Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
 
 
 
 
 
 
  17#include <linux/fs.h>
 
 
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
 
 
 
 
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
 
 
 
 
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
 
 
 
 
 
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
 
 
  96	 */
  97	return !t->ptrace;
 
 
 
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 
 
 
 
 
 
 
 
 
 
 
 
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 
 280		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 281	}
 282}
 283
 284/**
 285 * task_clear_jobctl_pending - clear jobctl pending bits
 286 * @task: target task
 287 * @mask: pending bits to clear
 288 *
 289 * Clear @mask from @task->jobctl.  @mask must be subset of
 290 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 291 * STOP bits are cleared together.
 292 *
 293 * If clearing of @mask leaves no stop or trap pending, this function calls
 294 * task_clear_jobctl_trapping().
 295 *
 296 * CONTEXT:
 297 * Must be called with @task->sighand->siglock held.
 298 */
 299void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 300{
 301	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 302
 303	if (mask & JOBCTL_STOP_PENDING)
 304		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 305
 306	task->jobctl &= ~mask;
 307
 308	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 309		task_clear_jobctl_trapping(task);
 310}
 311
 312/**
 313 * task_participate_group_stop - participate in a group stop
 314 * @task: task participating in a group stop
 315 *
 316 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 317 * Group stop states are cleared and the group stop count is consumed if
 318 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 319 * stop, the appropriate %SIGNAL_* flags are set.
 320 *
 321 * CONTEXT:
 322 * Must be called with @task->sighand->siglock held.
 323 *
 324 * RETURNS:
 325 * %true if group stop completion should be notified to the parent, %false
 326 * otherwise.
 327 */
 328static bool task_participate_group_stop(struct task_struct *task)
 329{
 330	struct signal_struct *sig = task->signal;
 331	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 332
 333	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 334
 335	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 336
 337	if (!consume)
 338		return false;
 339
 340	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 341		sig->group_stop_count--;
 342
 343	/*
 344	 * Tell the caller to notify completion iff we are entering into a
 345	 * fresh group stop.  Read comment in do_signal_stop() for details.
 346	 */
 347	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 348		sig->flags = SIGNAL_STOP_STOPPED;
 349		return true;
 350	}
 351	return false;
 352}
 353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354/*
 355 * allocate a new signal queue record
 356 * - this may be called without locks if and only if t == current, otherwise an
 357 *   appropriate lock must be held to stop the target task from exiting
 358 */
 359static struct sigqueue *
 360__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 
 361{
 362	struct sigqueue *q = NULL;
 363	struct user_struct *user;
 
 364
 365	/*
 366	 * Protect access to @t credentials. This can go away when all
 367	 * callers hold rcu read lock.
 
 
 
 
 368	 */
 369	rcu_read_lock();
 370	user = get_uid(__task_cred(t)->user);
 371	atomic_inc(&user->sigpending);
 372	rcu_read_unlock();
 
 
 373
 374	if (override_rlimit ||
 375	    atomic_read(&user->sigpending) <=
 376			task_rlimit(t, RLIMIT_SIGPENDING)) {
 377		q = kmem_cache_alloc(sigqueue_cachep, flags);
 378	} else {
 379		print_dropped_signal(sig);
 380	}
 381
 382	if (unlikely(q == NULL)) {
 383		atomic_dec(&user->sigpending);
 384		free_uid(user);
 385	} else {
 386		INIT_LIST_HEAD(&q->list);
 387		q->flags = 0;
 388		q->user = user;
 389	}
 390
 391	return q;
 392}
 393
 394static void __sigqueue_free(struct sigqueue *q)
 395{
 396	if (q->flags & SIGQUEUE_PREALLOC)
 397		return;
 398	atomic_dec(&q->user->sigpending);
 399	free_uid(q->user);
 
 
 400	kmem_cache_free(sigqueue_cachep, q);
 401}
 402
 403void flush_sigqueue(struct sigpending *queue)
 404{
 405	struct sigqueue *q;
 406
 407	sigemptyset(&queue->signal);
 408	while (!list_empty(&queue->list)) {
 409		q = list_entry(queue->list.next, struct sigqueue , list);
 410		list_del_init(&q->list);
 411		__sigqueue_free(q);
 412	}
 413}
 414
 415/*
 416 * Flush all pending signals for a task.
 417 */
 418void __flush_signals(struct task_struct *t)
 419{
 420	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 421	flush_sigqueue(&t->pending);
 422	flush_sigqueue(&t->signal->shared_pending);
 423}
 424
 425void flush_signals(struct task_struct *t)
 426{
 427	unsigned long flags;
 428
 429	spin_lock_irqsave(&t->sighand->siglock, flags);
 430	__flush_signals(t);
 
 
 431	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 432}
 
 433
 
 434static void __flush_itimer_signals(struct sigpending *pending)
 435{
 436	sigset_t signal, retain;
 437	struct sigqueue *q, *n;
 438
 439	signal = pending->signal;
 440	sigemptyset(&retain);
 441
 442	list_for_each_entry_safe(q, n, &pending->list, list) {
 443		int sig = q->info.si_signo;
 444
 445		if (likely(q->info.si_code != SI_TIMER)) {
 446			sigaddset(&retain, sig);
 447		} else {
 448			sigdelset(&signal, sig);
 449			list_del_init(&q->list);
 450			__sigqueue_free(q);
 451		}
 452	}
 453
 454	sigorsets(&pending->signal, &signal, &retain);
 455}
 456
 457void flush_itimer_signals(void)
 458{
 459	struct task_struct *tsk = current;
 460	unsigned long flags;
 461
 462	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 463	__flush_itimer_signals(&tsk->pending);
 464	__flush_itimer_signals(&tsk->signal->shared_pending);
 465	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 466}
 
 467
 468void ignore_signals(struct task_struct *t)
 469{
 470	int i;
 471
 472	for (i = 0; i < _NSIG; ++i)
 473		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 474
 475	flush_signals(t);
 476}
 477
 478/*
 479 * Flush all handlers for a task.
 480 */
 481
 482void
 483flush_signal_handlers(struct task_struct *t, int force_default)
 484{
 485	int i;
 486	struct k_sigaction *ka = &t->sighand->action[0];
 487	for (i = _NSIG ; i != 0 ; i--) {
 488		if (force_default || ka->sa.sa_handler != SIG_IGN)
 489			ka->sa.sa_handler = SIG_DFL;
 490		ka->sa.sa_flags = 0;
 491#ifdef __ARCH_HAS_SA_RESTORER
 492		ka->sa.sa_restorer = NULL;
 493#endif
 494		sigemptyset(&ka->sa.sa_mask);
 495		ka++;
 496	}
 497}
 498
 499int unhandled_signal(struct task_struct *tsk, int sig)
 500{
 501	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 502	if (is_global_init(tsk))
 503		return 1;
 504	if (handler != SIG_IGN && handler != SIG_DFL)
 505		return 0;
 506	/* if ptraced, let the tracer determine */
 507	return !tsk->ptrace;
 508}
 509
 510/*
 511 * Notify the system that a driver wants to block all signals for this
 512 * process, and wants to be notified if any signals at all were to be
 513 * sent/acted upon.  If the notifier routine returns non-zero, then the
 514 * signal will be acted upon after all.  If the notifier routine returns 0,
 515 * then then signal will be blocked.  Only one block per process is
 516 * allowed.  priv is a pointer to private data that the notifier routine
 517 * can use to determine if the signal should be blocked or not.
 518 */
 519void
 520block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 521{
 522	unsigned long flags;
 523
 524	spin_lock_irqsave(&current->sighand->siglock, flags);
 525	current->notifier_mask = mask;
 526	current->notifier_data = priv;
 527	current->notifier = notifier;
 528	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 529}
 530
 531/* Notify the system that blocking has ended. */
 
 532
 533void
 534unblock_all_signals(void)
 535{
 536	unsigned long flags;
 537
 538	spin_lock_irqsave(&current->sighand->siglock, flags);
 539	current->notifier = NULL;
 540	current->notifier_data = NULL;
 541	recalc_sigpending();
 542	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 543}
 544
 545static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 
 546{
 547	struct sigqueue *q, *first = NULL;
 548
 549	/*
 550	 * Collect the siginfo appropriate to this signal.  Check if
 551	 * there is another siginfo for the same signal.
 552	*/
 553	list_for_each_entry(q, &list->list, list) {
 554		if (q->info.si_signo == sig) {
 555			if (first)
 556				goto still_pending;
 557			first = q;
 558		}
 559	}
 560
 561	sigdelset(&list->signal, sig);
 562
 563	if (first) {
 564still_pending:
 565		list_del_init(&first->list);
 566		copy_siginfo(info, &first->info);
 
 
 
 
 
 
 567		__sigqueue_free(first);
 568	} else {
 569		/*
 570		 * Ok, it wasn't in the queue.  This must be
 571		 * a fast-pathed signal or we must have been
 572		 * out of queue space.  So zero out the info.
 573		 */
 
 574		info->si_signo = sig;
 575		info->si_errno = 0;
 576		info->si_code = SI_USER;
 577		info->si_pid = 0;
 578		info->si_uid = 0;
 579	}
 580}
 581
 582static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 583			siginfo_t *info)
 584{
 585	int sig = next_signal(pending, mask);
 586
 587	if (sig) {
 588		if (current->notifier) {
 589			if (sigismember(current->notifier_mask, sig)) {
 590				if (!(current->notifier)(current->notifier_data)) {
 591					clear_thread_flag(TIF_SIGPENDING);
 592					return 0;
 593				}
 594			}
 595		}
 596
 597		collect_signal(sig, pending, info);
 598	}
 599
 600	return sig;
 601}
 602
 603/*
 604 * Dequeue a signal and return the element to the caller, which is
 605 * expected to free it.
 606 *
 607 * All callers have to hold the siglock.
 608 */
 609int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 
 610{
 
 611	int signr;
 612
 613	/* We only dequeue private signals from ourselves, we don't let
 614	 * signalfd steal them
 615	 */
 616	signr = __dequeue_signal(&tsk->pending, mask, info);
 
 617	if (!signr) {
 
 618		signr = __dequeue_signal(&tsk->signal->shared_pending,
 619					 mask, info);
 
 620		/*
 621		 * itimer signal ?
 622		 *
 623		 * itimers are process shared and we restart periodic
 624		 * itimers in the signal delivery path to prevent DoS
 625		 * attacks in the high resolution timer case. This is
 626		 * compliant with the old way of self-restarting
 627		 * itimers, as the SIGALRM is a legacy signal and only
 628		 * queued once. Changing the restart behaviour to
 629		 * restart the timer in the signal dequeue path is
 630		 * reducing the timer noise on heavy loaded !highres
 631		 * systems too.
 632		 */
 633		if (unlikely(signr == SIGALRM)) {
 634			struct hrtimer *tmr = &tsk->signal->real_timer;
 635
 636			if (!hrtimer_is_queued(tmr) &&
 637			    tsk->signal->it_real_incr.tv64 != 0) {
 638				hrtimer_forward(tmr, tmr->base->get_time(),
 639						tsk->signal->it_real_incr);
 640				hrtimer_restart(tmr);
 641			}
 642		}
 
 643	}
 644
 645	recalc_sigpending();
 646	if (!signr)
 647		return 0;
 648
 649	if (unlikely(sig_kernel_stop(signr))) {
 650		/*
 651		 * Set a marker that we have dequeued a stop signal.  Our
 652		 * caller might release the siglock and then the pending
 653		 * stop signal it is about to process is no longer in the
 654		 * pending bitmasks, but must still be cleared by a SIGCONT
 655		 * (and overruled by a SIGKILL).  So those cases clear this
 656		 * shared flag after we've set it.  Note that this flag may
 657		 * remain set after the signal we return is ignored or
 658		 * handled.  That doesn't matter because its only purpose
 659		 * is to alert stop-signal processing code when another
 660		 * processor has come along and cleared the flag.
 661		 */
 662		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 663	}
 664	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 
 665		/*
 666		 * Release the siglock to ensure proper locking order
 667		 * of timer locks outside of siglocks.  Note, we leave
 668		 * irqs disabled here, since the posix-timers code is
 669		 * about to disable them again anyway.
 670		 */
 671		spin_unlock(&tsk->sighand->siglock);
 672		do_schedule_next_timer(info);
 673		spin_lock(&tsk->sighand->siglock);
 
 
 
 674	}
 
 675	return signr;
 676}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677
 678/*
 679 * Tell a process that it has a new active signal..
 680 *
 681 * NOTE! we rely on the previous spin_lock to
 682 * lock interrupts for us! We can only be called with
 683 * "siglock" held, and the local interrupt must
 684 * have been disabled when that got acquired!
 685 *
 686 * No need to set need_resched since signal event passing
 687 * goes through ->blocked
 688 */
 689void signal_wake_up_state(struct task_struct *t, unsigned int state)
 690{
 
 
 691	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 692	/*
 693	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 694	 * case. We don't check t->state here because there is a race with it
 695	 * executing another processor and just now entering stopped state.
 696	 * By using wake_up_state, we ensure the process will wake up and
 697	 * handle its death signal.
 698	 */
 699	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 700		kick_process(t);
 701}
 702
 703/*
 704 * Remove signals in mask from the pending set and queue.
 705 * Returns 1 if any signals were found.
 706 *
 707 * All callers must be holding the siglock.
 708 *
 709 * This version takes a sigset mask and looks at all signals,
 710 * not just those in the first mask word.
 711 */
 712static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 713{
 714	struct sigqueue *q, *n;
 715	sigset_t m;
 716
 717	sigandsets(&m, mask, &s->signal);
 718	if (sigisemptyset(&m))
 719		return 0;
 720
 721	sigandnsets(&s->signal, &s->signal, mask);
 722	list_for_each_entry_safe(q, n, &s->list, list) {
 723		if (sigismember(mask, q->info.si_signo)) {
 724			list_del_init(&q->list);
 725			__sigqueue_free(q);
 726		}
 727	}
 728	return 1;
 729}
 730/*
 731 * Remove signals in mask from the pending set and queue.
 732 * Returns 1 if any signals were found.
 733 *
 734 * All callers must be holding the siglock.
 735 */
 736static int rm_from_queue(unsigned long mask, struct sigpending *s)
 737{
 738	struct sigqueue *q, *n;
 739
 740	if (!sigtestsetmask(&s->signal, mask))
 741		return 0;
 742
 743	sigdelsetmask(&s->signal, mask);
 744	list_for_each_entry_safe(q, n, &s->list, list) {
 745		if (q->info.si_signo < SIGRTMIN &&
 746		    (mask & sigmask(q->info.si_signo))) {
 747			list_del_init(&q->list);
 748			__sigqueue_free(q);
 749		}
 750	}
 751	return 1;
 752}
 753
 754static inline int is_si_special(const struct siginfo *info)
 755{
 756	return info <= SEND_SIG_FORCED;
 757}
 758
 759static inline bool si_fromuser(const struct siginfo *info)
 760{
 761	return info == SEND_SIG_NOINFO ||
 762		(!is_si_special(info) && SI_FROMUSER(info));
 763}
 764
 765/*
 766 * called with RCU read lock from check_kill_permission()
 767 */
 768static int kill_ok_by_cred(struct task_struct *t)
 769{
 770	const struct cred *cred = current_cred();
 771	const struct cred *tcred = __task_cred(t);
 772
 773	if (uid_eq(cred->euid, tcred->suid) ||
 774	    uid_eq(cred->euid, tcred->uid)  ||
 775	    uid_eq(cred->uid,  tcred->suid) ||
 776	    uid_eq(cred->uid,  tcred->uid))
 777		return 1;
 778
 779	if (ns_capable(tcred->user_ns, CAP_KILL))
 780		return 1;
 781
 782	return 0;
 783}
 784
 785/*
 786 * Bad permissions for sending the signal
 787 * - the caller must hold the RCU read lock
 788 */
 789static int check_kill_permission(int sig, struct siginfo *info,
 790				 struct task_struct *t)
 791{
 792	struct pid *sid;
 793	int error;
 794
 795	if (!valid_signal(sig))
 796		return -EINVAL;
 797
 798	if (!si_fromuser(info))
 799		return 0;
 800
 801	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 802	if (error)
 803		return error;
 804
 805	if (!same_thread_group(current, t) &&
 806	    !kill_ok_by_cred(t)) {
 807		switch (sig) {
 808		case SIGCONT:
 809			sid = task_session(t);
 810			/*
 811			 * We don't return the error if sid == NULL. The
 812			 * task was unhashed, the caller must notice this.
 813			 */
 814			if (!sid || sid == task_session(current))
 815				break;
 
 816		default:
 817			return -EPERM;
 818		}
 819	}
 820
 821	return security_task_kill(t, info, sig, 0);
 822}
 823
 824/**
 825 * ptrace_trap_notify - schedule trap to notify ptracer
 826 * @t: tracee wanting to notify tracer
 827 *
 828 * This function schedules sticky ptrace trap which is cleared on the next
 829 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 830 * ptracer.
 831 *
 832 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 833 * ptracer is listening for events, tracee is woken up so that it can
 834 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 835 * eventually taken without returning to userland after the existing traps
 836 * are finished by PTRACE_CONT.
 837 *
 838 * CONTEXT:
 839 * Must be called with @task->sighand->siglock held.
 840 */
 841static void ptrace_trap_notify(struct task_struct *t)
 842{
 843	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 844	assert_spin_locked(&t->sighand->siglock);
 845
 846	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 847	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 848}
 849
 850/*
 851 * Handle magic process-wide effects of stop/continue signals. Unlike
 852 * the signal actions, these happen immediately at signal-generation
 853 * time regardless of blocking, ignoring, or handling.  This does the
 854 * actual continuing for SIGCONT, but not the actual stopping for stop
 855 * signals. The process stop is done as a signal action for SIG_DFL.
 856 *
 857 * Returns true if the signal should be actually delivered, otherwise
 858 * it should be dropped.
 859 */
 860static bool prepare_signal(int sig, struct task_struct *p, bool force)
 861{
 862	struct signal_struct *signal = p->signal;
 863	struct task_struct *t;
 
 864
 865	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 866		if (signal->flags & SIGNAL_GROUP_COREDUMP)
 867			return sig == SIGKILL;
 868		/*
 869		 * The process is in the middle of dying, nothing to do.
 870		 */
 
 871	} else if (sig_kernel_stop(sig)) {
 872		/*
 873		 * This is a stop signal.  Remove SIGCONT from all queues.
 874		 */
 875		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 876		t = p;
 877		do {
 878			rm_from_queue(sigmask(SIGCONT), &t->pending);
 879		} while_each_thread(p, t);
 880	} else if (sig == SIGCONT) {
 881		unsigned int why;
 882		/*
 883		 * Remove all stop signals from all queues, wake all threads.
 884		 */
 885		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 886		t = p;
 887		do {
 
 888			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 889			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 890			if (likely(!(t->ptrace & PT_SEIZED)))
 891				wake_up_state(t, __TASK_STOPPED);
 892			else
 893				ptrace_trap_notify(t);
 894		} while_each_thread(p, t);
 895
 896		/*
 897		 * Notify the parent with CLD_CONTINUED if we were stopped.
 898		 *
 899		 * If we were in the middle of a group stop, we pretend it
 900		 * was already finished, and then continued. Since SIGCHLD
 901		 * doesn't queue we report only CLD_STOPPED, as if the next
 902		 * CLD_CONTINUED was dropped.
 903		 */
 904		why = 0;
 905		if (signal->flags & SIGNAL_STOP_STOPPED)
 906			why |= SIGNAL_CLD_CONTINUED;
 907		else if (signal->group_stop_count)
 908			why |= SIGNAL_CLD_STOPPED;
 909
 910		if (why) {
 911			/*
 912			 * The first thread which returns from do_signal_stop()
 913			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 914			 * notify its parent. See get_signal_to_deliver().
 915			 */
 916			signal->flags = why | SIGNAL_STOP_CONTINUED;
 917			signal->group_stop_count = 0;
 918			signal->group_exit_code = 0;
 919		}
 920	}
 921
 922	return !sig_ignored(p, sig, force);
 923}
 924
 925/*
 926 * Test if P wants to take SIG.  After we've checked all threads with this,
 927 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 928 * blocking SIG were ruled out because they are not running and already
 929 * have pending signals.  Such threads will dequeue from the shared queue
 930 * as soon as they're available, so putting the signal on the shared queue
 931 * will be equivalent to sending it to one such thread.
 932 */
 933static inline int wants_signal(int sig, struct task_struct *p)
 934{
 935	if (sigismember(&p->blocked, sig))
 936		return 0;
 
 937	if (p->flags & PF_EXITING)
 938		return 0;
 
 939	if (sig == SIGKILL)
 940		return 1;
 
 941	if (task_is_stopped_or_traced(p))
 942		return 0;
 943	return task_curr(p) || !signal_pending(p);
 
 944}
 945
 946static void complete_signal(int sig, struct task_struct *p, int group)
 947{
 948	struct signal_struct *signal = p->signal;
 949	struct task_struct *t;
 950
 951	/*
 952	 * Now find a thread we can wake up to take the signal off the queue.
 953	 *
 954	 * If the main thread wants the signal, it gets first crack.
 955	 * Probably the least surprising to the average bear.
 956	 */
 957	if (wants_signal(sig, p))
 958		t = p;
 959	else if (!group || thread_group_empty(p))
 960		/*
 961		 * There is just one thread and it does not need to be woken.
 962		 * It will dequeue unblocked signals before it runs again.
 963		 */
 964		return;
 965	else {
 966		/*
 967		 * Otherwise try to find a suitable thread.
 968		 */
 969		t = signal->curr_target;
 970		while (!wants_signal(sig, t)) {
 971			t = next_thread(t);
 972			if (t == signal->curr_target)
 973				/*
 974				 * No thread needs to be woken.
 975				 * Any eligible threads will see
 976				 * the signal in the queue soon.
 977				 */
 978				return;
 979		}
 980		signal->curr_target = t;
 981	}
 982
 983	/*
 984	 * Found a killable thread.  If the signal will be fatal,
 985	 * then start taking the whole group down immediately.
 986	 */
 987	if (sig_fatal(p, sig) &&
 988	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 989	    !sigismember(&t->real_blocked, sig) &&
 990	    (sig == SIGKILL || !t->ptrace)) {
 991		/*
 992		 * This signal will be fatal to the whole group.
 993		 */
 994		if (!sig_kernel_coredump(sig)) {
 995			/*
 996			 * Start a group exit and wake everybody up.
 997			 * This way we don't have other threads
 998			 * running and doing things after a slower
 999			 * thread has the fatal signal pending.
1000			 */
1001			signal->flags = SIGNAL_GROUP_EXIT;
1002			signal->group_exit_code = sig;
1003			signal->group_stop_count = 0;
1004			t = p;
1005			do {
1006				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1007				sigaddset(&t->pending.signal, SIGKILL);
1008				signal_wake_up(t, 1);
1009			} while_each_thread(p, t);
1010			return;
1011		}
1012	}
1013
1014	/*
1015	 * The signal is already in the shared-pending queue.
1016	 * Tell the chosen thread to wake up and dequeue it.
1017	 */
1018	signal_wake_up(t, sig == SIGKILL);
1019	return;
1020}
1021
1022static inline int legacy_queue(struct sigpending *signals, int sig)
1023{
1024	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1025}
1026
1027#ifdef CONFIG_USER_NS
1028static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1029{
1030	if (current_user_ns() == task_cred_xxx(t, user_ns))
1031		return;
1032
1033	if (SI_FROMKERNEL(info))
1034		return;
1035
1036	rcu_read_lock();
1037	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1038					make_kuid(current_user_ns(), info->si_uid));
1039	rcu_read_unlock();
1040}
1041#else
1042static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1043{
1044	return;
1045}
1046#endif
1047
1048static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1049			int group, int from_ancestor_ns)
1050{
1051	struct sigpending *pending;
1052	struct sigqueue *q;
1053	int override_rlimit;
1054	int ret = 0, result;
1055
1056	assert_spin_locked(&t->sighand->siglock);
1057
1058	result = TRACE_SIGNAL_IGNORED;
1059	if (!prepare_signal(sig, t,
1060			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1061		goto ret;
1062
1063	pending = group ? &t->signal->shared_pending : &t->pending;
1064	/*
1065	 * Short-circuit ignored signals and support queuing
1066	 * exactly one non-rt signal, so that we can get more
1067	 * detailed information about the cause of the signal.
1068	 */
1069	result = TRACE_SIGNAL_ALREADY_PENDING;
1070	if (legacy_queue(pending, sig))
1071		goto ret;
1072
1073	result = TRACE_SIGNAL_DELIVERED;
1074	/*
1075	 * fast-pathed signals for kernel-internal things like SIGSTOP
1076	 * or SIGKILL.
1077	 */
1078	if (info == SEND_SIG_FORCED)
1079		goto out_set;
1080
1081	/*
1082	 * Real-time signals must be queued if sent by sigqueue, or
1083	 * some other real-time mechanism.  It is implementation
1084	 * defined whether kill() does so.  We attempt to do so, on
1085	 * the principle of least surprise, but since kill is not
1086	 * allowed to fail with EAGAIN when low on memory we just
1087	 * make sure at least one signal gets delivered and don't
1088	 * pass on the info struct.
1089	 */
1090	if (sig < SIGRTMIN)
1091		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1092	else
1093		override_rlimit = 0;
1094
1095	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1096		override_rlimit);
1097	if (q) {
1098		list_add_tail(&q->list, &pending->list);
1099		switch ((unsigned long) info) {
1100		case (unsigned long) SEND_SIG_NOINFO:
 
1101			q->info.si_signo = sig;
1102			q->info.si_errno = 0;
1103			q->info.si_code = SI_USER;
1104			q->info.si_pid = task_tgid_nr_ns(current,
1105							task_active_pid_ns(t));
1106			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 
 
 
 
1107			break;
1108		case (unsigned long) SEND_SIG_PRIV:
 
1109			q->info.si_signo = sig;
1110			q->info.si_errno = 0;
1111			q->info.si_code = SI_KERNEL;
1112			q->info.si_pid = 0;
1113			q->info.si_uid = 0;
1114			break;
1115		default:
1116			copy_siginfo(&q->info, info);
1117			if (from_ancestor_ns)
1118				q->info.si_pid = 0;
1119			break;
1120		}
1121
1122		userns_fixup_signal_uid(&q->info, t);
1123
1124	} else if (!is_si_special(info)) {
1125		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1126			/*
1127			 * Queue overflow, abort.  We may abort if the
1128			 * signal was rt and sent by user using something
1129			 * other than kill().
1130			 */
1131			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1132			ret = -EAGAIN;
1133			goto ret;
1134		} else {
1135			/*
1136			 * This is a silent loss of information.  We still
1137			 * send the signal, but the *info bits are lost.
1138			 */
1139			result = TRACE_SIGNAL_LOSE_INFO;
1140		}
1141	}
1142
1143out_set:
1144	signalfd_notify(t, sig);
1145	sigaddset(&pending->signal, sig);
1146	complete_signal(sig, t, group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147ret:
1148	trace_signal_generate(sig, info, t, group, result);
1149	return ret;
1150}
1151
1152static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1153			int group)
1154{
1155	int from_ancestor_ns = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156
1157#ifdef CONFIG_PID_NS
1158	from_ancestor_ns = si_fromuser(info) &&
1159			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1160#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1161
1162	return __send_signal(sig, info, t, group, from_ancestor_ns);
 
 
 
 
 
 
1163}
1164
1165static void print_fatal_signal(int signr)
1166{
1167	struct pt_regs *regs = signal_pt_regs();
1168	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
 
 
 
 
 
 
 
 
 
 
1169
1170#if defined(__i386__) && !defined(__arch_um__)
1171	printk(KERN_INFO "code at %08lx: ", regs->ip);
1172	{
1173		int i;
1174		for (i = 0; i < 16; i++) {
1175			unsigned char insn;
1176
1177			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1178				break;
1179			printk(KERN_CONT "%02x ", insn);
1180		}
1181	}
1182	printk(KERN_CONT "\n");
1183#endif
1184	preempt_disable();
1185	show_regs(regs);
1186	preempt_enable();
1187}
1188
1189static int __init setup_print_fatal_signals(char *str)
1190{
1191	get_option (&str, &print_fatal_signals);
1192
1193	return 1;
1194}
1195
1196__setup("print-fatal-signals=", setup_print_fatal_signals);
1197
1198int
1199__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1200{
1201	return send_signal(sig, info, p, 1);
1202}
1203
1204static int
1205specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1206{
1207	return send_signal(sig, info, t, 0);
1208}
1209
1210int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1211			bool group)
1212{
1213	unsigned long flags;
1214	int ret = -ESRCH;
1215
1216	if (lock_task_sighand(p, &flags)) {
1217		ret = send_signal(sig, info, p, group);
1218		unlock_task_sighand(p, &flags);
1219	}
1220
1221	return ret;
1222}
1223
 
 
 
 
 
 
1224/*
1225 * Force a signal that the process can't ignore: if necessary
1226 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1227 *
1228 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1229 * since we do not want to have a signal handler that was blocked
1230 * be invoked when user space had explicitly blocked it.
1231 *
1232 * We don't want to have recursive SIGSEGV's etc, for example,
1233 * that is why we also clear SIGNAL_UNKILLABLE.
1234 */
1235int
1236force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
 
1237{
1238	unsigned long int flags;
1239	int ret, blocked, ignored;
1240	struct k_sigaction *action;
 
1241
1242	spin_lock_irqsave(&t->sighand->siglock, flags);
1243	action = &t->sighand->action[sig-1];
1244	ignored = action->sa.sa_handler == SIG_IGN;
1245	blocked = sigismember(&t->blocked, sig);
1246	if (blocked || ignored) {
1247		action->sa.sa_handler = SIG_DFL;
1248		if (blocked) {
 
 
1249			sigdelset(&t->blocked, sig);
1250			recalc_sigpending_and_wake(t);
1251		}
1252	}
1253	if (action->sa.sa_handler == SIG_DFL)
 
 
 
 
 
1254		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1255	ret = specific_send_sig_info(sig, info, t);
 
 
 
1256	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1257
1258	return ret;
1259}
1260
 
 
 
 
 
1261/*
1262 * Nuke all other threads in the group.
1263 */
1264int zap_other_threads(struct task_struct *p)
1265{
1266	struct task_struct *t = p;
1267	int count = 0;
1268
1269	p->signal->group_stop_count = 0;
1270
1271	while_each_thread(p, t) {
1272		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1273		count++;
 
 
1274
1275		/* Don't bother with already dead threads */
1276		if (t->exit_state)
1277			continue;
1278		sigaddset(&t->pending.signal, SIGKILL);
1279		signal_wake_up(t, 1);
1280	}
1281
1282	return count;
1283}
1284
1285struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1286					   unsigned long *flags)
1287{
1288	struct sighand_struct *sighand;
1289
 
