Linux Audio

Check our new training course

Loading...
v3.15
 
   1/* drivers/net/ethernet/freescale/gianfar.c
   2 *
   3 * Gianfar Ethernet Driver
   4 * This driver is designed for the non-CPM ethernet controllers
   5 * on the 85xx and 83xx family of integrated processors
   6 * Based on 8260_io/fcc_enet.c
   7 *
   8 * Author: Andy Fleming
   9 * Maintainer: Kumar Gala
  10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  11 *
  12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  13 * Copyright 2007 MontaVista Software, Inc.
  14 *
  15 * This program is free software; you can redistribute  it and/or modify it
  16 * under  the terms of  the GNU General  Public License as published by the
  17 * Free Software Foundation;  either version 2 of the  License, or (at your
  18 * option) any later version.
  19 *
  20 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  21 *  RA 11 31 24.2
  22 *  Dec +69 19 52
  23 *  V 3.84
  24 *  B-V +1.62
  25 *
  26 *  Theory of operation
  27 *
  28 *  The driver is initialized through of_device. Configuration information
  29 *  is therefore conveyed through an OF-style device tree.
  30 *
  31 *  The Gianfar Ethernet Controller uses a ring of buffer
  32 *  descriptors.  The beginning is indicated by a register
  33 *  pointing to the physical address of the start of the ring.
  34 *  The end is determined by a "wrap" bit being set in the
  35 *  last descriptor of the ring.
  36 *
  37 *  When a packet is received, the RXF bit in the
  38 *  IEVENT register is set, triggering an interrupt when the
  39 *  corresponding bit in the IMASK register is also set (if
  40 *  interrupt coalescing is active, then the interrupt may not
  41 *  happen immediately, but will wait until either a set number
  42 *  of frames or amount of time have passed).  In NAPI, the
  43 *  interrupt handler will signal there is work to be done, and
  44 *  exit. This method will start at the last known empty
  45 *  descriptor, and process every subsequent descriptor until there
  46 *  are none left with data (NAPI will stop after a set number of
  47 *  packets to give time to other tasks, but will eventually
  48 *  process all the packets).  The data arrives inside a
  49 *  pre-allocated skb, and so after the skb is passed up to the
  50 *  stack, a new skb must be allocated, and the address field in
  51 *  the buffer descriptor must be updated to indicate this new
  52 *  skb.
  53 *
  54 *  When the kernel requests that a packet be transmitted, the
  55 *  driver starts where it left off last time, and points the
  56 *  descriptor at the buffer which was passed in.  The driver
  57 *  then informs the DMA engine that there are packets ready to
  58 *  be transmitted.  Once the controller is finished transmitting
  59 *  the packet, an interrupt may be triggered (under the same
  60 *  conditions as for reception, but depending on the TXF bit).
  61 *  The driver then cleans up the buffer.
  62 */
  63
  64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  65#define DEBUG
  66
  67#include <linux/kernel.h>
 
  68#include <linux/string.h>
  69#include <linux/errno.h>
  70#include <linux/unistd.h>
  71#include <linux/slab.h>
  72#include <linux/interrupt.h>
  73#include <linux/delay.h>
  74#include <linux/netdevice.h>
  75#include <linux/etherdevice.h>
  76#include <linux/skbuff.h>
  77#include <linux/if_vlan.h>
  78#include <linux/spinlock.h>
  79#include <linux/mm.h>
  80#include <linux/of_address.h>
  81#include <linux/of_irq.h>
  82#include <linux/of_mdio.h>
  83#include <linux/of_platform.h>
  84#include <linux/ip.h>
  85#include <linux/tcp.h>
  86#include <linux/udp.h>
  87#include <linux/in.h>
  88#include <linux/net_tstamp.h>
  89
  90#include <asm/io.h>
 
  91#include <asm/reg.h>
  92#include <asm/mpc85xx.h>
 
  93#include <asm/irq.h>
  94#include <asm/uaccess.h>
  95#include <linux/module.h>
  96#include <linux/dma-mapping.h>
  97#include <linux/crc32.h>
  98#include <linux/mii.h>
  99#include <linux/phy.h>
 100#include <linux/phy_fixed.h>
 101#include <linux/of.h>
 102#include <linux/of_net.h>
 103
 104#include "gianfar.h"
 105
 106#define TX_TIMEOUT      (1*HZ)
 107
 108const char gfar_driver_version[] = "1.3";
 109
 110static int gfar_enet_open(struct net_device *dev);
 111static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
 112static void gfar_reset_task(struct work_struct *work);
 113static void gfar_timeout(struct net_device *dev);
 114static int gfar_close(struct net_device *dev);
 115struct sk_buff *gfar_new_skb(struct net_device *dev);
 116static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 117			   struct sk_buff *skb);
 118static int gfar_set_mac_address(struct net_device *dev);
 119static int gfar_change_mtu(struct net_device *dev, int new_mtu);
 120static irqreturn_t gfar_error(int irq, void *dev_id);
 121static irqreturn_t gfar_transmit(int irq, void *dev_id);
 122static irqreturn_t gfar_interrupt(int irq, void *dev_id);
 123static void adjust_link(struct net_device *dev);
 124static noinline void gfar_update_link_state(struct gfar_private *priv);
 125static int init_phy(struct net_device *dev);
 126static int gfar_probe(struct platform_device *ofdev);
 127static int gfar_remove(struct platform_device *ofdev);
 128static void free_skb_resources(struct gfar_private *priv);
 129static void gfar_set_multi(struct net_device *dev);
 130static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
 131static void gfar_configure_serdes(struct net_device *dev);
 132static int gfar_poll_rx(struct napi_struct *napi, int budget);
 133static int gfar_poll_tx(struct napi_struct *napi, int budget);
 134static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
 135static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
 136#ifdef CONFIG_NET_POLL_CONTROLLER
 137static void gfar_netpoll(struct net_device *dev);
 138#endif
 139int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
 140static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
 141static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
 142			       int amount_pull, struct napi_struct *napi);
 143static void gfar_halt_nodisable(struct gfar_private *priv);
 144static void gfar_clear_exact_match(struct net_device *dev);
 145static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 146				  const u8 *addr);
 147static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 148
 149MODULE_AUTHOR("Freescale Semiconductor, Inc");
 150MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 151MODULE_LICENSE("GPL");
 152
 153static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 154			    dma_addr_t buf)
 155{
 156	u32 lstatus;
 157
 158	bdp->bufPtr = buf;
 159
 160	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 161	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 162		lstatus |= BD_LFLAG(RXBD_WRAP);
 163
 164	eieio();
 165
 166	bdp->lstatus = lstatus;
 167}
 168
 169static int gfar_init_bds(struct net_device *ndev)
 170{
 171	struct gfar_private *priv = netdev_priv(ndev);
 172	struct gfar_priv_tx_q *tx_queue = NULL;
 173	struct gfar_priv_rx_q *rx_queue = NULL;
 174	struct txbd8 *txbdp;
 175	struct rxbd8 *rxbdp;
 176	int i, j;
 177
 178	for (i = 0; i < priv->num_tx_queues; i++) {
 179		tx_queue = priv->tx_queue[i];
 180		/* Initialize some variables in our dev structure */
 181		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
 182		tx_queue->dirty_tx = tx_queue->tx_bd_base;
 183		tx_queue->cur_tx = tx_queue->tx_bd_base;
 184		tx_queue->skb_curtx = 0;
 185		tx_queue->skb_dirtytx = 0;
 186
 187		/* Initialize Transmit Descriptor Ring */
 188		txbdp = tx_queue->tx_bd_base;
 189		for (j = 0; j < tx_queue->tx_ring_size; j++) {
 190			txbdp->lstatus = 0;
 191			txbdp->bufPtr = 0;
 192			txbdp++;
 193		}
 194
 195		/* Set the last descriptor in the ring to indicate wrap */
 196		txbdp--;
 197		txbdp->status |= TXBD_WRAP;
 198	}
 199
 200	for (i = 0; i < priv->num_rx_queues; i++) {
 201		rx_queue = priv->rx_queue[i];
 202		rx_queue->cur_rx = rx_queue->rx_bd_base;
 203		rx_queue->skb_currx = 0;
 204		rxbdp = rx_queue->rx_bd_base;
 205
 206		for (j = 0; j < rx_queue->rx_ring_size; j++) {
 207			struct sk_buff *skb = rx_queue->rx_skbuff[j];
 208
 209			if (skb) {
 210				gfar_init_rxbdp(rx_queue, rxbdp,
 211						rxbdp->bufPtr);
 212			} else {
 213				skb = gfar_new_skb(ndev);
 214				if (!skb) {
 215					netdev_err(ndev, "Can't allocate RX buffers\n");
 216					return -ENOMEM;
 217				}
 218				rx_queue->rx_skbuff[j] = skb;
 219
 220				gfar_new_rxbdp(rx_queue, rxbdp, skb);
 221			}
 222
 223			rxbdp++;
 224		}
 225
 226	}
 227
 228	return 0;
 229}
 230
 231static int gfar_alloc_skb_resources(struct net_device *ndev)
 232{
 233	void *vaddr;
 234	dma_addr_t addr;
 235	int i, j, k;
 236	struct gfar_private *priv = netdev_priv(ndev);
 237	struct device *dev = priv->dev;
 238	struct gfar_priv_tx_q *tx_queue = NULL;
 239	struct gfar_priv_rx_q *rx_queue = NULL;
 240
 241	priv->total_tx_ring_size = 0;
 242	for (i = 0; i < priv->num_tx_queues; i++)
 243		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
 244
 245	priv->total_rx_ring_size = 0;
 246	for (i = 0; i < priv->num_rx_queues; i++)
 247		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
 248
 249	/* Allocate memory for the buffer descriptors */
 250	vaddr = dma_alloc_coherent(dev,
 251				   (priv->total_tx_ring_size *
 252				    sizeof(struct txbd8)) +
 253				   (priv->total_rx_ring_size *
 254				    sizeof(struct rxbd8)),
 255				   &addr, GFP_KERNEL);
 256	if (!vaddr)
 257		return -ENOMEM;
 258
 259	for (i = 0; i < priv->num_tx_queues; i++) {
 260		tx_queue = priv->tx_queue[i];
 261		tx_queue->tx_bd_base = vaddr;
 262		tx_queue->tx_bd_dma_base = addr;
 263		tx_queue->dev = ndev;
 264		/* enet DMA only understands physical addresses */
 265		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 266		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 267	}
 268
 269	/* Start the rx descriptor ring where the tx ring leaves off */
 270	for (i = 0; i < priv->num_rx_queues; i++) {
 271		rx_queue = priv->rx_queue[i];
 272		rx_queue->rx_bd_base = vaddr;
 273		rx_queue->rx_bd_dma_base = addr;
 274		rx_queue->dev = ndev;
 275		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 276		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 277	}
 278
 279	/* Setup the skbuff rings */
 280	for (i = 0; i < priv->num_tx_queues; i++) {
 281		tx_queue = priv->tx_queue[i];
 282		tx_queue->tx_skbuff =
 283			kmalloc_array(tx_queue->tx_ring_size,
 284				      sizeof(*tx_queue->tx_skbuff),
 285				      GFP_KERNEL);
 286		if (!tx_queue->tx_skbuff)
 287			goto cleanup;
 288
 289		for (k = 0; k < tx_queue->tx_ring_size; k++)
 290			tx_queue->tx_skbuff[k] = NULL;
 291	}
 292
 293	for (i = 0; i < priv->num_rx_queues; i++) {
 294		rx_queue = priv->rx_queue[i];
 295		rx_queue->rx_skbuff =
 296			kmalloc_array(rx_queue->rx_ring_size,
 297				      sizeof(*rx_queue->rx_skbuff),
 298				      GFP_KERNEL);
 299		if (!rx_queue->rx_skbuff)
 300			goto cleanup;
 301
 302		for (j = 0; j < rx_queue->rx_ring_size; j++)
 303			rx_queue->rx_skbuff[j] = NULL;
 304	}
 305
 306	if (gfar_init_bds(ndev))
 307		goto cleanup;
 308
 309	return 0;
 310
 311cleanup:
 312	free_skb_resources(priv);
 313	return -ENOMEM;
 314}
 315
 316static void gfar_init_tx_rx_base(struct gfar_private *priv)
 317{
 318	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 319	u32 __iomem *baddr;
 320	int i;
 321
 322	baddr = &regs->tbase0;
 323	for (i = 0; i < priv->num_tx_queues; i++) {
 324		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 325		baddr += 2;
 326	}
 327
 328	baddr = &regs->rbase0;
 329	for (i = 0; i < priv->num_rx_queues; i++) {
 330		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 331		baddr += 2;
 332	}
 333}
 334
 335static void gfar_rx_buff_size_config(struct gfar_private *priv)
 336{
 337	int frame_size = priv->ndev->mtu + ETH_HLEN;
 
 
 
 
 
 
 
 
 
 
 338
 
 
 339	/* set this when rx hw offload (TOE) functions are being used */
 340	priv->uses_rxfcb = 0;
 341
 342	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 343		priv->uses_rxfcb = 1;
 344
 345	if (priv->hwts_rx_en)
 346		priv->uses_rxfcb = 1;
 347
 348	if (priv->uses_rxfcb)
 349		frame_size += GMAC_FCB_LEN;
 350
 351	frame_size += priv->padding;
 352
 353	frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
 354		     INCREMENTAL_BUFFER_SIZE;
 355
 356	priv->rx_buffer_size = frame_size;
 357}
 358
 359static void gfar_mac_rx_config(struct gfar_private *priv)
 360{
 361	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 362	u32 rctrl = 0;
 363
 364	if (priv->rx_filer_enable) {
 365		rctrl |= RCTRL_FILREN;
 366		/* Program the RIR0 reg with the required distribution */
 367		if (priv->poll_mode == GFAR_SQ_POLLING)
 368			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 369		else /* GFAR_MQ_POLLING */
 370			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
 371	}
 372
 373	/* Restore PROMISC mode */
 374	if (priv->ndev->flags & IFF_PROMISC)
 375		rctrl |= RCTRL_PROM;
 376
 377	if (priv->ndev->features & NETIF_F_RXCSUM)
 378		rctrl |= RCTRL_CHECKSUMMING;
 379
 380	if (priv->extended_hash)
 381		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 382
 383	if (priv->padding) {
 384		rctrl &= ~RCTRL_PAL_MASK;
 385		rctrl |= RCTRL_PADDING(priv->padding);
 386	}
 387
 388	/* Enable HW time stamping if requested from user space */
 389	if (priv->hwts_rx_en)
 390		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 391
 392	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 393		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 394
 
 
 
 
 
 
 
 395	/* Init rctrl based on our settings */
 396	gfar_write(&regs->rctrl, rctrl);
 397}
 398
 399static void gfar_mac_tx_config(struct gfar_private *priv)
 400{
 401	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 402	u32 tctrl = 0;
 403
 404	if (priv->ndev->features & NETIF_F_IP_CSUM)
 405		tctrl |= TCTRL_INIT_CSUM;
 406
 407	if (priv->prio_sched_en)
 408		tctrl |= TCTRL_TXSCHED_PRIO;
 409	else {
 410		tctrl |= TCTRL_TXSCHED_WRRS;
 411		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 412		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 413	}
 414
 415	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 416		tctrl |= TCTRL_VLINS;
 417
 418	gfar_write(&regs->tctrl, tctrl);
 419}
 420
 421static void gfar_configure_coalescing(struct gfar_private *priv,
 422			       unsigned long tx_mask, unsigned long rx_mask)
 423{
 424	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 425	u32 __iomem *baddr;
 426
 427	if (priv->mode == MQ_MG_MODE) {
 428		int i = 0;
 429
 430		baddr = &regs->txic0;
 431		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 432			gfar_write(baddr + i, 0);
 433			if (likely(priv->tx_queue[i]->txcoalescing))
 434				gfar_write(baddr + i, priv->tx_queue[i]->txic);
 435		}
 436
 437		baddr = &regs->rxic0;
 438		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 439			gfar_write(baddr + i, 0);
 440			if (likely(priv->rx_queue[i]->rxcoalescing))
 441				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 442		}
 443	} else {
 444		/* Backward compatible case -- even if we enable
 445		 * multiple queues, there's only single reg to program
 446		 */
 447		gfar_write(&regs->txic, 0);
 448		if (likely(priv->tx_queue[0]->txcoalescing))
 449			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 450
 451		gfar_write(&regs->rxic, 0);
 452		if (unlikely(priv->rx_queue[0]->rxcoalescing))
 453			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 454	}
 455}
 456
 457void gfar_configure_coalescing_all(struct gfar_private *priv)
 458{
 459	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 460}
 461
 462static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 463{
 464	struct gfar_private *priv = netdev_priv(dev);
 465	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 466	unsigned long tx_packets = 0, tx_bytes = 0;
 467	int i;
 468
 469	for (i = 0; i < priv->num_rx_queues; i++) {
 470		rx_packets += priv->rx_queue[i]->stats.rx_packets;
 471		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 472		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 473	}
 474
 475	dev->stats.rx_packets = rx_packets;
 476	dev->stats.rx_bytes   = rx_bytes;
 477	dev->stats.rx_dropped = rx_dropped;
 478
 479	for (i = 0; i < priv->num_tx_queues; i++) {
 480		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 481		tx_packets += priv->tx_queue[i]->stats.tx_packets;
 482	}
 483
 484	dev->stats.tx_bytes   = tx_bytes;
 485	dev->stats.tx_packets = tx_packets;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486
 487	return &dev->stats;
 
 488}
 489
 490static const struct net_device_ops gfar_netdev_ops = {
 491	.ndo_open = gfar_enet_open,
 492	.ndo_start_xmit = gfar_start_xmit,
 493	.ndo_stop = gfar_close,
 494	.ndo_change_mtu = gfar_change_mtu,
 495	.ndo_set_features = gfar_set_features,
 496	.ndo_set_rx_mode = gfar_set_multi,
 497	.ndo_tx_timeout = gfar_timeout,
 498	.ndo_do_ioctl = gfar_ioctl,
 499	.ndo_get_stats = gfar_get_stats,
 500	.ndo_set_mac_address = eth_mac_addr,
 501	.ndo_validate_addr = eth_validate_addr,
 502#ifdef CONFIG_NET_POLL_CONTROLLER
 503	.ndo_poll_controller = gfar_netpoll,
 504#endif
 505};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506
 507static void gfar_ints_disable(struct gfar_private *priv)
 508{
 509	int i;
 510	for (i = 0; i < priv->num_grps; i++) {
 511		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 512		/* Clear IEVENT */
 513		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 514
 515		/* Initialize IMASK */
 516		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 517	}
 518}
 519
 520static void gfar_ints_enable(struct gfar_private *priv)
 521{
 522	int i;
 523	for (i = 0; i < priv->num_grps; i++) {
 524		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 525		/* Unmask the interrupts we look for */
 526		gfar_write(&regs->imask, IMASK_DEFAULT);
 
 527	}
 528}
 529
 530void lock_tx_qs(struct gfar_private *priv)
 531{
 532	int i;
 533
 534	for (i = 0; i < priv->num_tx_queues; i++)
 535		spin_lock(&priv->tx_queue[i]->txlock);
 536}
 537
 538void unlock_tx_qs(struct gfar_private *priv)
 539{
 540	int i;
 541
 542	for (i = 0; i < priv->num_tx_queues; i++)
 543		spin_unlock(&priv->tx_queue[i]->txlock);
 544}
 545
 546static int gfar_alloc_tx_queues(struct gfar_private *priv)
 547{
 548	int i;
 549
 550	for (i = 0; i < priv->num_tx_queues; i++) {
 551		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 552					    GFP_KERNEL);
 553		if (!priv->tx_queue[i])
 554			return -ENOMEM;
 555
 556		priv->tx_queue[i]->tx_skbuff = NULL;
 557		priv->tx_queue[i]->qindex = i;
 558		priv->tx_queue[i]->dev = priv->ndev;
 559		spin_lock_init(&(priv->tx_queue[i]->txlock));
 560	}
 561	return 0;
 562}
 563
 564static int gfar_alloc_rx_queues(struct gfar_private *priv)
 565{
 566	int i;
 567
 568	for (i = 0; i < priv->num_rx_queues; i++) {
 569		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 570					    GFP_KERNEL);
 571		if (!priv->rx_queue[i])
 572			return -ENOMEM;
 573
 574		priv->rx_queue[i]->rx_skbuff = NULL;
 575		priv->rx_queue[i]->qindex = i;
 576		priv->rx_queue[i]->dev = priv->ndev;
 577	}
 578	return 0;
 579}
 580
 581static void gfar_free_tx_queues(struct gfar_private *priv)
 582{
 583	int i;
 584
 585	for (i = 0; i < priv->num_tx_queues; i++)
 586		kfree(priv->tx_queue[i]);
 587}
 588
 589static void gfar_free_rx_queues(struct gfar_private *priv)
 590{
 591	int i;
 592
 593	for (i = 0; i < priv->num_rx_queues; i++)
 594		kfree(priv->rx_queue[i]);
 595}
 596
 597static void unmap_group_regs(struct gfar_private *priv)
 598{
 599	int i;
 600
 601	for (i = 0; i < MAXGROUPS; i++)
 602		if (priv->gfargrp[i].regs)
 603			iounmap(priv->gfargrp[i].regs);
 604}
 605
 606static void free_gfar_dev(struct gfar_private *priv)
 607{
 608	int i, j;
 609
 610	for (i = 0; i < priv->num_grps; i++)
 611		for (j = 0; j < GFAR_NUM_IRQS; j++) {
 612			kfree(priv->gfargrp[i].irqinfo[j]);
 613			priv->gfargrp[i].irqinfo[j] = NULL;
 614		}
 615
 616	free_netdev(priv->ndev);
 617}
 618
 619static void disable_napi(struct gfar_private *priv)
 620{
 621	int i;
 622
 623	for (i = 0; i < priv->num_grps; i++) {
 624		napi_disable(&priv->gfargrp[i].napi_rx);
 625		napi_disable(&priv->gfargrp[i].napi_tx);
 626	}
 627}
 628
 629static void enable_napi(struct gfar_private *priv)
 630{
 631	int i;
 632
 633	for (i = 0; i < priv->num_grps; i++) {
 634		napi_enable(&priv->gfargrp[i].napi_rx);
 635		napi_enable(&priv->gfargrp[i].napi_tx);
 636	}
 637}
 638
 639static int gfar_parse_group(struct device_node *np,
 640			    struct gfar_private *priv, const char *model)
 641{
 642	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 643	int i;
 644
 645	for (i = 0; i < GFAR_NUM_IRQS; i++) {
 646		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 647					  GFP_KERNEL);
 648		if (!grp->irqinfo[i])
 649			return -ENOMEM;
 650	}
 651
 652	grp->regs = of_iomap(np, 0);
 653	if (!grp->regs)
 654		return -ENOMEM;
 655
 656	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 657
 658	/* If we aren't the FEC we have multiple interrupts */
 659	if (model && strcasecmp(model, "FEC")) {
 660		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 661		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 662		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
 663		    gfar_irq(grp, RX)->irq == NO_IRQ ||
 664		    gfar_irq(grp, ER)->irq == NO_IRQ)
 665			return -EINVAL;
 666	}
 667
 668	grp->priv = priv;
 669	spin_lock_init(&grp->grplock);
 670	if (priv->mode == MQ_MG_MODE) {
 671		u32 *rxq_mask, *txq_mask;
 672		rxq_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
 673		txq_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
 674
 675		if (priv->poll_mode == GFAR_SQ_POLLING) {
 676			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 677			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 678			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 679		} else { /* GFAR_MQ_POLLING */
 680			grp->rx_bit_map = rxq_mask ?
 681			*rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 682			grp->tx_bit_map = txq_mask ?
 683			*txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 684		}
 685	} else {
 686		grp->rx_bit_map = 0xFF;
 687		grp->tx_bit_map = 0xFF;
 688	}
 689
 690	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 691	 * right to left, so we need to revert the 8 bits to get the q index
 692	 */
 693	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 694	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 695
 696	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 697	 * also assign queues to groups
 698	 */
 699	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 700		if (!grp->rx_queue)
 701			grp->rx_queue = priv->rx_queue[i];
 702		grp->num_rx_queues++;
 703		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 704		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 705		priv->rx_queue[i]->grp = grp;
 706	}
 707
 708	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 709		if (!grp->tx_queue)
 710			grp->tx_queue = priv->tx_queue[i];
 711		grp->num_tx_queues++;
 712		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 713		priv->tqueue |= (TQUEUE_EN0 >> i);
 714		priv->tx_queue[i]->grp = grp;
 715	}
 716
 717	priv->num_grps++;
 718
 719	return 0;
 720}
 721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 723{
 724	const char *model;
 725	const char *ctype;
 726	const void *mac_addr;
 727	int err = 0, i;
 
 728	struct net_device *dev = NULL;
 729	struct gfar_private *priv = NULL;
 730	struct device_node *np = ofdev->dev.of_node;
 731	struct device_node *child = NULL;
 732	const u32 *stash;
 733	const u32 *stash_len;
 734	const u32 *stash_idx;
 735	unsigned int num_tx_qs, num_rx_qs;
 736	u32 *tx_queues, *rx_queues;
 737	unsigned short mode, poll_mode;
 738
 739	if (!np || !of_device_is_available(np))
 740		return -ENODEV;
 741
 742	if (of_device_is_compatible(np, "fsl,etsec2")) {
 743		mode = MQ_MG_MODE;
 744		poll_mode = GFAR_SQ_POLLING;
 745	} else {
 746		mode = SQ_SG_MODE;
 747		poll_mode = GFAR_SQ_POLLING;
 748	}
 749
 750	/* parse the num of HW tx and rx queues */
 751	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
 752	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
 753
 754	if (mode == SQ_SG_MODE) {
 755		num_tx_qs = 1;
 756		num_rx_qs = 1;
 757	} else { /* MQ_MG_MODE */
 758		/* get the actual number of supported groups */
 759		unsigned int num_grps = of_get_available_child_count(np);
 760
 761		if (num_grps == 0 || num_grps > MAXGROUPS) {
 762			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 763				num_grps);
 764			pr_err("Cannot do alloc_etherdev, aborting\n");
 765			return -EINVAL;
 766		}
 767
 768		if (poll_mode == GFAR_SQ_POLLING) {
 769			num_tx_qs = num_grps; /* one txq per int group */
 770			num_rx_qs = num_grps; /* one rxq per int group */
 771		} else { /* GFAR_MQ_POLLING */
 772			num_tx_qs = tx_queues ? *tx_queues : 1;
 773			num_rx_qs = rx_queues ? *rx_queues : 1;
 774		}
 775	}
 776
 777	if (num_tx_qs > MAX_TX_QS) {
 778		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 779		       num_tx_qs, MAX_TX_QS);
 780		pr_err("Cannot do alloc_etherdev, aborting\n");
 781		return -EINVAL;
 782	}
 783
 784	if (num_rx_qs > MAX_RX_QS) {
 785		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 786		       num_rx_qs, MAX_RX_QS);
 787		pr_err("Cannot do alloc_etherdev, aborting\n");
 788		return -EINVAL;
 789	}
 790
 791	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 792	dev = *pdev;
 793	if (NULL == dev)
 794		return -ENOMEM;
 795
 796	priv = netdev_priv(dev);
 797	priv->ndev = dev;
 798
 799	priv->mode = mode;
 800	priv->poll_mode = poll_mode;
 801
 802	priv->num_tx_queues = num_tx_qs;
 803	netif_set_real_num_rx_queues(dev, num_rx_qs);
 804	priv->num_rx_queues = num_rx_qs;
 805
 806	err = gfar_alloc_tx_queues(priv);
 807	if (err)
 808		goto tx_alloc_failed;
 809
 810	err = gfar_alloc_rx_queues(priv);
 811	if (err)
 812		goto rx_alloc_failed;
 813
 
 
 
 
 
 
 814	/* Init Rx queue filer rule set linked list */
 815	INIT_LIST_HEAD(&priv->rx_list.list);
 816	priv->rx_list.count = 0;
 817	mutex_init(&priv->rx_queue_access);
 818
 819	model = of_get_property(np, "model", NULL);
 820
 821	for (i = 0; i < MAXGROUPS; i++)
 822		priv->gfargrp[i].regs = NULL;
 823
 824	/* Parse and initialize group specific information */
 825	if (priv->mode == MQ_MG_MODE) {
 826		for_each_child_of_node(np, child) {
 
 
 
