Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
  96	 */
  97	return !t->ptrace;
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 280		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 281	}
 282}
 283
 284/**
 285 * task_clear_jobctl_pending - clear jobctl pending bits
 286 * @task: target task
 287 * @mask: pending bits to clear
 288 *
 289 * Clear @mask from @task->jobctl.  @mask must be subset of
 290 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 291 * STOP bits are cleared together.
 292 *
 293 * If clearing of @mask leaves no stop or trap pending, this function calls
 294 * task_clear_jobctl_trapping().
 295 *
 296 * CONTEXT:
 297 * Must be called with @task->sighand->siglock held.
 298 */
 299void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 300{
 301	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 302
 303	if (mask & JOBCTL_STOP_PENDING)
 304		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 305
 306	task->jobctl &= ~mask;
 307
 308	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 309		task_clear_jobctl_trapping(task);
 310}
 311
 312/**
 313 * task_participate_group_stop - participate in a group stop
 314 * @task: task participating in a group stop
 315 *
 316 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 317 * Group stop states are cleared and the group stop count is consumed if
 318 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 319 * stop, the appropriate %SIGNAL_* flags are set.
 320 *
 321 * CONTEXT:
 322 * Must be called with @task->sighand->siglock held.
 323 *
 324 * RETURNS:
 325 * %true if group stop completion should be notified to the parent, %false
 326 * otherwise.
 327 */
 328static bool task_participate_group_stop(struct task_struct *task)
 329{
 330	struct signal_struct *sig = task->signal;
 331	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 332
 333	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 334
 335	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 336
 337	if (!consume)
 338		return false;
 339
 340	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 341		sig->group_stop_count--;
 342
 343	/*
 344	 * Tell the caller to notify completion iff we are entering into a
 345	 * fresh group stop.  Read comment in do_signal_stop() for details.
 346	 */
 347	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 348		sig->flags = SIGNAL_STOP_STOPPED;
 349		return true;
 350	}
 351	return false;
 352}
 353
 354/*
 355 * allocate a new signal queue record
 356 * - this may be called without locks if and only if t == current, otherwise an
 357 *   appropriate lock must be held to stop the target task from exiting
 358 */
 359static struct sigqueue *
 360__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 361{
 362	struct sigqueue *q = NULL;
 363	struct user_struct *user;
 364
 365	/*
 366	 * Protect access to @t credentials. This can go away when all
 367	 * callers hold rcu read lock.
 368	 */
 369	rcu_read_lock();
 370	user = get_uid(__task_cred(t)->user);
 371	atomic_inc(&user->sigpending);
 372	rcu_read_unlock();
 373
 374	if (override_rlimit ||
 375	    atomic_read(&user->sigpending) <=
 376			task_rlimit(t, RLIMIT_SIGPENDING)) {
 377		q = kmem_cache_alloc(sigqueue_cachep, flags);
 378	} else {
 379		print_dropped_signal(sig);
 380	}
 381
 382	if (unlikely(q == NULL)) {
 383		atomic_dec(&user->sigpending);
 384		free_uid(user);
 385	} else {
 386		INIT_LIST_HEAD(&q->list);
 387		q->flags = 0;
 388		q->user = user;
 389	}
 390
 391	return q;
 392}
 393
 394static void __sigqueue_free(struct sigqueue *q)
 395{
 396	if (q->flags & SIGQUEUE_PREALLOC)
 397		return;
 398	atomic_dec(&q->user->sigpending);
 399	free_uid(q->user);
 400	kmem_cache_free(sigqueue_cachep, q);
 401}
 402
 403void flush_sigqueue(struct sigpending *queue)
 404{
 405	struct sigqueue *q;
 406
 407	sigemptyset(&queue->signal);
 408	while (!list_empty(&queue->list)) {
 409		q = list_entry(queue->list.next, struct sigqueue , list);
 410		list_del_init(&q->list);
 411		__sigqueue_free(q);
 412	}
 413}
 414
 415/*
 416 * Flush all pending signals for a task.
 417 */
 418void __flush_signals(struct task_struct *t)
 419{
 420	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 421	flush_sigqueue(&t->pending);
 422	flush_sigqueue(&t->signal->shared_pending);
 423}
 424
 425void flush_signals(struct task_struct *t)
 426{
 427	unsigned long flags;
 428
 429	spin_lock_irqsave(&t->sighand->siglock, flags);
 430	__flush_signals(t);
 431	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 432}
 433
 434static void __flush_itimer_signals(struct sigpending *pending)
 435{
 436	sigset_t signal, retain;
 437	struct sigqueue *q, *n;
 438
 439	signal = pending->signal;
 440	sigemptyset(&retain);
 441
 442	list_for_each_entry_safe(q, n, &pending->list, list) {
 443		int sig = q->info.si_signo;
 444
 445		if (likely(q->info.si_code != SI_TIMER)) {
 446			sigaddset(&retain, sig);
 447		} else {
 448			sigdelset(&signal, sig);
 449			list_del_init(&q->list);
 450			__sigqueue_free(q);
 451		}
 452	}
 453
 454	sigorsets(&pending->signal, &signal, &retain);
 455}
 456
 457void flush_itimer_signals(void)
 458{
 459	struct task_struct *tsk = current;
 460	unsigned long flags;
 461
 462	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 463	__flush_itimer_signals(&tsk->pending);
 464	__flush_itimer_signals(&tsk->signal->shared_pending);
 465	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 466}
 467
 468void ignore_signals(struct task_struct *t)
 469{
 470	int i;
 471
 472	for (i = 0; i < _NSIG; ++i)
 473		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 474
 475	flush_signals(t);
 476}
 477
 478/*
 479 * Flush all handlers for a task.
 480 */
 481
 482void
 483flush_signal_handlers(struct task_struct *t, int force_default)
 484{
 485	int i;
 486	struct k_sigaction *ka = &t->sighand->action[0];
 487	for (i = _NSIG ; i != 0 ; i--) {
 488		if (force_default || ka->sa.sa_handler != SIG_IGN)
 489			ka->sa.sa_handler = SIG_DFL;
 490		ka->sa.sa_flags = 0;
 491#ifdef __ARCH_HAS_SA_RESTORER
 492		ka->sa.sa_restorer = NULL;
 493#endif
 494		sigemptyset(&ka->sa.sa_mask);
 495		ka++;
 496	}
 497}
 498
 499int unhandled_signal(struct task_struct *tsk, int sig)
 500{
 501	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 502	if (is_global_init(tsk))
 503		return 1;
 504	if (handler != SIG_IGN && handler != SIG_DFL)
 505		return 0;
 506	/* if ptraced, let the tracer determine */
 507	return !tsk->ptrace;
 508}
 509
 510/*
 511 * Notify the system that a driver wants to block all signals for this
 512 * process, and wants to be notified if any signals at all were to be
 513 * sent/acted upon.  If the notifier routine returns non-zero, then the
 514 * signal will be acted upon after all.  If the notifier routine returns 0,
 515 * then then signal will be blocked.  Only one block per process is
 516 * allowed.  priv is a pointer to private data that the notifier routine
 517 * can use to determine if the signal should be blocked or not.
 518 */
 519void
 520block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 521{
 522	unsigned long flags;
 523
 524	spin_lock_irqsave(&current->sighand->siglock, flags);
 525	current->notifier_mask = mask;
 526	current->notifier_data = priv;
 527	current->notifier = notifier;
 528	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 529}
 530
 531/* Notify the system that blocking has ended. */
 532
 533void
 534unblock_all_signals(void)
 535{
 536	unsigned long flags;
 537
 538	spin_lock_irqsave(&current->sighand->siglock, flags);
 539	current->notifier = NULL;
 540	current->notifier_data = NULL;
 541	recalc_sigpending();
 542	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 543}
 544
 545static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 546{
 547	struct sigqueue *q, *first = NULL;
 548
 549	/*
 550	 * Collect the siginfo appropriate to this signal.  Check if
 551	 * there is another siginfo for the same signal.
 552	*/
 553	list_for_each_entry(q, &list->list, list) {
 554		if (q->info.si_signo == sig) {
 555			if (first)
 556				goto still_pending;
 557			first = q;
 558		}
 559	}
 560
 561	sigdelset(&list->signal, sig);
 562
 563	if (first) {
 564still_pending:
 565		list_del_init(&first->list);
 566		copy_siginfo(info, &first->info);
 567		__sigqueue_free(first);
 568	} else {
 569		/*
 570		 * Ok, it wasn't in the queue.  This must be
 571		 * a fast-pathed signal or we must have been
 572		 * out of queue space.  So zero out the info.
 573		 */
 574		info->si_signo = sig;
 575		info->si_errno = 0;
 576		info->si_code = SI_USER;
 577		info->si_pid = 0;
 578		info->si_uid = 0;
 579	}
 580}
 581
 582static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 583			siginfo_t *info)
 584{
 585	int sig = next_signal(pending, mask);
 586
 587	if (sig) {
 588		if (current->notifier) {
 589			if (sigismember(current->notifier_mask, sig)) {
 590				if (!(current->notifier)(current->notifier_data)) {
 591					clear_thread_flag(TIF_SIGPENDING);
 592					return 0;
 593				}
 594			}
 595		}
 596
 597		collect_signal(sig, pending, info);
 598	}
 599
 600	return sig;
 601}
 602
 603/*
 604 * Dequeue a signal and return the element to the caller, which is
 605 * expected to free it.
 606 *
 607 * All callers have to hold the siglock.
 608 */
 609int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 610{
 611	int signr;
 612
 613	/* We only dequeue private signals from ourselves, we don't let
 614	 * signalfd steal them
 615	 */
 616	signr = __dequeue_signal(&tsk->pending, mask, info);
 617	if (!signr) {
 618		signr = __dequeue_signal(&tsk->signal->shared_pending,
 619					 mask, info);
 620		/*
 621		 * itimer signal ?
 622		 *
 623		 * itimers are process shared and we restart periodic
 624		 * itimers in the signal delivery path to prevent DoS
 625		 * attacks in the high resolution timer case. This is
 626		 * compliant with the old way of self-restarting
 627		 * itimers, as the SIGALRM is a legacy signal and only
 628		 * queued once. Changing the restart behaviour to
 629		 * restart the timer in the signal dequeue path is
 630		 * reducing the timer noise on heavy loaded !highres
 631		 * systems too.
 632		 */
 633		if (unlikely(signr == SIGALRM)) {
 634			struct hrtimer *tmr = &tsk->signal->real_timer;
 635
 636			if (!hrtimer_is_queued(tmr) &&
 637			    tsk->signal->it_real_incr.tv64 != 0) {
 638				hrtimer_forward(tmr, tmr->base->get_time(),
 639						tsk->signal->it_real_incr);
 640				hrtimer_restart(tmr);
 641			}
 642		}
 643	}
 644
 645	recalc_sigpending();
 646	if (!signr)
 647		return 0;
 648
 649	if (unlikely(sig_kernel_stop(signr))) {
 650		/*
 651		 * Set a marker that we have dequeued a stop signal.  Our
 652		 * caller might release the siglock and then the pending
 653		 * stop signal it is about to process is no longer in the
 654		 * pending bitmasks, but must still be cleared by a SIGCONT
 655		 * (and overruled by a SIGKILL).  So those cases clear this
 656		 * shared flag after we've set it.  Note that this flag may
 657		 * remain set after the signal we return is ignored or
 658		 * handled.  That doesn't matter because its only purpose
 659		 * is to alert stop-signal processing code when another
 660		 * processor has come along and cleared the flag.
 661		 */
 662		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 663	}
 664	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 665		/*
 666		 * Release the siglock to ensure proper locking order
 667		 * of timer locks outside of siglocks.  Note, we leave
 668		 * irqs disabled here, since the posix-timers code is
 669		 * about to disable them again anyway.
 670		 */
 671		spin_unlock(&tsk->sighand->siglock);
 672		do_schedule_next_timer(info);
 673		spin_lock(&tsk->sighand->siglock);
 674	}
 675	return signr;
 676}
 677
 678/*
 679 * Tell a process that it has a new active signal..
 680 *
 681 * NOTE! we rely on the previous spin_lock to
 682 * lock interrupts for us! We can only be called with
 683 * "siglock" held, and the local interrupt must
 684 * have been disabled when that got acquired!
 685 *
 686 * No need to set need_resched since signal event passing
 687 * goes through ->blocked
 688 */
 689void signal_wake_up_state(struct task_struct *t, unsigned int state)
 690{
 691	set_tsk_thread_flag(t, TIF_SIGPENDING);
 692	/*
 693	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 694	 * case. We don't check t->state here because there is a race with it
 695	 * executing another processor and just now entering stopped state.
 696	 * By using wake_up_state, we ensure the process will wake up and
 697	 * handle its death signal.
 698	 */
 699	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 700		kick_process(t);
 701}
 702
 703/*
 704 * Remove signals in mask from the pending set and queue.
 705 * Returns 1 if any signals were found.
 706 *
 707 * All callers must be holding the siglock.
 708 *
 709 * This version takes a sigset mask and looks at all signals,
 710 * not just those in the first mask word.
 711 */
 712static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 713{
 714	struct sigqueue *q, *n;
 715	sigset_t m;
 716
 717	sigandsets(&m, mask, &s->signal);
 718	if (sigisemptyset(&m))
 719		return 0;
 720
 721	sigandnsets(&s->signal, &s->signal, mask);
 722	list_for_each_entry_safe(q, n, &s->list, list) {
 723		if (sigismember(mask, q->info.si_signo)) {
 724			list_del_init(&q->list);
 725			__sigqueue_free(q);
 726		}
 727	}
 728	return 1;
 729}
 730/*
 731 * Remove signals in mask from the pending set and queue.
 732 * Returns 1 if any signals were found.
 733 *
 734 * All callers must be holding the siglock.
 735 */
 736static int rm_from_queue(unsigned long mask, struct sigpending *s)
 737{
 738	struct sigqueue *q, *n;
 739
 740	if (!sigtestsetmask(&s->signal, mask))
 741		return 0;
 742
 743	sigdelsetmask(&s->signal, mask);
 744	list_for_each_entry_safe(q, n, &s->list, list) {
 745		if (q->info.si_signo < SIGRTMIN &&
 746		    (mask & sigmask(q->info.si_signo))) {
 747			list_del_init(&q->list);
 748			__sigqueue_free(q);
 749		}
 750	}
 751	return 1;
 752}
 753
 754static inline int is_si_special(const struct siginfo *info)
 755{
 756	return info <= SEND_SIG_FORCED;
 757}
 758
 759static inline bool si_fromuser(const struct siginfo *info)
 760{
 761	return info == SEND_SIG_NOINFO ||
 762		(!is_si_special(info) && SI_FROMUSER(info));
 763}
 764
 765/*
 766 * called with RCU read lock from check_kill_permission()
 767 */
 768static int kill_ok_by_cred(struct task_struct *t)
 769{
 770	const struct cred *cred = current_cred();
 771	const struct cred *tcred = __task_cred(t);
 772
 773	if (uid_eq(cred->euid, tcred->suid) ||
 774	    uid_eq(cred->euid, tcred->uid)  ||
 775	    uid_eq(cred->uid,  tcred->suid) ||
 776	    uid_eq(cred->uid,  tcred->uid))
 777		return 1;
 778
 779	if (ns_capable(tcred->user_ns, CAP_KILL))
 780		return 1;
 781
 782	return 0;
 783}
 784
 785/*
 786 * Bad permissions for sending the signal
 787 * - the caller must hold the RCU read lock
 788 */
 789static int check_kill_permission(int sig, struct siginfo *info,
 790				 struct task_struct *t)
 791{
 792	struct pid *sid;
 793	int error;
 794
 795	if (!valid_signal(sig))
 796		return -EINVAL;
 797
 798	if (!si_fromuser(info))
 799		return 0;
 800
 801	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 802	if (error)
 803		return error;
 804
 805	if (!same_thread_group(current, t) &&
 806	    !kill_ok_by_cred(t)) {
 807		switch (sig) {
 808		case SIGCONT:
 809			sid = task_session(t);
 810			/*
 811			 * We don't return the error if sid == NULL. The
 812			 * task was unhashed, the caller must notice this.
 813			 */
 814			if (!sid || sid == task_session(current))
 815				break;
 816		default:
 817			return -EPERM;
 818		}
 819	}
 820
 821	return security_task_kill(t, info, sig, 0);
 822}
 823
 824/**
 825 * ptrace_trap_notify - schedule trap to notify ptracer
 826 * @t: tracee wanting to notify tracer
 827 *
 828 * This function schedules sticky ptrace trap which is cleared on the next
 829 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 830 * ptracer.
 831 *
 832 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 833 * ptracer is listening for events, tracee is woken up so that it can
 834 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 835 * eventually taken without returning to userland after the existing traps
 836 * are finished by PTRACE_CONT.
 837 *
 838 * CONTEXT:
 839 * Must be called with @task->sighand->siglock held.
 840 */
 841static void ptrace_trap_notify(struct task_struct *t)
 842{
 843	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 844	assert_spin_locked(&t->sighand->siglock);
 845
 846	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 847	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 848}
 849
 850/*
 851 * Handle magic process-wide effects of stop/continue signals. Unlike
 852 * the signal actions, these happen immediately at signal-generation
 853 * time regardless of blocking, ignoring, or handling.  This does the
 854 * actual continuing for SIGCONT, but not the actual stopping for stop
 855 * signals. The process stop is done as a signal action for SIG_DFL.
 856 *
 857 * Returns true if the signal should be actually delivered, otherwise
 858 * it should be dropped.
 859 */
 860static bool prepare_signal(int sig, struct task_struct *p, bool force)
 861{
 862	struct signal_struct *signal = p->signal;
 863	struct task_struct *t;
 864
 865	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 866		if (signal->flags & SIGNAL_GROUP_COREDUMP)
 867			return sig == SIGKILL;
 868		/*
 869		 * The process is in the middle of dying, nothing to do.
 870		 */
 871	} else if (sig_kernel_stop(sig)) {
 872		/*
 873		 * This is a stop signal.  Remove SIGCONT from all queues.
 874		 */
 875		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 876		t = p;
 877		do {
 878			rm_from_queue(sigmask(SIGCONT), &t->pending);
 879		} while_each_thread(p, t);
 880	} else if (sig == SIGCONT) {
 881		unsigned int why;
 882		/*
 883		 * Remove all stop signals from all queues, wake all threads.
 884		 */
 885		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 886		t = p;
 887		do {
 888			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 889			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 890			if (likely(!(t->ptrace & PT_SEIZED)))
 891				wake_up_state(t, __TASK_STOPPED);
 892			else
 893				ptrace_trap_notify(t);
 894		} while_each_thread(p, t);
 895
 896		/*
 897		 * Notify the parent with CLD_CONTINUED if we were stopped.
 898		 *
 899		 * If we were in the middle of a group stop, we pretend it
 900		 * was already finished, and then continued. Since SIGCHLD
 901		 * doesn't queue we report only CLD_STOPPED, as if the next
 902		 * CLD_CONTINUED was dropped.
 903		 */
 904		why = 0;
 905		if (signal->flags & SIGNAL_STOP_STOPPED)
 906			why |= SIGNAL_CLD_CONTINUED;
 907		else if (signal->group_stop_count)
 908			why |= SIGNAL_CLD_STOPPED;
 909
 910		if (why) {
 911			/*
 912			 * The first thread which returns from do_signal_stop()
 913			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 914			 * notify its parent. See get_signal_to_deliver().
 915			 */
 916			signal->flags = why | SIGNAL_STOP_CONTINUED;
 917			signal->group_stop_count = 0;
 918			signal->group_exit_code = 0;
 919		}
 920	}
 921
 922	return !sig_ignored(p, sig, force);
 923}
 924
 925/*
 926 * Test if P wants to take SIG.  After we've checked all threads with this,
 927 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 928 * blocking SIG were ruled out because they are not running and already
 929 * have pending signals.  Such threads will dequeue from the shared queue
 930 * as soon as they're available, so putting the signal on the shared queue
 931 * will be equivalent to sending it to one such thread.
 932 */
 933static inline int wants_signal(int sig, struct task_struct *p)
 934{
 935	if (sigismember(&p->blocked, sig))
 936		return 0;
 937	if (p->flags & PF_EXITING)
 938		return 0;
 939	if (sig == SIGKILL)
 940		return 1;
 941	if (task_is_stopped_or_traced(p))
 942		return 0;
 943	return task_curr(p) || !signal_pending(p);
 944}
 945
 946static void complete_signal(int sig, struct task_struct *p, int group)
 947{
 948	struct signal_struct *signal = p->signal;
 949	struct task_struct *t;
 950
 951	/*
 952	 * Now find a thread we can wake up to take the signal off the queue.
 953	 *
 954	 * If the main thread wants the signal, it gets first crack.
 955	 * Probably the least surprising to the average bear.
 956	 */
 957	if (wants_signal(sig, p))
 958		t = p;
 959	else if (!group || thread_group_empty(p))
 960		/*
 961		 * There is just one thread and it does not need to be woken.
 962		 * It will dequeue unblocked signals before it runs again.
 963		 */
 964		return;
 965	else {
 966		/*
 967		 * Otherwise try to find a suitable thread.
 968		 */
 969		t = signal->curr_target;
 970		while (!wants_signal(sig, t)) {
 971			t = next_thread(t);
 972			if (t == signal->curr_target)
 973				/*
 974				 * No thread needs to be woken.
 975				 * Any eligible threads will see
 976				 * the signal in the queue soon.
 977				 */
 978				return;
 979		}
 980		signal->curr_target = t;
 981	}
 982
 983	/*
 984	 * Found a killable thread.  If the signal will be fatal,
 985	 * then start taking the whole group down immediately.
 986	 */
 987	if (sig_fatal(p, sig) &&
 988	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 989	    !sigismember(&t->real_blocked, sig) &&
 990	    (sig == SIGKILL || !t->ptrace)) {
 991		/*
 992		 * This signal will be fatal to the whole group.
 993		 */
 994		if (!sig_kernel_coredump(sig)) {
 995			/*
 996			 * Start a group exit and wake everybody up.
 997			 * This way we don't have other threads
 998			 * running and doing things after a slower
 999			 * thread has the fatal signal pending.
1000			 */
1001			signal->flags = SIGNAL_GROUP_EXIT;
1002			signal->group_exit_code = sig;
1003			signal->group_stop_count = 0;
1004			t = p;
1005			do {
1006				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1007				sigaddset(&t->pending.signal, SIGKILL);
1008				signal_wake_up(t, 1);
1009			} while_each_thread(p, t);
1010			return;
1011		}
1012	}
1013
1014	/*
1015	 * The signal is already in the shared-pending queue.
1016	 * Tell the chosen thread to wake up and dequeue it.
1017	 */
1018	signal_wake_up(t, sig == SIGKILL);
1019	return;
1020}
1021
1022static inline int legacy_queue(struct sigpending *signals, int sig)
1023{
1024	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1025}
1026
1027#ifdef CONFIG_USER_NS
1028static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1029{
1030	if (current_user_ns() == task_cred_xxx(t, user_ns))
1031		return;
1032
1033	if (SI_FROMKERNEL(info))
1034		return;
1035
1036	rcu_read_lock();
1037	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1038					make_kuid(current_user_ns(), info->si_uid));
1039	rcu_read_unlock();
1040}
1041#else
1042static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1043{
1044	return;
1045}
1046#endif
1047
1048static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1049			int group, int from_ancestor_ns)
1050{
1051	struct sigpending *pending;
1052	struct sigqueue *q;
1053	int override_rlimit;
1054	int ret = 0, result;
1055
1056	assert_spin_locked(&t->sighand->siglock);
1057
1058	result = TRACE_SIGNAL_IGNORED;
1059	if (!prepare_signal(sig, t,
1060			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1061		goto ret;
1062
1063	pending = group ? &t->signal->shared_pending : &t->pending;
1064	/*
1065	 * Short-circuit ignored signals and support queuing
1066	 * exactly one non-rt signal, so that we can get more
1067	 * detailed information about the cause of the signal.
1068	 */
1069	result = TRACE_SIGNAL_ALREADY_PENDING;
1070	if (legacy_queue(pending, sig))
1071		goto ret;
1072
1073	result = TRACE_SIGNAL_DELIVERED;
1074	/*
1075	 * fast-pathed signals for kernel-internal things like SIGSTOP
1076	 * or SIGKILL.
1077	 */
1078	if (info == SEND_SIG_FORCED)
1079		goto out_set;
1080
1081	/*
1082	 * Real-time signals must be queued if sent by sigqueue, or
1083	 * some other real-time mechanism.  It is implementation
1084	 * defined whether kill() does so.  We attempt to do so, on
1085	 * the principle of least surprise, but since kill is not
1086	 * allowed to fail with EAGAIN when low on memory we just
1087	 * make sure at least one signal gets delivered and don't
1088	 * pass on the info struct.
1089	 */
1090	if (sig < SIGRTMIN)
1091		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1092	else
1093		override_rlimit = 0;
1094
1095	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1096		override_rlimit);
1097	if (q) {
1098		list_add_tail(&q->list, &pending->list);
1099		switch ((unsigned long) info) {
1100		case (unsigned long) SEND_SIG_NOINFO:
1101			q->info.si_signo = sig;
1102			q->info.si_errno = 0;
1103			q->info.si_code = SI_USER;
1104			q->info.si_pid = task_tgid_nr_ns(current,
1105							task_active_pid_ns(t));
1106			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1107			break;
1108		case (unsigned long) SEND_SIG_PRIV:
1109			q->info.si_signo = sig;
1110			q->info.si_errno = 0;
1111			q->info.si_code = SI_KERNEL;
1112			q->info.si_pid = 0;
1113			q->info.si_uid = 0;
1114			break;
1115		default:
1116			copy_siginfo(&q->info, info);
1117			if (from_ancestor_ns)
1118				q->info.si_pid = 0;
1119			break;
1120		}
1121
1122		userns_fixup_signal_uid(&q->info, t);
1123
1124	} else if (!is_si_special(info)) {
1125		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1126			/*
1127			 * Queue overflow, abort.  We may abort if the
1128			 * signal was rt and sent by user using something
1129			 * other than kill().
1130			 */
1131			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1132			ret = -EAGAIN;
1133			goto ret;
1134		} else {
1135			/*
1136			 * This is a silent loss of information.  We still
1137			 * send the signal, but the *info bits are lost.
1138			 */
1139			result = TRACE_SIGNAL_LOSE_INFO;
1140		}
1141	}
1142
1143out_set:
1144	signalfd_notify(t, sig);
1145	sigaddset(&pending->signal, sig);
1146	complete_signal(sig, t, group);
1147ret:
1148	trace_signal_generate(sig, info, t, group, result);
1149	return ret;
1150}
1151
1152static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1153			int group)
1154{
1155	int from_ancestor_ns = 0;
1156
1157#ifdef CONFIG_PID_NS
1158	from_ancestor_ns = si_fromuser(info) &&
1159			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1160#endif
1161
1162	return __send_signal(sig, info, t, group, from_ancestor_ns);
1163}
1164
1165static void print_fatal_signal(int signr)
1166{
1167	struct pt_regs *regs = signal_pt_regs();
1168	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1169
1170#if defined(__i386__) && !defined(__arch_um__)
1171	printk(KERN_INFO "code at %08lx: ", regs->ip);
1172	{
1173		int i;
1174		for (i = 0; i < 16; i++) {
1175			unsigned char insn;
1176
1177			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1178				break;
1179			printk(KERN_CONT "%02x ", insn);
1180		}
1181	}
1182	printk(KERN_CONT "\n");
1183#endif
1184	preempt_disable();
1185	show_regs(regs);
1186	preempt_enable();
1187}
1188
1189static int __init setup_print_fatal_signals(char *str)
1190{
1191	get_option (&str, &print_fatal_signals);
1192
1193	return 1;
1194}
1195
1196__setup("print-fatal-signals=", setup_print_fatal_signals);
1197
1198int
1199__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1200{
1201	return send_signal(sig, info, p, 1);
1202}
1203
1204static int
1205specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1206{
1207	return send_signal(sig, info, t, 0);
1208}
1209
1210int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1211			bool group)
1212{
1213	unsigned long flags;
1214	int ret = -ESRCH;
1215
1216	if (lock_task_sighand(p, &flags)) {
1217		ret = send_signal(sig, info, p, group);
1218		unlock_task_sighand(p, &flags);
1219	}
1220
1221	return ret;
1222}
1223
1224/*
1225 * Force a signal that the process can't ignore: if necessary
1226 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1227 *
1228 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1229 * since we do not want to have a signal handler that was blocked
1230 * be invoked when user space had explicitly blocked it.
1231 *
1232 * We don't want to have recursive SIGSEGV's etc, for example,
1233 * that is why we also clear SIGNAL_UNKILLABLE.
1234 */
1235int
1236force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1237{
1238	unsigned long int flags;
1239	int ret, blocked, ignored;
1240	struct k_sigaction *action;
1241
1242	spin_lock_irqsave(&t->sighand->siglock, flags);
1243	action = &t->sighand->action[sig-1];
1244	ignored = action->sa.sa_handler == SIG_IGN;
1245	blocked = sigismember(&t->blocked, sig);
1246	if (blocked || ignored) {
1247		action->sa.sa_handler = SIG_DFL;
1248		if (blocked) {
1249			sigdelset(&t->blocked, sig);
1250			recalc_sigpending_and_wake(t);
1251		}
1252	}
1253	if (action->sa.sa_handler == SIG_DFL)
1254		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1255	ret = specific_send_sig_info(sig, info, t);
1256	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1257
1258	return ret;
1259}
1260
1261/*
1262 * Nuke all other threads in the group.