1290	for (;;) {
1291		local_irq_save(*flags);
1292		rcu_read_lock();
1293		sighand = rcu_dereference(tsk->sighand);
1294		if (unlikely(sighand == NULL)) {
1295			rcu_read_unlock();
1296			local_irq_restore(*flags);
1297			break;
1298		}
1299
1300		spin_lock(&sighand->siglock);
1301		if (likely(sighand == tsk->sighand)) {
1302			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
1303			break;
1304		}
1305		spin_unlock(&sighand->siglock);
1306		rcu_read_unlock();
1307		local_irq_restore(*flags);
1308	}
 
1309
1310	return sighand;
1311}
1312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313/*
1314 * send signal info to all the members of a group
1315 */
1316int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 
1317{
1318	int ret;
1319
1320	rcu_read_lock();
1321	ret = check_kill_permission(sig, info, p);
1322	rcu_read_unlock();
1323
1324	if (!ret && sig)
1325		ret = do_send_sig_info(sig, info, p, true);
1326
1327	return ret;
1328}
1329
1330/*
1331 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1332 * control characters do (^C, ^Z etc)
1333 * - the caller must hold at least a readlock on tasklist_lock
1334 */
1335int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1336{
1337	struct task_struct *p = NULL;
1338	int retval, success;
1339
1340	success = 0;
1341	retval = -ESRCH;
1342	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1343		int err = group_send_sig_info(sig, info, p);
1344		success |= !err;
1345		retval = err;
 
 
 
 
 
 
1346	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1347	return success ? 0 : retval;
 
1348}
1349
1350int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1351{
1352	int error = -ESRCH;
1353	struct task_struct *p;
1354
1355	rcu_read_lock();
1356retry:
1357	p = pid_task(pid, PIDTYPE_PID);
1358	if (p) {
1359		error = group_send_sig_info(sig, info, p);
1360		if (unlikely(error == -ESRCH))
1361			/*
1362			 * The task was unhashed in between, try again.
1363			 * If it is dead, pid_task() will return NULL,
1364			 * if we race with de_thread() it will find the
1365			 * new leader.
1366			 */
1367			goto retry;
1368	}
1369	rcu_read_unlock();
1370
1371	return error;
 
 
 
 
 
1372}
1373
1374int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1375{
1376	int error;
1377	rcu_read_lock();
1378	error = kill_pid_info(sig, info, find_vpid(pid));
1379	rcu_read_unlock();
1380	return error;
1381}
1382
1383static int kill_as_cred_perm(const struct cred *cred,
1384			     struct task_struct *target)
1385{
1386	const struct cred *pcred = __task_cred(target);
1387	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1388	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1389		return 0;
1390	return 1;
 
1391}
1392
1393/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1394int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1395			 const struct cred *cred, u32 secid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396{
1397	int ret = -EINVAL;
1398	struct task_struct *p;
1399	unsigned long flags;
 
1400
1401	if (!valid_signal(sig))
1402		return ret;
1403
 
 
 
 
 
 
1404	rcu_read_lock();
1405	p = pid_task(pid, PIDTYPE_PID);
1406	if (!p) {
1407		ret = -ESRCH;
1408		goto out_unlock;
1409	}
1410	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1411		ret = -EPERM;
1412		goto out_unlock;
1413	}
1414	ret = security_task_kill(p, info, sig, secid);
1415	if (ret)
1416		goto out_unlock;
1417
1418	if (sig) {
1419		if (lock_task_sighand(p, &flags)) {
1420			ret = __send_signal(sig, info, p, 1, 0);
1421			unlock_task_sighand(p, &flags);
1422		} else
1423			ret = -ESRCH;
1424	}
1425out_unlock:
1426	rcu_read_unlock();
1427	return ret;
1428}
1429EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1430
1431/*
1432 * kill_something_info() interprets pid in interesting ways just like kill(2).
1433 *
1434 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1435 * is probably wrong.  Should make it like BSD or SYSV.
1436 */
1437
1438static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1439{
1440	int ret;
1441
1442	if (pid > 0) {
1443		rcu_read_lock();
1444		ret = kill_pid_info(sig, info, find_vpid(pid));
1445		rcu_read_unlock();
1446		return ret;
1447	}
1448
1449	read_lock(&tasklist_lock);
1450	if (pid != -1) {
1451		ret = __kill_pgrp_info(sig, info,
1452				pid ? find_vpid(-pid) : task_pgrp(current));
1453	} else {
1454		int retval = 0, count = 0;
1455		struct task_struct * p;
1456
1457		for_each_process(p) {
1458			if (task_pid_vnr(p) > 1 &&
1459					!same_thread_group(p, current)) {
1460				int err = group_send_sig_info(sig, info, p);
 
1461				++count;
1462				if (err != -EPERM)
1463					retval = err;
1464			}
1465		}
1466		ret = count ? retval : -ESRCH;
1467	}
1468	read_unlock(&tasklist_lock);
1469
1470	return ret;
1471}
1472
1473/*
1474 * These are for backward compatibility with the rest of the kernel source.
1475 */
1476
1477int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1478{
1479	/*
1480	 * Make sure legacy kernel users don't send in bad values
1481	 * (normal paths check this in check_kill_permission).
1482	 */
1483	if (!valid_signal(sig))
1484		return -EINVAL;
1485
1486	return do_send_sig_info(sig, info, p, false);
1487}
 
1488
1489#define __si_special(priv) \
1490	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1491
1492int
1493send_sig(int sig, struct task_struct *p, int priv)
1494{
1495	return send_sig_info(sig, __si_special(priv), p);
1496}
 
1497
1498void
1499force_sig(int sig, struct task_struct *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500{
1501	force_sig_info(sig, SEND_SIG_PRIV, p);
 
 
 
 
 
 
 
 
1502}
1503
1504/*
1505 * When things go south during signal handling, we
1506 * will force a SIGSEGV. And if the signal that caused
1507 * the problem was already a SIGSEGV, we'll want to
1508 * make sure we don't even try to deliver the signal..
1509 */
1510int
1511force_sigsegv(int sig, struct task_struct *p)
1512{
1513	if (sig == SIGSEGV) {
1514		unsigned long flags;
1515		spin_lock_irqsave(&p->sighand->siglock, flags);
1516		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1517		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1518	}
1519	force_sig(SIGSEGV, p);
1520	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521}
1522
1523int kill_pgrp(struct pid *pid, int sig, int priv)
1524{
1525	int ret;
1526
1527	read_lock(&tasklist_lock);
1528	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1529	read_unlock(&tasklist_lock);
1530
1531	return ret;
1532}
1533EXPORT_SYMBOL(kill_pgrp);
1534
1535int kill_pid(struct pid *pid, int sig, int priv)
1536{
1537	return kill_pid_info(sig, __si_special(priv), pid);
1538}
1539EXPORT_SYMBOL(kill_pid);
1540
1541/*
1542 * These functions support sending signals using preallocated sigqueue
1543 * structures.  This is needed "because realtime applications cannot
1544 * afford to lose notifications of asynchronous events, like timer
1545 * expirations or I/O completions".  In the case of POSIX Timers
1546 * we allocate the sigqueue structure from the timer_create.  If this
1547 * allocation fails we are able to report the failure to the application
1548 * with an EAGAIN error.
1549 */
1550struct sigqueue *sigqueue_alloc(void)
1551{
1552	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1553
1554	if (q)
1555		q->flags |= SIGQUEUE_PREALLOC;
1556
1557	return q;
1558}
1559
1560void sigqueue_free(struct sigqueue *q)
1561{
1562	unsigned long flags;
1563	spinlock_t *lock = &current->sighand->siglock;
1564
1565	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1566	/*
1567	 * We must hold ->siglock while testing q->list
1568	 * to serialize with collect_signal() or with
1569	 * __exit_signal()->flush_sigqueue().
1570	 */
1571	spin_lock_irqsave(lock, flags);
1572	q->flags &= ~SIGQUEUE_PREALLOC;
1573	/*
1574	 * If it is queued it will be freed when dequeued,
1575	 * like the "regular" sigqueue.
1576	 */
1577	if (!list_empty(&q->list))
1578		q = NULL;
1579	spin_unlock_irqrestore(lock, flags);
1580
1581	if (q)
1582		__sigqueue_free(q);
1583}
1584
1585int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1586{
1587	int sig = q->info.si_signo;
1588	struct sigpending *pending;
 
1589	unsigned long flags;
1590	int ret, result;
1591
1592	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1593
1594	ret = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595	if (!likely(lock_task_sighand(t, &flags)))
1596		goto ret;
1597
1598	ret = 1; /* the signal is ignored */
1599	result = TRACE_SIGNAL_IGNORED;
1600	if (!prepare_signal(sig, t, false))
1601		goto out;
1602
1603	ret = 0;
1604	if (unlikely(!list_empty(&q->list))) {
1605		/*
1606		 * If an SI_TIMER entry is already queue just increment
1607		 * the overrun count.
1608		 */
1609		BUG_ON(q->info.si_code != SI_TIMER);
1610		q->info.si_overrun++;
1611		result = TRACE_SIGNAL_ALREADY_PENDING;
1612		goto out;
1613	}
1614	q->info.si_overrun = 0;
1615
1616	signalfd_notify(t, sig);
1617	pending = group ? &t->signal->shared_pending : &t->pending;
1618	list_add_tail(&q->list, &pending->list);
1619	sigaddset(&pending->signal, sig);
1620	complete_signal(sig, t, group);
1621	result = TRACE_SIGNAL_DELIVERED;
1622out:
1623	trace_signal_generate(sig, &q->info, t, group, result);
1624	unlock_task_sighand(t, &flags);
1625ret:
 
1626	return ret;
1627}
1628
 
 
 
 
 
 
 
 
 
1629/*
1630 * Let a parent know about the death of a child.
1631 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1632 *
1633 * Returns true if our parent ignored us and so we've switched to
1634 * self-reaping.
1635 */
1636bool do_notify_parent(struct task_struct *tsk, int sig)
1637{
1638	struct siginfo info;
1639	unsigned long flags;
1640	struct sighand_struct *psig;
1641	bool autoreap = false;
1642	cputime_t utime, stime;
1643
1644	BUG_ON(sig == -1);
1645
1646 	/* do_notify_parent_cldstop should have been called instead.  */
1647 	BUG_ON(task_is_stopped_or_traced(tsk));
1648
1649	BUG_ON(!tsk->ptrace &&
1650	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1651
 
 
 
1652	if (sig != SIGCHLD) {
1653		/*
1654		 * This is only possible if parent == real_parent.
1655		 * Check if it has changed security domain.
1656		 */
1657		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1658			sig = SIGCHLD;
1659	}
1660
 
1661	info.si_signo = sig;
1662	info.si_errno = 0;
1663	/*
1664	 * We are under tasklist_lock here so our parent is tied to
1665	 * us and cannot change.
1666	 *
1667	 * task_active_pid_ns will always return the same pid namespace
1668	 * until a task passes through release_task.
1669	 *
1670	 * write_lock() currently calls preempt_disable() which is the
1671	 * same as rcu_read_lock(), but according to Oleg, this is not
1672	 * correct to rely on this
1673	 */
1674	rcu_read_lock();
1675	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1676	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1677				       task_uid(tsk));
1678	rcu_read_unlock();
1679
1680	task_cputime(tsk, &utime, &stime);
1681	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1682	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1683
1684	info.si_status = tsk->exit_code & 0x7f;
1685	if (tsk->exit_code & 0x80)
1686		info.si_code = CLD_DUMPED;
1687	else if (tsk->exit_code & 0x7f)
1688		info.si_code = CLD_KILLED;
1689	else {
1690		info.si_code = CLD_EXITED;
1691		info.si_status = tsk->exit_code >> 8;
1692	}
1693
1694	psig = tsk->parent->sighand;
1695	spin_lock_irqsave(&psig->siglock, flags);
1696	if (!tsk->ptrace && sig == SIGCHLD &&
1697	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1698	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1699		/*
1700		 * We are exiting and our parent doesn't care.  POSIX.1
1701		 * defines special semantics for setting SIGCHLD to SIG_IGN
1702		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1703		 * automatically and not left for our parent's wait4 call.
1704		 * Rather than having the parent do it as a magic kind of
1705		 * signal handler, we just set this to tell do_exit that we
1706		 * can be cleaned up without becoming a zombie.  Note that
1707		 * we still call __wake_up_parent in this case, because a
1708		 * blocked sys_wait4 might now return -ECHILD.
1709		 *
1710		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1711		 * is implementation-defined: we do (if you don't want
1712		 * it, just use SIG_IGN instead).
1713		 */
1714		autoreap = true;
1715		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1716			sig = 0;
1717	}
 
 
 
 
1718	if (valid_signal(sig) && sig)
1719		__group_send_sig_info(sig, &info, tsk->parent);
1720	__wake_up_parent(tsk, tsk->parent);
1721	spin_unlock_irqrestore(&psig->siglock, flags);
1722
1723	return autoreap;
1724}
1725
1726/**
1727 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1728 * @tsk: task reporting the state change
1729 * @for_ptracer: the notification is for ptracer
1730 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1731 *
1732 * Notify @tsk's parent that the stopped/continued state has changed.  If
1733 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1734 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1735 *
1736 * CONTEXT:
1737 * Must be called with tasklist_lock at least read locked.
1738 */
1739static void do_notify_parent_cldstop(struct task_struct *tsk,
1740				     bool for_ptracer, int why)
1741{
1742	struct siginfo info;
1743	unsigned long flags;
1744	struct task_struct *parent;
1745	struct sighand_struct *sighand;
1746	cputime_t utime, stime;
1747
1748	if (for_ptracer) {
1749		parent = tsk->parent;
1750	} else {
1751		tsk = tsk->group_leader;
1752		parent = tsk->real_parent;
1753	}
1754
 
1755	info.si_signo = SIGCHLD;
1756	info.si_errno = 0;
1757	/*
1758	 * see comment in do_notify_parent() about the following 4 lines
1759	 */
1760	rcu_read_lock();
1761	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1762	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1763	rcu_read_unlock();
1764
1765	task_cputime(tsk, &utime, &stime);
1766	info.si_utime = cputime_to_clock_t(utime);
1767	info.si_stime = cputime_to_clock_t(stime);
1768
1769 	info.si_code = why;
1770 	switch (why) {
1771 	case CLD_CONTINUED:
1772 		info.si_status = SIGCONT;
1773 		break;
1774 	case CLD_STOPPED:
1775 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1776 		break;
1777 	case CLD_TRAPPED:
1778 		info.si_status = tsk->exit_code & 0x7f;
1779 		break;
1780 	default:
1781 		BUG();
1782 	}
1783
1784	sighand = parent->sighand;
1785	spin_lock_irqsave(&sighand->siglock, flags);
1786	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1787	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1788		__group_send_sig_info(SIGCHLD, &info, parent);
1789	/*
1790	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1791	 */
1792	__wake_up_parent(tsk, parent);
1793	spin_unlock_irqrestore(&sighand->siglock, flags);
1794}
1795
1796static inline int may_ptrace_stop(void)
1797{
1798	if (!likely(current->ptrace))
1799		return 0;
1800	/*
1801	 * Are we in the middle of do_coredump?
1802	 * If so and our tracer is also part of the coredump stopping
1803	 * is a deadlock situation, and pointless because our tracer
1804	 * is dead so don't allow us to stop.
1805	 * If SIGKILL was already sent before the caller unlocked
1806	 * ->siglock we must see ->core_state != NULL. Otherwise it
1807	 * is safe to enter schedule().
1808	 *
1809	 * This is almost outdated, a task with the pending SIGKILL can't
1810	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1811	 * after SIGKILL was already dequeued.
1812	 */
1813	if (unlikely(current->mm->core_state) &&
1814	    unlikely(current->mm == current->parent->mm))
1815		return 0;
1816
1817	return 1;
1818}
1819
1820/*
1821 * Return non-zero if there is a SIGKILL that should be waking us up.
1822 * Called with the siglock held.
1823 */
1824static int sigkill_pending(struct task_struct *tsk)
1825{
1826	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1827		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1828}
1829
1830/*
1831 * This must be called with current->sighand->siglock held.
1832 *
1833 * This should be the path for all ptrace stops.
1834 * We always set current->last_siginfo while stopped here.
1835 * That makes it a way to test a stopped process for
1836 * being ptrace-stopped vs being job-control-stopped.
1837 *
1838 * If we actually decide not to stop at all because the tracer
1839 * is gone, we keep current->exit_code unless clear_code.
 
1840 */
1841static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
 
1842	__releases(&current->sighand->siglock)
1843	__acquires(&current->sighand->siglock)
1844{
1845	bool gstop_done = false;
1846
1847	if (arch_ptrace_stop_needed(exit_code, info)) {
1848		/*
1849		 * The arch code has something special to do before a
1850		 * ptrace stop.  This is allowed to block, e.g. for faults
1851		 * on user stack pages.  We can't keep the siglock while
1852		 * calling arch_ptrace_stop, so we must release it now.
1853		 * To preserve proper semantics, we must do this before
1854		 * any signal bookkeeping like checking group_stop_count.
1855		 * Meanwhile, a SIGKILL could come in before we retake the
1856		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1857		 * So after regaining the lock, we must check for SIGKILL.
1858		 */
1859		spin_unlock_irq(&current->sighand->siglock);
1860		arch_ptrace_stop(exit_code, info);
1861		spin_lock_irq(&current->sighand->siglock);
1862		if (sigkill_pending(current))
1863			return;
1864	}
1865
1866	/*
 
 
 
 
 
 
 
 
 
 
 
 
1867	 * We're committing to trapping.  TRACED should be visible before
1868	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1869	 * Also, transition to TRACED and updates to ->jobctl should be
1870	 * atomic with respect to siglock and should be done after the arch
1871	 * hook as siglock is released and regrabbed across it.
 
 
 
 
 
 
 
 
 
 
 
1872	 */
1873	set_current_state(TASK_TRACED);
1874
 
1875	current->last_siginfo = info;
1876	current->exit_code = exit_code;
1877
1878	/*
1879	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1880	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1881	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1882	 * could be clear now.  We act as if SIGCONT is received after
1883	 * TASK_TRACED is entered - ignore it.
1884	 */
1885	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1886		gstop_done = task_participate_group_stop(current);
1887
1888	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1889	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1890	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1891		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1892
1893	/* entering a trap, clear TRAPPING */
1894	task_clear_jobctl_trapping(current);
1895
1896	spin_unlock_irq(&current->sighand->siglock);
1897	read_lock(&tasklist_lock);
1898	if (may_ptrace_stop()) {
1899		/*
1900		 * Notify parents of the stop.
1901		 *
1902		 * While ptraced, there are two parents - the ptracer and
1903		 * the real_parent of the group_leader.  The ptracer should
1904		 * know about every stop while the real parent is only
1905		 * interested in the completion of group stop.  The states
1906		 * for the two don't interact with each other.  Notify
1907		 * separately unless they're gonna be duplicates.
1908		 */
1909		do_notify_parent_cldstop(current, true, why);
1910		if (gstop_done && ptrace_reparented(current))
1911			do_notify_parent_cldstop(current, false, why);
1912
1913		/*
1914		 * Don't want to allow preemption here, because
1915		 * sys_ptrace() needs this task to be inactive.
1916		 *
1917		 * XXX: implement read_unlock_no_resched().
1918		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919		preempt_disable();
1920		read_unlock(&tasklist_lock);
 
 
1921		preempt_enable_no_resched();
1922		freezable_schedule();
1923	} else {
1924		/*
1925		 * By the time we got the lock, our tracer went away.
1926		 * Don't drop the lock yet, another tracer may come.
1927		 *
1928		 * If @gstop_done, the ptracer went away between group stop
1929		 * completion and here.  During detach, it would have set
1930		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1931		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1932		 * the real parent of the group stop completion is enough.
1933		 */
1934		if (gstop_done)
1935			do_notify_parent_cldstop(current, false, why);
1936
1937		/* tasklist protects us from ptrace_freeze_traced() */
1938		__set_current_state(TASK_RUNNING);
1939		if (clear_code)
1940			current->exit_code = 0;
1941		read_unlock(&tasklist_lock);
1942	}
1943
1944	/*
1945	 * We are back.  Now reacquire the siglock before touching
1946	 * last_siginfo, so that we are sure to have synchronized with
1947	 * any signal-sending on another CPU that wants to examine it.
1948	 */
1949	spin_lock_irq(&current->sighand->siglock);
 
1950	current->last_siginfo = NULL;
 
 
1951
1952	/* LISTENING can be set only during STOP traps, clear it */
1953	current->jobctl &= ~JOBCTL_LISTENING;
1954
1955	/*
1956	 * Queued signals ignored us while we were stopped for tracing.
1957	 * So check for any that we should take before resuming user mode.
1958	 * This sets TIF_SIGPENDING, but never clears it.
1959	 */
1960	recalc_sigpending_tsk(current);
 
1961}
1962
1963static void ptrace_do_notify(int signr, int exit_code, int why)
1964{
1965	siginfo_t info;
1966
1967	memset(&info, 0, sizeof info);
1968	info.si_signo = signr;
1969	info.si_code = exit_code;
1970	info.si_pid = task_pid_vnr(current);
1971	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1972
1973	/* Let the debugger run.  */
1974	ptrace_stop(exit_code, why, 1, &info);
1975}
1976
1977void ptrace_notify(int exit_code)
1978{
 
 
1979	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1980	if (unlikely(current->task_works))
1981		task_work_run();
1982
1983	spin_lock_irq(&current->sighand->siglock);
1984	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1985	spin_unlock_irq(&current->sighand->siglock);
 
1986}
1987
1988/**
1989 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1990 * @signr: signr causing group stop if initiating
1991 *
1992 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1993 * and participate in it.  If already set, participate in the existing
1994 * group stop.  If participated in a group stop (and thus slept), %true is
1995 * returned with siglock released.
1996 *
1997 * If ptraced, this function doesn't handle stop itself.  Instead,
1998 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1999 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2000 * places afterwards.
2001 *
2002 * CONTEXT:
2003 * Must be called with @current->sighand->siglock held, which is released
2004 * on %true return.
2005 *
2006 * RETURNS:
2007 * %false if group stop is already cancelled or ptrace trap is scheduled.
2008 * %true if participated in group stop.
2009 */
2010static bool do_signal_stop(int signr)
2011	__releases(&current->sighand->siglock)
2012{
2013	struct signal_struct *sig = current->signal;
2014
2015	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2016		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2017		struct task_struct *t;
2018
2019		/* signr will be recorded in task->jobctl for retries */
2020		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2021
2022		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2023		    unlikely(signal_group_exit(sig)))
 
2024			return false;
2025		/*
2026		 * There is no group stop already in progress.  We must
2027		 * initiate one now.
2028		 *
2029		 * While ptraced, a task may be resumed while group stop is
2030		 * still in effect and then receive a stop signal and
2031		 * initiate another group stop.  This deviates from the
2032		 * usual behavior as two consecutive stop signals can't
2033		 * cause two group stops when !ptraced.  That is why we
2034		 * also check !task_is_stopped(t) below.
2035		 *
2036		 * The condition can be distinguished by testing whether
2037		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2038		 * group_exit_code in such case.
2039		 *
2040		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2041		 * an intervening stop signal is required to cause two
2042		 * continued events regardless of ptrace.
2043		 */
2044		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2045			sig->group_exit_code = signr;
2046
2047		sig->group_stop_count = 0;
2048
2049		if (task_set_jobctl_pending(current, signr | gstop))
2050			sig->group_stop_count++;
2051
2052		t = current;
2053		while_each_thread(current, t) {
2054			/*
2055			 * Setting state to TASK_STOPPED for a group
2056			 * stop is always done with the siglock held,
2057			 * so this check has no races.
2058			 */
2059			if (!task_is_stopped(t) &&
2060			    task_set_jobctl_pending(t, signr | gstop)) {
2061				sig->group_stop_count++;
2062				if (likely(!(t->ptrace & PT_SEIZED)))
2063					signal_wake_up(t, 0);
2064				else
2065					ptrace_trap_notify(t);
2066			}
2067		}
2068	}
2069
2070	if (likely(!current->ptrace)) {
2071		int notify = 0;
2072
2073		/*
2074		 * If there are no other threads in the group, or if there
2075		 * is a group stop in progress and we are the last to stop,
2076		 * report to the parent.
2077		 */
2078		if (task_participate_group_stop(current))
2079			notify = CLD_STOPPED;
2080
2081		__set_current_state(TASK_STOPPED);
 
2082		spin_unlock_irq(&current->sighand->siglock);
2083
2084		/*
2085		 * Notify the parent of the group stop completion.  Because
2086		 * we're not holding either the siglock or tasklist_lock
2087		 * here, ptracer may attach inbetween; however, this is for
2088		 * group stop and should always be delivered to the real
2089		 * parent of the group leader.  The new ptracer will get
2090		 * its notification when this task transitions into
2091		 * TASK_TRACED.
2092		 */
2093		if (notify) {
2094			read_lock(&tasklist_lock);
2095			do_notify_parent_cldstop(current, false, notify);
2096			read_unlock(&tasklist_lock);
2097		}
2098
2099		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2100		freezable_schedule();
 
2101		return true;
2102	} else {
2103		/*
2104		 * While ptraced, group stop is handled by STOP trap.
2105		 * Schedule it and let the caller deal with it.
2106		 */
2107		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2108		return false;
2109	}
2110}
2111
2112/**
2113 * do_jobctl_trap - take care of ptrace jobctl traps
2114 *
2115 * When PT_SEIZED, it's used for both group stop and explicit
2116 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2117 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2118 * the stop signal; otherwise, %SIGTRAP.
2119 *
2120 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2121 * number as exit_code and no siginfo.
2122 *
2123 * CONTEXT:
2124 * Must be called with @current->sighand->siglock held, which may be
2125 * released and re-acquired before returning with intervening sleep.
2126 */
2127static void do_jobctl_trap(void)
2128{
2129	struct signal_struct *signal = current->signal;
2130	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2131
2132	if (current->ptrace & PT_SEIZED) {
2133		if (!signal->group_stop_count &&
2134		    !(signal->flags & SIGNAL_STOP_STOPPED))
2135			signr = SIGTRAP;
2136		WARN_ON_ONCE(!signr);
2137		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2138				 CLD_STOPPED);
2139	} else {
2140		WARN_ON_ONCE(!signr);
2141		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2142		current->exit_code = 0;
2143	}
2144}
2145
2146static int ptrace_signal(int signr, siginfo_t *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147{
2148	ptrace_signal_deliver();
2149	/*
2150	 * We do not check sig_kernel_stop(signr) but set this marker
2151	 * unconditionally because we do not know whether debugger will
2152	 * change signr. This flag has no meaning unless we are going
2153	 * to stop after return from ptrace_stop(). In this case it will
2154	 * be checked in do_signal_stop(), we should only stop if it was
2155	 * not cleared by SIGCONT while we were sleeping. See also the
2156	 * comment in dequeue_signal().
2157	 */
2158	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2159	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2160
2161	/* We're back.  Did the debugger cancel the sig?  */
2162	signr = current->exit_code;
2163	if (signr == 0)
2164		return signr;
2165
2166	current->exit_code = 0;
2167
2168	/*
2169	 * Update the siginfo structure if the signal has
2170	 * changed.  If the debugger wanted something
2171	 * specific in the siginfo structure then it should
2172	 * have updated *info via PTRACE_SETSIGINFO.
2173	 */
2174	if (signr != info->si_signo) {
 
2175		info->si_signo = signr;
2176		info->si_errno = 0;
2177		info->si_code = SI_USER;
2178		rcu_read_lock();
2179		info->si_pid = task_pid_vnr(current->parent);
2180		info->si_uid = from_kuid_munged(current_user_ns(),
2181						task_uid(current->parent));
2182		rcu_read_unlock();
2183	}
2184
2185	/* If the (new) signal is now blocked, requeue it.  */
2186	if (sigismember(&current->blocked, signr)) {
2187		specific_send_sig_info(signr, info, current);
 
2188		signr = 0;
2189	}
2190
2191	return signr;
2192}
2193
2194int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2195			  struct pt_regs *regs, void *cookie)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2196{
2197	struct sighand_struct *sighand = current->sighand;
2198	struct signal_struct *signal = current->signal;
2199	int signr;
2200
2201	if (unlikely(current->task_works))
 
2202		task_work_run();
2203
 
 
 
2204	if (unlikely(uprobe_deny_signal()))
2205		return 0;
2206
2207	/*
2208	 * Do this once, we can't return to user-mode if freezing() == T.
2209	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2210	 * thus do not need another check after return.
2211	 */
2212	try_to_freeze();
2213
2214relock:
2215	spin_lock_irq(&sighand->siglock);
 
2216	/*
2217	 * Every stopped thread goes here after wakeup. Check to see if
2218	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2219	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2220	 */
2221	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2222		int why;
2223
2224		if (signal->flags & SIGNAL_CLD_CONTINUED)
2225			why = CLD_CONTINUED;
2226		else
2227			why = CLD_STOPPED;
2228
2229		signal->flags &= ~SIGNAL_CLD_MASK;
2230
2231		spin_unlock_irq(&sighand->siglock);
2232
2233		/*
2234		 * Notify the parent that we're continuing.  This event is
2235		 * always per-process and doesn't make whole lot of sense
2236		 * for ptracers, who shouldn't consume the state via
2237		 * wait(2) either, but, for backward compatibility, notify
2238		 * the ptracer of the group leader too unless it's gonna be
2239		 * a duplicate.
2240		 */
2241		read_lock(&tasklist_lock);
2242		do_notify_parent_cldstop(current, false, why);
2243
2244		if (ptrace_reparented(current->group_leader))
2245			do_notify_parent_cldstop(current->group_leader,
2246						true, why);
2247		read_unlock(&tasklist_lock);
2248
2249		goto relock;
2250	}
2251
2252	for (;;) {
2253		struct k_sigaction *ka;
 
 
 
 
 
 
 
 
 
 
 
 
 
2254
2255		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2256		    do_signal_stop(0))
2257			goto relock;
2258
2259		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2260			do_jobctl_trap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261			spin_unlock_irq(&sighand->siglock);
 
2262			goto relock;
2263		}
2264
2265		signr = dequeue_signal(current, &current->blocked, info);
 
 
 
 
 
 
 
 
 
 
2266
2267		if (!signr)
2268			break; /* will return 0 */
2269
2270		if (unlikely(current->ptrace) && signr != SIGKILL) {
2271			signr = ptrace_signal(signr, info);
 