 827			err = gfar_parse_group(child, priv, model);
 828			if (err)
 
 829				goto err_grp_init;
 
 830		}
 831	} else { /* SQ_SG_MODE */
 832		err = gfar_parse_group(np, priv, model);
 833		if (err)
 834			goto err_grp_init;
 835	}
 836
 837	stash = of_get_property(np, "bd-stash", NULL);
 838
 839	if (stash) {
 840		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 841		priv->bd_stash_en = 1;
 842	}
 843
 844	stash_len = of_get_property(np, "rx-stash-len", NULL);
 845
 846	if (stash_len)
 847		priv->rx_stash_size = *stash_len;
 848
 849	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
 850
 851	if (stash_idx)
 852		priv->rx_stash_index = *stash_idx;
 853
 854	if (stash_len || stash_idx)
 855		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 856
 857	mac_addr = of_get_mac_address(np);
 858
 859	if (mac_addr)
 860		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
 
 861
 862	if (model && !strcasecmp(model, "TSEC"))
 863		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 864				     FSL_GIANFAR_DEV_HAS_COALESCE |
 865				     FSL_GIANFAR_DEV_HAS_RMON |
 866				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 867
 868	if (model && !strcasecmp(model, "eTSEC"))
 869		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 870				     FSL_GIANFAR_DEV_HAS_COALESCE |
 871				     FSL_GIANFAR_DEV_HAS_RMON |
 872				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 873				     FSL_GIANFAR_DEV_HAS_CSUM |
 874				     FSL_GIANFAR_DEV_HAS_VLAN |
 875				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 876				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 877				     FSL_GIANFAR_DEV_HAS_TIMER;
 878
 879	ctype = of_get_property(np, "phy-connection-type", NULL);
 880
 881	/* We only care about rgmii-id.  The rest are autodetected */
 882	if (ctype && !strcmp(ctype, "rgmii-id"))
 883		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
 
 
 
 
 884	else
 885		priv->interface = PHY_INTERFACE_MODE_MII;
 886
 887	if (of_get_property(np, "fsl,magic-packet", NULL))
 888		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 889
 
 
 
 890	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 891
 
 
 
 
 
 
 
 
 
 
 
 892	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 893	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 894
 895	return 0;
 896
 897err_grp_init:
 898	unmap_group_regs(priv);
 899rx_alloc_failed:
 900	gfar_free_rx_queues(priv);
 901tx_alloc_failed:
 902	gfar_free_tx_queues(priv);
 903	free_gfar_dev(priv);
 904	return err;
 905}
 906
 907static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
 908{
 909	struct hwtstamp_config config;
 910	struct gfar_private *priv = netdev_priv(netdev);
 911
 912	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 913		return -EFAULT;
 914
 915	/* reserved for future extensions */
 916	if (config.flags)
 917		return -EINVAL;
 918
 919	switch (config.tx_type) {
 920	case HWTSTAMP_TX_OFF:
 921		priv->hwts_tx_en = 0;
 922		break;
 923	case HWTSTAMP_TX_ON:
 924		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 925			return -ERANGE;
 926		priv->hwts_tx_en = 1;
 927		break;
 928	default:
 929		return -ERANGE;
 930	}
 931
 932	switch (config.rx_filter) {
 933	case HWTSTAMP_FILTER_NONE:
 934		if (priv->hwts_rx_en) {
 935			priv->hwts_rx_en = 0;
 936			reset_gfar(netdev);
 937		}
 938		break;
 939	default:
 940		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 941			return -ERANGE;
 942		if (!priv->hwts_rx_en) {
 943			priv->hwts_rx_en = 1;
 944			reset_gfar(netdev);
 945		}
 946		config.rx_filter = HWTSTAMP_FILTER_ALL;
 947		break;
 948	}
 949
 950	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 951		-EFAULT : 0;
 952}
 953
 954static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
 955{
 956	struct hwtstamp_config config;
 957	struct gfar_private *priv = netdev_priv(netdev);
 958
 959	config.flags = 0;
 960	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
 961	config.rx_filter = (priv->hwts_rx_en ?
 962			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
 963
 964	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 965		-EFAULT : 0;
 966}
 967
 968static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 969{
 970	struct gfar_private *priv = netdev_priv(dev);
 971
 972	if (!netif_running(dev))
 973		return -EINVAL;
 974
 975	if (cmd == SIOCSHWTSTAMP)
 976		return gfar_hwtstamp_set(dev, rq);
 977	if (cmd == SIOCGHWTSTAMP)
 978		return gfar_hwtstamp_get(dev, rq);
 979
 980	if (!priv->phydev)
 981		return -ENODEV;
 982
 983	return phy_mii_ioctl(priv->phydev, rq, cmd);
 984}
 985
 986static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 987				   u32 class)
 988{
 989	u32 rqfpr = FPR_FILER_MASK;
 990	u32 rqfcr = 0x0;
 991
 992	rqfar--;
 993	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 994	priv->ftp_rqfpr[rqfar] = rqfpr;
 995	priv->ftp_rqfcr[rqfar] = rqfcr;
 996	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 997
 998	rqfar--;
 999	rqfcr = RQFCR_CMP_NOMATCH;
1000	priv->ftp_rqfpr[rqfar] = rqfpr;
1001	priv->ftp_rqfcr[rqfar] = rqfcr;
1002	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1003
1004	rqfar--;
1005	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1006	rqfpr = class;
1007	priv->ftp_rqfcr[rqfar] = rqfcr;
1008	priv->ftp_rqfpr[rqfar] = rqfpr;
1009	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1010
1011	rqfar--;
1012	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1013	rqfpr = class;
1014	priv->ftp_rqfcr[rqfar] = rqfcr;
1015	priv->ftp_rqfpr[rqfar] = rqfpr;
1016	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1017
1018	return rqfar;
1019}
1020
1021static void gfar_init_filer_table(struct gfar_private *priv)
1022{
1023	int i = 0x0;
1024	u32 rqfar = MAX_FILER_IDX;
1025	u32 rqfcr = 0x0;
1026	u32 rqfpr = FPR_FILER_MASK;
1027
1028	/* Default rule */
1029	rqfcr = RQFCR_CMP_MATCH;
1030	priv->ftp_rqfcr[rqfar] = rqfcr;
1031	priv->ftp_rqfpr[rqfar] = rqfpr;
1032	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1033
1034	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1035	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1036	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1037	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1038	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1039	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1040
1041	/* cur_filer_idx indicated the first non-masked rule */
1042	priv->cur_filer_idx = rqfar;
1043
1044	/* Rest are masked rules */
1045	rqfcr = RQFCR_CMP_NOMATCH;
1046	for (i = 0; i < rqfar; i++) {
1047		priv->ftp_rqfcr[i] = rqfcr;
1048		priv->ftp_rqfpr[i] = rqfpr;
1049		gfar_write_filer(priv, i, rqfcr, rqfpr);
1050	}
1051}
1052
 
1053static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1054{
1055	unsigned int pvr = mfspr(SPRN_PVR);
1056	unsigned int svr = mfspr(SPRN_SVR);
1057	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1058	unsigned int rev = svr & 0xffff;
1059
1060	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1061	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1062	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1063		priv->errata |= GFAR_ERRATA_74;
1064
1065	/* MPC8313 and MPC837x all rev */
1066	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1067	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1068		priv->errata |= GFAR_ERRATA_76;
1069
1070	/* MPC8313 Rev < 2.0 */
1071	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1072		priv->errata |= GFAR_ERRATA_12;
1073}
1074
1075static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1076{
1077	unsigned int svr = mfspr(SPRN_SVR);
1078
1079	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1080		priv->errata |= GFAR_ERRATA_12;
 
1081	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1082	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
 
1083		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1084}
 
1085
1086static void gfar_detect_errata(struct gfar_private *priv)
1087{
1088	struct device *dev = &priv->ofdev->dev;
1089
1090	/* no plans to fix */
1091	priv->errata |= GFAR_ERRATA_A002;
1092
 
1093	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1094		__gfar_detect_errata_85xx(priv);
1095	else /* non-mpc85xx parts, i.e. e300 core based */
1096		__gfar_detect_errata_83xx(priv);
 
1097
1098	if (priv->errata)
1099		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1100			 priv->errata);
1101}
1102
1103void gfar_mac_reset(struct gfar_private *priv)
1104{
1105	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1106	u32 tempval;
1107
1108	/* Reset MAC layer */
1109	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1110
1111	/* We need to delay at least 3 TX clocks */
1112	udelay(3);
1113
1114	/* the soft reset bit is not self-resetting, so we need to
1115	 * clear it before resuming normal operation
1116	 */
1117	gfar_write(&regs->maccfg1, 0);
1118
1119	udelay(3);
1120
1121	/* Compute rx_buff_size based on config flags */
1122	gfar_rx_buff_size_config(priv);
1123
1124	/* Initialize the max receive frame/buffer lengths */
1125	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1126	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1127
1128	/* Initialize the Minimum Frame Length Register */
1129	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1130
1131	/* Initialize MACCFG2. */
1132	tempval = MACCFG2_INIT_SETTINGS;
1133
1134	/* If the mtu is larger than the max size for standard
1135	 * ethernet frames (ie, a jumbo frame), then set maccfg2
1136	 * to allow huge frames, and to check the length
1137	 */
1138	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1139	    gfar_has_errata(priv, GFAR_ERRATA_74))
1140		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1141
1142	gfar_write(&regs->maccfg2, tempval);
1143
1144	/* Clear mac addr hash registers */
1145	gfar_write(&regs->igaddr0, 0);
1146	gfar_write(&regs->igaddr1, 0);
1147	gfar_write(&regs->igaddr2, 0);
1148	gfar_write(&regs->igaddr3, 0);
1149	gfar_write(&regs->igaddr4, 0);
1150	gfar_write(&regs->igaddr5, 0);
1151	gfar_write(&regs->igaddr6, 0);
1152	gfar_write(&regs->igaddr7, 0);
1153
1154	gfar_write(&regs->gaddr0, 0);
1155	gfar_write(&regs->gaddr1, 0);
1156	gfar_write(&regs->gaddr2, 0);
1157	gfar_write(&regs->gaddr3, 0);
1158	gfar_write(&regs->gaddr4, 0);
1159	gfar_write(&regs->gaddr5, 0);
1160	gfar_write(&regs->gaddr6, 0);
1161	gfar_write(&regs->gaddr7, 0);
1162
1163	if (priv->extended_hash)
1164		gfar_clear_exact_match(priv->ndev);
1165
1166	gfar_mac_rx_config(priv);
1167
1168	gfar_mac_tx_config(priv);
1169
1170	gfar_set_mac_address(priv->ndev);
1171
1172	gfar_set_multi(priv->ndev);
1173
1174	/* clear ievent and imask before configuring coalescing */
1175	gfar_ints_disable(priv);
1176
1177	/* Configure the coalescing support */
1178	gfar_configure_coalescing_all(priv);
1179}
1180
1181static void gfar_hw_init(struct gfar_private *priv)
1182{
1183	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1184	u32 attrs;
1185
1186	/* Stop the DMA engine now, in case it was running before
1187	 * (The firmware could have used it, and left it running).
1188	 */
1189	gfar_halt(priv);
1190
1191	gfar_mac_reset(priv);
1192
1193	/* Zero out the rmon mib registers if it has them */
1194	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1195		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1196
1197		/* Mask off the CAM interrupts */
1198		gfar_write(&regs->rmon.cam1, 0xffffffff);
1199		gfar_write(&regs->rmon.cam2, 0xffffffff);
1200	}
1201
1202	/* Initialize ECNTRL */
1203	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1204
1205	/* Set the extraction length and index */
1206	attrs = ATTRELI_EL(priv->rx_stash_size) |
1207		ATTRELI_EI(priv->rx_stash_index);
1208
1209	gfar_write(&regs->attreli, attrs);
1210
1211	/* Start with defaults, and add stashing
1212	 * depending on driver parameters
1213	 */
1214	attrs = ATTR_INIT_SETTINGS;
1215
1216	if (priv->bd_stash_en)
1217		attrs |= ATTR_BDSTASH;
1218
1219	if (priv->rx_stash_size != 0)
1220		attrs |= ATTR_BUFSTASH;
1221
1222	gfar_write(&regs->attr, attrs);
1223
1224	/* FIFO configs */
1225	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1226	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1227	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1228
1229	/* Program the interrupt steering regs, only for MG devices */
1230	if (priv->num_grps > 1)
1231		gfar_write_isrg(priv);
1232}
1233
1234static void __init gfar_init_addr_hash_table(struct gfar_private *priv)
1235{
1236	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1237
1238	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1239		priv->extended_hash = 1;
1240		priv->hash_width = 9;
1241
1242		priv->hash_regs[0] = &regs->igaddr0;
1243		priv->hash_regs[1] = &regs->igaddr1;
1244		priv->hash_regs[2] = &regs->igaddr2;
1245		priv->hash_regs[3] = &regs->igaddr3;
1246		priv->hash_regs[4] = &regs->igaddr4;
1247		priv->hash_regs[5] = &regs->igaddr5;
1248		priv->hash_regs[6] = &regs->igaddr6;
1249		priv->hash_regs[7] = &regs->igaddr7;
1250		priv->hash_regs[8] = &regs->gaddr0;
1251		priv->hash_regs[9] = &regs->gaddr1;
1252		priv->hash_regs[10] = &regs->gaddr2;
1253		priv->hash_regs[11] = &regs->gaddr3;
1254		priv->hash_regs[12] = &regs->gaddr4;
1255		priv->hash_regs[13] = &regs->gaddr5;
1256		priv->hash_regs[14] = &regs->gaddr6;
1257		priv->hash_regs[15] = &regs->gaddr7;
1258
1259	} else {
1260		priv->extended_hash = 0;
1261		priv->hash_width = 8;
1262
1263		priv->hash_regs[0] = &regs->gaddr0;
1264		priv->hash_regs[1] = &regs->gaddr1;
1265		priv->hash_regs[2] = &regs->gaddr2;
1266		priv->hash_regs[3] = &regs->gaddr3;
1267		priv->hash_regs[4] = &regs->gaddr4;
1268		priv->hash_regs[5] = &regs->gaddr5;
1269		priv->hash_regs[6] = &regs->gaddr6;
1270		priv->hash_regs[7] = &regs->gaddr7;
1271	}
1272}
1273
1274/* Set up the ethernet device structure, private data,
1275 * and anything else we need before we start
1276 */
1277static int gfar_probe(struct platform_device *ofdev)
1278{
1279	struct net_device *dev = NULL;
1280	struct gfar_private *priv = NULL;
1281	int err = 0, i;
1282
1283	err = gfar_of_init(ofdev, &dev);
1284
1285	if (err)
1286		return err;
1287
1288	priv = netdev_priv(dev);
1289	priv->ndev = dev;
1290	priv->ofdev = ofdev;
1291	priv->dev = &ofdev->dev;
1292	SET_NETDEV_DEV(dev, &ofdev->dev);
1293
1294	spin_lock_init(&priv->bflock);
1295	INIT_WORK(&priv->reset_task, gfar_reset_task);
1296
1297	platform_set_drvdata(ofdev, priv);
1298
1299	gfar_detect_errata(priv);
1300
1301	/* Set the dev->base_addr to the gfar reg region */
1302	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1303
1304	/* Fill in the dev structure */
1305	dev->watchdog_timeo = TX_TIMEOUT;
1306	dev->mtu = 1500;
1307	dev->netdev_ops = &gfar_netdev_ops;
1308	dev->ethtool_ops = &gfar_ethtool_ops;
1309
1310	/* Register for napi ...We are registering NAPI for each grp */
1311	for (i = 0; i < priv->num_grps; i++) {
1312		if (priv->poll_mode == GFAR_SQ_POLLING) {
1313			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1314				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1315			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1316				       gfar_poll_tx_sq, 2);
1317		} else {
1318			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1319				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1320			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1321				       gfar_poll_tx, 2);
1322		}
1323	}
1324
1325	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1326		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1327				   NETIF_F_RXCSUM;
1328		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1329				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1330	}
1331
1332	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1333		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1334				    NETIF_F_HW_VLAN_CTAG_RX;
1335		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1336	}
1337
1338	gfar_init_addr_hash_table(priv);
1339
1340	/* Insert receive time stamps into padding alignment bytes */
1341	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1342		priv->padding = 8;
1343
1344	if (dev->features & NETIF_F_IP_CSUM ||
1345	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1346		dev->needed_headroom = GMAC_FCB_LEN;
1347
1348	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1349
1350	/* Initializing some of the rx/tx queue level parameters */
1351	for (i = 0; i < priv->num_tx_queues; i++) {
1352		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1353		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1354		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1355		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1356	}
1357
1358	for (i = 0; i < priv->num_rx_queues; i++) {
1359		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1360		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1361		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1362	}
1363
1364	/* always enable rx filer */
1365	priv->rx_filer_enable = 1;
1366	/* Enable most messages by default */
1367	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1368	/* use pritority h/w tx queue scheduling for single queue devices */
1369	if (priv->num_tx_queues == 1)
1370		priv->prio_sched_en = 1;
1371
1372	set_bit(GFAR_DOWN, &priv->state);
1373
1374	gfar_hw_init(priv);
1375
1376	err = register_netdev(dev);
1377
1378	if (err) {
1379		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1380		goto register_fail;
1381	}
1382
1383	/* Carrier starts down, phylib will bring it up */
1384	netif_carrier_off(dev);
1385
1386	device_init_wakeup(&dev->dev,
1387			   priv->device_flags &
1388			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1389
1390	/* fill out IRQ number and name fields */
1391	for (i = 0; i < priv->num_grps; i++) {
1392		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1393		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1394			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1395				dev->name, "_g", '0' + i, "_tx");
1396			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1397				dev->name, "_g", '0' + i, "_rx");
1398			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1399				dev->name, "_g", '0' + i, "_er");
1400		} else
1401			strcpy(gfar_irq(grp, TX)->name, dev->name);
1402	}
1403
1404	/* Initialize the filer table */
1405	gfar_init_filer_table(priv);
1406
1407	/* Print out the device info */
1408	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1409
1410	/* Even more device info helps when determining which kernel
1411	 * provided which set of benchmarks.
1412	 */
1413	netdev_info(dev, "Running with NAPI enabled\n");
1414	for (i = 0; i < priv->num_rx_queues; i++)
1415		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1416			    i, priv->rx_queue[i]->rx_ring_size);
1417	for (i = 0; i < priv->num_tx_queues; i++)
1418		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1419			    i, priv->tx_queue[i]->tx_ring_size);
1420
1421	return 0;
1422
1423register_fail:
1424	unmap_group_regs(priv);
1425	gfar_free_rx_queues(priv);
1426	gfar_free_tx_queues(priv);
1427	if (priv->phy_node)
1428		of_node_put(priv->phy_node);
1429	if (priv->tbi_node)
1430		of_node_put(priv->tbi_node);
1431	free_gfar_dev(priv);
1432	return err;
1433}
1434
1435static int gfar_remove(struct platform_device *ofdev)
1436{
1437	struct gfar_private *priv = platform_get_drvdata(ofdev);
1438
1439	if (priv->phy_node)
1440		of_node_put(priv->phy_node);
1441	if (priv->tbi_node)
1442		of_node_put(priv->tbi_node);
1443
1444	unregister_netdev(priv->ndev);
1445	unmap_group_regs(priv);
1446	gfar_free_rx_queues(priv);
1447	gfar_free_tx_queues(priv);
1448	free_gfar_dev(priv);
1449
1450	return 0;
1451}
1452
1453#ifdef CONFIG_PM
1454
1455static int gfar_suspend(struct device *dev)
1456{
1457	struct gfar_private *priv = dev_get_drvdata(dev);
1458	struct net_device *ndev = priv->ndev;
1459	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1460	unsigned long flags;
1461	u32 tempval;
1462
1463	int magic_packet = priv->wol_en &&
1464			   (priv->device_flags &
1465			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1466
1467	netif_device_detach(ndev);
1468
1469	if (netif_running(ndev)) {
1470
1471		local_irq_save(flags);
1472		lock_tx_qs(priv);
1473
1474		gfar_halt_nodisable(priv);
1475
1476		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1477		tempval = gfar_read(&regs->maccfg1);
1478
1479		tempval &= ~MACCFG1_TX_EN;
1480
1481		if (!magic_packet)
1482			tempval &= ~MACCFG1_RX_EN;
1483
1484		gfar_write(&regs->maccfg1, tempval);
1485
1486		unlock_tx_qs(priv);
1487		local_irq_restore(flags);
1488
1489		disable_napi(priv);
1490
1491		if (magic_packet) {
1492			/* Enable interrupt on Magic Packet */
1493			gfar_write(&regs->imask, IMASK_MAG);
1494
1495			/* Enable Magic Packet mode */
1496			tempval = gfar_read(&regs->maccfg2);
1497			tempval |= MACCFG2_MPEN;
1498			gfar_write(&regs->maccfg2, tempval);
1499		} else {
1500			phy_stop(priv->phydev);
1501		}
1502	}
1503
1504	return 0;
1505}
1506
1507static int gfar_resume(struct device *dev)
1508{
1509	struct gfar_private *priv = dev_get_drvdata(dev);
1510	struct net_device *ndev = priv->ndev;
1511	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1512	unsigned long flags;
1513	u32 tempval;
1514	int magic_packet = priv->wol_en &&
1515			   (priv->device_flags &
1516			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1517
1518	if (!netif_running(ndev)) {
1519		netif_device_attach(ndev);
1520		return 0;
1521	}
1522
1523	if (!magic_packet && priv->phydev)
1524		phy_start(priv->phydev);
1525
1526	/* Disable Magic Packet mode, in case something
1527	 * else woke us up.
1528	 */
1529	local_irq_save(flags);
1530	lock_tx_qs(priv);
1531
1532	tempval = gfar_read(&regs->maccfg2);
1533	tempval &= ~MACCFG2_MPEN;
1534	gfar_write(&regs->maccfg2, tempval);
1535
1536	gfar_start(priv);
1537
1538	unlock_tx_qs(priv);
1539	local_irq_restore(flags);
1540
1541	netif_device_attach(ndev);
1542
1543	enable_napi(priv);
1544
1545	return 0;
1546}
1547
1548static int gfar_restore(struct device *dev)
1549{
1550	struct gfar_private *priv = dev_get_drvdata(dev);
1551	struct net_device *ndev = priv->ndev;
1552
1553	if (!netif_running(ndev)) {
1554		netif_device_attach(ndev);
1555
1556		return 0;
1557	}
1558
1559	if (gfar_init_bds(ndev)) {
1560		free_skb_resources(priv);
1561		return -ENOMEM;
1562	}
1563
1564	gfar_mac_reset(priv);
1565
1566	gfar_init_tx_rx_base(priv);
1567
1568	gfar_start(priv);
1569
1570	priv->oldlink = 0;
1571	priv->oldspeed = 0;
1572	priv->oldduplex = -1;
1573
1574	if (priv->phydev)
1575		phy_start(priv->phydev);
1576
1577	netif_device_attach(ndev);
1578	enable_napi(priv);
1579
1580	return 0;
1581}
1582
1583static struct dev_pm_ops gfar_pm_ops = {
1584	.suspend = gfar_suspend,
1585	.resume = gfar_resume,
1586	.freeze = gfar_suspend,
1587	.thaw = gfar_resume,
1588	.restore = gfar_restore,
1589};
1590
1591#define GFAR_PM_OPS (&gfar_pm_ops)
1592
1593#else
1594
1595#define GFAR_PM_OPS NULL
1596
1597#endif
1598
1599/* Reads the controller's registers to determine what interface
1600 * connects it to the PHY.
1601 */
1602static phy_interface_t gfar_get_interface(struct net_device *dev)
1603{
1604	struct gfar_private *priv = netdev_priv(dev);
1605	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1606	u32 ecntrl;
1607
1608	ecntrl = gfar_read(&regs->ecntrl);
1609
1610	if (ecntrl & ECNTRL_SGMII_MODE)
1611		return PHY_INTERFACE_MODE_SGMII;
1612
1613	if (ecntrl & ECNTRL_TBI_MODE) {
1614		if (ecntrl & ECNTRL_REDUCED_MODE)
1615			return PHY_INTERFACE_MODE_RTBI;
1616		else
1617			return PHY_INTERFACE_MODE_TBI;
1618	}
1619
1620	if (ecntrl & ECNTRL_REDUCED_MODE) {
1621		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1622			return PHY_INTERFACE_MODE_RMII;
1623		}
1624		else {
1625			phy_interface_t interface = priv->interface;
1626
1627			/* This isn't autodetected right now, so it must
1628			 * be set by the device tree or platform code.
1629			 */
1630			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1631				return PHY_INTERFACE_MODE_RGMII_ID;
1632
1633			return PHY_INTERFACE_MODE_RGMII;
1634		}
1635	}
1636
1637	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1638		return PHY_INTERFACE_MODE_GMII;
1639
1640	return PHY_INTERFACE_MODE_MII;
1641}
1642
1643
1644/* Initializes driver's PHY state, and attaches to the PHY.
1645 * Returns 0 on success.
1646 */
1647static int init_phy(struct net_device *dev)
1648{
1649	struct gfar_private *priv = netdev_priv(dev);
1650	uint gigabit_support =
1651		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1652		GFAR_SUPPORTED_GBIT : 0;
1653	phy_interface_t interface;
1654
1655	priv->oldlink = 0;
1656	priv->oldspeed = 0;
1657	priv->oldduplex = -1;
1658
1659	interface = gfar_get_interface(dev);
1660
1661	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1662				      interface);
1663	if (!priv->phydev)
1664		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1665							 interface);
1666	if (!priv->phydev) {
1667		dev_err(&dev->dev, "could not attach to PHY\n");
1668		return -ENODEV;
1669	}
1670
1671	if (interface == PHY_INTERFACE_MODE_SGMII)
1672		gfar_configure_serdes(dev);
1673
1674	/* Remove any features not supported by the controller */
1675	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1676	priv->phydev->advertising = priv->phydev->supported;
1677
1678	return 0;
1679}
1680
1681/* Initialize TBI PHY interface for communicating with the
1682 * SERDES lynx PHY on the chip.  We communicate with this PHY
1683 * through the MDIO bus on each controller, treating it as a
1684 * "normal" PHY at the address found in the TBIPA register.  We assume
1685 * that the TBIPA register is valid.  Either the MDIO bus code will set
1686 * it to a value that doesn't conflict with other PHYs on the bus, or the
1687 * value doesn't matter, as there are no other PHYs on the bus.
1688 */
1689static void gfar_configure_serdes(struct net_device *dev)
1690{
1691	struct gfar_private *priv = netdev_priv(dev);
1692	struct phy_device *tbiphy;
1693
1694	if (!priv->tbi_node) {
1695		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1696				    "device tree specify a tbi-handle\n");
1697		return;
1698	}
1699
1700	tbiphy = of_phy_find_device(priv->tbi_node);
1701	if (!tbiphy) {
1702		dev_err(&dev->dev, "error: Could not get TBI device\n");
1703		return;
1704	}
1705
1706	/* If the link is already up, we must already be ok, and don't need to
1707	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1708	 * everything for us?  Resetting it takes the link down and requires
1709	 * several seconds for it to come back.
1710	 */
1711	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1712		return;
1713
1714	/* Single clk mode, mii mode off(for serdes communication) */
1715	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1716
1717	phy_write(tbiphy, MII_ADVERTISE,
1718		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1719		  ADVERTISE_1000XPSE_ASYM);
1720
1721	phy_write(tbiphy, MII_BMCR,
1722		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1723		  BMCR_SPEED1000);
1724}
1725
1726static int __gfar_is_rx_idle(struct gfar_private *priv)
1727{
1728	u32 res;
1729
1730	/* Normaly TSEC should not hang on GRS commands, so we should
1731	 * actually wait for IEVENT_GRSC flag.
1732	 */
1733	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1734		return 0;
1735
1736	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1737	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1738	 * and the Rx can be safely reset.
1739	 */
1740	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1741	res &= 0x7f807f80;
1742	if ((res & 0xffff) == (res >> 16))
1743		return 1;
1744
1745	return 0;
1746}
1747
1748/* Halt the receive and transmit queues */
1749static void gfar_halt_nodisable(struct gfar_private *priv)
1750{
1751	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1752	u32 tempval;
 
 
1753
1754	gfar_ints_disable(priv);
1755
 
 
 