1263 */
1264int zap_other_threads(struct task_struct *p)
1265{
1266	struct task_struct *t = p;
1267	int count = 0;
1268
1269	p->signal->group_stop_count = 0;
1270
1271	while_each_thread(p, t) {
1272		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1273		count++;
1274
1275		/* Don't bother with already dead threads */
1276		if (t->exit_state)
1277			continue;
1278		sigaddset(&t->pending.signal, SIGKILL);
1279		signal_wake_up(t, 1);
1280	}
1281
1282	return count;
1283}
1284
1285struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1286					   unsigned long *flags)
1287{
1288	struct sighand_struct *sighand;
1289
1290	for (;;) {
1291		local_irq_save(*flags);
1292		rcu_read_lock();
1293		sighand = rcu_dereference(tsk->sighand);
1294		if (unlikely(sighand == NULL)) {
1295			rcu_read_unlock();
1296			local_irq_restore(*flags);
1297			break;
1298		}
1299
1300		spin_lock(&sighand->siglock);
1301		if (likely(sighand == tsk->sighand)) {
1302			rcu_read_unlock();
1303			break;
1304		}
1305		spin_unlock(&sighand->siglock);
1306		rcu_read_unlock();
1307		local_irq_restore(*flags);
1308	}
1309
1310	return sighand;
1311}
1312
1313/*
1314 * send signal info to all the members of a group
1315 */
1316int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1317{
1318	int ret;
1319
1320	rcu_read_lock();
1321	ret = check_kill_permission(sig, info, p);
1322	rcu_read_unlock();
1323
1324	if (!ret && sig)
1325		ret = do_send_sig_info(sig, info, p, true);
1326
1327	return ret;
1328}
1329
1330/*
1331 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1332 * control characters do (^C, ^Z etc)
1333 * - the caller must hold at least a readlock on tasklist_lock
1334 */
1335int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1336{
1337	struct task_struct *p = NULL;
1338	int retval, success;
1339
1340	success = 0;
1341	retval = -ESRCH;
1342	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1343		int err = group_send_sig_info(sig, info, p);
1344		success |= !err;
1345		retval = err;
1346	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1347	return success ? 0 : retval;
1348}
1349
1350int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1351{
1352	int error = -ESRCH;
1353	struct task_struct *p;
1354
1355	rcu_read_lock();
1356retry:
1357	p = pid_task(pid, PIDTYPE_PID);
1358	if (p) {
1359		error = group_send_sig_info(sig, info, p);
1360		if (unlikely(error == -ESRCH))
1361			/*
1362			 * The task was unhashed in between, try again.
1363			 * If it is dead, pid_task() will return NULL,
1364			 * if we race with de_thread() it will find the
1365			 * new leader.
1366			 */
1367			goto retry;
1368	}
1369	rcu_read_unlock();
1370
1371	return error;
1372}
1373
1374int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1375{
1376	int error;
1377	rcu_read_lock();
1378	error = kill_pid_info(sig, info, find_vpid(pid));
1379	rcu_read_unlock();
1380	return error;
1381}
1382
1383static int kill_as_cred_perm(const struct cred *cred,
1384			     struct task_struct *target)
1385{
1386	const struct cred *pcred = __task_cred(target);
1387	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1388	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1389		return 0;
1390	return 1;
1391}
1392
1393/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1394int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1395			 const struct cred *cred, u32 secid)
1396{
1397	int ret = -EINVAL;
1398	struct task_struct *p;
1399	unsigned long flags;
1400
1401	if (!valid_signal(sig))
1402		return ret;
1403
1404	rcu_read_lock();
1405	p = pid_task(pid, PIDTYPE_PID);
1406	if (!p) {
1407		ret = -ESRCH;
1408		goto out_unlock;
1409	}
1410	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1411		ret = -EPERM;
1412		goto out_unlock;
1413	}
1414	ret = security_task_kill(p, info, sig, secid);
1415	if (ret)
1416		goto out_unlock;
1417
1418	if (sig) {
1419		if (lock_task_sighand(p, &flags)) {
1420			ret = __send_signal(sig, info, p, 1, 0);
1421			unlock_task_sighand(p, &flags);
1422		} else
1423			ret = -ESRCH;
1424	}
1425out_unlock:
1426	rcu_read_unlock();
1427	return ret;
1428}
1429EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1430
1431/*
1432 * kill_something_info() interprets pid in interesting ways just like kill(2).
1433 *
1434 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1435 * is probably wrong.  Should make it like BSD or SYSV.
1436 */
1437
1438static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1439{
1440	int ret;
1441
1442	if (pid > 0) {
1443		rcu_read_lock();
1444		ret = kill_pid_info(sig, info, find_vpid(pid));
1445		rcu_read_unlock();
1446		return ret;
1447	}
1448
1449	read_lock(&tasklist_lock);
1450	if (pid != -1) {
1451		ret = __kill_pgrp_info(sig, info,
1452				pid ? find_vpid(-pid) : task_pgrp(current));
1453	} else {
1454		int retval = 0, count = 0;
1455		struct task_struct * p;
1456
1457		for_each_process(p) {
1458			if (task_pid_vnr(p) > 1 &&
1459					!same_thread_group(p, current)) {
1460				int err = group_send_sig_info(sig, info, p);
1461				++count;
1462				if (err != -EPERM)
1463					retval = err;
1464			}
1465		}
1466		ret = count ? retval : -ESRCH;
1467	}
1468	read_unlock(&tasklist_lock);
1469
1470	return ret;
1471}
1472
1473/*
1474 * These are for backward compatibility with the rest of the kernel source.
1475 */
1476
1477int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1478{
1479	/*
1480	 * Make sure legacy kernel users don't send in bad values
1481	 * (normal paths check this in check_kill_permission).
1482	 */
1483	if (!valid_signal(sig))
1484		return -EINVAL;
1485
1486	return do_send_sig_info(sig, info, p, false);
1487}
1488
1489#define __si_special(priv) \
1490	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1491
1492int
1493send_sig(int sig, struct task_struct *p, int priv)
1494{
1495	return send_sig_info(sig, __si_special(priv), p);
1496}
1497
1498void
1499force_sig(int sig, struct task_struct *p)
1500{
1501	force_sig_info(sig, SEND_SIG_PRIV, p);
1502}
1503
1504/*
1505 * When things go south during signal handling, we
1506 * will force a SIGSEGV. And if the signal that caused
1507 * the problem was already a SIGSEGV, we'll want to
1508 * make sure we don't even try to deliver the signal..
1509 */
1510int
1511force_sigsegv(int sig, struct task_struct *p)
1512{
1513	if (sig == SIGSEGV) {
1514		unsigned long flags;
1515		spin_lock_irqsave(&p->sighand->siglock, flags);
1516		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1517		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1518	}
1519	force_sig(SIGSEGV, p);
1520	return 0;
1521}
1522
1523int kill_pgrp(struct pid *pid, int sig, int priv)
1524{
1525	int ret;
1526
1527	read_lock(&tasklist_lock);
1528	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1529	read_unlock(&tasklist_lock);
1530
1531	return ret;
1532}
1533EXPORT_SYMBOL(kill_pgrp);
1534
1535int kill_pid(struct pid *pid, int sig, int priv)
1536{
1537	return kill_pid_info(sig, __si_special(priv), pid);
1538}
1539EXPORT_SYMBOL(kill_pid);
1540
1541/*
1542 * These functions support sending signals using preallocated sigqueue
1543 * structures.  This is needed "because realtime applications cannot
1544 * afford to lose notifications of asynchronous events, like timer
1545 * expirations or I/O completions".  In the case of POSIX Timers
1546 * we allocate the sigqueue structure from the timer_create.  If this
1547 * allocation fails we are able to report the failure to the application
1548 * with an EAGAIN error.
1549 */
1550struct sigqueue *sigqueue_alloc(void)
1551{
1552	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1553
1554	if (q)
1555		q->flags |= SIGQUEUE_PREALLOC;
1556
1557	return q;
1558}
1559
1560void sigqueue_free(struct sigqueue *q)
1561{
1562	unsigned long flags;
1563	spinlock_t *lock = &current->sighand->siglock;
1564
1565	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1566	/*
1567	 * We must hold ->siglock while testing q->list
1568	 * to serialize with collect_signal() or with
1569	 * __exit_signal()->flush_sigqueue().
1570	 */
1571	spin_lock_irqsave(lock, flags);
1572	q->flags &= ~SIGQUEUE_PREALLOC;
1573	/*
1574	 * If it is queued it will be freed when dequeued,
1575	 * like the "regular" sigqueue.
1576	 */
1577	if (!list_empty(&q->list))
1578		q = NULL;
1579	spin_unlock_irqrestore(lock, flags);
1580
1581	if (q)
1582		__sigqueue_free(q);
1583}
1584
1585int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1586{
1587	int sig = q->info.si_signo;
1588	struct sigpending *pending;
1589	unsigned long flags;
1590	int ret, result;
1591
1592	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1593
1594	ret = -1;
1595	if (!likely(lock_task_sighand(t, &flags)))
1596		goto ret;
1597
1598	ret = 1; /* the signal is ignored */
1599	result = TRACE_SIGNAL_IGNORED;
1600	if (!prepare_signal(sig, t, false))
1601		goto out;
1602
1603	ret = 0;
1604	if (unlikely(!list_empty(&q->list))) {
1605		/*
1606		 * If an SI_TIMER entry is already queue just increment
1607		 * the overrun count.
1608		 */
1609		BUG_ON(q->info.si_code != SI_TIMER);
1610		q->info.si_overrun++;
1611		result = TRACE_SIGNAL_ALREADY_PENDING;
1612		goto out;
1613	}
1614	q->info.si_overrun = 0;
1615
1616	signalfd_notify(t, sig);
1617	pending = group ? &t->signal->shared_pending : &t->pending;
1618	list_add_tail(&q->list, &pending->list);
1619	sigaddset(&pending->signal, sig);
1620	complete_signal(sig, t, group);
1621	result = TRACE_SIGNAL_DELIVERED;
1622out:
1623	trace_signal_generate(sig, &q->info, t, group, result);
1624	unlock_task_sighand(t, &flags);
1625ret:
1626	return ret;
1627}
1628
1629/*
1630 * Let a parent know about the death of a child.
1631 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1632 *
1633 * Returns true if our parent ignored us and so we've switched to
1634 * self-reaping.
1635 */
1636bool do_notify_parent(struct task_struct *tsk, int sig)
1637{
1638	struct siginfo info;
1639	unsigned long flags;
1640	struct sighand_struct *psig;
1641	bool autoreap = false;
1642	cputime_t utime, stime;
1643
1644	BUG_ON(sig == -1);
1645
1646 	/* do_notify_parent_cldstop should have been called instead.  */
1647 	BUG_ON(task_is_stopped_or_traced(tsk));
1648
1649	BUG_ON(!tsk->ptrace &&
1650	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1651
1652	if (sig != SIGCHLD) {
1653		/*
1654		 * This is only possible if parent == real_parent.
1655		 * Check if it has changed security domain.
1656		 */
1657		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1658			sig = SIGCHLD;
1659	}
1660
1661	info.si_signo = sig;
1662	info.si_errno = 0;
1663	/*
1664	 * We are under tasklist_lock here so our parent is tied to
1665	 * us and cannot change.
1666	 *
1667	 * task_active_pid_ns will always return the same pid namespace
1668	 * until a task passes through release_task.
1669	 *
1670	 * write_lock() currently calls preempt_disable() which is the
1671	 * same as rcu_read_lock(), but according to Oleg, this is not
1672	 * correct to rely on this
1673	 */
1674	rcu_read_lock();
1675	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1676	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1677				       task_uid(tsk));
1678	rcu_read_unlock();
1679
1680	task_cputime(tsk, &utime, &stime);
1681	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1682	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1683
1684	info.si_status = tsk->exit_code & 0x7f;
1685	if (tsk->exit_code & 0x80)
1686		info.si_code = CLD_DUMPED;
1687	else if (tsk->exit_code & 0x7f)
1688		info.si_code = CLD_KILLED;
1689	else {
1690		info.si_code = CLD_EXITED;
1691		info.si_status = tsk->exit_code >> 8;
1692	}
1693
1694	psig = tsk->parent->sighand;
1695	spin_lock_irqsave(&psig->siglock, flags);
1696	if (!tsk->ptrace && sig == SIGCHLD &&
1697	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1698	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1699		/*
1700		 * We are exiting and our parent doesn't care.  POSIX.1
1701		 * defines special semantics for setting SIGCHLD to SIG_IGN
1702		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1703		 * automatically and not left for our parent's wait4 call.
1704		 * Rather than having the parent do it as a magic kind of
1705		 * signal handler, we just set this to tell do_exit that we
1706		 * can be cleaned up without becoming a zombie.  Note that
1707		 * we still call __wake_up_parent in this case, because a
1708		 * blocked sys_wait4 might now return -ECHILD.
1709		 *
1710		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1711		 * is implementation-defined: we do (if you don't want
1712		 * it, just use SIG_IGN instead).
1713		 */
1714		autoreap = true;
1715		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1716			sig = 0;
1717	}
1718	if (valid_signal(sig) && sig)
1719		__group_send_sig_info(sig, &info, tsk->parent);
1720	__wake_up_parent(tsk, tsk->parent);
1721	spin_unlock_irqrestore(&psig->siglock, flags);
1722
1723	return autoreap;
1724}
1725
1726/**
1727 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1728 * @tsk: task reporting the state change
1729 * @for_ptracer: the notification is for ptracer
1730 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1731 *
1732 * Notify @tsk's parent that the stopped/continued state has changed.  If
1733 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1734 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1735 *
1736 * CONTEXT:
1737 * Must be called with tasklist_lock at least read locked.
1738 */
1739static void do_notify_parent_cldstop(struct task_struct *tsk,
1740				     bool for_ptracer, int why)
1741{
1742	struct siginfo info;
1743	unsigned long flags;
1744	struct task_struct *parent;
1745	struct sighand_struct *sighand;
1746	cputime_t utime, stime;
1747
1748	if (for_ptracer) {
1749		parent = tsk->parent;
1750	} else {
1751		tsk = tsk->group_leader;
1752		parent = tsk->real_parent;
1753	}
1754
1755	info.si_signo = SIGCHLD;
1756	info.si_errno = 0;
1757	/*
1758	 * see comment in do_notify_parent() about the following 4 lines
1759	 */
1760	rcu_read_lock();
1761	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1762	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1763	rcu_read_unlock();
1764
1765	task_cputime(tsk, &utime, &stime);
1766	info.si_utime = cputime_to_clock_t(utime);
1767	info.si_stime = cputime_to_clock_t(stime);
1768
1769 	info.si_code = why;
1770 	switch (why) {
1771 	case CLD_CONTINUED:
1772 		info.si_status = SIGCONT;
1773 		break;
1774 	case CLD_STOPPED:
1775 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1776 		break;
1777 	case CLD_TRAPPED:
1778 		info.si_status = tsk->exit_code & 0x7f;
1779 		break;
1780 	default:
1781 		BUG();
1782 	}
1783
1784	sighand = parent->sighand;
1785	spin_lock_irqsave(&sighand->siglock, flags);
1786	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1787	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1788		__group_send_sig_info(SIGCHLD, &info, parent);
1789	/*
1790	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1791	 */
1792	__wake_up_parent(tsk, parent);
1793	spin_unlock_irqrestore(&sighand->siglock, flags);
1794}
1795
1796static inline int may_ptrace_stop(void)
1797{
1798	if (!likely(current->ptrace))
1799		return 0;
1800	/*
1801	 * Are we in the middle of do_coredump?
1802	 * If so and our tracer is also part of the coredump stopping
1803	 * is a deadlock situation, and pointless because our tracer
1804	 * is dead so don't allow us to stop.
1805	 * If SIGKILL was already sent before the caller unlocked
1806	 * ->siglock we must see ->core_state != NULL. Otherwise it
1807	 * is safe to enter schedule().
1808	 *
1809	 * This is almost outdated, a task with the pending SIGKILL can't
1810	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1811	 * after SIGKILL was already dequeued.
1812	 */
1813	if (unlikely(current->mm->core_state) &&
1814	    unlikely(current->mm == current->parent->mm))
1815		return 0;
1816
1817	return 1;
1818}
1819
1820/*
1821 * Return non-zero if there is a SIGKILL that should be waking us up.
1822 * Called with the siglock held.
1823 */
1824static int sigkill_pending(struct task_struct *tsk)
1825{
1826	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1827		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1828}
1829
1830/*
1831 * This must be called with current->sighand->siglock held.
1832 *
1833 * This should be the path for all ptrace stops.
1834 * We always set current->last_siginfo while stopped here.
1835 * That makes it a way to test a stopped process for
1836 * being ptrace-stopped vs being job-control-stopped.
1837 *
1838 * If we actually decide not to stop at all because the tracer
1839 * is gone, we keep current->exit_code unless clear_code.
1840 */
1841static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1842	__releases(&current->sighand->siglock)
1843	__acquires(&current->sighand->siglock)
1844{
1845	bool gstop_done = false;
1846
1847	if (arch_ptrace_stop_needed(exit_code, info)) {
1848		/*
1849		 * The arch code has something special to do before a
1850		 * ptrace stop.  This is allowed to block, e.g. for faults
1851		 * on user stack pages.  We can't keep the siglock while
1852		 * calling arch_ptrace_stop, so we must release it now.
1853		 * To preserve proper semantics, we must do this before
1854		 * any signal bookkeeping like checking group_stop_count.
1855		 * Meanwhile, a SIGKILL could come in before we retake the
1856		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1857		 * So after regaining the lock, we must check for SIGKILL.
1858		 */
1859		spin_unlock_irq(&current->sighand->siglock);
1860		arch_ptrace_stop(exit_code, info);
1861		spin_lock_irq(&current->sighand->siglock);
1862		if (sigkill_pending(current))
1863			return;
1864	}
1865
1866	/*
1867	 * We're committing to trapping.  TRACED should be visible before
1868	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1869	 * Also, transition to TRACED and updates to ->jobctl should be
1870	 * atomic with respect to siglock and should be done after the arch
1871	 * hook as siglock is released and regrabbed across it.
1872	 */
1873	set_current_state(TASK_TRACED);
1874
1875	current->last_siginfo = info;
1876	current->exit_code = exit_code;
1877
1878	/*
1879	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1880	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1881	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1882	 * could be clear now.  We act as if SIGCONT is received after
1883	 * TASK_TRACED is entered - ignore it.
1884	 */
1885	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1886		gstop_done = task_participate_group_stop(current);
1887
1888	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1889	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1890	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1891		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1892
1893	/* entering a trap, clear TRAPPING */
1894	task_clear_jobctl_trapping(current);
1895
1896	spin_unlock_irq(&current->sighand->siglock);
1897	read_lock(&tasklist_lock);
1898	if (may_ptrace_stop()) {
1899		/*
1900		 * Notify parents of the stop.
1901		 *
1902		 * While ptraced, there are two parents - the ptracer and
1903		 * the real_parent of the group_leader.  The ptracer should
1904		 * know about every stop while the real parent is only
1905		 * interested in the completion of group stop.  The states
1906		 * for the two don't interact with each other.  Notify
1907		 * separately unless they're gonna be duplicates.
1908		 */
1909		do_notify_parent_cldstop(current, true, why);
1910		if (gstop_done && ptrace_reparented(current))
1911			do_notify_parent_cldstop(current, false, why);
1912
1913		/*
1914		 * Don't want to allow preemption here, because
1915		 * sys_ptrace() needs this task to be inactive.
1916		 *
1917		 * XXX: implement read_unlock_no_resched().
1918		 */
1919		preempt_disable();
1920		read_unlock(&tasklist_lock);
1921		preempt_enable_no_resched();
1922		freezable_schedule();
1923	} else {
1924		/*
1925		 * By the time we got the lock, our tracer went away.
1926		 * Don't drop the lock yet, another tracer may come.
1927		 *
1928		 * If @gstop_done, the ptracer went away between group stop
1929		 * completion and here.  During detach, it would have set
1930		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1931		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1932		 * the real parent of the group stop completion is enough.
1933		 */
1934		if (gstop_done)
1935			do_notify_parent_cldstop(current, false, why);
1936
1937		/* tasklist protects us from ptrace_freeze_traced() */
1938		__set_current_state(TASK_RUNNING);
1939		if (clear_code)
1940			current->exit_code = 0;
1941		read_unlock(&tasklist_lock);
1942	}
1943
1944	/*
1945	 * We are back.  Now reacquire the siglock before touching
1946	 * last_siginfo, so that we are sure to have synchronized with
1947	 * any signal-sending on another CPU that wants to examine it.
1948	 */
1949	spin_lock_irq(&current->sighand->siglock);
1950	current->last_siginfo = NULL;
1951
1952	/* LISTENING can be set only during STOP traps, clear it */
1953	current->jobctl &= ~JOBCTL_LISTENING;
1954
1955	/*
1956	 * Queued signals ignored us while we were stopped for tracing.
1957	 * So check for any that we should take before resuming user mode.
1958	 * This sets TIF_SIGPENDING, but never clears it.
1959	 */
1960	recalc_sigpending_tsk(current);
1961}
1962
1963static void ptrace_do_notify(int signr, int exit_code, int why)
1964{
1965	siginfo_t info;
1966
1967	memset(&info, 0, sizeof info);
1968	info.si_signo = signr;
1969	info.si_code = exit_code;
1970	info.si_pid = task_pid_vnr(current);
1971	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1972
1973	/* Let the debugger run.  */
1974	ptrace_stop(exit_code, why, 1, &info);
1975}
1976
1977void ptrace_notify(int exit_code)
1978{
1979	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1980	if (unlikely(current->task_works))
1981		task_work_run();
1982
1983	spin_lock_irq(&current->sighand->siglock);
1984	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1985	spin_unlock_irq(&current->sighand->siglock);
1986}
1987
1988/**
1989 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1990 * @signr: signr causing group stop if initiating
1991 *
1992 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1993 * and participate in it.  If already set, participate in the existing
1994 * group stop.  If participated in a group stop (and thus slept), %true is
1995 * returned with siglock released.
1996 *
1997 * If ptraced, this function doesn't handle stop itself.  Instead,
1998 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1999 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2000 * places afterwards.
2001 *
2002 * CONTEXT:
2003 * Must be called with @current->sighand->siglock held, which is released
2004 * on %true return.
2005 *
2006 * RETURNS:
2007 * %false if group stop is already cancelled or ptrace trap is scheduled.
2008 * %true if participated in group stop.
2009 */
2010static bool do_signal_stop(int signr)
2011	__releases(&current->sighand->siglock)
2012{
2013	struct signal_struct *sig = current->signal;
2014
2015	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2016		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2017		struct task_struct *t;
2018
2019		/* signr will be recorded in task->jobctl for retries */
2020		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2021
2022		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2023		    unlikely(signal_group_exit(sig)))
2024			return false;
2025		/*
2026		 * There is no group stop already in progress.  We must
2027		 * initiate one now.
2028		 *
2029		 * While ptraced, a task may be resumed while group stop is
2030		 * still in effect and then receive a stop signal and
2031		 * initiate another group stop.  This deviates from the
2032		 * usual behavior as two consecutive stop signals can't
2033		 * cause two group stops when !ptraced.  That is why we
2034		 * also check !task_is_stopped(t) below.
2035		 *
2036		 * The condition can be distinguished by testing whether
2037		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2038		 * group_exit_code in such case.
2039		 *
2040		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2041		 * an intervening stop signal is required to cause two
2042		 * continued events regardless of ptrace.
2043		 */
2044		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2045			sig->group_exit_code = signr;
2046
2047		sig->group_stop_count = 0;
2048
2049		if (task_set_jobctl_pending(current, signr | gstop))
2050			sig->group_stop_count++;
2051
2052		t = current;
2053		while_each_thread(current, t) {
2054			/*
2055			 * Setting state to TASK_STOPPED for a group
2056			 * stop is always done with the siglock held,
2057			 * so this check has no races.
2058			 */
2059			if (!task_is_stopped(t) &&
2060			    task_set_jobctl_pending(t, signr | gstop)) {
2061				sig->group_stop_count++;
2062				if (likely(!(t->ptrace & PT_SEIZED)))
2063					signal_wake_up(t, 0);
2064				else
2065					ptrace_trap_notify(t);
2066			}
2067		}
2068	}
2069
2070	if (likely(!current->ptrace)) {
2071		int notify = 0;
2072
2073		/*
2074		 * If there are no other threads in the group, or if there
2075		 * is a group stop in progress and we are the last to stop,
2076		 * report to the parent.
2077		 */
2078		if (task_participate_group_stop(current))
2079			notify = CLD_STOPPED;
2080
2081		__set_current_state(TASK_STOPPED);
2082		spin_unlock_irq(&current->sighand->siglock);
2083
2084		/*
2085		 * Notify the parent of the group stop completion.  Because
2086		 * we're not holding either the siglock or tasklist_lock
2087		 * here, ptracer may attach inbetween; however, this is for
2088		 * group stop and should always be delivered to the real
2089		 * parent of the group leader.  The new ptracer will get
2090		 * its notification when this task transitions into
2091		 * TASK_TRACED.
2092		 */
2093		if (notify) {
2094			read_lock(&tasklist_lock);
2095			do_notify_parent_cldstop(current, false, notify);
2096			read_unlock(&tasklist_lock);
2097		}
2098
2099		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2100		freezable_schedule();
2101		return true;
2102	} else {
2103		/*
2104		 * While ptraced, group stop is handled by STOP trap.
2105		 * Schedule it and let the caller deal with it.
2106		 */
2107		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2108		return false;
2109	}
2110}
2111
2112/**
2113 * do_jobctl_trap - take care of ptrace jobctl traps
2114 *
2115 * When PT_SEIZED, it's used for both group stop and explicit
2116 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2117 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2118 * the stop signal; otherwise, %SIGTRAP.
2119 *
2120 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2121 * number as exit_code and no siginfo.
2122 *
2123 * CONTEXT:
2124 * Must be called with @current->sighand->siglock held, which may be
2125 * released and re-acquired before returning with intervening sleep.
2126 */
2127static void do_jobctl_trap(void)
2128{
2129	struct signal_struct *signal = current->signal;
2130	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2131
2132	if (current->ptrace & PT_SEIZED) {
2133		if (!signal->group_stop_count &&
2134		    !(signal->flags & SIGNAL_STOP_STOPPED))
2135			signr = SIGTRAP;
2136		WARN_ON_ONCE(!signr);
2137		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2138				 CLD_STOPPED);
2139	} else {
2140		WARN_ON_ONCE(!signr);
2141		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2142		current->exit_code = 0;
2143	}
2144}
2145
2146static int ptrace_signal(int signr, siginfo_t *info)
2147{
2148	ptrace_signal_deliver();
2149	/*
2150	 * We do not check sig_kernel_stop(signr) but set this marker
2151	 * unconditionally because we do not know whether debugger will
2152	 * change signr. This flag has no meaning unless we are going
2153	 * to stop after return from ptrace_stop(). In this case it will
2154	 * be checked in do_signal_stop(), we should only stop if it was
2155	 * not cleared by SIGCONT while we were sleeping. See also the
2156	 * comment in dequeue_signal().
2157	 */
2158	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2159	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2160
2161	/* We're back.  Did the debugger cancel the sig?  */
2162	signr = current->exit_code;
2163	if (signr == 0)
2164		return signr;
2165
2166	current->exit_code = 0;
2167
2168	/*
2169	 * Update the siginfo structure if the signal has
2170	 * changed.  If the debugger wanted something
2171	 * specific in the siginfo structure then it should
2172	 * have updated *info via PTRACE_SETSIGINFO.
2173	 */
2174	if (signr != info->si_signo) {
2175		info->si_signo = signr;
2176		info->si_errno = 0;
2177		info->si_code = SI_USER;
2178		rcu_read_lock();
2179		info->si_pid = task_pid_vnr(current->parent);
2180		info->si_uid = from_kuid_munged(current_user_ns(),
2181						task_uid(current->parent));
2182		rcu_read_unlock();
2183	}
2184
2185	/* If the (new) signal is now blocked, requeue it.  */
2186	if (sigismember(&current->blocked, signr)) {
2187		specific_send_sig_info(signr, info, current);
2188		signr = 0;
2189	}
2190
2191	return signr;
2192}
2193
2194int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2195			  struct pt_regs *regs, void *cookie)
2196{
2197	struct sighand_struct *sighand = current->sighand;
2198	struct signal_struct *signal = current->signal;
2199	int signr;
2200
2201	if (unlikely(current->task_works))
2202		task_work_run();
2203
2204	if (unlikely(uprobe_deny_signal()))
2205		return 0;
2206
2207	/*
2208	 * Do this once, we can't return to user-mode if freezing() == T.
2209	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2210	 * thus do not need another check after return.