2272			if (!signr)
2273				continue;
2274		}
2275
2276		ka = &sighand->action[signr-1];
2277
2278		/* Trace actually delivered signals. */
2279		trace_signal_deliver(signr, info, ka);
2280
2281		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2282			continue;
2283		if (ka->sa.sa_handler != SIG_DFL) {
2284			/* Run the handler.  */
2285			*return_ka = *ka;
2286
2287			if (ka->sa.sa_flags & SA_ONESHOT)
2288				ka->sa.sa_handler = SIG_DFL;
2289
2290			break; /* will return non-zero "signr" value */
2291		}
2292
2293		/*
2294		 * Now we are doing the default action for this signal.
2295		 */
2296		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2297			continue;
2298
2299		/*
2300		 * Global init gets no signals it doesn't want.
2301		 * Container-init gets no signals it doesn't want from same
2302		 * container.
2303		 *
2304		 * Note that if global/container-init sees a sig_kernel_only()
2305		 * signal here, the signal must have been generated internally
2306		 * or must have come from an ancestor namespace. In either
2307		 * case, the signal cannot be dropped.
2308		 */
2309		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2310				!sig_kernel_only(signr))
2311			continue;
2312
2313		if (sig_kernel_stop(signr)) {
2314			/*
2315			 * The default action is to stop all threads in
2316			 * the thread group.  The job control signals
2317			 * do nothing in an orphaned pgrp, but SIGSTOP
2318			 * always works.  Note that siglock needs to be
2319			 * dropped during the call to is_orphaned_pgrp()
2320			 * because of lock ordering with tasklist_lock.
2321			 * This allows an intervening SIGCONT to be posted.
2322			 * We need to check for that and bail out if necessary.
2323			 */
2324			if (signr != SIGSTOP) {
2325				spin_unlock_irq(&sighand->siglock);
2326
2327				/* signals can be posted during this window */
2328
2329				if (is_current_pgrp_orphaned())
2330					goto relock;
2331
2332				spin_lock_irq(&sighand->siglock);
2333			}
2334
2335			if (likely(do_signal_stop(info->si_signo))) {
2336				/* It released the siglock.  */
2337				goto relock;
2338			}
2339
2340			/*
2341			 * We didn't actually stop, due to a race
2342			 * with SIGCONT or something like that.
2343			 */
2344			continue;
2345		}
2346
 
2347		spin_unlock_irq(&sighand->siglock);
 
 
2348
2349		/*
2350		 * Anything else is fatal, maybe with a core dump.
2351		 */
2352		current->flags |= PF_SIGNALED;
2353
2354		if (sig_kernel_coredump(signr)) {
2355			if (print_fatal_signals)
2356				print_fatal_signal(info->si_signo);
2357			proc_coredump_connector(current);
2358			/*
2359			 * If it was able to dump core, this kills all
2360			 * other threads in the group and synchronizes with
2361			 * their demise.  If we lost the race with another
2362			 * thread getting here, it set group_exit_code
2363			 * first and our do_group_exit call below will use
2364			 * that value and ignore the one we pass it.
2365			 */
2366			do_coredump(info);
2367		}
2368
2369		/*
 
 
 
 
 
 
 
 
2370		 * Death signals, no core dump.
2371		 */
2372		do_group_exit(info->si_signo);
2373		/* NOTREACHED */
2374	}
2375	spin_unlock_irq(&sighand->siglock);
2376	return signr;
 
 
 
 
 
 
2377}
2378
2379/**
2380 * signal_delivered - 
2381 * @sig:		number of signal being delivered
2382 * @info:		siginfo_t of signal being delivered
2383 * @ka:			sigaction setting that chose the handler
2384 * @regs:		user register state
2385 * @stepping:		nonzero if debugger single-step or block-step in use
2386 *
2387 * This function should be called when a signal has successfully been
2388 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2389 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2390 * is set in @ka->sa.sa_flags.  Tracing is notified.
2391 */
2392void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2393			struct pt_regs *regs, int stepping)
2394{
2395	sigset_t blocked;
2396
2397	/* A signal was successfully delivered, and the
2398	   saved sigmask was stored on the signal frame,
2399	   and will be restored by sigreturn.  So we can
2400	   simply clear the restore sigmask flag.  */
2401	clear_restore_sigmask();
2402
2403	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2404	if (!(ka->sa.sa_flags & SA_NODEFER))
2405		sigaddset(&blocked, sig);
2406	set_current_blocked(&blocked);
2407	tracehook_signal_handler(sig, info, ka, regs, stepping);
 
 
 
2408}
2409
2410void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2411{
2412	if (failed)
2413		force_sigsegv(ksig->sig, current);
2414	else
2415		signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2416			signal_pt_regs(), stepping);
2417}
2418
2419/*
2420 * It could be that complete_signal() picked us to notify about the
2421 * group-wide signal. Other threads should be notified now to take
2422 * the shared signals in @which since we will not.
2423 */
2424static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2425{
2426	sigset_t retarget;
2427	struct task_struct *t;
2428
2429	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2430	if (sigisemptyset(&retarget))
2431		return;
2432
2433	t = tsk;
2434	while_each_thread(tsk, t) {
2435		if (t->flags & PF_EXITING)
2436			continue;
2437
2438		if (!has_pending_signals(&retarget, &t->blocked))
2439			continue;
2440		/* Remove the signals this thread can handle. */
2441		sigandsets(&retarget, &retarget, &t->blocked);
2442
2443		if (!signal_pending(t))
2444			signal_wake_up(t, 0);
2445
2446		if (sigisemptyset(&retarget))
2447			break;
2448	}
2449}
2450
2451void exit_signals(struct task_struct *tsk)
2452{
2453	int group_stop = 0;
2454	sigset_t unblocked;
2455
2456	/*
2457	 * @tsk is about to have PF_EXITING set - lock out users which
2458	 * expect stable threadgroup.
2459	 */
2460	threadgroup_change_begin(tsk);
2461
2462	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
 
2463		tsk->flags |= PF_EXITING;
2464		threadgroup_change_end(tsk);
2465		return;
2466	}
2467
2468	spin_lock_irq(&tsk->sighand->siglock);
2469	/*
2470	 * From now this task is not visible for group-wide signals,
2471	 * see wants_signal(), do_signal_stop().
2472	 */
 
2473	tsk->flags |= PF_EXITING;
2474
2475	threadgroup_change_end(tsk);
2476
2477	if (!signal_pending(tsk))
2478		goto out;
2479
2480	unblocked = tsk->blocked;
2481	signotset(&unblocked);
2482	retarget_shared_pending(tsk, &unblocked);
2483
2484	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2485	    task_participate_group_stop(tsk))
2486		group_stop = CLD_STOPPED;
2487out:
2488	spin_unlock_irq(&tsk->sighand->siglock);
2489
2490	/*
2491	 * If group stop has completed, deliver the notification.  This
2492	 * should always go to the real parent of the group leader.
2493	 */
2494	if (unlikely(group_stop)) {
2495		read_lock(&tasklist_lock);
2496		do_notify_parent_cldstop(tsk, false, group_stop);
2497		read_unlock(&tasklist_lock);
2498	}
2499}
2500
2501EXPORT_SYMBOL(recalc_sigpending);
2502EXPORT_SYMBOL_GPL(dequeue_signal);
2503EXPORT_SYMBOL(flush_signals);
2504EXPORT_SYMBOL(force_sig);
2505EXPORT_SYMBOL(send_sig);
2506EXPORT_SYMBOL(send_sig_info);
2507EXPORT_SYMBOL(sigprocmask);
2508EXPORT_SYMBOL(block_all_signals);
2509EXPORT_SYMBOL(unblock_all_signals);
2510
2511
2512/*
2513 * System call entry points.
2514 */
2515
2516/**
2517 *  sys_restart_syscall - restart a system call
2518 */
2519SYSCALL_DEFINE0(restart_syscall)
2520{
2521	struct restart_block *restart = &current_thread_info()->restart_block;
2522	return restart->fn(restart);
2523}
2524
2525long do_no_restart_syscall(struct restart_block *param)
2526{
2527	return -EINTR;
2528}
2529
2530static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2531{
2532	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2533		sigset_t newblocked;
2534		/* A set of now blocked but previously unblocked signals. */
2535		sigandnsets(&newblocked, newset, &current->blocked);
2536		retarget_shared_pending(tsk, &newblocked);
2537	}
2538	tsk->blocked = *newset;
2539	recalc_sigpending();
2540}
2541
2542/**
2543 * set_current_blocked - change current->blocked mask
2544 * @newset: new mask
2545 *
2546 * It is wrong to change ->blocked directly, this helper should be used
2547 * to ensure the process can't miss a shared signal we are going to block.
2548 */
2549void set_current_blocked(sigset_t *newset)
2550{
2551	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2552	__set_current_blocked(newset);
2553}
2554
2555void __set_current_blocked(const sigset_t *newset)
2556{
2557	struct task_struct *tsk = current;
2558
 
 
 
 
 
 
 
2559	spin_lock_irq(&tsk->sighand->siglock);
2560	__set_task_blocked(tsk, newset);
2561	spin_unlock_irq(&tsk->sighand->siglock);
2562}
2563
2564/*
2565 * This is also useful for kernel threads that want to temporarily
2566 * (or permanently) block certain signals.
2567 *
2568 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2569 * interface happily blocks "unblockable" signals like SIGKILL
2570 * and friends.
2571 */
2572int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2573{
2574	struct task_struct *tsk = current;
2575	sigset_t newset;
2576
2577	/* Lockless, only current can change ->blocked, never from irq */
2578	if (oldset)
2579		*oldset = tsk->blocked;
2580
2581	switch (how) {
2582	case SIG_BLOCK:
2583		sigorsets(&newset, &tsk->blocked, set);
2584		break;
2585	case SIG_UNBLOCK:
2586		sigandnsets(&newset, &tsk->blocked, set);
2587		break;
2588	case SIG_SETMASK:
2589		newset = *set;
2590		break;
2591	default:
2592		return -EINVAL;
2593	}
2594
2595	__set_current_blocked(&newset);
2596	return 0;
2597}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598
2599/**
2600 *  sys_rt_sigprocmask - change the list of currently blocked signals
2601 *  @how: whether to add, remove, or set signals
2602 *  @nset: stores pending signals
2603 *  @oset: previous value of signal mask if non-null
2604 *  @sigsetsize: size of sigset_t type
2605 */
2606SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2607		sigset_t __user *, oset, size_t, sigsetsize)
2608{
2609	sigset_t old_set, new_set;
2610	int error;
2611
2612	/* XXX: Don't preclude handling different sized sigset_t's.  */
2613	if (sigsetsize != sizeof(sigset_t))
2614		return -EINVAL;
2615
2616	old_set = current->blocked;
2617
2618	if (nset) {
2619		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2620			return -EFAULT;
2621		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2622
2623		error = sigprocmask(how, &new_set, NULL);
2624		if (error)
2625			return error;
2626	}
2627
2628	if (oset) {
2629		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2630			return -EFAULT;
2631	}
2632
2633	return 0;
2634}
2635
2636#ifdef CONFIG_COMPAT
2637COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2638		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2639{
2640#ifdef __BIG_ENDIAN
2641	sigset_t old_set = current->blocked;
2642
2643	/* XXX: Don't preclude handling different sized sigset_t's.  */
2644	if (sigsetsize != sizeof(sigset_t))
2645		return -EINVAL;
2646
2647	if (nset) {
2648		compat_sigset_t new32;
2649		sigset_t new_set;
2650		int error;
2651		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2652			return -EFAULT;
2653
2654		sigset_from_compat(&new_set, &new32);
2655		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2656
2657		error = sigprocmask(how, &new_set, NULL);
2658		if (error)
2659			return error;
2660	}
2661	if (oset) {
2662		compat_sigset_t old32;
2663		sigset_to_compat(&old32, &old_set);
2664		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2665			return -EFAULT;
2666	}
2667	return 0;
2668#else
2669	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2670				  (sigset_t __user *)oset, sigsetsize);
2671#endif
2672}
2673#endif
2674
2675static int do_sigpending(void *set, unsigned long sigsetsize)
2676{
2677	if (sigsetsize > sizeof(sigset_t))
2678		return -EINVAL;
2679
2680	spin_lock_irq(&current->sighand->siglock);
2681	sigorsets(set, &current->pending.signal,
2682		  &current->signal->shared_pending.signal);
2683	spin_unlock_irq(&current->sighand->siglock);
2684
2685	/* Outside the lock because only this thread touches it.  */
2686	sigandsets(set, &current->blocked, set);
2687	return 0;
2688}
2689
2690/**
2691 *  sys_rt_sigpending - examine a pending signal that has been raised
2692 *			while blocked
2693 *  @uset: stores pending signals
2694 *  @sigsetsize: size of sigset_t type or larger
2695 */
2696SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2697{
2698	sigset_t set;
2699	int err = do_sigpending(&set, sigsetsize);
2700	if (!err && copy_to_user(uset, &set, sigsetsize))
2701		err = -EFAULT;
2702	return err;
 
 
 
 
 
 
2703}
2704
2705#ifdef CONFIG_COMPAT
2706COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2707		compat_size_t, sigsetsize)
2708{
2709#ifdef __BIG_ENDIAN
2710	sigset_t set;
2711	int err = do_sigpending(&set, sigsetsize);
2712	if (!err) {
2713		compat_sigset_t set32;
2714		sigset_to_compat(&set32, &set);
2715		/* we can get here only if sigsetsize <= sizeof(set) */
2716		if (copy_to_user(uset, &set32, sigsetsize))
2717			err = -EFAULT;
2718	}
2719	return err;
2720#else
2721	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
 
 
 
 
 
 
 
 
 
2722#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2723}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2724#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2725
2726#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
 
 
 
2727
2728int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2729{
2730	int err;
 
 
 
 
 
 
2731
2732	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2733		return -EFAULT;
2734	if (from->si_code < 0)
2735		return __copy_to_user(to, from, sizeof(siginfo_t))
2736			? -EFAULT : 0;
2737	/*
2738	 * If you change siginfo_t structure, please be sure
2739	 * this code is fixed accordingly.
2740	 * Please remember to update the signalfd_copyinfo() function
2741	 * inside fs/signalfd.c too, in case siginfo_t changes.
2742	 * It should never copy any pad contained in the structure
2743	 * to avoid security leaks, but must copy the generic
2744	 * 3 ints plus the relevant union member.
2745	 */
2746	err = __put_user(from->si_signo, &to->si_signo);
2747	err |= __put_user(from->si_errno, &to->si_errno);
2748	err |= __put_user((short)from->si_code, &to->si_code);
2749	switch (from->si_code & __SI_MASK) {
2750	case __SI_KILL:
2751		err |= __put_user(from->si_pid, &to->si_pid);
2752		err |= __put_user(from->si_uid, &to->si_uid);
2753		break;
2754	case __SI_TIMER:
2755		 err |= __put_user(from->si_tid, &to->si_tid);
2756		 err |= __put_user(from->si_overrun, &to->si_overrun);
2757		 err |= __put_user(from->si_ptr, &to->si_ptr);
2758		break;
2759	case __SI_POLL:
2760		err |= __put_user(from->si_band, &to->si_band);
2761		err |= __put_user(from->si_fd, &to->si_fd);
2762		break;
2763	case __SI_FAULT:
2764		err |= __put_user(from->si_addr, &to->si_addr);
2765#ifdef __ARCH_SI_TRAPNO
2766		err |= __put_user(from->si_trapno, &to->si_trapno);
2767#endif
2768#ifdef BUS_MCEERR_AO
2769		/*
2770		 * Other callers might not initialize the si_lsb field,
2771		 * so check explicitly for the right codes here.
2772		 */
2773		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2774			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2775#endif
2776		break;
2777	case __SI_CHLD:
2778		err |= __put_user(from->si_pid, &to->si_pid);
2779		err |= __put_user(from->si_uid, &to->si_uid);
2780		err |= __put_user(from->si_status, &to->si_status);
2781		err |= __put_user(from->si_utime, &to->si_utime);
2782		err |= __put_user(from->si_stime, &to->si_stime);
2783		break;
2784	case __SI_RT: /* This is not generated by the kernel as of now. */
2785	case __SI_MESGQ: /* But this is */
2786		err |= __put_user(from->si_pid, &to->si_pid);
2787		err |= __put_user(from->si_uid, &to->si_uid);
2788		err |= __put_user(from->si_ptr, &to->si_ptr);
2789		break;
2790#ifdef __ARCH_SIGSYS
2791	case __SI_SYS:
2792		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2793		err |= __put_user(from->si_syscall, &to->si_syscall);
2794		err |= __put_user(from->si_arch, &to->si_arch);
2795		break;
2796#endif
2797	default: /* this is just in case for now ... */
2798		err |= __put_user(from->si_pid, &to->si_pid);
2799		err |= __put_user(from->si_uid, &to->si_uid);
 
 
 
 
 
 
 
 
 
 
 
 
2800		break;
2801	}
2802	return err;
2803}
2804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2805#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2806
2807/**
2808 *  do_sigtimedwait - wait for queued signals specified in @which
2809 *  @which: queued signals to wait for
2810 *  @info: if non-null, the signal's siginfo is returned here
2811 *  @ts: upper bound on process time suspension
2812 */
2813int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2814			const struct timespec *ts)
2815{
 
2816	struct task_struct *tsk = current;
2817	long timeout = MAX_SCHEDULE_TIMEOUT;
2818	sigset_t mask = *which;
2819	int sig;
 
2820
2821	if (ts) {
2822		if (!timespec_valid(ts))
2823			return -EINVAL;
2824		timeout = timespec_to_jiffies(ts);
2825		/*
2826		 * We can be close to the next tick, add another one
2827		 * to ensure we will wait at least the time asked for.
2828		 */
2829		if (ts->tv_sec || ts->tv_nsec)
2830			timeout++;
2831	}
2832
2833	/*
2834	 * Invert the set of allowed signals to get those we want to block.
2835	 */
2836	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2837	signotset(&mask);
2838
2839	spin_lock_irq(&tsk->sighand->siglock);
2840	sig = dequeue_signal(tsk, &mask, info);
2841	if (!sig && timeout) {
2842		/*
2843		 * None ready, temporarily unblock those we're interested
2844		 * while we are sleeping in so that we'll be awakened when
2845		 * they arrive. Unblocking is always fine, we can avoid
2846		 * set_current_blocked().
2847		 */
2848		tsk->real_blocked = tsk->blocked;
2849		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2850		recalc_sigpending();
2851		spin_unlock_irq(&tsk->sighand->siglock);
2852
2853		timeout = freezable_schedule_timeout_interruptible(timeout);
2854
 
2855		spin_lock_irq(&tsk->sighand->siglock);
2856		__set_task_blocked(tsk, &tsk->real_blocked);
2857		siginitset(&tsk->real_blocked, 0);
2858		sig = dequeue_signal(tsk, &mask, info);
2859	}
2860	spin_unlock_irq(&tsk->sighand->siglock);
2861
2862	if (sig)
2863		return sig;
2864	return timeout ? -EINTR : -EAGAIN;
2865}
2866
2867/**
2868 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2869 *			in @uthese
2870 *  @uthese: queued signals to wait for
2871 *  @uinfo: if non-null, the signal's siginfo is returned here
2872 *  @uts: upper bound on process time suspension
2873 *  @sigsetsize: size of sigset_t type
2874 */
2875SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2876		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 
2877		size_t, sigsetsize)
2878{
2879	sigset_t these;
2880	struct timespec ts;
2881	siginfo_t info;
2882	int ret;
2883
2884	/* XXX: Don't preclude handling different sized sigset_t's.  */
2885	if (sigsetsize != sizeof(sigset_t))
2886		return -EINVAL;
2887
2888	if (copy_from_user(&these, uthese, sizeof(these)))
2889		return -EFAULT;
2890
2891	if (uts) {
2892		if (copy_from_user(&ts, uts, sizeof(ts)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2893			return -EFAULT;
2894	}
2895
2896	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2897
2898	if (ret > 0 && uinfo) {
2899		if (copy_siginfo_to_user(uinfo, &info))
2900			ret = -EFAULT;
2901	}
2902
2903	return ret;
2904}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2905
2906/**
2907 *  sys_kill - send a signal to a process
2908 *  @pid: the PID of the process
2909 *  @sig: signal to be sent
2910 */
2911SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2912{
2913	struct siginfo info;
2914
2915	info.si_signo = sig;
2916	info.si_errno = 0;
2917	info.si_code = SI_USER;
2918	info.si_pid = task_tgid_vnr(current);
2919	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2920
2921	return kill_something_info(sig, &info, pid);
2922}
2923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2924static int
2925do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2926{
2927	struct task_struct *p;
2928	int error = -ESRCH;
2929
2930	rcu_read_lock();
2931	p = find_task_by_vpid(pid);
2932	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2933		error = check_kill_permission(sig, info, p);
2934		/*
2935		 * The null signal is a permissions and process existence
2936		 * probe.  No signal is actually delivered.
2937		 */
2938		if (!error && sig) {
2939			error = do_send_sig_info(sig, info, p, false);
2940			/*
2941			 * If lock_task_sighand() failed we pretend the task
2942			 * dies after receiving the signal. The window is tiny,
2943			 * and the signal is private anyway.
2944			 */
2945			if (unlikely(error == -ESRCH))
2946				error = 0;
2947		}
2948	}
2949	rcu_read_unlock();
2950
2951	return error;
2952}
2953
2954static int do_tkill(pid_t tgid, pid_t pid, int sig)
2955{
2956	struct siginfo info = {};
2957
 
2958	info.si_signo = sig;
2959	info.si_errno = 0;
2960	info.si_code = SI_TKILL;
2961	info.si_pid = task_tgid_vnr(current);
2962	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2963
2964	return do_send_specific(tgid, pid, sig, &info);
2965}
2966
2967/**
2968 *  sys_tgkill - send signal to one specific thread
2969 *  @tgid: the thread group ID of the thread
2970 *  @pid: the PID of the thread
2971 *  @sig: signal to be sent
2972 *
2973 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2974 *  exists but it's not belonging to the target process anymore. This
2975 *  method solves the problem of threads exiting and PIDs getting reused.
2976 */
2977SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2978{
2979	/* This is only valid for single tasks */
2980	if (pid <= 0 || tgid <= 0)
2981		return -EINVAL;
2982
2983	return do_tkill(tgid, pid, sig);
2984}
2985
2986/**
2987 *  sys_tkill - send signal to one specific task
2988 *  @pid: the PID of the task
2989 *  @sig: signal to be sent
2990 *
2991 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2992 */
2993SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2994{
2995	/* This is only valid for single tasks */
2996	if (pid <= 0)
2997		return -EINVAL;
2998
2999	return do_tkill(0, pid, sig);
3000}
3001
3002static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3003{
3004	/* Not even root can pretend to send signals from the kernel.
3005	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3006	 */
3007	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3008	    (task_pid_vnr(current) != pid)) {
3009		/* We used to allow any < 0 si_code */
3010		WARN_ON_ONCE(info->si_code < 0);
3011		return -EPERM;
3012	}
3013	info->si_signo = sig;
3014
3015	/* POSIX.1b doesn't mention process groups.  */
3016	return kill_proc_info(sig, info, pid);
3017}
3018
3019/**
3020 *  sys_rt_sigqueueinfo - send signal information to a signal
3021 *  @pid: the PID of the thread
3022 *  @sig: signal to be sent
3023 *  @uinfo: signal info to be sent
3024 */
3025SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3026		siginfo_t __user *, uinfo)
3027{
3028	siginfo_t info;
3029	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3030		return -EFAULT;
 
3031	return do_rt_sigqueueinfo(pid, sig, &info);
3032}
3033
3034#ifdef CONFIG_COMPAT
3035COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3036			compat_pid_t, pid,
3037			int, sig,
3038			struct compat_siginfo __user *, uinfo)
3039{
3040	siginfo_t info;
3041	int ret = copy_siginfo_from_user32(&info, uinfo);
3042	if (unlikely(ret))
3043		return ret;
3044	return do_rt_sigqueueinfo(pid, sig, &info);
3045}
3046#endif
3047
3048static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3049{
3050	/* This is only valid for single tasks */
3051	if (pid <= 0 || tgid <= 0)
3052		return -EINVAL;
3053
3054	/* Not even root can pretend to send signals from the kernel.
3055	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3056	 */
3057	if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3058	    (task_pid_vnr(current) != pid)) {
3059		/* We used to allow any < 0 si_code */
3060		WARN_ON_ONCE(info->si_code < 0);
3061		return -EPERM;
3062	}
3063	info->si_signo = sig;
3064
3065	return do_send_specific(tgid, pid, sig, info);
3066}
3067
3068SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3069		siginfo_t __user *, uinfo)
3070{
3071	siginfo_t info;
3072
3073	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3074		return -EFAULT;
3075
3076	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3077}
3078
3079#ifdef CONFIG_COMPAT
3080COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3081			compat_pid_t, tgid,
3082			compat_pid_t, pid,
3083			int, sig,
3084			struct compat_siginfo __user *, uinfo)
3085{
3086	siginfo_t info;
3087
3088	if (copy_siginfo_from_user32(&info, uinfo))
3089		return -EFAULT;
3090	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3091}
3092#endif
3093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3094int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3095{
3096	struct task_struct *t = current;
3097	struct k_sigaction *k;
3098	sigset_t mask;
3099
3100	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3101		return -EINVAL;
3102
3103	k = &t->sighand->action[sig-1];
3104
3105	spin_lock_irq(&current->sighand->siglock);
 
 
 
 
3106	if (oact)
3107		*oact = *k;
3108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3109	if (act) {
3110		sigdelsetmask(&act->sa.sa_mask,
3111			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3112		*k = *act;
3113		/*
3114		 * POSIX 3.3.1.3:
3115		 *  "Setting a signal action to SIG_IGN for a signal that is
3116		 *   pending shall cause the pending signal to be discarded,
3117		 *   whether or not it is blocked."
3118		 *
3119		 *  "Setting a signal action to SIG_DFL for a signal that is
3120		 *   pending and whose default action is to ignore the signal
3121		 *   (for example, SIGCHLD), shall cause the pending signal to
3122		 *   be discarded, whether or not it is blocked"
3123		 */
3124		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3125			sigemptyset(&mask);
3126			sigaddset(&mask, sig);
3127			rm_from_queue_full(&mask, &t->signal->shared_pending);
3128			do {
3129				rm_from_queue_full(&mask, &t->pending);
3130			} while_each_thread(current, t);
3131		}
3132	}
3133
3134	spin_unlock_irq(&current->sighand->siglock);
3135	return 0;
3136}
3137
3138static int 
3139do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
 
3140{
3141	stack_t oss;
3142	int error;
3143
3144	oss.ss_sp = (void __user *) current->sas_ss_sp;
3145	oss.ss_size = current->sas_ss_size;
3146	oss.ss_flags = sas_ss_flags(sp);
3147
3148	if (uss) {
3149		void __user *ss_sp;
3150		size_t ss_size;
3151		int ss_flags;
 
3152
3153		error = -EFAULT;
3154		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3155			goto out;
3156		error = __get_user(ss_sp, &uss->ss_sp) |
3157			__get_user(ss_flags, &uss->ss_flags) |
3158			__get_user(ss_size, &uss->ss_size);
3159		if (error)
3160			goto out;
3161
3162		error = -EPERM;
3163		if (on_sig_stack(sp))
3164			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3165
3166		error = -EINVAL;
3167		/*
3168		 * Note - this code used to test ss_flags incorrectly:
3169		 *  	  old code may have been written using ss_flags==0
3170		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3171		 *	  way that worked) - this fix preserves that older
3172		 *	  mechanism.
3173		 */
3174		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3175			goto out;
 
 
3176
3177		if (ss_flags == SS_DISABLE) {
 
3178			ss_size = 0;
3179			ss_sp = NULL;
3180		} else {
3181			error = -ENOMEM;
3182			if (ss_size < MINSIGSTKSZ)
3183				goto out;
 
3184		}
3185
3186		current->sas_ss_sp = (unsigned long) ss_sp;
3187		current->sas_ss_size = ss_size;
3188	}
3189
3190	error = 0;
3191	if (uoss) {
3192		error = -EFAULT;
3193		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3194			goto out;
3195		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3196			__put_user(oss.ss_size, &uoss->ss_size) |
3197			__put_user(oss.ss_flags, &uoss->ss_flags);
3198	}
3199
3200out:
3201	return error;
3202}
 
3203SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3204{
3205	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
 
 
 
 
 
 
 
 
 
3206}
3207
3208int restore_altstack(const stack_t __user *uss)
3209{
3210	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
 
 
 
 
3211	/* squash all but EFAULT for now */
3212	return err == -EFAULT ? err : 0;
3213}
3214
3215int __save_altstack(stack_t __user *uss, unsigned long sp)
3216{
3217	struct task_struct *t = current;
3218	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3219		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3220		__put_user(t->sas_ss_size, &uss->ss_size);
 
3221}
3222
3223#ifdef CONFIG_COMPAT
3224COMPAT_SYSCALL_DEFINE2(sigaltstack,
3225			const compat_stack_t __user *, uss_ptr,
3226			compat_stack_t __user *, uoss_ptr)
3227{
3228	stack_t uss, uoss;
3229	int ret;
3230	mm_segment_t seg;
3231
3232	if (uss_ptr) {
3233		compat_stack_t uss32;
3234
3235		memset(&uss, 0, sizeof(stack_t));
3236		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3237			return -EFAULT;
3238		uss.ss_sp = compat_ptr(uss32.ss_sp);
3239		uss.ss_flags = uss32.ss_flags;
3240		uss.ss_size = uss32.ss_size;
3241	}
3242	seg = get_fs();
3243	set_fs(KERNEL_DS);
3244	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3245			     (stack_t __force __user *) &uoss,
3246			     compat_user_stack_pointer());
3247	set_fs(seg);
3248	if (ret >= 0 && uoss_ptr)  {
3249		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3250		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3251		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3252		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
 
 
3253			ret = -EFAULT;
3254	}
3255	return ret;
3256}
3257
 
 
 
 
 
 
 
3258int compat_restore_altstack(const compat_stack_t __user *uss)
3259{
3260	int err = compat_sys_sigaltstack(uss, NULL);
3261	/* squash all but -EFAULT for now */
3262	return err == -EFAULT ? err : 0;
3263}
3264
3265int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3266{
 
3267	struct task_struct *t = current;
3268	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3269		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
 
3270		__put_user(t->sas_ss_size, &uss->ss_size);
 
3271}
3272#endif
3273
3274#ifdef __ARCH_WANT_SYS_SIGPENDING
3275
3276/**
3277 *  sys_sigpending - examine pending signals
3278 *  @set: where mask of pending signal is returned
3279 */
3280SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3281{
3282	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
 
 
 
 
 
 
 
 
 
 
3283}
3284
 
 
 
 
 
 
 
 
 
 
 
3285#endif
3286
3287#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3288/**
3289 *  sys_sigprocmask - examine and change blocked signals
3290 *  @how: whether to add, remove, or set signals
3291 *  @nset: signals to add or remove (if non-null)
3292 *  @oset: previous value of signal mask if non-null
3293 *
3294 * Some platforms have their own version with special arguments;
3295 * others support only sys_rt_sigprocmask.
3296 */
3297
3298SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3299		old_sigset_t __user *, oset)
3300{
3301	old_sigset_t old_set, new_set;
3302	sigset_t new_blocked;
3303
3304	old_set = current->blocked.sig[0];
3305
3306	if (nset) {
3307		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3308			return -EFAULT;
3309
3310		new_blocked = current->blocked;
3311
3312		switch (how) {
3313		case SIG_BLOCK:
3314			sigaddsetmask(&new_blocked, new_set);
3315			break;
3316		case SIG_UNBLOCK:
3317			sigdelsetmask(&new_blocked, new_set);
3318			break;
3319		case SIG_SETMASK:
3320			new_blocked.sig[0] = new_set;
3321			break;
3322		default:
3323			return -EINVAL;
3324		}
3325
3326		set_current_blocked(&new_blocked);
3327	}
3328
3329	if (oset) {
3330		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3331			return -EFAULT;
3332	}
3333
3334	return 0;
3335}
3336#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3337
3338#ifndef CONFIG_ODD_RT_SIGACTION
3339/**
3340 *  sys_rt_sigaction - alter an action taken by a process
3341 *  @sig: signal to be sent
3342 *  @act: new sigaction
3343 *  @oact: used to save the previous sigaction
3344 *  @sigsetsize: size of sigset_t type
3345 */
3346SYSCALL_DEFINE4(rt_sigaction, int, sig,
3347		const struct sigaction __user *, act,
3348		struct sigaction __user *, oact,
3349		size_t, sigsetsize)
3350{
3351	struct k_sigaction new_sa, old_sa;
3352	int ret = -EINVAL;
3353
3354	/* XXX: Don't preclude handling different sized sigset_t's.  */
3355	if (sigsetsize != sizeof(sigset_t))
3356		goto out;
3357
3358	if (act) {
3359		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3360			return -EFAULT;
3361	}
3362
3363	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
 