1756	/* Stop the DMA, and wait for it to stop */
1757	tempval = gfar_read(&regs->dmactrl);
1758	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1759	    (DMACTRL_GRS | DMACTRL_GTS)) {
1760		int ret;
1761
1762		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1763		gfar_write(&regs->dmactrl, tempval);
1764
1765		do {
1766			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1767				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1768				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1769			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1770				ret = __gfar_is_rx_idle(priv);
1771		} while (!ret);
1772	}
 
 
 
 
 
 
 
1773}
1774
1775/* Halt the receive and transmit queues */
1776void gfar_halt(struct gfar_private *priv)
1777{
1778	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1779	u32 tempval;
1780
1781	/* Dissable the Rx/Tx hw queues */
1782	gfar_write(&regs->rqueue, 0);
1783	gfar_write(&regs->tqueue, 0);
1784
1785	mdelay(10);
1786
1787	gfar_halt_nodisable(priv);
1788
1789	/* Disable Rx/Tx DMA */
1790	tempval = gfar_read(&regs->maccfg1);
1791	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1792	gfar_write(&regs->maccfg1, tempval);
1793}
1794
1795void stop_gfar(struct net_device *dev)
1796{
1797	struct gfar_private *priv = netdev_priv(dev);
1798
1799	netif_tx_stop_all_queues(dev);
1800
1801	smp_mb__before_clear_bit();
1802	set_bit(GFAR_DOWN, &priv->state);
1803	smp_mb__after_clear_bit();
1804
1805	disable_napi(priv);
1806
1807	/* disable ints and gracefully shut down Rx/Tx DMA */
1808	gfar_halt(priv);
1809
1810	phy_stop(priv->phydev);
1811
1812	free_skb_resources(priv);
1813}
1814
1815static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1816{
1817	struct txbd8 *txbdp;
1818	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1819	int i, j;
1820
1821	txbdp = tx_queue->tx_bd_base;
1822
1823	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1824		if (!tx_queue->tx_skbuff[i])
1825			continue;
1826
1827		dma_unmap_single(priv->dev, txbdp->bufPtr,
1828				 txbdp->length, DMA_TO_DEVICE);
1829		txbdp->lstatus = 0;
1830		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1831		     j++) {
1832			txbdp++;
1833			dma_unmap_page(priv->dev, txbdp->bufPtr,
1834				       txbdp->length, DMA_TO_DEVICE);
 
1835		}
1836		txbdp++;
1837		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1838		tx_queue->tx_skbuff[i] = NULL;
1839	}
1840	kfree(tx_queue->tx_skbuff);
1841	tx_queue->tx_skbuff = NULL;
1842}
1843
1844static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1845{
1846	struct rxbd8 *rxbdp;
1847	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1848	int i;
1849
1850	rxbdp = rx_queue->rx_bd_base;
 
 
1851
1852	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1853		if (rx_queue->rx_skbuff[i]) {
1854			dma_unmap_single(priv->dev, rxbdp->bufPtr,
1855					 priv->rx_buffer_size,
1856					 DMA_FROM_DEVICE);
1857			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1858			rx_queue->rx_skbuff[i] = NULL;
1859		}
1860		rxbdp->lstatus = 0;
1861		rxbdp->bufPtr = 0;
1862		rxbdp++;
 
 
 
 
 
 
 
 
 
1863	}
1864	kfree(rx_queue->rx_skbuff);
1865	rx_queue->rx_skbuff = NULL;
 
1866}
1867
1868/* If there are any tx skbs or rx skbs still around, free them.
1869 * Then free tx_skbuff and rx_skbuff
1870 */
1871static void free_skb_resources(struct gfar_private *priv)
1872{
1873	struct gfar_priv_tx_q *tx_queue = NULL;
1874	struct gfar_priv_rx_q *rx_queue = NULL;
1875	int i;
1876
1877	/* Go through all the buffer descriptors and free their data buffers */
1878	for (i = 0; i < priv->num_tx_queues; i++) {
1879		struct netdev_queue *txq;
1880
1881		tx_queue = priv->tx_queue[i];
1882		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1883		if (tx_queue->tx_skbuff)
1884			free_skb_tx_queue(tx_queue);
1885		netdev_tx_reset_queue(txq);
1886	}
1887
1888	for (i = 0; i < priv->num_rx_queues; i++) {
1889		rx_queue = priv->rx_queue[i];
1890		if (rx_queue->rx_skbuff)
1891			free_skb_rx_queue(rx_queue);
1892	}
1893
1894	dma_free_coherent(priv->dev,
1895			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1896			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1897			  priv->tx_queue[0]->tx_bd_base,
1898			  priv->tx_queue[0]->tx_bd_dma_base);
1899}
1900
1901void gfar_start(struct gfar_private *priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1902{
1903	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1904	u32 tempval;
1905	int i = 0;
1906
1907	/* Enable Rx/Tx hw queues */
1908	gfar_write(&regs->rqueue, priv->rqueue);
1909	gfar_write(&regs->tqueue, priv->tqueue);
1910
1911	/* Initialize DMACTRL to have WWR and WOP */
1912	tempval = gfar_read(&regs->dmactrl);
1913	tempval |= DMACTRL_INIT_SETTINGS;
1914	gfar_write(&regs->dmactrl, tempval);
1915
1916	/* Make sure we aren't stopped */
1917	tempval = gfar_read(&regs->dmactrl);
1918	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1919	gfar_write(&regs->dmactrl, tempval);
1920
1921	for (i = 0; i < priv->num_grps; i++) {
1922		regs = priv->gfargrp[i].regs;
1923		/* Clear THLT/RHLT, so that the DMA starts polling now */
1924		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1925		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1926	}
1927
1928	/* Enable Rx/Tx DMA */
1929	tempval = gfar_read(&regs->maccfg1);
1930	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1931	gfar_write(&regs->maccfg1, tempval);
1932
1933	gfar_ints_enable(priv);
1934
1935	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1936}
1937
1938static void free_grp_irqs(struct gfar_priv_grp *grp)
1939{
1940	free_irq(gfar_irq(grp, TX)->irq, grp);
1941	free_irq(gfar_irq(grp, RX)->irq, grp);
1942	free_irq(gfar_irq(grp, ER)->irq, grp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1943}
1944
1945static int register_grp_irqs(struct gfar_priv_grp *grp)
1946{
1947	struct gfar_private *priv = grp->priv;
1948	struct net_device *dev = priv->ndev;
1949	int err;
1950
1951	/* If the device has multiple interrupts, register for
1952	 * them.  Otherwise, only register for the one
1953	 */
1954	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1955		/* Install our interrupt handlers for Error,
1956		 * Transmit, and Receive
1957		 */
1958		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1959				  gfar_irq(grp, ER)->name, grp);
1960		if (err < 0) {
1961			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1962				  gfar_irq(grp, ER)->irq);
1963
1964			goto err_irq_fail;
1965		}
1966		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1967				  gfar_irq(grp, TX)->name, grp);
1968		if (err < 0) {
1969			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1970				  gfar_irq(grp, TX)->irq);
1971			goto tx_irq_fail;
 
 
 
 
 
 
 
 
 
 
1972		}
1973		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1974				  gfar_irq(grp, RX)->name, grp);
1975		if (err < 0) {
1976			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1977				  gfar_irq(grp, RX)->irq);
1978			goto rx_irq_fail;
 
 
 
 
 
 
 
1979		}
1980	} else {
1981		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1982				  gfar_irq(grp, TX)->name, grp);
1983		if (err < 0) {
1984			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1985				  gfar_irq(grp, TX)->irq);
1986			goto err_irq_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987		}
 
 
 
 
 
1988	}
1989
1990	return 0;
 
 
1991
1992rx_irq_fail:
1993	free_irq(gfar_irq(grp, TX)->irq, grp);
1994tx_irq_fail:
1995	free_irq(gfar_irq(grp, ER)->irq, grp);
1996err_irq_fail:
1997	return err;
 
 
1998
 
 
 
1999}
2000
2001static void gfar_free_irq(struct gfar_private *priv)
2002{
2003	int i;
 
 
 
 
 
 
2004
2005	/* Free the IRQs */
2006	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2007		for (i = 0; i < priv->num_grps; i++)
2008			free_grp_irqs(&priv->gfargrp[i]);
2009	} else {
2010		for (i = 0; i < priv->num_grps; i++)
2011			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2012				 &priv->gfargrp[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013	}
2014}
2015
2016static int gfar_request_irq(struct gfar_private *priv)
2017{
2018	int err, i, j;
 
 
 
 
 
 
 
2019
2020	for (i = 0; i < priv->num_grps; i++) {
2021		err = register_grp_irqs(&priv->gfargrp[i]);
2022		if (err) {
2023			for (j = 0; j < i; j++)
2024				free_grp_irqs(&priv->gfargrp[j]);
2025			return err;
2026		}
 
 
 
 
 
2027	}
2028
 
 
 
 
 
 
 
 
 
 
 
2029	return 0;
 
 
 
 
2030}
2031
2032/* Bring the controller up and running */
2033int startup_gfar(struct net_device *ndev)
2034{
2035	struct gfar_private *priv = netdev_priv(ndev);
2036	int err;
2037
2038	gfar_mac_reset(priv);
2039
2040	err = gfar_alloc_skb_resources(ndev);
2041	if (err)
2042		return err;
2043
2044	gfar_init_tx_rx_base(priv);
2045
2046	smp_mb__before_clear_bit();
2047	clear_bit(GFAR_DOWN, &priv->state);
2048	smp_mb__after_clear_bit();
2049
2050	/* Start Rx/Tx DMA and enable the interrupts */
2051	gfar_start(priv);
2052
2053	phy_start(priv->phydev);
 
 
 
 
 
2054
2055	enable_napi(priv);
2056
2057	netif_tx_wake_all_queues(ndev);
2058
2059	return 0;
2060}
2061
2062/* Called when something needs to use the ethernet device
2063 * Returns 0 for success.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064 */
2065static int gfar_enet_open(struct net_device *dev)
2066{
2067	struct gfar_private *priv = netdev_priv(dev);
2068	int err;
2069
2070	err = init_phy(dev);
2071	if (err)
2072		return err;
 
 
2073
2074	err = gfar_request_irq(priv);
2075	if (err)
2076		return err;
 
 
 
 
 
 
 
 
 
2077
2078	err = startup_gfar(dev);
2079	if (err)
2080		return err;
 
 
2081
2082	device_set_wakeup_enable(&dev->dev, priv->wol_en);
 
 
 
 
2083
2084	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085}
2086
2087static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2088{
2089	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2090
2091	memset(fcb, 0, GMAC_FCB_LEN);
2092
2093	return fcb;
2094}
2095
2096static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2097				    int fcb_length)
2098{
2099	/* If we're here, it's a IP packet with a TCP or UDP
2100	 * payload.  We set it to checksum, using a pseudo-header
2101	 * we provide
2102	 */
2103	u8 flags = TXFCB_DEFAULT;
2104
2105	/* Tell the controller what the protocol is
2106	 * And provide the already calculated phcs
2107	 */
2108	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2109		flags |= TXFCB_UDP;
2110		fcb->phcs = udp_hdr(skb)->check;
2111	} else
2112		fcb->phcs = tcp_hdr(skb)->check;
2113
2114	/* l3os is the distance between the start of the
2115	 * frame (skb->data) and the start of the IP hdr.
2116	 * l4os is the distance between the start of the
2117	 * l3 hdr and the l4 hdr
2118	 */
2119	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2120	fcb->l4os = skb_network_header_len(skb);
2121
2122	fcb->flags = flags;
2123}
2124
2125void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2126{
2127	fcb->flags |= TXFCB_VLN;
2128	fcb->vlctl = vlan_tx_tag_get(skb);
2129}
2130
2131static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2132				      struct txbd8 *base, int ring_size)
2133{
2134	struct txbd8 *new_bd = bdp + stride;
2135
2136	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2137}
2138
2139static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2140				      int ring_size)
2141{
2142	return skip_txbd(bdp, 1, base, ring_size);
2143}
2144
2145/* eTSEC12: csum generation not supported for some fcb offsets */
2146static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2147				       unsigned long fcb_addr)
2148{
2149	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2150	       (fcb_addr % 0x20) > 0x18);
2151}
2152
2153/* eTSEC76: csum generation for frames larger than 2500 may
2154 * cause excess delays before start of transmission
2155 */
2156static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2157				       unsigned int len)
2158{
2159	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2160	       (len > 2500));
2161}
2162
2163/* This is called by the kernel when a frame is ready for transmission.
2164 * It is pointed to by the dev->hard_start_xmit function pointer
2165 */
2166static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2167{
2168	struct gfar_private *priv = netdev_priv(dev);
2169	struct gfar_priv_tx_q *tx_queue = NULL;
2170	struct netdev_queue *txq;
2171	struct gfar __iomem *regs = NULL;
2172	struct txfcb *fcb = NULL;
2173	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2174	u32 lstatus;
 
2175	int i, rq = 0;
2176	int do_tstamp, do_csum, do_vlan;
2177	u32 bufaddr;
2178	unsigned long flags;
2179	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2180
2181	rq = skb->queue_mapping;
2182	tx_queue = priv->tx_queue[rq];
2183	txq = netdev_get_tx_queue(dev, rq);
2184	base = tx_queue->tx_bd_base;
2185	regs = tx_queue->grp->regs;
2186
2187	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2188	do_vlan = vlan_tx_tag_present(skb);
2189	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2190		    priv->hwts_tx_en;
2191
2192	if (do_csum || do_vlan)
2193		fcb_len = GMAC_FCB_LEN;
2194
2195	/* check if time stamp should be generated */
2196	if (unlikely(do_tstamp))
2197		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2198
2199	/* make space for additional header when fcb is needed */
2200	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2201		struct sk_buff *skb_new;
2202
2203		skb_new = skb_realloc_headroom(skb, fcb_len);
2204		if (!skb_new) {
2205			dev->stats.tx_errors++;
2206			dev_kfree_skb_any(skb);
2207			return NETDEV_TX_OK;
2208		}
2209
2210		if (skb->sk)
2211			skb_set_owner_w(skb_new, skb->sk);
2212		dev_consume_skb_any(skb);
2213		skb = skb_new;
2214	}
2215
2216	/* total number of fragments in the SKB */
2217	nr_frags = skb_shinfo(skb)->nr_frags;
2218
2219	/* calculate the required number of TxBDs for this skb */
2220	if (unlikely(do_tstamp))
2221		nr_txbds = nr_frags + 2;
2222	else
2223		nr_txbds = nr_frags + 1;
2224
2225	/* check if there is space to queue this packet */
2226	if (nr_txbds > tx_queue->num_txbdfree) {
2227		/* no space, stop the queue */
2228		netif_tx_stop_queue(txq);
2229		dev->stats.tx_fifo_errors++;
2230		return NETDEV_TX_BUSY;
2231	}
2232
2233	/* Update transmit stats */
2234	bytes_sent = skb->len;
2235	tx_queue->stats.tx_bytes += bytes_sent;
2236	/* keep Tx bytes on wire for BQL accounting */
2237	GFAR_CB(skb)->bytes_sent = bytes_sent;
2238	tx_queue->stats.tx_packets++;
2239
2240	txbdp = txbdp_start = tx_queue->cur_tx;
2241	lstatus = txbdp->lstatus;
2242
2243	/* Time stamp insertion requires one additional TxBD */
2244	if (unlikely(do_tstamp))
2245		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2246						 tx_queue->tx_ring_size);
2247
2248	if (nr_frags == 0) {
2249		if (unlikely(do_tstamp))
2250			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2251							  TXBD_INTERRUPT);
2252		else
2253			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2254	} else {
2255		/* Place the fragment addresses and lengths into the TxBDs */
2256		for (i = 0; i < nr_frags; i++) {
2257			unsigned int frag_len;
2258			/* Point at the next BD, wrapping as needed */
2259			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2260
2261			frag_len = skb_shinfo(skb)->frags[i].size;
2262
2263			lstatus = txbdp->lstatus | frag_len |
2264				  BD_LFLAG(TXBD_READY);
2265
2266			/* Handle the last BD specially */
2267			if (i == nr_frags - 1)
2268				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2269
2270			bufaddr = skb_frag_dma_map(priv->dev,
2271						   &skb_shinfo(skb)->frags[i],
2272						   0,
2273						   frag_len,
2274						   DMA_TO_DEVICE);
2275
2276			/* set the TxBD length and buffer pointer */
2277			txbdp->bufPtr = bufaddr;
2278			txbdp->lstatus = lstatus;
2279		}
2280
2281		lstatus = txbdp_start->lstatus;
2282	}
2283
2284	/* Add TxPAL between FCB and frame if required */
2285	if (unlikely(do_tstamp)) {
2286		skb_push(skb, GMAC_TXPAL_LEN);
2287		memset(skb->data, 0, GMAC_TXPAL_LEN);
2288	}
2289
2290	/* Add TxFCB if required */
2291	if (fcb_len) {
2292		fcb = gfar_add_fcb(skb);
2293		lstatus |= BD_LFLAG(TXBD_TOE);
2294	}
2295
2296	/* Set up checksumming */
2297	if (do_csum) {
2298		gfar_tx_checksum(skb, fcb, fcb_len);
2299
2300		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2301		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2302			__skb_pull(skb, GMAC_FCB_LEN);
2303			skb_checksum_help(skb);
2304			if (do_vlan || do_tstamp) {
2305				/* put back a new fcb for vlan/tstamp TOE */
2306				fcb = gfar_add_fcb(skb);
2307			} else {
2308				/* Tx TOE not used */
2309				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2310				fcb = NULL;
2311			}
2312		}
2313	}
2314
2315	if (do_vlan)
2316		gfar_tx_vlan(skb, fcb);
2317
2318	/* Setup tx hardware time stamping if requested */
2319	if (unlikely(do_tstamp)) {
2320		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2321		fcb->ptp = 1;
2322	}
2323
2324	txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2325					     skb_headlen(skb), DMA_TO_DEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2326
2327	/* If time stamping is requested one additional TxBD must be set up. The
2328	 * first TxBD points to the FCB and must have a data length of
2329	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2330	 * the full frame length.
2331	 */
2332	if (unlikely(do_tstamp)) {
2333		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2334		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2335					 (skb_headlen(skb) - fcb_len);
 
 
 
 
 
 
 
 
 
2336		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
 
 
 
 
2337	} else {
2338		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2339	}
2340
 
2341	netdev_tx_sent_queue(txq, bytes_sent);
2342
2343	/* We can work in parallel with gfar_clean_tx_ring(), except
2344	 * when modifying num_txbdfree. Note that we didn't grab the lock
2345	 * when we were reading the num_txbdfree and checking for available
2346	 * space, that's because outside of this function it can only grow,
2347	 * and once we've got needed space, it cannot suddenly disappear.
2348	 *
2349	 * The lock also protects us from gfar_error(), which can modify
2350	 * regs->tstat and thus retrigger the transfers, which is why we
2351	 * also must grab the lock before setting ready bit for the first
2352	 * to be transmitted BD.
2353	 */
2354	spin_lock_irqsave(&tx_queue->txlock, flags);
2355
2356	/* The powerpc-specific eieio() is used, as wmb() has too strong
2357	 * semantics (it requires synchronization between cacheable and
2358	 * uncacheable mappings, which eieio doesn't provide and which we
2359	 * don't need), thus requiring a more expensive sync instruction.  At
2360	 * some point, the set of architecture-independent barrier functions
2361	 * should be expanded to include weaker barriers.
2362	 */
2363	eieio();
2364
2365	txbdp_start->lstatus = lstatus;
2366
2367	eieio(); /* force lstatus write before tx_skbuff */
2368
2369	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2370
2371	/* Update the current skb pointer to the next entry we will use
2372	 * (wrapping if necessary)
2373	 */
2374	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2375			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2376
2377	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2378
 
 
 
 
 
 
2379	/* reduce TxBD free count */
2380	tx_queue->num_txbdfree -= (nr_txbds);
 
2381
2382	/* If the next BD still needs to be cleaned up, then the bds
2383	 * are full.  We need to tell the kernel to stop sending us stuff.
2384	 */
2385	if (!tx_queue->num_txbdfree) {
2386		netif_tx_stop_queue(txq);
2387
2388		dev->stats.tx_fifo_errors++;
2389	}
2390
2391	/* Tell the DMA to go go go */
2392	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2393
2394	/* Unlock priv */
2395	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2396
2397	return NETDEV_TX_OK;
2398}
2399
2400/* Stops the kernel queue, and halts the controller */
2401static int gfar_close(struct net_device *dev)
2402{
2403	struct gfar_private *priv = netdev_priv(dev);
2404
2405	cancel_work_sync(&priv->reset_task);
2406	stop_gfar(dev);
2407
2408	/* Disconnect from the PHY */
2409	phy_disconnect(priv->phydev);
2410	priv->phydev = NULL;
2411
2412	gfar_free_irq(priv);
2413
2414	return 0;
 
 
 
 
 
 
 
 
 
2415}
2416
2417/* Changes the mac address if the controller is not running. */
2418static int gfar_set_mac_address(struct net_device *dev)
2419{
2420	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2421
2422	return 0;
2423}
2424
2425static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2426{
2427	struct gfar_private *priv = netdev_priv(dev);
2428	int frame_size = new_mtu + ETH_HLEN;
2429
2430	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2431		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2432		return -EINVAL;
2433	}
2434
2435	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2436		cpu_relax();
2437
2438	if (dev->flags & IFF_UP)
2439		stop_gfar(dev);
2440
2441	dev->mtu = new_mtu;
2442
2443	if (dev->flags & IFF_UP)
2444		startup_gfar(dev);
2445
2446	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2447
2448	return 0;
2449}
2450
2451void reset_gfar(struct net_device *ndev)
2452{
2453	struct gfar_private *priv = netdev_priv(ndev);
2454
2455	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2456		cpu_relax();
2457
2458	stop_gfar(ndev);
2459	startup_gfar(ndev);
2460
2461	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2462}
2463
2464/* gfar_reset_task gets scheduled when a packet has not been
2465 * transmitted after a set amount of time.
2466 * For now, assume that clearing out all the structures, and
2467 * starting over will fix the problem.
2468 */
2469static void gfar_reset_task(struct work_struct *work)
2470{
2471	struct gfar_private *priv = container_of(work, struct gfar_private,
2472						 reset_task);
2473	reset_gfar(priv->ndev);
2474}
2475
2476static void gfar_timeout(struct net_device *dev)
2477{
2478	struct gfar_private *priv = netdev_priv(dev);
2479
2480	dev->stats.tx_errors++;
2481	schedule_work(&priv->reset_task);
2482}
2483
2484static void gfar_align_skb(struct sk_buff *skb)
2485{
2486	/* We need the data buffer to be aligned properly.  We will reserve
2487	 * as many bytes as needed to align the data properly
2488	 */
2489	skb_reserve(skb, RXBUF_ALIGNMENT -
2490		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2491}
2492
2493/* Interrupt Handler for Transmit complete */
2494static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2495{
2496	struct net_device *dev = tx_queue->dev;
2497	struct netdev_queue *txq;
2498	struct gfar_private *priv = netdev_priv(dev);
2499	struct txbd8 *bdp, *next = NULL;
2500	struct txbd8 *lbdp = NULL;
2501	struct txbd8 *base = tx_queue->tx_bd_base;
2502	struct sk_buff *skb;
2503	int skb_dirtytx;
2504	int tx_ring_size = tx_queue->tx_ring_size;
2505	int frags = 0, nr_txbds = 0;
2506	int i;
2507	int howmany = 0;
2508	int tqi = tx_queue->qindex;
2509	unsigned int bytes_sent = 0;
2510	u32 lstatus;
2511	size_t buflen;
2512
2513	txq = netdev_get_tx_queue(dev, tqi);
2514	bdp = tx_queue->dirty_tx;
2515	skb_dirtytx = tx_queue->skb_dirtytx;
2516
2517	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2518		unsigned long flags;
 
 
 
2519
2520		frags = skb_shinfo(skb)->nr_frags;
2521
2522		/* When time stamping, one additional TxBD must be freed.
2523		 * Also, we need to dma_unmap_single() the TxPAL.
2524		 */
2525		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2526			nr_txbds = frags + 2;
2527		else
2528			nr_txbds = frags + 1;
2529
2530		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2531
2532		lstatus = lbdp->lstatus;
2533
2534		/* Only clean completed frames */
2535		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2536		    (lstatus & BD_LENGTH_MASK))
2537			break;
2538
2539		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2540			next = next_txbd(bdp, base, tx_ring_size);
2541			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
 
2542		} else
2543			buflen = bdp->length;
2544
2545		dma_unmap_single(priv->dev, bdp->bufPtr,
2546				 buflen, DMA_TO_DEVICE);
2547
2548		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2549			struct skb_shared_hwtstamps shhwtstamps;
2550			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
 
2551
2552			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2553			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2554			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2555			skb_tstamp_tx(skb, &shhwtstamps);
2556			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2557			bdp = next;
2558		}
2559
2560		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2561		bdp = next_txbd(bdp, base, tx_ring_size);
2562
2563		for (i = 0; i < frags; i++) {
2564			dma_unmap_page(priv->dev, bdp->bufPtr,
2565				       bdp->length, DMA_TO_DEVICE);
2566			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
 
2567			bdp = next_txbd(bdp, base, tx_ring_size);
2568		}
2569
2570		bytes_sent += GFAR_CB(skb)->bytes_sent;
2571
2572		dev_kfree_skb_any(skb);
2573
2574		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2575
2576		skb_dirtytx = (skb_dirtytx + 1) &
2577			      TX_RING_MOD_MASK(tx_ring_size);
2578
2579		howmany++;
2580		spin_lock_irqsave(&tx_queue->txlock, flags);
2581		tx_queue->num_txbdfree += nr_txbds;
2582		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2583	}
2584
2585	/* If we freed a buffer, we can restart transmission, if necessary */
2586	if (tx_queue->num_txbdfree &&
2587	    netif_tx_queue_stopped(txq) &&
2588	    !(test_bit(GFAR_DOWN, &priv->state)))
2589		netif_wake_subqueue(priv->ndev, tqi);
2590
2591	/* Update dirty indicators */
2592	tx_queue->skb_dirtytx = skb_dirtytx;
2593	tx_queue->dirty_tx = bdp;
2594
2595	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2596}
2597
2598static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2599			   struct sk_buff *skb)
2600{
2601	struct net_device *dev = rx_queue->dev;
2602	struct gfar_private *priv = netdev_priv(dev);
2603	dma_addr_t buf;
2604
2605	buf = dma_map_single(priv->dev, skb->data,
2606			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2607	gfar_init_rxbdp(rx_queue, bdp, buf);
2608}
2609
2610static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2611{
2612	struct gfar_private *priv = netdev_priv(dev);
2613	struct sk_buff *skb;
2614
2615	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2616	if (!skb)
2617		return NULL;
2618
2619	gfar_align_skb(skb);
2620
2621	return skb;
2622}
2623
2624struct sk_buff *gfar_new_skb(struct net_device *dev)
2625{
2626	return gfar_alloc_skb(dev);
2627}
2628
2629static inline void count_errors(unsigned short status, struct net_device *dev)
2630{
2631	struct gfar_private *priv = netdev_priv(dev);
2632	struct net_device_stats *stats = &dev->stats;
2633	struct gfar_extra_stats *estats = &priv->extra_stats;
2634
2635	/* If the packet was truncated, none of the other errors matter */
2636	if (status & RXBD_TRUNCATED) {
2637		stats->rx_length_errors++;
2638
2639		atomic64_inc(&estats->rx_trunc);
2640
2641		return;
2642	}
2643	/* Count the errors, if there were any */
2644	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2645		stats->rx_length_errors++;
2646
2647		if (status & RXBD_LARGE)
2648			atomic64_inc(&estats->rx_large);
2649		else
2650			atomic64_inc(&estats->rx_short);
2651	}
2652	if (status & RXBD_NONOCTET) {
2653		stats->rx_frame_errors++;
2654		atomic64_inc(&estats->rx_nonoctet);
2655	}
2656	if (status & RXBD_CRCERR) {
2657		atomic64_inc(&estats->rx_crcerr);
2658		stats->rx_crc_errors++;
2659	}
2660	if (status & RXBD_OVERRUN) {
2661		atomic64_inc(&estats->rx_overrun);
2662		stats->rx_crc_errors++;
2663	}
2664}
2665
2666irqreturn_t gfar_receive(int irq, void *grp_id)
2667{
2668	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2669	unsigned long flags;
2670	u32 imask;
 
 
 