2211	 */
2212	try_to_freeze();
2213
2214relock:
2215	spin_lock_irq(&sighand->siglock);
2216	/*
2217	 * Every stopped thread goes here after wakeup. Check to see if
2218	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2219	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2220	 */
2221	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2222		int why;
2223
2224		if (signal->flags & SIGNAL_CLD_CONTINUED)
2225			why = CLD_CONTINUED;
2226		else
2227			why = CLD_STOPPED;
2228
2229		signal->flags &= ~SIGNAL_CLD_MASK;
2230
2231		spin_unlock_irq(&sighand->siglock);
2232
2233		/*
2234		 * Notify the parent that we're continuing.  This event is
2235		 * always per-process and doesn't make whole lot of sense
2236		 * for ptracers, who shouldn't consume the state via
2237		 * wait(2) either, but, for backward compatibility, notify
2238		 * the ptracer of the group leader too unless it's gonna be
2239		 * a duplicate.
2240		 */
2241		read_lock(&tasklist_lock);
2242		do_notify_parent_cldstop(current, false, why);
2243
2244		if (ptrace_reparented(current->group_leader))
2245			do_notify_parent_cldstop(current->group_leader,
2246						true, why);
2247		read_unlock(&tasklist_lock);
2248
2249		goto relock;
2250	}
2251
2252	for (;;) {
2253		struct k_sigaction *ka;
2254
2255		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2256		    do_signal_stop(0))
2257			goto relock;
2258
2259		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2260			do_jobctl_trap();
2261			spin_unlock_irq(&sighand->siglock);
2262			goto relock;
2263		}
2264
2265		signr = dequeue_signal(current, &current->blocked, info);
2266
2267		if (!signr)
2268			break; /* will return 0 */
2269
2270		if (unlikely(current->ptrace) && signr != SIGKILL) {
2271			signr = ptrace_signal(signr, info);
2272			if (!signr)
2273				continue;
2274		}
2275
2276		ka = &sighand->action[signr-1];
2277
2278		/* Trace actually delivered signals. */
2279		trace_signal_deliver(signr, info, ka);
2280
2281		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2282			continue;
2283		if (ka->sa.sa_handler != SIG_DFL) {
2284			/* Run the handler.  */
2285			*return_ka = *ka;
2286
2287			if (ka->sa.sa_flags & SA_ONESHOT)
2288				ka->sa.sa_handler = SIG_DFL;
2289
2290			break; /* will return non-zero "signr" value */
2291		}
2292
2293		/*
2294		 * Now we are doing the default action for this signal.
2295		 */
2296		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2297			continue;
2298
2299		/*
2300		 * Global init gets no signals it doesn't want.
2301		 * Container-init gets no signals it doesn't want from same
2302		 * container.
2303		 *
2304		 * Note that if global/container-init sees a sig_kernel_only()
2305		 * signal here, the signal must have been generated internally
2306		 * or must have come from an ancestor namespace. In either
2307		 * case, the signal cannot be dropped.
2308		 */
2309		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2310				!sig_kernel_only(signr))
2311			continue;
2312
2313		if (sig_kernel_stop(signr)) {
2314			/*
2315			 * The default action is to stop all threads in
2316			 * the thread group.  The job control signals
2317			 * do nothing in an orphaned pgrp, but SIGSTOP
2318			 * always works.  Note that siglock needs to be
2319			 * dropped during the call to is_orphaned_pgrp()
2320			 * because of lock ordering with tasklist_lock.
2321			 * This allows an intervening SIGCONT to be posted.
2322			 * We need to check for that and bail out if necessary.
2323			 */
2324			if (signr != SIGSTOP) {
2325				spin_unlock_irq(&sighand->siglock);
2326
2327				/* signals can be posted during this window */
2328
2329				if (is_current_pgrp_orphaned())
2330					goto relock;
2331
2332				spin_lock_irq(&sighand->siglock);
2333			}
2334
2335			if (likely(do_signal_stop(info->si_signo))) {
2336				/* It released the siglock.  */
2337				goto relock;
2338			}
2339
2340			/*
2341			 * We didn't actually stop, due to a race
2342			 * with SIGCONT or something like that.
2343			 */
2344			continue;
2345		}
2346
2347		spin_unlock_irq(&sighand->siglock);
2348
2349		/*
2350		 * Anything else is fatal, maybe with a core dump.
2351		 */
2352		current->flags |= PF_SIGNALED;
2353
2354		if (sig_kernel_coredump(signr)) {
2355			if (print_fatal_signals)
2356				print_fatal_signal(info->si_signo);
2357			proc_coredump_connector(current);
2358			/*
2359			 * If it was able to dump core, this kills all
2360			 * other threads in the group and synchronizes with
2361			 * their demise.  If we lost the race with another
2362			 * thread getting here, it set group_exit_code
2363			 * first and our do_group_exit call below will use
2364			 * that value and ignore the one we pass it.
2365			 */
2366			do_coredump(info);
2367		}
2368
2369		/*
2370		 * Death signals, no core dump.
2371		 */
2372		do_group_exit(info->si_signo);
2373		/* NOTREACHED */
2374	}
2375	spin_unlock_irq(&sighand->siglock);
2376	return signr;
2377}
2378
2379/**
2380 * signal_delivered - 
2381 * @sig:		number of signal being delivered
2382 * @info:		siginfo_t of signal being delivered
2383 * @ka:			sigaction setting that chose the handler
2384 * @regs:		user register state
2385 * @stepping:		nonzero if debugger single-step or block-step in use
2386 *
2387 * This function should be called when a signal has successfully been
2388 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2389 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2390 * is set in @ka->sa.sa_flags.  Tracing is notified.
2391 */
2392void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2393			struct pt_regs *regs, int stepping)
2394{
2395	sigset_t blocked;
2396
2397	/* A signal was successfully delivered, and the
2398	   saved sigmask was stored on the signal frame,
2399	   and will be restored by sigreturn.  So we can
2400	   simply clear the restore sigmask flag.  */
2401	clear_restore_sigmask();
2402
2403	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2404	if (!(ka->sa.sa_flags & SA_NODEFER))
2405		sigaddset(&blocked, sig);
2406	set_current_blocked(&blocked);
2407	tracehook_signal_handler(sig, info, ka, regs, stepping);
2408}
2409
2410void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2411{
2412	if (failed)
2413		force_sigsegv(ksig->sig, current);
2414	else
2415		signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2416			signal_pt_regs(), stepping);
2417}
2418
2419/*
2420 * It could be that complete_signal() picked us to notify about the
2421 * group-wide signal. Other threads should be notified now to take
2422 * the shared signals in @which since we will not.
2423 */
2424static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2425{
2426	sigset_t retarget;
2427	struct task_struct *t;
2428
2429	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2430	if (sigisemptyset(&retarget))
2431		return;
2432
2433	t = tsk;
2434	while_each_thread(tsk, t) {
2435		if (t->flags & PF_EXITING)
2436			continue;
2437
2438		if (!has_pending_signals(&retarget, &t->blocked))
2439			continue;
2440		/* Remove the signals this thread can handle. */
2441		sigandsets(&retarget, &retarget, &t->blocked);
2442
2443		if (!signal_pending(t))
2444			signal_wake_up(t, 0);
2445
2446		if (sigisemptyset(&retarget))
2447			break;
2448	}
2449}
2450
2451void exit_signals(struct task_struct *tsk)
2452{
2453	int group_stop = 0;
2454	sigset_t unblocked;
2455
2456	/*
2457	 * @tsk is about to have PF_EXITING set - lock out users which
2458	 * expect stable threadgroup.
2459	 */
2460	threadgroup_change_begin(tsk);
2461
2462	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2463		tsk->flags |= PF_EXITING;
2464		threadgroup_change_end(tsk);
2465		return;
2466	}
2467
2468	spin_lock_irq(&tsk->sighand->siglock);
2469	/*
2470	 * From now this task is not visible for group-wide signals,
2471	 * see wants_signal(), do_signal_stop().
2472	 */
2473	tsk->flags |= PF_EXITING;
2474
2475	threadgroup_change_end(tsk);
2476
2477	if (!signal_pending(tsk))
2478		goto out;
2479
2480	unblocked = tsk->blocked;
2481	signotset(&unblocked);
2482	retarget_shared_pending(tsk, &unblocked);
2483
2484	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2485	    task_participate_group_stop(tsk))
2486		group_stop = CLD_STOPPED;
2487out:
2488	spin_unlock_irq(&tsk->sighand->siglock);
2489
2490	/*
2491	 * If group stop has completed, deliver the notification.  This
2492	 * should always go to the real parent of the group leader.
2493	 */
2494	if (unlikely(group_stop)) {
2495		read_lock(&tasklist_lock);
2496		do_notify_parent_cldstop(tsk, false, group_stop);
2497		read_unlock(&tasklist_lock);
2498	}
2499}
2500
2501EXPORT_SYMBOL(recalc_sigpending);
2502EXPORT_SYMBOL_GPL(dequeue_signal);
2503EXPORT_SYMBOL(flush_signals);
2504EXPORT_SYMBOL(force_sig);
2505EXPORT_SYMBOL(send_sig);
2506EXPORT_SYMBOL(send_sig_info);
2507EXPORT_SYMBOL(sigprocmask);
2508EXPORT_SYMBOL(block_all_signals);
2509EXPORT_SYMBOL(unblock_all_signals);
2510
2511
2512/*
2513 * System call entry points.
2514 */
2515
2516/**
2517 *  sys_restart_syscall - restart a system call
2518 */
2519SYSCALL_DEFINE0(restart_syscall)
2520{
2521	struct restart_block *restart = &current_thread_info()->restart_block;
2522	return restart->fn(restart);
2523}
2524
2525long do_no_restart_syscall(struct restart_block *param)
2526{
2527	return -EINTR;
2528}
2529
2530static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2531{
2532	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2533		sigset_t newblocked;
2534		/* A set of now blocked but previously unblocked signals. */
2535		sigandnsets(&newblocked, newset, &current->blocked);
2536		retarget_shared_pending(tsk, &newblocked);
2537	}
2538	tsk->blocked = *newset;
2539	recalc_sigpending();
2540}
2541
2542/**
2543 * set_current_blocked - change current->blocked mask
2544 * @newset: new mask
2545 *
2546 * It is wrong to change ->blocked directly, this helper should be used
2547 * to ensure the process can't miss a shared signal we are going to block.
2548 */
2549void set_current_blocked(sigset_t *newset)
2550{
2551	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2552	__set_current_blocked(newset);
2553}
2554
2555void __set_current_blocked(const sigset_t *newset)
2556{
2557	struct task_struct *tsk = current;
2558
2559	spin_lock_irq(&tsk->sighand->siglock);
2560	__set_task_blocked(tsk, newset);
2561	spin_unlock_irq(&tsk->sighand->siglock);
2562}
2563
2564/*
2565 * This is also useful for kernel threads that want to temporarily
2566 * (or permanently) block certain signals.
2567 *
2568 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2569 * interface happily blocks "unblockable" signals like SIGKILL
2570 * and friends.
2571 */
2572int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2573{
2574	struct task_struct *tsk = current;
2575	sigset_t newset;
2576
2577	/* Lockless, only current can change ->blocked, never from irq */
2578	if (oldset)
2579		*oldset = tsk->blocked;
2580
2581	switch (how) {
2582	case SIG_BLOCK:
2583		sigorsets(&newset, &tsk->blocked, set);
2584		break;
2585	case SIG_UNBLOCK:
2586		sigandnsets(&newset, &tsk->blocked, set);
2587		break;
2588	case SIG_SETMASK:
2589		newset = *set;
2590		break;
2591	default:
2592		return -EINVAL;
2593	}
2594
2595	__set_current_blocked(&newset);
2596	return 0;
2597}
2598
2599/**
2600 *  sys_rt_sigprocmask - change the list of currently blocked signals
2601 *  @how: whether to add, remove, or set signals
2602 *  @nset: stores pending signals
2603 *  @oset: previous value of signal mask if non-null
2604 *  @sigsetsize: size of sigset_t type
2605 */
2606SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2607		sigset_t __user *, oset, size_t, sigsetsize)
2608{
2609	sigset_t old_set, new_set;
2610	int error;
2611
2612	/* XXX: Don't preclude handling different sized sigset_t's.  */
2613	if (sigsetsize != sizeof(sigset_t))
2614		return -EINVAL;
2615
2616	old_set = current->blocked;
2617
2618	if (nset) {
2619		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2620			return -EFAULT;
2621		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2622
2623		error = sigprocmask(how, &new_set, NULL);
2624		if (error)
2625			return error;
2626	}
2627
2628	if (oset) {
2629		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2630			return -EFAULT;
2631	}
2632
2633	return 0;
2634}
2635
2636#ifdef CONFIG_COMPAT
2637COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2638		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2639{
2640#ifdef __BIG_ENDIAN
2641	sigset_t old_set = current->blocked;
2642
2643	/* XXX: Don't preclude handling different sized sigset_t's.  */
2644	if (sigsetsize != sizeof(sigset_t))
2645		return -EINVAL;
2646
2647	if (nset) {
2648		compat_sigset_t new32;
2649		sigset_t new_set;
2650		int error;
2651		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2652			return -EFAULT;
2653
2654		sigset_from_compat(&new_set, &new32);
2655		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2656
2657		error = sigprocmask(how, &new_set, NULL);
2658		if (error)
2659			return error;
2660	}
2661	if (oset) {
2662		compat_sigset_t old32;
2663		sigset_to_compat(&old32, &old_set);
2664		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2665			return -EFAULT;
2666	}
2667	return 0;
2668#else
2669	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2670				  (sigset_t __user *)oset, sigsetsize);
2671#endif
2672}
2673#endif
2674
2675static int do_sigpending(void *set, unsigned long sigsetsize)
2676{
2677	if (sigsetsize > sizeof(sigset_t))
2678		return -EINVAL;
2679
2680	spin_lock_irq(&current->sighand->siglock);
2681	sigorsets(set, &current->pending.signal,
2682		  &current->signal->shared_pending.signal);
2683	spin_unlock_irq(&current->sighand->siglock);
2684
2685	/* Outside the lock because only this thread touches it.  */
2686	sigandsets(set, &current->blocked, set);
2687	return 0;
2688}
2689
2690/**
2691 *  sys_rt_sigpending - examine a pending signal that has been raised
2692 *			while blocked
2693 *  @uset: stores pending signals
2694 *  @sigsetsize: size of sigset_t type or larger
2695 */
2696SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2697{
2698	sigset_t set;
2699	int err = do_sigpending(&set, sigsetsize);
2700	if (!err && copy_to_user(uset, &set, sigsetsize))
2701		err = -EFAULT;
2702	return err;
2703}
2704
2705#ifdef CONFIG_COMPAT
2706COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2707		compat_size_t, sigsetsize)
2708{
2709#ifdef __BIG_ENDIAN
2710	sigset_t set;
2711	int err = do_sigpending(&set, sigsetsize);
2712	if (!err) {
2713		compat_sigset_t set32;
2714		sigset_to_compat(&set32, &set);
2715		/* we can get here only if sigsetsize <= sizeof(set) */
2716		if (copy_to_user(uset, &set32, sigsetsize))
2717			err = -EFAULT;
2718	}
2719	return err;
2720#else
2721	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2722#endif
2723}
2724#endif
2725
2726#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2727
2728int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2729{
2730	int err;
2731
2732	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2733		return -EFAULT;
2734	if (from->si_code < 0)
2735		return __copy_to_user(to, from, sizeof(siginfo_t))
2736			? -EFAULT : 0;
2737	/*
2738	 * If you change siginfo_t structure, please be sure
2739	 * this code is fixed accordingly.
2740	 * Please remember to update the signalfd_copyinfo() function
2741	 * inside fs/signalfd.c too, in case siginfo_t changes.
2742	 * It should never copy any pad contained in the structure
2743	 * to avoid security leaks, but must copy the generic
2744	 * 3 ints plus the relevant union member.
2745	 */
2746	err = __put_user(from->si_signo, &to->si_signo);
2747	err |= __put_user(from->si_errno, &to->si_errno);
2748	err |= __put_user((short)from->si_code, &to->si_code);
2749	switch (from->si_code & __SI_MASK) {
2750	case __SI_KILL:
2751		err |= __put_user(from->si_pid, &to->si_pid);
2752		err |= __put_user(from->si_uid, &to->si_uid);
2753		break;
2754	case __SI_TIMER:
2755		 err |= __put_user(from->si_tid, &to->si_tid);
2756		 err |= __put_user(from->si_overrun, &to->si_overrun);
2757		 err |= __put_user(from->si_ptr, &to->si_ptr);
2758		break;
2759	case __SI_POLL:
2760		err |= __put_user(from->si_band, &to->si_band);
2761		err |= __put_user(from->si_fd, &to->si_fd);
2762		break;
2763	case __SI_FAULT:
2764		err |= __put_user(from->si_addr, &to->si_addr);
2765#ifdef __ARCH_SI_TRAPNO
2766		err |= __put_user(from->si_trapno, &to->si_trapno);
2767#endif
2768#ifdef BUS_MCEERR_AO
2769		/*
2770		 * Other callers might not initialize the si_lsb field,
2771		 * so check explicitly for the right codes here.
2772		 */
2773		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2774			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2775#endif
2776		break;
2777	case __SI_CHLD:
2778		err |= __put_user(from->si_pid, &to->si_pid);
2779		err |= __put_user(from->si_uid, &to->si_uid);
2780		err |= __put_user(from->si_status, &to->si_status);
2781		err |= __put_user(from->si_utime, &to->si_utime);
2782		err |= __put_user(from->si_stime, &to->si_stime);
2783		break;
2784	case __SI_RT: /* This is not generated by the kernel as of now. */
2785	case __SI_MESGQ: /* But this is */
2786		err |= __put_user(from->si_pid, &to->si_pid);
2787		err |= __put_user(from->si_uid, &to->si_uid);
2788		err |= __put_user(from->si_ptr, &to->si_ptr);
2789		break;
2790#ifdef __ARCH_SIGSYS
2791	case __SI_SYS:
2792		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2793		err |= __put_user(from->si_syscall, &to->si_syscall);
2794		err |= __put_user(from->si_arch, &to->si_arch);
2795		break;
2796#endif
2797	default: /* this is just in case for now ... */
2798		err |= __put_user(from->si_pid, &to->si_pid);
2799		err |= __put_user(from->si_uid, &to->si_uid);
2800		break;
2801	}
2802	return err;
2803}
2804
2805#endif
2806
2807/**
2808 *  do_sigtimedwait - wait for queued signals specified in @which
2809 *  @which: queued signals to wait for
2810 *  @info: if non-null, the signal's siginfo is returned here
2811 *  @ts: upper bound on process time suspension
2812 */
2813int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2814			const struct timespec *ts)
2815{
2816	struct task_struct *tsk = current;
2817	long timeout = MAX_SCHEDULE_TIMEOUT;
2818	sigset_t mask = *which;
2819	int sig;
2820
2821	if (ts) {
2822		if (!timespec_valid(ts))
2823			return -EINVAL;
2824		timeout = timespec_to_jiffies(ts);
2825		/*
2826		 * We can be close to the next tick, add another one
2827		 * to ensure we will wait at least the time asked for.
2828		 */
2829		if (ts->tv_sec || ts->tv_nsec)
2830			timeout++;
2831	}
2832
2833	/*
2834	 * Invert the set of allowed signals to get those we want to block.
2835	 */
2836	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2837	signotset(&mask);
2838
2839	spin_lock_irq(&tsk->sighand->siglock);
2840	sig = dequeue_signal(tsk, &mask, info);
2841	if (!sig && timeout) {
2842		/*
2843		 * None ready, temporarily unblock those we're interested
2844		 * while we are sleeping in so that we'll be awakened when
2845		 * they arrive. Unblocking is always fine, we can avoid
2846		 * set_current_blocked().
2847		 */
2848		tsk->real_blocked = tsk->blocked;
2849		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2850		recalc_sigpending();
2851		spin_unlock_irq(&tsk->sighand->siglock);
2852
2853		timeout = freezable_schedule_timeout_interruptible(timeout);
2854
2855		spin_lock_irq(&tsk->sighand->siglock);
2856		__set_task_blocked(tsk, &tsk->real_blocked);
2857		siginitset(&tsk->real_blocked, 0);
2858		sig = dequeue_signal(tsk, &mask, info);
2859	}
2860	spin_unlock_irq(&tsk->sighand->siglock);
2861
2862	if (sig)
2863		return sig;
2864	return timeout ? -EINTR : -EAGAIN;
2865}
2866
2867/**
2868 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2869 *			in @uthese
2870 *  @uthese: queued signals to wait for
2871 *  @uinfo: if non-null, the signal's siginfo is returned here
2872 *  @uts: upper bound on process time suspension
2873 *  @sigsetsize: size of sigset_t type
2874 */
2875SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2876		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2877		size_t, sigsetsize)
2878{
2879	sigset_t these;
2880	struct timespec ts;
2881	siginfo_t info;
2882	int ret;
2883
2884	/* XXX: Don't preclude handling different sized sigset_t's.  */
2885	if (sigsetsize != sizeof(sigset_t))
2886		return -EINVAL;
2887
2888	if (copy_from_user(&these, uthese, sizeof(these)))
2889		return -EFAULT;
2890
2891	if (uts) {
2892		if (copy_from_user(&ts, uts, sizeof(ts)))
2893			return -EFAULT;
2894	}
2895
2896	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2897
2898	if (ret > 0 && uinfo) {
2899		if (copy_siginfo_to_user(uinfo, &info))
2900			ret = -EFAULT;
2901	}
2902
2903	return ret;
2904}
2905
2906/**
2907 *  sys_kill - send a signal to a process
2908 *  @pid: the PID of the process
2909 *  @sig: signal to be sent
2910 */
2911SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2912{
2913	struct siginfo info;
2914
2915	info.si_signo = sig;
2916	info.si_errno = 0;
2917	info.si_code = SI_USER;
2918	info.si_pid = task_tgid_vnr(current);
2919	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2920
2921	return kill_something_info(sig, &info, pid);
2922}
2923
2924static int
2925do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2926{
2927	struct task_struct *p;
2928	int error = -ESRCH;
2929
2930	rcu_read_lock();
2931	p = find_task_by_vpid(pid);
2932	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2933		error = check_kill_permission(sig, info, p);
2934		/*
2935		 * The null signal is a permissions and process existence
2936		 * probe.  No signal is actually delivered.
2937		 */
2938		if (!error && sig) {
2939			error = do_send_sig_info(sig, info, p, false);
2940			/*
2941			 * If lock_task_sighand() failed we pretend the task
2942			 * dies after receiving the signal. The window is tiny,
2943			 * and the signal is private anyway.
2944			 */
2945			if (unlikely(error == -ESRCH))
2946				error = 0;
2947		}
2948	}
2949	rcu_read_unlock();
2950
2951	return error;
2952}
2953
2954static int do_tkill(pid_t tgid, pid_t pid, int sig)
2955{
2956	struct siginfo info = {};
2957
2958	info.si_signo = sig;
2959	info.si_errno = 0;
2960	info.si_code = SI_TKILL;
2961	info.si_pid = task_tgid_vnr(current);
2962	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2963
2964	return do_send_specific(tgid, pid, sig, &info);
2965}
2966
2967/**
2968 *  sys_tgkill - send signal to one specific thread
2969 *  @tgid: the thread group ID of the thread
2970 *  @pid: the PID of the thread
2971 *  @sig: signal to be sent
2972 *
2973 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2974 *  exists but it's not belonging to the target process anymore. This
2975 *  method solves the problem of threads exiting and PIDs getting reused.
2976 */
2977SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2978{
2979	/* This is only valid for single tasks */
2980	if (pid <= 0 || tgid <= 0)
2981		return -EINVAL;
2982
2983	return do_tkill(tgid, pid, sig);
2984}
2985
2986/**
2987 *  sys_tkill - send signal to one specific task
2988 *  @pid: the PID of the task
2989 *  @sig: signal to be sent
2990 *
2991 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2992 */
2993SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2994{
2995	/* This is only valid for single tasks */
2996	if (pid <= 0)
2997		return -EINVAL;
2998
2999	return do_tkill(0, pid, sig);
3000}
3001
3002static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3003{
3004	/* Not even root can pretend to send signals from the kernel.
3005	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3006	 */
3007	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3008	    (task_pid_vnr(current) != pid)) {
3009		/* We used to allow any < 0 si_code */
3010		WARN_ON_ONCE(info->si_code < 0);
3011		return -EPERM;
3012	}
3013	info->si_signo = sig;
3014
3015	/* POSIX.1b doesn't mention process groups.  */
3016	return kill_proc_info(sig, info, pid);
3017}
3018
3019/**
3020 *  sys_rt_sigqueueinfo - send signal information to a signal
3021 *  @pid: the PID of the thread
3022 *  @sig: signal to be sent
3023 *  @uinfo: signal info to be sent
3024 */
3025SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3026		siginfo_t __user *, uinfo)
3027{
3028	siginfo_t info;
3029	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3030		return -EFAULT;
3031	return do_rt_sigqueueinfo(pid, sig, &info);
3032}
3033
3034#ifdef CONFIG_COMPAT
3035COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3036			compat_pid_t, pid,
3037			int, sig,
3038			struct compat_siginfo __user *, uinfo)
3039{
3040	siginfo_t info;
3041	int ret = copy_siginfo_from_user32(&info, uinfo);
3042	if (unlikely(ret))
3043		return ret;
3044	return do_rt_sigqueueinfo(pid, sig, &info);
3045}
3046#endif
3047
3048static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3049{
3050	/* This is only valid for single tasks */
3051	if (pid <= 0 || tgid <= 0)
3052		return -EINVAL;
3053
3054	/* Not even root can pretend to send signals from the kernel.
3055	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3056	 */
3057	if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3058	    (task_pid_vnr(current) != pid)) {
3059		/* We used to allow any < 0 si_code */
3060		WARN_ON_ONCE(info->si_code < 0);
3061		return -EPERM;
3062	}
3063	info->si_signo = sig;
3064
3065	return do_send_specific(tgid, pid, sig, info);
3066}
3067
3068SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3069		siginfo_t __user *, uinfo)
3070{
3071	siginfo_t info;
3072
3073	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3074		return -EFAULT;
3075
3076	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3077}
3078
3079#ifdef CONFIG_COMPAT
3080COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3081			compat_pid_t, tgid,
3082			compat_pid_t, pid,
3083			int, sig,
3084			struct compat_siginfo __user *, uinfo)
3085{
3086	siginfo_t info;
3087
3088	if (copy_siginfo_from_user32(&info, uinfo))
3089		return -EFAULT;
3090	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3091}
3092#endif
3093
3094int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3095{
3096	struct task_struct *t = current;
3097	struct k_sigaction *k;
3098	sigset_t mask;
3099
3100	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3101		return -EINVAL;
3102
3103	k = &t->sighand->action[sig-1];
3104
3105	spin_lock_irq(&current->sighand->siglock);
3106	if (oact)
3107		*oact = *k;
3108
3109	if (act) {
3110		sigdelsetmask(&act->sa.sa_mask,
3111			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3112		*k = *act;
3113		/*
3114		 * POSIX 3.3.1.3:
3115		 *  "Setting a signal action to SIG_IGN for a signal that is
3116		 *   pending shall cause the pending signal to be discarded,
3117		 *   whether or not it is blocked."
3118		 *
3119		 *  "Setting a signal action to SIG_DFL for a signal that is
3120		 *   pending and whose default action is to ignore the signal
3121		 *   (for example, SIGCHLD), shall cause the pending signal to
3122		 *   be discarded, whether or not it is blocked"
3123		 */
3124		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3125			sigemptyset(&mask);
3126			sigaddset(&mask, sig);
3127			rm_from_queue_full(&mask, &t->signal->shared_pending);
3128			do {
3129				rm_from_queue_full(&mask, &t->pending);
3130			} while_each_thread(current, t);
3131		}
3132	}
3133
3134	spin_unlock_irq(&current->sighand->siglock);
3135	return 0;
3136}
3137
3138static int 
3139do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3140{
3141	stack_t oss;
3142	int error;
3143
3144	oss.ss_sp = (void __user *) current->sas_ss_sp;
3145	oss.ss_size = current->sas_ss_size;
3146	oss.ss_flags = sas_ss_flags(sp);
3147
3148	if (uss) {
3149		void __user *ss_sp;
3150		size_t ss_size;
3151		int ss_flags;
3152
3153		error = -EFAULT;
3154		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3155			goto out;
3156		error = __get_user(ss_sp, &uss->ss_sp) |
3157			__get_user(ss_flags, &uss->ss_flags) |
3158			__get_user(ss_size, &uss->ss_size);
3159		if (error)
3160			goto out;
3161
3162		error = -EPERM;
3163		if (on_sig_stack(sp))
3164			goto out;
3165
3166		error = -EINVAL;
3167		/*
3168		 * Note - this code used to test ss_flags incorrectly:
3169		 *  	  old code may have been written using ss_flags==0
3170		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3171		 *	  way that worked) - this fix preserves that older
3172		 *	  mechanism.
