init exceptions_init(void)
623{
624 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
625 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
626 "I-cache maintenance fault");
627 }
628
629 if (cpu_architecture() >= CPU_ARCH_ARMv7) {
630 /*
631 * TODO: Access flag faults introduced in ARMv6K.
632 * Runtime check for 'K' extension is needed
633 */
634 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
635 "section access flag fault");
636 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
637 "section access flag fault");
638 }
639
640 return 0;
641}
642
643arch_initcall(exceptions_init);
644#endif