 
3364
3365	if (!ret && oact) {
3366		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3367			return -EFAULT;
3368	}
3369out:
3370	return ret;
3371}
3372#ifdef CONFIG_COMPAT
3373COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3374		const struct compat_sigaction __user *, act,
3375		struct compat_sigaction __user *, oact,
3376		compat_size_t, sigsetsize)
3377{
3378	struct k_sigaction new_ka, old_ka;
3379	compat_sigset_t mask;
3380#ifdef __ARCH_HAS_SA_RESTORER
3381	compat_uptr_t restorer;
3382#endif
3383	int ret;
3384
3385	/* XXX: Don't preclude handling different sized sigset_t's.  */
3386	if (sigsetsize != sizeof(compat_sigset_t))
3387		return -EINVAL;
3388
3389	if (act) {
3390		compat_uptr_t handler;
3391		ret = get_user(handler, &act->sa_handler);
3392		new_ka.sa.sa_handler = compat_ptr(handler);
3393#ifdef __ARCH_HAS_SA_RESTORER
3394		ret |= get_user(restorer, &act->sa_restorer);
3395		new_ka.sa.sa_restorer = compat_ptr(restorer);
3396#endif
3397		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3398		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3399		if (ret)
3400			return -EFAULT;
3401		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3402	}
3403
3404	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3405	if (!ret && oact) {
3406		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3407		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3408			       &oact->sa_handler);
3409		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
 
3410		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3411#ifdef __ARCH_HAS_SA_RESTORER
3412		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3413				&oact->sa_restorer);
3414#endif
3415	}
3416	return ret;
3417}
3418#endif
3419#endif /* !CONFIG_ODD_RT_SIGACTION */
3420
3421#ifdef CONFIG_OLD_SIGACTION
3422SYSCALL_DEFINE3(sigaction, int, sig,
3423		const struct old_sigaction __user *, act,
3424	        struct old_sigaction __user *, oact)
3425{
3426	struct k_sigaction new_ka, old_ka;
3427	int ret;
3428
3429	if (act) {
3430		old_sigset_t mask;
3431		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3432		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3433		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3434		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3435		    __get_user(mask, &act->sa_mask))
3436			return -EFAULT;
3437#ifdef __ARCH_HAS_KA_RESTORER
3438		new_ka.ka_restorer = NULL;
3439#endif
3440		siginitset(&new_ka.sa.sa_mask, mask);
3441	}
3442
3443	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3444
3445	if (!ret && oact) {
3446		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3447		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3448		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3449		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3450		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3451			return -EFAULT;
3452	}
3453
3454	return ret;
3455}
3456#endif
3457#ifdef CONFIG_COMPAT_OLD_SIGACTION
3458COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3459		const struct compat_old_sigaction __user *, act,
3460	        struct compat_old_sigaction __user *, oact)
3461{
3462	struct k_sigaction new_ka, old_ka;
3463	int ret;
3464	compat_old_sigset_t mask;
3465	compat_uptr_t handler, restorer;
3466
3467	if (act) {
3468		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3469		    __get_user(handler, &act->sa_handler) ||
3470		    __get_user(restorer, &act->sa_restorer) ||
3471		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3472		    __get_user(mask, &act->sa_mask))
3473			return -EFAULT;
3474
3475#ifdef __ARCH_HAS_KA_RESTORER
3476		new_ka.ka_restorer = NULL;
3477#endif
3478		new_ka.sa.sa_handler = compat_ptr(handler);
3479		new_ka.sa.sa_restorer = compat_ptr(restorer);
3480		siginitset(&new_ka.sa.sa_mask, mask);
3481	}
3482
3483	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3484
3485	if (!ret && oact) {
3486		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3487		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3488			       &oact->sa_handler) ||
3489		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3490			       &oact->sa_restorer) ||
3491		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3492		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3493			return -EFAULT;
3494	}
3495	return ret;
3496}
3497#endif
3498
3499#ifdef __ARCH_WANT_SYS_SGETMASK
3500
3501/*
3502 * For backwards compatibility.  Functionality superseded by sigprocmask.
3503 */
3504SYSCALL_DEFINE0(sgetmask)
3505{
3506	/* SMP safe */
3507	return current->blocked.sig[0];
3508}
3509
3510SYSCALL_DEFINE1(ssetmask, int, newmask)
3511{
3512	int old = current->blocked.sig[0];
3513	sigset_t newset;
3514
3515	siginitset(&newset, newmask);
3516	set_current_blocked(&newset);
3517
3518	return old;
3519}
3520#endif /* __ARCH_WANT_SGETMASK */
3521
3522#ifdef __ARCH_WANT_SYS_SIGNAL
3523/*
3524 * For backwards compatibility.  Functionality superseded by sigaction.
3525 */
3526SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3527{
3528	struct k_sigaction new_sa, old_sa;
3529	int ret;
3530
3531	new_sa.sa.sa_handler = handler;
3532	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3533	sigemptyset(&new_sa.sa.sa_mask);
3534
3535	ret = do_sigaction(sig, &new_sa, &old_sa);
3536
3537	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3538}
3539#endif /* __ARCH_WANT_SYS_SIGNAL */
3540
3541#ifdef __ARCH_WANT_SYS_PAUSE
3542
3543SYSCALL_DEFINE0(pause)
3544{
3545	while (!signal_pending(current)) {
3546		current->state = TASK_INTERRUPTIBLE;
3547		schedule();
3548	}
3549	return -ERESTARTNOHAND;
3550}
3551
3552#endif
3553
3554int sigsuspend(sigset_t *set)
3555{
3556	current->saved_sigmask = current->blocked;
3557	set_current_blocked(set);
3558
3559	current->state = TASK_INTERRUPTIBLE;
3560	schedule();
 
 
3561	set_restore_sigmask();
3562	return -ERESTARTNOHAND;
3563}
3564
3565/**
3566 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3567 *	@unewset value until a signal is received
3568 *  @unewset: new signal mask value
3569 *  @sigsetsize: size of sigset_t type
3570 */
3571SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3572{
3573	sigset_t newset;
3574
3575	/* XXX: Don't preclude handling different sized sigset_t's.  */
3576	if (sigsetsize != sizeof(sigset_t))
3577		return -EINVAL;
3578
3579	if (copy_from_user(&newset, unewset, sizeof(newset)))
3580		return -EFAULT;
3581	return sigsuspend(&newset);
3582}
3583 
3584#ifdef CONFIG_COMPAT
3585COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3586{
3587#ifdef __BIG_ENDIAN
3588	sigset_t newset;
3589	compat_sigset_t newset32;
3590
3591	/* XXX: Don't preclude handling different sized sigset_t's.  */
3592	if (sigsetsize != sizeof(sigset_t))
3593		return -EINVAL;
3594
3595	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3596		return -EFAULT;
3597	sigset_from_compat(&newset, &newset32);
3598	return sigsuspend(&newset);
3599#else
3600	/* on little-endian bitmaps don't care about granularity */
3601	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3602#endif
3603}
3604#endif
3605
3606#ifdef CONFIG_OLD_SIGSUSPEND
3607SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3608{
3609	sigset_t blocked;
3610	siginitset(&blocked, mask);
3611	return sigsuspend(&blocked);
3612}
3613#endif
3614#ifdef CONFIG_OLD_SIGSUSPEND3
3615SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3616{
3617	sigset_t blocked;
3618	siginitset(&blocked, mask);
3619	return sigsuspend(&blocked);
3620}
3621#endif
3622
3623__weak const char *arch_vma_name(struct vm_area_struct *vma)
3624{
3625	return NULL;
3626}
3627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3628void __init signals_init(void)
3629{
3630	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
 
 
3631}
3632
3633#ifdef CONFIG_KGDB_KDB
3634#include <linux/kdb.h>
3635/*
3636 * kdb_send_sig_info - Allows kdb to send signals without exposing
3637 * signal internals.  This function checks if the required locks are
3638 * available before calling the main signal code, to avoid kdb
3639 * deadlocks.
3640 */
3641void
3642kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3643{
3644	static struct task_struct *kdb_prev_t;
3645	int sig, new_t;
3646	if (!spin_trylock(&t->sighand->siglock)) {
3647		kdb_printf("Can't do kill command now.\n"
3648			   "The sigmask lock is held somewhere else in "
3649			   "kernel, try again later\n");
3650		return;
3651	}
3652	spin_unlock(&t->sighand->siglock);
3653	new_t = kdb_prev_t != t;
3654	kdb_prev_t = t;
3655	if (t->state != TASK_RUNNING && new_t) {
 
3656		kdb_printf("Process is not RUNNING, sending a signal from "
3657			   "kdb risks deadlock\n"
3658			   "on the run queue locks. "
3659			   "The signal has _not_ been sent.\n"
3660			   "Reissue the kill command if you want to risk "
3661			   "the deadlock.\n");
3662		return;
3663	}
3664	sig = info->si_signo;
3665	if (send_sig_info(sig, info, t))
 
3666		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3667			   sig, t->pid);
3668	else
3669		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3670}
3671#endif	/* CONFIG_KGDB_KDB */
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/mm.h>
  26#include <linux/proc_fs.h>
  27#include <linux/tty.h>
  28#include <linux/binfmts.h>
  29#include <linux/coredump.h>
  30#include <linux/security.h>
  31#include <linux/syscalls.h>
  32#include <linux/ptrace.h>
  33#include <linux/signal.h>
  34#include <linux/signalfd.h>
  35#include <linux/ratelimit.h>
  36#include <linux/task_work.h>
  37#include <linux/capability.h>
  38#include <linux/freezer.h>
  39#include <linux/pid_namespace.h>
  40#include <linux/nsproxy.h>
  41#include <linux/user_namespace.h>
  42#include <linux/uprobes.h>
  43#include <linux/compat.h>
  44#include <linux/cn_proc.h>
  45#include <linux/compiler.h>
  46#include <linux/posix-timers.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49#include <linux/sysctl.h>
  50
  51#define CREATE_TRACE_POINTS
  52#include <trace/events/signal.h>
  53
  54#include <asm/param.h>
  55#include <linux/uaccess.h>
  56#include <asm/unistd.h>
  57#include <asm/siginfo.h>
  58#include <asm/cacheflush.h>
  59#include <asm/syscall.h>	/* for syscall_get_* */
  60
  61/*
  62 * SLAB caches for signal bits.
  63 */
  64
  65static struct kmem_cache *sigqueue_cachep;
  66
  67int print_fatal_signals __read_mostly;
  68
  69static void __user *sig_handler(struct task_struct *t, int sig)
  70{
  71	return t->sighand->action[sig - 1].sa.sa_handler;
  72}
  73
  74static inline bool sig_handler_ignored(void __user *handler, int sig)
  75{
  76	/* Is it explicitly or implicitly ignored? */
  77	return handler == SIG_IGN ||
  78	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  79}
  80
  81static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	void __user *handler;
  84
  85	handler = sig_handler(t, sig);
  86
  87	/* SIGKILL and SIGSTOP may not be sent to the global init */
  88	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  89		return true;
  90
  91	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  92	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  93		return true;
  94
  95	/* Only allow kernel generated signals to this kthread */
  96	if (unlikely((t->flags & PF_KTHREAD) &&
  97		     (handler == SIG_KTHREAD_KERNEL) && !force))
  98		return true;
  99
 100	return sig_handler_ignored(handler, sig);
 101}
 102
 103static bool sig_ignored(struct task_struct *t, int sig, bool force)
 104{
 105	/*
 106	 * Blocked signals are never ignored, since the
 107	 * signal handler may change by the time it is
 108	 * unblocked.
 109	 */
 110	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 111		return false;
 
 
 
 112
 113	/*
 114	 * Tracers may want to know about even ignored signal unless it
 115	 * is SIGKILL which can't be reported anyway but can be ignored
 116	 * by SIGNAL_UNKILLABLE task.
 117	 */
 118	if (t->ptrace && sig != SIGKILL)
 119		return false;
 120
 121	return sig_task_ignored(t, sig, force);
 122}
 123
 124/*
 125 * Re-calculate pending state from the set of locally pending
 126 * signals, globally pending signals, and blocked signals.
 127 */
 128static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 129{
 130	unsigned long ready;
 131	long i;
 132
 133	switch (_NSIG_WORDS) {
 134	default:
 135		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 136			ready |= signal->sig[i] &~ blocked->sig[i];
 137		break;
 138
 139	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 140		ready |= signal->sig[2] &~ blocked->sig[2];
 141		ready |= signal->sig[1] &~ blocked->sig[1];
 142		ready |= signal->sig[0] &~ blocked->sig[0];
 143		break;
 144
 145	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 146		ready |= signal->sig[0] &~ blocked->sig[0];
 147		break;
 148
 149	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 150	}
 151	return ready !=	0;
 152}
 153
 154#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 155
 156static bool recalc_sigpending_tsk(struct task_struct *t)
 157{
 158	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 159	    PENDING(&t->pending, &t->blocked) ||
 160	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 161	    cgroup_task_frozen(t)) {
 162		set_tsk_thread_flag(t, TIF_SIGPENDING);
 163		return true;
 164	}
 165
 166	/*
 167	 * We must never clear the flag in another thread, or in current
 168	 * when it's possible the current syscall is returning -ERESTART*.
 169	 * So we don't clear it here, and only callers who know they should do.
 170	 */
 171	return false;
 
 
 
 
 
 
 
 
 
 
 172}
 173
 174void recalc_sigpending(void)
 175{
 176	if (!recalc_sigpending_tsk(current) && !freezing(current))
 177		clear_thread_flag(TIF_SIGPENDING);
 178
 179}
 180EXPORT_SYMBOL(recalc_sigpending);
 181
 182void calculate_sigpending(void)
 183{
 184	/* Have any signals or users of TIF_SIGPENDING been delayed
 185	 * until after fork?
 186	 */
 187	spin_lock_irq(&current->sighand->siglock);
 188	set_tsk_thread_flag(current, TIF_SIGPENDING);
 189	recalc_sigpending();
 190	spin_unlock_irq(&current->sighand->siglock);
 191}
 192
 193/* Given the mask, find the first available signal that should be serviced. */
 194
 195#define SYNCHRONOUS_MASK \
 196	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 197	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 198
 199int next_signal(struct sigpending *pending, sigset_t *mask)
 200{
 201	unsigned long i, *s, *m, x;
 202	int sig = 0;
 203
 204	s = pending->signal.sig;
 205	m = mask->sig;
 206
 207	/*
 208	 * Handle the first word specially: it contains the
 209	 * synchronous signals that need to be dequeued first.
 210	 */
 211	x = *s &~ *m;
 212	if (x) {
 213		if (x & SYNCHRONOUS_MASK)
 214			x &= SYNCHRONOUS_MASK;
 215		sig = ffz(~x) + 1;
 216		return sig;
 217	}
 218
 219	switch (_NSIG_WORDS) {
 220	default:
 221		for (i = 1; i < _NSIG_WORDS; ++i) {
 222			x = *++s &~ *++m;
 223			if (!x)
 224				continue;
 225			sig = ffz(~x) + i*_NSIG_BPW + 1;
 226			break;
 227		}
 228		break;
 229
 230	case 2:
 231		x = s[1] &~ m[1];
 232		if (!x)
 233			break;
 234		sig = ffz(~x) + _NSIG_BPW + 1;
 235		break;
 236
 237	case 1:
 238		/* Nothing to do */
 239		break;
 240	}
 241
 242	return sig;
 243}
 244
 245static inline void print_dropped_signal(int sig)
 246{
 247	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 248
 249	if (!print_fatal_signals)
 250		return;
 251
 252	if (!__ratelimit(&ratelimit_state))
 253		return;
 254
 255	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 256				current->comm, current->pid, sig);
 257}
 258
 259/**
 260 * task_set_jobctl_pending - set jobctl pending bits
 261 * @task: target task
 262 * @mask: pending bits to set
 263 *
 264 * Clear @mask from @task->jobctl.  @mask must be subset of
 265 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 266 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 267 * cleared.  If @task is already being killed or exiting, this function
 268 * becomes noop.
 269 *
 270 * CONTEXT:
 271 * Must be called with @task->sighand->siglock held.
 272 *
 273 * RETURNS:
 274 * %true if @mask is set, %false if made noop because @task was dying.
 275 */
 276bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 277{
 278	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 279			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 280	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 281
 282	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 283		return false;
 284
 285	if (mask & JOBCTL_STOP_SIGMASK)
 286		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 287
 288	task->jobctl |= mask;
 289	return true;
 290}
 291
 292/**
 293 * task_clear_jobctl_trapping - clear jobctl trapping bit
 294 * @task: target task
 295 *
 296 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 297 * Clear it and wake up the ptracer.  Note that we don't need any further
 298 * locking.  @task->siglock guarantees that @task->parent points to the
 299 * ptracer.
 300 *
 301 * CONTEXT:
 302 * Must be called with @task->sighand->siglock held.
 303 */
 304void task_clear_jobctl_trapping(struct task_struct *task)
 305{
 306	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 307		task->jobctl &= ~JOBCTL_TRAPPING;
 308		smp_mb();	/* advised by wake_up_bit() */
 309		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 310	}
 311}
 312
 313/**
 314 * task_clear_jobctl_pending - clear jobctl pending bits
 315 * @task: target task
 316 * @mask: pending bits to clear
 317 *
 318 * Clear @mask from @task->jobctl.  @mask must be subset of
 319 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 320 * STOP bits are cleared together.
 321 *
 322 * If clearing of @mask leaves no stop or trap pending, this function calls
 323 * task_clear_jobctl_trapping().
 324 *
 325 * CONTEXT:
 326 * Must be called with @task->sighand->siglock held.
 327 */
 328void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 329{
 330	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 331
 332	if (mask & JOBCTL_STOP_PENDING)
 333		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 334
 335	task->jobctl &= ~mask;
 336
 337	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 338		task_clear_jobctl_trapping(task);
 339}
 340
 341/**
 342 * task_participate_group_stop - participate in a group stop
 343 * @task: task participating in a group stop
 344 *
 345 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 346 * Group stop states are cleared and the group stop count is consumed if
 347 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 348 * stop, the appropriate `SIGNAL_*` flags are set.
 349 *
 350 * CONTEXT:
 351 * Must be called with @task->sighand->siglock held.
 352 *
 353 * RETURNS:
 354 * %true if group stop completion should be notified to the parent, %false
 355 * otherwise.
 356 */
 357static bool task_participate_group_stop(struct task_struct *task)
 358{
 359	struct signal_struct *sig = task->signal;
 360	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 361
 362	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 363
 364	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 365
 366	if (!consume)
 367		return false;
 368
 369	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 370		sig->group_stop_count--;
 371
 372	/*
 373	 * Tell the caller to notify completion iff we are entering into a
 374	 * fresh group stop.  Read comment in do_signal_stop() for details.
 375	 */
 376	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 377		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 378		return true;
 379	}
 380	return false;
 381}
 382
 383void task_join_group_stop(struct task_struct *task)
 384{
 385	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 386	struct signal_struct *sig = current->signal;
 387
 388	if (sig->group_stop_count) {
 389		sig->group_stop_count++;
 390		mask |= JOBCTL_STOP_CONSUME;
 391	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 392		return;
 393
 394	/* Have the new thread join an on-going signal group stop */
 395	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 396}
 397
 398/*
 399 * allocate a new signal queue record
 400 * - this may be called without locks if and only if t == current, otherwise an
 401 *   appropriate lock must be held to stop the target task from exiting
 402 */
 403static struct sigqueue *
 404__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 405		 int override_rlimit, const unsigned int sigqueue_flags)
 406{
 407	struct sigqueue *q = NULL;
 408	struct ucounts *ucounts;
 409	long sigpending;
 410
 411	/*
 412	 * Protect access to @t credentials. This can go away when all
 413	 * callers hold rcu read lock.
 414	 *
 415	 * NOTE! A pending signal will hold on to the user refcount,
 416	 * and we get/put the refcount only when the sigpending count
 417	 * changes from/to zero.
 418	 */
 419	rcu_read_lock();
 420	ucounts = task_ucounts(t);
 421	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 422	rcu_read_unlock();
 423	if (!sigpending)
 424		return NULL;
 425
 426	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 427		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 
 
 428	} else {
 429		print_dropped_signal(sig);
 430	}
 431
 432	if (unlikely(q == NULL)) {
 433		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 434	} else {
 435		INIT_LIST_HEAD(&q->list);
 436		q->flags = sigqueue_flags;
 437		q->ucounts = ucounts;
 438	}
 
 439	return q;
 440}
 441
 442static void __sigqueue_free(struct sigqueue *q)
 443{
 444	if (q->flags & SIGQUEUE_PREALLOC)
 445		return;
 446	if (q->ucounts) {
 447		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 448		q->ucounts = NULL;
 449	}
 450	kmem_cache_free(sigqueue_cachep, q);
 451}
 452
 453void flush_sigqueue(struct sigpending *queue)
 454{
 455	struct sigqueue *q;
 456
 457	sigemptyset(&queue->signal);
 458	while (!list_empty(&queue->list)) {
 459		q = list_entry(queue->list.next, struct sigqueue , list);
 460		list_del_init(&q->list);
 461		__sigqueue_free(q);
 462	}
 463}
 464
 465/*
 466 * Flush all pending signals for this kthread.
 467 */
 
 
 
 
 
 
 
 468void flush_signals(struct task_struct *t)
 469{
 470	unsigned long flags;
 471
 472	spin_lock_irqsave(&t->sighand->siglock, flags);
 473	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 474	flush_sigqueue(&t->pending);
 475	flush_sigqueue(&t->signal->shared_pending);
 476	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 477}
 478EXPORT_SYMBOL(flush_signals);
 479
 480#ifdef CONFIG_POSIX_TIMERS
 481static void __flush_itimer_signals(struct sigpending *pending)
 482{
 483	sigset_t signal, retain;
 484	struct sigqueue *q, *n;
 485
 486	signal = pending->signal;
 487	sigemptyset(&retain);
 488
 489	list_for_each_entry_safe(q, n, &pending->list, list) {
 490		int sig = q->info.si_signo;
 491
 492		if (likely(q->info.si_code != SI_TIMER)) {
 493			sigaddset(&retain, sig);
 494		} else {
 495			sigdelset(&signal, sig);
 496			list_del_init(&q->list);
 497			__sigqueue_free(q);
 498		}
 499	}
 500
 501	sigorsets(&pending->signal, &signal, &retain);
 502}
 503
 504void flush_itimer_signals(void)
 505{
 506	struct task_struct *tsk = current;
 507	unsigned long flags;
 508
 509	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 510	__flush_itimer_signals(&tsk->pending);
 511	__flush_itimer_signals(&tsk->signal->shared_pending);
 512	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 513}
 514#endif
 515
 516void ignore_signals(struct task_struct *t)
 517{
 518	int i;
 519
 520	for (i = 0; i < _NSIG; ++i)
 521		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 522
 523	flush_signals(t);
 524}
 525
 526/*
 527 * Flush all handlers for a task.
 528 */
 529
 530void
 531flush_signal_handlers(struct task_struct *t, int force_default)
 532{
 533	int i;
 534	struct k_sigaction *ka = &t->sighand->action[0];
 535	for (i = _NSIG ; i != 0 ; i--) {
 536		if (force_default || ka->sa.sa_handler != SIG_IGN)
 537			ka->sa.sa_handler = SIG_DFL;
 538		ka->sa.sa_flags = 0;
 539#ifdef __ARCH_HAS_SA_RESTORER
 540		ka->sa.sa_restorer = NULL;
 541#endif
 542		sigemptyset(&ka->sa.sa_mask);
 543		ka++;
 544	}
 545}
 546
 547bool unhandled_signal(struct task_struct *tsk, int sig)
 548{
 549	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 550	if (is_global_init(tsk))
 551		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552
 553	if (handler != SIG_IGN && handler != SIG_DFL)
 554		return false;
 555
 556	/* If dying, we handle all new signals by ignoring them */
 557	if (fatal_signal_pending(tsk))
 558		return false;
 
 559
 560	/* if ptraced, let the tracer determine */
 561	return !tsk->ptrace;
 
 
 
 562}
 563
 564static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 565			   bool *resched_timer)
 566{
 567	struct sigqueue *q, *first = NULL;
 568
 569	/*
 570	 * Collect the siginfo appropriate to this signal.  Check if
 571	 * there is another siginfo for the same signal.
 572	*/
 573	list_for_each_entry(q, &list->list, list) {
 574		if (q->info.si_signo == sig) {
 575			if (first)
 576				goto still_pending;
 577			first = q;
 578		}
 579	}
 580
 581	sigdelset(&list->signal, sig);
 582
 583	if (first) {
 584still_pending:
 585		list_del_init(&first->list);
 586		copy_siginfo(info, &first->info);
 587
 588		*resched_timer =
 589			(first->flags & SIGQUEUE_PREALLOC) &&
 590			(info->si_code == SI_TIMER) &&
 591			(info->si_sys_private);
 592
 593		__sigqueue_free(first);
 594	} else {
 595		/*
 596		 * Ok, it wasn't in the queue.  This must be
 597		 * a fast-pathed signal or we must have been
 598		 * out of queue space.  So zero out the info.
 599		 */
 600		clear_siginfo(info);
 601		info->si_signo = sig;
 602		info->si_errno = 0;
 603		info->si_code = SI_USER;
 604		info->si_pid = 0;
 605		info->si_uid = 0;
 606	}
 607}
 608
 609static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 610			kernel_siginfo_t *info, bool *resched_timer)
 611{
 612	int sig = next_signal(pending, mask);
 613
 614	if (sig)
 615		collect_signal(sig, pending, info, resched_timer);
 
 
 
 
 
 
 
 
 
 
 
 616	return sig;
 617}
 618
 619/*
 620 * Dequeue a signal and return the element to the caller, which is
 621 * expected to free it.
 622 *
 623 * All callers have to hold the siglock.
 624 */
 625int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
 626		   kernel_siginfo_t *info, enum pid_type *type)
 627{
 628	bool resched_timer = false;
 629	int signr;
 630
 631	/* We only dequeue private signals from ourselves, we don't let
 632	 * signalfd steal them
 633	 */
 634	*type = PIDTYPE_PID;
 635	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 636	if (!signr) {
 637		*type = PIDTYPE_TGID;
 638		signr = __dequeue_signal(&tsk->signal->shared_pending,
 639					 mask, info, &resched_timer);
 640#ifdef CONFIG_POSIX_TIMERS
 641		/*
 642		 * itimer signal ?
 643		 *
 644		 * itimers are process shared and we restart periodic
 645		 * itimers in the signal delivery path to prevent DoS
 646		 * attacks in the high resolution timer case. This is
 647		 * compliant with the old way of self-restarting
 648		 * itimers, as the SIGALRM is a legacy signal and only
 649		 * queued once. Changing the restart behaviour to
 650		 * restart the timer in the signal dequeue path is
 651		 * reducing the timer noise on heavy loaded !highres
 652		 * systems too.
 653		 */
 654		if (unlikely(signr == SIGALRM)) {
 655			struct hrtimer *tmr = &tsk->signal->real_timer;
 656
 657			if (!hrtimer_is_queued(tmr) &&
 658			    tsk->signal->it_real_incr != 0) {
 659				hrtimer_forward(tmr, tmr->base->get_time(),
 660						tsk->signal->it_real_incr);
 661				hrtimer_restart(tmr);
 662			}
 663		}
 664#endif
 665	}
 666
 667	recalc_sigpending();
 668	if (!signr)
 669		return 0;
 670
 671	if (unlikely(sig_kernel_stop(signr))) {
 672		/*
 673		 * Set a marker that we have dequeued a stop signal.  Our
 674		 * caller might release the siglock and then the pending
 675		 * stop signal it is about to process is no longer in the
 676		 * pending bitmasks, but must still be cleared by a SIGCONT
 677		 * (and overruled by a SIGKILL).  So those cases clear this
 678		 * shared flag after we've set it.  Note that this flag may
 679		 * remain set after the signal we return is ignored or
 680		 * handled.  That doesn't matter because its only purpose
 681		 * is to alert stop-signal processing code when another
 682		 * processor has come along and cleared the flag.
 683		 */
 684		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 685	}
 686#ifdef CONFIG_POSIX_TIMERS
 687	if (resched_timer) {
 688		/*
 689		 * Release the siglock to ensure proper locking order
 690		 * of timer locks outside of siglocks.  Note, we leave
 691		 * irqs disabled here, since the posix-timers code is
 692		 * about to disable them again anyway.
 693		 */
 694		spin_unlock(&tsk->sighand->siglock);
 695		posixtimer_rearm(info);
 696		spin_lock(&tsk->sighand->siglock);
 697
 698		/* Don't expose the si_sys_private value to userspace */
 699		info->si_sys_private = 0;
 700	}
 701#endif
 702	return signr;
 703}
 704EXPORT_SYMBOL_GPL(dequeue_signal);
 705
 706static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 707{
 708	struct task_struct *tsk = current;
 709	struct sigpending *pending = &tsk->pending;
 710	struct sigqueue *q, *sync = NULL;
 711
 712	/*
 713	 * Might a synchronous signal be in the queue?
 714	 */
 715	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 716		return 0;
 717
 718	/*
 719	 * Return the first synchronous signal in the queue.
 720	 */
 721	list_for_each_entry(q, &pending->list, list) {
 722		/* Synchronous signals have a positive si_code */
 723		if ((q->info.si_code > SI_USER) &&
 724		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 725			sync = q;
 726			goto next;
 727		}
 728	}
 729	return 0;
 730next:
 731	/*
 732	 * Check if there is another siginfo for the same signal.
 733	 */
 734	list_for_each_entry_continue(q, &pending->list, list) {
 735		if (q->info.si_signo == sync->info.si_signo)
 736			goto still_pending;
 737	}
 738
 739	sigdelset(&pending->signal, sync->info.si_signo);
 740	recalc_sigpending();
 741still_pending:
 742	list_del_init(&sync->list);
 743	copy_siginfo(info, &sync->info);
 744	__sigqueue_free(sync);
 745	return info->si_signo;
 746}
 747
 748/*
 749 * Tell a process that it has a new active signal..
 750 *
 751 * NOTE! we rely on the previous spin_lock to
 752 * lock interrupts for us! We can only be called with
 753 * "siglock" held, and the local interrupt must
 754 * have been disabled when that got acquired!
 755 *
 756 * No need to set need_resched since signal event passing
 757 * goes through ->blocked
 758 */
 759void signal_wake_up_state(struct task_struct *t, unsigned int state)
 760{
 761	lockdep_assert_held(&t->sighand->siglock);
 762
 763	set_tsk_thread_flag(t, TIF_SIGPENDING);
 764
 765	/*
 766	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 767	 * case. We don't check t->state here because there is a race with it
 768	 * executing another processor and just now entering stopped state.
 769	 * By using wake_up_state, we ensure the process will wake up and
 770	 * handle its death signal.
 771	 */
 772	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 773		kick_process(t);
 774}
 775
 776/*
 777 * Remove signals in mask from the pending set and queue.
 778 * Returns 1 if any signals were found.
 779 *
 780 * All callers must be holding the siglock.
 