3173		 */
3174		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3175			goto out;
3176
3177		if (ss_flags == SS_DISABLE) {
3178			ss_size = 0;
3179			ss_sp = NULL;
3180		} else {
3181			error = -ENOMEM;
3182			if (ss_size < MINSIGSTKSZ)
3183				goto out;
3184		}
3185
3186		current->sas_ss_sp = (unsigned long) ss_sp;
3187		current->sas_ss_size = ss_size;
3188	}
3189
3190	error = 0;
3191	if (uoss) {
3192		error = -EFAULT;
3193		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3194			goto out;
3195		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3196			__put_user(oss.ss_size, &uoss->ss_size) |
3197			__put_user(oss.ss_flags, &uoss->ss_flags);
3198	}
3199
3200out:
3201	return error;
3202}
3203SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3204{
3205	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3206}
3207
3208int restore_altstack(const stack_t __user *uss)
3209{
3210	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3211	/* squash all but EFAULT for now */
3212	return err == -EFAULT ? err : 0;
3213}
3214
3215int __save_altstack(stack_t __user *uss, unsigned long sp)
3216{
3217	struct task_struct *t = current;
3218	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3219		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3220		__put_user(t->sas_ss_size, &uss->ss_size);
3221}
3222
3223#ifdef CONFIG_COMPAT
3224COMPAT_SYSCALL_DEFINE2(sigaltstack,
3225			const compat_stack_t __user *, uss_ptr,
3226			compat_stack_t __user *, uoss_ptr)
3227{
3228	stack_t uss, uoss;
3229	int ret;
3230	mm_segment_t seg;
3231
3232	if (uss_ptr) {
3233		compat_stack_t uss32;
3234
3235		memset(&uss, 0, sizeof(stack_t));
3236		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3237			return -EFAULT;
3238		uss.ss_sp = compat_ptr(uss32.ss_sp);
3239		uss.ss_flags = uss32.ss_flags;
3240		uss.ss_size = uss32.ss_size;
3241	}
3242	seg = get_fs();
3243	set_fs(KERNEL_DS);
3244	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3245			     (stack_t __force __user *) &uoss,
3246			     compat_user_stack_pointer());
3247	set_fs(seg);
3248	if (ret >= 0 && uoss_ptr)  {
3249		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3250		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3251		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3252		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3253			ret = -EFAULT;
3254	}
3255	return ret;
3256}
3257
3258int compat_restore_altstack(const compat_stack_t __user *uss)
3259{
3260	int err = compat_sys_sigaltstack(uss, NULL);
3261	/* squash all but -EFAULT for now */
3262	return err == -EFAULT ? err : 0;
3263}
3264
3265int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3266{
3267	struct task_struct *t = current;
3268	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3269		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3270		__put_user(t->sas_ss_size, &uss->ss_size);
3271}
3272#endif
3273
3274#ifdef __ARCH_WANT_SYS_SIGPENDING
3275
3276/**
3277 *  sys_sigpending - examine pending signals
3278 *  @set: where mask of pending signal is returned
3279 */
3280SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3281{
3282	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
3283}
3284
3285#endif
3286
3287#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3288/**
3289 *  sys_sigprocmask - examine and change blocked signals
3290 *  @how: whether to add, remove, or set signals
3291 *  @nset: signals to add or remove (if non-null)
3292 *  @oset: previous value of signal mask if non-null
3293 *
3294 * Some platforms have their own version with special arguments;
3295 * others support only sys_rt_sigprocmask.
3296 */
3297
3298SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3299		old_sigset_t __user *, oset)
3300{
3301	old_sigset_t old_set, new_set;
3302	sigset_t new_blocked;
3303
3304	old_set = current->blocked.sig[0];
3305
3306	if (nset) {
3307		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3308			return -EFAULT;
3309
3310		new_blocked = current->blocked;
3311
3312		switch (how) {
3313		case SIG_BLOCK:
3314			sigaddsetmask(&new_blocked, new_set);
3315			break;
3316		case SIG_UNBLOCK:
3317			sigdelsetmask(&new_blocked, new_set);
3318			break;
3319		case SIG_SETMASK:
3320			new_blocked.sig[0] = new_set;
3321			break;
3322		default:
3323			return -EINVAL;
3324		}
3325
3326		set_current_blocked(&new_blocked);
3327	}
3328
3329	if (oset) {
3330		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3331			return -EFAULT;
3332	}
3333
3334	return 0;
3335}
3336#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3337
3338#ifndef CONFIG_ODD_RT_SIGACTION
3339/**
3340 *  sys_rt_sigaction - alter an action taken by a process
3341 *  @sig: signal to be sent
3342 *  @act: new sigaction
3343 *  @oact: used to save the previous sigaction
3344 *  @sigsetsize: size of sigset_t type
3345 */
3346SYSCALL_DEFINE4(rt_sigaction, int, sig,
3347		const struct sigaction __user *, act,
3348		struct sigaction __user *, oact,
3349		size_t, sigsetsize)
3350{
3351	struct k_sigaction new_sa, old_sa;
3352	int ret = -EINVAL;
3353
3354	/* XXX: Don't preclude handling different sized sigset_t's.  */
3355	if (sigsetsize != sizeof(sigset_t))
3356		goto out;
3357
3358	if (act) {
3359		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3360			return -EFAULT;
3361	}
3362
3363	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3364
3365	if (!ret && oact) {
3366		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3367			return -EFAULT;
3368	}
3369out:
3370	return ret;
3371}
3372#ifdef CONFIG_COMPAT
3373COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3374		const struct compat_sigaction __user *, act,
3375		struct compat_sigaction __user *, oact,
3376		compat_size_t, sigsetsize)
3377{
3378	struct k_sigaction new_ka, old_ka;
3379	compat_sigset_t mask;
3380#ifdef __ARCH_HAS_SA_RESTORER
3381	compat_uptr_t restorer;
3382#endif
3383	int ret;
3384
3385	/* XXX: Don't preclude handling different sized sigset_t's.  */
3386	if (sigsetsize != sizeof(compat_sigset_t))
3387		return -EINVAL;
3388
3389	if (act) {
3390		compat_uptr_t handler;
3391		ret = get_user(handler, &act->sa_handler);
3392		new_ka.sa.sa_handler = compat_ptr(handler);
3393#ifdef __ARCH_HAS_SA_RESTORER
3394		ret |= get_user(restorer, &act->sa_restorer);
3395		new_ka.sa.sa_restorer = compat_ptr(restorer);
3396#endif
3397		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3398		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3399		if (ret)
3400			return -EFAULT;
3401		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3402	}
3403
3404	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3405	if (!ret && oact) {
3406		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3407		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3408			       &oact->sa_handler);
3409		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3410		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3411#ifdef __ARCH_HAS_SA_RESTORER
3412		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3413				&oact->sa_restorer);
3414#endif
3415	}
3416	return ret;
3417}
3418#endif
3419#endif /* !CONFIG_ODD_RT_SIGACTION */
3420
3421#ifdef CONFIG_OLD_SIGACTION
3422SYSCALL_DEFINE3(sigaction, int, sig,
3423		const struct old_sigaction __user *, act,
3424	        struct old_sigaction __user *, oact)
3425{
3426	struct k_sigaction new_ka, old_ka;
3427	int ret;
3428
3429	if (act) {
3430		old_sigset_t mask;
3431		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3432		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3433		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3434		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3435		    __get_user(mask, &act->sa_mask))
3436			return -EFAULT;
3437#ifdef __ARCH_HAS_KA_RESTORER
3438		new_ka.ka_restorer = NULL;
3439#endif
3440		siginitset(&new_ka.sa.sa_mask, mask);
3441	}
3442
3443	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3444
3445	if (!ret && oact) {
3446		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3447		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3448		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3449		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3450		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3451			return -EFAULT;
3452	}
3453
3454	return ret;
3455}
3456#endif
3457#ifdef CONFIG_COMPAT_OLD_SIGACTION
3458COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3459		const struct compat_old_sigaction __user *, act,
3460	        struct compat_old_sigaction __user *, oact)
3461{
3462	struct k_sigaction new_ka, old_ka;
3463	int ret;
3464	compat_old_sigset_t mask;
3465	compat_uptr_t handler, restorer;
3466
3467	if (act) {
3468		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3469		    __get_user(handler, &act->sa_handler) ||
3470		    __get_user(restorer, &act->sa_restorer) ||
3471		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3472		    __get_user(mask, &act->sa_mask))
3473			return -EFAULT;
3474
3475#ifdef __ARCH_HAS_KA_RESTORER
3476		new_ka.ka_restorer = NULL;
3477#endif
3478		new_ka.sa.sa_handler = compat_ptr(handler);
3479		new_ka.sa.sa_restorer = compat_ptr(restorer);
3480		siginitset(&new_ka.sa.sa_mask, mask);
3481	}
3482
3483	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3484
3485	if (!ret && oact) {
3486		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3487		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3488			       &oact->sa_handler) ||
3489		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3490			       &oact->sa_restorer) ||
3491		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3492		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3493			return -EFAULT;
3494	}
3495	return ret;
3496}
3497#endif
3498
3499#ifdef __ARCH_WANT_SYS_SGETMASK
3500
3501/*
3502 * For backwards compatibility.  Functionality superseded by sigprocmask.
3503 */
3504SYSCALL_DEFINE0(sgetmask)
3505{
3506	/* SMP safe */
3507	return current->blocked.sig[0];
3508}
3509
3510SYSCALL_DEFINE1(ssetmask, int, newmask)
3511{
3512	int old = current->blocked.sig[0];
3513	sigset_t newset;
3514
3515	siginitset(&newset, newmask);
3516	set_current_blocked(&newset);
3517
3518	return old;
3519}
3520#endif /* __ARCH_WANT_SGETMASK */
3521
3522#ifdef __ARCH_WANT_SYS_SIGNAL
3523/*
3524 * For backwards compatibility.  Functionality superseded by sigaction.
3525 */
3526SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3527{
3528	struct k_sigaction new_sa, old_sa;
3529	int ret;
3530
3531	new_sa.sa.sa_handler = handler;
3532	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3533	sigemptyset(&new_sa.sa.sa_mask);
3534
3535	ret = do_sigaction(sig, &new_sa, &old_sa);
3536
3537	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3538}
3539#endif /* __ARCH_WANT_SYS_SIGNAL */
3540
3541#ifdef __ARCH_WANT_SYS_PAUSE
3542
3543SYSCALL_DEFINE0(pause)
3544{
3545	while (!signal_pending(current)) {
3546		current->state = TASK_INTERRUPTIBLE;
3547		schedule();
3548	}
3549	return -ERESTARTNOHAND;
3550}
3551
3552#endif
3553
3554int sigsuspend(sigset_t *set)
3555{
3556	current->saved_sigmask = current->blocked;
3557	set_current_blocked(set);
3558
3559	current->state = TASK_INTERRUPTIBLE;
3560	schedule();
3561	set_restore_sigmask();
3562	return -ERESTARTNOHAND;
3563}
3564
3565/**
3566 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3567 *	@unewset value until a signal is received
3568 *  @unewset: new signal mask value
3569 *  @sigsetsize: size of sigset_t type
3570 */
3571SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3572{
3573	sigset_t newset;
3574
3575	/* XXX: Don't preclude handling different sized sigset_t's.  */
3576	if (sigsetsize != sizeof(sigset_t))
3577		return -EINVAL;
3578
3579	if (copy_from_user(&newset, unewset, sizeof(newset)))
3580		return -EFAULT;
3581	return sigsuspend(&newset);
3582}
3583 
3584#ifdef CONFIG_COMPAT
3585COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3586{
3587#ifdef __BIG_ENDIAN
3588	sigset_t newset;
3589	compat_sigset_t newset32;
3590
3591	/* XXX: Don't preclude handling different sized sigset_t's.  */
3592	if (sigsetsize != sizeof(sigset_t))
3593		return -EINVAL;
3594
3595	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3596		return -EFAULT;
3597	sigset_from_compat(&newset, &newset32);
3598	return sigsuspend(&newset);
3599#else
3600	/* on little-endian bitmaps don't care about granularity */
3601	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3602#endif
3603}
3604#endif
3605
3606#ifdef CONFIG_OLD_SIGSUSPEND
3607SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3608{
3609	sigset_t blocked;
3610	siginitset(&blocked, mask);
3611	return sigsuspend(&blocked);
3612}
3613#endif
3614#ifdef CONFIG_OLD_SIGSUSPEND3
3615SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3616{
3617	sigset_t blocked;
3618	siginitset(&blocked, mask);
3619	return sigsuspend(&blocked);
3620}
3621#endif
3622
3623__weak const char *arch_vma_name(struct vm_area_struct *vma)
3624{
3625	return NULL;
3626}
3627
3628void __init signals_init(void)
3629{
3630	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3631}
3632
3633#ifdef CONFIG_KGDB_KDB
3634#include <linux/kdb.h>
3635/*
3636 * kdb_send_sig_info - Allows kdb to send signals without exposing
3637 * signal internals.  This function checks if the required locks are
3638 * available before calling the main signal code, to avoid kdb
3639 * deadlocks.
3640 */
3641void
3642kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3643{
3644	static struct task_struct *kdb_prev_t;
3645	int sig, new_t;
3646	if (!spin_trylock(&t->sighand->siglock)) {
3647		kdb_printf("Can't do kill command now.\n"
3648			   "The sigmask lock is held somewhere else in "
3649			   "kernel, try again later\n");
3650		return;
3651	}
3652	spin_unlock(&t->sighand->siglock);
3653	new_t = kdb_prev_t != t;
3654	kdb_prev_t = t;
3655	if (t->state != TASK_RUNNING && new_t) {
3656		kdb_printf("Process is not RUNNING, sending a signal from "
3657			   "kdb risks deadlock\n"
3658			   "on the run queue locks. "
3659			   "The signal has _not_ been sent.\n"
3660			   "Reissue the kill command if you want to risk "
3661			   "the deadlock.\n");
3662		return;
3663	}
3664	sig = info->si_signo;
3665	if (send_sig_info(sig, info, t))
3666		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3667			   sig, t->pid);
3668	else
3669		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3670}
3671#endif	/* CONFIG_KGDB_KDB */
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/livepatch.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/signal.h>
  52
  53#include <asm/param.h>
  54#include <linux/uaccess.h>
  55#include <asm/unistd.h>
  56#include <asm/siginfo.h>
  57#include <asm/cacheflush.h>
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 185	    !klp_patch_pending(current))
 186		clear_thread_flag(TIF_SIGPENDING);
 187
 188}
 189EXPORT_SYMBOL(recalc_sigpending);
 190
 191void calculate_sigpending(void)
 192{
 193	/* Have any signals or users of TIF_SIGPENDING been delayed
 194	 * until after fork?
 195	 */
 196	spin_lock_irq(&current->sighand->siglock);
 197	set_tsk_thread_flag(current, TIF_SIGPENDING);
 198	recalc_sigpending();
 199	spin_unlock_irq(&current->sighand->siglock);
 200}
 201
 202/* Given the mask, find the first available signal that should be serviced. */
 203
 204#define SYNCHRONOUS_MASK \
 205	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 206	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 207
 208int next_signal(struct sigpending *pending, sigset_t *mask)
 209{
 210	unsigned long i, *s, *m, x;
 211	int sig = 0;
 212
 213	s = pending->signal.sig;
 214	m = mask->sig;
 215
 216	/*
 217	 * Handle the first word specially: it contains the
 218	 * synchronous signals that need to be dequeued first.
 219	 */
 220	x = *s &~ *m;
 221	if (x) {
 222		if (x & SYNCHRONOUS_MASK)
 223			x &= SYNCHRONOUS_MASK;
 224		sig = ffz(~x) + 1;
 225		return sig;
 226	}
 227
 228	switch (_NSIG_WORDS) {
 229	default:
 230		for (i = 1; i < _NSIG_WORDS; ++i) {
 231			x = *++s &~ *++m;
 232			if (!x)
 233				continue;
 234			sig = ffz(~x) + i*_NSIG_BPW + 1;
 235			break;
 236		}
 237		break;
 238
 239	case 2:
 240		x = s[1] &~ m[1];
 241		if (!x)
 242			break;
 243		sig = ffz(~x) + _NSIG_BPW + 1;
 244		break;
 245
 246	case 1:
 247		/* Nothing to do */
 248		break;
 249	}
 250
 251	return sig;
 252}
 253
 254static inline void print_dropped_signal(int sig)
 255{
 256	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 257
 258	if (!print_fatal_signals)
 259		return;
 260
 261	if (!__ratelimit(&ratelimit_state))
 262		return;
 263
 264	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 265				current->comm, current->pid, sig);
 266}
 267
 268/**
 269 * task_set_jobctl_pending - set jobctl pending bits
 270 * @task: target task
 271 * @mask: pending bits to set
 272 *
 273 * Clear @mask from @task->jobctl.  @mask must be subset of
 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 275 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 276 * cleared.  If @task is already being killed or exiting, this function
 277 * becomes noop.
 278 *
 279 * CONTEXT:
 280 * Must be called with @task->sighand->siglock held.
 281 *
 282 * RETURNS:
 283 * %true if @mask is set, %false if made noop because @task was dying.
 284 */
 285bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 286{
 287	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 288			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 289	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 290
 291	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 292		return false;
 293
 294	if (mask & JOBCTL_STOP_SIGMASK)
 295		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 296
 297	task->jobctl |= mask;
 298	return true;
 299}
 300
 301/**
 302 * task_clear_jobctl_trapping - clear jobctl trapping bit
 303 * @task: target task
 304 *
 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 306 * Clear it and wake up the ptracer.  Note that we don't need any further
 307 * locking.  @task->siglock guarantees that @task->parent points to the
 308 * ptracer.
 309 *
 310 * CONTEXT:
 311 * Must be called with @task->sighand->siglock held.
 312 */
 313void task_clear_jobctl_trapping(struct task_struct *task)
 314{
 315	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 316		task->jobctl &= ~JOBCTL_TRAPPING;
 317		smp_mb();	/* advised by wake_up_bit() */
 318		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 319	}
 320}
 321
 322/**
 323 * task_clear_jobctl_pending - clear jobctl pending bits
 324 * @task: target task
 325 * @mask: pending bits to clear
 326 *
 327 * Clear @mask from @task->jobctl.  @mask must be subset of
 328 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 329 * STOP bits are cleared together.
 330 *
 331 * If clearing of @mask leaves no stop or trap pending, this function calls
 332 * task_clear_jobctl_trapping().
 333 *
 334 * CONTEXT:
 335 * Must be called with @task->sighand->siglock held.
 336 */
 337void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 338{
 339	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 340
 341	if (mask & JOBCTL_STOP_PENDING)
 342		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 343
 344	task->jobctl &= ~mask;
 345
 346	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 347		task_clear_jobctl_trapping(task);
 348}
 349
 350/**
 351 * task_participate_group_stop - participate in a group stop
 352 * @task: task participating in a group stop
 353 *
 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 355 * Group stop states are cleared and the group stop count is consumed if
 356 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 357 * stop, the appropriate `SIGNAL_*` flags are set.
 358 *
 359 * CONTEXT:
 360 * Must be called with @task->sighand->siglock held.
 361 *
 362 * RETURNS:
 363 * %true if group stop completion should be notified to the parent, %false
 364 * otherwise.
 365 */
 366static bool task_participate_group_stop(struct task_struct *task)
 367{
 368	struct signal_struct *sig = task->signal;
 369	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 370
 371	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 372
 373	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 374
 375	if (!consume)
 376		return false;
 377
 378	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 379		sig->group_stop_count--;
 380
 381	/*
 382	 * Tell the caller to notify completion iff we are entering into a
 383	 * fresh group stop.  Read comment in do_signal_stop() for details.
 384	 */
 385	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 386		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 387		return true;
 388	}
 389	return false;
 390}
 391
 392void task_join_group_stop(struct task_struct *task)
 393{
 394	/* Have the new thread join an on-going signal group stop */
 395	unsigned long jobctl = current->jobctl;
 396	if (jobctl & JOBCTL_STOP_PENDING) {
 397		struct signal_struct *sig = current->signal;
 398		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
 399		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
 400		if (task_set_jobctl_pending(task, signr | gstop)) {
 401			sig->group_stop_count++;
 402		}
 403	}
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 413{
 414	struct sigqueue *q = NULL;
 415	struct user_struct *user;
 416	int sigpending;
 417
 418	/*
 419	 * Protect access to @t credentials. This can go away when all
 420	 * callers hold rcu read lock.
 421	 *
 422	 * NOTE! A pending signal will hold on to the user refcount,
 423	 * and we get/put the refcount only when the sigpending count
 424	 * changes from/to zero.
 425	 */
 426	rcu_read_lock();
 427	user = __task_cred(t)->user;
 428	sigpending = atomic_inc_return(&user->sigpending);
 429	if (sigpending == 1)
 430		get_uid(user);
 431	rcu_read_unlock();
 432
 433	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 434		q = kmem_cache_alloc(sigqueue_cachep, flags);
 435	} else {
 436		print_dropped_signal(sig);
 437	}
 438
 439	if (unlikely(q == NULL)) {
 440		if (atomic_dec_and_test(&user->sigpending))
 441			free_uid(user);
 442	} else {
 443		INIT_LIST_HEAD(&q->list);
 444		q->flags = 0;
 445		q->user = user;
 446	}
 447
 448	return q;
 449}
 450
 451static void __sigqueue_free(struct sigqueue *q)
 452{
 453	if (q->flags & SIGQUEUE_PREALLOC)
 454		return;
 455	if (atomic_dec_and_test(&q->user->sigpending))
 456		free_uid(q->user);
 457	kmem_cache_free(sigqueue_cachep, q);
 458}
 459
 460void flush_sigqueue(struct sigpending *queue)
 461{
 462	struct sigqueue *q;
 463
 464	sigemptyset(&queue->signal);
 465	while (!list_empty(&queue->list)) {
 466		q = list_entry(queue->list.next, struct sigqueue , list);
 467		list_del_init(&q->list);
 468		__sigqueue_free(q);
 469	}
 470}
 471
 472/*
 473 * Flush all pending signals for this kthread.
 474 */
 475void flush_signals(struct task_struct *t)
 476{
 477	unsigned long flags;
 478
 479	spin_lock_irqsave(&t->sighand->siglock, flags);
 480	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 481	flush_sigqueue(&t->pending);
 482	flush_sigqueue(&t->signal->shared_pending);
 483	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 484}
 485EXPORT_SYMBOL(flush_signals);
 486
 487#ifdef CONFIG_POSIX_TIMERS
 488static void __flush_itimer_signals(struct sigpending *pending)
 489{
 490	sigset_t signal, retain;
 491	struct sigqueue *q, *n;
 492
 493	signal = pending->signal;
 494	sigemptyset(&retain);
 495
 496	list_for_each_entry_safe(q, n, &pending->list, list) {
 497		int sig = q->info.si_signo;
 498
 499		if (likely(q->info.si_code != SI_TIMER)) {
 500			sigaddset(&retain, sig);
 501		} else {
 502			sigdelset(&signal, sig);
 503			list_del_init(&q->list);
 504			__sigqueue_free(q);
 505		}
 506	}
 507
 508	sigorsets(&pending->signal, &signal, &retain);
 509}
 510
 511void flush_itimer_signals(void)
 512{
 513	struct task_struct *tsk = current;
 514	unsigned long flags;
 515
 516	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 517	__flush_itimer_signals(&tsk->pending);
 518	__flush_itimer_signals(&tsk->signal->shared_pending);
 519	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 520}
 521#endif
 522
 523void ignore_signals(struct task_struct *t)
 524{
 525	int i;
 526
 527	for (i = 0; i < _NSIG; ++i)
 528		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 529
 530	flush_signals(t);
 531}
 532
 533/*
 534 * Flush all handlers for a task.
 535 */
 536
 537void
 538flush_signal_handlers(struct task_struct *t, int force_default)
 539{
 540	int i;
 541	struct k_sigaction *ka = &t->sighand->action[0];
 542	for (i = _NSIG ; i != 0 ; i--) {
 543		if (force_default || ka->sa.sa_handler != SIG_IGN)
 544			ka->sa.sa_handler = SIG_DFL;
 545		ka->sa.sa_flags = 0;
 546#ifdef __ARCH_HAS_SA_RESTORER
 547		ka->sa.sa_restorer = NULL;
 548#endif
 549		sigemptyset(&ka->sa.sa_mask);
 550		ka++;
 551	}
 552}
 553
 554bool unhandled_signal(struct task_struct *tsk, int sig)
 555{
 556	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 557	if (is_global_init(tsk))
 558		return true;
 559
 560	if (handler != SIG_IGN && handler != SIG_DFL)
 561		return false;
 562
 563	/* if ptraced, let the tracer determine */
 564	return !tsk->ptrace;
 565}
 566
 567static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 568			   bool *resched_timer)
 569{
 570	struct sigqueue *q, *first = NULL;
 571
 572	/*
 573	 * Collect the siginfo appropriate to this signal.  Check if
 574	 * there is another siginfo for the same signal.
 575	*/
 576	list_for_each_entry(q, &list->list, list) {
 577		if (q->info.si_signo == sig) {
 578			if (first)
 579				goto still_pending;
 580			first = q;
 581		}
 582	}
 583
 584	sigdelset(&list->signal, sig);
 585
 586	if (first) {
 587still_pending:
 588		list_del_init(&first->list);
 589		copy_siginfo(info, &first->info);
 590
 591		*resched_timer =
 592			(first->flags & SIGQUEUE_PREALLOC) &&
 593			(info->si_code == SI_TIMER) &&
 594			(info->si_sys_private);
 595
 596		__sigqueue_free(first);
 597	} else {
 598		/*
 599		 * Ok, it wasn't in the queue.  This must be
 600		 * a fast-pathed signal or we must have been
 601		 * out of queue space.  So zero out the info.
 602		 */
 603		clear_siginfo(info);
 604		info->si_signo = sig;
 605		info->si_errno = 0;
 606		info->si_code = SI_USER;
 607		info->si_pid = 0;
 608		info->si_uid = 0;
 609	}
 610}
 611
 612static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 613			kernel_siginfo_t *info, bool *resched_timer)
 614{
 615	int sig = next_signal(pending, mask);
 616
 617	if (sig)
 618		collect_signal(sig, pending, info, resched_timer);
 619	return sig;
 620}
 621
 622/*
 623 * Dequeue a signal and return the element to the caller, which is
 624 * expected to free it.
 625 *
 626 * All callers have to hold the siglock.
 627 */
 628int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 629{
 630	bool resched_timer = false;
 631	int signr;
 632
 633	/* We only dequeue private signals from ourselves, we don't let
 634	 * signalfd steal them
 635	 */
 636	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 637	if (!signr) {
 638		signr = __dequeue_signal(&tsk->signal->shared_pending,
 639					 mask, info, &resched_timer);
 640#ifdef CONFIG_POSIX_TIMERS
 641		/*
 642		 * itimer signal ?
 643		 *
 644		 * itimers are process shared and we restart periodic
 645		 * itimers in the signal delivery path to prevent DoS
 646		 * attacks in the high resolution timer case. This is
 647		 * compliant with the old way of self-restarting
 648		 * itimers, as the SIGALRM is a legacy signal and only
 649		 * queued once. Changing the restart behaviour to
 650		 * restart the timer in the signal dequeue path is
 651		 * reducing the timer noise on heavy loaded !highres
 652		 * systems too.
 653		 */
 654		if (unlikely(signr == SIGALRM)) {
 655			struct hrtimer *tmr = &tsk->signal->real_timer;
 656
 657			if (!hrtimer_is_queued(tmr) &&
 658			    tsk->signal->it_real_incr != 0) {
 659				hrtimer_forward(tmr, tmr->base->get_time(),
 660						tsk->signal->it_real_incr);
 661				hrtimer_restart(tmr);
 662			}
 663		}
 664#endif
 665	}
 666
 667	recalc_sigpending();
 668	if (!signr)
 669		return 0;
 670
 671	if (unlikely(sig_kernel_stop(signr))) {
 672		/*
 673		 * Set a marker that we have dequeued a stop signal.  Our
 674		 * caller might release the siglock and then the pending
 675		 * stop signal it is about to process is no longer in the
 676		 * pending bitmasks, but must still be cleared by a SIGCONT
 677		 * (and overruled by a SIGKILL).  So those cases clear this
 678		 * shared flag after we've set it.  Note that this flag may
 679		 * remain set after the signal we return is ignored or
 680		 * handled.  That doesn't matter because its only purpose
 681		 * is to alert stop-signal processing code when another
 682		 * processor has come along and cleared the flag.
 683		 */
 684		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 685	}
 686#ifdef CONFIG_POSIX_TIMERS
 687	if (resched_timer) {
 688		/*
 689		 * Release the siglock to ensure proper locking order
 690		 * of timer locks outside of siglocks.  Note, we leave
 691		 * irqs disabled here, since the posix-timers code is
 692		 * about to disable them again anyway.
 693		 */
 694		spin_unlock(&tsk->sighand->siglock);
 695		posixtimer_rearm(info);
 696		spin_lock(&tsk->sighand->siglock);
 697
 698		/* Don't expose the si_sys_private value to userspace */
 699		info->si_sys_private = 0;
 700	}
 701#endif
 702	return signr;
 703}
 704EXPORT_SYMBOL_GPL(dequeue_signal);
 705
 706static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 707{
 708	struct task_struct *tsk = current;
 709	struct sigpending *pending = &tsk->pending;
 710	struct sigqueue *q, *sync = NULL;
 711
 712	/*
 713	 * Might a synchronous signal be in the queue?
 714	 */
 715	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 716		return 0;
 717
 718	/*
 719	 * Return the first synchronous signal in the queue.
 720	 */
 721	list_for_each_entry(q, &pending->list, list) {
 722		/* Synchronous signals have a positive si_code */
 723		if ((q->info.si_code > SI_USER) &&
 724		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 725			sync = q;
 726			goto next;
 727		}
 728	}
 729	return 0;
 730next:
 731	/*
 732	 * Check if there is another siginfo for the same signal.