 
 
 
 
2671
2672	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2673		spin_lock_irqsave(&grp->grplock, flags);
2674		imask = gfar_read(&grp->regs->imask);
2675		imask &= IMASK_RX_DISABLED;
2676		gfar_write(&grp->regs->imask, imask);
2677		spin_unlock_irqrestore(&grp->grplock, flags);
2678		__napi_schedule(&grp->napi_rx);
2679	} else {
2680		/* Clear IEVENT, so interrupts aren't called again
2681		 * because of the packets that have already arrived.
2682		 */
2683		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2684	}
2685
2686	return IRQ_HANDLED;
2687}
2688
2689/* Interrupt Handler for Transmit complete */
2690static irqreturn_t gfar_transmit(int irq, void *grp_id)
2691{
2692	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2693	unsigned long flags;
2694	u32 imask;
2695
2696	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2697		spin_lock_irqsave(&grp->grplock, flags);
2698		imask = gfar_read(&grp->regs->imask);
2699		imask &= IMASK_TX_DISABLED;
2700		gfar_write(&grp->regs->imask, imask);
2701		spin_unlock_irqrestore(&grp->grplock, flags);
2702		__napi_schedule(&grp->napi_tx);
2703	} else {
2704		/* Clear IEVENT, so interrupts aren't called again
2705		 * because of the packets that have already arrived.
2706		 */
2707		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2708	}
2709
2710	return IRQ_HANDLED;
2711}
2712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2713static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2714{
2715	/* If valid headers were found, and valid sums
2716	 * were verified, then we tell the kernel that no
2717	 * checksumming is necessary.  Otherwise, it is [FIXME]
2718	 */
2719	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
 
2720		skb->ip_summed = CHECKSUM_UNNECESSARY;
2721	else
2722		skb_checksum_none_assert(skb);
2723}
2724
2725
2726/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2727static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2728			       int amount_pull, struct napi_struct *napi)
2729{
2730	struct gfar_private *priv = netdev_priv(dev);
2731	struct rxfcb *fcb = NULL;
2732
2733	/* fcb is at the beginning if exists */
2734	fcb = (struct rxfcb *)skb->data;
2735
2736	/* Remove the FCB from the skb
2737	 * Remove the padded bytes, if there are any
2738	 */
2739	if (amount_pull) {
2740		skb_record_rx_queue(skb, fcb->rq);
2741		skb_pull(skb, amount_pull);
2742	}
2743
2744	/* Get receive timestamp from the skb */
2745	if (priv->hwts_rx_en) {
2746		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2747		u64 *ns = (u64 *) skb->data;
2748
2749		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2750		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2751	}
2752
2753	if (priv->padding)
2754		skb_pull(skb, priv->padding);
2755
2756	if (dev->features & NETIF_F_RXCSUM)
2757		gfar_rx_checksum(skb, fcb);
2758
2759	/* Tell the skb what kind of packet this is */
2760	skb->protocol = eth_type_trans(skb, dev);
2761
2762	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2763	 * Even if vlan rx accel is disabled, on some chips
2764	 * RXFCB_VLN is pseudo randomly set.
2765	 */
2766	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2767	    fcb->flags & RXFCB_VLN)
2768		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2769
2770	/* Send the packet up the stack */
2771	napi_gro_receive(napi, skb);
2772
2773}
2774
2775/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2776 * until the budget/quota has been reached. Returns the number
2777 * of frames handled
2778 */
2779int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
 
2780{
2781	struct net_device *dev = rx_queue->dev;
2782	struct rxbd8 *bdp, *base;
2783	struct sk_buff *skb;
2784	int pkt_len;
2785	int amount_pull;
2786	int howmany = 0;
2787	struct gfar_private *priv = netdev_priv(dev);
2788
2789	/* Get the first full descriptor */
2790	bdp = rx_queue->cur_rx;
2791	base = rx_queue->rx_bd_base;
 
 
2792
2793	amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
 
 
 
2794
2795	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2796		struct sk_buff *newskb;
 
 
2797
 
 
 
 
 
 
 
 
 
 
 
 
2798		rmb();
2799
2800		/* Add another skb for the future */
2801		newskb = gfar_new_skb(dev);
 
 
2802
2803		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
 
2804
2805		dma_unmap_single(priv->dev, bdp->bufPtr,
2806				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2807
2808		if (unlikely(!(bdp->status & RXBD_ERR) &&
2809			     bdp->length > priv->rx_buffer_size))
2810			bdp->status = RXBD_LARGE;
2811
2812		/* We drop the frame if we failed to allocate a new buffer */
2813		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2814			     bdp->status & RXBD_ERR)) {
2815			count_errors(bdp->status, dev);
2816
2817			if (unlikely(!newskb))
2818				newskb = skb;
2819			else if (skb)
2820				dev_kfree_skb(skb);
2821		} else {
2822			/* Increment the number of packets */
2823			rx_queue->stats.rx_packets++;
2824			howmany++;
2825
2826			if (likely(skb)) {
2827				pkt_len = bdp->length - ETH_FCS_LEN;
2828				/* Remove the FCS from the packet length */
2829				skb_put(skb, pkt_len);
2830				rx_queue->stats.rx_bytes += pkt_len;
2831				skb_record_rx_queue(skb, rx_queue->qindex);
2832				gfar_process_frame(dev, skb, amount_pull,
2833						   &rx_queue->grp->napi_rx);
2834
2835			} else {
2836				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2837				rx_queue->stats.rx_dropped++;
2838				atomic64_inc(&priv->extra_stats.rx_skbmissing);
2839			}
2840
 
 
 
 
 
 
 
 
2841		}
2842
2843		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2844
2845		/* Setup the new bdp */
2846		gfar_new_rxbdp(rx_queue, bdp, newskb);
 
2847
2848		/* Update to the next pointer */
2849		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
 
 
 
 
2850
2851		/* update to point at the next skb */
2852		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2853				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2854	}
2855
2856	/* Update the current rxbd pointer to be the next one */
2857	rx_queue->cur_rx = bdp;
 
 
 
 
 
 
 
 
 
 
 
 
 
2858
2859	return howmany;
2860}
2861
2862static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2863{
2864	struct gfar_priv_grp *gfargrp =
2865		container_of(napi, struct gfar_priv_grp, napi_rx);
2866	struct gfar __iomem *regs = gfargrp->regs;
2867	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2868	int work_done = 0;
2869
2870	/* Clear IEVENT, so interrupts aren't called again
2871	 * because of the packets that have already arrived
2872	 */
2873	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2874
2875	work_done = gfar_clean_rx_ring(rx_queue, budget);
2876
2877	if (work_done < budget) {
2878		u32 imask;
2879		napi_complete(napi);
2880		/* Clear the halt bit in RSTAT */
2881		gfar_write(&regs->rstat, gfargrp->rstat);
2882
2883		spin_lock_irq(&gfargrp->grplock);
2884		imask = gfar_read(&regs->imask);
2885		imask |= IMASK_RX_DEFAULT;
2886		gfar_write(&regs->imask, imask);
2887		spin_unlock_irq(&gfargrp->grplock);
2888	}
2889
2890	return work_done;
2891}
2892
2893static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2894{
2895	struct gfar_priv_grp *gfargrp =
2896		container_of(napi, struct gfar_priv_grp, napi_tx);
2897	struct gfar __iomem *regs = gfargrp->regs;
2898	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2899	u32 imask;
2900
2901	/* Clear IEVENT, so interrupts aren't called again
2902	 * because of the packets that have already arrived
2903	 */
2904	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2905
2906	/* run Tx cleanup to completion */
2907	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2908		gfar_clean_tx_ring(tx_queue);
2909
2910	napi_complete(napi);
2911
2912	spin_lock_irq(&gfargrp->grplock);
2913	imask = gfar_read(&regs->imask);
2914	imask |= IMASK_TX_DEFAULT;
2915	gfar_write(&regs->imask, imask);
2916	spin_unlock_irq(&gfargrp->grplock);
2917
2918	return 0;
2919}
2920
2921static int gfar_poll_rx(struct napi_struct *napi, int budget)
 
2922{
2923	struct gfar_priv_grp *gfargrp =
2924		container_of(napi, struct gfar_priv_grp, napi_rx);
2925	struct gfar_private *priv = gfargrp->priv;
2926	struct gfar __iomem *regs = gfargrp->regs;
2927	struct gfar_priv_rx_q *rx_queue = NULL;
2928	int work_done = 0, work_done_per_q = 0;
2929	int i, budget_per_q = 0;
2930	unsigned long rstat_rxf;
2931	int num_act_queues;
2932
2933	/* Clear IEVENT, so interrupts aren't called again
2934	 * because of the packets that have already arrived
2935	 */
2936	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2937
2938	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
 
2939
2940	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2941	if (num_act_queues)
2942		budget_per_q = budget/num_act_queues;
2943
2944	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2945		/* skip queue if not active */
2946		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2947			continue;
2948
2949		rx_queue = priv->rx_queue[i];
2950		work_done_per_q =
2951			gfar_clean_rx_ring(rx_queue, budget_per_q);
2952		work_done += work_done_per_q;
2953
2954		/* finished processing this queue */
2955		if (work_done_per_q < budget_per_q) {
2956			/* clear active queue hw indication */
2957			gfar_write(&regs->rstat,
2958				   RSTAT_CLEAR_RXF0 >> i);
2959			num_act_queues--;
2960
2961			if (!num_act_queues)
2962				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
2963		}
 
2964	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2965
2966	if (!num_act_queues) {
2967		u32 imask;
2968		napi_complete(napi);
2969
2970		/* Clear the halt bit in RSTAT */
2971		gfar_write(&regs->rstat, gfargrp->rstat);
2972
2973		spin_lock_irq(&gfargrp->grplock);
2974		imask = gfar_read(&regs->imask);
2975		imask |= IMASK_RX_DEFAULT;
2976		gfar_write(&regs->imask, imask);
2977		spin_unlock_irq(&gfargrp->grplock);
2978	}
 
 
2979
2980	return work_done;
 
 
 
 
2981}
2982
2983static int gfar_poll_tx(struct napi_struct *napi, int budget)
 
2984{
2985	struct gfar_priv_grp *gfargrp =
2986		container_of(napi, struct gfar_priv_grp, napi_tx);
2987	struct gfar_private *priv = gfargrp->priv;
2988	struct gfar __iomem *regs = gfargrp->regs;
2989	struct gfar_priv_tx_q *tx_queue = NULL;
2990	int has_tx_work = 0;
2991	int i;
2992
2993	/* Clear IEVENT, so interrupts aren't called again
2994	 * because of the packets that have already arrived
2995	 */
2996	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2997
2998	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2999		tx_queue = priv->tx_queue[i];
3000		/* run Tx cleanup to completion */
3001		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3002			gfar_clean_tx_ring(tx_queue);
3003			has_tx_work = 1;
3004		}
3005	}
3006
3007	if (!has_tx_work) {
3008		u32 imask;
3009		napi_complete(napi);
3010
3011		spin_lock_irq(&gfargrp->grplock);
3012		imask = gfar_read(&regs->imask);
3013		imask |= IMASK_TX_DEFAULT;
3014		gfar_write(&regs->imask, imask);
3015		spin_unlock_irq(&gfargrp->grplock);
3016	}
3017
3018	return 0;
3019}
3020
3021
3022#ifdef CONFIG_NET_POLL_CONTROLLER
3023/* Polling 'interrupt' - used by things like netconsole to send skbs
3024 * without having to re-enable interrupts. It's not called while
3025 * the interrupt routine is executing.
3026 */
3027static void gfar_netpoll(struct net_device *dev)
3028{
3029	struct gfar_private *priv = netdev_priv(dev);
3030	int i;
3031
3032	/* If the device has multiple interrupts, run tx/rx */
3033	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3034		for (i = 0; i < priv->num_grps; i++) {
3035			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3036
3037			disable_irq(gfar_irq(grp, TX)->irq);
3038			disable_irq(gfar_irq(grp, RX)->irq);
3039			disable_irq(gfar_irq(grp, ER)->irq);
3040			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3041			enable_irq(gfar_irq(grp, ER)->irq);
3042			enable_irq(gfar_irq(grp, RX)->irq);
3043			enable_irq(gfar_irq(grp, TX)->irq);
3044		}
3045	} else {
3046		for (i = 0; i < priv->num_grps; i++) {
3047			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3048
3049			disable_irq(gfar_irq(grp, TX)->irq);
3050			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3051			enable_irq(gfar_irq(grp, TX)->irq);
3052		}
3053	}
3054}
3055#endif
3056
3057/* The interrupt handler for devices with one interrupt */
3058static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3059{
3060	struct gfar_priv_grp *gfargrp = grp_id;
 
 
 
3061
3062	/* Save ievent for future reference */
3063	u32 events = gfar_read(&gfargrp->regs->ievent);
 
 
 
3064
3065	/* Check for reception */
3066	if (events & IEVENT_RX_MASK)
3067		gfar_receive(irq, grp_id);
 
 
 
 
 
 
 
 
 
3068
3069	/* Check for transmit completion */
3070	if (events & IEVENT_TX_MASK)
3071		gfar_transmit(irq, grp_id);
3072
3073	/* Check for errors */
3074	if (events & IEVENT_ERR_MASK)
3075		gfar_error(irq, grp_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3076
3077	return IRQ_HANDLED;
3078}
3079
3080/* Called every time the controller might need to be made
3081 * aware of new link state.  The PHY code conveys this
3082 * information through variables in the phydev structure, and this
3083 * function converts those variables into the appropriate
3084 * register values, and can bring down the device if needed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3085 */
3086static void adjust_link(struct net_device *dev)
3087{
3088	struct gfar_private *priv = netdev_priv(dev);
3089	struct phy_device *phydev = priv->phydev;
3090
3091	if (unlikely(phydev->link != priv->oldlink ||
3092		     phydev->duplex != priv->oldduplex ||
3093		     phydev->speed != priv->oldspeed))
3094		gfar_update_link_state(priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3095}
3096
3097/* Update the hash table based on the current list of multicast
3098 * addresses we subscribe to.  Also, change the promiscuity of
3099 * the device based on the flags (this function is called
3100 * whenever dev->flags is changed
3101 */
3102static void gfar_set_multi(struct net_device *dev)
3103{
3104	struct netdev_hw_addr *ha;
3105	struct gfar_private *priv = netdev_priv(dev);
3106	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3107	u32 tempval;
3108
3109	if (dev->flags & IFF_PROMISC) {
3110		/* Set RCTRL to PROM */
3111		tempval = gfar_read(&regs->rctrl);
3112		tempval |= RCTRL_PROM;
3113		gfar_write(&regs->rctrl, tempval);
3114	} else {
3115		/* Set RCTRL to not PROM */
3116		tempval = gfar_read(&regs->rctrl);
3117		tempval &= ~(RCTRL_PROM);
3118		gfar_write(&regs->rctrl, tempval);
3119	}
3120
3121	if (dev->flags & IFF_ALLMULTI) {
3122		/* Set the hash to rx all multicast frames */
3123		gfar_write(&regs->igaddr0, 0xffffffff);
3124		gfar_write(&regs->igaddr1, 0xffffffff);
3125		gfar_write(&regs->igaddr2, 0xffffffff);
3126		gfar_write(&regs->igaddr3, 0xffffffff);
3127		gfar_write(&regs->igaddr4, 0xffffffff);
3128		gfar_write(&regs->igaddr5, 0xffffffff);
3129		gfar_write(&regs->igaddr6, 0xffffffff);
3130		gfar_write(&regs->igaddr7, 0xffffffff);
3131		gfar_write(&regs->gaddr0, 0xffffffff);
3132		gfar_write(&regs->gaddr1, 0xffffffff);
3133		gfar_write(&regs->gaddr2, 0xffffffff);
3134		gfar_write(&regs->gaddr3, 0xffffffff);
3135		gfar_write(&regs->gaddr4, 0xffffffff);
3136		gfar_write(&regs->gaddr5, 0xffffffff);
3137		gfar_write(&regs->gaddr6, 0xffffffff);
3138		gfar_write(&regs->gaddr7, 0xffffffff);
3139	} else {
3140		int em_num;
3141		int idx;
3142
3143		/* zero out the hash */
3144		gfar_write(&regs->igaddr0, 0x0);
3145		gfar_write(&regs->igaddr1, 0x0);
3146		gfar_write(&regs->igaddr2, 0x0);
3147		gfar_write(&regs->igaddr3, 0x0);
3148		gfar_write(&regs->igaddr4, 0x0);
3149		gfar_write(&regs->igaddr5, 0x0);
3150		gfar_write(&regs->igaddr6, 0x0);
3151		gfar_write(&regs->igaddr7, 0x0);
3152		gfar_write(&regs->gaddr0, 0x0);
3153		gfar_write(&regs->gaddr1, 0x0);
3154		gfar_write(&regs->gaddr2, 0x0);
3155		gfar_write(&regs->gaddr3, 0x0);
3156		gfar_write(&regs->gaddr4, 0x0);
3157		gfar_write(&regs->gaddr5, 0x0);
3158		gfar_write(&regs->gaddr6, 0x0);
3159		gfar_write(&regs->gaddr7, 0x0);
3160
3161		/* If we have extended hash tables, we need to
3162		 * clear the exact match registers to prepare for
3163		 * setting them
3164		 */
3165		if (priv->extended_hash) {
3166			em_num = GFAR_EM_NUM + 1;
3167			gfar_clear_exact_match(dev);
3168			idx = 1;
3169		} else {
3170			idx = 0;
3171			em_num = 0;
3172		}
3173
3174		if (netdev_mc_empty(dev))
3175			return;
3176
3177		/* Parse the list, and set the appropriate bits */
3178		netdev_for_each_mc_addr(ha, dev) {
3179			if (idx < em_num) {
3180				gfar_set_mac_for_addr(dev, idx, ha->addr);
3181				idx++;
3182			} else
3183				gfar_set_hash_for_addr(dev, ha->addr);
3184		}
3185	}
3186}
3187
3188
3189/* Clears each of the exact match registers to zero, so they
3190 * don't interfere with normal reception
3191 */
3192static void gfar_clear_exact_match(struct net_device *dev)
3193{
3194	int idx;
3195	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3196
3197	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3198		gfar_set_mac_for_addr(dev, idx, zero_arr);
3199}
3200
3201/* Set the appropriate hash bit for the given addr */
3202/* The algorithm works like so:
3203 * 1) Take the Destination Address (ie the multicast address), and
3204 * do a CRC on it (little endian), and reverse the bits of the
3205 * result.
3206 * 2) Use the 8 most significant bits as a hash into a 256-entry
3207 * table.  The table is controlled through 8 32-bit registers:
3208 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3209 * gaddr7.  This means that the 3 most significant bits in the
3210 * hash index which gaddr register to use, and the 5 other bits
3211 * indicate which bit (assuming an IBM numbering scheme, which
3212 * for PowerPC (tm) is usually the case) in the register holds
3213 * the entry.
3214 */
3215static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3216{
3217	u32 tempval;
3218	struct gfar_private *priv = netdev_priv(dev);
3219	u32 result = ether_crc(ETH_ALEN, addr);
3220	int width = priv->hash_width;
3221	u8 whichbit = (result >> (32 - width)) & 0x1f;
3222	u8 whichreg = result >> (32 - width + 5);
3223	u32 value = (1 << (31-whichbit));
3224
3225	tempval = gfar_read(priv->hash_regs[whichreg]);
3226	tempval |= value;
3227	gfar_write(priv->hash_regs[whichreg], tempval);
3228}
3229
 
3230
3231/* There are multiple MAC Address register pairs on some controllers
3232 * This function sets the numth pair to a given address
3233 */
3234static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3235				  const u8 *addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3236{
3237	struct gfar_private *priv = netdev_priv(dev);
3238	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3239	int idx;
3240	char tmpbuf[ETH_ALEN];
3241	u32 tempval;
3242	u32 __iomem *macptr = &regs->macstnaddr1;
3243
3244	macptr += num*2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3245
3246	/* Now copy it into the mac registers backwards, cuz
3247	 * little endian is silly
3248	 */
3249	for (idx = 0; idx < ETH_ALEN; idx++)
3250		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3251
3252	gfar_write(macptr, *((u32 *) (tmpbuf)));
 
3253
3254	tempval = *((u32 *) (tmpbuf + 4));
 
3255
3256	gfar_write(macptr+1, tempval);
 
 
 
 
 
 
 
 
 
3257}
3258
3259/* GFAR error interrupt handler */
3260static irqreturn_t gfar_error(int irq, void *grp_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3261{
3262	struct gfar_priv_grp *gfargrp = grp_id;
3263	struct gfar __iomem *regs = gfargrp->regs;
3264	struct gfar_private *priv= gfargrp->priv;
3265	struct net_device *dev = priv->ndev;
3266
3267	/* Save ievent for future reference */
3268	u32 events = gfar_read(&regs->ievent);
3269
3270	/* Clear IEVENT */
3271	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3272
3273	/* Magic Packet is not an error. */
3274	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3275	    (events & IEVENT_MAG))
3276		events &= ~IEVENT_MAG;
 
3277
3278	/* Hmm... */
3279	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3280		netdev_dbg(dev,
3281			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3282			   events, gfar_read(&regs->imask));
3283
3284	/* Update the error counters */
3285	if (events & IEVENT_TXE) {
3286		dev->stats.tx_errors++;
3287
3288		if (events & IEVENT_LC)
3289			dev->stats.tx_window_errors++;
3290		if (events & IEVENT_CRL)
3291			dev->stats.tx_aborted_errors++;
3292		if (events & IEVENT_XFUN) {
3293			unsigned long flags;
3294
3295			netif_dbg(priv, tx_err, dev,
3296				  "TX FIFO underrun, packet dropped\n");
3297			dev->stats.tx_dropped++;
3298			atomic64_inc(&priv->extra_stats.tx_underrun);
3299
3300			local_irq_save(flags);
3301			lock_tx_qs(priv);
 
 
 
 
 
 
3302
3303			/* Reactivate the Tx Queues */
3304			gfar_write(&regs->tstat, gfargrp->tstat);
 
 
 
 
 
3305
3306			unlock_tx_qs(priv);
3307			local_irq_restore(flags);
3308		}
3309		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
 
3310	}
3311	if (events & IEVENT_BSY) {
3312		dev->stats.rx_errors++;
3313		atomic64_inc(&priv->extra_stats.rx_bsy);
3314
3315		gfar_receive(irq, grp_id);
 
 
 
 
3316
3317		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3318			  gfar_read(&regs->rstat));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3319	}
3320	if (events & IEVENT_BABR) {
3321		dev->stats.rx_errors++;
3322		atomic64_inc(&priv->extra_stats.rx_babr);
3323
3324		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
 
 
 
3325	}
3326	if (events & IEVENT_EBERR) {
3327		atomic64_inc(&priv->extra_stats.eberr);
3328		netif_dbg(priv, rx_err, dev, "bus error\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3329	}
3330	if (events & IEVENT_RXC)
3331		netif_dbg(priv, rx_status, dev, "control frame\n");
3332
3333	if (events & IEVENT_BABT) {
3334		atomic64_inc(&priv->extra_stats.tx_babt);
3335		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
 
 
 
 
 
3336	}
3337	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3338}
3339
3340static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3341{
3342	struct phy_device *phydev = priv->phydev;
3343	u32 val = 0;
3344
3345	if (!phydev->duplex)
3346		return val;
3347
3348	if (!priv->pause_aneg_en) {
3349		if (priv->tx_pause_en)
3350			val |= MACCFG1_TX_FLOW;
3351		if (priv->rx_pause_en)
3352			val |= MACCFG1_RX_FLOW;
3353	} else {
3354		u16 lcl_adv, rmt_adv;
3355		u8 flowctrl;
3356		/* get link partner capabilities */
3357		rmt_adv = 0;
3358		if (phydev->pause)
3359			rmt_adv = LPA_PAUSE_CAP;
3360		if (phydev->asym_pause)
3361			rmt_adv |= LPA_PAUSE_ASYM;
3362
3363		lcl_adv = mii_advertise_flowctrl(phydev->advertising);
 
3364
3365		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3366		if (flowctrl & FLOW_CTRL_TX)
3367			val |= MACCFG1_TX_FLOW;
3368		if (flowctrl & FLOW_CTRL_RX)
3369			val |= MACCFG1_RX_FLOW;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3370	}
3371
3372	return val;
3373}
3374
3375static noinline void gfar_update_link_state(struct gfar_private *priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3376{
 
 
3377	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3378	struct phy_device *phydev = priv->phydev;
 
3379
3380	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3381		return;
3382
3383	if (phydev->link) {
3384		u32 tempval1 = gfar_read(&regs->maccfg1);
3385		u32 tempval = gfar_read(&regs->maccfg2);
3386		u32 ecntrl = gfar_read(&regs->ecntrl);
3387
3388		if (phydev->duplex != priv->oldduplex) {
3389			if (!(phydev->duplex))
3390				tempval &= ~(MACCFG2_FULL_DUPLEX);
3391			else
3392				tempval |= MACCFG2_FULL_DUPLEX;
3393
3394			priv->oldduplex = phydev->duplex;
3395		}
 
 
 
 
 
 
3396
3397		if (phydev->speed != priv->oldspeed) {
3398			switch (phydev->speed) {
3399			case 1000:
3400				tempval =
3401				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3402
3403				ecntrl &= ~(ECNTRL_R100);
3404				break;
3405			case 100:
3406			case 10:
3407				tempval =
3408				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3409
3410				/* Reduced mode distinguishes
3411				 * between 10 and 100
3412				 */
3413				if (phydev->speed == SPEED_100)
3414					ecntrl |= ECNTRL_R100;
3415				else
3416					ecntrl &= ~(ECNTRL_R100);
3417				break;
3418			default:
3419				netif_warn(priv, link, priv->ndev,
3420					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3421					   phydev->speed);
3422				break;
3423			}
3424
3425			priv->oldspeed = phydev->speed;
3426		}
3427
3428		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3429		tempval1 |= gfar_get_flowctrl_cfg(priv);
 
 
 
 
 
3430
3431		gfar_write(&regs->maccfg1, tempval1);
 
 
 
 
 
 
3432		gfar_write(&regs->maccfg2, tempval);
3433		gfar_write(&regs->ecntrl, ecntrl);
3434
3435		if (!priv->oldlink)
3436			priv->oldlink = 1;
 
 
3437
3438	} else if (priv->oldlink) {
3439		priv->oldlink = 0;
3440		priv->oldspeed = 0;
3441		priv->oldduplex = -1;
3442	}
3443
3444	if (netif_msg_link(priv))
3445		phy_print_status(phydev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3446}
3447
3448static struct of_device_id gfar_match[] =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3449{
3450	{
3451		.type = "network",
3452		.compatible = "gianfar",
3453	},
3454	{
3455		.compatible = "fsl,etsec2",
3456	},
3457	{},
3458};
3459MODULE_DEVICE_TABLE(of, gfar_match);
3460
3461/* Structure for a device driver */
3462static struct platform_driver gfar_driver = {
3463	.driver = {
3464		.name = "fsl-gianfar",
3465		.owner = THIS_MODULE,
3466		.pm = GFAR_PM_OPS,
3467		.of_match_table = gfar_match,
3468	},
3469	.probe = gfar_probe,
3470	.remove = gfar_remove,
3471};
3472
3473module_platform_driver(gfar_driver);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* drivers/net/ethernet/freescale/gianfar.c
   3 *
   4 * Gianfar Ethernet Driver
   5 * This driver is designed for the non-CPM ethernet controllers
   6 * on the 85xx and 83xx family of integrated processors
   7 * Based on 8260_io/fcc_enet.c
   8 *
   9 * Author: Andy Fleming
  10 * Maintainer: Kumar Gala
  11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12 *
  13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  14 * Copyright 2007 MontaVista Software, Inc.
  15 *
 
 
 
 
 