 
 
 781 */
 782static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 783{
 784	struct sigqueue *q, *n;
 785	sigset_t m;
 786
 787	sigandsets(&m, mask, &s->signal);
 788	if (sigisemptyset(&m))
 789		return;
 790
 791	sigandnsets(&s->signal, &s->signal, mask);
 792	list_for_each_entry_safe(q, n, &s->list, list) {
 793		if (sigismember(mask, q->info.si_signo)) {
 794			list_del_init(&q->list);
 795			__sigqueue_free(q);
 796		}
 797	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798}
 799
 800static inline int is_si_special(const struct kernel_siginfo *info)
 801{
 802	return info <= SEND_SIG_PRIV;
 803}
 804
 805static inline bool si_fromuser(const struct kernel_siginfo *info)
 806{
 807	return info == SEND_SIG_NOINFO ||
 808		(!is_si_special(info) && SI_FROMUSER(info));
 809}
 810
 811/*
 812 * called with RCU read lock from check_kill_permission()
 813 */
 814static bool kill_ok_by_cred(struct task_struct *t)
 815{
 816	const struct cred *cred = current_cred();
 817	const struct cred *tcred = __task_cred(t);
 818
 819	return uid_eq(cred->euid, tcred->suid) ||
 820	       uid_eq(cred->euid, tcred->uid) ||
 821	       uid_eq(cred->uid, tcred->suid) ||
 822	       uid_eq(cred->uid, tcred->uid) ||
 823	       ns_capable(tcred->user_ns, CAP_KILL);
 
 
 
 
 
 824}
 825
 826/*
 827 * Bad permissions for sending the signal
 828 * - the caller must hold the RCU read lock
 829 */
 830static int check_kill_permission(int sig, struct kernel_siginfo *info,
 831				 struct task_struct *t)
 832{
 833	struct pid *sid;
 834	int error;
 835
 836	if (!valid_signal(sig))
 837		return -EINVAL;
 838
 839	if (!si_fromuser(info))
 840		return 0;
 841
 842	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 843	if (error)
 844		return error;
 845
 846	if (!same_thread_group(current, t) &&
 847	    !kill_ok_by_cred(t)) {
 848		switch (sig) {
 849		case SIGCONT:
 850			sid = task_session(t);
 851			/*
 852			 * We don't return the error if sid == NULL. The
 853			 * task was unhashed, the caller must notice this.
 854			 */
 855			if (!sid || sid == task_session(current))
 856				break;
 857			fallthrough;
 858		default:
 859			return -EPERM;
 860		}
 861	}
 862
 863	return security_task_kill(t, info, sig, NULL);
 864}
 865
 866/**
 867 * ptrace_trap_notify - schedule trap to notify ptracer
 868 * @t: tracee wanting to notify tracer
 869 *
 870 * This function schedules sticky ptrace trap which is cleared on the next
 871 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 872 * ptracer.
 873 *
 874 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 875 * ptracer is listening for events, tracee is woken up so that it can
 876 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 877 * eventually taken without returning to userland after the existing traps
 878 * are finished by PTRACE_CONT.
 879 *
 880 * CONTEXT:
 881 * Must be called with @task->sighand->siglock held.
 882 */
 883static void ptrace_trap_notify(struct task_struct *t)
 884{
 885	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 886	lockdep_assert_held(&t->sighand->siglock);
 887
 888	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 889	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 890}
 891
 892/*
 893 * Handle magic process-wide effects of stop/continue signals. Unlike
 894 * the signal actions, these happen immediately at signal-generation
 895 * time regardless of blocking, ignoring, or handling.  This does the
 896 * actual continuing for SIGCONT, but not the actual stopping for stop
 897 * signals. The process stop is done as a signal action for SIG_DFL.
 898 *
 899 * Returns true if the signal should be actually delivered, otherwise
 900 * it should be dropped.
 901 */
 902static bool prepare_signal(int sig, struct task_struct *p, bool force)
 903{
 904	struct signal_struct *signal = p->signal;
 905	struct task_struct *t;
 906	sigset_t flush;
 907
 908	if (signal->flags & SIGNAL_GROUP_EXIT) {
 909		if (signal->core_state)
 910			return sig == SIGKILL;
 911		/*
 912		 * The process is in the middle of dying, drop the signal.
 913		 */
 914		return false;
 915	} else if (sig_kernel_stop(sig)) {
 916		/*
 917		 * This is a stop signal.  Remove SIGCONT from all queues.
 918		 */
 919		siginitset(&flush, sigmask(SIGCONT));
 920		flush_sigqueue_mask(&flush, &signal->shared_pending);
 921		for_each_thread(p, t)
 922			flush_sigqueue_mask(&flush, &t->pending);
 
 923	} else if (sig == SIGCONT) {
 924		unsigned int why;
 925		/*
 926		 * Remove all stop signals from all queues, wake all threads.
 927		 */
 928		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 929		flush_sigqueue_mask(&flush, &signal->shared_pending);
 930		for_each_thread(p, t) {
 931			flush_sigqueue_mask(&flush, &t->pending);
 932			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 933			if (likely(!(t->ptrace & PT_SEIZED))) {
 934				t->jobctl &= ~JOBCTL_STOPPED;
 935				wake_up_state(t, __TASK_STOPPED);
 936			} else
 937				ptrace_trap_notify(t);
 938		}
 939
 940		/*
 941		 * Notify the parent with CLD_CONTINUED if we were stopped.
 942		 *
 943		 * If we were in the middle of a group stop, we pretend it
 944		 * was already finished, and then continued. Since SIGCHLD
 945		 * doesn't queue we report only CLD_STOPPED, as if the next
 946		 * CLD_CONTINUED was dropped.
 947		 */
 948		why = 0;
 949		if (signal->flags & SIGNAL_STOP_STOPPED)
 950			why |= SIGNAL_CLD_CONTINUED;
 951		else if (signal->group_stop_count)
 952			why |= SIGNAL_CLD_STOPPED;
 953
 954		if (why) {
 955			/*
 956			 * The first thread which returns from do_signal_stop()
 957			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 958			 * notify its parent. See get_signal().
 959			 */
 960			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 961			signal->group_stop_count = 0;
 962			signal->group_exit_code = 0;
 963		}
 964	}
 965
 966	return !sig_ignored(p, sig, force);
 967}
 968
 969/*
 970 * Test if P wants to take SIG.  After we've checked all threads with this,
 971 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 972 * blocking SIG were ruled out because they are not running and already
 973 * have pending signals.  Such threads will dequeue from the shared queue
 974 * as soon as they're available, so putting the signal on the shared queue
 975 * will be equivalent to sending it to one such thread.
 976 */
 977static inline bool wants_signal(int sig, struct task_struct *p)
 978{
 979	if (sigismember(&p->blocked, sig))
 980		return false;
 981
 982	if (p->flags & PF_EXITING)
 983		return false;
 984
 985	if (sig == SIGKILL)
 986		return true;
 987
 988	if (task_is_stopped_or_traced(p))
 989		return false;
 990
 991	return task_curr(p) || !task_sigpending(p);
 992}
 993
 994static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 995{
 996	struct signal_struct *signal = p->signal;
 997	struct task_struct *t;
 998
 999	/*
1000	 * Now find a thread we can wake up to take the signal off the queue.
1001	 *
1002	 * Try the suggested task first (may or may not be the main thread).
 
1003	 */
1004	if (wants_signal(sig, p))
1005		t = p;
1006	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1007		/*
1008		 * There is just one thread and it does not need to be woken.
1009		 * It will dequeue unblocked signals before it runs again.
1010		 */
1011		return;
1012	else {
1013		/*
1014		 * Otherwise try to find a suitable thread.
1015		 */
1016		t = signal->curr_target;
1017		while (!wants_signal(sig, t)) {
1018			t = next_thread(t);
1019			if (t == signal->curr_target)
1020				/*
1021				 * No thread needs to be woken.
1022				 * Any eligible threads will see
1023				 * the signal in the queue soon.
1024				 */
1025				return;
1026		}
1027		signal->curr_target = t;
1028	}
1029
1030	/*
1031	 * Found a killable thread.  If the signal will be fatal,
1032	 * then start taking the whole group down immediately.
1033	 */
1034	if (sig_fatal(p, sig) &&
1035	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1036	    !sigismember(&t->real_blocked, sig) &&
1037	    (sig == SIGKILL || !p->ptrace)) {
1038		/*
1039		 * This signal will be fatal to the whole group.
1040		 */
1041		if (!sig_kernel_coredump(sig)) {
1042			/*
1043			 * Start a group exit and wake everybody up.
1044			 * This way we don't have other threads
1045			 * running and doing things after a slower
1046			 * thread has the fatal signal pending.
1047			 */
1048			signal->flags = SIGNAL_GROUP_EXIT;
1049			signal->group_exit_code = sig;
1050			signal->group_stop_count = 0;
1051			__for_each_thread(signal, t) {
 
1052				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1053				sigaddset(&t->pending.signal, SIGKILL);
1054				signal_wake_up(t, 1);
1055			}
1056			return;
1057		}
1058	}
1059
1060	/*
1061	 * The signal is already in the shared-pending queue.
1062	 * Tell the chosen thread to wake up and dequeue it.
1063	 */
1064	signal_wake_up(t, sig == SIGKILL);
1065	return;
1066}
1067
1068static inline bool legacy_queue(struct sigpending *signals, int sig)
1069{
1070	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1071}
1072
1073static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1074				struct task_struct *t, enum pid_type type, bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075{
1076	struct sigpending *pending;
1077	struct sigqueue *q;
1078	int override_rlimit;
1079	int ret = 0, result;
1080
1081	lockdep_assert_held(&t->sighand->siglock);
1082
1083	result = TRACE_SIGNAL_IGNORED;
1084	if (!prepare_signal(sig, t, force))
 
1085		goto ret;
1086
1087	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1088	/*
1089	 * Short-circuit ignored signals and support queuing
1090	 * exactly one non-rt signal, so that we can get more
1091	 * detailed information about the cause of the signal.
1092	 */
1093	result = TRACE_SIGNAL_ALREADY_PENDING;
1094	if (legacy_queue(pending, sig))
1095		goto ret;
1096
1097	result = TRACE_SIGNAL_DELIVERED;
1098	/*
1099	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 
1100	 */
1101	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1102		goto out_set;
1103
1104	/*
1105	 * Real-time signals must be queued if sent by sigqueue, or
1106	 * some other real-time mechanism.  It is implementation
1107	 * defined whether kill() does so.  We attempt to do so, on
1108	 * the principle of least surprise, but since kill is not
1109	 * allowed to fail with EAGAIN when low on memory we just
1110	 * make sure at least one signal gets delivered and don't
1111	 * pass on the info struct.
1112	 */
1113	if (sig < SIGRTMIN)
1114		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1115	else
1116		override_rlimit = 0;
1117
1118	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1119
1120	if (q) {
1121		list_add_tail(&q->list, &pending->list);
1122		switch ((unsigned long) info) {
1123		case (unsigned long) SEND_SIG_NOINFO:
1124			clear_siginfo(&q->info);
1125			q->info.si_signo = sig;
1126			q->info.si_errno = 0;
1127			q->info.si_code = SI_USER;
1128			q->info.si_pid = task_tgid_nr_ns(current,
1129							task_active_pid_ns(t));
1130			rcu_read_lock();
1131			q->info.si_uid =
1132				from_kuid_munged(task_cred_xxx(t, user_ns),
1133						 current_uid());
1134			rcu_read_unlock();
1135			break;
1136		case (unsigned long) SEND_SIG_PRIV:
1137			clear_siginfo(&q->info);
1138			q->info.si_signo = sig;
1139			q->info.si_errno = 0;
1140			q->info.si_code = SI_KERNEL;
1141			q->info.si_pid = 0;
1142			q->info.si_uid = 0;
1143			break;
1144		default:
1145			copy_siginfo(&q->info, info);
 
 
1146			break;
1147		}
1148	} else if (!is_si_special(info) &&
1149		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1150		/*
1151		 * Queue overflow, abort.  We may abort if the
1152		 * signal was rt and sent by user using something
1153		 * other than kill().
1154		 */
1155		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1156		ret = -EAGAIN;
1157		goto ret;
1158	} else {
1159		/*
1160		 * This is a silent loss of information.  We still
1161		 * send the signal, but the *info bits are lost.
1162		 */
1163		result = TRACE_SIGNAL_LOSE_INFO;
 
 
 
 
1164	}
1165
1166out_set:
1167	signalfd_notify(t, sig);
1168	sigaddset(&pending->signal, sig);
1169
1170	/* Let multiprocess signals appear after on-going forks */
1171	if (type > PIDTYPE_TGID) {
1172		struct multiprocess_signals *delayed;
1173		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1174			sigset_t *signal = &delayed->signal;
1175			/* Can't queue both a stop and a continue signal */
1176			if (sig == SIGCONT)
1177				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1178			else if (sig_kernel_stop(sig))
1179				sigdelset(signal, SIGCONT);
1180			sigaddset(signal, sig);
1181		}
1182	}
1183
1184	complete_signal(sig, t, type);
1185ret:
1186	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1187	return ret;
1188}
1189
1190static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
 
1191{
1192	bool ret = false;
1193	switch (siginfo_layout(info->si_signo, info->si_code)) {
1194	case SIL_KILL:
1195	case SIL_CHLD:
1196	case SIL_RT:
1197		ret = true;
1198		break;
1199	case SIL_TIMER:
1200	case SIL_POLL:
1201	case SIL_FAULT:
1202	case SIL_FAULT_TRAPNO:
1203	case SIL_FAULT_MCEERR:
1204	case SIL_FAULT_BNDERR:
1205	case SIL_FAULT_PKUERR:
1206	case SIL_FAULT_PERF_EVENT:
1207	case SIL_SYS:
1208		ret = false;
1209		break;
1210	}
1211	return ret;
1212}
1213
1214int send_signal_locked(int sig, struct kernel_siginfo *info,
1215		       struct task_struct *t, enum pid_type type)
1216{
1217	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1218	bool force = false;
1219
1220	if (info == SEND_SIG_NOINFO) {
1221		/* Force if sent from an ancestor pid namespace */
1222		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1223	} else if (info == SEND_SIG_PRIV) {
1224		/* Don't ignore kernel generated signals */
1225		force = true;
1226	} else if (has_si_pid_and_uid(info)) {
1227		/* SIGKILL and SIGSTOP is special or has ids */
1228		struct user_namespace *t_user_ns;
1229
1230		rcu_read_lock();
1231		t_user_ns = task_cred_xxx(t, user_ns);
1232		if (current_user_ns() != t_user_ns) {
1233			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1234			info->si_uid = from_kuid_munged(t_user_ns, uid);
1235		}
1236		rcu_read_unlock();
1237
1238		/* A kernel generated signal? */
1239		force = (info->si_code == SI_KERNEL);
1240
1241		/* From an ancestor pid namespace? */
1242		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1243			info->si_pid = 0;
1244			force = true;
1245		}
1246	}
1247	return __send_signal_locked(sig, info, t, type, force);
1248}
1249
1250static void print_fatal_signal(int signr)
1251{
1252	struct pt_regs *regs = task_pt_regs(current);
1253	struct file *exe_file;
1254
1255	exe_file = get_task_exe_file(current);
1256	if (exe_file) {
1257		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1258			exe_file, current->comm, signr);
1259		fput(exe_file);
1260	} else {
1261		pr_info("%s: potentially unexpected fatal signal %d.\n",
1262			current->comm, signr);
1263	}
1264
1265#if defined(__i386__) && !defined(__arch_um__)
1266	pr_info("code at %08lx: ", regs->ip);
1267	{
1268		int i;
1269		for (i = 0; i < 16; i++) {
1270			unsigned char insn;
1271
1272			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1273				break;
1274			pr_cont("%02x ", insn);
1275		}
1276	}
1277	pr_cont("\n");
1278#endif
1279	preempt_disable();
1280	show_regs(regs);
1281	preempt_enable();
1282}
1283
1284static int __init setup_print_fatal_signals(char *str)
1285{
1286	get_option (&str, &print_fatal_signals);
1287
1288	return 1;
1289}
1290
1291__setup("print-fatal-signals=", setup_print_fatal_signals);
1292
1293int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1294			enum pid_type type)
 
 
 
 
 
 
 
 
 
 
 
 
1295{
1296	unsigned long flags;
1297	int ret = -ESRCH;
1298
1299	if (lock_task_sighand(p, &flags)) {
1300		ret = send_signal_locked(sig, info, p, type);
1301		unlock_task_sighand(p, &flags);
1302	}
1303
1304	return ret;
1305}
1306
1307enum sig_handler {
1308	HANDLER_CURRENT, /* If reachable use the current handler */
1309	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1310	HANDLER_EXIT,	 /* Only visible as the process exit code */
1311};
1312
1313/*
1314 * Force a signal that the process can't ignore: if necessary
1315 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1316 *
1317 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1318 * since we do not want to have a signal handler that was blocked
1319 * be invoked when user space had explicitly blocked it.
1320 *
1321 * We don't want to have recursive SIGSEGV's etc, for example,
1322 * that is why we also clear SIGNAL_UNKILLABLE.
1323 */
1324static int
1325force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1326	enum sig_handler handler)
1327{
1328	unsigned long int flags;
1329	int ret, blocked, ignored;
1330	struct k_sigaction *action;
1331	int sig = info->si_signo;
1332
1333	spin_lock_irqsave(&t->sighand->siglock, flags);
1334	action = &t->sighand->action[sig-1];
1335	ignored = action->sa.sa_handler == SIG_IGN;
1336	blocked = sigismember(&t->blocked, sig);
1337	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1338		action->sa.sa_handler = SIG_DFL;
1339		if (handler == HANDLER_EXIT)
1340			action->sa.sa_flags |= SA_IMMUTABLE;
1341		if (blocked)
1342			sigdelset(&t->blocked, sig);
 
 
1343	}
1344	/*
1345	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1346	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1347	 */
1348	if (action->sa.sa_handler == SIG_DFL &&
1349	    (!t->ptrace || (handler == HANDLER_EXIT)))
1350		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1351	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1352	/* This can happen if the signal was already pending and blocked */
1353	if (!task_sigpending(t))
1354		signal_wake_up(t, 0);
1355	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1356
1357	return ret;
1358}
1359
1360int force_sig_info(struct kernel_siginfo *info)
1361{
1362	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1363}
1364
1365/*
1366 * Nuke all other threads in the group.
1367 */
1368int zap_other_threads(struct task_struct *p)
1369{
1370	struct task_struct *t;
1371	int count = 0;
1372
1373	p->signal->group_stop_count = 0;
1374
1375	for_other_threads(p, t) {
1376		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1377		/* Don't require de_thread to wait for the vhost_worker */
1378		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1379			count++;
1380
1381		/* Don't bother with already dead threads */
1382		if (t->exit_state)
1383			continue;
1384		sigaddset(&t->pending.signal, SIGKILL);
1385		signal_wake_up(t, 1);
1386	}
1387
1388	return count;
1389}
1390
1391struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1392					   unsigned long *flags)
1393{
1394	struct sighand_struct *sighand;
1395
1396	rcu_read_lock();
1397	for (;;) {
 
 
1398		sighand = rcu_dereference(tsk->sighand);
1399		if (unlikely(sighand == NULL))
 
 
1400			break;
 
1401
1402		/*
1403		 * This sighand can be already freed and even reused, but
1404		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1405		 * initializes ->siglock: this slab can't go away, it has
1406		 * the same object type, ->siglock can't be reinitialized.
1407		 *
1408		 * We need to ensure that tsk->sighand is still the same
1409		 * after we take the lock, we can race with de_thread() or
1410		 * __exit_signal(). In the latter case the next iteration
1411		 * must see ->sighand == NULL.
1412		 */
1413		spin_lock_irqsave(&sighand->siglock, *flags);
1414		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1415			break;
1416		spin_unlock_irqrestore(&sighand->siglock, *flags);
 
 
 
1417	}
1418	rcu_read_unlock();
1419
1420	return sighand;
1421}
1422
1423#ifdef CONFIG_LOCKDEP
1424void lockdep_assert_task_sighand_held(struct task_struct *task)
1425{
1426	struct sighand_struct *sighand;
1427
1428	rcu_read_lock();
1429	sighand = rcu_dereference(task->sighand);
1430	if (sighand)
1431		lockdep_assert_held(&sighand->siglock);
1432	else
1433		WARN_ON_ONCE(1);
1434	rcu_read_unlock();
1435}
1436#endif
1437
1438/*
1439 * send signal info to all the members of a group
1440 */
1441int group_send_sig_info(int sig, struct kernel_siginfo *info,
1442			struct task_struct *p, enum pid_type type)
1443{
1444	int ret;
1445
1446	rcu_read_lock();
1447	ret = check_kill_permission(sig, info, p);
1448	rcu_read_unlock();
1449
1450	if (!ret && sig)
1451		ret = do_send_sig_info(sig, info, p, type);
1452
1453	return ret;
1454}
1455
1456/*
1457 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1458 * control characters do (^C, ^Z etc)
1459 * - the caller must hold at least a readlock on tasklist_lock
1460 */
1461int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1462{
1463	struct task_struct *p = NULL;
1464	int ret = -ESRCH;
1465
 
 
1466	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1467		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1468		/*
1469		 * If group_send_sig_info() succeeds at least once ret
1470		 * becomes 0 and after that the code below has no effect.
1471		 * Otherwise we return the last err or -ESRCH if this
1472		 * process group is empty.
1473		 */
1474		if (ret)
1475			ret = err;
1476	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1477
1478	return ret;
1479}
1480
1481int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1482{
1483	int error = -ESRCH;
1484	struct task_struct *p;
1485
1486	for (;;) {
1487		rcu_read_lock();
1488		p = pid_task(pid, PIDTYPE_PID);
1489		if (p)
1490			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1491		rcu_read_unlock();
1492		if (likely(!p || error != -ESRCH))
1493			return error;
 
 
 
 
 
 
 
1494
1495		/*
1496		 * The task was unhashed in between, try again.  If it
1497		 * is dead, pid_task() will return NULL, if we race with
1498		 * de_thread() it will find the new leader.
1499		 */
1500	}
1501}
1502
1503static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1504{
1505	int error;
1506	rcu_read_lock();
1507	error = kill_pid_info(sig, info, find_vpid(pid));
1508	rcu_read_unlock();
1509	return error;
1510}
1511
1512static inline bool kill_as_cred_perm(const struct cred *cred,
1513				     struct task_struct *target)
1514{
1515	const struct cred *pcred = __task_cred(target);
1516
1517	return uid_eq(cred->euid, pcred->suid) ||
1518	       uid_eq(cred->euid, pcred->uid) ||
1519	       uid_eq(cred->uid, pcred->suid) ||
1520	       uid_eq(cred->uid, pcred->uid);
1521}
1522
1523/*
1524 * The usb asyncio usage of siginfo is wrong.  The glibc support
1525 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1526 * AKA after the generic fields:
1527 *	kernel_pid_t	si_pid;
1528 *	kernel_uid32_t	si_uid;
1529 *	sigval_t	si_value;
1530 *
1531 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1532 * after the generic fields is:
1533 *	void __user 	*si_addr;
1534 *
1535 * This is a practical problem when there is a 64bit big endian kernel
1536 * and a 32bit userspace.  As the 32bit address will encoded in the low
1537 * 32bits of the pointer.  Those low 32bits will be stored at higher
1538 * address than appear in a 32 bit pointer.  So userspace will not
1539 * see the address it was expecting for it's completions.
1540 *
1541 * There is nothing in the encoding that can allow
1542 * copy_siginfo_to_user32 to detect this confusion of formats, so
1543 * handle this by requiring the caller of kill_pid_usb_asyncio to
1544 * notice when this situration takes place and to store the 32bit
1545 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1546 * parameter.
1547 */
1548int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1549			 struct pid *pid, const struct cred *cred)
1550{
1551	struct kernel_siginfo info;
1552	struct task_struct *p;
1553	unsigned long flags;
1554	int ret = -EINVAL;
1555
1556	if (!valid_signal(sig))
1557		return ret;
1558
1559	clear_siginfo(&info);
1560	info.si_signo = sig;
1561	info.si_errno = errno;
1562	info.si_code = SI_ASYNCIO;
1563	*((sigval_t *)&info.si_pid) = addr;
1564
1565	rcu_read_lock();
1566	p = pid_task(pid, PIDTYPE_PID);
1567	if (!p) {
1568		ret = -ESRCH;
1569		goto out_unlock;
1570	}
1571	if (!kill_as_cred_perm(cred, p)) {
1572		ret = -EPERM;
1573		goto out_unlock;
1574	}
1575	ret = security_task_kill(p, &info, sig, cred);
1576	if (ret)
1577		goto out_unlock;
1578
1579	if (sig) {
1580		if (lock_task_sighand(p, &flags)) {
1581			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1582			unlock_task_sighand(p, &flags);
1583		} else
1584			ret = -ESRCH;
1585	}
1586out_unlock:
1587	rcu_read_unlock();
1588	return ret;
1589}
1590EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1591
1592/*
1593 * kill_something_info() interprets pid in interesting ways just like kill(2).
1594 *
1595 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1596 * is probably wrong.  Should make it like BSD or SYSV.
1597 */
1598
1599static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1600{
1601	int ret;
1602
1603	if (pid > 0)
1604		return kill_proc_info(sig, info, pid);
1605
1606	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1607	if (pid == INT_MIN)
1608		return -ESRCH;
1609
1610	read_lock(&tasklist_lock);
1611	if (pid != -1) {
1612		ret = __kill_pgrp_info(sig, info,
1613				pid ? find_vpid(-pid) : task_pgrp(current));
1614	} else {
1615		int retval = 0, count = 0;
1616		struct task_struct * p;
1617
1618		for_each_process(p) {
1619			if (task_pid_vnr(p) > 1 &&
1620					!same_thread_group(p, current)) {
1621				int err = group_send_sig_info(sig, info, p,
1622							      PIDTYPE_MAX);
1623				++count;
1624				if (err != -EPERM)
1625					retval = err;
1626			}
1627		}
1628		ret = count ? retval : -ESRCH;
1629	}
1630	read_unlock(&tasklist_lock);
1631
1632	return ret;
1633}
1634
1635/*
1636 * These are for backward compatibility with the rest of the kernel source.
1637 */
1638
1639int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1640{
1641	/*
1642	 * Make sure legacy kernel users don't send in bad values
1643	 * (normal paths check this in check_kill_permission).
1644	 */
1645	if (!valid_signal(sig))
1646		return -EINVAL;
1647
1648	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1649}
1650EXPORT_SYMBOL(send_sig_info);
1651
1652#define __si_special(priv) \
1653	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1654
1655int
1656send_sig(int sig, struct task_struct *p, int priv)
1657{
1658	return send_sig_info(sig, __si_special(priv), p);
1659}
1660EXPORT_SYMBOL(send_sig);
1661
1662void force_sig(int sig)
1663{
1664	struct kernel_siginfo info;
1665
1666	clear_siginfo(&info);
1667	info.si_signo = sig;
1668	info.si_errno = 0;
1669	info.si_code = SI_KERNEL;
1670	info.si_pid = 0;
1671	info.si_uid = 0;
1672	force_sig_info(&info);
1673}
1674EXPORT_SYMBOL(force_sig);
1675
1676void force_fatal_sig(int sig)
1677{
1678	struct kernel_siginfo info;
1679
1680	clear_siginfo(&info);
1681	info.si_signo = sig;
1682	info.si_errno = 0;
1683	info.si_code = SI_KERNEL;
1684	info.si_pid = 0;
1685	info.si_uid = 0;
1686	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1687}
1688
1689void force_exit_sig(int sig)
1690{
1691	struct kernel_siginfo info;
1692
1693	clear_siginfo(&info);
1694	info.si_signo = sig;
1695	info.si_errno = 0;
1696	info.si_code = SI_KERNEL;
1697	info.si_pid = 0;
1698	info.si_uid = 0;
1699	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1700}
1701
1702/*
1703 * When things go south during signal handling, we
1704 * will force a SIGSEGV. And if the signal that caused
1705 * the problem was already a SIGSEGV, we'll want to
1706 * make sure we don't even try to deliver the signal..
1707 */
1708void force_sigsegv(int sig)
 