 733	 */
 734	list_for_each_entry_continue(q, &pending->list, list) {
 735		if (q->info.si_signo == sync->info.si_signo)
 736			goto still_pending;
 737	}
 738
 739	sigdelset(&pending->signal, sync->info.si_signo);
 740	recalc_sigpending();
 741still_pending:
 742	list_del_init(&sync->list);
 743	copy_siginfo(info, &sync->info);
 744	__sigqueue_free(sync);
 745	return info->si_signo;
 746}
 747
 748/*
 749 * Tell a process that it has a new active signal..
 750 *
 751 * NOTE! we rely on the previous spin_lock to
 752 * lock interrupts for us! We can only be called with
 753 * "siglock" held, and the local interrupt must
 754 * have been disabled when that got acquired!
 755 *
 756 * No need to set need_resched since signal event passing
 757 * goes through ->blocked
 758 */
 759void signal_wake_up_state(struct task_struct *t, unsigned int state)
 760{
 761	set_tsk_thread_flag(t, TIF_SIGPENDING);
 762	/*
 763	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 764	 * case. We don't check t->state here because there is a race with it
 765	 * executing another processor and just now entering stopped state.
 766	 * By using wake_up_state, we ensure the process will wake up and
 767	 * handle its death signal.
 768	 */
 769	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 770		kick_process(t);
 771}
 772
 773/*
 774 * Remove signals in mask from the pending set and queue.
 775 * Returns 1 if any signals were found.
 776 *
 777 * All callers must be holding the siglock.
 778 */
 779static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 780{
 781	struct sigqueue *q, *n;
 782	sigset_t m;
 783
 784	sigandsets(&m, mask, &s->signal);
 785	if (sigisemptyset(&m))
 786		return;
 787
 788	sigandnsets(&s->signal, &s->signal, mask);
 789	list_for_each_entry_safe(q, n, &s->list, list) {
 790		if (sigismember(mask, q->info.si_signo)) {
 791			list_del_init(&q->list);
 792			__sigqueue_free(q);
 793		}
 794	}
 795}
 796
 797static inline int is_si_special(const struct kernel_siginfo *info)
 798{
 799	return info <= SEND_SIG_PRIV;
 800}
 801
 802static inline bool si_fromuser(const struct kernel_siginfo *info)
 803{
 804	return info == SEND_SIG_NOINFO ||
 805		(!is_si_special(info) && SI_FROMUSER(info));
 806}
 807
 808/*
 809 * called with RCU read lock from check_kill_permission()
 810 */
 811static bool kill_ok_by_cred(struct task_struct *t)
 812{
 813	const struct cred *cred = current_cred();
 814	const struct cred *tcred = __task_cred(t);
 815
 816	return uid_eq(cred->euid, tcred->suid) ||
 817	       uid_eq(cred->euid, tcred->uid) ||
 818	       uid_eq(cred->uid, tcred->suid) ||
 819	       uid_eq(cred->uid, tcred->uid) ||
 820	       ns_capable(tcred->user_ns, CAP_KILL);
 821}
 822
 823/*
 824 * Bad permissions for sending the signal
 825 * - the caller must hold the RCU read lock
 826 */
 827static int check_kill_permission(int sig, struct kernel_siginfo *info,
 828				 struct task_struct *t)
 829{
 830	struct pid *sid;
 831	int error;
 832
 833	if (!valid_signal(sig))
 834		return -EINVAL;
 835
 836	if (!si_fromuser(info))
 837		return 0;
 838
 839	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 840	if (error)
 841		return error;
 842
 843	if (!same_thread_group(current, t) &&
 844	    !kill_ok_by_cred(t)) {
 845		switch (sig) {
 846		case SIGCONT:
 847			sid = task_session(t);
 848			/*
 849			 * We don't return the error if sid == NULL. The
 850			 * task was unhashed, the caller must notice this.
 851			 */
 852			if (!sid || sid == task_session(current))
 853				break;
 854			fallthrough;
 855		default:
 856			return -EPERM;
 857		}
 858	}
 859
 860	return security_task_kill(t, info, sig, NULL);
 861}
 862
 863/**
 864 * ptrace_trap_notify - schedule trap to notify ptracer
 865 * @t: tracee wanting to notify tracer
 866 *
 867 * This function schedules sticky ptrace trap which is cleared on the next
 868 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 869 * ptracer.
 870 *
 871 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 872 * ptracer is listening for events, tracee is woken up so that it can
 873 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 874 * eventually taken without returning to userland after the existing traps
 875 * are finished by PTRACE_CONT.
 876 *
 877 * CONTEXT:
 878 * Must be called with @task->sighand->siglock held.
 879 */
 880static void ptrace_trap_notify(struct task_struct *t)
 881{
 882	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 883	assert_spin_locked(&t->sighand->siglock);
 884
 885	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 886	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 887}
 888
 889/*
 890 * Handle magic process-wide effects of stop/continue signals. Unlike
 891 * the signal actions, these happen immediately at signal-generation
 892 * time regardless of blocking, ignoring, or handling.  This does the
 893 * actual continuing for SIGCONT, but not the actual stopping for stop
 894 * signals. The process stop is done as a signal action for SIG_DFL.
 895 *
 896 * Returns true if the signal should be actually delivered, otherwise
 897 * it should be dropped.
 898 */
 899static bool prepare_signal(int sig, struct task_struct *p, bool force)
 900{
 901	struct signal_struct *signal = p->signal;
 902	struct task_struct *t;
 903	sigset_t flush;
 904
 905	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 906		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 907			return sig == SIGKILL;
 908		/*
 909		 * The process is in the middle of dying, nothing to do.
 910		 */
 911	} else if (sig_kernel_stop(sig)) {
 912		/*
 913		 * This is a stop signal.  Remove SIGCONT from all queues.
 914		 */
 915		siginitset(&flush, sigmask(SIGCONT));
 916		flush_sigqueue_mask(&flush, &signal->shared_pending);
 917		for_each_thread(p, t)
 918			flush_sigqueue_mask(&flush, &t->pending);
 919	} else if (sig == SIGCONT) {
 920		unsigned int why;
 921		/*
 922		 * Remove all stop signals from all queues, wake all threads.
 923		 */
 924		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 925		flush_sigqueue_mask(&flush, &signal->shared_pending);
 926		for_each_thread(p, t) {
 927			flush_sigqueue_mask(&flush, &t->pending);
 928			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 929			if (likely(!(t->ptrace & PT_SEIZED)))
 930				wake_up_state(t, __TASK_STOPPED);
 931			else
 932				ptrace_trap_notify(t);
 933		}
 934
 935		/*
 936		 * Notify the parent with CLD_CONTINUED if we were stopped.
 937		 *
 938		 * If we were in the middle of a group stop, we pretend it
 939		 * was already finished, and then continued. Since SIGCHLD
 940		 * doesn't queue we report only CLD_STOPPED, as if the next
 941		 * CLD_CONTINUED was dropped.
 942		 */
 943		why = 0;
 944		if (signal->flags & SIGNAL_STOP_STOPPED)
 945			why |= SIGNAL_CLD_CONTINUED;
 946		else if (signal->group_stop_count)
 947			why |= SIGNAL_CLD_STOPPED;
 948
 949		if (why) {
 950			/*
 951			 * The first thread which returns from do_signal_stop()
 952			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 953			 * notify its parent. See get_signal().
 954			 */
 955			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 956			signal->group_stop_count = 0;
 957			signal->group_exit_code = 0;
 958		}
 959	}
 960
 961	return !sig_ignored(p, sig, force);
 962}
 963
 964/*
 965 * Test if P wants to take SIG.  After we've checked all threads with this,
 966 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 967 * blocking SIG were ruled out because they are not running and already
 968 * have pending signals.  Such threads will dequeue from the shared queue
 969 * as soon as they're available, so putting the signal on the shared queue
 970 * will be equivalent to sending it to one such thread.
 971 */
 972static inline bool wants_signal(int sig, struct task_struct *p)
 973{
 974	if (sigismember(&p->blocked, sig))
 975		return false;
 976
 977	if (p->flags & PF_EXITING)
 978		return false;
 979
 980	if (sig == SIGKILL)
 981		return true;
 982
 983	if (task_is_stopped_or_traced(p))
 984		return false;
 985
 986	return task_curr(p) || !signal_pending(p);
 987}
 988
 989static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 990{
 991	struct signal_struct *signal = p->signal;
 992	struct task_struct *t;
 993
 994	/*
 995	 * Now find a thread we can wake up to take the signal off the queue.
 996	 *
 997	 * If the main thread wants the signal, it gets first crack.
 998	 * Probably the least surprising to the average bear.
 999	 */
1000	if (wants_signal(sig, p))
1001		t = p;
1002	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003		/*
1004		 * There is just one thread and it does not need to be woken.
1005		 * It will dequeue unblocked signals before it runs again.
1006		 */
1007		return;
1008	else {
1009		/*
1010		 * Otherwise try to find a suitable thread.
1011		 */
1012		t = signal->curr_target;
1013		while (!wants_signal(sig, t)) {
1014			t = next_thread(t);
1015			if (t == signal->curr_target)
1016				/*
1017				 * No thread needs to be woken.
1018				 * Any eligible threads will see
1019				 * the signal in the queue soon.
1020				 */
1021				return;
1022		}
1023		signal->curr_target = t;
1024	}
1025
1026	/*
1027	 * Found a killable thread.  If the signal will be fatal,
1028	 * then start taking the whole group down immediately.
1029	 */
1030	if (sig_fatal(p, sig) &&
1031	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032	    !sigismember(&t->real_blocked, sig) &&
1033	    (sig == SIGKILL || !p->ptrace)) {
1034		/*
1035		 * This signal will be fatal to the whole group.
1036		 */
1037		if (!sig_kernel_coredump(sig)) {
1038			/*
1039			 * Start a group exit and wake everybody up.
1040			 * This way we don't have other threads
1041			 * running and doing things after a slower
1042			 * thread has the fatal signal pending.
1043			 */
1044			signal->flags = SIGNAL_GROUP_EXIT;
1045			signal->group_exit_code = sig;
1046			signal->group_stop_count = 0;
1047			t = p;
1048			do {
1049				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050				sigaddset(&t->pending.signal, SIGKILL);
1051				signal_wake_up(t, 1);
1052			} while_each_thread(p, t);
1053			return;
1054		}
1055	}
1056
1057	/*
1058	 * The signal is already in the shared-pending queue.
1059	 * Tell the chosen thread to wake up and dequeue it.
1060	 */
1061	signal_wake_up(t, sig == SIGKILL);
1062	return;
1063}
1064
1065static inline bool legacy_queue(struct sigpending *signals, int sig)
1066{
1067	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068}
1069
1070static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071			enum pid_type type, bool force)
1072{
1073	struct sigpending *pending;
1074	struct sigqueue *q;
1075	int override_rlimit;
1076	int ret = 0, result;
1077
1078	assert_spin_locked(&t->sighand->siglock);
1079
1080	result = TRACE_SIGNAL_IGNORED;
1081	if (!prepare_signal(sig, t, force))
1082		goto ret;
1083
1084	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085	/*
1086	 * Short-circuit ignored signals and support queuing
1087	 * exactly one non-rt signal, so that we can get more
1088	 * detailed information about the cause of the signal.
1089	 */
1090	result = TRACE_SIGNAL_ALREADY_PENDING;
1091	if (legacy_queue(pending, sig))
1092		goto ret;
1093
1094	result = TRACE_SIGNAL_DELIVERED;
1095	/*
1096	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1097	 */
1098	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099		goto out_set;
1100
1101	/*
1102	 * Real-time signals must be queued if sent by sigqueue, or
1103	 * some other real-time mechanism.  It is implementation
1104	 * defined whether kill() does so.  We attempt to do so, on
1105	 * the principle of least surprise, but since kill is not
1106	 * allowed to fail with EAGAIN when low on memory we just
1107	 * make sure at least one signal gets delivered and don't
1108	 * pass on the info struct.
1109	 */
1110	if (sig < SIGRTMIN)
1111		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112	else
1113		override_rlimit = 0;
1114
1115	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1116	if (q) {
1117		list_add_tail(&q->list, &pending->list);
1118		switch ((unsigned long) info) {
1119		case (unsigned long) SEND_SIG_NOINFO:
1120			clear_siginfo(&q->info);
1121			q->info.si_signo = sig;
1122			q->info.si_errno = 0;
1123			q->info.si_code = SI_USER;
1124			q->info.si_pid = task_tgid_nr_ns(current,
1125							task_active_pid_ns(t));
1126			rcu_read_lock();
1127			q->info.si_uid =
1128				from_kuid_munged(task_cred_xxx(t, user_ns),
1129						 current_uid());
1130			rcu_read_unlock();
1131			break;
1132		case (unsigned long) SEND_SIG_PRIV:
1133			clear_siginfo(&q->info);
1134			q->info.si_signo = sig;
1135			q->info.si_errno = 0;
1136			q->info.si_code = SI_KERNEL;
1137			q->info.si_pid = 0;
1138			q->info.si_uid = 0;
1139			break;
1140		default:
1141			copy_siginfo(&q->info, info);
1142			break;
1143		}
1144	} else if (!is_si_special(info) &&
1145		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1146		/*
1147		 * Queue overflow, abort.  We may abort if the
1148		 * signal was rt and sent by user using something
1149		 * other than kill().
1150		 */
1151		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1152		ret = -EAGAIN;
1153		goto ret;
1154	} else {
1155		/*
1156		 * This is a silent loss of information.  We still
1157		 * send the signal, but the *info bits are lost.
1158		 */
1159		result = TRACE_SIGNAL_LOSE_INFO;
1160	}
1161
1162out_set:
1163	signalfd_notify(t, sig);
1164	sigaddset(&pending->signal, sig);
1165
1166	/* Let multiprocess signals appear after on-going forks */
1167	if (type > PIDTYPE_TGID) {
1168		struct multiprocess_signals *delayed;
1169		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1170			sigset_t *signal = &delayed->signal;
1171			/* Can't queue both a stop and a continue signal */
1172			if (sig == SIGCONT)
1173				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1174			else if (sig_kernel_stop(sig))
1175				sigdelset(signal, SIGCONT);
1176			sigaddset(signal, sig);
1177		}
1178	}
1179
1180	complete_signal(sig, t, type);
1181ret:
1182	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1183	return ret;
1184}
1185
1186static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1187{
1188	bool ret = false;
1189	switch (siginfo_layout(info->si_signo, info->si_code)) {
1190	case SIL_KILL:
1191	case SIL_CHLD:
1192	case SIL_RT:
1193		ret = true;
1194		break;
1195	case SIL_TIMER:
1196	case SIL_POLL:
1197	case SIL_FAULT:
1198	case SIL_FAULT_MCEERR:
1199	case SIL_FAULT_BNDERR:
1200	case SIL_FAULT_PKUERR:
1201	case SIL_SYS:
1202		ret = false;
1203		break;
1204	}
1205	return ret;
1206}
1207
1208static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1209			enum pid_type type)
1210{
1211	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1212	bool force = false;
1213
1214	if (info == SEND_SIG_NOINFO) {
1215		/* Force if sent from an ancestor pid namespace */
1216		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1217	} else if (info == SEND_SIG_PRIV) {
1218		/* Don't ignore kernel generated signals */
1219		force = true;
1220	} else if (has_si_pid_and_uid(info)) {
1221		/* SIGKILL and SIGSTOP is special or has ids */
1222		struct user_namespace *t_user_ns;
1223
1224		rcu_read_lock();
1225		t_user_ns = task_cred_xxx(t, user_ns);
1226		if (current_user_ns() != t_user_ns) {
1227			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1228			info->si_uid = from_kuid_munged(t_user_ns, uid);
1229		}
1230		rcu_read_unlock();
1231
1232		/* A kernel generated signal? */
1233		force = (info->si_code == SI_KERNEL);
1234
1235		/* From an ancestor pid namespace? */
1236		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1237			info->si_pid = 0;
1238			force = true;
1239		}
1240	}
1241	return __send_signal(sig, info, t, type, force);
1242}
1243
1244static void print_fatal_signal(int signr)
1245{
1246	struct pt_regs *regs = signal_pt_regs();
1247	pr_info("potentially unexpected fatal signal %d.\n", signr);
1248
1249#if defined(__i386__) && !defined(__arch_um__)
1250	pr_info("code at %08lx: ", regs->ip);
1251	{
1252		int i;
1253		for (i = 0; i < 16; i++) {
1254			unsigned char insn;
1255
1256			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1257				break;
1258			pr_cont("%02x ", insn);
1259		}
1260	}
1261	pr_cont("\n");
1262#endif
1263	preempt_disable();
1264	show_regs(regs);
1265	preempt_enable();
1266}
1267
1268static int __init setup_print_fatal_signals(char *str)
1269{
1270	get_option (&str, &print_fatal_signals);
1271
1272	return 1;
1273}
1274
1275__setup("print-fatal-signals=", setup_print_fatal_signals);
1276
1277int
1278__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1279{
1280	return send_signal(sig, info, p, PIDTYPE_TGID);
1281}
1282
1283int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1284			enum pid_type type)
1285{
1286	unsigned long flags;
1287	int ret = -ESRCH;
1288
1289	if (lock_task_sighand(p, &flags)) {
1290		ret = send_signal(sig, info, p, type);
1291		unlock_task_sighand(p, &flags);
1292	}
1293
1294	return ret;
1295}
1296
1297/*
1298 * Force a signal that the process can't ignore: if necessary
1299 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1300 *
1301 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1302 * since we do not want to have a signal handler that was blocked
1303 * be invoked when user space had explicitly blocked it.
1304 *
1305 * We don't want to have recursive SIGSEGV's etc, for example,
1306 * that is why we also clear SIGNAL_UNKILLABLE.
1307 */
1308static int
1309force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1310{
1311	unsigned long int flags;
1312	int ret, blocked, ignored;
1313	struct k_sigaction *action;
1314	int sig = info->si_signo;
1315
1316	spin_lock_irqsave(&t->sighand->siglock, flags);
1317	action = &t->sighand->action[sig-1];
1318	ignored = action->sa.sa_handler == SIG_IGN;
1319	blocked = sigismember(&t->blocked, sig);
1320	if (blocked || ignored) {
1321		action->sa.sa_handler = SIG_DFL;
1322		if (blocked) {
1323			sigdelset(&t->blocked, sig);
1324			recalc_sigpending_and_wake(t);
1325		}
1326	}
1327	/*
1328	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1329	 * debugging to leave init killable.
1330	 */
1331	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1332		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1333	ret = send_signal(sig, info, t, PIDTYPE_PID);
1334	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1335
1336	return ret;
1337}
1338
1339int force_sig_info(struct kernel_siginfo *info)
1340{
1341	return force_sig_info_to_task(info, current);
1342}
1343
1344/*
1345 * Nuke all other threads in the group.
1346 */
1347int zap_other_threads(struct task_struct *p)
1348{
1349	struct task_struct *t = p;
1350	int count = 0;
1351
1352	p->signal->group_stop_count = 0;
1353
1354	while_each_thread(p, t) {
1355		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1356		count++;
1357
1358		/* Don't bother with already dead threads */
1359		if (t->exit_state)
1360			continue;
1361		sigaddset(&t->pending.signal, SIGKILL);
1362		signal_wake_up(t, 1);
1363	}
1364
1365	return count;
1366}
1367
1368struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1369					   unsigned long *flags)
1370{
1371	struct sighand_struct *sighand;
1372
1373	rcu_read_lock();
1374	for (;;) {
1375		sighand = rcu_dereference(tsk->sighand);
1376		if (unlikely(sighand == NULL))
1377			break;
1378
1379		/*
1380		 * This sighand can be already freed and even reused, but
1381		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1382		 * initializes ->siglock: this slab can't go away, it has
1383		 * the same object type, ->siglock can't be reinitialized.
1384		 *
1385		 * We need to ensure that tsk->sighand is still the same
1386		 * after we take the lock, we can race with de_thread() or
1387		 * __exit_signal(). In the latter case the next iteration
1388		 * must see ->sighand == NULL.
1389		 */
1390		spin_lock_irqsave(&sighand->siglock, *flags);
1391		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1392			break;
1393		spin_unlock_irqrestore(&sighand->siglock, *flags);
1394	}
1395	rcu_read_unlock();
1396
1397	return sighand;
1398}
1399
1400/*
1401 * send signal info to all the members of a group
1402 */
1403int group_send_sig_info(int sig, struct kernel_siginfo *info,
1404			struct task_struct *p, enum pid_type type)
1405{
1406	int ret;
1407
1408	rcu_read_lock();
1409	ret = check_kill_permission(sig, info, p);
1410	rcu_read_unlock();
1411
1412	if (!ret && sig)
1413		ret = do_send_sig_info(sig, info, p, type);
1414
1415	return ret;
1416}
1417
1418/*
1419 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1420 * control characters do (^C, ^Z etc)
1421 * - the caller must hold at least a readlock on tasklist_lock
1422 */
1423int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1424{
1425	struct task_struct *p = NULL;
1426	int retval, success;
1427
1428	success = 0;
1429	retval = -ESRCH;
1430	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1431		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1432		success |= !err;
1433		retval = err;
1434	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1435	return success ? 0 : retval;
1436}
1437
1438int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1439{
1440	int error = -ESRCH;
1441	struct task_struct *p;
1442
1443	for (;;) {
1444		rcu_read_lock();
1445		p = pid_task(pid, PIDTYPE_PID);
1446		if (p)
1447			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1448		rcu_read_unlock();
1449		if (likely(!p || error != -ESRCH))
1450			return error;
1451
1452		/*
1453		 * The task was unhashed in between, try again.  If it
1454		 * is dead, pid_task() will return NULL, if we race with
1455		 * de_thread() it will find the new leader.
1456		 */
1457	}
1458}
1459
1460static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1461{
1462	int error;
1463	rcu_read_lock();
1464	error = kill_pid_info(sig, info, find_vpid(pid));
1465	rcu_read_unlock();
1466	return error;
1467}
1468
1469static inline bool kill_as_cred_perm(const struct cred *cred,
1470				     struct task_struct *target)
1471{
1472	const struct cred *pcred = __task_cred(target);
1473
1474	return uid_eq(cred->euid, pcred->suid) ||
1475	       uid_eq(cred->euid, pcred->uid) ||
1476	       uid_eq(cred->uid, pcred->suid) ||
1477	       uid_eq(cred->uid, pcred->uid);
1478}
1479
1480/*
1481 * The usb asyncio usage of siginfo is wrong.  The glibc support
1482 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1483 * AKA after the generic fields:
1484 *	kernel_pid_t	si_pid;
1485 *	kernel_uid32_t	si_uid;
1486 *	sigval_t	si_value;
1487 *
1488 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1489 * after the generic fields is:
1490 *	void __user 	*si_addr;
1491 *
1492 * This is a practical problem when there is a 64bit big endian kernel
1493 * and a 32bit userspace.  As the 32bit address will encoded in the low
1494 * 32bits of the pointer.  Those low 32bits will be stored at higher
1495 * address than appear in a 32 bit pointer.  So userspace will not
1496 * see the address it was expecting for it's completions.
1497 *
1498 * There is nothing in the encoding that can allow
1499 * copy_siginfo_to_user32 to detect this confusion of formats, so
1500 * handle this by requiring the caller of kill_pid_usb_asyncio to
1501 * notice when this situration takes place and to store the 32bit
1502 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1503 * parameter.
1504 */
1505int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1506			 struct pid *pid, const struct cred *cred)
1507{
1508	struct kernel_siginfo info;
1509	struct task_struct *p;
1510	unsigned long flags;
1511	int ret = -EINVAL;
1512
1513	if (!valid_signal(sig))
1514		return ret;
1515
1516	clear_siginfo(&info);
1517	info.si_signo = sig;
1518	info.si_errno = errno;
1519	info.si_code = SI_ASYNCIO;
1520	*((sigval_t *)&info.si_pid) = addr;
1521
1522	rcu_read_lock();
1523	p = pid_task(pid, PIDTYPE_PID);
1524	if (!p) {
1525		ret = -ESRCH;
1526		goto out_unlock;
1527	}
1528	if (!kill_as_cred_perm(cred, p)) {
1529		ret = -EPERM;
1530		goto out_unlock;
1531	}
1532	ret = security_task_kill(p, &info, sig, cred);
1533	if (ret)
1534		goto out_unlock;
1535
1536	if (sig) {
1537		if (lock_task_sighand(p, &flags)) {
1538			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1539			unlock_task_sighand(p, &flags);
1540		} else
1541			ret = -ESRCH;
1542	}
1543out_unlock:
1544	rcu_read_unlock();
1545	return ret;
1546}
1547EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1548
1549/*
1550 * kill_something_info() interprets pid in interesting ways just like kill(2).
1551 *
1552 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1553 * is probably wrong.  Should make it like BSD or SYSV.
1554 */
1555
1556static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1557{
1558	int ret;
1559
1560	if (pid > 0)
1561		return kill_proc_info(sig, info, pid);
1562
1563	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1564	if (pid == INT_MIN)
1565		return -ESRCH;
1566
1567	read_lock(&tasklist_lock);
1568	if (pid != -1) {
1569		ret = __kill_pgrp_info(sig, info,
1570				pid ? find_vpid(-pid) : task_pgrp(current));
1571	} else {
1572		int retval = 0, count = 0;
1573		struct task_struct * p;
1574
1575		for_each_process(p) {
1576			if (task_pid_vnr(p) > 1 &&
1577					!same_thread_group(p, current)) {
1578				int err = group_send_sig_info(sig, info, p,
1579							      PIDTYPE_MAX);
1580				++count;
1581				if (err != -EPERM)
1582					retval = err;
1583			}
1584		}
1585		ret = count ? retval : -ESRCH;
1586	}
1587	read_unlock(&tasklist_lock);
1588
1589	return ret;
1590}
1591
1592/*
1593 * These are for backward compatibility with the rest of the kernel source.
1594 */
1595
1596int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1597{
1598	/*
1599	 * Make sure legacy kernel users don't send in bad values
1600	 * (normal paths check this in check_kill_permission).
1601	 */
1602	if (!valid_signal(sig))
1603		return -EINVAL;
1604
1605	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1606}
1607EXPORT_SYMBOL(send_sig_info);
1608
1609#define __si_special(priv) \
1610	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1611
1612int
1613send_sig(int sig, struct task_struct *p, int priv)
1614{
1615	return send_sig_info(sig, __si_special(priv), p);
1616}
1617EXPORT_SYMBOL(send_sig);
1618
1619void force_sig(int sig)
1620{
1621	struct kernel_siginfo info;
1622
1623	clear_siginfo(&info);
1624	info.si_signo = sig;
1625	info.si_errno = 0;
1626	info.si_code = SI_KERNEL;
1627	info.si_pid = 0;
1628	info.si_uid = 0;
1629	force_sig_info(&info);
1630}
1631EXPORT_SYMBOL(force_sig);
1632
1633/*
1634 * When things go south during signal handling, we
1635 * will force a SIGSEGV. And if the signal that caused
1636 * the problem was already a SIGSEGV, we'll want to
1637 * make sure we don't even try to deliver the signal..
1638 */
1639void force_sigsegv(int sig)
1640{
1641	struct task_struct *p = current;
1642
1643	if (sig == SIGSEGV) {
1644		unsigned long flags;
1645		spin_lock_irqsave(&p->sighand->siglock, flags);
1646		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1647		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1648	}
1649	force_sig(SIGSEGV);
1650}
1651
1652int force_sig_fault_to_task(int sig, int code, void __user *addr
1653	___ARCH_SI_TRAPNO(int trapno)
1654	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1655	, struct task_struct *t)
1656{
1657	struct kernel_siginfo info;
1658
1659	clear_siginfo(&info);
1660	info.si_signo = sig;
1661	info.si_errno = 0;
1662	info.si_code  = code;
1663	info.si_addr  = addr;
1664#ifdef __ARCH_SI_TRAPNO
1665	info.si_trapno = trapno;
1666#endif
1667#ifdef __ia64__
1668	info.si_imm = imm;
1669	info.si_flags = flags;
1670	info.si_isr = isr;
1671#endif
1672	return force_sig_info_to_task(&info, t);
1673}
1674
1675int force_sig_fault(int sig, int code, void __user *addr
1676	___ARCH_SI_TRAPNO(int trapno)
1677	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1678{
1679	return force_sig_fault_to_task(sig, code, addr
1680				       ___ARCH_SI_TRAPNO(trapno)
1681				       ___ARCH_SI_IA64(imm, flags, isr), current);
1682}
1683
1684int send_sig_fault(int sig, int code, void __user *addr
1685	___ARCH_SI_TRAPNO(int trapno)
1686	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1687	, struct task_struct *t)
1688{
1689	struct kernel_siginfo info;
1690
1691	clear_siginfo(&info);
1692	info.si_signo = sig;
1693	info.si_errno = 0;
1694	info.si_code  = code;
1695	info.si_addr  = addr;
1696#ifdef __ARCH_SI_TRAPNO
1697	info.si_trapno = trapno;
1698#endif
1699#ifdef __ia64__
1700	info.si_imm = imm;
1701	info.si_flags = flags;
1702	info.si_isr = isr;
1703#endif
1704	return send_sig_info(info.si_signo, &info, t);
1705}
1706
1707int force_sig_mceerr(int code, void __user *addr, short lsb)
1708{
1709	struct kernel_siginfo info;
1710
1711	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1712	clear_siginfo(&info);
1713	info.si_signo = SIGBUS;
1714	info.si_errno = 0;
1715	info.si_code = code;
1716	info.si_addr = addr;
1717	info.si_addr_lsb = lsb;
1718	return force_sig_info(&info);
1719}
1720
1721int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1722{
1723	struct kernel_siginfo info;
1724
1725	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1726	clear_siginfo(&info);
1727	info.si_signo = SIGBUS;
1728	info.si_errno = 0;
1729	info.si_code = code;
1730	info.si_addr = addr;
1731	info.si_addr_lsb = lsb;
1732	return send_sig_info(info.si_signo, &info, t);
1733}
1734EXPORT_SYMBOL(send_sig_mceerr);
1735
1736int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1737{
1738	struct kernel_siginfo info;
1739
1740	clear_siginfo(&info);
1741	info.si_signo = SIGSEGV;
1742	info.si_errno = 0;
1743	info.si_code  = SEGV_BNDERR;
1744	info.si_addr  = addr;
1745	info.si_lower = lower;
1746	info.si_upper = upper;
1747	return force_sig_info(&info);
1748}
1749
1750#ifdef SEGV_PKUERR
1751int force_sig_pkuerr(void __user *addr, u32 pkey)
1752{
1753	struct kernel_siginfo info;
1754
1755	clear_siginfo(&info);
1756	info.si_signo = SIGSEGV;
1757	info.si_errno = 0;
1758	info.si_code  = SEGV_PKUERR;
1759	info.si_addr  = addr;
1760	info.si_pkey  = pkey;
1761	return force_sig_info(&info);
1762}
1763#endif
1764
1765/* For the crazy architectures that include trap information in
1766 * the errno field, instead of an actual errno value.