  16 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  17 *  RA 11 31 24.2
  18 *  Dec +69 19 52
  19 *  V 3.84
  20 *  B-V +1.62
  21 *
  22 *  Theory of operation
  23 *
  24 *  The driver is initialized through of_device. Configuration information
  25 *  is therefore conveyed through an OF-style device tree.
  26 *
  27 *  The Gianfar Ethernet Controller uses a ring of buffer
  28 *  descriptors.  The beginning is indicated by a register
  29 *  pointing to the physical address of the start of the ring.
  30 *  The end is determined by a "wrap" bit being set in the
  31 *  last descriptor of the ring.
  32 *
  33 *  When a packet is received, the RXF bit in the
  34 *  IEVENT register is set, triggering an interrupt when the
  35 *  corresponding bit in the IMASK register is also set (if
  36 *  interrupt coalescing is active, then the interrupt may not
  37 *  happen immediately, but will wait until either a set number
  38 *  of frames or amount of time have passed).  In NAPI, the
  39 *  interrupt handler will signal there is work to be done, and
  40 *  exit. This method will start at the last known empty
  41 *  descriptor, and process every subsequent descriptor until there
  42 *  are none left with data (NAPI will stop after a set number of
  43 *  packets to give time to other tasks, but will eventually
  44 *  process all the packets).  The data arrives inside a
  45 *  pre-allocated skb, and so after the skb is passed up to the
  46 *  stack, a new skb must be allocated, and the address field in
  47 *  the buffer descriptor must be updated to indicate this new
  48 *  skb.
  49 *
  50 *  When the kernel requests that a packet be transmitted, the
  51 *  driver starts where it left off last time, and points the
  52 *  descriptor at the buffer which was passed in.  The driver
  53 *  then informs the DMA engine that there are packets ready to
  54 *  be transmitted.  Once the controller is finished transmitting
  55 *  the packet, an interrupt may be triggered (under the same
  56 *  conditions as for reception, but depending on the TXF bit).
  57 *  The driver then cleans up the buffer.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 
  61
  62#include <linux/kernel.h>
  63#include <linux/platform_device.h>
  64#include <linux/string.h>
  65#include <linux/errno.h>
  66#include <linux/unistd.h>
  67#include <linux/slab.h>
  68#include <linux/interrupt.h>
  69#include <linux/delay.h>
  70#include <linux/netdevice.h>
  71#include <linux/etherdevice.h>
  72#include <linux/skbuff.h>
  73#include <linux/if_vlan.h>
  74#include <linux/spinlock.h>
  75#include <linux/mm.h>
  76#include <linux/of_address.h>
  77#include <linux/of_irq.h>
  78#include <linux/of_mdio.h>
 
  79#include <linux/ip.h>
  80#include <linux/tcp.h>
  81#include <linux/udp.h>
  82#include <linux/in.h>
  83#include <linux/net_tstamp.h>
  84
  85#include <asm/io.h>
  86#ifdef CONFIG_PPC
  87#include <asm/reg.h>
  88#include <asm/mpc85xx.h>
  89#endif
  90#include <asm/irq.h>
  91#include <linux/uaccess.h>
  92#include <linux/module.h>
  93#include <linux/dma-mapping.h>
  94#include <linux/crc32.h>
  95#include <linux/mii.h>
  96#include <linux/phy.h>
  97#include <linux/phy_fixed.h>
  98#include <linux/of.h>
  99#include <linux/of_net.h>
 100
 101#include "gianfar.h"
 102
 103#define TX_TIMEOUT      (5*HZ)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105MODULE_AUTHOR("Freescale Semiconductor, Inc");
 106MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 107MODULE_LICENSE("GPL");
 108
 109static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 110			    dma_addr_t buf)
 111{
 112	u32 lstatus;
 113
 114	bdp->bufPtr = cpu_to_be32(buf);
 115
 116	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 117	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 118		lstatus |= BD_LFLAG(RXBD_WRAP);
 119
 120	gfar_wmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121
 122	bdp->lstatus = cpu_to_be32(lstatus);
 
 
 
 
 
 
 
 
 
 
 
 123}
 124
 125static void gfar_init_tx_rx_base(struct gfar_private *priv)
 126{
 127	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 128	u32 __iomem *baddr;
 129	int i;
 130
 131	baddr = &regs->tbase0;
 132	for (i = 0; i < priv->num_tx_queues; i++) {
 133		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 134		baddr += 2;
 135	}
 136
 137	baddr = &regs->rbase0;
 138	for (i = 0; i < priv->num_rx_queues; i++) {
 139		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 140		baddr += 2;
 141	}
 142}
 143
 144static void gfar_init_rqprm(struct gfar_private *priv)
 145{
 146	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 147	u32 __iomem *baddr;
 148	int i;
 149
 150	baddr = &regs->rqprm0;
 151	for (i = 0; i < priv->num_rx_queues; i++) {
 152		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 153			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 154		baddr++;
 155	}
 156}
 157
 158static void gfar_rx_offload_en(struct gfar_private *priv)
 159{
 160	/* set this when rx hw offload (TOE) functions are being used */
 161	priv->uses_rxfcb = 0;
 162
 163	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 164		priv->uses_rxfcb = 1;
 165
 166	if (priv->hwts_rx_en || priv->rx_filer_enable)
 167		priv->uses_rxfcb = 1;
 
 
 
 
 
 
 
 
 
 
 168}
 169
 170static void gfar_mac_rx_config(struct gfar_private *priv)
 171{
 172	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 173	u32 rctrl = 0;
 174
 175	if (priv->rx_filer_enable) {
 176		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 177		/* Program the RIR0 reg with the required distribution */
 178		gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 
 
 
 179	}
 180
 181	/* Restore PROMISC mode */
 182	if (priv->ndev->flags & IFF_PROMISC)
 183		rctrl |= RCTRL_PROM;
 184
 185	if (priv->ndev->features & NETIF_F_RXCSUM)
 186		rctrl |= RCTRL_CHECKSUMMING;
 187
 188	if (priv->extended_hash)
 189		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 190
 191	if (priv->padding) {
 192		rctrl &= ~RCTRL_PAL_MASK;
 193		rctrl |= RCTRL_PADDING(priv->padding);
 194	}
 195
 196	/* Enable HW time stamping if requested from user space */
 197	if (priv->hwts_rx_en)
 198		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 199
 200	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 201		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 202
 203	/* Clear the LFC bit */
 204	gfar_write(&regs->rctrl, rctrl);
 205	/* Init flow control threshold values */
 206	gfar_init_rqprm(priv);
 207	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 208	rctrl |= RCTRL_LFC;
 209
 210	/* Init rctrl based on our settings */
 211	gfar_write(&regs->rctrl, rctrl);
 212}
 213
 214static void gfar_mac_tx_config(struct gfar_private *priv)
 215{
 216	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 217	u32 tctrl = 0;
 218
 219	if (priv->ndev->features & NETIF_F_IP_CSUM)
 220		tctrl |= TCTRL_INIT_CSUM;
 221
 222	if (priv->prio_sched_en)
 223		tctrl |= TCTRL_TXSCHED_PRIO;
 224	else {
 225		tctrl |= TCTRL_TXSCHED_WRRS;
 226		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 227		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 228	}
 229
 230	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 231		tctrl |= TCTRL_VLINS;
 232
 233	gfar_write(&regs->tctrl, tctrl);
 234}
 235
 236static void gfar_configure_coalescing(struct gfar_private *priv,
 237			       unsigned long tx_mask, unsigned long rx_mask)
 238{
 239	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 240	u32 __iomem *baddr;
 241
 242	if (priv->mode == MQ_MG_MODE) {
 243		int i = 0;
 244
 245		baddr = &regs->txic0;
 246		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 247			gfar_write(baddr + i, 0);
 248			if (likely(priv->tx_queue[i]->txcoalescing))
 249				gfar_write(baddr + i, priv->tx_queue[i]->txic);
 250		}
 251
 252		baddr = &regs->rxic0;
 253		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 254			gfar_write(baddr + i, 0);
 255			if (likely(priv->rx_queue[i]->rxcoalescing))
 256				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 257		}
 258	} else {
 259		/* Backward compatible case -- even if we enable
 260		 * multiple queues, there's only single reg to program
 261		 */
 262		gfar_write(&regs->txic, 0);
 263		if (likely(priv->tx_queue[0]->txcoalescing))
 264			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 265
 266		gfar_write(&regs->rxic, 0);
 267		if (unlikely(priv->rx_queue[0]->rxcoalescing))
 268			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 269	}
 270}
 271
 272static void gfar_configure_coalescing_all(struct gfar_private *priv)
 273{
 274	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 275}
 276
 277static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
 278{
 279	struct gfar_private *priv = netdev_priv(dev);
 
 
 280	int i;
 281
 282	for (i = 0; i < priv->num_rx_queues; i++) {
 283		stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
 284		stats->rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 285		stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 286	}
 287
 
 
 
 
 288	for (i = 0; i < priv->num_tx_queues; i++) {
 289		stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 290		stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
 291	}
 292
 293	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
 294		struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
 295		unsigned long flags;
 296		u32 rdrp, car, car_before;
 297		u64 rdrp_offset;
 298
 299		spin_lock_irqsave(&priv->rmon_overflow.lock, flags);
 300		car = gfar_read(&rmon->car1) & CAR1_C1RDR;
 301		do {
 302			car_before = car;
 303			rdrp = gfar_read(&rmon->rdrp);
 304			car = gfar_read(&rmon->car1) & CAR1_C1RDR;
 305		} while (car != car_before);
 306		if (car) {
 307			priv->rmon_overflow.rdrp++;
 308			gfar_write(&rmon->car1, car);
 309		}
 310		rdrp_offset = priv->rmon_overflow.rdrp;
 311		spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags);
 312
 313		stats->rx_missed_errors = rdrp + (rdrp_offset << 16);
 314	}
 315}
 316
 317/* Set the appropriate hash bit for the given addr */
 318/* The algorithm works like so:
 319 * 1) Take the Destination Address (ie the multicast address), and
 320 * do a CRC on it (little endian), and reverse the bits of the
 321 * result.
 322 * 2) Use the 8 most significant bits as a hash into a 256-entry
 323 * table.  The table is controlled through 8 32-bit registers:
 324 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
 325 * gaddr7.  This means that the 3 most significant bits in the
 326 * hash index which gaddr register to use, and the 5 other bits
 327 * indicate which bit (assuming an IBM numbering scheme, which
 328 * for PowerPC (tm) is usually the case) in the register holds
 329 * the entry.
 330 */
 331static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
 332{
 333	u32 tempval;
 334	struct gfar_private *priv = netdev_priv(dev);
 335	u32 result = ether_crc(ETH_ALEN, addr);
 336	int width = priv->hash_width;
 337	u8 whichbit = (result >> (32 - width)) & 0x1f;
 338	u8 whichreg = result >> (32 - width + 5);
 339	u32 value = (1 << (31-whichbit));
 340
 341	tempval = gfar_read(priv->hash_regs[whichreg]);
 342	tempval |= value;
 343	gfar_write(priv->hash_regs[whichreg], tempval);
 344}
 345
 346/* There are multiple MAC Address register pairs on some controllers
 347 * This function sets the numth pair to a given address
 348 */
 349static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 350				  const u8 *addr)
 351{
 352	struct gfar_private *priv = netdev_priv(dev);
 353	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 354	u32 tempval;
 355	u32 __iomem *macptr = &regs->macstnaddr1;
 356
 357	macptr += num*2;
 358
 359	/* For a station address of 0x12345678ABCD in transmission
 360	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
 361	 * MACnADDR2 is set to 0x34120000.
 362	 */
 363	tempval = (addr[5] << 24) | (addr[4] << 16) |
 364		  (addr[3] << 8)  |  addr[2];
 365
 366	gfar_write(macptr, tempval);
 367
 368	tempval = (addr[1] << 24) | (addr[0] << 16);
 369
 370	gfar_write(macptr+1, tempval);
 371}
 372
 373static int gfar_set_mac_addr(struct net_device *dev, void *p)
 374{
 375	int ret;
 376
 377	ret = eth_mac_addr(dev, p);
 378	if (ret)
 379		return ret;
 380
 381	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 382
 383	return 0;
 384}
 385
 386static void gfar_ints_disable(struct gfar_private *priv)
 387{
 388	int i;
 389	for (i = 0; i < priv->num_grps; i++) {
 390		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 391		/* Clear IEVENT */
 392		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 393
 394		/* Initialize IMASK */
 395		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 396	}
 397}
 398
 399static void gfar_ints_enable(struct gfar_private *priv)
 400{
 401	int i;
 402	for (i = 0; i < priv->num_grps; i++) {
 403		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 404		/* Unmask the interrupts we look for */
 405		gfar_write(&regs->imask,
 406			   IMASK_DEFAULT | priv->rmon_overflow.imask);
 407	}
 408}
 409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410static int gfar_alloc_tx_queues(struct gfar_private *priv)
 411{
 412	int i;
 413
 414	for (i = 0; i < priv->num_tx_queues; i++) {
 415		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 416					    GFP_KERNEL);
 417		if (!priv->tx_queue[i])
 418			return -ENOMEM;
 419
 420		priv->tx_queue[i]->tx_skbuff = NULL;
 421		priv->tx_queue[i]->qindex = i;
 422		priv->tx_queue[i]->dev = priv->ndev;
 423		spin_lock_init(&(priv->tx_queue[i]->txlock));
 424	}
 425	return 0;
 426}
 427
 428static int gfar_alloc_rx_queues(struct gfar_private *priv)
 429{
 430	int i;
 431
 432	for (i = 0; i < priv->num_rx_queues; i++) {
 433		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 434					    GFP_KERNEL);
 435		if (!priv->rx_queue[i])
 436			return -ENOMEM;
 437
 
 438		priv->rx_queue[i]->qindex = i;
 439		priv->rx_queue[i]->ndev = priv->ndev;
 440	}
 441	return 0;
 442}
 443
 444static void gfar_free_tx_queues(struct gfar_private *priv)
 445{
 446	int i;
 447
 448	for (i = 0; i < priv->num_tx_queues; i++)
 449		kfree(priv->tx_queue[i]);
 450}
 451
 452static void gfar_free_rx_queues(struct gfar_private *priv)
 453{
 454	int i;
 455
 456	for (i = 0; i < priv->num_rx_queues; i++)
 457		kfree(priv->rx_queue[i]);
 458}
 459
 460static void unmap_group_regs(struct gfar_private *priv)
 461{
 462	int i;
 463
 464	for (i = 0; i < MAXGROUPS; i++)
 465		if (priv->gfargrp[i].regs)
 466			iounmap(priv->gfargrp[i].regs);
 467}
 468
 469static void free_gfar_dev(struct gfar_private *priv)
 470{
 471	int i, j;
 472
 473	for (i = 0; i < priv->num_grps; i++)
 474		for (j = 0; j < GFAR_NUM_IRQS; j++) {
 475			kfree(priv->gfargrp[i].irqinfo[j]);
 476			priv->gfargrp[i].irqinfo[j] = NULL;
 477		}
 478
 479	free_netdev(priv->ndev);
 480}
 481
 482static void disable_napi(struct gfar_private *priv)
 483{
 484	int i;
 485
 486	for (i = 0; i < priv->num_grps; i++) {
 487		napi_disable(&priv->gfargrp[i].napi_rx);
 488		napi_disable(&priv->gfargrp[i].napi_tx);
 489	}
 490}
 491
 492static void enable_napi(struct gfar_private *priv)
 493{
 494	int i;
 495
 496	for (i = 0; i < priv->num_grps; i++) {
 497		napi_enable(&priv->gfargrp[i].napi_rx);
 498		napi_enable(&priv->gfargrp[i].napi_tx);
 499	}
 500}
 501
 502static int gfar_parse_group(struct device_node *np,
 503			    struct gfar_private *priv, const char *model)
 504{
 505	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 506	int i;
 507
 508	for (i = 0; i < GFAR_NUM_IRQS; i++) {
 509		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 510					  GFP_KERNEL);
 511		if (!grp->irqinfo[i])
 512			return -ENOMEM;
 513	}
 514
 515	grp->regs = of_iomap(np, 0);
 516	if (!grp->regs)
 517		return -ENOMEM;
 518
 519	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 520
 521	/* If we aren't the FEC we have multiple interrupts */
 522	if (model && strcasecmp(model, "FEC")) {
 523		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 524		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 525		if (!gfar_irq(grp, TX)->irq ||
 526		    !gfar_irq(grp, RX)->irq ||
 527		    !gfar_irq(grp, ER)->irq)
 528			return -EINVAL;
 529	}
 530
 531	grp->priv = priv;
 532	spin_lock_init(&grp->grplock);
 533	if (priv->mode == MQ_MG_MODE) {
 534		/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 535		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 536		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 
 
 
 
 
 
 
 
 
 
 
 537	} else {
 538		grp->rx_bit_map = 0xFF;
 539		grp->tx_bit_map = 0xFF;
 540	}
 541
 542	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 543	 * right to left, so we need to revert the 8 bits to get the q index
 544	 */
 545	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 546	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 547
 548	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 549	 * also assign queues to groups
 550	 */
 551	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 552		if (!grp->rx_queue)
 553			grp->rx_queue = priv->rx_queue[i];
 554		grp->num_rx_queues++;
 555		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 556		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 557		priv->rx_queue[i]->grp = grp;
 558	}
 559
 560	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 561		if (!grp->tx_queue)
 562			grp->tx_queue = priv->tx_queue[i];
 563		grp->num_tx_queues++;
 564		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 565		priv->tqueue |= (TQUEUE_EN0 >> i);
 566		priv->tx_queue[i]->grp = grp;
 567	}
 568
 569	priv->num_grps++;
 570
 571	return 0;
 572}
 573
 574static int gfar_of_group_count(struct device_node *np)
 575{
 576	struct device_node *child;
 577	int num = 0;
 578
 579	for_each_available_child_of_node(np, child)
 580		if (of_node_name_eq(child, "queue-group"))
 581			num++;
 582
 583	return num;
 584}
 585
 586/* Reads the controller's registers to determine what interface
 587 * connects it to the PHY.
 588 */
 589static phy_interface_t gfar_get_interface(struct net_device *dev)
 590{
 591	struct gfar_private *priv = netdev_priv(dev);
 592	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 593	u32 ecntrl;
 594
 595	ecntrl = gfar_read(&regs->ecntrl);
 596
 597	if (ecntrl & ECNTRL_SGMII_MODE)
 598		return PHY_INTERFACE_MODE_SGMII;
 599
 600	if (ecntrl & ECNTRL_TBI_MODE) {
 601		if (ecntrl & ECNTRL_REDUCED_MODE)
 602			return PHY_INTERFACE_MODE_RTBI;
 603		else
 604			return PHY_INTERFACE_MODE_TBI;
 605	}
 606
 607	if (ecntrl & ECNTRL_REDUCED_MODE) {
 608		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
 609			return PHY_INTERFACE_MODE_RMII;
 610		}
 611		else {
 612			phy_interface_t interface = priv->interface;
 613
 614			/* This isn't autodetected right now, so it must
 615			 * be set by the device tree or platform code.
 616			 */
 617			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
 618				return PHY_INTERFACE_MODE_RGMII_ID;
 619
 620			return PHY_INTERFACE_MODE_RGMII;
 621		}
 622	}
 623
 624	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
 625		return PHY_INTERFACE_MODE_GMII;
 626
 627	return PHY_INTERFACE_MODE_MII;
 628}
 629
 630static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 631{
 632	const char *model;
 
 
 633	int err = 0, i;
 634	phy_interface_t interface;
 635	struct net_device *dev = NULL;
 636	struct gfar_private *priv = NULL;
 637	struct device_node *np = ofdev->dev.of_node;
 638	struct device_node *child = NULL;
 639	u32 stash_len = 0;
 640	u32 stash_idx = 0;
 
 641	unsigned int num_tx_qs, num_rx_qs;
 642	unsigned short mode;
 
 643
 644	if (!np)
 645		return -ENODEV;
 646
 647	if (of_device_is_compatible(np, "fsl,etsec2"))
 648		mode = MQ_MG_MODE;
 649	else
 
 650		mode = SQ_SG_MODE;
 
 
 
 
 
 
 651
 652	if (mode == SQ_SG_MODE) {
 653		num_tx_qs = 1;
 654		num_rx_qs = 1;
 655	} else { /* MQ_MG_MODE */
 656		/* get the actual number of supported groups */
 657		unsigned int num_grps = gfar_of_group_count(np);
 658
 659		if (num_grps == 0 || num_grps > MAXGROUPS) {
 660			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 661				num_grps);
 662			pr_err("Cannot do alloc_etherdev, aborting\n");
 663			return -EINVAL;
 664		}
 665
 666		num_tx_qs = num_grps; /* one txq per int group */
 667		num_rx_qs = num_grps; /* one rxq per int group */
 
 
 
 
 
 668	}
 669
 670	if (num_tx_qs > MAX_TX_QS) {
 671		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 672		       num_tx_qs, MAX_TX_QS);
 673		pr_err("Cannot do alloc_etherdev, aborting\n");
 674		return -EINVAL;
 675	}
 676
 677	if (num_rx_qs > MAX_RX_QS) {
 678		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 679		       num_rx_qs, MAX_RX_QS);
 680		pr_err("Cannot do alloc_etherdev, aborting\n");
 681		return -EINVAL;
 682	}
 683
 684	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 685	dev = *pdev;
 686	if (NULL == dev)
 687		return -ENOMEM;
 688
 689	priv = netdev_priv(dev);
 690	priv->ndev = dev;
 691
 692	priv->mode = mode;
 
 693
 694	priv->num_tx_queues = num_tx_qs;
 695	netif_set_real_num_rx_queues(dev, num_rx_qs);
 696	priv->num_rx_queues = num_rx_qs;
 697
 698	err = gfar_alloc_tx_queues(priv);
 699	if (err)
 700		goto tx_alloc_failed;
 701
 702	err = gfar_alloc_rx_queues(priv);
 703	if (err)
 704		goto rx_alloc_failed;
 705
 706	err = of_property_read_string(np, "model", &model);
 707	if (err) {
 708		pr_err("Device model property missing, aborting\n");
 709		goto rx_alloc_failed;
 710	}
 711
 712	/* Init Rx queue filer rule set linked list */
 713	INIT_LIST_HEAD(&priv->rx_list.list);
 714	priv->rx_list.count = 0;
 715	mutex_init(&priv->rx_queue_access);
 716
 
 
 717	for (i = 0; i < MAXGROUPS; i++)
 718		priv->gfargrp[i].regs = NULL;
 719
 720	/* Parse and initialize group specific information */
 721	if (priv->mode == MQ_MG_MODE) {
 722		for_each_available_child_of_node(np, child) {
 723			if (!of_node_name_eq(child, "queue-group"))
 724				continue;
 725
 726			err = gfar_parse_group(child, priv, model);
 727			if (err) {
 728				of_node_put(child);
 729				goto err_grp_init;
 730			}
 731		}
 732	} else { /* SQ_SG_MODE */
 733		err = gfar_parse_group(np, priv, model);
 734		if (err)
 735			goto err_grp_init;
 736	}
 737
 738	if (of_property_read_bool(np, "bd-stash")) {
 
 
 739		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 740		priv->bd_stash_en = 1;
 741	}
 742
 743	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 744
 745	if (err == 0)
 746		priv->rx_stash_size = stash_len;
 747
 748	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 749
 750	if (err == 0)
 751		priv->rx_stash_index = stash_idx;
 752
 753	if (stash_len || stash_idx)
 754		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 755
 756	err = of_get_ethdev_address(np, dev);
 757	if (err) {
 758		eth_hw_addr_random(dev);
 759		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
 760	}
 761
 762	if (model && !strcasecmp(model, "TSEC"))
 763		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 764				     FSL_GIANFAR_DEV_HAS_COALESCE |
 765				     FSL_GIANFAR_DEV_HAS_RMON |
 766				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 767
 768	if (model && !strcasecmp(model, "eTSEC"))
 769		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 770				     FSL_GIANFAR_DEV_HAS_COALESCE |
 771				     FSL_GIANFAR_DEV_HAS_RMON |
 772				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 773				     FSL_GIANFAR_DEV_HAS_CSUM |
 774				     FSL_GIANFAR_DEV_HAS_VLAN |
 775				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 776				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 777				     FSL_GIANFAR_DEV_HAS_TIMER |
 778				     FSL_GIANFAR_DEV_HAS_RX_FILER;
 
 779
 780	/* Use PHY connection type from the DT node if one is specified there.
 781	 * rgmii-id really needs to be specified. Other types can be
 782	 * detected by hardware
 783	 */
 784	err = of_get_phy_mode(np, &interface);
 785	if (!err)
 786		priv->interface = interface;
 787	else
 788		priv->interface = gfar_get_interface(dev);
 789
 790	if (of_property_read_bool(np, "fsl,magic-packet"))
 791		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 792
 793	if (of_property_read_bool(np, "fsl,wake-on-filer"))
 794		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 795
 796	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 797
 798	/* In the case of a fixed PHY, the DT node associated
 799	 * to the PHY is the Ethernet MAC DT node.
 800	 */
 801	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 802		err = of_phy_register_fixed_link(np);
 803		if (err)
 804			goto err_grp_init;
 805
 806		priv->phy_node = of_node_get(np);
 807	}
 808
 809	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 810	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 811
 812	return 0;
 813
 814err_grp_init:
 815	unmap_group_regs(priv);
 816rx_alloc_failed:
 817	gfar_free_rx_queues(priv);
 818tx_alloc_failed:
 819	gfar_free_tx_queues(priv);
 820	free_gfar_dev(priv);
 821	return err;
 822}
 823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 825				   u32 class)
 826{
 827	u32 rqfpr = FPR_FILER_MASK;
 828	u32 rqfcr = 0x0;
 829
 830	rqfar--;
 831	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 832	priv->ftp_rqfpr[rqfar] = rqfpr;
 833	priv->ftp_rqfcr[rqfar] = rqfcr;
 834	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 835
 836	rqfar--;
 837	rqfcr = RQFCR_CMP_NOMATCH;
 838	priv->ftp_rqfpr[rqfar] = rqfpr;
 839	priv->ftp_rqfcr[rqfar] = rqfcr;
 840	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 841
 842	rqfar--;
 843	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 844	rqfpr = class;
 845	priv->ftp_rqfcr[rqfar] = rqfcr;
 846	priv->ftp_rqfpr[rqfar] = rqfpr;
 847	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 848
 849	rqfar--;
 850	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 851	rqfpr = class;
 852	priv->ftp_rqfcr[rqfar] = rqfcr;
 853	priv->ftp_rqfpr[rqfar] = rqfpr;
 854	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 855
 856	return rqfar;
 857}
 858
 859static void gfar_init_filer_table(struct gfar_private *priv)
 860{
 861	int i = 0x0;
 862	u32 rqfar = MAX_FILER_IDX;
 863	u32 rqfcr = 0x0;
 864	u32 rqfpr = FPR_FILER_MASK;
 865
 866	/* Default rule */
 867	rqfcr = RQFCR_CMP_MATCH;
 868	priv->ftp_rqfcr[rqfar] = rqfcr;
 869	priv->ftp_rqfpr[rqfar] = rqfpr;
 870	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 871
 872	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 873	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 874	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 875	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 876	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 877	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 878
 879	/* cur_filer_idx indicated the first non-masked rule */
 880	priv->cur_filer_idx = rqfar;
 881
 882	/* Rest are masked rules */
 883	rqfcr = RQFCR_CMP_NOMATCH;
 884	for (i = 0; i < rqfar; i++) {
 885		priv->ftp_rqfcr[i] = rqfcr;
 886		priv->ftp_rqfpr[i] = rqfpr;
 887		gfar_write_filer(priv, i, rqfcr, rqfpr);
 888	}
 889}
 890
 891#ifdef CONFIG_PPC
 892static void __gfar_detect_errata_83xx(struct gfar_private *priv)
 893{
 894	unsigned int pvr = mfspr(SPRN_PVR);
 895	unsigned int svr = mfspr(SPRN_SVR);
 896	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 897	unsigned int rev = svr & 0xffff;
 898
 899	/* MPC8313 Rev 2.0 and higher; All MPC837x */
 900	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 901	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 902		priv->errata |= GFAR_ERRATA_74;
 903
 904	/* MPC8313 and MPC837x all rev */
 905	if ((pvr == 0x80850010 && mod == 0x80b0) ||
 906	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 907		priv->errata |= GFAR_ERRATA_76;
 908
 909	/* MPC8313 Rev < 2.0 */
 910	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
 911		priv->errata |= GFAR_ERRATA_12;
 912}
 913
 914static void __gfar_detect_errata_85xx(struct gfar_private *priv)
 915{
 916	unsigned int svr = mfspr(SPRN_SVR);
 917
 918	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
 919		priv->errata |= GFAR_ERRATA_12;
 920	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
 921	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
 922	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
 923	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
 924		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
 925}
 926#endif
 927
 928static void gfar_detect_errata(struct gfar_private *priv)
 929{
 930	struct device *dev = &priv->ofdev->dev;
 931
 932	/* no plans to fix */
 933	priv->errata |= GFAR_ERRATA_A002;
 934
 935#ifdef CONFIG_PPC
 936	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
 937		__gfar_detect_errata_85xx(priv);
 938	else /* non-mpc85xx parts, i.e. e300 core based */
 939		__gfar_detect_errata_83xx(priv);
 940#endif
 941
 942	if (priv->errata)
 943		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 944			 priv->errata);
 945}
 946
 947static void gfar_init_addr_hash_table(struct gfar_private *priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 948{
 949	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 950
 951	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
 952		priv->extended_hash = 1;
 953		priv->hash_width = 9;
 954
 955		priv->hash_regs[0] = &regs->igaddr0;
 956		priv->hash_regs[1] = &regs->igaddr1;
 957		priv->hash_regs[2] = &regs->igaddr2;
 958		priv->hash_regs[3] = &regs->igaddr3;
 959		priv->hash_regs[4] = &regs->igaddr4;
 960		priv->hash_regs[5] = &regs->igaddr5;
 961		priv->hash_regs[6] = &regs->igaddr6;
 962		priv->hash_regs[7] = &regs->igaddr7;
 963		priv->hash_regs[8] = &regs->gaddr0;
 964		priv->hash_regs[9] = &regs->gaddr1;
 965		priv->hash_regs[10] = &regs->gaddr2;
 966		priv->hash_regs[11] = &regs->gaddr3;
 967		priv->hash_regs[12] = &regs->gaddr4;
 968		priv->hash_regs[13] = &regs->gaddr5;
 969		priv->hash_regs[14] = &regs->gaddr6;
 970		priv->hash_regs[15] = &regs->gaddr7;
 971
 972	} else {
 973		priv->extended_hash = 0;
 974		priv->hash_width = 8;
 975
 976		priv->hash_regs[0] = &regs->gaddr0;
 977		priv->hash_regs[1] = &regs->gaddr1;
 978		priv->hash_regs[2] = &regs->gaddr2;
 979		priv->hash_regs[3] = &regs->gaddr3;
 980		priv->hash_regs[4] = &regs->gaddr4;
 981		priv->hash_regs[5] = &regs->gaddr5;
 982		priv->hash_regs[6] = &regs->gaddr6;
 983		priv->hash_regs[7] = &regs->gaddr7;
 984	}
 985}
 986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987static int __gfar_is_rx_idle(struct gfar_private *priv)
 988{
 989	u32 res;
 990
 991	/* Normaly TSEC should not hang on GRS commands, so we should
 992	 * actually wait for IEVENT_GRSC flag.
 993	 */
 994	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
 995		return 0;
 996
 997	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
 998	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
 999	 * and the Rx can be safely reset.
1000	 */
1001	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1002	res &= 0x7f807f80;
1003	if ((res & 0xffff) == (res >> 16))
1004		return 1;
1005
1006	return 0;
1007}
1008
1009/* Halt the receive and transmit queues */
1010static void gfar_halt_nodisable(struct gfar_private *priv)
1011{
1012	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1013	u32 tempval;
1014	unsigned int timeout;
1015	int stopped;
1016
1017	gfar_ints_disable(priv);
1018
1019	if (gfar_is_dma_stopped(priv))
1020		return;
1021
1022	/* Stop the DMA, and wait for it to stop */
1023	tempval = gfar_read(&regs->dmactrl);
1024	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1025	gfar_write(&regs->dmactrl, tempval);
 