1709{
1710	if (sig == SIGSEGV)
1711		force_fatal_sig(SIGSEGV);
1712	else
1713		force_sig(SIGSEGV);
1714}
1715
1716int force_sig_fault_to_task(int sig, int code, void __user *addr,
1717			    struct task_struct *t)
1718{
1719	struct kernel_siginfo info;
1720
1721	clear_siginfo(&info);
1722	info.si_signo = sig;
1723	info.si_errno = 0;
1724	info.si_code  = code;
1725	info.si_addr  = addr;
1726	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1727}
1728
1729int force_sig_fault(int sig, int code, void __user *addr)
1730{
1731	return force_sig_fault_to_task(sig, code, addr, current);
1732}
1733
1734int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1735{
1736	struct kernel_siginfo info;
1737
1738	clear_siginfo(&info);
1739	info.si_signo = sig;
1740	info.si_errno = 0;
1741	info.si_code  = code;
1742	info.si_addr  = addr;
1743	return send_sig_info(info.si_signo, &info, t);
1744}
1745
1746int force_sig_mceerr(int code, void __user *addr, short lsb)
1747{
1748	struct kernel_siginfo info;
1749
1750	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1751	clear_siginfo(&info);
1752	info.si_signo = SIGBUS;
1753	info.si_errno = 0;
1754	info.si_code = code;
1755	info.si_addr = addr;
1756	info.si_addr_lsb = lsb;
1757	return force_sig_info(&info);
1758}
1759
1760int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1761{
1762	struct kernel_siginfo info;
1763
1764	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1765	clear_siginfo(&info);
1766	info.si_signo = SIGBUS;
1767	info.si_errno = 0;
1768	info.si_code = code;
1769	info.si_addr = addr;
1770	info.si_addr_lsb = lsb;
1771	return send_sig_info(info.si_signo, &info, t);
1772}
1773EXPORT_SYMBOL(send_sig_mceerr);
1774
1775int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1776{
1777	struct kernel_siginfo info;
1778
1779	clear_siginfo(&info);
1780	info.si_signo = SIGSEGV;
1781	info.si_errno = 0;
1782	info.si_code  = SEGV_BNDERR;
1783	info.si_addr  = addr;
1784	info.si_lower = lower;
1785	info.si_upper = upper;
1786	return force_sig_info(&info);
1787}
1788
1789#ifdef SEGV_PKUERR
1790int force_sig_pkuerr(void __user *addr, u32 pkey)
1791{
1792	struct kernel_siginfo info;
1793
1794	clear_siginfo(&info);
1795	info.si_signo = SIGSEGV;
1796	info.si_errno = 0;
1797	info.si_code  = SEGV_PKUERR;
1798	info.si_addr  = addr;
1799	info.si_pkey  = pkey;
1800	return force_sig_info(&info);
1801}
1802#endif
1803
1804int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1805{
1806	struct kernel_siginfo info;
1807
1808	clear_siginfo(&info);
1809	info.si_signo     = SIGTRAP;
1810	info.si_errno     = 0;
1811	info.si_code      = TRAP_PERF;
1812	info.si_addr      = addr;
1813	info.si_perf_data = sig_data;
1814	info.si_perf_type = type;
1815
1816	/*
1817	 * Signals generated by perf events should not terminate the whole
1818	 * process if SIGTRAP is blocked, however, delivering the signal
1819	 * asynchronously is better than not delivering at all. But tell user
1820	 * space if the signal was asynchronous, so it can clearly be
1821	 * distinguished from normal synchronous ones.
1822	 */
1823	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1824				     TRAP_PERF_FLAG_ASYNC :
1825				     0;
1826
1827	return send_sig_info(info.si_signo, &info, current);
1828}
1829
1830/**
1831 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1832 * @syscall: syscall number to send to userland
1833 * @reason: filter-supplied reason code to send to userland (via si_errno)
1834 * @force_coredump: true to trigger a coredump
1835 *
1836 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1837 */
1838int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1839{
1840	struct kernel_siginfo info;
1841
1842	clear_siginfo(&info);
1843	info.si_signo = SIGSYS;
1844	info.si_code = SYS_SECCOMP;
1845	info.si_call_addr = (void __user *)KSTK_EIP(current);
1846	info.si_errno = reason;
1847	info.si_arch = syscall_get_arch(current);
1848	info.si_syscall = syscall;
1849	return force_sig_info_to_task(&info, current,
1850		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1851}
1852
1853/* For the crazy architectures that include trap information in
1854 * the errno field, instead of an actual errno value.
1855 */
1856int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1857{
1858	struct kernel_siginfo info;
1859
1860	clear_siginfo(&info);
1861	info.si_signo = SIGTRAP;
1862	info.si_errno = errno;
1863	info.si_code  = TRAP_HWBKPT;
1864	info.si_addr  = addr;
1865	return force_sig_info(&info);
1866}
1867
1868/* For the rare architectures that include trap information using
1869 * si_trapno.
1870 */
1871int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1872{
1873	struct kernel_siginfo info;
1874
1875	clear_siginfo(&info);
1876	info.si_signo = sig;
1877	info.si_errno = 0;
1878	info.si_code  = code;
1879	info.si_addr  = addr;
1880	info.si_trapno = trapno;
1881	return force_sig_info(&info);
1882}
1883
1884/* For the rare architectures that include trap information using
1885 * si_trapno.
1886 */
1887int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1888			  struct task_struct *t)
1889{
1890	struct kernel_siginfo info;
1891
1892	clear_siginfo(&info);
1893	info.si_signo = sig;
1894	info.si_errno = 0;
1895	info.si_code  = code;
1896	info.si_addr  = addr;
1897	info.si_trapno = trapno;
1898	return send_sig_info(info.si_signo, &info, t);
1899}
1900
1901int kill_pgrp(struct pid *pid, int sig, int priv)
1902{
1903	int ret;
1904
1905	read_lock(&tasklist_lock);
1906	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1907	read_unlock(&tasklist_lock);
1908
1909	return ret;
1910}
1911EXPORT_SYMBOL(kill_pgrp);
1912
1913int kill_pid(struct pid *pid, int sig, int priv)
1914{
1915	return kill_pid_info(sig, __si_special(priv), pid);
1916}
1917EXPORT_SYMBOL(kill_pid);
1918
1919/*
1920 * These functions support sending signals using preallocated sigqueue
1921 * structures.  This is needed "because realtime applications cannot
1922 * afford to lose notifications of asynchronous events, like timer
1923 * expirations or I/O completions".  In the case of POSIX Timers
1924 * we allocate the sigqueue structure from the timer_create.  If this
1925 * allocation fails we are able to report the failure to the application
1926 * with an EAGAIN error.
1927 */
1928struct sigqueue *sigqueue_alloc(void)
1929{
1930	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
 
 
 
 
 
1931}
1932
1933void sigqueue_free(struct sigqueue *q)
1934{
1935	unsigned long flags;
1936	spinlock_t *lock = &current->sighand->siglock;
1937
1938	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1939	/*
1940	 * We must hold ->siglock while testing q->list
1941	 * to serialize with collect_signal() or with
1942	 * __exit_signal()->flush_sigqueue().
1943	 */
1944	spin_lock_irqsave(lock, flags);
1945	q->flags &= ~SIGQUEUE_PREALLOC;
1946	/*
1947	 * If it is queued it will be freed when dequeued,
1948	 * like the "regular" sigqueue.
1949	 */
1950	if (!list_empty(&q->list))
1951		q = NULL;
1952	spin_unlock_irqrestore(lock, flags);
1953
1954	if (q)
1955		__sigqueue_free(q);
1956}
1957
1958int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1959{
1960	int sig = q->info.si_signo;
1961	struct sigpending *pending;
1962	struct task_struct *t;
1963	unsigned long flags;
1964	int ret, result;
1965
1966	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1967
1968	ret = -1;
1969	rcu_read_lock();
1970
1971	/*
1972	 * This function is used by POSIX timers to deliver a timer signal.
1973	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1974	 * set), the signal must be delivered to the specific thread (queues
1975	 * into t->pending).
1976	 *
1977	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1978	 * process. In this case, prefer to deliver to current if it is in
1979	 * the same thread group as the target process, which avoids
1980	 * unnecessarily waking up a potentially idle task.
1981	 */
1982	t = pid_task(pid, type);
1983	if (!t)
1984		goto ret;
1985	if (type != PIDTYPE_PID && same_thread_group(t, current))
1986		t = current;
1987	if (!likely(lock_task_sighand(t, &flags)))
1988		goto ret;
1989
1990	ret = 1; /* the signal is ignored */
1991	result = TRACE_SIGNAL_IGNORED;
1992	if (!prepare_signal(sig, t, false))
1993		goto out;
1994
1995	ret = 0;
1996	if (unlikely(!list_empty(&q->list))) {
1997		/*
1998		 * If an SI_TIMER entry is already queue just increment
1999		 * the overrun count.
2000		 */
2001		BUG_ON(q->info.si_code != SI_TIMER);
2002		q->info.si_overrun++;
2003		result = TRACE_SIGNAL_ALREADY_PENDING;
2004		goto out;
2005	}
2006	q->info.si_overrun = 0;
2007
2008	signalfd_notify(t, sig);
2009	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2010	list_add_tail(&q->list, &pending->list);
2011	sigaddset(&pending->signal, sig);
2012	complete_signal(sig, t, type);
2013	result = TRACE_SIGNAL_DELIVERED;
2014out:
2015	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2016	unlock_task_sighand(t, &flags);
2017ret:
2018	rcu_read_unlock();
2019	return ret;
2020}
2021
2022static void do_notify_pidfd(struct task_struct *task)
2023{
2024	struct pid *pid;
2025
2026	WARN_ON(task->exit_state == 0);
2027	pid = task_pid(task);
2028	wake_up_all(&pid->wait_pidfd);
2029}
2030
2031/*
2032 * Let a parent know about the death of a child.
2033 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2034 *
2035 * Returns true if our parent ignored us and so we've switched to
2036 * self-reaping.
2037 */
2038bool do_notify_parent(struct task_struct *tsk, int sig)
2039{
2040	struct kernel_siginfo info;
2041	unsigned long flags;
2042	struct sighand_struct *psig;
2043	bool autoreap = false;
2044	u64 utime, stime;
2045
2046	WARN_ON_ONCE(sig == -1);
2047
2048	/* do_notify_parent_cldstop should have been called instead.  */
2049	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2050
2051	WARN_ON_ONCE(!tsk->ptrace &&
2052	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2053
2054	/* Wake up all pidfd waiters */
2055	do_notify_pidfd(tsk);
2056
2057	if (sig != SIGCHLD) {
2058		/*
2059		 * This is only possible if parent == real_parent.
2060		 * Check if it has changed security domain.
2061		 */
2062		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2063			sig = SIGCHLD;
2064	}
2065
2066	clear_siginfo(&info);
2067	info.si_signo = sig;
2068	info.si_errno = 0;
2069	/*
2070	 * We are under tasklist_lock here so our parent is tied to
2071	 * us and cannot change.
2072	 *
2073	 * task_active_pid_ns will always return the same pid namespace
2074	 * until a task passes through release_task.
2075	 *
2076	 * write_lock() currently calls preempt_disable() which is the
2077	 * same as rcu_read_lock(), but according to Oleg, this is not
2078	 * correct to rely on this
2079	 */
2080	rcu_read_lock();
2081	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2082	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2083				       task_uid(tsk));
2084	rcu_read_unlock();
2085
2086	task_cputime(tsk, &utime, &stime);
2087	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2088	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2089
2090	info.si_status = tsk->exit_code & 0x7f;
2091	if (tsk->exit_code & 0x80)
2092		info.si_code = CLD_DUMPED;
2093	else if (tsk->exit_code & 0x7f)
2094		info.si_code = CLD_KILLED;
2095	else {
2096		info.si_code = CLD_EXITED;
2097		info.si_status = tsk->exit_code >> 8;
2098	}
2099
2100	psig = tsk->parent->sighand;
2101	spin_lock_irqsave(&psig->siglock, flags);
2102	if (!tsk->ptrace && sig == SIGCHLD &&
2103	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2104	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2105		/*
2106		 * We are exiting and our parent doesn't care.  POSIX.1
2107		 * defines special semantics for setting SIGCHLD to SIG_IGN
2108		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2109		 * automatically and not left for our parent's wait4 call.
2110		 * Rather than having the parent do it as a magic kind of
2111		 * signal handler, we just set this to tell do_exit that we
2112		 * can be cleaned up without becoming a zombie.  Note that
2113		 * we still call __wake_up_parent in this case, because a
2114		 * blocked sys_wait4 might now return -ECHILD.
2115		 *
2116		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2117		 * is implementation-defined: we do (if you don't want
2118		 * it, just use SIG_IGN instead).
2119		 */
2120		autoreap = true;
2121		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2122			sig = 0;
2123	}
2124	/*
2125	 * Send with __send_signal as si_pid and si_uid are in the
2126	 * parent's namespaces.
2127	 */
2128	if (valid_signal(sig) && sig)
2129		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2130	__wake_up_parent(tsk, tsk->parent);
2131	spin_unlock_irqrestore(&psig->siglock, flags);
2132
2133	return autoreap;
2134}
2135
2136/**
2137 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2138 * @tsk: task reporting the state change
2139 * @for_ptracer: the notification is for ptracer
2140 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2141 *
2142 * Notify @tsk's parent that the stopped/continued state has changed.  If
2143 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2144 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2145 *
2146 * CONTEXT:
2147 * Must be called with tasklist_lock at least read locked.
2148 */
2149static void do_notify_parent_cldstop(struct task_struct *tsk,
2150				     bool for_ptracer, int why)
2151{
2152	struct kernel_siginfo info;
2153	unsigned long flags;
2154	struct task_struct *parent;
2155	struct sighand_struct *sighand;
2156	u64 utime, stime;
2157
2158	if (for_ptracer) {
2159		parent = tsk->parent;
2160	} else {
2161		tsk = tsk->group_leader;
2162		parent = tsk->real_parent;
2163	}
2164
2165	clear_siginfo(&info);
2166	info.si_signo = SIGCHLD;
2167	info.si_errno = 0;
2168	/*
2169	 * see comment in do_notify_parent() about the following 4 lines
2170	 */
2171	rcu_read_lock();
2172	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2173	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2174	rcu_read_unlock();
2175
2176	task_cputime(tsk, &utime, &stime);
2177	info.si_utime = nsec_to_clock_t(utime);
2178	info.si_stime = nsec_to_clock_t(stime);
2179
2180 	info.si_code = why;
2181 	switch (why) {
2182 	case CLD_CONTINUED:
2183 		info.si_status = SIGCONT;
2184 		break;
2185 	case CLD_STOPPED:
2186 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2187 		break;
2188 	case CLD_TRAPPED:
2189 		info.si_status = tsk->exit_code & 0x7f;
2190 		break;
2191 	default:
2192 		BUG();
2193 	}
2194
2195	sighand = parent->sighand;
2196	spin_lock_irqsave(&sighand->siglock, flags);
2197	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2198	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2199		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2200	/*
2201	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2202	 */
2203	__wake_up_parent(tsk, parent);
2204	spin_unlock_irqrestore(&sighand->siglock, flags);
2205}
2206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2207/*
2208 * This must be called with current->sighand->siglock held.
2209 *
2210 * This should be the path for all ptrace stops.
2211 * We always set current->last_siginfo while stopped here.
2212 * That makes it a way to test a stopped process for
2213 * being ptrace-stopped vs being job-control-stopped.
2214 *
2215 * Returns the signal the ptracer requested the code resume
2216 * with.  If the code did not stop because the tracer is gone,
2217 * the stop signal remains unchanged unless clear_code.
2218 */
2219static int ptrace_stop(int exit_code, int why, unsigned long message,
2220		       kernel_siginfo_t *info)
2221	__releases(&current->sighand->siglock)
2222	__acquires(&current->sighand->siglock)
2223{
2224	bool gstop_done = false;
2225
2226	if (arch_ptrace_stop_needed()) {
2227		/*
2228		 * The arch code has something special to do before a
2229		 * ptrace stop.  This is allowed to block, e.g. for faults
2230		 * on user stack pages.  We can't keep the siglock while
2231		 * calling arch_ptrace_stop, so we must release it now.
2232		 * To preserve proper semantics, we must do this before
2233		 * any signal bookkeeping like checking group_stop_count.
 
 
 
2234		 */
2235		spin_unlock_irq(&current->sighand->siglock);
2236		arch_ptrace_stop();
2237		spin_lock_irq(&current->sighand->siglock);
 
 
2238	}
2239
2240	/*
2241	 * After this point ptrace_signal_wake_up or signal_wake_up
2242	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2243	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2244	 * signals here to prevent ptrace_stop sleeping in schedule.
2245	 */
2246	if (!current->ptrace || __fatal_signal_pending(current))
2247		return exit_code;
2248
2249	set_special_state(TASK_TRACED);
2250	current->jobctl |= JOBCTL_TRACED;
2251
2252	/*
2253	 * We're committing to trapping.  TRACED should be visible before
2254	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2255	 * Also, transition to TRACED and updates to ->jobctl should be
2256	 * atomic with respect to siglock and should be done after the arch
2257	 * hook as siglock is released and regrabbed across it.
2258	 *
2259	 *     TRACER				    TRACEE
2260	 *
2261	 *     ptrace_attach()
2262	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2263	 *     do_wait()
2264	 *       set_current_state()                smp_wmb();
2265	 *       ptrace_do_wait()
2266	 *         wait_task_stopped()
2267	 *           task_stopped_code()
2268	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2269	 */
2270	smp_wmb();
2271
2272	current->ptrace_message = message;
2273	current->last_siginfo = info;
2274	current->exit_code = exit_code;
2275
2276	/*
2277	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2278	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2279	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2280	 * could be clear now.  We act as if SIGCONT is received after
2281	 * TASK_TRACED is entered - ignore it.
2282	 */
2283	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2284		gstop_done = task_participate_group_stop(current);
2285
2286	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2287	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2288	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2289		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2290
2291	/* entering a trap, clear TRAPPING */
2292	task_clear_jobctl_trapping(current);
2293
2294	spin_unlock_irq(&current->sighand->siglock);
2295	read_lock(&tasklist_lock);
2296	/*
2297	 * Notify parents of the stop.
2298	 *
2299	 * While ptraced, there are two parents - the ptracer and
2300	 * the real_parent of the group_leader.  The ptracer should
2301	 * know about every stop while the real parent is only
2302	 * interested in the completion of group stop.  The states
2303	 * for the two don't interact with each other.  Notify
2304	 * separately unless they're gonna be duplicates.
2305	 */
2306	if (current->ptrace)
2307		do_notify_parent_cldstop(current, true, why);
2308	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2309		do_notify_parent_cldstop(current, false, why);
2310
2311	/*
2312	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2313	 * One a PREEMPTION kernel this can result in preemption requirement
2314	 * which will be fulfilled after read_unlock() and the ptracer will be
2315	 * put on the CPU.
2316	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2317	 * this task wait in schedule(). If this task gets preempted then it
2318	 * remains enqueued on the runqueue. The ptracer will observe this and
2319	 * then sleep for a delay of one HZ tick. In the meantime this task
2320	 * gets scheduled, enters schedule() and will wait for the ptracer.
2321	 *
2322	 * This preemption point is not bad from a correctness point of
2323	 * view but extends the runtime by one HZ tick time due to the
2324	 * ptracer's sleep.  The preempt-disable section ensures that there
2325	 * will be no preemption between unlock and schedule() and so
2326	 * improving the performance since the ptracer will observe that
2327	 * the tracee is scheduled out once it gets on the CPU.
2328	 *
2329	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2330	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2331	 * before unlocking tasklist_lock so there is no benefit in doing this.
2332	 *
2333	 * In fact disabling preemption is harmful on PREEMPT_RT because
2334	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2335	 * with preemption disabled due to the 'sleeping' spinlock
2336	 * substitution of RT.
2337	 */
2338	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2339		preempt_disable();
2340	read_unlock(&tasklist_lock);
2341	cgroup_enter_frozen();
2342	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2343		preempt_enable_no_resched();
2344	schedule();
2345	cgroup_leave_frozen(true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2346
2347	/*
2348	 * We are back.  Now reacquire the siglock before touching
2349	 * last_siginfo, so that we are sure to have synchronized with
2350	 * any signal-sending on another CPU that wants to examine it.
2351	 */
2352	spin_lock_irq(&current->sighand->siglock);
2353	exit_code = current->exit_code;
2354	current->last_siginfo = NULL;
2355	current->ptrace_message = 0;
2356	current->exit_code = 0;
2357
2358	/* LISTENING can be set only during STOP traps, clear it */
2359	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2360
2361	/*
2362	 * Queued signals ignored us while we were stopped for tracing.
2363	 * So check for any that we should take before resuming user mode.
2364	 * This sets TIF_SIGPENDING, but never clears it.
2365	 */
2366	recalc_sigpending_tsk(current);
2367	return exit_code;
2368}
2369
2370static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2371{
2372	kernel_siginfo_t info;
2373
2374	clear_siginfo(&info);
2375	info.si_signo = signr;
2376	info.si_code = exit_code;
2377	info.si_pid = task_pid_vnr(current);
2378	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2379
2380	/* Let the debugger run.  */
2381	return ptrace_stop(exit_code, why, message, &info);
2382}
2383
2384int ptrace_notify(int exit_code, unsigned long message)
2385{
2386	int signr;
2387
2388	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2389	if (unlikely(task_work_pending(current)))
2390		task_work_run();
2391
2392	spin_lock_irq(&current->sighand->siglock);
2393	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2394	spin_unlock_irq(&current->sighand->siglock);
2395	return signr;
2396}
2397
2398/**
2399 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2400 * @signr: signr causing group stop if initiating
2401 *
2402 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2403 * and participate in it.  If already set, participate in the existing
2404 * group stop.  If participated in a group stop (and thus slept), %true is
2405 * returned with siglock released.
2406 *
2407 * If ptraced, this function doesn't handle stop itself.  Instead,
2408 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2409 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2410 * places afterwards.
2411 *
2412 * CONTEXT:
2413 * Must be called with @current->sighand->siglock held, which is released
2414 * on %true return.
2415 *
2416 * RETURNS:
2417 * %false if group stop is already cancelled or ptrace trap is scheduled.
2418 * %true if participated in group stop.
2419 */
2420static bool do_signal_stop(int signr)
2421	__releases(&current->sighand->siglock)
2422{
2423	struct signal_struct *sig = current->signal;
2424
2425	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2426		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2427		struct task_struct *t;
2428
2429		/* signr will be recorded in task->jobctl for retries */
2430		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2431
2432		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2433		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2434		    unlikely(sig->group_exec_task))
2435			return false;
2436		/*
2437		 * There is no group stop already in progress.  We must
2438		 * initiate one now.
2439		 *
2440		 * While ptraced, a task may be resumed while group stop is
2441		 * still in effect and then receive a stop signal and
2442		 * initiate another group stop.  This deviates from the
2443		 * usual behavior as two consecutive stop signals can't
2444		 * cause two group stops when !ptraced.  That is why we
2445		 * also check !task_is_stopped(t) below.
2446		 *
2447		 * The condition can be distinguished by testing whether
2448		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2449		 * group_exit_code in such case.
2450		 *
2451		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2452		 * an intervening stop signal is required to cause two
2453		 * continued events regardless of ptrace.
2454		 */
2455		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2456			sig->group_exit_code = signr;
2457
2458		sig->group_stop_count = 0;
 
2459		if (task_set_jobctl_pending(current, signr | gstop))
2460			sig->group_stop_count++;
2461
2462		for_other_threads(current, t) {
 
2463			/*
2464			 * Setting state to TASK_STOPPED for a group
2465			 * stop is always done with the siglock held,
2466			 * so this check has no races.
2467			 */
2468			if (!task_is_stopped(t) &&
2469			    task_set_jobctl_pending(t, signr | gstop)) {
2470				sig->group_stop_count++;
2471				if (likely(!(t->ptrace & PT_SEIZED)))
2472					signal_wake_up(t, 0);
2473				else
2474					ptrace_trap_notify(t);
2475			}
2476		}
2477	}
2478
2479	if (likely(!current->ptrace)) {
2480		int notify = 0;
2481
2482		/*
2483		 * If there are no other threads in the group, or if there
2484		 * is a group stop in progress and we are the last to stop,
2485		 * report to the parent.
2486		 */
2487		if (task_participate_group_stop(current))
2488			notify = CLD_STOPPED;
2489
2490		current->jobctl |= JOBCTL_STOPPED;
2491		set_special_state(TASK_STOPPED);
2492		spin_unlock_irq(&current->sighand->siglock);
2493
2494		/*
2495		 * Notify the parent of the group stop completion.  Because
2496		 * we're not holding either the siglock or tasklist_lock
2497		 * here, ptracer may attach inbetween; however, this is for
2498		 * group stop and should always be delivered to the real
2499		 * parent of the group leader.  The new ptracer will get
2500		 * its notification when this task transitions into
2501		 * TASK_TRACED.
2502		 */
2503		if (notify) {
2504			read_lock(&tasklist_lock);
2505			do_notify_parent_cldstop(current, false, notify);
2506			read_unlock(&tasklist_lock);
2507		}
2508
2509		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2510		cgroup_enter_frozen();
2511		schedule();
2512		return true;
2513	} else {
2514		/*
2515		 * While ptraced, group stop is handled by STOP trap.
2516		 * Schedule it and let the caller deal with it.
2517		 */
2518		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2519		return false;
2520	}
2521}
2522
2523/**
2524 * do_jobctl_trap - take care of ptrace jobctl traps
2525 *
2526 * When PT_SEIZED, it's used for both group stop and explicit
2527 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2528 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2529 * the stop signal; otherwise, %SIGTRAP.
2530 *
2531 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2532 * number as exit_code and no siginfo.
2533 *
2534 * CONTEXT:
2535 * Must be called with @current->sighand->siglock held, which may be
2536 * released and re-acquired before returning with intervening sleep.
2537 */
2538static void do_jobctl_trap(void)
2539{
2540	struct signal_struct *signal = current->signal;
2541	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2542
2543	if (current->ptrace & PT_SEIZED) {
2544		if (!signal->group_stop_count &&
2545		    !(signal->flags & SIGNAL_STOP_STOPPED))
2546			signr = SIGTRAP;
2547		WARN_ON_ONCE(!signr);
2548		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2549				 CLD_STOPPED, 0);
2550	} else {
2551		WARN_ON_ONCE(!signr);
2552		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
 
2553	}
2554}
2555
2556/**
2557 * do_freezer_trap - handle the freezer jobctl trap
2558 *
2559 * Puts the task into frozen state, if only the task is not about to quit.
2560 * In this case it drops JOBCTL_TRAP_FREEZE.
2561 *
2562 * CONTEXT:
2563 * Must be called with @current->sighand->siglock held,
2564 * which is always released before returning.
2565 */
2566static void do_freezer_trap(void)
2567	__releases(&current->sighand->siglock)
2568{
2569	/*
2570	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2571	 * let's make another loop to give it a chance to be handled.
2572	 * In any case, we'll return back.
2573	 */
2574	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2575	     JOBCTL_TRAP_FREEZE) {
2576		spin_unlock_irq(&current->sighand->siglock);
2577		return;
2578	}
2579
2580	/*
2581	 * Now we're sure that there is no pending fatal signal and no
2582	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2583	 * immediately (if there is a non-fatal signal pending), and
2584	 * put the task into sleep.
2585	 */
2586	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2587	clear_thread_flag(TIF_SIGPENDING);
2588	spin_unlock_irq(&current->sighand->siglock);
2589	cgroup_enter_frozen();
2590	schedule();
2591}
2592
2593static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2594{
 
2595	/*
2596	 * We do not check sig_kernel_stop(signr) but set this marker
2597	 * unconditionally because we do not know whether debugger will
2598	 * change signr. This flag has no meaning unless we are going
2599	 * to stop after return from ptrace_stop(). In this case it will
2600	 * be checked in do_signal_stop(), we should only stop if it was
2601	 * not cleared by SIGCONT while we were sleeping. See also the
2602	 * comment in dequeue_signal().
2603	 */
2604	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2605	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2606
2607	/* We're back.  Did the debugger cancel the sig?  */
 
2608	if (signr == 0)
2609		return signr;
2610
 
 
2611	/*
2612	 * Update the siginfo structure if the signal has
2613	 * changed.  If the debugger wanted something
2614	 * specific in the siginfo structure then it should
2615	 * have updated *info via PTRACE_SETSIGINFO.
2616	 */
2617	if (signr != info->si_signo) {
2618		clear_siginfo(info);
2619		info->si_signo = signr;
2620		info->si_errno = 0;
2621		info->si_code = SI_USER;
2622		rcu_read_lock();
2623		info->si_pid = task_pid_vnr(current->parent);
2624		info->si_uid = from_kuid_munged(current_user_ns(),
2625						task_uid(current->parent));
2626		rcu_read_unlock();
2627	}
2628
2629	/* If the (new) signal is now blocked, requeue it.  */
2630	if (sigismember(&current->blocked, signr) ||
2631	    fatal_signal_pending(current)) {
2632		send_signal_locked(signr, info, current, type);
2633		signr = 0;
2634	}
2635
2636	return signr;
2637}
2638
2639static void hide_si_addr_tag_bits(struct ksignal *ksig)
2640{
2641	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2642	case SIL_FAULT:
2643	case SIL_FAULT_TRAPNO:
2644	case SIL_FAULT_MCEERR:
2645	case SIL_FAULT_BNDERR:
2646	case SIL_FAULT_PKUERR:
2647	case SIL_FAULT_PERF_EVENT:
2648		ksig->info.si_addr = arch_untagged_si_addr(
2649			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2650		break;
2651	case SIL_KILL:
2652	case SIL_TIMER:
2653	case SIL_POLL:
2654	case SIL_CHLD:
2655	case SIL_RT:
2656	case SIL_SYS:
2657		break;
2658	}
2659}
2660
2661bool get_signal(struct ksignal *ksig)
2662{
2663	struct sighand_struct *sighand = current->sighand;
2664	struct signal_struct *signal = current->signal;
2665	int signr;
2666
2667	clear_notify_signal();
2668	if (unlikely(task_work_pending(current)))
2669		task_work_run();
2670
2671	if (!task_sigpending(current))
2672		return false;
2673
2674	if (unlikely(uprobe_deny_signal()))
2675		return false;
2676
2677	/*
2678	 * Do this once, we can't return to user-mode if freezing() == T.
2679	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2680	 * thus do not need another check after return.
2681	 */
2682	try_to_freeze();
2683
2684relock:
2685	spin_lock_irq(&sighand->siglock);
2686
2687	/*
2688	 * Every stopped thread goes here after wakeup. Check to see if
2689	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2690	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2691	 */
2692	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2693		int why;
2694
2695		if (signal->flags & SIGNAL_CLD_CONTINUED)
2696			why = CLD_CONTINUED;
2697		else
2698			why = CLD_STOPPED;
2699
2700		signal->flags &= ~SIGNAL_CLD_MASK;
2701
2702		spin_unlock_irq(&sighand->siglock);
2703
2704		/*
2705		 * Notify the parent that we're continuing.  This event is
2706		 * always per-process and doesn't make whole lot of sense
2707		 * for ptracers, who shouldn't consume the state via
2708		 * wait(2) either, but, for backward compatibility, notify
2709		 * the ptracer of the group leader too unless it's gonna be
2710		 * a duplicate.
2711		 */
2712		read_lock(&tasklist_lock);
2713		do_notify_parent_cldstop(current, false, why);
2714
2715		if (ptrace_reparented(current->group_leader))
2716			do_notify_parent_cldstop(current->group_leader,
2717						true, why);
2718		read_unlock(&tasklist_lock);
2719
2720		goto relock;
2721	}
2722
2723	for (;;) {
2724		struct k_sigaction *ka;
2725		enum pid_type type;
2726
2727		/* Has this task already been marked for death? */
2728		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2729		     signal->group_exec_task) {
2730			clear_siginfo(&ksig->info);
2731			ksig->info.si_signo = signr = SIGKILL;
2732			sigdelset(&current->pending.signal, SIGKILL);
2733			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2734				&sighand->action[SIGKILL - 1]);
2735			recalc_sigpending();
2736			goto fatal;
2737		}
2738
2739		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2740		    do_signal_stop(0))
2741			goto relock;
2742
2743		if (unlikely(current->jobctl &
2744			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2745			if (current->jobctl & JOBCTL_TRAP_MASK) {
2746				do_jobctl_trap();
2747				spin_unlock_irq(&sighand->siglock);
2748			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2749				do_freezer_trap();
2750
2751			goto relock;
2752		}
2753
2754		/*
2755		 * If the task is leaving the frozen state, let's update
2756		 * cgroup counters and reset the frozen bit.
2757		 */
2758		if (unlikely(cgroup_task_frozen(current))) {
2759			spin_unlock_irq(&sighand->siglock);
2760			cgroup_leave_frozen(false);
2761			goto relock;
2762		}
2763
2764		/*
2765		 * Signals generated by the execution of an instruction
2766		 * need to be delivered before any other pending signals
2767		 * so that the instruction pointer in the signal stack
2768		 * frame points to the faulting instruction.
2769		 */
2770		type = PIDTYPE_PID;
2771		signr = dequeue_synchronous_signal(&ksig->info);
2772		if (!signr)
2773			signr = dequeue_signal(current, &current->blocked,
2774					       &ksig->info, &type);
2775
2776		if (!signr)
2777			break; /* will return 0 */
2778
2779		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2780		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2781			signr = ptrace_signal(signr, &ksig->info, type);
2782			if (!signr)
2783				continue;
2784		}
2785
2786		ka = &sighand->action[signr-1];
2787
2788		/* Trace actually delivered signals. */
2789		trace_signal_deliver(signr, &ksig->info, ka);
2790
2791		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2792			continue;
2793		if (ka->sa.sa_handler != SIG_DFL) {
2794			/* Run the handler.  */
2795			ksig->ka = *ka;
2796
2797			if (ka->sa.sa_flags & SA_ONESHOT)
2798				ka->sa.sa_handler = SIG_DFL;
2799
2800			break; /* will return non-zero "signr" value */
2801		}
2802
2803		/*
2804		 * Now we are doing the default action for this signal.
2805		 */
2806		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2807			continue;
2808
2809		/*
2810		 * Global init gets no signals it doesn't want.
2811		 * Container-init gets no signals it doesn't want from same
2812		 * container.
2813		 *
2814		 * Note that if global/container-init sees a sig_kernel_only()
2815		 * signal here, the signal must have been generated internally
2816		 * or must have come from an ancestor namespace. In either
2817		 * case, the signal cannot be dropped.
2818		 */
2819		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2820				!sig_kernel_only(signr))
2821			continue;
2822
2823		if (sig_kernel_stop(signr)) {
2824			/*
2825			 * The default action is to stop all threads in
2826			 * the thread group.  The job control signals
2827			 * do nothing in an orphaned pgrp, but SIGSTOP
2828			 * always works.  Note that siglock needs to be
2829			 * dropped during the call to is_orphaned_pgrp()
2830			 * because of lock ordering with tasklist_lock.
2831			 * This allows an intervening SIGCONT to be posted.
2832			 * We need to check for that and bail out if necessary.
2833			 */
2834			if (signr != SIGSTOP) {
2835				spin_unlock_irq(&sighand->siglock);
2836
2837				/* signals can be posted during this window */
2838
2839				if (is_current_pgrp_orphaned())
2840					goto relock;
2841
2842				spin_lock_irq(&sighand->siglock);
2843			}
2844
2845			if (likely(do_signal_stop(ksig->info.si_signo))) {
2846				/* It released the siglock.  */
2847				goto relock;
2848			}
2849
2850			/*
2851			 * We didn't actually stop, due to a race
2852			 * with SIGCONT or something like that.
2853			 */
2854			continue;
2855		}
2856
2857	fatal:
2858		spin_unlock_irq(&sighand->siglock);
2859		if (unlikely(cgroup_task_frozen(current)))
2860			cgroup_leave_frozen(true);
2861
2862		/*
2863		 * Anything else is fatal, maybe with a core dump.
2864		 */
2865		current->flags |= PF_SIGNALED;
2866
2867		if (sig_kernel_coredump(signr)) {
2868			if (print_fatal_signals)
2869				print_fatal_signal(ksig->info.si_signo);
2870			proc_coredump_connector(current);
2871			/*
2872			 * If it was able to dump core, this kills all
2873			 * other threads in the group and synchronizes with
2874			 * their demise.  If we lost the race with another
2875			 * thread getting here, it set group_exit_code
2876			 * first and our do_group_exit call below will use
2877			 * that value and ignore the one we pass it.
2878			 */
2879			do_coredump(&ksig->info);
2880		}
2881
2882		/*
2883		 * PF_USER_WORKER threads will catch and exit on fatal signals
2884		 * themselves. They have cleanup that must be performed, so
2885		 * we cannot call do_exit() on their behalf.
2886		 */
2887		if (current->flags & PF_USER_WORKER)
2888			goto out;
2889
2890		/*
2891		 * Death signals, no core dump.
2892		 */
2893		do_group_exit(ksig->info.si_signo);
2894		/* NOTREACHED */
2895	}
2896	spin_unlock_irq(&sighand->siglock);
2897out:
2898	ksig->sig = signr;
2899
2900	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2901		hide_si_addr_tag_bits(ksig);
2902
2903	return ksig->sig > 0;
2904}
2905
2906/**
2907 * signal_delivered - called after signal delivery to update blocked signals
2908 * @ksig:		kernel signal struct
 