1767 */
1768int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1769{
1770	struct kernel_siginfo info;
1771
1772	clear_siginfo(&info);
1773	info.si_signo = SIGTRAP;
1774	info.si_errno = errno;
1775	info.si_code  = TRAP_HWBKPT;
1776	info.si_addr  = addr;
1777	return force_sig_info(&info);
1778}
1779
1780int kill_pgrp(struct pid *pid, int sig, int priv)
1781{
1782	int ret;
1783
1784	read_lock(&tasklist_lock);
1785	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1786	read_unlock(&tasklist_lock);
1787
1788	return ret;
1789}
1790EXPORT_SYMBOL(kill_pgrp);
1791
1792int kill_pid(struct pid *pid, int sig, int priv)
1793{
1794	return kill_pid_info(sig, __si_special(priv), pid);
1795}
1796EXPORT_SYMBOL(kill_pid);
1797
1798/*
1799 * These functions support sending signals using preallocated sigqueue
1800 * structures.  This is needed "because realtime applications cannot
1801 * afford to lose notifications of asynchronous events, like timer
1802 * expirations or I/O completions".  In the case of POSIX Timers
1803 * we allocate the sigqueue structure from the timer_create.  If this
1804 * allocation fails we are able to report the failure to the application
1805 * with an EAGAIN error.
1806 */
1807struct sigqueue *sigqueue_alloc(void)
1808{
1809	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1810
1811	if (q)
1812		q->flags |= SIGQUEUE_PREALLOC;
1813
1814	return q;
1815}
1816
1817void sigqueue_free(struct sigqueue *q)
1818{
1819	unsigned long flags;
1820	spinlock_t *lock = &current->sighand->siglock;
1821
1822	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1823	/*
1824	 * We must hold ->siglock while testing q->list
1825	 * to serialize with collect_signal() or with
1826	 * __exit_signal()->flush_sigqueue().
1827	 */
1828	spin_lock_irqsave(lock, flags);
1829	q->flags &= ~SIGQUEUE_PREALLOC;
1830	/*
1831	 * If it is queued it will be freed when dequeued,
1832	 * like the "regular" sigqueue.
1833	 */
1834	if (!list_empty(&q->list))
1835		q = NULL;
1836	spin_unlock_irqrestore(lock, flags);
1837
1838	if (q)
1839		__sigqueue_free(q);
1840}
1841
1842int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1843{
1844	int sig = q->info.si_signo;
1845	struct sigpending *pending;
1846	struct task_struct *t;
1847	unsigned long flags;
1848	int ret, result;
1849
1850	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1851
1852	ret = -1;
1853	rcu_read_lock();
1854	t = pid_task(pid, type);
1855	if (!t || !likely(lock_task_sighand(t, &flags)))
1856		goto ret;
1857
1858	ret = 1; /* the signal is ignored */
1859	result = TRACE_SIGNAL_IGNORED;
1860	if (!prepare_signal(sig, t, false))
1861		goto out;
1862
1863	ret = 0;
1864	if (unlikely(!list_empty(&q->list))) {
1865		/*
1866		 * If an SI_TIMER entry is already queue just increment
1867		 * the overrun count.
1868		 */
1869		BUG_ON(q->info.si_code != SI_TIMER);
1870		q->info.si_overrun++;
1871		result = TRACE_SIGNAL_ALREADY_PENDING;
1872		goto out;
1873	}
1874	q->info.si_overrun = 0;
1875
1876	signalfd_notify(t, sig);
1877	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1878	list_add_tail(&q->list, &pending->list);
1879	sigaddset(&pending->signal, sig);
1880	complete_signal(sig, t, type);
1881	result = TRACE_SIGNAL_DELIVERED;
1882out:
1883	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1884	unlock_task_sighand(t, &flags);
1885ret:
1886	rcu_read_unlock();
1887	return ret;
1888}
1889
1890static void do_notify_pidfd(struct task_struct *task)
1891{
1892	struct pid *pid;
1893
1894	WARN_ON(task->exit_state == 0);
1895	pid = task_pid(task);
1896	wake_up_all(&pid->wait_pidfd);
1897}
1898
1899/*
1900 * Let a parent know about the death of a child.
1901 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1902 *
1903 * Returns true if our parent ignored us and so we've switched to
1904 * self-reaping.
1905 */
1906bool do_notify_parent(struct task_struct *tsk, int sig)
1907{
1908	struct kernel_siginfo info;
1909	unsigned long flags;
1910	struct sighand_struct *psig;
1911	bool autoreap = false;
1912	u64 utime, stime;
1913
1914	BUG_ON(sig == -1);
1915
1916 	/* do_notify_parent_cldstop should have been called instead.  */
1917 	BUG_ON(task_is_stopped_or_traced(tsk));
1918
1919	BUG_ON(!tsk->ptrace &&
1920	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1921
1922	/* Wake up all pidfd waiters */
1923	do_notify_pidfd(tsk);
1924
1925	if (sig != SIGCHLD) {
1926		/*
1927		 * This is only possible if parent == real_parent.
1928		 * Check if it has changed security domain.
1929		 */
1930		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1931			sig = SIGCHLD;
1932	}
1933
1934	clear_siginfo(&info);
1935	info.si_signo = sig;
1936	info.si_errno = 0;
1937	/*
1938	 * We are under tasklist_lock here so our parent is tied to
1939	 * us and cannot change.
1940	 *
1941	 * task_active_pid_ns will always return the same pid namespace
1942	 * until a task passes through release_task.
1943	 *
1944	 * write_lock() currently calls preempt_disable() which is the
1945	 * same as rcu_read_lock(), but according to Oleg, this is not
1946	 * correct to rely on this
1947	 */
1948	rcu_read_lock();
1949	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1950	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1951				       task_uid(tsk));
1952	rcu_read_unlock();
1953
1954	task_cputime(tsk, &utime, &stime);
1955	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1956	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1957
1958	info.si_status = tsk->exit_code & 0x7f;
1959	if (tsk->exit_code & 0x80)
1960		info.si_code = CLD_DUMPED;
1961	else if (tsk->exit_code & 0x7f)
1962		info.si_code = CLD_KILLED;
1963	else {
1964		info.si_code = CLD_EXITED;
1965		info.si_status = tsk->exit_code >> 8;
1966	}
1967
1968	psig = tsk->parent->sighand;
1969	spin_lock_irqsave(&psig->siglock, flags);
1970	if (!tsk->ptrace && sig == SIGCHLD &&
1971	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1972	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1973		/*
1974		 * We are exiting and our parent doesn't care.  POSIX.1
1975		 * defines special semantics for setting SIGCHLD to SIG_IGN
1976		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1977		 * automatically and not left for our parent's wait4 call.
1978		 * Rather than having the parent do it as a magic kind of
1979		 * signal handler, we just set this to tell do_exit that we
1980		 * can be cleaned up without becoming a zombie.  Note that
1981		 * we still call __wake_up_parent in this case, because a
1982		 * blocked sys_wait4 might now return -ECHILD.
1983		 *
1984		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1985		 * is implementation-defined: we do (if you don't want
1986		 * it, just use SIG_IGN instead).
1987		 */
1988		autoreap = true;
1989		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1990			sig = 0;
1991	}
1992	/*
1993	 * Send with __send_signal as si_pid and si_uid are in the
1994	 * parent's namespaces.
1995	 */
1996	if (valid_signal(sig) && sig)
1997		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
1998	__wake_up_parent(tsk, tsk->parent);
1999	spin_unlock_irqrestore(&psig->siglock, flags);
2000
2001	return autoreap;
2002}
2003
2004/**
2005 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2006 * @tsk: task reporting the state change
2007 * @for_ptracer: the notification is for ptracer
2008 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2009 *
2010 * Notify @tsk's parent that the stopped/continued state has changed.  If
2011 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2012 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2013 *
2014 * CONTEXT:
2015 * Must be called with tasklist_lock at least read locked.
2016 */
2017static void do_notify_parent_cldstop(struct task_struct *tsk,
2018				     bool for_ptracer, int why)
2019{
2020	struct kernel_siginfo info;
2021	unsigned long flags;
2022	struct task_struct *parent;
2023	struct sighand_struct *sighand;
2024	u64 utime, stime;
2025
2026	if (for_ptracer) {
2027		parent = tsk->parent;
2028	} else {
2029		tsk = tsk->group_leader;
2030		parent = tsk->real_parent;
2031	}
2032
2033	clear_siginfo(&info);
2034	info.si_signo = SIGCHLD;
2035	info.si_errno = 0;
2036	/*
2037	 * see comment in do_notify_parent() about the following 4 lines
2038	 */
2039	rcu_read_lock();
2040	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2041	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2042	rcu_read_unlock();
2043
2044	task_cputime(tsk, &utime, &stime);
2045	info.si_utime = nsec_to_clock_t(utime);
2046	info.si_stime = nsec_to_clock_t(stime);
2047
2048 	info.si_code = why;
2049 	switch (why) {
2050 	case CLD_CONTINUED:
2051 		info.si_status = SIGCONT;
2052 		break;
2053 	case CLD_STOPPED:
2054 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2055 		break;
2056 	case CLD_TRAPPED:
2057 		info.si_status = tsk->exit_code & 0x7f;
2058 		break;
2059 	default:
2060 		BUG();
2061 	}
2062
2063	sighand = parent->sighand;
2064	spin_lock_irqsave(&sighand->siglock, flags);
2065	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2066	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2067		__group_send_sig_info(SIGCHLD, &info, parent);
2068	/*
2069	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2070	 */
2071	__wake_up_parent(tsk, parent);
2072	spin_unlock_irqrestore(&sighand->siglock, flags);
2073}
2074
2075static inline bool may_ptrace_stop(void)
2076{
2077	if (!likely(current->ptrace))
2078		return false;
2079	/*
2080	 * Are we in the middle of do_coredump?
2081	 * If so and our tracer is also part of the coredump stopping
2082	 * is a deadlock situation, and pointless because our tracer
2083	 * is dead so don't allow us to stop.
2084	 * If SIGKILL was already sent before the caller unlocked
2085	 * ->siglock we must see ->core_state != NULL. Otherwise it
2086	 * is safe to enter schedule().
2087	 *
2088	 * This is almost outdated, a task with the pending SIGKILL can't
2089	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2090	 * after SIGKILL was already dequeued.
2091	 */
2092	if (unlikely(current->mm->core_state) &&
2093	    unlikely(current->mm == current->parent->mm))
2094		return false;
2095
2096	return true;
2097}
2098
2099/*
2100 * Return non-zero if there is a SIGKILL that should be waking us up.
2101 * Called with the siglock held.
2102 */
2103static bool sigkill_pending(struct task_struct *tsk)
2104{
2105	return sigismember(&tsk->pending.signal, SIGKILL) ||
2106	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2107}
2108
2109/*
2110 * This must be called with current->sighand->siglock held.
2111 *
2112 * This should be the path for all ptrace stops.
2113 * We always set current->last_siginfo while stopped here.
2114 * That makes it a way to test a stopped process for
2115 * being ptrace-stopped vs being job-control-stopped.
2116 *
2117 * If we actually decide not to stop at all because the tracer
2118 * is gone, we keep current->exit_code unless clear_code.
2119 */
2120static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2121	__releases(&current->sighand->siglock)
2122	__acquires(&current->sighand->siglock)
2123{
2124	bool gstop_done = false;
2125
2126	if (arch_ptrace_stop_needed(exit_code, info)) {
2127		/*
2128		 * The arch code has something special to do before a
2129		 * ptrace stop.  This is allowed to block, e.g. for faults
2130		 * on user stack pages.  We can't keep the siglock while
2131		 * calling arch_ptrace_stop, so we must release it now.
2132		 * To preserve proper semantics, we must do this before
2133		 * any signal bookkeeping like checking group_stop_count.
2134		 * Meanwhile, a SIGKILL could come in before we retake the
2135		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2136		 * So after regaining the lock, we must check for SIGKILL.
2137		 */
2138		spin_unlock_irq(&current->sighand->siglock);
2139		arch_ptrace_stop(exit_code, info);
2140		spin_lock_irq(&current->sighand->siglock);
2141		if (sigkill_pending(current))
2142			return;
2143	}
2144
2145	set_special_state(TASK_TRACED);
2146
2147	/*
2148	 * We're committing to trapping.  TRACED should be visible before
2149	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2150	 * Also, transition to TRACED and updates to ->jobctl should be
2151	 * atomic with respect to siglock and should be done after the arch
2152	 * hook as siglock is released and regrabbed across it.
2153	 *
2154	 *     TRACER				    TRACEE
2155	 *
2156	 *     ptrace_attach()
2157	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2158	 *     do_wait()
2159	 *       set_current_state()                smp_wmb();
2160	 *       ptrace_do_wait()
2161	 *         wait_task_stopped()
2162	 *           task_stopped_code()
2163	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2164	 */
2165	smp_wmb();
2166
2167	current->last_siginfo = info;
2168	current->exit_code = exit_code;
2169
2170	/*
2171	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2172	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2173	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2174	 * could be clear now.  We act as if SIGCONT is received after
2175	 * TASK_TRACED is entered - ignore it.
2176	 */
2177	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2178		gstop_done = task_participate_group_stop(current);
2179
2180	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2181	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2182	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2183		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2184
2185	/* entering a trap, clear TRAPPING */
2186	task_clear_jobctl_trapping(current);
2187
2188	spin_unlock_irq(&current->sighand->siglock);
2189	read_lock(&tasklist_lock);
2190	if (may_ptrace_stop()) {
2191		/*
2192		 * Notify parents of the stop.
2193		 *
2194		 * While ptraced, there are two parents - the ptracer and
2195		 * the real_parent of the group_leader.  The ptracer should
2196		 * know about every stop while the real parent is only
2197		 * interested in the completion of group stop.  The states
2198		 * for the two don't interact with each other.  Notify
2199		 * separately unless they're gonna be duplicates.
2200		 */
2201		do_notify_parent_cldstop(current, true, why);
2202		if (gstop_done && ptrace_reparented(current))
2203			do_notify_parent_cldstop(current, false, why);
2204
2205		/*
2206		 * Don't want to allow preemption here, because
2207		 * sys_ptrace() needs this task to be inactive.
2208		 *
2209		 * XXX: implement read_unlock_no_resched().
2210		 */
2211		preempt_disable();
2212		read_unlock(&tasklist_lock);
2213		cgroup_enter_frozen();
2214		preempt_enable_no_resched();
2215		freezable_schedule();
2216		cgroup_leave_frozen(true);
2217	} else {
2218		/*
2219		 * By the time we got the lock, our tracer went away.
2220		 * Don't drop the lock yet, another tracer may come.
2221		 *
2222		 * If @gstop_done, the ptracer went away between group stop
2223		 * completion and here.  During detach, it would have set
2224		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2225		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2226		 * the real parent of the group stop completion is enough.
2227		 */
2228		if (gstop_done)
2229			do_notify_parent_cldstop(current, false, why);
2230
2231		/* tasklist protects us from ptrace_freeze_traced() */
2232		__set_current_state(TASK_RUNNING);
2233		if (clear_code)
2234			current->exit_code = 0;
2235		read_unlock(&tasklist_lock);
2236	}
2237
2238	/*
2239	 * We are back.  Now reacquire the siglock before touching
2240	 * last_siginfo, so that we are sure to have synchronized with
2241	 * any signal-sending on another CPU that wants to examine it.
2242	 */
2243	spin_lock_irq(&current->sighand->siglock);
2244	current->last_siginfo = NULL;
2245
2246	/* LISTENING can be set only during STOP traps, clear it */
2247	current->jobctl &= ~JOBCTL_LISTENING;
2248
2249	/*
2250	 * Queued signals ignored us while we were stopped for tracing.
2251	 * So check for any that we should take before resuming user mode.
2252	 * This sets TIF_SIGPENDING, but never clears it.
2253	 */
2254	recalc_sigpending_tsk(current);
2255}
2256
2257static void ptrace_do_notify(int signr, int exit_code, int why)
2258{
2259	kernel_siginfo_t info;
2260
2261	clear_siginfo(&info);
2262	info.si_signo = signr;
2263	info.si_code = exit_code;
2264	info.si_pid = task_pid_vnr(current);
2265	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2266
2267	/* Let the debugger run.  */
2268	ptrace_stop(exit_code, why, 1, &info);
2269}
2270
2271void ptrace_notify(int exit_code)
2272{
2273	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2274	if (unlikely(current->task_works))
2275		task_work_run();
2276
2277	spin_lock_irq(&current->sighand->siglock);
2278	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2279	spin_unlock_irq(&current->sighand->siglock);
2280}
2281
2282/**
2283 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2284 * @signr: signr causing group stop if initiating
2285 *
2286 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2287 * and participate in it.  If already set, participate in the existing
2288 * group stop.  If participated in a group stop (and thus slept), %true is
2289 * returned with siglock released.
2290 *
2291 * If ptraced, this function doesn't handle stop itself.  Instead,
2292 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2293 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2294 * places afterwards.
2295 *
2296 * CONTEXT:
2297 * Must be called with @current->sighand->siglock held, which is released
2298 * on %true return.
2299 *
2300 * RETURNS:
2301 * %false if group stop is already cancelled or ptrace trap is scheduled.
2302 * %true if participated in group stop.
2303 */
2304static bool do_signal_stop(int signr)
2305	__releases(&current->sighand->siglock)
2306{
2307	struct signal_struct *sig = current->signal;
2308
2309	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2310		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2311		struct task_struct *t;
2312
2313		/* signr will be recorded in task->jobctl for retries */
2314		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2315
2316		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2317		    unlikely(signal_group_exit(sig)))
2318			return false;
2319		/*
2320		 * There is no group stop already in progress.  We must
2321		 * initiate one now.
2322		 *
2323		 * While ptraced, a task may be resumed while group stop is
2324		 * still in effect and then receive a stop signal and
2325		 * initiate another group stop.  This deviates from the
2326		 * usual behavior as two consecutive stop signals can't
2327		 * cause two group stops when !ptraced.  That is why we
2328		 * also check !task_is_stopped(t) below.
2329		 *
2330		 * The condition can be distinguished by testing whether
2331		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2332		 * group_exit_code in such case.
2333		 *
2334		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2335		 * an intervening stop signal is required to cause two
2336		 * continued events regardless of ptrace.
2337		 */
2338		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2339			sig->group_exit_code = signr;
2340
2341		sig->group_stop_count = 0;
2342
2343		if (task_set_jobctl_pending(current, signr | gstop))
2344			sig->group_stop_count++;
2345
2346		t = current;
2347		while_each_thread(current, t) {
2348			/*
2349			 * Setting state to TASK_STOPPED for a group
2350			 * stop is always done with the siglock held,
2351			 * so this check has no races.
2352			 */
2353			if (!task_is_stopped(t) &&
2354			    task_set_jobctl_pending(t, signr | gstop)) {
2355				sig->group_stop_count++;
2356				if (likely(!(t->ptrace & PT_SEIZED)))
2357					signal_wake_up(t, 0);
2358				else
2359					ptrace_trap_notify(t);
2360			}
2361		}
2362	}
2363
2364	if (likely(!current->ptrace)) {
2365		int notify = 0;
2366
2367		/*
2368		 * If there are no other threads in the group, or if there
2369		 * is a group stop in progress and we are the last to stop,
2370		 * report to the parent.
2371		 */
2372		if (task_participate_group_stop(current))
2373			notify = CLD_STOPPED;
2374
2375		set_special_state(TASK_STOPPED);
2376		spin_unlock_irq(&current->sighand->siglock);
2377
2378		/*
2379		 * Notify the parent of the group stop completion.  Because
2380		 * we're not holding either the siglock or tasklist_lock
2381		 * here, ptracer may attach inbetween; however, this is for
2382		 * group stop and should always be delivered to the real
2383		 * parent of the group leader.  The new ptracer will get
2384		 * its notification when this task transitions into
2385		 * TASK_TRACED.
2386		 */
2387		if (notify) {
2388			read_lock(&tasklist_lock);
2389			do_notify_parent_cldstop(current, false, notify);
2390			read_unlock(&tasklist_lock);
2391		}
2392
2393		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2394		cgroup_enter_frozen();
2395		freezable_schedule();
2396		return true;
2397	} else {
2398		/*
2399		 * While ptraced, group stop is handled by STOP trap.
2400		 * Schedule it and let the caller deal with it.
2401		 */
2402		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2403		return false;
2404	}
2405}
2406
2407/**
2408 * do_jobctl_trap - take care of ptrace jobctl traps
2409 *
2410 * When PT_SEIZED, it's used for both group stop and explicit
2411 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2412 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2413 * the stop signal; otherwise, %SIGTRAP.
2414 *
2415 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2416 * number as exit_code and no siginfo.
2417 *
2418 * CONTEXT:
2419 * Must be called with @current->sighand->siglock held, which may be
2420 * released and re-acquired before returning with intervening sleep.
2421 */
2422static void do_jobctl_trap(void)
2423{
2424	struct signal_struct *signal = current->signal;
2425	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2426
2427	if (current->ptrace & PT_SEIZED) {
2428		if (!signal->group_stop_count &&
2429		    !(signal->flags & SIGNAL_STOP_STOPPED))
2430			signr = SIGTRAP;
2431		WARN_ON_ONCE(!signr);
2432		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2433				 CLD_STOPPED);
2434	} else {
2435		WARN_ON_ONCE(!signr);
2436		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2437		current->exit_code = 0;
2438	}
2439}
2440
2441/**
2442 * do_freezer_trap - handle the freezer jobctl trap
2443 *
2444 * Puts the task into frozen state, if only the task is not about to quit.
2445 * In this case it drops JOBCTL_TRAP_FREEZE.
2446 *
2447 * CONTEXT:
2448 * Must be called with @current->sighand->siglock held,
2449 * which is always released before returning.
2450 */
2451static void do_freezer_trap(void)
2452	__releases(&current->sighand->siglock)
2453{
2454	/*
2455	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2456	 * let's make another loop to give it a chance to be handled.
2457	 * In any case, we'll return back.
2458	 */
2459	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2460	     JOBCTL_TRAP_FREEZE) {
2461		spin_unlock_irq(&current->sighand->siglock);
2462		return;
2463	}
2464
2465	/*
2466	 * Now we're sure that there is no pending fatal signal and no
2467	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2468	 * immediately (if there is a non-fatal signal pending), and
2469	 * put the task into sleep.
2470	 */
2471	__set_current_state(TASK_INTERRUPTIBLE);
2472	clear_thread_flag(TIF_SIGPENDING);
2473	spin_unlock_irq(&current->sighand->siglock);
2474	cgroup_enter_frozen();
2475	freezable_schedule();
2476}
2477
2478static int ptrace_signal(int signr, kernel_siginfo_t *info)
2479{
2480	/*
2481	 * We do not check sig_kernel_stop(signr) but set this marker
2482	 * unconditionally because we do not know whether debugger will
2483	 * change signr. This flag has no meaning unless we are going
2484	 * to stop after return from ptrace_stop(). In this case it will
2485	 * be checked in do_signal_stop(), we should only stop if it was
2486	 * not cleared by SIGCONT while we were sleeping. See also the
2487	 * comment in dequeue_signal().
2488	 */
2489	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2490	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2491
2492	/* We're back.  Did the debugger cancel the sig?  */
2493	signr = current->exit_code;
2494	if (signr == 0)
2495		return signr;
2496
2497	current->exit_code = 0;
2498
2499	/*
2500	 * Update the siginfo structure if the signal has
2501	 * changed.  If the debugger wanted something
2502	 * specific in the siginfo structure then it should
2503	 * have updated *info via PTRACE_SETSIGINFO.
2504	 */
2505	if (signr != info->si_signo) {
2506		clear_siginfo(info);
2507		info->si_signo = signr;
2508		info->si_errno = 0;
2509		info->si_code = SI_USER;
2510		rcu_read_lock();
2511		info->si_pid = task_pid_vnr(current->parent);
2512		info->si_uid = from_kuid_munged(current_user_ns(),
2513						task_uid(current->parent));
2514		rcu_read_unlock();
2515	}
2516
2517	/* If the (new) signal is now blocked, requeue it.  */
2518	if (sigismember(&current->blocked, signr)) {
2519		send_signal(signr, info, current, PIDTYPE_PID);
2520		signr = 0;
2521	}
2522
2523	return signr;
2524}
2525
2526bool get_signal(struct ksignal *ksig)
2527{
2528	struct sighand_struct *sighand = current->sighand;
2529	struct signal_struct *signal = current->signal;
2530	int signr;
2531
2532	if (unlikely(uprobe_deny_signal()))
2533		return false;
2534
2535	/*
2536	 * Do this once, we can't return to user-mode if freezing() == T.
2537	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2538	 * thus do not need another check after return.
2539	 */
2540	try_to_freeze();
2541
2542relock:
2543	spin_lock_irq(&sighand->siglock);
2544	/*
2545	 * Make sure we can safely read ->jobctl() in task_work add. As Oleg
2546	 * states:
2547	 *
2548	 * It pairs with mb (implied by cmpxchg) before READ_ONCE. So we
2549	 * roughly have
2550	 *
2551	 *	task_work_add:				get_signal:
2552	 *	STORE(task->task_works, new_work);	STORE(task->jobctl);
2553	 *	mb();					mb();
2554	 *	LOAD(task->jobctl);			LOAD(task->task_works);
2555	 *
2556	 * and we can rely on STORE-MB-LOAD [ in task_work_add].
2557	 */
2558	smp_store_mb(current->jobctl, current->jobctl & ~JOBCTL_TASK_WORK);
2559	if (unlikely(current->task_works)) {
2560		spin_unlock_irq(&sighand->siglock);
2561		task_work_run();
2562		goto relock;
2563	}
2564
2565	/*
2566	 * Every stopped thread goes here after wakeup. Check to see if
2567	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2568	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2569	 */
2570	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2571		int why;
2572
2573		if (signal->flags & SIGNAL_CLD_CONTINUED)
2574			why = CLD_CONTINUED;
2575		else
2576			why = CLD_STOPPED;
2577
2578		signal->flags &= ~SIGNAL_CLD_MASK;
2579
2580		spin_unlock_irq(&sighand->siglock);
2581
2582		/*
2583		 * Notify the parent that we're continuing.  This event is
2584		 * always per-process and doesn't make whole lot of sense
2585		 * for ptracers, who shouldn't consume the state via
2586		 * wait(2) either, but, for backward compatibility, notify
2587		 * the ptracer of the group leader too unless it's gonna be
2588		 * a duplicate.
2589		 */
2590		read_lock(&tasklist_lock);
2591		do_notify_parent_cldstop(current, false, why);
2592
2593		if (ptrace_reparented(current->group_leader))
2594			do_notify_parent_cldstop(current->group_leader,
2595						true, why);
2596		read_unlock(&tasklist_lock);
2597
2598		goto relock;
2599	}
2600
2601	/* Has this task already been marked for death? */
2602	if (signal_group_exit(signal)) {
2603		ksig->info.si_signo = signr = SIGKILL;
2604		sigdelset(&current->pending.signal, SIGKILL);
2605		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2606				&sighand->action[SIGKILL - 1]);
2607		recalc_sigpending();
2608		goto fatal;
2609	}
2610
2611	for (;;) {
2612		struct k_sigaction *ka;
2613
2614		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2615		    do_signal_stop(0))
2616			goto relock;
2617
2618		if (unlikely(current->jobctl &
2619			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2620			if (current->jobctl & JOBCTL_TRAP_MASK) {
2621				do_jobctl_trap();
2622				spin_unlock_irq(&sighand->siglock);
2623			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2624				do_freezer_trap();
2625
2626			goto relock;
2627		}
2628
2629		/*
2630		 * If the task is leaving the frozen state, let's update
2631		 * cgroup counters and reset the frozen bit.