 
 
 
1026
1027retry:
1028	timeout = 1000;
1029	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1030		cpu_relax();
1031		timeout--;
 
 
1032	}
1033
1034	if (!timeout)
1035		stopped = gfar_is_dma_stopped(priv);
1036
1037	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1038	    !__gfar_is_rx_idle(priv))
1039		goto retry;
1040}
1041
1042/* Halt the receive and transmit queues */
1043static void gfar_halt(struct gfar_private *priv)
1044{
1045	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1046	u32 tempval;
1047
1048	/* Dissable the Rx/Tx hw queues */
1049	gfar_write(&regs->rqueue, 0);
1050	gfar_write(&regs->tqueue, 0);
1051
1052	mdelay(10);
1053
1054	gfar_halt_nodisable(priv);
1055
1056	/* Disable Rx/Tx DMA */
1057	tempval = gfar_read(&regs->maccfg1);
1058	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1059	gfar_write(&regs->maccfg1, tempval);
1060}
1061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1063{
1064	struct txbd8 *txbdp;
1065	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1066	int i, j;
1067
1068	txbdp = tx_queue->tx_bd_base;
1069
1070	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1071		if (!tx_queue->tx_skbuff[i])
1072			continue;
1073
1074		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1075				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1076		txbdp->lstatus = 0;
1077		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1078		     j++) {
1079			txbdp++;
1080			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1081				       be16_to_cpu(txbdp->length),
1082				       DMA_TO_DEVICE);
1083		}
1084		txbdp++;
1085		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1086		tx_queue->tx_skbuff[i] = NULL;
1087	}
1088	kfree(tx_queue->tx_skbuff);
1089	tx_queue->tx_skbuff = NULL;
1090}
1091
1092static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1093{
 
 
1094	int i;
1095
1096	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1097
1098	dev_kfree_skb(rx_queue->skb);
1099
1100	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1101		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1102
 
 
 
 
 
1103		rxbdp->lstatus = 0;
1104		rxbdp->bufPtr = 0;
1105		rxbdp++;
1106
1107		if (!rxb->page)
1108			continue;
1109
1110		dma_unmap_page(rx_queue->dev, rxb->dma,
1111			       PAGE_SIZE, DMA_FROM_DEVICE);
1112		__free_page(rxb->page);
1113
1114		rxb->page = NULL;
1115	}
1116
1117	kfree(rx_queue->rx_buff);
1118	rx_queue->rx_buff = NULL;
1119}
1120
1121/* If there are any tx skbs or rx skbs still around, free them.
1122 * Then free tx_skbuff and rx_skbuff
1123 */
1124static void free_skb_resources(struct gfar_private *priv)
1125{
1126	struct gfar_priv_tx_q *tx_queue = NULL;
1127	struct gfar_priv_rx_q *rx_queue = NULL;
1128	int i;
1129
1130	/* Go through all the buffer descriptors and free their data buffers */
1131	for (i = 0; i < priv->num_tx_queues; i++) {
1132		struct netdev_queue *txq;
1133
1134		tx_queue = priv->tx_queue[i];
1135		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1136		if (tx_queue->tx_skbuff)
1137			free_skb_tx_queue(tx_queue);
1138		netdev_tx_reset_queue(txq);
1139	}
1140
1141	for (i = 0; i < priv->num_rx_queues; i++) {
1142		rx_queue = priv->rx_queue[i];
1143		if (rx_queue->rx_buff)
1144			free_skb_rx_queue(rx_queue);
1145	}
1146
1147	dma_free_coherent(priv->dev,
1148			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1149			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1150			  priv->tx_queue[0]->tx_bd_base,
1151			  priv->tx_queue[0]->tx_bd_dma_base);
1152}
1153
1154void stop_gfar(struct net_device *dev)
1155{
1156	struct gfar_private *priv = netdev_priv(dev);
1157
1158	netif_tx_stop_all_queues(dev);
1159
1160	smp_mb__before_atomic();
1161	set_bit(GFAR_DOWN, &priv->state);
1162	smp_mb__after_atomic();
1163
1164	disable_napi(priv);
1165
1166	/* disable ints and gracefully shut down Rx/Tx DMA */
1167	gfar_halt(priv);
1168
1169	phy_stop(dev->phydev);
1170
1171	free_skb_resources(priv);
1172}
1173
1174static void gfar_start(struct gfar_private *priv)
1175{
1176	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1177	u32 tempval;
1178	int i = 0;
1179
1180	/* Enable Rx/Tx hw queues */
1181	gfar_write(&regs->rqueue, priv->rqueue);
1182	gfar_write(&regs->tqueue, priv->tqueue);
1183
1184	/* Initialize DMACTRL to have WWR and WOP */
1185	tempval = gfar_read(&regs->dmactrl);
1186	tempval |= DMACTRL_INIT_SETTINGS;
1187	gfar_write(&regs->dmactrl, tempval);
1188
1189	/* Make sure we aren't stopped */
1190	tempval = gfar_read(&regs->dmactrl);
1191	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1192	gfar_write(&regs->dmactrl, tempval);
1193
1194	for (i = 0; i < priv->num_grps; i++) {
1195		regs = priv->gfargrp[i].regs;
1196		/* Clear THLT/RHLT, so that the DMA starts polling now */
1197		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1198		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1199	}
1200
1201	/* Enable Rx/Tx DMA */
1202	tempval = gfar_read(&regs->maccfg1);
1203	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1204	gfar_write(&regs->maccfg1, tempval);
1205
1206	gfar_ints_enable(priv);
1207
1208	netif_trans_update(priv->ndev); /* prevent tx timeout */
1209}
1210
1211static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1212{
1213	struct page *page;
1214	dma_addr_t addr;
1215
1216	page = dev_alloc_page();
1217	if (unlikely(!page))
1218		return false;
1219
1220	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1221	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1222		__free_page(page);
1223
1224		return false;
1225	}
1226
1227	rxb->dma = addr;
1228	rxb->page = page;
1229	rxb->page_offset = 0;
1230
1231	return true;
1232}
1233
1234static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1235{
1236	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1237	struct gfar_extra_stats *estats = &priv->extra_stats;
 
1238
1239	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1240	atomic64_inc(&estats->rx_alloc_err);
1241}
 
 
 
 
 
 
 
 
 
1242
1243static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1244				int alloc_cnt)
1245{
1246	struct rxbd8 *bdp;
1247	struct gfar_rx_buff *rxb;
1248	int i;
1249
1250	i = rx_queue->next_to_use;
1251	bdp = &rx_queue->rx_bd_base[i];
1252	rxb = &rx_queue->rx_buff[i];
1253
1254	while (alloc_cnt--) {
1255		/* try reuse page */
1256		if (unlikely(!rxb->page)) {
1257			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1258				gfar_rx_alloc_err(rx_queue);
1259				break;
1260			}
1261		}
1262
1263		/* Setup the new RxBD */
1264		gfar_init_rxbdp(rx_queue, bdp,
1265				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1266
1267		/* Update to the next pointer */
1268		bdp++;
1269		rxb++;
1270
1271		if (unlikely(++i == rx_queue->rx_ring_size)) {
1272			i = 0;
1273			bdp = rx_queue->rx_bd_base;
1274			rxb = rx_queue->rx_buff;
1275		}
1276	}
1277
1278	rx_queue->next_to_use = i;
1279	rx_queue->next_to_alloc = i;
1280}
1281
1282static void gfar_init_bds(struct net_device *ndev)
1283{
1284	struct gfar_private *priv = netdev_priv(ndev);
1285	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1286	struct gfar_priv_tx_q *tx_queue = NULL;
1287	struct gfar_priv_rx_q *rx_queue = NULL;
1288	struct txbd8 *txbdp;
1289	u32 __iomem *rfbptr;
1290	int i, j;
1291
1292	for (i = 0; i < priv->num_tx_queues; i++) {
1293		tx_queue = priv->tx_queue[i];
1294		/* Initialize some variables in our dev structure */
1295		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1296		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1297		tx_queue->cur_tx = tx_queue->tx_bd_base;
1298		tx_queue->skb_curtx = 0;
1299		tx_queue->skb_dirtytx = 0;
1300
1301		/* Initialize Transmit Descriptor Ring */
1302		txbdp = tx_queue->tx_bd_base;
1303		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1304			txbdp->lstatus = 0;
1305			txbdp->bufPtr = 0;
1306			txbdp++;
1307		}
1308
1309		/* Set the last descriptor in the ring to indicate wrap */
1310		txbdp--;
1311		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1312					    TXBD_WRAP);
1313	}
1314
1315	rfbptr = &regs->rfbptr0;
1316	for (i = 0; i < priv->num_rx_queues; i++) {
1317		rx_queue = priv->rx_queue[i];
1318
1319		rx_queue->next_to_clean = 0;
1320		rx_queue->next_to_use = 0;
1321		rx_queue->next_to_alloc = 0;
1322
1323		/* make sure next_to_clean != next_to_use after this
1324		 * by leaving at least 1 unused descriptor
1325		 */
1326		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1327
1328		rx_queue->rfbptr = rfbptr;
1329		rfbptr += 2;
1330	}
1331}
1332
1333static int gfar_alloc_skb_resources(struct net_device *ndev)
1334{
1335	void *vaddr;
1336	dma_addr_t addr;
1337	int i, j;
1338	struct gfar_private *priv = netdev_priv(ndev);
1339	struct device *dev = priv->dev;
1340	struct gfar_priv_tx_q *tx_queue = NULL;
1341	struct gfar_priv_rx_q *rx_queue = NULL;
1342
1343	priv->total_tx_ring_size = 0;
1344	for (i = 0; i < priv->num_tx_queues; i++)
1345		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1346
1347	priv->total_rx_ring_size = 0;
1348	for (i = 0; i < priv->num_rx_queues; i++)
1349		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1350
1351	/* Allocate memory for the buffer descriptors */
1352	vaddr = dma_alloc_coherent(dev,
1353				   (priv->total_tx_ring_size *
1354				    sizeof(struct txbd8)) +
1355				   (priv->total_rx_ring_size *
1356				    sizeof(struct rxbd8)),
1357				   &addr, GFP_KERNEL);
1358	if (!vaddr)
1359		return -ENOMEM;
1360
1361	for (i = 0; i < priv->num_tx_queues; i++) {
1362		tx_queue = priv->tx_queue[i];
1363		tx_queue->tx_bd_base = vaddr;
1364		tx_queue->tx_bd_dma_base = addr;
1365		tx_queue->dev = ndev;
1366		/* enet DMA only understands physical addresses */
1367		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1368		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1369	}
 
1370
1371	/* Start the rx descriptor ring where the tx ring leaves off */
1372	for (i = 0; i < priv->num_rx_queues; i++) {
1373		rx_queue = priv->rx_queue[i];
1374		rx_queue->rx_bd_base = vaddr;
1375		rx_queue->rx_bd_dma_base = addr;
1376		rx_queue->ndev = ndev;
1377		rx_queue->dev = dev;
1378		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1379		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1380	}
1381
1382	/* Setup the skbuff rings */
1383	for (i = 0; i < priv->num_tx_queues; i++) {
1384		tx_queue = priv->tx_queue[i];
1385		tx_queue->tx_skbuff =
1386			kmalloc_array(tx_queue->tx_ring_size,
1387				      sizeof(*tx_queue->tx_skbuff),
1388				      GFP_KERNEL);
1389		if (!tx_queue->tx_skbuff)
1390			goto cleanup;
1391
1392		for (j = 0; j < tx_queue->tx_ring_size; j++)
1393			tx_queue->tx_skbuff[j] = NULL;
1394	}
1395
1396	for (i = 0; i < priv->num_rx_queues; i++) {
1397		rx_queue = priv->rx_queue[i];
1398		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1399					    sizeof(*rx_queue->rx_buff),
1400					    GFP_KERNEL);
1401		if (!rx_queue->rx_buff)
1402			goto cleanup;
1403	}
1404
1405	gfar_init_bds(ndev);
1406
1407	return 0;
1408
1409cleanup:
1410	free_skb_resources(priv);
1411	return -ENOMEM;
1412}
1413
1414/* Bring the controller up and running */
1415int startup_gfar(struct net_device *ndev)
1416{
1417	struct gfar_private *priv = netdev_priv(ndev);
1418	int err;
1419
1420	gfar_mac_reset(priv);
1421
1422	err = gfar_alloc_skb_resources(ndev);
1423	if (err)
1424		return err;
1425
1426	gfar_init_tx_rx_base(priv);
1427
1428	smp_mb__before_atomic();
1429	clear_bit(GFAR_DOWN, &priv->state);
1430	smp_mb__after_atomic();
1431
1432	/* Start Rx/Tx DMA and enable the interrupts */
1433	gfar_start(priv);
1434
1435	/* force link state update after mac reset */
1436	priv->oldlink = 0;
1437	priv->oldspeed = 0;
1438	priv->oldduplex = -1;
1439
1440	phy_start(ndev->phydev);
1441
1442	enable_napi(priv);
1443
1444	netif_tx_wake_all_queues(ndev);
1445
1446	return 0;
1447}
1448
1449static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1450{
1451	struct net_device *ndev = priv->ndev;
1452	struct phy_device *phydev = ndev->phydev;
1453	u32 val = 0;
1454
1455	if (!phydev->duplex)
1456		return val;
1457
1458	if (!priv->pause_aneg_en) {
1459		if (priv->tx_pause_en)
1460			val |= MACCFG1_TX_FLOW;
1461		if (priv->rx_pause_en)
1462			val |= MACCFG1_RX_FLOW;
1463	} else {
1464		u16 lcl_adv, rmt_adv;
1465		u8 flowctrl;
1466		/* get link partner capabilities */
1467		rmt_adv = 0;
1468		if (phydev->pause)
1469			rmt_adv = LPA_PAUSE_CAP;
1470		if (phydev->asym_pause)
1471			rmt_adv |= LPA_PAUSE_ASYM;
1472
1473		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1474		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1475		if (flowctrl & FLOW_CTRL_TX)
1476			val |= MACCFG1_TX_FLOW;
1477		if (flowctrl & FLOW_CTRL_RX)
1478			val |= MACCFG1_RX_FLOW;
1479	}
1480
1481	return val;
1482}
1483
1484static noinline void gfar_update_link_state(struct gfar_private *priv)
1485{
1486	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1487	struct net_device *ndev = priv->ndev;
1488	struct phy_device *phydev = ndev->phydev;
1489	struct gfar_priv_rx_q *rx_queue = NULL;
1490	int i;
1491
1492	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1493		return;
1494
1495	if (phydev->link) {
1496		u32 tempval1 = gfar_read(&regs->maccfg1);
1497		u32 tempval = gfar_read(&regs->maccfg2);
1498		u32 ecntrl = gfar_read(&regs->ecntrl);
1499		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1500
1501		if (phydev->duplex != priv->oldduplex) {
1502			if (!(phydev->duplex))
1503				tempval &= ~(MACCFG2_FULL_DUPLEX);
1504			else
1505				tempval |= MACCFG2_FULL_DUPLEX;
1506
1507			priv->oldduplex = phydev->duplex;
1508		}
1509
1510		if (phydev->speed != priv->oldspeed) {
1511			switch (phydev->speed) {
1512			case 1000:
1513				tempval =
1514				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1515
1516				ecntrl &= ~(ECNTRL_R100);
1517				break;
1518			case 100:
1519			case 10:
1520				tempval =
1521				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1522
1523				/* Reduced mode distinguishes
1524				 * between 10 and 100
1525				 */
1526				if (phydev->speed == SPEED_100)
1527					ecntrl |= ECNTRL_R100;
1528				else
1529					ecntrl &= ~(ECNTRL_R100);
1530				break;
1531			default:
1532				netif_warn(priv, link, priv->ndev,
1533					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1534					   phydev->speed);
1535				break;
1536			}
1537
1538			priv->oldspeed = phydev->speed;
1539		}
1540
1541		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1542		tempval1 |= gfar_get_flowctrl_cfg(priv);
1543
1544		/* Turn last free buffer recording on */
1545		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1546			for (i = 0; i < priv->num_rx_queues; i++) {
1547				u32 bdp_dma;
1548
1549				rx_queue = priv->rx_queue[i];
1550				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1551				gfar_write(rx_queue->rfbptr, bdp_dma);
1552			}
1553
1554			priv->tx_actual_en = 1;
1555		}
1556
1557		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1558			priv->tx_actual_en = 0;
1559
1560		gfar_write(&regs->maccfg1, tempval1);
1561		gfar_write(&regs->maccfg2, tempval);
1562		gfar_write(&regs->ecntrl, ecntrl);
1563
1564		if (!priv->oldlink)
1565			priv->oldlink = 1;
1566
1567	} else if (priv->oldlink) {
1568		priv->oldlink = 0;
1569		priv->oldspeed = 0;
1570		priv->oldduplex = -1;
1571	}
1572
1573	if (netif_msg_link(priv))
1574		phy_print_status(phydev);
1575}
1576
1577/* Called every time the controller might need to be made
1578 * aware of new link state.  The PHY code conveys this
1579 * information through variables in the phydev structure, and this
1580 * function converts those variables into the appropriate
1581 * register values, and can bring down the device if needed.
1582 */
1583static void adjust_link(struct net_device *dev)
1584{
1585	struct gfar_private *priv = netdev_priv(dev);
1586	struct phy_device *phydev = dev->phydev;
1587
1588	if (unlikely(phydev->link != priv->oldlink ||
1589		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1590				       phydev->speed != priv->oldspeed))))
1591		gfar_update_link_state(priv);
1592}
1593
1594/* Initialize TBI PHY interface for communicating with the
1595 * SERDES lynx PHY on the chip.  We communicate with this PHY
1596 * through the MDIO bus on each controller, treating it as a
1597 * "normal" PHY at the address found in the TBIPA register.  We assume
1598 * that the TBIPA register is valid.  Either the MDIO bus code will set
1599 * it to a value that doesn't conflict with other PHYs on the bus, or the
1600 * value doesn't matter, as there are no other PHYs on the bus.
1601 */
1602static void gfar_configure_serdes(struct net_device *dev)
1603{
1604	struct gfar_private *priv = netdev_priv(dev);
1605	struct phy_device *tbiphy;
1606
1607	if (!priv->tbi_node) {
1608		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1609				    "device tree specify a tbi-handle\n");
1610		return;
1611	}
1612
1613	tbiphy = of_phy_find_device(priv->tbi_node);
1614	if (!tbiphy) {
1615		dev_err(&dev->dev, "error: Could not get TBI device\n");
1616		return;
1617	}
1618
1619	/* If the link is already up, we must already be ok, and don't need to
1620	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1621	 * everything for us?  Resetting it takes the link down and requires
1622	 * several seconds for it to come back.
1623	 */
1624	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1625		put_device(&tbiphy->mdio.dev);
1626		return;
1627	}
1628
1629	/* Single clk mode, mii mode off(for serdes communication) */
1630	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1631
1632	phy_write(tbiphy, MII_ADVERTISE,
1633		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1634		  ADVERTISE_1000XPSE_ASYM);
1635
1636	phy_write(tbiphy, MII_BMCR,
1637		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1638		  BMCR_SPEED1000);
1639
1640	put_device(&tbiphy->mdio.dev);
1641}
1642
1643/* Initializes driver's PHY state, and attaches to the PHY.
1644 * Returns 0 on success.
1645 */
1646static int init_phy(struct net_device *dev)
1647{
1648	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1649	struct gfar_private *priv = netdev_priv(dev);
1650	phy_interface_t interface = priv->interface;
1651	struct phy_device *phydev;
1652	struct ethtool_eee edata;
1653
1654	linkmode_set_bit_array(phy_10_100_features_array,
1655			       ARRAY_SIZE(phy_10_100_features_array),
1656			       mask);
1657	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1658	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1659	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1660		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1661
1662	priv->oldlink = 0;
1663	priv->oldspeed = 0;
1664	priv->oldduplex = -1;
1665
1666	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1667				interface);
1668	if (!phydev) {
1669		dev_err(&dev->dev, "could not attach to PHY\n");
1670		return -ENODEV;
1671	}
1672
1673	if (interface == PHY_INTERFACE_MODE_SGMII)
1674		gfar_configure_serdes(dev);
1675
1676	/* Remove any features not supported by the controller */
1677	linkmode_and(phydev->supported, phydev->supported, mask);
1678	linkmode_copy(phydev->advertising, phydev->supported);
1679
1680	/* Add support for flow control */
1681	phy_support_asym_pause(phydev);
1682
1683	/* disable EEE autoneg, EEE not supported by eTSEC */
1684	memset(&edata, 0, sizeof(struct ethtool_eee));
1685	phy_ethtool_set_eee(phydev, &edata);
1686
1687	return 0;
1688}
1689
1690static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1691{
1692	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1693
1694	memset(fcb, 0, GMAC_FCB_LEN);
1695
1696	return fcb;
1697}
1698
1699static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1700				    int fcb_length)
1701{
1702	/* If we're here, it's a IP packet with a TCP or UDP
1703	 * payload.  We set it to checksum, using a pseudo-header
1704	 * we provide
1705	 */
1706	u8 flags = TXFCB_DEFAULT;
1707
1708	/* Tell the controller what the protocol is
1709	 * And provide the already calculated phcs
1710	 */
1711	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1712		flags |= TXFCB_UDP;
1713		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1714	} else
1715		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1716
1717	/* l3os is the distance between the start of the
1718	 * frame (skb->data) and the start of the IP hdr.
1719	 * l4os is the distance between the start of the
1720	 * l3 hdr and the l4 hdr
1721	 */
1722	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1723	fcb->l4os = skb_network_header_len(skb);
1724
1725	fcb->flags = flags;
1726}
1727
1728static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1729{
1730	fcb->flags |= TXFCB_VLN;
1731	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1732}
1733
1734static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1735				      struct txbd8 *base, int ring_size)
1736{
1737	struct txbd8 *new_bd = bdp + stride;
1738
1739	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1740}
1741
1742static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1743				      int ring_size)
1744{
1745	return skip_txbd(bdp, 1, base, ring_size);
1746}
1747
1748/* eTSEC12: csum generation not supported for some fcb offsets */
1749static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1750				       unsigned long fcb_addr)
1751{
1752	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1753	       (fcb_addr % 0x20) > 0x18);
1754}
1755
1756/* eTSEC76: csum generation for frames larger than 2500 may
1757 * cause excess delays before start of transmission
1758 */
1759static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1760				       unsigned int len)
1761{
1762	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1763	       (len > 2500));
1764}
1765
1766/* This is called by the kernel when a frame is ready for transmission.
1767 * It is pointed to by the dev->hard_start_xmit function pointer
1768 */
1769static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1770{
1771	struct gfar_private *priv = netdev_priv(dev);
1772	struct gfar_priv_tx_q *tx_queue = NULL;
1773	struct netdev_queue *txq;
1774	struct gfar __iomem *regs = NULL;
1775	struct txfcb *fcb = NULL;
1776	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1777	u32 lstatus;
1778	skb_frag_t *frag;
1779	int i, rq = 0;
1780	int do_tstamp, do_csum, do_vlan;
1781	u32 bufaddr;
 
1782	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1783
1784	rq = skb->queue_mapping;
1785	tx_queue = priv->tx_queue[rq];
1786	txq = netdev_get_tx_queue(dev, rq);
1787	base = tx_queue->tx_bd_base;
1788	regs = tx_queue->grp->regs;
1789
1790	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1791	do_vlan = skb_vlan_tag_present(skb);
1792	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1793		    priv->hwts_tx_en;
1794
1795	if (do_csum || do_vlan)
1796		fcb_len = GMAC_FCB_LEN;
1797
1798	/* check if time stamp should be generated */
1799	if (unlikely(do_tstamp))
1800		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1801
1802	/* make space for additional header when fcb is needed */
1803	if (fcb_len) {
1804		if (unlikely(skb_cow_head(skb, fcb_len))) {
 
 
 
1805			dev->stats.tx_errors++;
1806			dev_kfree_skb_any(skb);
1807			return NETDEV_TX_OK;
1808		}
 
 
 
 
 