 
 
2909 * @stepping:		nonzero if debugger single-step or block-step in use
2910 *
2911 * This function should be called when a signal has successfully been
2912 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2913 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2914 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2915 */
2916static void signal_delivered(struct ksignal *ksig, int stepping)
 
2917{
2918	sigset_t blocked;
2919
2920	/* A signal was successfully delivered, and the
2921	   saved sigmask was stored on the signal frame,
2922	   and will be restored by sigreturn.  So we can
2923	   simply clear the restore sigmask flag.  */
2924	clear_restore_sigmask();
2925
2926	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2927	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2928		sigaddset(&blocked, ksig->sig);
2929	set_current_blocked(&blocked);
2930	if (current->sas_ss_flags & SS_AUTODISARM)
2931		sas_ss_reset(current);
2932	if (stepping)
2933		ptrace_notify(SIGTRAP, 0);
2934}
2935
2936void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2937{
2938	if (failed)
2939		force_sigsegv(ksig->sig);
2940	else
2941		signal_delivered(ksig, stepping);
 
2942}
2943
2944/*
2945 * It could be that complete_signal() picked us to notify about the
2946 * group-wide signal. Other threads should be notified now to take
2947 * the shared signals in @which since we will not.
2948 */
2949static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2950{
2951	sigset_t retarget;
2952	struct task_struct *t;
2953
2954	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2955	if (sigisemptyset(&retarget))
2956		return;
2957
2958	for_other_threads(tsk, t) {
 
2959		if (t->flags & PF_EXITING)
2960			continue;
2961
2962		if (!has_pending_signals(&retarget, &t->blocked))
2963			continue;
2964		/* Remove the signals this thread can handle. */
2965		sigandsets(&retarget, &retarget, &t->blocked);
2966
2967		if (!task_sigpending(t))
2968			signal_wake_up(t, 0);
2969
2970		if (sigisemptyset(&retarget))
2971			break;
2972	}
2973}
2974
2975void exit_signals(struct task_struct *tsk)
2976{
2977	int group_stop = 0;
2978	sigset_t unblocked;
2979
2980	/*
2981	 * @tsk is about to have PF_EXITING set - lock out users which
2982	 * expect stable threadgroup.
2983	 */
2984	cgroup_threadgroup_change_begin(tsk);
2985
2986	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2987		sched_mm_cid_exit_signals(tsk);
2988		tsk->flags |= PF_EXITING;
2989		cgroup_threadgroup_change_end(tsk);
2990		return;
2991	}
2992
2993	spin_lock_irq(&tsk->sighand->siglock);
2994	/*
2995	 * From now this task is not visible for group-wide signals,
2996	 * see wants_signal(), do_signal_stop().
2997	 */
2998	sched_mm_cid_exit_signals(tsk);
2999	tsk->flags |= PF_EXITING;
3000
3001	cgroup_threadgroup_change_end(tsk);
3002
3003	if (!task_sigpending(tsk))
3004		goto out;
3005
3006	unblocked = tsk->blocked;
3007	signotset(&unblocked);
3008	retarget_shared_pending(tsk, &unblocked);
3009
3010	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3011	    task_participate_group_stop(tsk))
3012		group_stop = CLD_STOPPED;
3013out:
3014	spin_unlock_irq(&tsk->sighand->siglock);
3015
3016	/*
3017	 * If group stop has completed, deliver the notification.  This
3018	 * should always go to the real parent of the group leader.
3019	 */
3020	if (unlikely(group_stop)) {
3021		read_lock(&tasklist_lock);
3022		do_notify_parent_cldstop(tsk, false, group_stop);
3023		read_unlock(&tasklist_lock);
3024	}
3025}
3026
 
 
 
 
 
 
 
 
 
 
 
3027/*
3028 * System call entry points.
3029 */
3030
3031/**
3032 *  sys_restart_syscall - restart a system call
3033 */
3034SYSCALL_DEFINE0(restart_syscall)
3035{
3036	struct restart_block *restart = &current->restart_block;
3037	return restart->fn(restart);
3038}
3039
3040long do_no_restart_syscall(struct restart_block *param)
3041{
3042	return -EINTR;
3043}
3044
3045static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3046{
3047	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3048		sigset_t newblocked;
3049		/* A set of now blocked but previously unblocked signals. */
3050		sigandnsets(&newblocked, newset, &current->blocked);
3051		retarget_shared_pending(tsk, &newblocked);
3052	}
3053	tsk->blocked = *newset;
3054	recalc_sigpending();
3055}
3056
3057/**
3058 * set_current_blocked - change current->blocked mask
3059 * @newset: new mask
3060 *
3061 * It is wrong to change ->blocked directly, this helper should be used
3062 * to ensure the process can't miss a shared signal we are going to block.
3063 */
3064void set_current_blocked(sigset_t *newset)
3065{
3066	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3067	__set_current_blocked(newset);
3068}
3069
3070void __set_current_blocked(const sigset_t *newset)
3071{
3072	struct task_struct *tsk = current;
3073
3074	/*
3075	 * In case the signal mask hasn't changed, there is nothing we need
3076	 * to do. The current->blocked shouldn't be modified by other task.
3077	 */
3078	if (sigequalsets(&tsk->blocked, newset))
3079		return;
3080
3081	spin_lock_irq(&tsk->sighand->siglock);
3082	__set_task_blocked(tsk, newset);
3083	spin_unlock_irq(&tsk->sighand->siglock);
3084}
3085
3086/*
3087 * This is also useful for kernel threads that want to temporarily
3088 * (or permanently) block certain signals.
3089 *
3090 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3091 * interface happily blocks "unblockable" signals like SIGKILL
3092 * and friends.
3093 */
3094int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3095{
3096	struct task_struct *tsk = current;
3097	sigset_t newset;
3098
3099	/* Lockless, only current can change ->blocked, never from irq */
3100	if (oldset)
3101		*oldset = tsk->blocked;
3102
3103	switch (how) {
3104	case SIG_BLOCK:
3105		sigorsets(&newset, &tsk->blocked, set);
3106		break;
3107	case SIG_UNBLOCK:
3108		sigandnsets(&newset, &tsk->blocked, set);
3109		break;
3110	case SIG_SETMASK:
3111		newset = *set;
3112		break;
3113	default:
3114		return -EINVAL;
3115	}
3116
3117	__set_current_blocked(&newset);
3118	return 0;
3119}
3120EXPORT_SYMBOL(sigprocmask);
3121
3122/*
3123 * The api helps set app-provided sigmasks.
3124 *
3125 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3126 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3127 *
3128 * Note that it does set_restore_sigmask() in advance, so it must be always
3129 * paired with restore_saved_sigmask_unless() before return from syscall.
3130 */
3131int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3132{
3133	sigset_t kmask;
3134
3135	if (!umask)
3136		return 0;
3137	if (sigsetsize != sizeof(sigset_t))
3138		return -EINVAL;
3139	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3140		return -EFAULT;
3141
3142	set_restore_sigmask();
3143	current->saved_sigmask = current->blocked;
3144	set_current_blocked(&kmask);
3145
3146	return 0;
3147}
3148
3149#ifdef CONFIG_COMPAT
3150int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3151			    size_t sigsetsize)
3152{
3153	sigset_t kmask;
3154
3155	if (!umask)
3156		return 0;
3157	if (sigsetsize != sizeof(compat_sigset_t))
3158		return -EINVAL;
3159	if (get_compat_sigset(&kmask, umask))
3160		return -EFAULT;
3161
3162	set_restore_sigmask();
3163	current->saved_sigmask = current->blocked;
3164	set_current_blocked(&kmask);
3165
3166	return 0;
3167}
3168#endif
3169
3170/**
3171 *  sys_rt_sigprocmask - change the list of currently blocked signals
3172 *  @how: whether to add, remove, or set signals
3173 *  @nset: stores pending signals
3174 *  @oset: previous value of signal mask if non-null
3175 *  @sigsetsize: size of sigset_t type
3176 */
3177SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3178		sigset_t __user *, oset, size_t, sigsetsize)
3179{
3180	sigset_t old_set, new_set;
3181	int error;
3182
3183	/* XXX: Don't preclude handling different sized sigset_t's.  */
3184	if (sigsetsize != sizeof(sigset_t))
3185		return -EINVAL;
3186
3187	old_set = current->blocked;
3188
3189	if (nset) {
3190		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3191			return -EFAULT;
3192		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3193
3194		error = sigprocmask(how, &new_set, NULL);
3195		if (error)
3196			return error;
3197	}
3198
3199	if (oset) {
3200		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3201			return -EFAULT;
3202	}
3203
3204	return 0;
3205}
3206
3207#ifdef CONFIG_COMPAT
3208COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3209		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3210{
 
3211	sigset_t old_set = current->blocked;
3212
3213	/* XXX: Don't preclude handling different sized sigset_t's.  */
3214	if (sigsetsize != sizeof(sigset_t))
3215		return -EINVAL;
3216
3217	if (nset) {
 
3218		sigset_t new_set;
3219		int error;
3220		if (get_compat_sigset(&new_set, nset))
3221			return -EFAULT;
 
 
3222		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3223
3224		error = sigprocmask(how, &new_set, NULL);
3225		if (error)
3226			return error;
3227	}
3228	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
 
 
 
 
 
 
 
 
 
 
3229}
3230#endif
3231
3232static void do_sigpending(sigset_t *set)
3233{
 
 
 
3234	spin_lock_irq(&current->sighand->siglock);
3235	sigorsets(set, &current->pending.signal,
3236		  &current->signal->shared_pending.signal);
3237	spin_unlock_irq(&current->sighand->siglock);
3238
3239	/* Outside the lock because only this thread touches it.  */
3240	sigandsets(set, &current->blocked, set);
 
3241}
3242
3243/**
3244 *  sys_rt_sigpending - examine a pending signal that has been raised
3245 *			while blocked
3246 *  @uset: stores pending signals
3247 *  @sigsetsize: size of sigset_t type or larger
3248 */
3249SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3250{
3251	sigset_t set;
3252
3253	if (sigsetsize > sizeof(*uset))
3254		return -EINVAL;
3255
3256	do_sigpending(&set);
3257
3258	if (copy_to_user(uset, &set, sigsetsize))
3259		return -EFAULT;
3260
3261	return 0;
3262}
3263
3264#ifdef CONFIG_COMPAT
3265COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3266		compat_size_t, sigsetsize)
3267{
 
3268	sigset_t set;
3269
3270	if (sigsetsize > sizeof(*uset))
3271		return -EINVAL;
3272
3273	do_sigpending(&set);
3274
3275	return put_compat_sigset(uset, &set, sigsetsize);
3276}
3277#endif
3278
3279static const struct {
3280	unsigned char limit, layout;
3281} sig_sicodes[] = {
3282	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3283	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3284	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3285	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3286	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3287#if defined(SIGEMT)
3288	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3289#endif
3290	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3291	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3292	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3293};
3294
3295static bool known_siginfo_layout(unsigned sig, int si_code)
3296{
3297	if (si_code == SI_KERNEL)
3298		return true;
3299	else if ((si_code > SI_USER)) {
3300		if (sig_specific_sicodes(sig)) {
3301			if (si_code <= sig_sicodes[sig].limit)
3302				return true;
3303		}
3304		else if (si_code <= NSIGPOLL)
3305			return true;
3306	}
3307	else if (si_code >= SI_DETHREAD)
3308		return true;
3309	else if (si_code == SI_ASYNCNL)
3310		return true;
3311	return false;
3312}
3313
3314enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3315{
3316	enum siginfo_layout layout = SIL_KILL;
3317	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3318		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3319		    (si_code <= sig_sicodes[sig].limit)) {
3320			layout = sig_sicodes[sig].layout;
3321			/* Handle the exceptions */
3322			if ((sig == SIGBUS) &&
3323			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3324				layout = SIL_FAULT_MCEERR;
3325			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3326				layout = SIL_FAULT_BNDERR;
3327#ifdef SEGV_PKUERR
3328			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3329				layout = SIL_FAULT_PKUERR;
3330#endif
3331			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3332				layout = SIL_FAULT_PERF_EVENT;
3333			else if (IS_ENABLED(CONFIG_SPARC) &&
3334				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3335				layout = SIL_FAULT_TRAPNO;
3336			else if (IS_ENABLED(CONFIG_ALPHA) &&
3337				 ((sig == SIGFPE) ||
3338				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3339				layout = SIL_FAULT_TRAPNO;
3340		}
3341		else if (si_code <= NSIGPOLL)
3342			layout = SIL_POLL;
3343	} else {
3344		if (si_code == SI_TIMER)
3345			layout = SIL_TIMER;
3346		else if (si_code == SI_SIGIO)
3347			layout = SIL_POLL;
3348		else if (si_code < 0)
3349			layout = SIL_RT;
3350	}
3351	return layout;
3352}
3353
3354static inline char __user *si_expansion(const siginfo_t __user *info)
3355{
3356	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3357}
3358
3359int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3360{
3361	char __user *expansion = si_expansion(to);
3362	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3363		return -EFAULT;
3364	if (clear_user(expansion, SI_EXPANSION_SIZE))
3365		return -EFAULT;
3366	return 0;
3367}
3368
3369static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3370				       const siginfo_t __user *from)
3371{
3372	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3373		char __user *expansion = si_expansion(from);
3374		char buf[SI_EXPANSION_SIZE];
3375		int i;
3376		/*
3377		 * An unknown si_code might need more than
3378		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3379		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3380		 * will return this data to userspace exactly.
3381		 */
3382		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3383			return -EFAULT;
3384		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3385			if (buf[i] != 0)
3386				return -E2BIG;
3387		}
3388	}
3389	return 0;
3390}
3391
3392static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3393				    const siginfo_t __user *from)
3394{
3395	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3396		return -EFAULT;
3397	to->si_signo = signo;
3398	return post_copy_siginfo_from_user(to, from);
3399}
3400
3401int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3402{
3403	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3404		return -EFAULT;
3405	return post_copy_siginfo_from_user(to, from);
3406}
3407
3408#ifdef CONFIG_COMPAT
3409/**
3410 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3411 * @to: compat siginfo destination
3412 * @from: kernel siginfo source
3413 *
3414 * Note: This function does not work properly for the SIGCHLD on x32, but
3415 * fortunately it doesn't have to.  The only valid callers for this function are
3416 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3417 * The latter does not care because SIGCHLD will never cause a coredump.
3418 */
3419void copy_siginfo_to_external32(struct compat_siginfo *to,
3420		const struct kernel_siginfo *from)
3421{
3422	memset(to, 0, sizeof(*to));
3423
3424	to->si_signo = from->si_signo;
3425	to->si_errno = from->si_errno;
3426	to->si_code  = from->si_code;
3427	switch(siginfo_layout(from->si_signo, from->si_code)) {
3428	case SIL_KILL:
3429		to->si_pid = from->si_pid;
3430		to->si_uid = from->si_uid;
3431		break;
3432	case SIL_TIMER:
3433		to->si_tid     = from->si_tid;
3434		to->si_overrun = from->si_overrun;
3435		to->si_int     = from->si_int;
3436		break;
3437	case SIL_POLL:
3438		to->si_band = from->si_band;
3439		to->si_fd   = from->si_fd;
3440		break;
3441	case SIL_FAULT:
3442		to->si_addr = ptr_to_compat(from->si_addr);
3443		break;
3444	case SIL_FAULT_TRAPNO:
3445		to->si_addr = ptr_to_compat(from->si_addr);
3446		to->si_trapno = from->si_trapno;
3447		break;
3448	case SIL_FAULT_MCEERR:
3449		to->si_addr = ptr_to_compat(from->si_addr);
3450		to->si_addr_lsb = from->si_addr_lsb;
3451		break;
3452	case SIL_FAULT_BNDERR:
3453		to->si_addr = ptr_to_compat(from->si_addr);
3454		to->si_lower = ptr_to_compat(from->si_lower);
3455		to->si_upper = ptr_to_compat(from->si_upper);
3456		break;
3457	case SIL_FAULT_PKUERR:
3458		to->si_addr = ptr_to_compat(from->si_addr);
3459		to->si_pkey = from->si_pkey;
3460		break;
3461	case SIL_FAULT_PERF_EVENT:
3462		to->si_addr = ptr_to_compat(from->si_addr);
3463		to->si_perf_data = from->si_perf_data;
3464		to->si_perf_type = from->si_perf_type;
3465		to->si_perf_flags = from->si_perf_flags;
3466		break;
3467	case SIL_CHLD:
3468		to->si_pid = from->si_pid;
3469		to->si_uid = from->si_uid;
3470		to->si_status = from->si_status;
3471		to->si_utime = from->si_utime;
3472		to->si_stime = from->si_stime;
3473		break;
3474	case SIL_RT:
3475		to->si_pid = from->si_pid;
3476		to->si_uid = from->si_uid;
3477		to->si_int = from->si_int;
3478		break;
3479	case SIL_SYS:
3480		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3481		to->si_syscall   = from->si_syscall;
3482		to->si_arch      = from->si_arch;
3483		break;
3484	}
 
3485}
3486
3487int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3488			   const struct kernel_siginfo *from)
3489{
3490	struct compat_siginfo new;
3491
3492	copy_siginfo_to_external32(&new, from);
3493	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3494		return -EFAULT;
3495	return 0;
3496}
3497
3498static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3499					 const struct compat_siginfo *from)
3500{
3501	clear_siginfo(to);
3502	to->si_signo = from->si_signo;
3503	to->si_errno = from->si_errno;
3504	to->si_code  = from->si_code;
3505	switch(siginfo_layout(from->si_signo, from->si_code)) {
3506	case SIL_KILL:
3507		to->si_pid = from->si_pid;
3508		to->si_uid = from->si_uid;
3509		break;
3510	case SIL_TIMER:
3511		to->si_tid     = from->si_tid;
3512		to->si_overrun = from->si_overrun;
3513		to->si_int     = from->si_int;
3514		break;
3515	case SIL_POLL:
3516		to->si_band = from->si_band;
3517		to->si_fd   = from->si_fd;
3518		break;
3519	case SIL_FAULT:
3520		to->si_addr = compat_ptr(from->si_addr);
3521		break;
3522	case SIL_FAULT_TRAPNO:
3523		to->si_addr = compat_ptr(from->si_addr);
3524		to->si_trapno = from->si_trapno;
3525		break;
3526	case SIL_FAULT_MCEERR:
3527		to->si_addr = compat_ptr(from->si_addr);
3528		to->si_addr_lsb = from->si_addr_lsb;
3529		break;
3530	case SIL_FAULT_BNDERR:
3531		to->si_addr = compat_ptr(from->si_addr);
3532		to->si_lower = compat_ptr(from->si_lower);
3533		to->si_upper = compat_ptr(from->si_upper);
3534		break;
3535	case SIL_FAULT_PKUERR:
3536		to->si_addr = compat_ptr(from->si_addr);
3537		to->si_pkey = from->si_pkey;
3538		break;
3539	case SIL_FAULT_PERF_EVENT:
3540		to->si_addr = compat_ptr(from->si_addr);
3541		to->si_perf_data = from->si_perf_data;
3542		to->si_perf_type = from->si_perf_type;
3543		to->si_perf_flags = from->si_perf_flags;
3544		break;
3545	case SIL_CHLD:
3546		to->si_pid    = from->si_pid;
3547		to->si_uid    = from->si_uid;
3548		to->si_status = from->si_status;
3549#ifdef CONFIG_X86_X32_ABI
3550		if (in_x32_syscall()) {
3551			to->si_utime = from->_sifields._sigchld_x32._utime;
3552			to->si_stime = from->_sifields._sigchld_x32._stime;
3553		} else
3554#endif
3555		{
3556			to->si_utime = from->si_utime;
3557			to->si_stime = from->si_stime;
3558		}
3559		break;
3560	case SIL_RT:
3561		to->si_pid = from->si_pid;
3562		to->si_uid = from->si_uid;
3563		to->si_int = from->si_int;
3564		break;
3565	case SIL_SYS:
3566		to->si_call_addr = compat_ptr(from->si_call_addr);
3567		to->si_syscall   = from->si_syscall;
3568		to->si_arch      = from->si_arch;
3569		break;
3570	}
3571	return 0;
3572}
3573
3574static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3575				      const struct compat_siginfo __user *ufrom)
3576{
3577	struct compat_siginfo from;
3578
3579	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3580		return -EFAULT;
3581
3582	from.si_signo = signo;
3583	return post_copy_siginfo_from_user32(to, &from);
3584}
3585
3586int copy_siginfo_from_user32(struct kernel_siginfo *to,
3587			     const struct compat_siginfo __user *ufrom)
3588{
3589	struct compat_siginfo from;
3590
3591	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3592		return -EFAULT;
3593
3594	return post_copy_siginfo_from_user32(to, &from);
3595}
3596#endif /* CONFIG_COMPAT */
3597
3598/**
3599 *  do_sigtimedwait - wait for queued signals specified in @which
3600 *  @which: queued signals to wait for
3601 *  @info: if non-null, the signal's siginfo is returned here
3602 *  @ts: upper bound on process time suspension
3603 */
3604static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3605		    const struct timespec64 *ts)
3606{
3607	ktime_t *to = NULL, timeout = KTIME_MAX;
3608	struct task_struct *tsk = current;
 
3609	sigset_t mask = *which;
3610	enum pid_type type;
3611	int sig, ret = 0;
3612
3613	if (ts) {
3614		if (!timespec64_valid(ts))
3615			return -EINVAL;
3616		timeout = timespec64_to_ktime(*ts);
3617		to = &timeout;
 
 
 
 
 
3618	}
3619
3620	/*
3621	 * Invert the set of allowed signals to get those we want to block.
3622	 */
3623	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3624	signotset(&mask);
3625
3626	spin_lock_irq(&tsk->sighand->siglock);
3627	sig = dequeue_signal(tsk, &mask, info, &type);
3628	if (!sig && timeout) {
3629		/*
3630		 * None ready, temporarily unblock those we're interested
3631		 * while we are sleeping in so that we'll be awakened when
3632		 * they arrive. Unblocking is always fine, we can avoid
3633		 * set_current_blocked().
3634		 */
3635		tsk->real_blocked = tsk->blocked;
3636		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3637		recalc_sigpending();
3638		spin_unlock_irq(&tsk->sighand->siglock);
3639
3640		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3641		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3642					       HRTIMER_MODE_REL);
3643		spin_lock_irq(&tsk->sighand->siglock);
3644		__set_task_blocked(tsk, &tsk->real_blocked);
3645		sigemptyset(&tsk->real_blocked);
3646		sig = dequeue_signal(tsk, &mask, info, &type);
3647	}
3648	spin_unlock_irq(&tsk->sighand->siglock);
3649
3650	if (sig)
3651		return sig;
3652	return ret ? -EINTR : -EAGAIN;
3653}
3654
3655/**
3656 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3657 *			in @uthese
3658 *  @uthese: queued signals to wait for
3659 *  @uinfo: if non-null, the signal's siginfo is returned here
3660 *  @uts: upper bound on process time suspension
3661 *  @sigsetsize: size of sigset_t type
3662 */
3663SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3664		siginfo_t __user *, uinfo,
3665		const struct __kernel_timespec __user *, uts,
3666		size_t, sigsetsize)
3667{
3668	sigset_t these;
3669	struct timespec64 ts;
3670	kernel_siginfo_t info;
3671	int ret;
3672
3673	/* XXX: Don't preclude handling different sized sigset_t's.  */
3674	if (sigsetsize != sizeof(sigset_t))
3675		return -EINVAL;
3676
3677	if (copy_from_user(&these, uthese, sizeof(these)))
3678		return -EFAULT;
3679
3680	if (uts) {
3681		if (get_timespec64(&ts, uts))
3682			return -EFAULT;
3683	}
3684
3685	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3686
3687	if (ret > 0 && uinfo) {
3688		if (copy_siginfo_to_user(uinfo, &info))
3689			ret = -EFAULT;
3690	}
3691
3692	return ret;
3693}
3694
3695#ifdef CONFIG_COMPAT_32BIT_TIME
3696SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3697		siginfo_t __user *, uinfo,
3698		const struct old_timespec32 __user *, uts,
3699		size_t, sigsetsize)
3700{
3701	sigset_t these;
3702	struct timespec64 ts;
3703	kernel_siginfo_t info;
3704	int ret;
3705
3706	if (sigsetsize != sizeof(sigset_t))
3707		return -EINVAL;
3708
3709	if (copy_from_user(&these, uthese, sizeof(these)))
3710		return -EFAULT;
3711
3712	if (uts) {
3713		if (get_old_timespec32(&ts, uts))
3714			return -EFAULT;
3715	}
3716
3717	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3718
3719	if (ret > 0 && uinfo) {
3720		if (copy_siginfo_to_user(uinfo, &info))
3721			ret = -EFAULT;
3722	}
3723
3724	return ret;
3725}
3726#endif
3727
3728#ifdef CONFIG_COMPAT
3729COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3730		struct compat_siginfo __user *, uinfo,
3731		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3732{
3733	sigset_t s;
3734	struct timespec64 t;
3735	kernel_siginfo_t info;
3736	long ret;
3737
3738	if (sigsetsize != sizeof(sigset_t))
3739		return -EINVAL;
3740
3741	if (get_compat_sigset(&s, uthese))
3742		return -EFAULT;
3743
3744	if (uts) {
3745		if (get_timespec64(&t, uts))
3746			return -EFAULT;
3747	}
3748
3749	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3750
3751	if (ret > 0 && uinfo) {
3752		if (copy_siginfo_to_user32(uinfo, &info))
3753			ret = -EFAULT;
3754	}
3755
3756	return ret;
3757}
3758
3759#ifdef CONFIG_COMPAT_32BIT_TIME
3760COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3761		struct compat_siginfo __user *, uinfo,
3762		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3763{
3764	sigset_t s;
3765	struct timespec64 t;
3766	kernel_siginfo_t info;
3767	long ret;
3768
3769	if (sigsetsize != sizeof(sigset_t))
3770		return -EINVAL;
3771
3772	if (get_compat_sigset(&s, uthese))
3773		return -EFAULT;
3774
3775	if (uts) {
3776		if (get_old_timespec32(&t, uts))
3777			return -EFAULT;
3778	}
3779
3780	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3781
3782	if (ret > 0 && uinfo) {
3783		if (copy_siginfo_to_user32(uinfo, &info))
3784			ret = -EFAULT;
3785	}
3786
3787	return ret;
3788}
3789#endif
3790#endif
3791
3792static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3793{
3794	clear_siginfo(info);
3795	info->si_signo = sig;
3796	info->si_errno = 0;
3797	info->si_code = SI_USER;
3798	info->si_pid = task_tgid_vnr(current);
3799	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800}
3801
3802/**
3803 *  sys_kill - send a signal to a process
3804 *  @pid: the PID of the process
3805 *  @sig: signal to be sent
3806 */
3807SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3808{
3809	struct kernel_siginfo info;
3810
3811	prepare_kill_siginfo(sig, &info);
 