2632		 */
2633		if (unlikely(cgroup_task_frozen(current))) {
2634			spin_unlock_irq(&sighand->siglock);
2635			cgroup_leave_frozen(false);
2636			goto relock;
2637		}
2638
2639		/*
2640		 * Signals generated by the execution of an instruction
2641		 * need to be delivered before any other pending signals
2642		 * so that the instruction pointer in the signal stack
2643		 * frame points to the faulting instruction.
2644		 */
2645		signr = dequeue_synchronous_signal(&ksig->info);
2646		if (!signr)
2647			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2648
2649		if (!signr)
2650			break; /* will return 0 */
2651
2652		if (unlikely(current->ptrace) && signr != SIGKILL) {
2653			signr = ptrace_signal(signr, &ksig->info);
2654			if (!signr)
2655				continue;
2656		}
2657
2658		ka = &sighand->action[signr-1];
2659
2660		/* Trace actually delivered signals. */
2661		trace_signal_deliver(signr, &ksig->info, ka);
2662
2663		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2664			continue;
2665		if (ka->sa.sa_handler != SIG_DFL) {
2666			/* Run the handler.  */
2667			ksig->ka = *ka;
2668
2669			if (ka->sa.sa_flags & SA_ONESHOT)
2670				ka->sa.sa_handler = SIG_DFL;
2671
2672			break; /* will return non-zero "signr" value */
2673		}
2674
2675		/*
2676		 * Now we are doing the default action for this signal.
2677		 */
2678		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2679			continue;
2680
2681		/*
2682		 * Global init gets no signals it doesn't want.
2683		 * Container-init gets no signals it doesn't want from same
2684		 * container.
2685		 *
2686		 * Note that if global/container-init sees a sig_kernel_only()
2687		 * signal here, the signal must have been generated internally
2688		 * or must have come from an ancestor namespace. In either
2689		 * case, the signal cannot be dropped.
2690		 */
2691		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2692				!sig_kernel_only(signr))
2693			continue;
2694
2695		if (sig_kernel_stop(signr)) {
2696			/*
2697			 * The default action is to stop all threads in
2698			 * the thread group.  The job control signals
2699			 * do nothing in an orphaned pgrp, but SIGSTOP
2700			 * always works.  Note that siglock needs to be
2701			 * dropped during the call to is_orphaned_pgrp()
2702			 * because of lock ordering with tasklist_lock.
2703			 * This allows an intervening SIGCONT to be posted.
2704			 * We need to check for that and bail out if necessary.
2705			 */
2706			if (signr != SIGSTOP) {
2707				spin_unlock_irq(&sighand->siglock);
2708
2709				/* signals can be posted during this window */
2710
2711				if (is_current_pgrp_orphaned())
2712					goto relock;
2713
2714				spin_lock_irq(&sighand->siglock);
2715			}
2716
2717			if (likely(do_signal_stop(ksig->info.si_signo))) {
2718				/* It released the siglock.  */
2719				goto relock;
2720			}
2721
2722			/*
2723			 * We didn't actually stop, due to a race
2724			 * with SIGCONT or something like that.
2725			 */
2726			continue;
2727		}
2728
2729	fatal:
2730		spin_unlock_irq(&sighand->siglock);
2731		if (unlikely(cgroup_task_frozen(current)))
2732			cgroup_leave_frozen(true);
2733
2734		/*
2735		 * Anything else is fatal, maybe with a core dump.
2736		 */
2737		current->flags |= PF_SIGNALED;
2738
2739		if (sig_kernel_coredump(signr)) {
2740			if (print_fatal_signals)
2741				print_fatal_signal(ksig->info.si_signo);
2742			proc_coredump_connector(current);
2743			/*
2744			 * If it was able to dump core, this kills all
2745			 * other threads in the group and synchronizes with
2746			 * their demise.  If we lost the race with another
2747			 * thread getting here, it set group_exit_code
2748			 * first and our do_group_exit call below will use
2749			 * that value and ignore the one we pass it.
2750			 */
2751			do_coredump(&ksig->info);
2752		}
2753
2754		/*
2755		 * Death signals, no core dump.
2756		 */
2757		do_group_exit(ksig->info.si_signo);
2758		/* NOTREACHED */
2759	}
2760	spin_unlock_irq(&sighand->siglock);
2761
2762	ksig->sig = signr;
2763	return ksig->sig > 0;
2764}
2765
2766/**
2767 * signal_delivered - 
2768 * @ksig:		kernel signal struct
2769 * @stepping:		nonzero if debugger single-step or block-step in use
2770 *
2771 * This function should be called when a signal has successfully been
2772 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2773 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2774 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2775 */
2776static void signal_delivered(struct ksignal *ksig, int stepping)
2777{
2778	sigset_t blocked;
2779
2780	/* A signal was successfully delivered, and the
2781	   saved sigmask was stored on the signal frame,
2782	   and will be restored by sigreturn.  So we can
2783	   simply clear the restore sigmask flag.  */
2784	clear_restore_sigmask();
2785
2786	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2787	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2788		sigaddset(&blocked, ksig->sig);
2789	set_current_blocked(&blocked);
2790	tracehook_signal_handler(stepping);
2791}
2792
2793void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2794{
2795	if (failed)
2796		force_sigsegv(ksig->sig);
2797	else
2798		signal_delivered(ksig, stepping);
2799}
2800
2801/*
2802 * It could be that complete_signal() picked us to notify about the
2803 * group-wide signal. Other threads should be notified now to take
2804 * the shared signals in @which since we will not.
2805 */
2806static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2807{
2808	sigset_t retarget;
2809	struct task_struct *t;
2810
2811	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2812	if (sigisemptyset(&retarget))
2813		return;
2814
2815	t = tsk;
2816	while_each_thread(tsk, t) {
2817		if (t->flags & PF_EXITING)
2818			continue;
2819
2820		if (!has_pending_signals(&retarget, &t->blocked))
2821			continue;
2822		/* Remove the signals this thread can handle. */
2823		sigandsets(&retarget, &retarget, &t->blocked);
2824
2825		if (!signal_pending(t))
2826			signal_wake_up(t, 0);
2827
2828		if (sigisemptyset(&retarget))
2829			break;
2830	}
2831}
2832
2833void exit_signals(struct task_struct *tsk)
2834{
2835	int group_stop = 0;
2836	sigset_t unblocked;
2837
2838	/*
2839	 * @tsk is about to have PF_EXITING set - lock out users which
2840	 * expect stable threadgroup.
2841	 */
2842	cgroup_threadgroup_change_begin(tsk);
2843
2844	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2845		tsk->flags |= PF_EXITING;
2846		cgroup_threadgroup_change_end(tsk);
2847		return;
2848	}
2849
2850	spin_lock_irq(&tsk->sighand->siglock);
2851	/*
2852	 * From now this task is not visible for group-wide signals,
2853	 * see wants_signal(), do_signal_stop().
2854	 */
2855	tsk->flags |= PF_EXITING;
2856
2857	cgroup_threadgroup_change_end(tsk);
2858
2859	if (!signal_pending(tsk))
2860		goto out;
2861
2862	unblocked = tsk->blocked;
2863	signotset(&unblocked);
2864	retarget_shared_pending(tsk, &unblocked);
2865
2866	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2867	    task_participate_group_stop(tsk))
2868		group_stop = CLD_STOPPED;
2869out:
2870	spin_unlock_irq(&tsk->sighand->siglock);
2871
2872	/*
2873	 * If group stop has completed, deliver the notification.  This
2874	 * should always go to the real parent of the group leader.
2875	 */
2876	if (unlikely(group_stop)) {
2877		read_lock(&tasklist_lock);
2878		do_notify_parent_cldstop(tsk, false, group_stop);
2879		read_unlock(&tasklist_lock);
2880	}
2881}
2882
2883/*
2884 * System call entry points.
2885 */
2886
2887/**
2888 *  sys_restart_syscall - restart a system call
2889 */
2890SYSCALL_DEFINE0(restart_syscall)
2891{
2892	struct restart_block *restart = &current->restart_block;
2893	return restart->fn(restart);
2894}
2895
2896long do_no_restart_syscall(struct restart_block *param)
2897{
2898	return -EINTR;
2899}
2900
2901static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2902{
2903	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2904		sigset_t newblocked;
2905		/* A set of now blocked but previously unblocked signals. */
2906		sigandnsets(&newblocked, newset, &current->blocked);
2907		retarget_shared_pending(tsk, &newblocked);
2908	}
2909	tsk->blocked = *newset;
2910	recalc_sigpending();
2911}
2912
2913/**
2914 * set_current_blocked - change current->blocked mask
2915 * @newset: new mask
2916 *
2917 * It is wrong to change ->blocked directly, this helper should be used
2918 * to ensure the process can't miss a shared signal we are going to block.
2919 */
2920void set_current_blocked(sigset_t *newset)
2921{
2922	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2923	__set_current_blocked(newset);
2924}
2925
2926void __set_current_blocked(const sigset_t *newset)
2927{
2928	struct task_struct *tsk = current;
2929
2930	/*
2931	 * In case the signal mask hasn't changed, there is nothing we need
2932	 * to do. The current->blocked shouldn't be modified by other task.
2933	 */
2934	if (sigequalsets(&tsk->blocked, newset))
2935		return;
2936
2937	spin_lock_irq(&tsk->sighand->siglock);
2938	__set_task_blocked(tsk, newset);
2939	spin_unlock_irq(&tsk->sighand->siglock);
2940}
2941
2942/*
2943 * This is also useful for kernel threads that want to temporarily
2944 * (or permanently) block certain signals.
2945 *
2946 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2947 * interface happily blocks "unblockable" signals like SIGKILL
2948 * and friends.
2949 */
2950int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2951{
2952	struct task_struct *tsk = current;
2953	sigset_t newset;
2954
2955	/* Lockless, only current can change ->blocked, never from irq */
2956	if (oldset)
2957		*oldset = tsk->blocked;
2958
2959	switch (how) {
2960	case SIG_BLOCK:
2961		sigorsets(&newset, &tsk->blocked, set);
2962		break;
2963	case SIG_UNBLOCK:
2964		sigandnsets(&newset, &tsk->blocked, set);
2965		break;
2966	case SIG_SETMASK:
2967		newset = *set;
2968		break;
2969	default:
2970		return -EINVAL;
2971	}
2972
2973	__set_current_blocked(&newset);
2974	return 0;
2975}
2976EXPORT_SYMBOL(sigprocmask);
2977
2978/*
2979 * The api helps set app-provided sigmasks.
2980 *
2981 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2982 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2983 *
2984 * Note that it does set_restore_sigmask() in advance, so it must be always
2985 * paired with restore_saved_sigmask_unless() before return from syscall.
2986 */
2987int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2988{
2989	sigset_t kmask;
2990
2991	if (!umask)
2992		return 0;
2993	if (sigsetsize != sizeof(sigset_t))
2994		return -EINVAL;
2995	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2996		return -EFAULT;
2997
2998	set_restore_sigmask();
2999	current->saved_sigmask = current->blocked;
3000	set_current_blocked(&kmask);
3001
3002	return 0;
3003}
3004
3005#ifdef CONFIG_COMPAT
3006int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3007			    size_t sigsetsize)
3008{
3009	sigset_t kmask;
3010
3011	if (!umask)
3012		return 0;
3013	if (sigsetsize != sizeof(compat_sigset_t))
3014		return -EINVAL;
3015	if (get_compat_sigset(&kmask, umask))
3016		return -EFAULT;
3017
3018	set_restore_sigmask();
3019	current->saved_sigmask = current->blocked;
3020	set_current_blocked(&kmask);
3021
3022	return 0;
3023}
3024#endif
3025
3026/**
3027 *  sys_rt_sigprocmask - change the list of currently blocked signals
3028 *  @how: whether to add, remove, or set signals
3029 *  @nset: stores pending signals
3030 *  @oset: previous value of signal mask if non-null
3031 *  @sigsetsize: size of sigset_t type
3032 */
3033SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3034		sigset_t __user *, oset, size_t, sigsetsize)
3035{
3036	sigset_t old_set, new_set;
3037	int error;
3038
3039	/* XXX: Don't preclude handling different sized sigset_t's.  */
3040	if (sigsetsize != sizeof(sigset_t))
3041		return -EINVAL;
3042
3043	old_set = current->blocked;
3044
3045	if (nset) {
3046		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3047			return -EFAULT;
3048		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3049
3050		error = sigprocmask(how, &new_set, NULL);
3051		if (error)
3052			return error;
3053	}
3054
3055	if (oset) {
3056		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3057			return -EFAULT;
3058	}
3059
3060	return 0;
3061}
3062
3063#ifdef CONFIG_COMPAT
3064COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3065		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3066{
3067	sigset_t old_set = current->blocked;
3068
3069	/* XXX: Don't preclude handling different sized sigset_t's.  */
3070	if (sigsetsize != sizeof(sigset_t))
3071		return -EINVAL;
3072
3073	if (nset) {
3074		sigset_t new_set;
3075		int error;
3076		if (get_compat_sigset(&new_set, nset))
3077			return -EFAULT;
3078		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3079
3080		error = sigprocmask(how, &new_set, NULL);
3081		if (error)
3082			return error;
3083	}
3084	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3085}
3086#endif
3087
3088static void do_sigpending(sigset_t *set)
3089{
3090	spin_lock_irq(&current->sighand->siglock);
3091	sigorsets(set, &current->pending.signal,
3092		  &current->signal->shared_pending.signal);
3093	spin_unlock_irq(&current->sighand->siglock);
3094
3095	/* Outside the lock because only this thread touches it.  */
3096	sigandsets(set, &current->blocked, set);
3097}
3098
3099/**
3100 *  sys_rt_sigpending - examine a pending signal that has been raised
3101 *			while blocked
3102 *  @uset: stores pending signals
3103 *  @sigsetsize: size of sigset_t type or larger
3104 */
3105SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3106{
3107	sigset_t set;
3108
3109	if (sigsetsize > sizeof(*uset))
3110		return -EINVAL;
3111
3112	do_sigpending(&set);
3113
3114	if (copy_to_user(uset, &set, sigsetsize))
3115		return -EFAULT;
3116
3117	return 0;
3118}
3119
3120#ifdef CONFIG_COMPAT
3121COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3122		compat_size_t, sigsetsize)
3123{
3124	sigset_t set;
3125
3126	if (sigsetsize > sizeof(*uset))
3127		return -EINVAL;
3128
3129	do_sigpending(&set);
3130
3131	return put_compat_sigset(uset, &set, sigsetsize);
3132}
3133#endif
3134
3135static const struct {
3136	unsigned char limit, layout;
3137} sig_sicodes[] = {
3138	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3139	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3140	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3141	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3142	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3143#if defined(SIGEMT)
3144	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3145#endif
3146	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3147	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3148	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3149};
3150
3151static bool known_siginfo_layout(unsigned sig, int si_code)
3152{
3153	if (si_code == SI_KERNEL)
3154		return true;
3155	else if ((si_code > SI_USER)) {
3156		if (sig_specific_sicodes(sig)) {
3157			if (si_code <= sig_sicodes[sig].limit)
3158				return true;
3159		}
3160		else if (si_code <= NSIGPOLL)
3161			return true;
3162	}
3163	else if (si_code >= SI_DETHREAD)
3164		return true;
3165	else if (si_code == SI_ASYNCNL)
3166		return true;
3167	return false;
3168}
3169
3170enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3171{
3172	enum siginfo_layout layout = SIL_KILL;
3173	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3174		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3175		    (si_code <= sig_sicodes[sig].limit)) {
3176			layout = sig_sicodes[sig].layout;
3177			/* Handle the exceptions */
3178			if ((sig == SIGBUS) &&
3179			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3180				layout = SIL_FAULT_MCEERR;
3181			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3182				layout = SIL_FAULT_BNDERR;
3183#ifdef SEGV_PKUERR
3184			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3185				layout = SIL_FAULT_PKUERR;
3186#endif
3187		}
3188		else if (si_code <= NSIGPOLL)
3189			layout = SIL_POLL;
3190	} else {
3191		if (si_code == SI_TIMER)
3192			layout = SIL_TIMER;
3193		else if (si_code == SI_SIGIO)
3194			layout = SIL_POLL;
3195		else if (si_code < 0)
3196			layout = SIL_RT;
3197	}
3198	return layout;
3199}
3200
3201static inline char __user *si_expansion(const siginfo_t __user *info)
3202{
3203	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3204}
3205
3206int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3207{
3208	char __user *expansion = si_expansion(to);
3209	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3210		return -EFAULT;
3211	if (clear_user(expansion, SI_EXPANSION_SIZE))
3212		return -EFAULT;
3213	return 0;
3214}
3215
3216static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3217				       const siginfo_t __user *from)
3218{
3219	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3220		char __user *expansion = si_expansion(from);
3221		char buf[SI_EXPANSION_SIZE];
3222		int i;
3223		/*
3224		 * An unknown si_code might need more than
3225		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3226		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3227		 * will return this data to userspace exactly.
3228		 */
3229		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3230			return -EFAULT;
3231		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3232			if (buf[i] != 0)
3233				return -E2BIG;
3234		}
3235	}
3236	return 0;
3237}
3238
3239static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3240				    const siginfo_t __user *from)
3241{
3242	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3243		return -EFAULT;
3244	to->si_signo = signo;
3245	return post_copy_siginfo_from_user(to, from);
3246}
3247
3248int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3249{
3250	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3251		return -EFAULT;
3252	return post_copy_siginfo_from_user(to, from);
3253}
3254
3255#ifdef CONFIG_COMPAT
3256/**
3257 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3258 * @to: compat siginfo destination
3259 * @from: kernel siginfo source
3260 *
3261 * Note: This function does not work properly for the SIGCHLD on x32, but
3262 * fortunately it doesn't have to.  The only valid callers for this function are
3263 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3264 * The latter does not care because SIGCHLD will never cause a coredump.
3265 */
3266void copy_siginfo_to_external32(struct compat_siginfo *to,
3267		const struct kernel_siginfo *from)
3268{
3269	memset(to, 0, sizeof(*to));
3270
3271	to->si_signo = from->si_signo;
3272	to->si_errno = from->si_errno;
3273	to->si_code  = from->si_code;
3274	switch(siginfo_layout(from->si_signo, from->si_code)) {
3275	case SIL_KILL:
3276		to->si_pid = from->si_pid;
3277		to->si_uid = from->si_uid;
3278		break;
3279	case SIL_TIMER:
3280		to->si_tid     = from->si_tid;
3281		to->si_overrun = from->si_overrun;
3282		to->si_int     = from->si_int;
3283		break;
3284	case SIL_POLL:
3285		to->si_band = from->si_band;
3286		to->si_fd   = from->si_fd;
3287		break;
3288	case SIL_FAULT:
3289		to->si_addr = ptr_to_compat(from->si_addr);
3290#ifdef __ARCH_SI_TRAPNO
3291		to->si_trapno = from->si_trapno;
3292#endif
3293		break;
3294	case SIL_FAULT_MCEERR:
3295		to->si_addr = ptr_to_compat(from->si_addr);
3296#ifdef __ARCH_SI_TRAPNO
3297		to->si_trapno = from->si_trapno;
3298#endif
3299		to->si_addr_lsb = from->si_addr_lsb;
3300		break;
3301	case SIL_FAULT_BNDERR:
3302		to->si_addr = ptr_to_compat(from->si_addr);
3303#ifdef __ARCH_SI_TRAPNO
3304		to->si_trapno = from->si_trapno;
3305#endif
3306		to->si_lower = ptr_to_compat(from->si_lower);
3307		to->si_upper = ptr_to_compat(from->si_upper);
3308		break;
3309	case SIL_FAULT_PKUERR:
3310		to->si_addr = ptr_to_compat(from->si_addr);
3311#ifdef __ARCH_SI_TRAPNO
3312		to->si_trapno = from->si_trapno;
3313#endif
3314		to->si_pkey = from->si_pkey;
3315		break;
3316	case SIL_CHLD:
3317		to->si_pid = from->si_pid;
3318		to->si_uid = from->si_uid;
3319		to->si_status = from->si_status;
3320		to->si_utime = from->si_utime;
3321		to->si_stime = from->si_stime;
3322		break;
3323	case SIL_RT:
3324		to->si_pid = from->si_pid;
3325		to->si_uid = from->si_uid;
3326		to->si_int = from->si_int;
3327		break;
3328	case SIL_SYS:
3329		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3330		to->si_syscall   = from->si_syscall;
3331		to->si_arch      = from->si_arch;
3332		break;
3333	}
3334}
3335
3336int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3337			   const struct kernel_siginfo *from)
3338{
3339	struct compat_siginfo new;
3340
3341	copy_siginfo_to_external32(&new, from);
3342	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3343		return -EFAULT;
3344	return 0;
3345}
3346
3347static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3348					 const struct compat_siginfo *from)
3349{
3350	clear_siginfo(to);
3351	to->si_signo = from->si_signo;
3352	to->si_errno = from->si_errno;
3353	to->si_code  = from->si_code;
3354	switch(siginfo_layout(from->si_signo, from->si_code)) {
3355	case SIL_KILL:
3356		to->si_pid = from->si_pid;
3357		to->si_uid = from->si_uid;
3358		break;
3359	case SIL_TIMER:
3360		to->si_tid     = from->si_tid;
3361		to->si_overrun = from->si_overrun;
3362		to->si_int     = from->si_int;
3363		break;
3364	case SIL_POLL:
3365		to->si_band = from->si_band;
3366		to->si_fd   = from->si_fd;
3367		break;
3368	case SIL_FAULT:
3369		to->si_addr = compat_ptr(from->si_addr);
3370#ifdef __ARCH_SI_TRAPNO
3371		to->si_trapno = from->si_trapno;
3372#endif
3373		break;
3374	case SIL_FAULT_MCEERR:
3375		to->si_addr = compat_ptr(from->si_addr);
3376#ifdef __ARCH_SI_TRAPNO
3377		to->si_trapno = from->si_trapno;
3378#endif
3379		to->si_addr_lsb = from->si_addr_lsb;
3380		break;
3381	case SIL_FAULT_BNDERR:
3382		to->si_addr = compat_ptr(from->si_addr);
3383#ifdef __ARCH_SI_TRAPNO
3384		to->si_trapno = from->si_trapno;
3385#endif
3386		to->si_lower = compat_ptr(from->si_lower);
3387		to->si_upper = compat_ptr(from->si_upper);
3388		break;
3389	case SIL_FAULT_PKUERR:
3390		to->si_addr = compat_ptr(from->si_addr);
3391#ifdef __ARCH_SI_TRAPNO
3392		to->si_trapno = from->si_trapno;
3393#endif
3394		to->si_pkey = from->si_pkey;
3395		break;
3396	case SIL_CHLD:
3397		to->si_pid    = from->si_pid;
3398		to->si_uid    = from->si_uid;
3399		to->si_status = from->si_status;
3400#ifdef CONFIG_X86_X32_ABI
3401		if (in_x32_syscall()) {
3402			to->si_utime = from->_sifields._sigchld_x32._utime;
3403			to->si_stime = from->_sifields._sigchld_x32._stime;
3404		} else
3405#endif
3406		{
3407			to->si_utime = from->si_utime;
3408			to->si_stime = from->si_stime;
3409		}
3410		break;
3411	case SIL_RT:
3412		to->si_pid = from->si_pid;
3413		to->si_uid = from->si_uid;
3414		to->si_int = from->si_int;
3415		break;
3416	case SIL_SYS:
3417		to->si_call_addr = compat_ptr(from->si_call_addr);
3418		to->si_syscall   = from->si_syscall;
3419		to->si_arch      = from->si_arch;
3420		break;
3421	}
3422	return 0;
3423}
3424
3425static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3426				      const struct compat_siginfo __user *ufrom)
3427{
3428	struct compat_siginfo from;
3429
3430	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3431		return -EFAULT;
3432
3433	from.si_signo = signo;
3434	return post_copy_siginfo_from_user32(to, &from);
3435}
3436
3437int copy_siginfo_from_user32(struct kernel_siginfo *to,
3438			     const struct compat_siginfo __user *ufrom)
3439{
3440	struct compat_siginfo from;
3441
3442	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3443		return -EFAULT;
3444
3445	return post_copy_siginfo_from_user32(to, &from);
3446}
3447#endif /* CONFIG_COMPAT */
3448
3449/**
3450 *  do_sigtimedwait - wait for queued signals specified in @which
3451 *  @which: queued signals to wait for
3452 *  @info: if non-null, the signal's siginfo is returned here
3453 *  @ts: upper bound on process time suspension
3454 */
3455static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3456		    const struct timespec64 *ts)
3457{
3458	ktime_t *to = NULL, timeout = KTIME_MAX;
3459	struct task_struct *tsk = current;
3460	sigset_t mask = *which;
3461	int sig, ret = 0;
3462
3463	if (ts) {
3464		if (!timespec64_valid(ts))
3465			return -EINVAL;
3466		timeout = timespec64_to_ktime(*ts);
3467		to = &timeout;
3468	}
3469
3470	/*
3471	 * Invert the set of allowed signals to get those we want to block.
3472	 */
3473	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3474	signotset(&mask);
3475
3476	spin_lock_irq(&tsk->sighand->siglock);
3477	sig = dequeue_signal(tsk, &mask, info);
3478	if (!sig && timeout) {
3479		/*
3480		 * None ready, temporarily unblock those we're interested
3481		 * while we are sleeping in so that we'll be awakened when
3482		 * they arrive. Unblocking is always fine, we can avoid
3483		 * set_current_blocked().
3484		 */
3485		tsk->real_blocked = tsk->blocked;
3486		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3487		recalc_sigpending();
3488		spin_unlock_irq(&tsk->sighand->siglock);
3489
3490		__set_current_state(TASK_INTERRUPTIBLE);
3491		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3492							 HRTIMER_MODE_REL);
3493		spin_lock_irq(&tsk->sighand->siglock);
3494		__set_task_blocked(tsk, &tsk->real_blocked);
3495		sigemptyset(&tsk->real_blocked);
3496		sig = dequeue_signal(tsk, &mask, info);
3497	}
3498	spin_unlock_irq(&tsk->sighand->siglock);
3499
3500	if (sig)
3501		return sig;
3502	return ret ? -EINTR : -EAGAIN;
3503}
3504
3505/**
3506 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3507 *			in @uthese
3508 *  @uthese: queued signals to wait for
3509 *  @uinfo: if non-null, the signal's siginfo is returned here
3510 *  @uts: upper bound on process time suspension
3511 *  @sigsetsize: size of sigset_t type
3512 */
3513SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3514		siginfo_t __user *, uinfo,
3515		const struct __kernel_timespec __user *, uts,
3516		size_t, sigsetsize)
3517{
3518	sigset_t these;
3519	struct timespec64 ts;
3520	kernel_siginfo_t info;
3521	int ret;
3522
3523	/* XXX: Don't preclude handling different sized sigset_t's.  */
3524	if (sigsetsize != sizeof(sigset_t))
3525		return -EINVAL;
3526
3527	if (copy_from_user(&these, uthese, sizeof(these)))
3528		return -EFAULT;
3529
3530	if (uts) {
3531		if (get_timespec64(&ts, uts))
3532			return -EFAULT;
3533	}
3534
3535	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3536
3537	if (ret > 0 && uinfo) {
3538		if (copy_siginfo_to_user(uinfo, &info))
3539			ret = -EFAULT;
3540	}
3541
3542	return ret;
3543}
3544
3545#ifdef CONFIG_COMPAT_32BIT_TIME
3546SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3547		siginfo_t __user *, uinfo,
3548		const struct old_timespec32 __user *, uts,
3549		size_t, sigsetsize)
3550{
3551	sigset_t these;
3552	struct timespec64 ts;
3553	kernel_siginfo_t info;
3554	int ret;
3555
3556	if (sigsetsize != sizeof(sigset_t))
3557		return -EINVAL;
3558
3559	if (copy_from_user(&these, uthese, sizeof(these)))
3560		return -EFAULT;
3561
3562	if (uts) {
3563		if (get_old_timespec32(&ts, uts))
3564			return -EFAULT;
3565	}
3566
3567	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3568
3569	if (ret > 0 && uinfo) {
3570		if (copy_siginfo_to_user(uinfo, &info))
3571			ret = -EFAULT;
3572	}
3573
3574	return ret;
3575}
3576#endif
3577
3578#ifdef CONFIG_COMPAT
3579COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3580		struct compat_siginfo __user *, uinfo,
3581		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3582{
3583	sigset_t s;
3584	struct timespec64 t;
3585	kernel_siginfo_t info;
3586	long ret;
3587
3588	if (sigsetsize != sizeof(sigset_t))
3589		return -EINVAL;
3590
3591	if (get_compat_sigset(&s, uthese))
3592		return -EFAULT;
3593
3594	if (uts) {
3595		if (get_timespec64(&t, uts))
3596			return -EFAULT;
3597	}
3598
3599	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3600
3601	if (ret > 0 && uinfo) {
3602		if (copy_siginfo_to_user32(uinfo, &info))
3603			ret = -EFAULT;
3604	}
3605
3606	return ret;
3607}
3608
3609#ifdef CONFIG_COMPAT_32BIT_TIME
3610COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3611		struct compat_siginfo __user *, uinfo,
3612		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3613{
3614	sigset_t s;
3615	struct timespec64 t;
3616	kernel_siginfo_t info;
3617	long ret;
3618
3619	if (sigsetsize != sizeof(sigset_t))
3620		return -EINVAL;
3621
3622	if (get_compat_sigset(&s, uthese))
3623		return -EFAULT;
3624
3625	if (uts) {
3626		if (get_old_timespec32(&t, uts))
3627			return -EFAULT;
3628	}
3629
3630	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3631
3632	if (ret > 0 && uinfo) {
3633		if (copy_siginfo_to_user32(uinfo, &info))
3634			ret = -EFAULT;
3635	}
3636
3637	return ret;
3638}
3639#endif
3640#endif
3641
3642static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3643{
3644	clear_siginfo(info);
3645	info->si_signo = sig;
3646	info->si_errno = 0;
3647	info->si_code = SI_USER;
3648	info->si_pid = task_tgid_vnr(current);
3649	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3650}
3651
3652/**
3653 *  sys_kill - send a signal to a process
3654 *  @pid: the PID of the process
3655 *  @sig: signal to be sent
3656 */
3657SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3658{
3659	struct kernel_siginfo info;
3660
3661	prepare_kill_siginfo(sig, &info);
3662
3663	return kill_something_info(sig, &info, pid);
3664}
3665
3666/*
3667 * Verify that the signaler and signalee either are in the same pid namespace
3668 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3669 * namespace.