1809	}
1810
1811	/* total number of fragments in the SKB */
1812	nr_frags = skb_shinfo(skb)->nr_frags;
1813
1814	/* calculate the required number of TxBDs for this skb */
1815	if (unlikely(do_tstamp))
1816		nr_txbds = nr_frags + 2;
1817	else
1818		nr_txbds = nr_frags + 1;
1819
1820	/* check if there is space to queue this packet */
1821	if (nr_txbds > tx_queue->num_txbdfree) {
1822		/* no space, stop the queue */
1823		netif_tx_stop_queue(txq);
1824		dev->stats.tx_fifo_errors++;
1825		return NETDEV_TX_BUSY;
1826	}
1827
1828	/* Update transmit stats */
1829	bytes_sent = skb->len;
1830	tx_queue->stats.tx_bytes += bytes_sent;
1831	/* keep Tx bytes on wire for BQL accounting */
1832	GFAR_CB(skb)->bytes_sent = bytes_sent;
1833	tx_queue->stats.tx_packets++;
1834
1835	txbdp = txbdp_start = tx_queue->cur_tx;
1836	lstatus = be32_to_cpu(txbdp->lstatus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1837
1838	/* Add TxPAL between FCB and frame if required */
1839	if (unlikely(do_tstamp)) {
1840		skb_push(skb, GMAC_TXPAL_LEN);
1841		memset(skb->data, 0, GMAC_TXPAL_LEN);
1842	}
1843
1844	/* Add TxFCB if required */
1845	if (fcb_len) {
1846		fcb = gfar_add_fcb(skb);
1847		lstatus |= BD_LFLAG(TXBD_TOE);
1848	}
1849
1850	/* Set up checksumming */
1851	if (do_csum) {
1852		gfar_tx_checksum(skb, fcb, fcb_len);
1853
1854		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1855		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1856			__skb_pull(skb, GMAC_FCB_LEN);
1857			skb_checksum_help(skb);
1858			if (do_vlan || do_tstamp) {
1859				/* put back a new fcb for vlan/tstamp TOE */
1860				fcb = gfar_add_fcb(skb);
1861			} else {
1862				/* Tx TOE not used */
1863				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1864				fcb = NULL;
1865			}
1866		}
1867	}
1868
1869	if (do_vlan)
1870		gfar_tx_vlan(skb, fcb);
1871
1872	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1873				 DMA_TO_DEVICE);
1874	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1875		goto dma_map_err;
 
1876
1877	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1878
1879	/* Time stamp insertion requires one additional TxBD */
1880	if (unlikely(do_tstamp))
1881		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1882						 tx_queue->tx_ring_size);
1883
1884	if (likely(!nr_frags)) {
1885		if (likely(!do_tstamp))
1886			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1887	} else {
1888		u32 lstatus_start = lstatus;
1889
1890		/* Place the fragment addresses and lengths into the TxBDs */
1891		frag = &skb_shinfo(skb)->frags[0];
1892		for (i = 0; i < nr_frags; i++, frag++) {
1893			unsigned int size;
1894
1895			/* Point at the next BD, wrapping as needed */
1896			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1897
1898			size = skb_frag_size(frag);
1899
1900			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1901				  BD_LFLAG(TXBD_READY);
1902
1903			/* Handle the last BD specially */
1904			if (i == nr_frags - 1)
1905				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1906
1907			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1908						   size, DMA_TO_DEVICE);
1909			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1910				goto dma_map_err;
1911
1912			/* set the TxBD length and buffer pointer */
1913			txbdp->bufPtr = cpu_to_be32(bufaddr);
1914			txbdp->lstatus = cpu_to_be32(lstatus);
1915		}
1916
1917		lstatus = lstatus_start;
1918	}
1919
1920	/* If time stamping is requested one additional TxBD must be set up. The
1921	 * first TxBD points to the FCB and must have a data length of
1922	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1923	 * the full frame length.
1924	 */
1925	if (unlikely(do_tstamp)) {
1926		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1927
1928		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1929		bufaddr += fcb_len;
1930
1931		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1932			      (skb_headlen(skb) - fcb_len);
1933		if (!nr_frags)
1934			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1935
1936		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1937		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1938		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1939
1940		/* Setup tx hardware time stamping */
1941		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1942		fcb->ptp = 1;
1943	} else {
1944		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1945	}
1946
1947	skb_tx_timestamp(skb);
1948	netdev_tx_sent_queue(txq, bytes_sent);
1949
1950	gfar_wmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1951
1952	txbdp_start->lstatus = cpu_to_be32(lstatus);
1953
1954	gfar_wmb(); /* force lstatus write before tx_skbuff */
1955
1956	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1957
1958	/* Update the current skb pointer to the next entry we will use
1959	 * (wrapping if necessary)
1960	 */
1961	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1962			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1963
1964	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1965
1966	/* We can work in parallel with gfar_clean_tx_ring(), except
1967	 * when modifying num_txbdfree. Note that we didn't grab the lock
1968	 * when we were reading the num_txbdfree and checking for available
1969	 * space, that's because outside of this function it can only grow.
1970	 */
1971	spin_lock_bh(&tx_queue->txlock);
1972	/* reduce TxBD free count */
1973	tx_queue->num_txbdfree -= (nr_txbds);
1974	spin_unlock_bh(&tx_queue->txlock);
1975
1976	/* If the next BD still needs to be cleaned up, then the bds
1977	 * are full.  We need to tell the kernel to stop sending us stuff.
1978	 */
1979	if (!tx_queue->num_txbdfree) {
1980		netif_tx_stop_queue(txq);
1981
1982		dev->stats.tx_fifo_errors++;
1983	}
1984
1985	/* Tell the DMA to go go go */
1986	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1987
 
 
 
1988	return NETDEV_TX_OK;
 
 
 
 
 
 
1989
1990dma_map_err:
1991	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1992	if (do_tstamp)
1993		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1994	for (i = 0; i < nr_frags; i++) {
1995		lstatus = be32_to_cpu(txbdp->lstatus);
1996		if (!(lstatus & BD_LFLAG(TXBD_READY)))
1997			break;
1998
1999		lstatus &= ~BD_LFLAG(TXBD_READY);
2000		txbdp->lstatus = cpu_to_be32(lstatus);
2001		bufaddr = be32_to_cpu(txbdp->bufPtr);
2002		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2003			       DMA_TO_DEVICE);
2004		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2005	}
2006	gfar_wmb();
2007	dev_kfree_skb_any(skb);
2008	return NETDEV_TX_OK;
2009}
2010
2011/* Changes the mac address if the controller is not running. */
2012static int gfar_set_mac_address(struct net_device *dev)
2013{
2014	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2015
2016	return 0;
2017}
2018
2019static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2020{
2021	struct gfar_private *priv = netdev_priv(dev);
 
 
 
 
 
 
2022
2023	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2024		cpu_relax();
2025
2026	if (dev->flags & IFF_UP)
2027		stop_gfar(dev);
2028
2029	dev->mtu = new_mtu;
2030
2031	if (dev->flags & IFF_UP)
2032		startup_gfar(dev);
2033
2034	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2035
2036	return 0;
2037}
2038
2039static void reset_gfar(struct net_device *ndev)
2040{
2041	struct gfar_private *priv = netdev_priv(ndev);
2042
2043	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2044		cpu_relax();
2045
2046	stop_gfar(ndev);
2047	startup_gfar(ndev);
2048
2049	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2050}
2051
2052/* gfar_reset_task gets scheduled when a packet has not been
2053 * transmitted after a set amount of time.
2054 * For now, assume that clearing out all the structures, and
2055 * starting over will fix the problem.
2056 */
2057static void gfar_reset_task(struct work_struct *work)
2058{
2059	struct gfar_private *priv = container_of(work, struct gfar_private,
2060						 reset_task);
2061	reset_gfar(priv->ndev);
2062}
2063
2064static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2065{
2066	struct gfar_private *priv = netdev_priv(dev);
2067
2068	dev->stats.tx_errors++;
2069	schedule_work(&priv->reset_task);
2070}
2071
2072static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2073{
2074	struct hwtstamp_config config;
2075	struct gfar_private *priv = netdev_priv(netdev);
2076
2077	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2078		return -EFAULT;
2079
2080	switch (config.tx_type) {
2081	case HWTSTAMP_TX_OFF:
2082		priv->hwts_tx_en = 0;
2083		break;
2084	case HWTSTAMP_TX_ON:
2085		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2086			return -ERANGE;
2087		priv->hwts_tx_en = 1;
2088		break;
2089	default:
2090		return -ERANGE;
2091	}
2092
2093	switch (config.rx_filter) {
2094	case HWTSTAMP_FILTER_NONE:
2095		if (priv->hwts_rx_en) {
2096			priv->hwts_rx_en = 0;
2097			reset_gfar(netdev);
2098		}
2099		break;
2100	default:
2101		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2102			return -ERANGE;
2103		if (!priv->hwts_rx_en) {
2104			priv->hwts_rx_en = 1;
2105			reset_gfar(netdev);
2106		}
2107		config.rx_filter = HWTSTAMP_FILTER_ALL;
2108		break;
2109	}
2110
2111	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2112		-EFAULT : 0;
2113}
2114
2115static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2116{
2117	struct hwtstamp_config config;
2118	struct gfar_private *priv = netdev_priv(netdev);
2119
2120	config.flags = 0;
2121	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2122	config.rx_filter = (priv->hwts_rx_en ?
2123			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2124
2125	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2126		-EFAULT : 0;
2127}
2128
2129static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2130{
2131	struct phy_device *phydev = dev->phydev;
2132
2133	if (!netif_running(dev))
2134		return -EINVAL;
2135
2136	if (cmd == SIOCSHWTSTAMP)
2137		return gfar_hwtstamp_set(dev, rq);
2138	if (cmd == SIOCGHWTSTAMP)
2139		return gfar_hwtstamp_get(dev, rq);
2140
2141	if (!phydev)
2142		return -ENODEV;
2143
2144	return phy_mii_ioctl(phydev, rq, cmd);
2145}
2146
2147/* Interrupt Handler for Transmit complete */
2148static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2149{
2150	struct net_device *dev = tx_queue->dev;
2151	struct netdev_queue *txq;
2152	struct gfar_private *priv = netdev_priv(dev);
2153	struct txbd8 *bdp, *next = NULL;
2154	struct txbd8 *lbdp = NULL;
2155	struct txbd8 *base = tx_queue->tx_bd_base;
2156	struct sk_buff *skb;
2157	int skb_dirtytx;
2158	int tx_ring_size = tx_queue->tx_ring_size;
2159	int frags = 0, nr_txbds = 0;
2160	int i;
2161	int howmany = 0;
2162	int tqi = tx_queue->qindex;
2163	unsigned int bytes_sent = 0;
2164	u32 lstatus;
2165	size_t buflen;
2166
2167	txq = netdev_get_tx_queue(dev, tqi);
2168	bdp = tx_queue->dirty_tx;
2169	skb_dirtytx = tx_queue->skb_dirtytx;
2170
2171	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2172		bool do_tstamp;
2173
2174		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2175			    priv->hwts_tx_en;
2176
2177		frags = skb_shinfo(skb)->nr_frags;
2178
2179		/* When time stamping, one additional TxBD must be freed.
2180		 * Also, we need to dma_unmap_single() the TxPAL.
2181		 */
2182		if (unlikely(do_tstamp))
2183			nr_txbds = frags + 2;
2184		else
2185			nr_txbds = frags + 1;
2186
2187		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2188
2189		lstatus = be32_to_cpu(lbdp->lstatus);
2190
2191		/* Only clean completed frames */
2192		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2193		    (lstatus & BD_LENGTH_MASK))
2194			break;
2195
2196		if (unlikely(do_tstamp)) {
2197			next = next_txbd(bdp, base, tx_ring_size);
2198			buflen = be16_to_cpu(next->length) +
2199				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2200		} else
2201			buflen = be16_to_cpu(bdp->length);
2202
2203		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2204				 buflen, DMA_TO_DEVICE);
2205
2206		if (unlikely(do_tstamp)) {
2207			struct skb_shared_hwtstamps shhwtstamps;
2208			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2209					  ~0x7UL);
2210
2211			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2212			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2213			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2214			skb_tstamp_tx(skb, &shhwtstamps);
2215			gfar_clear_txbd_status(bdp);
2216			bdp = next;
2217		}
2218
2219		gfar_clear_txbd_status(bdp);
2220		bdp = next_txbd(bdp, base, tx_ring_size);
2221
2222		for (i = 0; i < frags; i++) {
2223			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2224				       be16_to_cpu(bdp->length),
2225				       DMA_TO_DEVICE);
2226			gfar_clear_txbd_status(bdp);
2227			bdp = next_txbd(bdp, base, tx_ring_size);
2228		}
2229
2230		bytes_sent += GFAR_CB(skb)->bytes_sent;
2231
2232		dev_kfree_skb_any(skb);
2233
2234		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2235
2236		skb_dirtytx = (skb_dirtytx + 1) &
2237			      TX_RING_MOD_MASK(tx_ring_size);
2238
2239		howmany++;
2240		spin_lock(&tx_queue->txlock);
2241		tx_queue->num_txbdfree += nr_txbds;
2242		spin_unlock(&tx_queue->txlock);
2243	}
2244
2245	/* If we freed a buffer, we can restart transmission, if necessary */
2246	if (tx_queue->num_txbdfree &&
2247	    netif_tx_queue_stopped(txq) &&
2248	    !(test_bit(GFAR_DOWN, &priv->state)))
2249		netif_wake_subqueue(priv->ndev, tqi);
2250
2251	/* Update dirty indicators */
2252	tx_queue->skb_dirtytx = skb_dirtytx;
2253	tx_queue->dirty_tx = bdp;
2254
2255	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2256}
2257
2258static void count_errors(u32 lstatus, struct net_device *ndev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2259{
2260	struct gfar_private *priv = netdev_priv(ndev);
2261	struct net_device_stats *stats = &ndev->stats;
 
 
 
 
 
2262	struct gfar_extra_stats *estats = &priv->extra_stats;
2263
2264	/* If the packet was truncated, none of the other errors matter */
2265	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2266		stats->rx_length_errors++;
2267
2268		atomic64_inc(&estats->rx_trunc);
2269
2270		return;
2271	}
2272	/* Count the errors, if there were any */
2273	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2274		stats->rx_length_errors++;
2275
2276		if (lstatus & BD_LFLAG(RXBD_LARGE))
2277			atomic64_inc(&estats->rx_large);
2278		else
2279			atomic64_inc(&estats->rx_short);
2280	}
2281	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2282		stats->rx_frame_errors++;
2283		atomic64_inc(&estats->rx_nonoctet);
2284	}
2285	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2286		atomic64_inc(&estats->rx_crcerr);
2287		stats->rx_crc_errors++;
2288	}
2289	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2290		atomic64_inc(&estats->rx_overrun);
2291		stats->rx_over_errors++;
2292	}
2293}
2294
2295static irqreturn_t gfar_receive(int irq, void *grp_id)
2296{
2297	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2298	unsigned long flags;
2299	u32 imask, ievent;
2300
2301	ievent = gfar_read(&grp->regs->ievent);
2302
2303	if (unlikely(ievent & IEVENT_FGPI)) {
2304		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2305		return IRQ_HANDLED;
2306	}
2307
2308	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2309		spin_lock_irqsave(&grp->grplock, flags);
2310		imask = gfar_read(&grp->regs->imask);
2311		imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask;
2312		gfar_write(&grp->regs->imask, imask);
2313		spin_unlock_irqrestore(&grp->grplock, flags);
2314		__napi_schedule(&grp->napi_rx);
2315	} else {
2316		/* Clear IEVENT, so interrupts aren't called again
2317		 * because of the packets that have already arrived.
2318		 */
2319		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2320	}
2321
2322	return IRQ_HANDLED;
2323}
2324
2325/* Interrupt Handler for Transmit complete */
2326static irqreturn_t gfar_transmit(int irq, void *grp_id)
2327{
2328	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2329	unsigned long flags;
2330	u32 imask;
2331
2332	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2333		spin_lock_irqsave(&grp->grplock, flags);
2334		imask = gfar_read(&grp->regs->imask);
2335		imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask;
2336		gfar_write(&grp->regs->imask, imask);
2337		spin_unlock_irqrestore(&grp->grplock, flags);
2338		__napi_schedule(&grp->napi_tx);
2339	} else {
2340		/* Clear IEVENT, so interrupts aren't called again
2341		 * because of the packets that have already arrived.
2342		 */
2343		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2344	}
2345
2346	return IRQ_HANDLED;
2347}
2348
2349static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2350			     struct sk_buff *skb, bool first)
2351{
2352	int size = lstatus & BD_LENGTH_MASK;
2353	struct page *page = rxb->page;
2354
2355	if (likely(first)) {
2356		skb_put(skb, size);
2357	} else {
2358		/* the last fragments' length contains the full frame length */
2359		if (lstatus & BD_LFLAG(RXBD_LAST))
2360			size -= skb->len;
2361
2362		WARN(size < 0, "gianfar: rx fragment size underflow");
2363		if (size < 0)
2364			return false;
2365
2366		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2367				rxb->page_offset + RXBUF_ALIGNMENT,
2368				size, GFAR_RXB_TRUESIZE);
2369	}
2370
2371	/* try reuse page */
2372	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2373		return false;
2374
2375	/* change offset to the other half */
2376	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2377
2378	page_ref_inc(page);
2379
2380	return true;
2381}
2382
2383static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2384			       struct gfar_rx_buff *old_rxb)
2385{
2386	struct gfar_rx_buff *new_rxb;
2387	u16 nta = rxq->next_to_alloc;
2388
2389	new_rxb = &rxq->rx_buff[nta];
2390
2391	/* find next buf that can reuse a page */
2392	nta++;
2393	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2394
2395	/* copy page reference */
2396	*new_rxb = *old_rxb;
2397
2398	/* sync for use by the device */
2399	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2400					 old_rxb->page_offset,
2401					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2402}
2403
2404static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2405					    u32 lstatus, struct sk_buff *skb)
2406{
2407	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2408	struct page *page = rxb->page;
2409	bool first = false;
2410
2411	if (likely(!skb)) {
2412		void *buff_addr = page_address(page) + rxb->page_offset;
2413
2414		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2415		if (unlikely(!skb)) {
2416			gfar_rx_alloc_err(rx_queue);
2417			return NULL;
2418		}
2419		skb_reserve(skb, RXBUF_ALIGNMENT);
2420		first = true;
2421	}
2422
2423	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2424				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2425
2426	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2427		/* reuse the free half of the page */
2428		gfar_reuse_rx_page(rx_queue, rxb);
2429	} else {
2430		/* page cannot be reused, unmap it */
2431		dma_unmap_page(rx_queue->dev, rxb->dma,
2432			       PAGE_SIZE, DMA_FROM_DEVICE);
2433	}
2434
2435	/* clear rxb content */
2436	rxb->page = NULL;
2437
2438	return skb;
2439}
2440
2441static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2442{
2443	/* If valid headers were found, and valid sums
2444	 * were verified, then we tell the kernel that no
2445	 * checksumming is necessary.  Otherwise, it is [FIXME]
2446	 */
2447	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2448	    (RXFCB_CIP | RXFCB_CTU))
2449		skb->ip_summed = CHECKSUM_UNNECESSARY;
2450	else
2451		skb_checksum_none_assert(skb);
2452}
2453
 
2454/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2455static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
 
2456{
2457	struct gfar_private *priv = netdev_priv(ndev);
2458	struct rxfcb *fcb = NULL;
2459
2460	/* fcb is at the beginning if exists */
2461	fcb = (struct rxfcb *)skb->data;
2462
2463	/* Remove the FCB from the skb
2464	 * Remove the padded bytes, if there are any
2465	 */
2466	if (priv->uses_rxfcb)
2467		skb_pull(skb, GMAC_FCB_LEN);
 
 
2468
2469	/* Get receive timestamp from the skb */
2470	if (priv->hwts_rx_en) {
2471		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2472		u64 *ns = (u64 *) skb->data;
2473
2474		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2475		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2476	}
2477
2478	if (priv->padding)
2479		skb_pull(skb, priv->padding);
2480
2481	/* Trim off the FCS */
2482	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2483
2484	if (ndev->features & NETIF_F_RXCSUM)
2485		gfar_rx_checksum(skb, fcb);
2486
2487	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2488	 * Even if vlan rx accel is disabled, on some chips
2489	 * RXFCB_VLN is pseudo randomly set.
2490	 */
2491	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2492	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2493		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2494				       be16_to_cpu(fcb->vlctl));
 
 
 
2495}
2496
2497/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2498 * until the budget/quota has been reached. Returns the number
2499 * of frames handled
2500 */
2501static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2502			      int rx_work_limit)
2503{
2504	struct net_device *ndev = rx_queue->ndev;
2505	struct gfar_private *priv = netdev_priv(ndev);
2506	struct rxbd8 *bdp;
2507	int i, howmany = 0;
2508	struct sk_buff *skb = rx_queue->skb;
2509	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2510	unsigned int total_bytes = 0, total_pkts = 0;
2511
2512	/* Get the first full descriptor */
2513	i = rx_queue->next_to_clean;
2514
2515	while (rx_work_limit--) {
2516		u32 lstatus;
2517
2518		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2519			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2520			cleaned_cnt = 0;
2521		}
2522
2523		bdp = &rx_queue->rx_bd_base[i];
2524		lstatus = be32_to_cpu(bdp->lstatus);
2525		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2526			break;
2527
2528		/* lost RXBD_LAST descriptor due to overrun */
2529		if (skb &&
2530		    (lstatus & BD_LFLAG(RXBD_FIRST))) {
2531			/* discard faulty buffer */
2532			dev_kfree_skb(skb);
2533			skb = NULL;
2534			rx_queue->stats.rx_dropped++;
2535
2536			/* can continue normally */
2537		}
2538
2539		/* order rx buffer descriptor reads */
2540		rmb();
2541
2542		/* fetch next to clean buffer from the ring */
2543		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2544		if (unlikely(!skb))
2545			break;
2546
2547		cleaned_cnt++;
2548		howmany++;
2549
2550		if (unlikely(++i == rx_queue->rx_ring_size))
2551			i = 0;
2552
2553		rx_queue->next_to_clean = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2554
2555		/* fetch next buffer if not the last in frame */
2556		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2557			continue;
 
 
2558
2559		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2560			count_errors(lstatus, ndev);
2561
2562			/* discard faulty buffer */
2563			dev_kfree_skb(skb);
2564			skb = NULL;
2565			rx_queue->stats.rx_dropped++;
2566			continue;
2567		}
2568
2569		gfar_process_frame(ndev, skb);
2570
2571		/* Increment the number of packets */
2572		total_pkts++;
2573		total_bytes += skb->len;
2574
2575		skb_record_rx_queue(skb, rx_queue->qindex);
2576
2577		skb->protocol = eth_type_trans(skb, ndev);
2578
2579		/* Send the packet up the stack */
2580		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2581
2582		skb = NULL;
 
 
2583	}
2584
2585	/* Store incomplete frames for completion */
2586	rx_queue->skb = skb;
2587
2588	rx_queue->stats.rx_packets += total_pkts;
2589	rx_queue->stats.rx_bytes += total_bytes;
2590
2591	if (cleaned_cnt)
2592		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2593
2594	/* Update Last Free RxBD pointer for LFC */
2595	if (unlikely(priv->tx_actual_en)) {
2596		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2597
2598		gfar_write(rx_queue->rfbptr, bdp_dma);
2599	}
2600
2601	return howmany;
2602}
2603
2604static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2605{
2606	struct gfar_priv_grp *gfargrp =
2607		container_of(napi, struct gfar_priv_grp, napi_rx);
2608	struct gfar __iomem *regs = gfargrp->regs;
2609	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2610	int work_done = 0;
2611
2612	/* Clear IEVENT, so interrupts aren't called again
2613	 * because of the packets that have already arrived
2614	 */
2615	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2616
2617	work_done = gfar_clean_rx_ring(rx_queue, budget);
2618
2619	if (work_done < budget) {
2620		u32 imask;
2621		napi_complete_done(napi, work_done);
2622		/* Clear the halt bit in RSTAT */
2623		gfar_write(&regs->rstat, gfargrp->rstat);
2624
2625		spin_lock_irq(&gfargrp->grplock);
2626		imask = gfar_read(&regs->imask);
2627		imask |= IMASK_RX_DEFAULT;
2628		gfar_write(&regs->imask, imask);
2629		spin_unlock_irq(&gfargrp->grplock);
2630	}
2631
2632	return work_done;
2633}
2634
2635static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2636{
2637	struct gfar_priv_grp *gfargrp =
2638		container_of(napi, struct gfar_priv_grp, napi_tx);
2639	struct gfar __iomem *regs = gfargrp->regs;
2640	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2641	u32 imask;
2642
2643	/* Clear IEVENT, so interrupts aren't called again
2644	 * because of the packets that have already arrived
2645	 */
2646	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2647
2648	/* run Tx cleanup to completion */
2649	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2650		gfar_clean_tx_ring(tx_queue);
2651
2652	napi_complete(napi);
2653
2654	spin_lock_irq(&gfargrp->grplock);
2655	imask = gfar_read(&regs->imask);
2656	imask |= IMASK_TX_DEFAULT;
2657	gfar_write(&regs->imask, imask);
2658	spin_unlock_irq(&gfargrp->grplock);
2659
2660	return 0;
2661}
2662
2663/* GFAR error interrupt handler */
2664static irqreturn_t gfar_error(int irq, void *grp_id)
2665{
2666	struct gfar_priv_grp *gfargrp = grp_id;
 
 
2667	struct gfar __iomem *regs = gfargrp->regs;
2668	struct gfar_private *priv= gfargrp->priv;
2669	struct net_device *dev = priv->ndev;
 
 
 
2670
2671	/* Save ievent for future reference */
2672	u32 events = gfar_read(&regs->ievent);
 
 
2673
2674	/* Clear IEVENT */
2675	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2676
2677	/* Magic Packet is not an error. */
2678	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2679	    (events & IEVENT_MAG))
2680		events &= ~IEVENT_MAG;
 
 
 
 
2681
2682	/* Hmm... */
2683	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2684		netdev_dbg(dev,
2685			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2686			   events, gfar_read(&regs->imask));
 
 
 
 
 
 
2687
2688	/* Update the error counters */
2689	if (events & IEVENT_TXE) {
2690		dev->stats.tx_errors++;
2691
2692		if (events & IEVENT_LC)
2693			dev->stats.tx_window_errors++;
2694		if (events & IEVENT_CRL)
2695			dev->stats.tx_aborted_errors++;
2696		if (events & IEVENT_XFUN) {
2697			netif_dbg(priv, tx_err, dev,
2698				  "TX FIFO underrun, packet dropped\n");
2699			dev->stats.tx_dropped++;
2700			atomic64_inc(&priv->extra_stats.tx_underrun);
2701
2702			schedule_work(&priv->reset_task);
2703		}
2704		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2705	}
2706	if (events & IEVENT_MSRO) {
2707		struct rmon_mib __iomem *rmon = &regs->rmon;
2708		u32 car;
2709
2710		spin_lock(&priv->rmon_overflow.lock);
2711		car = gfar_read(&rmon->car1) & CAR1_C1RDR;
2712		if (car) {
2713			priv->rmon_overflow.rdrp++;
2714			gfar_write(&rmon->car1, car);
2715		}
2716		spin_unlock(&priv->rmon_overflow.lock);
2717	}
2718	if (events & IEVENT_BSY) {
2719		dev->stats.rx_over_errors++;
2720		atomic64_inc(&priv->extra_stats.rx_bsy);
2721
2722		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2723			  gfar_read(&regs->rstat));
2724	}
2725	if (events & IEVENT_BABR) {
2726		dev->stats.rx_errors++;
2727		atomic64_inc(&priv->extra_stats.rx_babr);
2728
2729		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2730	}
2731	if (events & IEVENT_EBERR) {
2732		atomic64_inc(&priv->extra_stats.eberr);
2733		netif_dbg(priv, rx_err, dev, "bus error\n");
2734	}
2735	if (events & IEVENT_RXC)
2736		netif_dbg(priv, rx_status, dev, "control frame\n");
2737
2738	if (events & IEVENT_BABT) {
2739		atomic64_inc(&priv->extra_stats.tx_babt);
2740		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2741	}
2742	return IRQ_HANDLED;
2743}
2744
2745/* The interrupt handler for devices with one interrupt */
2746static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2747{
2748	struct gfar_priv_grp *gfargrp = grp_id;
 
 
 
 
 
 
2749
2750	/* Save ievent for future reference */
2751	u32 events = gfar_read(&gfargrp->regs->ievent);
 
 
2752
2753	/* Check for reception */
2754	if (events & IEVENT_RX_MASK)
2755		gfar_receive(irq, grp_id);
 
 
 
 
 
2756
2757	/* Check for transmit completion */
2758	if (events & IEVENT_TX_MASK)
2759		gfar_transmit(irq, grp_id);
2760
2761	/* Check for errors */
2762	if (events & IEVENT_ERR_MASK)
2763		gfar_error(irq, grp_id);
 
 
 