 
 
 
3812
3813	return kill_something_info(sig, &info, pid);
3814}
3815
3816/*
3817 * Verify that the signaler and signalee either are in the same pid namespace
3818 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3819 * namespace.
3820 */
3821static bool access_pidfd_pidns(struct pid *pid)
3822{
3823	struct pid_namespace *active = task_active_pid_ns(current);
3824	struct pid_namespace *p = ns_of_pid(pid);
3825
3826	for (;;) {
3827		if (!p)
3828			return false;
3829		if (p == active)
3830			break;
3831		p = p->parent;
3832	}
3833
3834	return true;
3835}
3836
3837static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3838		siginfo_t __user *info)
3839{
3840#ifdef CONFIG_COMPAT
3841	/*
3842	 * Avoid hooking up compat syscalls and instead handle necessary
3843	 * conversions here. Note, this is a stop-gap measure and should not be
3844	 * considered a generic solution.
3845	 */
3846	if (in_compat_syscall())
3847		return copy_siginfo_from_user32(
3848			kinfo, (struct compat_siginfo __user *)info);
3849#endif
3850	return copy_siginfo_from_user(kinfo, info);
3851}
3852
3853static struct pid *pidfd_to_pid(const struct file *file)
3854{
3855	struct pid *pid;
3856
3857	pid = pidfd_pid(file);
3858	if (!IS_ERR(pid))
3859		return pid;
3860
3861	return tgid_pidfd_to_pid(file);
3862}
3863
3864/**
3865 * sys_pidfd_send_signal - Signal a process through a pidfd
3866 * @pidfd:  file descriptor of the process
3867 * @sig:    signal to send
3868 * @info:   signal info
3869 * @flags:  future flags
3870 *
3871 * The syscall currently only signals via PIDTYPE_PID which covers
3872 * kill(<positive-pid>, <signal>. It does not signal threads or process
3873 * groups.
3874 * In order to extend the syscall to threads and process groups the @flags
3875 * argument should be used. In essence, the @flags argument will determine
3876 * what is signaled and not the file descriptor itself. Put in other words,
3877 * grouping is a property of the flags argument not a property of the file
3878 * descriptor.
3879 *
3880 * Return: 0 on success, negative errno on failure
3881 */
3882SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3883		siginfo_t __user *, info, unsigned int, flags)
3884{
3885	int ret;
3886	struct fd f;
3887	struct pid *pid;
3888	kernel_siginfo_t kinfo;
3889
3890	/* Enforce flags be set to 0 until we add an extension. */
3891	if (flags)
3892		return -EINVAL;
3893
3894	f = fdget(pidfd);
3895	if (!f.file)
3896		return -EBADF;
3897
3898	/* Is this a pidfd? */
3899	pid = pidfd_to_pid(f.file);
3900	if (IS_ERR(pid)) {
3901		ret = PTR_ERR(pid);
3902		goto err;
3903	}
3904
3905	ret = -EINVAL;
3906	if (!access_pidfd_pidns(pid))
3907		goto err;
3908
3909	if (info) {
3910		ret = copy_siginfo_from_user_any(&kinfo, info);
3911		if (unlikely(ret))
3912			goto err;
3913
3914		ret = -EINVAL;
3915		if (unlikely(sig != kinfo.si_signo))
3916			goto err;
3917
3918		/* Only allow sending arbitrary signals to yourself. */
3919		ret = -EPERM;
3920		if ((task_pid(current) != pid) &&
3921		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3922			goto err;
3923	} else {
3924		prepare_kill_siginfo(sig, &kinfo);
3925	}
3926
3927	ret = kill_pid_info(sig, &kinfo, pid);
3928
3929err:
3930	fdput(f);
3931	return ret;
3932}
3933
3934static int
3935do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3936{
3937	struct task_struct *p;
3938	int error = -ESRCH;
3939
3940	rcu_read_lock();
3941	p = find_task_by_vpid(pid);
3942	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3943		error = check_kill_permission(sig, info, p);
3944		/*
3945		 * The null signal is a permissions and process existence
3946		 * probe.  No signal is actually delivered.
3947		 */
3948		if (!error && sig) {
3949			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3950			/*
3951			 * If lock_task_sighand() failed we pretend the task
3952			 * dies after receiving the signal. The window is tiny,
3953			 * and the signal is private anyway.
3954			 */
3955			if (unlikely(error == -ESRCH))
3956				error = 0;
3957		}
3958	}
3959	rcu_read_unlock();
3960
3961	return error;
3962}
3963
3964static int do_tkill(pid_t tgid, pid_t pid, int sig)
3965{
3966	struct kernel_siginfo info;
3967
3968	clear_siginfo(&info);
3969	info.si_signo = sig;
3970	info.si_errno = 0;
3971	info.si_code = SI_TKILL;
3972	info.si_pid = task_tgid_vnr(current);
3973	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3974
3975	return do_send_specific(tgid, pid, sig, &info);
3976}
3977
3978/**
3979 *  sys_tgkill - send signal to one specific thread
3980 *  @tgid: the thread group ID of the thread
3981 *  @pid: the PID of the thread
3982 *  @sig: signal to be sent
3983 *
3984 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3985 *  exists but it's not belonging to the target process anymore. This
3986 *  method solves the problem of threads exiting and PIDs getting reused.
3987 */
3988SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3989{
3990	/* This is only valid for single tasks */
3991	if (pid <= 0 || tgid <= 0)
3992		return -EINVAL;
3993
3994	return do_tkill(tgid, pid, sig);
3995}
3996
3997/**
3998 *  sys_tkill - send signal to one specific task
3999 *  @pid: the PID of the task
4000 *  @sig: signal to be sent
4001 *
4002 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4003 */
4004SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4005{
4006	/* This is only valid for single tasks */
4007	if (pid <= 0)
4008		return -EINVAL;
4009
4010	return do_tkill(0, pid, sig);
4011}
4012
4013static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4014{
4015	/* Not even root can pretend to send signals from the kernel.
4016	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4017	 */
4018	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4019	    (task_pid_vnr(current) != pid))
 
 
4020		return -EPERM;
 
 
4021
4022	/* POSIX.1b doesn't mention process groups.  */
4023	return kill_proc_info(sig, info, pid);
4024}
4025
4026/**
4027 *  sys_rt_sigqueueinfo - send signal information to a signal
4028 *  @pid: the PID of the thread
4029 *  @sig: signal to be sent
4030 *  @uinfo: signal info to be sent
4031 */
4032SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4033		siginfo_t __user *, uinfo)
4034{
4035	kernel_siginfo_t info;
4036	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4037	if (unlikely(ret))
4038		return ret;
4039	return do_rt_sigqueueinfo(pid, sig, &info);
4040}
4041
4042#ifdef CONFIG_COMPAT
4043COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4044			compat_pid_t, pid,
4045			int, sig,
4046			struct compat_siginfo __user *, uinfo)
4047{
4048	kernel_siginfo_t info;
4049	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4050	if (unlikely(ret))
4051		return ret;
4052	return do_rt_sigqueueinfo(pid, sig, &info);
4053}
4054#endif
4055
4056static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4057{
4058	/* This is only valid for single tasks */
4059	if (pid <= 0 || tgid <= 0)
4060		return -EINVAL;
4061
4062	/* Not even root can pretend to send signals from the kernel.
4063	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4064	 */
4065	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4066	    (task_pid_vnr(current) != pid))
 
 
4067		return -EPERM;
 
 
4068
4069	return do_send_specific(tgid, pid, sig, info);
4070}
4071
4072SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4073		siginfo_t __user *, uinfo)
4074{
4075	kernel_siginfo_t info;
4076	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4077	if (unlikely(ret))
4078		return ret;
 
4079	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4080}
4081
4082#ifdef CONFIG_COMPAT
4083COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4084			compat_pid_t, tgid,
4085			compat_pid_t, pid,
4086			int, sig,
4087			struct compat_siginfo __user *, uinfo)
4088{
4089	kernel_siginfo_t info;
4090	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4091	if (unlikely(ret))
4092		return ret;
4093	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4094}
4095#endif
4096
4097/*
4098 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4099 */
4100void kernel_sigaction(int sig, __sighandler_t action)
4101{
4102	spin_lock_irq(&current->sighand->siglock);
4103	current->sighand->action[sig - 1].sa.sa_handler = action;
4104	if (action == SIG_IGN) {
4105		sigset_t mask;
4106
4107		sigemptyset(&mask);
4108		sigaddset(&mask, sig);
4109
4110		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4111		flush_sigqueue_mask(&mask, &current->pending);
4112		recalc_sigpending();
4113	}
4114	spin_unlock_irq(&current->sighand->siglock);
4115}
4116EXPORT_SYMBOL(kernel_sigaction);
4117
4118void __weak sigaction_compat_abi(struct k_sigaction *act,
4119		struct k_sigaction *oact)
4120{
4121}
4122
4123int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4124{
4125	struct task_struct *p = current, *t;
4126	struct k_sigaction *k;
4127	sigset_t mask;
4128
4129	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4130		return -EINVAL;
4131
4132	k = &p->sighand->action[sig-1];
4133
4134	spin_lock_irq(&p->sighand->siglock);
4135	if (k->sa.sa_flags & SA_IMMUTABLE) {
4136		spin_unlock_irq(&p->sighand->siglock);
4137		return -EINVAL;
4138	}
4139	if (oact)
4140		*oact = *k;
4141
4142	/*
4143	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4144	 * e.g. by having an architecture use the bit in their uapi.
4145	 */
4146	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4147
4148	/*
4149	 * Clear unknown flag bits in order to allow userspace to detect missing
4150	 * support for flag bits and to allow the kernel to use non-uapi bits
4151	 * internally.
4152	 */
4153	if (act)
4154		act->sa.sa_flags &= UAPI_SA_FLAGS;
4155	if (oact)
4156		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4157
4158	sigaction_compat_abi(act, oact);
4159
4160	if (act) {
4161		sigdelsetmask(&act->sa.sa_mask,
4162			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4163		*k = *act;
4164		/*
4165		 * POSIX 3.3.1.3:
4166		 *  "Setting a signal action to SIG_IGN for a signal that is
4167		 *   pending shall cause the pending signal to be discarded,
4168		 *   whether or not it is blocked."
4169		 *
4170		 *  "Setting a signal action to SIG_DFL for a signal that is
4171		 *   pending and whose default action is to ignore the signal
4172		 *   (for example, SIGCHLD), shall cause the pending signal to
4173		 *   be discarded, whether or not it is blocked"
4174		 */
4175		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4176			sigemptyset(&mask);
4177			sigaddset(&mask, sig);
4178			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4179			for_each_thread(p, t)
4180				flush_sigqueue_mask(&mask, &t->pending);
 
4181		}
4182	}
4183
4184	spin_unlock_irq(&p->sighand->siglock);
4185	return 0;
4186}
4187
4188#ifdef CONFIG_DYNAMIC_SIGFRAME
4189static inline void sigaltstack_lock(void)
4190	__acquires(&current->sighand->siglock)
4191{
4192	spin_lock_irq(&current->sighand->siglock);
4193}
4194
4195static inline void sigaltstack_unlock(void)
4196	__releases(&current->sighand->siglock)
4197{
4198	spin_unlock_irq(&current->sighand->siglock);
4199}
4200#else
4201static inline void sigaltstack_lock(void) { }
4202static inline void sigaltstack_unlock(void) { }
4203#endif
4204
4205static int
4206do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4207		size_t min_ss_size)
4208{
4209	struct task_struct *t = current;
4210	int ret = 0;
 
 
4211
4212	if (oss) {
4213		memset(oss, 0, sizeof(stack_t));
4214		oss->ss_sp = (void __user *) t->sas_ss_sp;
4215		oss->ss_size = t->sas_ss_size;
4216		oss->ss_flags = sas_ss_flags(sp) |
4217			(current->sas_ss_flags & SS_FLAG_BITS);
4218	}
4219
4220	if (ss) {
4221		void __user *ss_sp = ss->ss_sp;
4222		size_t ss_size = ss->ss_size;
4223		unsigned ss_flags = ss->ss_flags;
4224		int ss_mode;
4225
4226		if (unlikely(on_sig_stack(sp)))
4227			return -EPERM;
4228
4229		ss_mode = ss_flags & ~SS_FLAG_BITS;
4230		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4231				ss_mode != 0))
4232			return -EINVAL;
4233
 
4234		/*
4235		 * Return before taking any locks if no actual
4236		 * sigaltstack changes were requested.
 
 
 
4237		 */
4238		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4239		    t->sas_ss_size == ss_size &&
4240		    t->sas_ss_flags == ss_flags)
4241			return 0;
4242
4243		sigaltstack_lock();
4244		if (ss_mode == SS_DISABLE) {
4245			ss_size = 0;
4246			ss_sp = NULL;
4247		} else {
4248			if (unlikely(ss_size < min_ss_size))
4249				ret = -ENOMEM;
4250			if (!sigaltstack_size_valid(ss_size))
4251				ret = -ENOMEM;
4252		}
4253		if (!ret) {
4254			t->sas_ss_sp = (unsigned long) ss_sp;
4255			t->sas_ss_size = ss_size;
4256			t->sas_ss_flags = ss_flags;
4257		}
4258		sigaltstack_unlock();
 
 
 
 
 
 
 
4259	}
4260	return ret;
 
 
4261}
4262
4263SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4264{
4265	stack_t new, old;
4266	int err;
4267	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4268		return -EFAULT;
4269	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4270			      current_user_stack_pointer(),
4271			      MINSIGSTKSZ);
4272	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4273		err = -EFAULT;
4274	return err;
4275}
4276
4277int restore_altstack(const stack_t __user *uss)
4278{
4279	stack_t new;
4280	if (copy_from_user(&new, uss, sizeof(stack_t)))
4281		return -EFAULT;
4282	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4283			     MINSIGSTKSZ);
4284	/* squash all but EFAULT for now */
4285	return 0;
4286}
4287
4288int __save_altstack(stack_t __user *uss, unsigned long sp)
4289{
4290	struct task_struct *t = current;
4291	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4292		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4293		__put_user(t->sas_ss_size, &uss->ss_size);
4294	return err;
4295}
4296
4297#ifdef CONFIG_COMPAT
4298static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4299				 compat_stack_t __user *uoss_ptr)
 
4300{
4301	stack_t uss, uoss;
4302	int ret;
 
4303
4304	if (uss_ptr) {
4305		compat_stack_t uss32;
 
 
4306		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4307			return -EFAULT;
4308		uss.ss_sp = compat_ptr(uss32.ss_sp);
4309		uss.ss_flags = uss32.ss_flags;
4310		uss.ss_size = uss32.ss_size;
4311	}
4312	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4313			     compat_user_stack_pointer(),
4314			     COMPAT_MINSIGSTKSZ);
 
 
 
4315	if (ret >= 0 && uoss_ptr)  {
4316		compat_stack_t old;
4317		memset(&old, 0, sizeof(old));
4318		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4319		old.ss_flags = uoss.ss_flags;
4320		old.ss_size = uoss.ss_size;
4321		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4322			ret = -EFAULT;
4323	}
4324	return ret;
4325}
4326
4327COMPAT_SYSCALL_DEFINE2(sigaltstack,
4328			const compat_stack_t __user *, uss_ptr,
4329			compat_stack_t __user *, uoss_ptr)
4330{
4331	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4332}
4333
4334int compat_restore_altstack(const compat_stack_t __user *uss)
4335{
4336	int err = do_compat_sigaltstack(uss, NULL);
4337	/* squash all but -EFAULT for now */
4338	return err == -EFAULT ? err : 0;
4339}
4340
4341int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4342{
4343	int err;
4344	struct task_struct *t = current;
4345	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4346			 &uss->ss_sp) |
4347		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4348		__put_user(t->sas_ss_size, &uss->ss_size);
4349	return err;
4350}
4351#endif
4352
4353#ifdef __ARCH_WANT_SYS_SIGPENDING
4354
4355/**
4356 *  sys_sigpending - examine pending signals
4357 *  @uset: where mask of pending signal is returned
4358 */
4359SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4360{
4361	sigset_t set;
4362
4363	if (sizeof(old_sigset_t) > sizeof(*uset))
4364		return -EINVAL;
4365
4366	do_sigpending(&set);
4367
4368	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4369		return -EFAULT;
4370
4371	return 0;
4372}
4373
4374#ifdef CONFIG_COMPAT
4375COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4376{
4377	sigset_t set;
4378
4379	do_sigpending(&set);
4380
4381	return put_user(set.sig[0], set32);
4382}
4383#endif
4384
4385#endif
4386
4387#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4388/**
4389 *  sys_sigprocmask - examine and change blocked signals
4390 *  @how: whether to add, remove, or set signals
4391 *  @nset: signals to add or remove (if non-null)
4392 *  @oset: previous value of signal mask if non-null
4393 *
4394 * Some platforms have their own version with special arguments;
4395 * others support only sys_rt_sigprocmask.
4396 */
4397
4398SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4399		old_sigset_t __user *, oset)
4400{
4401	old_sigset_t old_set, new_set;
4402	sigset_t new_blocked;
4403
4404	old_set = current->blocked.sig[0];
4405
4406	if (nset) {
4407		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4408			return -EFAULT;
4409
4410		new_blocked = current->blocked;
4411
4412		switch (how) {
4413		case SIG_BLOCK:
4414			sigaddsetmask(&new_blocked, new_set);
4415			break;
4416		case SIG_UNBLOCK:
4417			sigdelsetmask(&new_blocked, new_set);
4418			break;
4419		case SIG_SETMASK:
4420			new_blocked.sig[0] = new_set;
4421			break;
4422		default:
4423			return -EINVAL;
4424		}
4425
4426		set_current_blocked(&new_blocked);
4427	}
4428
4429	if (oset) {
4430		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4431			return -EFAULT;
4432	}
4433
4434	return 0;
4435}
4436#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4437
4438#ifndef CONFIG_ODD_RT_SIGACTION
4439/**
4440 *  sys_rt_sigaction - alter an action taken by a process
4441 *  @sig: signal to be sent
4442 *  @act: new sigaction
4443 *  @oact: used to save the previous sigaction
4444 *  @sigsetsize: size of sigset_t type
4445 */
4446SYSCALL_DEFINE4(rt_sigaction, int, sig,
4447		const struct sigaction __user *, act,
4448		struct sigaction __user *, oact,
4449		size_t, sigsetsize)
4450{
4451	struct k_sigaction new_sa, old_sa;
4452	int ret;
4453
4454	/* XXX: Don't preclude handling different sized sigset_t's.  */
4455	if (sigsetsize != sizeof(sigset_t))
4456		return -EINVAL;
4457
4458	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4459		return -EFAULT;
 
 
4460
4461	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4462	if (ret)
4463		return ret;
4464
4465	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4466		return -EFAULT;
4467
4468	return 0;
 
 
4469}
4470#ifdef CONFIG_COMPAT
4471COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4472		const struct compat_sigaction __user *, act,
4473		struct compat_sigaction __user *, oact,
4474		compat_size_t, sigsetsize)
4475{
4476	struct k_sigaction new_ka, old_ka;
 
4477#ifdef __ARCH_HAS_SA_RESTORER
4478	compat_uptr_t restorer;
4479#endif
4480	int ret;
4481
4482	/* XXX: Don't preclude handling different sized sigset_t's.  */
4483	if (sigsetsize != sizeof(compat_sigset_t))
4484		return -EINVAL;
4485
4486	if (act) {
4487		compat_uptr_t handler;
4488		ret = get_user(handler, &act->sa_handler);
4489		new_ka.sa.sa_handler = compat_ptr(handler);
4490#ifdef __ARCH_HAS_SA_RESTORER
4491		ret |= get_user(restorer, &act->sa_restorer);
4492		new_ka.sa.sa_restorer = compat_ptr(restorer);
4493#endif
4494		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4495		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4496		if (ret)
4497			return -EFAULT;
 
4498	}
4499
4500	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4501	if (!ret && oact) {
 
4502		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4503			       &oact->sa_handler);
4504		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4505					 sizeof(oact->sa_mask));
4506		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4507#ifdef __ARCH_HAS_SA_RESTORER
4508		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4509				&oact->sa_restorer);
4510#endif
4511	}
4512	return ret;
4513}
4514#endif
4515#endif /* !CONFIG_ODD_RT_SIGACTION */
4516
4517#ifdef CONFIG_OLD_SIGACTION
4518SYSCALL_DEFINE3(sigaction, int, sig,
4519		const struct old_sigaction __user *, act,
4520	        struct old_sigaction __user *, oact)
4521{
4522	struct k_sigaction new_ka, old_ka;
4523	int ret;
4524
4525	if (act) {
4526		old_sigset_t mask;
4527		if (!access_ok(act, sizeof(*act)) ||
4528		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4529		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4530		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4531		    __get_user(mask, &act->sa_mask))
4532			return -EFAULT;
4533#ifdef __ARCH_HAS_KA_RESTORER
4534		new_ka.ka_restorer = NULL;
4535#endif
4536		siginitset(&new_ka.sa.sa_mask, mask);
4537	}
4538
4539	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4540
4541	if (!ret && oact) {
4542		if (!access_ok(oact, sizeof(*oact)) ||
4543		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4544		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4545		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4546		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4547			return -EFAULT;
4548	}
4549
4550	return ret;
4551}
4552#endif
4553#ifdef CONFIG_COMPAT_OLD_SIGACTION
4554COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4555		const struct compat_old_sigaction __user *, act,
4556	        struct compat_old_sigaction __user *, oact)
4557{
4558	struct k_sigaction new_ka, old_ka;
4559	int ret;
4560	compat_old_sigset_t mask;
4561	compat_uptr_t handler, restorer;
4562
4563	if (act) {
4564		if (!access_ok(act, sizeof(*act)) ||
4565		    __get_user(handler, &act->sa_handler) ||
4566		    __get_user(restorer, &act->sa_restorer) ||
4567		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4568		    __get_user(mask, &act->sa_mask))
4569			return -EFAULT;
4570
4571#ifdef __ARCH_HAS_KA_RESTORER
4572		new_ka.ka_restorer = NULL;
4573#endif
4574		new_ka.sa.sa_handler = compat_ptr(handler);
4575		new_ka.sa.sa_restorer = compat_ptr(restorer);
4576		siginitset(&new_ka.sa.sa_mask, mask);
4577	}
4578
4579	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4580
4581	if (!ret && oact) {
4582		if (!access_ok(oact, sizeof(*oact)) ||
4583		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4584			       &oact->sa_handler) ||
4585		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4586			       &oact->sa_restorer) ||
4587		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4588		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4589			return -EFAULT;
4590	}
4591	return ret;
4592}
4593#endif
4594
4595#ifdef CONFIG_SGETMASK_SYSCALL
4596
4597/*
4598 * For backwards compatibility.  Functionality superseded by sigprocmask.
4599 */
4600SYSCALL_DEFINE0(sgetmask)
4601{
4602	/* SMP safe */
4603	return current->blocked.sig[0];
4604}
4605
4606SYSCALL_DEFINE1(ssetmask, int, newmask)
4607{
4608	int old = current->blocked.sig[0];
4609	sigset_t newset;
4610
4611	siginitset(&newset, newmask);
4612	set_current_blocked(&newset);
4613
4614	return old;
4615}
4616#endif /* CONFIG_SGETMASK_SYSCALL */
4617
4618#ifdef __ARCH_WANT_SYS_SIGNAL
4619/*
4620 * For backwards compatibility.  Functionality superseded by sigaction.
4621 */
4622SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4623{
4624	struct k_sigaction new_sa, old_sa;
4625	int ret;
4626
4627	new_sa.sa.sa_handler = handler;
4628	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4629	sigemptyset(&new_sa.sa.sa_mask);
4630
4631	ret = do_sigaction(sig, &new_sa, &old_sa);
4632
4633	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4634}
4635#endif /* __ARCH_WANT_SYS_SIGNAL */
4636
4637#ifdef __ARCH_WANT_SYS_PAUSE
4638
4639SYSCALL_DEFINE0(pause)
4640{
4641	while (!signal_pending(current)) {
4642		__set_current_state(TASK_INTERRUPTIBLE);
4643		schedule();
4644	}
4645	return -ERESTARTNOHAND;
4646}
4647
4648#endif
4649
4650static int sigsuspend(sigset_t *set)
4651{
4652	current->saved_sigmask = current->blocked;
4653	set_current_blocked(set);
4654
4655	while (!signal_pending(current)) {
4656		__set_current_state(TASK_INTERRUPTIBLE);
4657		schedule();
4658	}
4659	set_restore_sigmask();
4660	return -ERESTARTNOHAND;
4661}
4662
4663/**
4664 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4665 *	@unewset value until a signal is received
4666 *  @unewset: new signal mask value
4667 *  @sigsetsize: size of sigset_t type
4668 */
4669SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4670{
4671	sigset_t newset;
4672
4673	/* XXX: Don't preclude handling different sized sigset_t's.  */
4674	if (sigsetsize != sizeof(sigset_t))
4675		return -EINVAL;
4676
4677	if (copy_from_user(&newset, unewset, sizeof(newset)))
4678		return -EFAULT;
4679	return sigsuspend(&newset);
4680}
4681 
4682#ifdef CONFIG_COMPAT
4683COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4684{
 
4685	sigset_t newset;
 
4686
4687	/* XXX: Don't preclude handling different sized sigset_t's.  */
4688	if (sigsetsize != sizeof(sigset_t))
4689		return -EINVAL;
4690
4691	if (get_compat_sigset(&newset, unewset))
4692		return -EFAULT;
 
4693	return sigsuspend(&newset);
 
 
 
 
4694}
4695#endif
4696
4697#ifdef CONFIG_OLD_SIGSUSPEND
4698SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4699{
4700	sigset_t blocked;
4701	siginitset(&blocked, mask);
4702	return sigsuspend(&blocked);
4703}
4704#endif
4705#ifdef CONFIG_OLD_SIGSUSPEND3
4706SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4707{
4708	sigset_t blocked;
4709	siginitset(&blocked, mask);
4710	return sigsuspend(&blocked);
4711}
4712#endif
4713
4714__weak const char *arch_vma_name(struct vm_area_struct *vma)
4715{
4716	return NULL;
4717}
4718
4719static inline void siginfo_buildtime_checks(void)
4720{
4721	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4722
4723	/* Verify the offsets in the two siginfos match */
4724#define CHECK_OFFSET(field) \
4725	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4726
4727	/* kill */
4728	CHECK_OFFSET(si_pid);
4729	CHECK_OFFSET(si_uid);
4730
4731	/* timer */
4732	CHECK_OFFSET(si_tid);
4733	CHECK_OFFSET(si_overrun);
4734	CHECK_OFFSET(si_value);
4735
4736	/* rt */
4737	CHECK_OFFSET(si_pid);
4738	CHECK_OFFSET(si_uid);
4739	CHECK_OFFSET(si_value);
4740
4741	/* sigchld */
4742	CHECK_OFFSET(si_pid);
4743	CHECK_OFFSET(si_uid);
4744	CHECK_OFFSET(si_status);
4745	CHECK_OFFSET(si_utime);
4746	CHECK_OFFSET(si_stime);
4747
4748	/* sigfault */
4749	CHECK_OFFSET(si_addr);
4750	CHECK_OFFSET(si_trapno);
4751	CHECK_OFFSET(si_addr_lsb);
4752	CHECK_OFFSET(si_lower);
4753	CHECK_OFFSET(si_upper);
4754	CHECK_OFFSET(si_pkey);
4755	CHECK_OFFSET(si_perf_data);
4756	CHECK_OFFSET(si_perf_type);
4757	CHECK_OFFSET(si_perf_flags);
4758
4759	/* sigpoll */
4760	CHECK_OFFSET(si_band);
4761	CHECK_OFFSET(si_fd);
4762
4763	/* sigsys */
4764	CHECK_OFFSET(si_call_addr);
4765	CHECK_OFFSET(si_syscall);
4766	CHECK_OFFSET(si_arch);
4767#undef CHECK_OFFSET
4768
4769	/* usb asyncio */
4770	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4771		     offsetof(struct siginfo, si_addr));
4772	if (sizeof(int) == sizeof(void __user *)) {
4773		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4774			     sizeof(void __user *));
4775	} else {
4776		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4777			      sizeof_field(struct siginfo, si_uid)) !=
4778			     sizeof(void __user *));
4779		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4780			     offsetof(struct siginfo, si_uid));
4781	}
4782#ifdef CONFIG_COMPAT
4783	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4784		     offsetof(struct compat_siginfo, si_addr));
4785	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4786		     sizeof(compat_uptr_t));
4787	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4788		     sizeof_field(struct siginfo, si_pid));
4789#endif
4790}
4791
4792#if defined(CONFIG_SYSCTL)
4793static struct ctl_table signal_debug_table[] = {
4794#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4795	{
4796		.procname	= "exception-trace",
4797		.data		= &show_unhandled_signals,
4798		.maxlen		= sizeof(int),
4799		.mode		= 0644,
4800		.proc_handler	= proc_dointvec
4801	},
4802#endif
4803	{ }
4804};
4805
4806static int __init init_signal_sysctls(void)
4807{
4808	register_sysctl_init("debug", signal_debug_table);
4809	return 0;
4810}
4811early_initcall(init_signal_sysctls);
4812#endif /* CONFIG_SYSCTL */
4813
4814void __init signals_init(void)
4815{
4816	siginfo_buildtime_checks();
4817
4818	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4819}
4820
4821#ifdef CONFIG_KGDB_KDB
4822#include <linux/kdb.h>
4823/*
4824 * kdb_send_sig - Allows kdb to send signals without exposing
4825 * signal internals.  This function checks if the required locks are
4826 * available before calling the main signal code, to avoid kdb
4827 * deadlocks.
4828 */
4829void kdb_send_sig(struct task_struct *t, int sig)
 
4830{
4831	static struct task_struct *kdb_prev_t;
4832	int new_t, ret;
4833	if (!spin_trylock(&t->sighand->siglock)) {
4834		kdb_printf("Can't do kill command now.\n"
4835			   "The sigmask lock is held somewhere else in "
4836			   "kernel, try again later\n");
4837		return;
4838	}
 
4839	new_t = kdb_prev_t != t;
4840	kdb_prev_t = t;
4841	if (!task_is_running(t) && new_t) {
4842		spin_unlock(&t->sighand->siglock);
4843		kdb_printf("Process is not RUNNING, sending a signal from "
4844			   "kdb risks deadlock\n"
4845			   "on the run queue locks. "
4846			   "The signal has _not_ been sent.\n"
4847			   "Reissue the kill command if you want to risk "
4848			   "the deadlock.\n");
4849		return;
4850	}
4851	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4852	spin_unlock(&t->sighand->siglock);
4853	if (ret)
4854		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4855			   sig, t->pid);
4856	else
4857		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4858}
4859#endif	/* CONFIG_KGDB_KDB */