3670 */
3671static bool access_pidfd_pidns(struct pid *pid)
3672{
3673	struct pid_namespace *active = task_active_pid_ns(current);
3674	struct pid_namespace *p = ns_of_pid(pid);
3675
3676	for (;;) {
3677		if (!p)
3678			return false;
3679		if (p == active)
3680			break;
3681		p = p->parent;
3682	}
3683
3684	return true;
3685}
3686
3687static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3688{
3689#ifdef CONFIG_COMPAT
3690	/*
3691	 * Avoid hooking up compat syscalls and instead handle necessary
3692	 * conversions here. Note, this is a stop-gap measure and should not be
3693	 * considered a generic solution.
3694	 */
3695	if (in_compat_syscall())
3696		return copy_siginfo_from_user32(
3697			kinfo, (struct compat_siginfo __user *)info);
3698#endif
3699	return copy_siginfo_from_user(kinfo, info);
3700}
3701
3702static struct pid *pidfd_to_pid(const struct file *file)
3703{
3704	struct pid *pid;
3705
3706	pid = pidfd_pid(file);
3707	if (!IS_ERR(pid))
3708		return pid;
3709
3710	return tgid_pidfd_to_pid(file);
3711}
3712
3713/**
3714 * sys_pidfd_send_signal - Signal a process through a pidfd
3715 * @pidfd:  file descriptor of the process
3716 * @sig:    signal to send
3717 * @info:   signal info
3718 * @flags:  future flags
3719 *
3720 * The syscall currently only signals via PIDTYPE_PID which covers
3721 * kill(<positive-pid>, <signal>. It does not signal threads or process
3722 * groups.
3723 * In order to extend the syscall to threads and process groups the @flags
3724 * argument should be used. In essence, the @flags argument will determine
3725 * what is signaled and not the file descriptor itself. Put in other words,
3726 * grouping is a property of the flags argument not a property of the file
3727 * descriptor.
3728 *
3729 * Return: 0 on success, negative errno on failure
3730 */
3731SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3732		siginfo_t __user *, info, unsigned int, flags)
3733{
3734	int ret;
3735	struct fd f;
3736	struct pid *pid;
3737	kernel_siginfo_t kinfo;
3738
3739	/* Enforce flags be set to 0 until we add an extension. */
3740	if (flags)
3741		return -EINVAL;
3742
3743	f = fdget(pidfd);
3744	if (!f.file)
3745		return -EBADF;
3746
3747	/* Is this a pidfd? */
3748	pid = pidfd_to_pid(f.file);
3749	if (IS_ERR(pid)) {
3750		ret = PTR_ERR(pid);
3751		goto err;
3752	}
3753
3754	ret = -EINVAL;
3755	if (!access_pidfd_pidns(pid))
3756		goto err;
3757
3758	if (info) {
3759		ret = copy_siginfo_from_user_any(&kinfo, info);
3760		if (unlikely(ret))
3761			goto err;
3762
3763		ret = -EINVAL;
3764		if (unlikely(sig != kinfo.si_signo))
3765			goto err;
3766
3767		/* Only allow sending arbitrary signals to yourself. */
3768		ret = -EPERM;
3769		if ((task_pid(current) != pid) &&
3770		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3771			goto err;
3772	} else {
3773		prepare_kill_siginfo(sig, &kinfo);
3774	}
3775
3776	ret = kill_pid_info(sig, &kinfo, pid);
3777
3778err:
3779	fdput(f);
3780	return ret;
3781}
3782
3783static int
3784do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3785{
3786	struct task_struct *p;
3787	int error = -ESRCH;
3788
3789	rcu_read_lock();
3790	p = find_task_by_vpid(pid);
3791	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3792		error = check_kill_permission(sig, info, p);
3793		/*
3794		 * The null signal is a permissions and process existence
3795		 * probe.  No signal is actually delivered.
3796		 */
3797		if (!error && sig) {
3798			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3799			/*
3800			 * If lock_task_sighand() failed we pretend the task
3801			 * dies after receiving the signal. The window is tiny,
3802			 * and the signal is private anyway.
3803			 */
3804			if (unlikely(error == -ESRCH))
3805				error = 0;
3806		}
3807	}
3808	rcu_read_unlock();
3809
3810	return error;
3811}
3812
3813static int do_tkill(pid_t tgid, pid_t pid, int sig)
3814{
3815	struct kernel_siginfo info;
3816
3817	clear_siginfo(&info);
3818	info.si_signo = sig;
3819	info.si_errno = 0;
3820	info.si_code = SI_TKILL;
3821	info.si_pid = task_tgid_vnr(current);
3822	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3823
3824	return do_send_specific(tgid, pid, sig, &info);
3825}
3826
3827/**
3828 *  sys_tgkill - send signal to one specific thread
3829 *  @tgid: the thread group ID of the thread
3830 *  @pid: the PID of the thread
3831 *  @sig: signal to be sent
3832 *
3833 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3834 *  exists but it's not belonging to the target process anymore. This
3835 *  method solves the problem of threads exiting and PIDs getting reused.
3836 */
3837SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3838{
3839	/* This is only valid for single tasks */
3840	if (pid <= 0 || tgid <= 0)
3841		return -EINVAL;
3842
3843	return do_tkill(tgid, pid, sig);
3844}
3845
3846/**
3847 *  sys_tkill - send signal to one specific task
3848 *  @pid: the PID of the task
3849 *  @sig: signal to be sent
3850 *
3851 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3852 */
3853SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3854{
3855	/* This is only valid for single tasks */
3856	if (pid <= 0)
3857		return -EINVAL;
3858
3859	return do_tkill(0, pid, sig);
3860}
3861
3862static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3863{
3864	/* Not even root can pretend to send signals from the kernel.
3865	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3866	 */
3867	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3868	    (task_pid_vnr(current) != pid))
3869		return -EPERM;
3870
3871	/* POSIX.1b doesn't mention process groups.  */
3872	return kill_proc_info(sig, info, pid);
3873}
3874
3875/**
3876 *  sys_rt_sigqueueinfo - send signal information to a signal
3877 *  @pid: the PID of the thread
3878 *  @sig: signal to be sent
3879 *  @uinfo: signal info to be sent
3880 */
3881SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3882		siginfo_t __user *, uinfo)
3883{
3884	kernel_siginfo_t info;
3885	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3886	if (unlikely(ret))
3887		return ret;
3888	return do_rt_sigqueueinfo(pid, sig, &info);
3889}
3890
3891#ifdef CONFIG_COMPAT
3892COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3893			compat_pid_t, pid,
3894			int, sig,
3895			struct compat_siginfo __user *, uinfo)
3896{
3897	kernel_siginfo_t info;
3898	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3899	if (unlikely(ret))
3900		return ret;
3901	return do_rt_sigqueueinfo(pid, sig, &info);
3902}
3903#endif
3904
3905static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3906{
3907	/* This is only valid for single tasks */
3908	if (pid <= 0 || tgid <= 0)
3909		return -EINVAL;
3910
3911	/* Not even root can pretend to send signals from the kernel.
3912	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3913	 */
3914	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3915	    (task_pid_vnr(current) != pid))
3916		return -EPERM;
3917
3918	return do_send_specific(tgid, pid, sig, info);
3919}
3920
3921SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3922		siginfo_t __user *, uinfo)
3923{
3924	kernel_siginfo_t info;
3925	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3926	if (unlikely(ret))
3927		return ret;
3928	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3929}
3930
3931#ifdef CONFIG_COMPAT
3932COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3933			compat_pid_t, tgid,
3934			compat_pid_t, pid,
3935			int, sig,
3936			struct compat_siginfo __user *, uinfo)
3937{
3938	kernel_siginfo_t info;
3939	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3940	if (unlikely(ret))
3941		return ret;
3942	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3943}
3944#endif
3945
3946/*
3947 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3948 */
3949void kernel_sigaction(int sig, __sighandler_t action)
3950{
3951	spin_lock_irq(&current->sighand->siglock);
3952	current->sighand->action[sig - 1].sa.sa_handler = action;
3953	if (action == SIG_IGN) {
3954		sigset_t mask;
3955
3956		sigemptyset(&mask);
3957		sigaddset(&mask, sig);
3958
3959		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3960		flush_sigqueue_mask(&mask, &current->pending);
3961		recalc_sigpending();
3962	}
3963	spin_unlock_irq(&current->sighand->siglock);
3964}
3965EXPORT_SYMBOL(kernel_sigaction);
3966
3967void __weak sigaction_compat_abi(struct k_sigaction *act,
3968		struct k_sigaction *oact)
3969{
3970}
3971
3972int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3973{
3974	struct task_struct *p = current, *t;
3975	struct k_sigaction *k;
3976	sigset_t mask;
3977
3978	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3979		return -EINVAL;
3980
3981	k = &p->sighand->action[sig-1];
3982
3983	spin_lock_irq(&p->sighand->siglock);
3984	if (oact)
3985		*oact = *k;
3986
3987	sigaction_compat_abi(act, oact);
3988
3989	if (act) {
3990		sigdelsetmask(&act->sa.sa_mask,
3991			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3992		*k = *act;
3993		/*
3994		 * POSIX 3.3.1.3:
3995		 *  "Setting a signal action to SIG_IGN for a signal that is
3996		 *   pending shall cause the pending signal to be discarded,
3997		 *   whether or not it is blocked."
3998		 *
3999		 *  "Setting a signal action to SIG_DFL for a signal that is
4000		 *   pending and whose default action is to ignore the signal
4001		 *   (for example, SIGCHLD), shall cause the pending signal to
4002		 *   be discarded, whether or not it is blocked"
4003		 */
4004		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4005			sigemptyset(&mask);
4006			sigaddset(&mask, sig);
4007			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4008			for_each_thread(p, t)
4009				flush_sigqueue_mask(&mask, &t->pending);
4010		}
4011	}
4012
4013	spin_unlock_irq(&p->sighand->siglock);
4014	return 0;
4015}
4016
4017static int
4018do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4019		size_t min_ss_size)
4020{
4021	struct task_struct *t = current;
4022
4023	if (oss) {
4024		memset(oss, 0, sizeof(stack_t));
4025		oss->ss_sp = (void __user *) t->sas_ss_sp;
4026		oss->ss_size = t->sas_ss_size;
4027		oss->ss_flags = sas_ss_flags(sp) |
4028			(current->sas_ss_flags & SS_FLAG_BITS);
4029	}
4030
4031	if (ss) {
4032		void __user *ss_sp = ss->ss_sp;
4033		size_t ss_size = ss->ss_size;
4034		unsigned ss_flags = ss->ss_flags;
4035		int ss_mode;
4036
4037		if (unlikely(on_sig_stack(sp)))
4038			return -EPERM;
4039
4040		ss_mode = ss_flags & ~SS_FLAG_BITS;
4041		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4042				ss_mode != 0))
4043			return -EINVAL;
4044
4045		if (ss_mode == SS_DISABLE) {
4046			ss_size = 0;
4047			ss_sp = NULL;
4048		} else {
4049			if (unlikely(ss_size < min_ss_size))
4050				return -ENOMEM;
4051		}
4052
4053		t->sas_ss_sp = (unsigned long) ss_sp;
4054		t->sas_ss_size = ss_size;
4055		t->sas_ss_flags = ss_flags;
4056	}
4057	return 0;
4058}
4059
4060SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4061{
4062	stack_t new, old;
4063	int err;
4064	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4065		return -EFAULT;
4066	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4067			      current_user_stack_pointer(),
4068			      MINSIGSTKSZ);
4069	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4070		err = -EFAULT;
4071	return err;
4072}
4073
4074int restore_altstack(const stack_t __user *uss)
4075{
4076	stack_t new;
4077	if (copy_from_user(&new, uss, sizeof(stack_t)))
4078		return -EFAULT;
4079	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4080			     MINSIGSTKSZ);
4081	/* squash all but EFAULT for now */
4082	return 0;
4083}
4084
4085int __save_altstack(stack_t __user *uss, unsigned long sp)
4086{
4087	struct task_struct *t = current;
4088	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4089		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4090		__put_user(t->sas_ss_size, &uss->ss_size);
4091	if (err)
4092		return err;
4093	if (t->sas_ss_flags & SS_AUTODISARM)
4094		sas_ss_reset(t);
4095	return 0;
4096}
4097
4098#ifdef CONFIG_COMPAT
4099static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4100				 compat_stack_t __user *uoss_ptr)
4101{
4102	stack_t uss, uoss;
4103	int ret;
4104
4105	if (uss_ptr) {
4106		compat_stack_t uss32;
4107		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4108			return -EFAULT;
4109		uss.ss_sp = compat_ptr(uss32.ss_sp);
4110		uss.ss_flags = uss32.ss_flags;
4111		uss.ss_size = uss32.ss_size;
4112	}
4113	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4114			     compat_user_stack_pointer(),
4115			     COMPAT_MINSIGSTKSZ);
4116	if (ret >= 0 && uoss_ptr)  {
4117		compat_stack_t old;
4118		memset(&old, 0, sizeof(old));
4119		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4120		old.ss_flags = uoss.ss_flags;
4121		old.ss_size = uoss.ss_size;
4122		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4123			ret = -EFAULT;
4124	}
4125	return ret;
4126}
4127
4128COMPAT_SYSCALL_DEFINE2(sigaltstack,
4129			const compat_stack_t __user *, uss_ptr,
4130			compat_stack_t __user *, uoss_ptr)
4131{
4132	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4133}
4134
4135int compat_restore_altstack(const compat_stack_t __user *uss)
4136{
4137	int err = do_compat_sigaltstack(uss, NULL);
4138	/* squash all but -EFAULT for now */
4139	return err == -EFAULT ? err : 0;
4140}
4141
4142int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4143{
4144	int err;
4145	struct task_struct *t = current;
4146	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4147			 &uss->ss_sp) |
4148		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4149		__put_user(t->sas_ss_size, &uss->ss_size);
4150	if (err)
4151		return err;
4152	if (t->sas_ss_flags & SS_AUTODISARM)
4153		sas_ss_reset(t);
4154	return 0;
4155}
4156#endif
4157
4158#ifdef __ARCH_WANT_SYS_SIGPENDING
4159
4160/**
4161 *  sys_sigpending - examine pending signals
4162 *  @uset: where mask of pending signal is returned
4163 */
4164SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4165{
4166	sigset_t set;
4167
4168	if (sizeof(old_sigset_t) > sizeof(*uset))
4169		return -EINVAL;
4170
4171	do_sigpending(&set);
4172
4173	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4174		return -EFAULT;
4175
4176	return 0;
4177}
4178
4179#ifdef CONFIG_COMPAT
4180COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4181{
4182	sigset_t set;
4183
4184	do_sigpending(&set);
4185
4186	return put_user(set.sig[0], set32);
4187}
4188#endif
4189
4190#endif
4191
4192#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4193/**
4194 *  sys_sigprocmask - examine and change blocked signals
4195 *  @how: whether to add, remove, or set signals
4196 *  @nset: signals to add or remove (if non-null)
4197 *  @oset: previous value of signal mask if non-null
4198 *
4199 * Some platforms have their own version with special arguments;
4200 * others support only sys_rt_sigprocmask.
4201 */
4202
4203SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4204		old_sigset_t __user *, oset)
4205{
4206	old_sigset_t old_set, new_set;
4207	sigset_t new_blocked;
4208
4209	old_set = current->blocked.sig[0];
4210
4211	if (nset) {
4212		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4213			return -EFAULT;
4214
4215		new_blocked = current->blocked;
4216
4217		switch (how) {
4218		case SIG_BLOCK:
4219			sigaddsetmask(&new_blocked, new_set);
4220			break;
4221		case SIG_UNBLOCK:
4222			sigdelsetmask(&new_blocked, new_set);
4223			break;
4224		case SIG_SETMASK:
4225			new_blocked.sig[0] = new_set;
4226			break;
4227		default:
4228			return -EINVAL;
4229		}
4230
4231		set_current_blocked(&new_blocked);
4232	}
4233
4234	if (oset) {
4235		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4236			return -EFAULT;
4237	}
4238
4239	return 0;
4240}
4241#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4242
4243#ifndef CONFIG_ODD_RT_SIGACTION
4244/**
4245 *  sys_rt_sigaction - alter an action taken by a process
4246 *  @sig: signal to be sent
4247 *  @act: new sigaction
4248 *  @oact: used to save the previous sigaction
4249 *  @sigsetsize: size of sigset_t type
4250 */
4251SYSCALL_DEFINE4(rt_sigaction, int, sig,
4252		const struct sigaction __user *, act,
4253		struct sigaction __user *, oact,
4254		size_t, sigsetsize)
4255{
4256	struct k_sigaction new_sa, old_sa;
4257	int ret;
4258
4259	/* XXX: Don't preclude handling different sized sigset_t's.  */
4260	if (sigsetsize != sizeof(sigset_t))
4261		return -EINVAL;
4262
4263	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4264		return -EFAULT;
4265
4266	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4267	if (ret)
4268		return ret;
4269
4270	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4271		return -EFAULT;
4272
4273	return 0;
4274}
4275#ifdef CONFIG_COMPAT
4276COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4277		const struct compat_sigaction __user *, act,
4278		struct compat_sigaction __user *, oact,
4279		compat_size_t, sigsetsize)
4280{
4281	struct k_sigaction new_ka, old_ka;
4282#ifdef __ARCH_HAS_SA_RESTORER
4283	compat_uptr_t restorer;
4284#endif
4285	int ret;
4286
4287	/* XXX: Don't preclude handling different sized sigset_t's.  */
4288	if (sigsetsize != sizeof(compat_sigset_t))
4289		return -EINVAL;
4290
4291	if (act) {
4292		compat_uptr_t handler;
4293		ret = get_user(handler, &act->sa_handler);
4294		new_ka.sa.sa_handler = compat_ptr(handler);
4295#ifdef __ARCH_HAS_SA_RESTORER
4296		ret |= get_user(restorer, &act->sa_restorer);
4297		new_ka.sa.sa_restorer = compat_ptr(restorer);
4298#endif
4299		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4300		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4301		if (ret)
4302			return -EFAULT;
4303	}
4304
4305	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4306	if (!ret && oact) {
4307		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4308			       &oact->sa_handler);
4309		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4310					 sizeof(oact->sa_mask));
4311		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4312#ifdef __ARCH_HAS_SA_RESTORER
4313		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4314				&oact->sa_restorer);
4315#endif
4316	}
4317	return ret;
4318}
4319#endif
4320#endif /* !CONFIG_ODD_RT_SIGACTION */
4321
4322#ifdef CONFIG_OLD_SIGACTION
4323SYSCALL_DEFINE3(sigaction, int, sig,
4324		const struct old_sigaction __user *, act,
4325	        struct old_sigaction __user *, oact)
4326{
4327	struct k_sigaction new_ka, old_ka;
4328	int ret;
4329
4330	if (act) {
4331		old_sigset_t mask;
4332		if (!access_ok(act, sizeof(*act)) ||
4333		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4334		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4335		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4336		    __get_user(mask, &act->sa_mask))
4337			return -EFAULT;
4338#ifdef __ARCH_HAS_KA_RESTORER
4339		new_ka.ka_restorer = NULL;
4340#endif
4341		siginitset(&new_ka.sa.sa_mask, mask);
4342	}
4343
4344	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4345
4346	if (!ret && oact) {
4347		if (!access_ok(oact, sizeof(*oact)) ||
4348		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4349		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4350		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4351		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4352			return -EFAULT;
4353	}
4354
4355	return ret;
4356}
4357#endif
4358#ifdef CONFIG_COMPAT_OLD_SIGACTION
4359COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4360		const struct compat_old_sigaction __user *, act,
4361	        struct compat_old_sigaction __user *, oact)
4362{
4363	struct k_sigaction new_ka, old_ka;
4364	int ret;
4365	compat_old_sigset_t mask;
4366	compat_uptr_t handler, restorer;
4367
4368	if (act) {
4369		if (!access_ok(act, sizeof(*act)) ||
4370		    __get_user(handler, &act->sa_handler) ||
4371		    __get_user(restorer, &act->sa_restorer) ||
4372		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4373		    __get_user(mask, &act->sa_mask))
4374			return -EFAULT;
4375
4376#ifdef __ARCH_HAS_KA_RESTORER
4377		new_ka.ka_restorer = NULL;
4378#endif
4379		new_ka.sa.sa_handler = compat_ptr(handler);
4380		new_ka.sa.sa_restorer = compat_ptr(restorer);
4381		siginitset(&new_ka.sa.sa_mask, mask);
4382	}
4383
4384	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4385
4386	if (!ret && oact) {
4387		if (!access_ok(oact, sizeof(*oact)) ||
4388		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4389			       &oact->sa_handler) ||
4390		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4391			       &oact->sa_restorer) ||
4392		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4393		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4394			return -EFAULT;
4395	}
4396	return ret;
4397}
4398#endif
4399
4400#ifdef CONFIG_SGETMASK_SYSCALL
4401
4402/*
4403 * For backwards compatibility.  Functionality superseded by sigprocmask.
4404 */
4405SYSCALL_DEFINE0(sgetmask)
4406{
4407	/* SMP safe */
4408	return current->blocked.sig[0];
4409}
4410
4411SYSCALL_DEFINE1(ssetmask, int, newmask)
4412{
4413	int old = current->blocked.sig[0];
4414	sigset_t newset;
4415
4416	siginitset(&newset, newmask);
4417	set_current_blocked(&newset);
4418
4419	return old;
4420}
4421#endif /* CONFIG_SGETMASK_SYSCALL */
4422
4423#ifdef __ARCH_WANT_SYS_SIGNAL
4424/*
4425 * For backwards compatibility.  Functionality superseded by sigaction.
4426 */
4427SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4428{
4429	struct k_sigaction new_sa, old_sa;
4430	int ret;
4431
4432	new_sa.sa.sa_handler = handler;
4433	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4434	sigemptyset(&new_sa.sa.sa_mask);
4435
4436	ret = do_sigaction(sig, &new_sa, &old_sa);
4437
4438	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4439}
4440#endif /* __ARCH_WANT_SYS_SIGNAL */
4441
4442#ifdef __ARCH_WANT_SYS_PAUSE
4443
4444SYSCALL_DEFINE0(pause)
4445{
4446	while (!signal_pending(current)) {
4447		__set_current_state(TASK_INTERRUPTIBLE);
4448		schedule();
4449	}
4450	return -ERESTARTNOHAND;
4451}
4452
4453#endif
4454
4455static int sigsuspend(sigset_t *set)
4456{
4457	current->saved_sigmask = current->blocked;
4458	set_current_blocked(set);
4459
4460	while (!signal_pending(current)) {
4461		__set_current_state(TASK_INTERRUPTIBLE);
4462		schedule();
4463	}
4464	set_restore_sigmask();
4465	return -ERESTARTNOHAND;
4466}
4467
4468/**
4469 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4470 *	@unewset value until a signal is received
4471 *  @unewset: new signal mask value
4472 *  @sigsetsize: size of sigset_t type
4473 */
4474SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4475{
4476	sigset_t newset;
4477
4478	/* XXX: Don't preclude handling different sized sigset_t's.  */
4479	if (sigsetsize != sizeof(sigset_t))
4480		return -EINVAL;
4481
4482	if (copy_from_user(&newset, unewset, sizeof(newset)))
4483		return -EFAULT;
4484	return sigsuspend(&newset);
4485}
4486 
4487#ifdef CONFIG_COMPAT
4488COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4489{
4490	sigset_t newset;
4491
4492	/* XXX: Don't preclude handling different sized sigset_t's.  */
4493	if (sigsetsize != sizeof(sigset_t))
4494		return -EINVAL;
4495
4496	if (get_compat_sigset(&newset, unewset))
4497		return -EFAULT;
4498	return sigsuspend(&newset);
4499}
4500#endif
4501
4502#ifdef CONFIG_OLD_SIGSUSPEND
4503SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4504{
4505	sigset_t blocked;
4506	siginitset(&blocked, mask);
4507	return sigsuspend(&blocked);
4508}
4509#endif
4510#ifdef CONFIG_OLD_SIGSUSPEND3
4511SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4512{
4513	sigset_t blocked;
4514	siginitset(&blocked, mask);
4515	return sigsuspend(&blocked);
4516}
4517#endif
4518
4519__weak const char *arch_vma_name(struct vm_area_struct *vma)
4520{
4521	return NULL;
4522}
4523
4524static inline void siginfo_buildtime_checks(void)
4525{
4526	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4527
4528	/* Verify the offsets in the two siginfos match */
4529#define CHECK_OFFSET(field) \
4530	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4531
4532	/* kill */
4533	CHECK_OFFSET(si_pid);
4534	CHECK_OFFSET(si_uid);
4535
4536	/* timer */
4537	CHECK_OFFSET(si_tid);
4538	CHECK_OFFSET(si_overrun);
4539	CHECK_OFFSET(si_value);
4540
4541	/* rt */
4542	CHECK_OFFSET(si_pid);
4543	CHECK_OFFSET(si_uid);
4544	CHECK_OFFSET(si_value);
4545
4546	/* sigchld */
4547	CHECK_OFFSET(si_pid);
4548	CHECK_OFFSET(si_uid);
4549	CHECK_OFFSET(si_status);
4550	CHECK_OFFSET(si_utime);
4551	CHECK_OFFSET(si_stime);
4552
4553	/* sigfault */
4554	CHECK_OFFSET(si_addr);
4555	CHECK_OFFSET(si_addr_lsb);
4556	CHECK_OFFSET(si_lower);
4557	CHECK_OFFSET(si_upper);
4558	CHECK_OFFSET(si_pkey);
4559
4560	/* sigpoll */
4561	CHECK_OFFSET(si_band);
4562	CHECK_OFFSET(si_fd);
4563
4564	/* sigsys */
4565	CHECK_OFFSET(si_call_addr);
4566	CHECK_OFFSET(si_syscall);
4567	CHECK_OFFSET(si_arch);
4568#undef CHECK_OFFSET
4569
4570	/* usb asyncio */
4571	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4572		     offsetof(struct siginfo, si_addr));
4573	if (sizeof(int) == sizeof(void __user *)) {
4574		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4575			     sizeof(void __user *));
4576	} else {
4577		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4578			      sizeof_field(struct siginfo, si_uid)) !=
4579			     sizeof(void __user *));
4580		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4581			     offsetof(struct siginfo, si_uid));
4582	}
4583#ifdef CONFIG_COMPAT
4584	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4585		     offsetof(struct compat_siginfo, si_addr));
4586	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4587		     sizeof(compat_uptr_t));
4588	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4589		     sizeof_field(struct siginfo, si_pid));
4590#endif
4591}
4592
4593void __init signals_init(void)
4594{
4595	siginfo_buildtime_checks();
4596
4597	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4598}
4599
4600#ifdef CONFIG_KGDB_KDB
4601#include <linux/kdb.h>
4602/*
4603 * kdb_send_sig - Allows kdb to send signals without exposing
4604 * signal internals.  This function checks if the required locks are
4605 * available before calling the main signal code, to avoid kdb
4606 * deadlocks.
4607 */
4608void kdb_send_sig(struct task_struct *t, int sig)
4609{
4610	static struct task_struct *kdb_prev_t;
4611	int new_t, ret;
4612	if (!spin_trylock(&t->sighand->siglock)) {
4613		kdb_printf("Can't do kill command now.\n"
4614			   "The sigmask lock is held somewhere else in "
4615			   "kernel, try again later\n");
4616		return;
4617	}
4618	new_t = kdb_prev_t != t;
4619	kdb_prev_t = t;
4620	if (t->state != TASK_RUNNING && new_t) {
4621		spin_unlock(&t->sighand->siglock);
4622		kdb_printf("Process is not RUNNING, sending a signal from "
4623			   "kdb risks deadlock\n"
4624			   "on the run queue locks. "
4625			   "The signal has _not_ been sent.\n"
4626			   "Reissue the kill command if you want to risk "
4627			   "the deadlock.\n");
4628		return;
4629	}
4630	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4631	spin_unlock(&t->sighand->siglock);
4632	if (ret)
4633		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4634			   sig, t->pid);
4635	else
4636		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4637}
4638#endif	/* CONFIG_KGDB_KDB */