2764
2765	return IRQ_HANDLED;
2766}
2767
 
2768#ifdef CONFIG_NET_POLL_CONTROLLER
2769/* Polling 'interrupt' - used by things like netconsole to send skbs
2770 * without having to re-enable interrupts. It's not called while
2771 * the interrupt routine is executing.
2772 */
2773static void gfar_netpoll(struct net_device *dev)
2774{
2775	struct gfar_private *priv = netdev_priv(dev);
2776	int i;
2777
2778	/* If the device has multiple interrupts, run tx/rx */
2779	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2780		for (i = 0; i < priv->num_grps; i++) {
2781			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2782
2783			disable_irq(gfar_irq(grp, TX)->irq);
2784			disable_irq(gfar_irq(grp, RX)->irq);
2785			disable_irq(gfar_irq(grp, ER)->irq);
2786			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2787			enable_irq(gfar_irq(grp, ER)->irq);
2788			enable_irq(gfar_irq(grp, RX)->irq);
2789			enable_irq(gfar_irq(grp, TX)->irq);
2790		}
2791	} else {
2792		for (i = 0; i < priv->num_grps; i++) {
2793			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2794
2795			disable_irq(gfar_irq(grp, TX)->irq);
2796			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2797			enable_irq(gfar_irq(grp, TX)->irq);
2798		}
2799	}
2800}
2801#endif
2802
2803static void free_grp_irqs(struct gfar_priv_grp *grp)
 
2804{
2805	free_irq(gfar_irq(grp, TX)->irq, grp);
2806	free_irq(gfar_irq(grp, RX)->irq, grp);
2807	free_irq(gfar_irq(grp, ER)->irq, grp);
2808}
2809
2810static int register_grp_irqs(struct gfar_priv_grp *grp)
2811{
2812	struct gfar_private *priv = grp->priv;
2813	struct net_device *dev = priv->ndev;
2814	int err;
2815
2816	/* If the device has multiple interrupts, register for
2817	 * them.  Otherwise, only register for the one
2818	 */
2819	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2820		/* Install our interrupt handlers for Error,
2821		 * Transmit, and Receive
2822		 */
2823		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2824				  gfar_irq(grp, ER)->name, grp);
2825		if (err < 0) {
2826			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2827				  gfar_irq(grp, ER)->irq);
2828
2829			goto err_irq_fail;
2830		}
2831		enable_irq_wake(gfar_irq(grp, ER)->irq);
2832
2833		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2834				  gfar_irq(grp, TX)->name, grp);
2835		if (err < 0) {
2836			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2837				  gfar_irq(grp, TX)->irq);
2838			goto tx_irq_fail;
2839		}
2840		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2841				  gfar_irq(grp, RX)->name, grp);
2842		if (err < 0) {
2843			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2844				  gfar_irq(grp, RX)->irq);
2845			goto rx_irq_fail;
2846		}
2847		enable_irq_wake(gfar_irq(grp, RX)->irq);
2848
2849	} else {
2850		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2851				  gfar_irq(grp, TX)->name, grp);
2852		if (err < 0) {
2853			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2854				  gfar_irq(grp, TX)->irq);
2855			goto err_irq_fail;
2856		}
2857		enable_irq_wake(gfar_irq(grp, TX)->irq);
2858	}
2859
2860	return 0;
2861
2862rx_irq_fail:
2863	free_irq(gfar_irq(grp, TX)->irq, grp);
2864tx_irq_fail:
2865	free_irq(gfar_irq(grp, ER)->irq, grp);
2866err_irq_fail:
2867	return err;
2868
 
2869}
2870
2871static void gfar_free_irq(struct gfar_private *priv)
2872{
2873	int i;
2874
2875	/* Free the IRQs */
2876	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2877		for (i = 0; i < priv->num_grps; i++)
2878			free_grp_irqs(&priv->gfargrp[i]);
2879	} else {
2880		for (i = 0; i < priv->num_grps; i++)
2881			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2882				 &priv->gfargrp[i]);
2883	}
2884}
2885
2886static int gfar_request_irq(struct gfar_private *priv)
2887{
2888	int err, i, j;
2889
2890	for (i = 0; i < priv->num_grps; i++) {
2891		err = register_grp_irqs(&priv->gfargrp[i]);
2892		if (err) {
2893			for (j = 0; j < i; j++)
2894				free_grp_irqs(&priv->gfargrp[j]);
2895			return err;
2896		}
2897	}
2898
2899	return 0;
2900}
2901
2902/* Called when something needs to use the ethernet device
2903 * Returns 0 for success.
2904 */
2905static int gfar_enet_open(struct net_device *dev)
2906{
2907	struct gfar_private *priv = netdev_priv(dev);
2908	int err;
2909
2910	err = init_phy(dev);
2911	if (err)
2912		return err;
2913
2914	err = gfar_request_irq(priv);
2915	if (err)
2916		return err;
2917
2918	err = startup_gfar(dev);
2919	if (err)
2920		return err;
2921
2922	return err;
2923}
2924
2925/* Stops the kernel queue, and halts the controller */
2926static int gfar_close(struct net_device *dev)
2927{
2928	struct gfar_private *priv = netdev_priv(dev);
2929
2930	cancel_work_sync(&priv->reset_task);
2931	stop_gfar(dev);
2932
2933	/* Disconnect from the PHY */
2934	phy_disconnect(dev->phydev);
2935
2936	gfar_free_irq(priv);
2937
2938	return 0;
2939}
2940
2941/* Clears each of the exact match registers to zero, so they
2942 * don't interfere with normal reception
2943 */
2944static void gfar_clear_exact_match(struct net_device *dev)
2945{
2946	int idx;
2947	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2948
2949	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2950		gfar_set_mac_for_addr(dev, idx, zero_arr);
2951}
2952
2953/* Update the hash table based on the current list of multicast
2954 * addresses we subscribe to.  Also, change the promiscuity of
2955 * the device based on the flags (this function is called
2956 * whenever dev->flags is changed
2957 */
2958static void gfar_set_multi(struct net_device *dev)
2959{
2960	struct netdev_hw_addr *ha;
2961	struct gfar_private *priv = netdev_priv(dev);
2962	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2963	u32 tempval;
2964
2965	if (dev->flags & IFF_PROMISC) {
2966		/* Set RCTRL to PROM */
2967		tempval = gfar_read(&regs->rctrl);
2968		tempval |= RCTRL_PROM;
2969		gfar_write(&regs->rctrl, tempval);
2970	} else {
2971		/* Set RCTRL to not PROM */
2972		tempval = gfar_read(&regs->rctrl);
2973		tempval &= ~(RCTRL_PROM);
2974		gfar_write(&regs->rctrl, tempval);
2975	}
2976
2977	if (dev->flags & IFF_ALLMULTI) {
2978		/* Set the hash to rx all multicast frames */
2979		gfar_write(&regs->igaddr0, 0xffffffff);
2980		gfar_write(&regs->igaddr1, 0xffffffff);
2981		gfar_write(&regs->igaddr2, 0xffffffff);
2982		gfar_write(&regs->igaddr3, 0xffffffff);
2983		gfar_write(&regs->igaddr4, 0xffffffff);
2984		gfar_write(&regs->igaddr5, 0xffffffff);
2985		gfar_write(&regs->igaddr6, 0xffffffff);
2986		gfar_write(&regs->igaddr7, 0xffffffff);
2987		gfar_write(&regs->gaddr0, 0xffffffff);
2988		gfar_write(&regs->gaddr1, 0xffffffff);
2989		gfar_write(&regs->gaddr2, 0xffffffff);
2990		gfar_write(&regs->gaddr3, 0xffffffff);
2991		gfar_write(&regs->gaddr4, 0xffffffff);
2992		gfar_write(&regs->gaddr5, 0xffffffff);
2993		gfar_write(&regs->gaddr6, 0xffffffff);
2994		gfar_write(&regs->gaddr7, 0xffffffff);
2995	} else {
2996		int em_num;
2997		int idx;
2998
2999		/* zero out the hash */
3000		gfar_write(&regs->igaddr0, 0x0);
3001		gfar_write(&regs->igaddr1, 0x0);
3002		gfar_write(&regs->igaddr2, 0x0);
3003		gfar_write(&regs->igaddr3, 0x0);
3004		gfar_write(&regs->igaddr4, 0x0);
3005		gfar_write(&regs->igaddr5, 0x0);
3006		gfar_write(&regs->igaddr6, 0x0);
3007		gfar_write(&regs->igaddr7, 0x0);
3008		gfar_write(&regs->gaddr0, 0x0);
3009		gfar_write(&regs->gaddr1, 0x0);
3010		gfar_write(&regs->gaddr2, 0x0);
3011		gfar_write(&regs->gaddr3, 0x0);
3012		gfar_write(&regs->gaddr4, 0x0);
3013		gfar_write(&regs->gaddr5, 0x0);
3014		gfar_write(&regs->gaddr6, 0x0);
3015		gfar_write(&regs->gaddr7, 0x0);
3016
3017		/* If we have extended hash tables, we need to
3018		 * clear the exact match registers to prepare for
3019		 * setting them
3020		 */
3021		if (priv->extended_hash) {
3022			em_num = GFAR_EM_NUM + 1;
3023			gfar_clear_exact_match(dev);
3024			idx = 1;
3025		} else {
3026			idx = 0;
3027			em_num = 0;
3028		}
3029
3030		if (netdev_mc_empty(dev))
3031			return;
3032
3033		/* Parse the list, and set the appropriate bits */
3034		netdev_for_each_mc_addr(ha, dev) {
3035			if (idx < em_num) {
3036				gfar_set_mac_for_addr(dev, idx, ha->addr);
3037				idx++;
3038			} else
3039				gfar_set_hash_for_addr(dev, ha->addr);
3040		}
3041	}
3042}
3043
3044void gfar_mac_reset(struct gfar_private *priv)
 
 
 
 
3045{
3046	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3047	u32 tempval;
3048
3049	/* Reset MAC layer */
3050	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
 
3051
3052	/* We need to delay at least 3 TX clocks */
3053	udelay(3);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054
3055	/* the soft reset bit is not self-resetting, so we need to
3056	 * clear it before resuming normal operation
3057	 */
3058	gfar_write(&regs->maccfg1, 0);
3059
3060	udelay(3);
3061
3062	gfar_rx_offload_en(priv);
3063
3064	/* Initialize the max receive frame/buffer lengths */
3065	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3066	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3067
3068	/* Initialize the Minimum Frame Length Register */
3069	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3070
3071	/* Initialize MACCFG2. */
3072	tempval = MACCFG2_INIT_SETTINGS;
3073
3074	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3075	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3076	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3077	 */
3078	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3079		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3080
3081	gfar_write(&regs->maccfg2, tempval);
3082
3083	/* Clear mac addr hash registers */
3084	gfar_write(&regs->igaddr0, 0);
3085	gfar_write(&regs->igaddr1, 0);
3086	gfar_write(&regs->igaddr2, 0);
3087	gfar_write(&regs->igaddr3, 0);
3088	gfar_write(&regs->igaddr4, 0);
3089	gfar_write(&regs->igaddr5, 0);
3090	gfar_write(&regs->igaddr6, 0);
3091	gfar_write(&regs->igaddr7, 0);
3092
3093	gfar_write(&regs->gaddr0, 0);
3094	gfar_write(&regs->gaddr1, 0);
3095	gfar_write(&regs->gaddr2, 0);
3096	gfar_write(&regs->gaddr3, 0);
3097	gfar_write(&regs->gaddr4, 0);
3098	gfar_write(&regs->gaddr5, 0);
3099	gfar_write(&regs->gaddr6, 0);
3100	gfar_write(&regs->gaddr7, 0);
3101
3102	if (priv->extended_hash)
3103		gfar_clear_exact_match(priv->ndev);
3104
3105	gfar_mac_rx_config(priv);
3106
3107	gfar_mac_tx_config(priv);
3108
3109	gfar_set_mac_address(priv->ndev);
3110
3111	gfar_set_multi(priv->ndev);
3112
3113	/* clear ievent and imask before configuring coalescing */
3114	gfar_ints_disable(priv);
3115
3116	/* Configure the coalescing support */
3117	gfar_configure_coalescing_all(priv);
3118}
3119
3120static void gfar_hw_init(struct gfar_private *priv)
3121{
 
3122	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3123	u32 attrs;
 
 
 
3124
3125	/* Stop the DMA engine now, in case it was running before
3126	 * (The firmware could have used it, and left it running).
3127	 */
3128	gfar_halt(priv);
3129
3130	gfar_mac_reset(priv);
3131
3132	/* Zero out the rmon mib registers if it has them */
3133	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3134		memset_io(&regs->rmon, 0, offsetof(struct rmon_mib, car1));
3135
3136		/* Mask off the CAM interrupts */
3137		gfar_write(&regs->rmon.cam1, 0xffffffff);
3138		gfar_write(&regs->rmon.cam2, 0xffffffff);
3139		/* Clear the CAR registers (w1c style) */
3140		gfar_write(&regs->rmon.car1, 0xffffffff);
3141		gfar_write(&regs->rmon.car2, 0xffffffff);
3142	}
3143
3144	/* Initialize ECNTRL */
3145	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3146
3147	/* Set the extraction length and index */
3148	attrs = ATTRELI_EL(priv->rx_stash_size) |
3149		ATTRELI_EI(priv->rx_stash_index);
3150
3151	gfar_write(&regs->attreli, attrs);
3152
3153	/* Start with defaults, and add stashing
3154	 * depending on driver parameters
3155	 */
3156	attrs = ATTR_INIT_SETTINGS;
 
3157
3158	if (priv->bd_stash_en)
3159		attrs |= ATTR_BDSTASH;
3160
3161	if (priv->rx_stash_size != 0)
3162		attrs |= ATTR_BUFSTASH;
3163
3164	gfar_write(&regs->attr, attrs);
3165
3166	/* FIFO configs */
3167	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3168	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3169	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3170
3171	/* Program the interrupt steering regs, only for MG devices */
3172	if (priv->num_grps > 1)
3173		gfar_write_isrg(priv);
3174}
3175
3176static const struct net_device_ops gfar_netdev_ops = {
3177	.ndo_open = gfar_enet_open,
3178	.ndo_start_xmit = gfar_start_xmit,
3179	.ndo_stop = gfar_close,
3180	.ndo_change_mtu = gfar_change_mtu,
3181	.ndo_set_features = gfar_set_features,
3182	.ndo_set_rx_mode = gfar_set_multi,
3183	.ndo_tx_timeout = gfar_timeout,
3184	.ndo_eth_ioctl = gfar_ioctl,
3185	.ndo_get_stats64 = gfar_get_stats64,
3186	.ndo_change_carrier = fixed_phy_change_carrier,
3187	.ndo_set_mac_address = gfar_set_mac_addr,
3188	.ndo_validate_addr = eth_validate_addr,
3189#ifdef CONFIG_NET_POLL_CONTROLLER
3190	.ndo_poll_controller = gfar_netpoll,
3191#endif
3192};
3193
3194/* Set up the ethernet device structure, private data,
3195 * and anything else we need before we start
3196 */
3197static int gfar_probe(struct platform_device *ofdev)
3198{
3199	struct device_node *np = ofdev->dev.of_node;
3200	struct net_device *dev = NULL;
3201	struct gfar_private *priv = NULL;
3202	int err = 0, i;
3203
3204	err = gfar_of_init(ofdev, &dev);
 
3205
3206	if (err)
3207		return err;
3208
3209	priv = netdev_priv(dev);
3210	priv->ndev = dev;
3211	priv->ofdev = ofdev;
3212	priv->dev = &ofdev->dev;
3213	SET_NETDEV_DEV(dev, &ofdev->dev);
3214
3215	INIT_WORK(&priv->reset_task, gfar_reset_task);
 
 
 
 
3216
3217	platform_set_drvdata(ofdev, priv);
 
 
3218
3219	gfar_detect_errata(priv);
 
 
 
 
 
3220
3221	/* Set the dev->base_addr to the gfar reg region */
3222	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
 
 
3223
3224	/* Fill in the dev structure */
3225	dev->watchdog_timeo = TX_TIMEOUT;
3226	/* MTU range: 50 - 9586 */
3227	dev->mtu = 1500;
3228	dev->min_mtu = 50;
3229	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3230	dev->netdev_ops = &gfar_netdev_ops;
3231	dev->ethtool_ops = &gfar_ethtool_ops;
3232
3233	/* Register for napi ...We are registering NAPI for each grp */
3234	for (i = 0; i < priv->num_grps; i++) {
3235		netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3236			       gfar_poll_rx_sq);
3237		netif_napi_add_tx_weight(dev, &priv->gfargrp[i].napi_tx,
3238					 gfar_poll_tx_sq, 2);
3239	}
3240
3241	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3242		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3243				   NETIF_F_RXCSUM;
3244		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3245				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3246	}
 
 
 
3247
3248	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3249		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3250				    NETIF_F_HW_VLAN_CTAG_RX;
3251		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3252	}
3253
3254	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3255
3256	gfar_init_addr_hash_table(priv);
3257
3258	/* Insert receive time stamps into padding alignment bytes, and
3259	 * plus 2 bytes padding to ensure the cpu alignment.
3260	 */
3261	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3262		priv->padding = 8 + DEFAULT_PADDING;
3263
3264	if (dev->features & NETIF_F_IP_CSUM ||
3265	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3266		dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3267
3268	/* Initializing some of the rx/tx queue level parameters */
3269	for (i = 0; i < priv->num_tx_queues; i++) {
3270		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3271		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3272		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3273		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3274	}
 
 
 
3275
3276	for (i = 0; i < priv->num_rx_queues; i++) {
3277		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3278		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3279		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3280	}
3281
3282	/* Always enable rx filer if available */
3283	priv->rx_filer_enable =
3284	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3285	/* Enable most messages by default */
3286	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3287	/* use pritority h/w tx queue scheduling for single queue devices */
3288	if (priv->num_tx_queues == 1)
3289		priv->prio_sched_en = 1;
3290
3291	set_bit(GFAR_DOWN, &priv->state);
3292
3293	gfar_hw_init(priv);
3294
3295	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3296		struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
3297
3298		spin_lock_init(&priv->rmon_overflow.lock);
3299		priv->rmon_overflow.imask = IMASK_MSRO;
3300		gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR);
3301	}
 
 
3302
3303	/* Carrier starts down, phylib will bring it up */
3304	netif_carrier_off(dev);
3305
3306	err = register_netdev(dev);
3307
3308	if (err) {
3309		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3310		goto register_fail;
3311	}
3312
3313	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3314		priv->wol_supported |= GFAR_WOL_MAGIC;
3315
3316	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3317	    priv->rx_filer_enable)
3318		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3319
3320	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3321
3322	/* fill out IRQ number and name fields */
3323	for (i = 0; i < priv->num_grps; i++) {
3324		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3325		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3326			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3327				dev->name, "_g", '0' + i, "_tx");
3328			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3329				dev->name, "_g", '0' + i, "_rx");
3330			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3331				dev->name, "_g", '0' + i, "_er");
3332		} else
3333			strcpy(gfar_irq(grp, TX)->name, dev->name);
3334	}
3335
3336	/* Initialize the filer table */
3337	gfar_init_filer_table(priv);
3338
3339	/* Print out the device info */
3340	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3341
3342	/* Even more device info helps when determining which kernel
3343	 * provided which set of benchmarks.
3344	 */
3345	netdev_info(dev, "Running with NAPI enabled\n");
3346	for (i = 0; i < priv->num_rx_queues; i++)
3347		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3348			    i, priv->rx_queue[i]->rx_ring_size);
3349	for (i = 0; i < priv->num_tx_queues; i++)
3350		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3351			    i, priv->tx_queue[i]->tx_ring_size);
3352
3353	return 0;
3354
3355register_fail:
3356	if (of_phy_is_fixed_link(np))
3357		of_phy_deregister_fixed_link(np);
3358	unmap_group_regs(priv);
3359	gfar_free_rx_queues(priv);
3360	gfar_free_tx_queues(priv);
3361	of_node_put(priv->phy_node);
3362	of_node_put(priv->tbi_node);
3363	free_gfar_dev(priv);
3364	return err;
3365}
3366
3367static void gfar_remove(struct platform_device *ofdev)
3368{
3369	struct gfar_private *priv = platform_get_drvdata(ofdev);
3370	struct device_node *np = ofdev->dev.of_node;
3371
3372	of_node_put(priv->phy_node);
3373	of_node_put(priv->tbi_node);
3374
3375	unregister_netdev(priv->ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
3376
3377	if (of_phy_is_fixed_link(np))
3378		of_phy_deregister_fixed_link(np);
3379
3380	unmap_group_regs(priv);
3381	gfar_free_rx_queues(priv);
3382	gfar_free_tx_queues(priv);
3383	free_gfar_dev(priv);
3384}
3385
3386#ifdef CONFIG_PM
3387
3388static void __gfar_filer_disable(struct gfar_private *priv)
3389{
3390	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3391	u32 temp;
3392
3393	temp = gfar_read(&regs->rctrl);
3394	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3395	gfar_write(&regs->rctrl, temp);
3396}
3397
3398static void __gfar_filer_enable(struct gfar_private *priv)
3399{
3400	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3401	u32 temp;
3402
3403	temp = gfar_read(&regs->rctrl);
3404	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3405	gfar_write(&regs->rctrl, temp);
3406}
3407
3408/* Filer rules implementing wol capabilities */
3409static void gfar_filer_config_wol(struct gfar_private *priv)
3410{
3411	unsigned int i;
3412	u32 rqfcr;
3413
3414	__gfar_filer_disable(priv);
3415
3416	/* clear the filer table, reject any packet by default */
3417	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3418	for (i = 0; i <= MAX_FILER_IDX; i++)
3419		gfar_write_filer(priv, i, rqfcr, 0);
3420
3421	i = 0;
3422	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3423		/* unicast packet, accept it */
3424		struct net_device *ndev = priv->ndev;
3425		/* get the default rx queue index */
3426		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3427		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3428				    (ndev->dev_addr[1] << 8) |
3429				     ndev->dev_addr[2];
3430
3431		rqfcr = (qindex << 10) | RQFCR_AND |
3432			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3433
3434		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3435
3436		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3437				(ndev->dev_addr[4] << 8) |
3438				 ndev->dev_addr[5];
3439		rqfcr = (qindex << 10) | RQFCR_GPI |
3440			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3441		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3442	}
3443
3444	__gfar_filer_enable(priv);
3445}
3446
3447static void gfar_filer_restore_table(struct gfar_private *priv)
3448{
3449	u32 rqfcr, rqfpr;
3450	unsigned int i;
3451
3452	__gfar_filer_disable(priv);
3453
3454	for (i = 0; i <= MAX_FILER_IDX; i++) {
3455		rqfcr = priv->ftp_rqfcr[i];
3456		rqfpr = priv->ftp_rqfpr[i];
3457		gfar_write_filer(priv, i, rqfcr, rqfpr);
3458	}
3459
3460	__gfar_filer_enable(priv);
3461}
3462
3463/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3464static void gfar_start_wol_filer(struct gfar_private *priv)
3465{
3466	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3467	u32 tempval;
3468	int i = 0;
3469
3470	/* Enable Rx hw queues */
3471	gfar_write(&regs->rqueue, priv->rqueue);
3472
3473	/* Initialize DMACTRL to have WWR and WOP */
3474	tempval = gfar_read(&regs->dmactrl);
3475	tempval |= DMACTRL_INIT_SETTINGS;
3476	gfar_write(&regs->dmactrl, tempval);
3477
3478	/* Make sure we aren't stopped */
3479	tempval = gfar_read(&regs->dmactrl);
3480	tempval &= ~DMACTRL_GRS;
3481	gfar_write(&regs->dmactrl, tempval);
3482
3483	for (i = 0; i < priv->num_grps; i++) {
3484		regs = priv->gfargrp[i].regs;
3485		/* Clear RHLT, so that the DMA starts polling now */
3486		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3487		/* enable the Filer General Purpose Interrupt */
3488		gfar_write(&regs->imask, IMASK_FGPI);
3489	}
3490
3491	/* Enable Rx DMA */
3492	tempval = gfar_read(&regs->maccfg1);
3493	tempval |= MACCFG1_RX_EN;
3494	gfar_write(&regs->maccfg1, tempval);
3495}
3496
3497static int gfar_suspend(struct device *dev)
3498{
3499	struct gfar_private *priv = dev_get_drvdata(dev);
3500	struct net_device *ndev = priv->ndev;
3501	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3502	u32 tempval;
3503	u16 wol = priv->wol_opts;
3504
3505	if (!netif_running(ndev))
3506		return 0;
3507
3508	disable_napi(priv);
3509	netif_tx_lock(ndev);
3510	netif_device_detach(ndev);
3511	netif_tx_unlock(ndev);
3512
3513	gfar_halt(priv);
 
 
 
 
3514
3515	if (wol & GFAR_WOL_MAGIC) {
3516		/* Enable interrupt on Magic Packet */
3517		gfar_write(&regs->imask, IMASK_MAG);
3518
3519		/* Enable Magic Packet mode */
3520		tempval = gfar_read(&regs->maccfg2);
3521		tempval |= MACCFG2_MPEN;
3522		gfar_write(&regs->maccfg2, tempval);
3523
3524		/* re-enable the Rx block */
3525		tempval = gfar_read(&regs->maccfg1);
3526		tempval |= MACCFG1_RX_EN;
3527		gfar_write(&regs->maccfg1, tempval);
 
3528
3529	} else if (wol & GFAR_WOL_FILER_UCAST) {
3530		gfar_filer_config_wol(priv);
3531		gfar_start_wol_filer(priv);
 
 
 
3532
3533	} else {
3534		phy_stop(ndev->phydev);
3535	}
 
 
 
 
 
 
 
 
 
 
 
3536
3537	return 0;
3538}
3539
3540static int gfar_resume(struct device *dev)
3541{
3542	struct gfar_private *priv = dev_get_drvdata(dev);
3543	struct net_device *ndev = priv->ndev;
3544	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3545	u32 tempval;
3546	u16 wol = priv->wol_opts;
3547
3548	if (!netif_running(ndev))
3549		return 0;
3550
3551	if (wol & GFAR_WOL_MAGIC) {
3552		/* Disable Magic Packet mode */
3553		tempval = gfar_read(&regs->maccfg2);
3554		tempval &= ~MACCFG2_MPEN;
3555		gfar_write(&regs->maccfg2, tempval);
 
3556
3557	} else if (wol & GFAR_WOL_FILER_UCAST) {
3558		/* need to stop rx only, tx is already down */
3559		gfar_halt(priv);
3560		gfar_filer_restore_table(priv);
3561
3562	} else {
3563		phy_start(ndev->phydev);
 
 
3564	}
3565
3566	gfar_start(priv);
3567
3568	netif_device_attach(ndev);
3569	enable_napi(priv);
3570
3571	return 0;
3572}
3573
3574static int gfar_restore(struct device *dev)
3575{
3576	struct gfar_private *priv = dev_get_drvdata(dev);
3577	struct net_device *ndev = priv->ndev;
3578
3579	if (!netif_running(ndev)) {
3580		netif_device_attach(ndev);
3581
3582		return 0;
3583	}
3584
3585	gfar_init_bds(ndev);
3586
3587	gfar_mac_reset(priv);
3588
3589	gfar_init_tx_rx_base(priv);
3590
3591	gfar_start(priv);
3592
3593	priv->oldlink = 0;
3594	priv->oldspeed = 0;
3595	priv->oldduplex = -1;
3596
3597	if (ndev->phydev)
3598		phy_start(ndev->phydev);
3599
3600	netif_device_attach(ndev);
3601	enable_napi(priv);
3602
3603	return 0;
3604}
3605
3606static const struct dev_pm_ops gfar_pm_ops = {
3607	.suspend = gfar_suspend,
3608	.resume = gfar_resume,
3609	.freeze = gfar_suspend,
3610	.thaw = gfar_resume,
3611	.restore = gfar_restore,
3612};
3613
3614#define GFAR_PM_OPS (&gfar_pm_ops)
3615
3616#else
3617
3618#define GFAR_PM_OPS NULL
3619
3620#endif
3621
3622static const struct of_device_id gfar_match[] =
3623{
3624	{
3625		.type = "network",
3626		.compatible = "gianfar",
3627	},
3628	{
3629		.compatible = "fsl,etsec2",
3630	},
3631	{},
3632};
3633MODULE_DEVICE_TABLE(of, gfar_match);
3634
3635/* Structure for a device driver */
3636static struct platform_driver gfar_driver = {
3637	.driver = {
3638		.name = "fsl-gianfar",
 
3639		.pm = GFAR_PM_OPS,
3640		.of_match_table = gfar_match,
3641	},
3642	.probe = gfar_probe,
3643	.remove_new = gfar_remove,
3644};
3645
3646module_platform_driver(gfar_driver);