Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 26#include <net/tcp.h>
 27#include <net/inet_common.h>
 28#include <net/xfrm.h>
 29
 30int sysctl_tcp_syncookies __read_mostly = 1;
 31EXPORT_SYMBOL(sysctl_tcp_syncookies);
 32
 33int sysctl_tcp_abort_on_overflow __read_mostly;
 34
 35struct inet_timewait_death_row tcp_death_row = {
 36	.sysctl_max_tw_buckets = NR_FILE * 2,
 37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
 38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
 39	.hashinfo	= &tcp_hashinfo,
 40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
 41					    (unsigned long)&tcp_death_row),
 42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
 43					     inet_twdr_twkill_work),
 44/* Short-time timewait calendar */
 45
 46	.twcal_hand	= -1,
 47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
 48					    (unsigned long)&tcp_death_row),
 49};
 50EXPORT_SYMBOL_GPL(tcp_death_row);
 51
 52static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 53{
 54	if (seq == s_win)
 55		return true;
 56	if (after(end_seq, s_win) && before(seq, e_win))
 57		return true;
 58	return seq == e_win && seq == end_seq;
 59}
 60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 61/*
 62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 63 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 64 *   (and, probably, tail of data) and one or more our ACKs are lost.
 65 * * What is TIME-WAIT timeout? It is associated with maximal packet
 66 *   lifetime in the internet, which results in wrong conclusion, that
 67 *   it is set to catch "old duplicate segments" wandering out of their path.
 68 *   It is not quite correct. This timeout is calculated so that it exceeds
 69 *   maximal retransmission timeout enough to allow to lose one (or more)
 70 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 71 * * When TIME-WAIT socket receives RST, it means that another end
 72 *   finally closed and we are allowed to kill TIME-WAIT too.
 73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 74 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 75 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 76 * * If we invented some more clever way to catch duplicates
 77 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 78 *
 79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 81 * from the very beginning.
 82 *
 83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 84 * is _not_ stateless. It means, that strictly speaking we must
 85 * spinlock it. I do not want! Well, probability of misbehaviour
 86 * is ridiculously low and, seems, we could use some mb() tricks
 87 * to avoid misread sequence numbers, states etc.  --ANK
 88 *
 89 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 90 */
 91enum tcp_tw_status
 92tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 93			   const struct tcphdr *th)
 94{
 95	struct tcp_options_received tmp_opt;
 96	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 97	bool paws_reject = false;
 98
 99	tmp_opt.saw_tstamp = 0;
100	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101		tcp_parse_options(skb, &tmp_opt, 0, NULL);
102
103		if (tmp_opt.saw_tstamp) {
104			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
 
105			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108		}
109	}
110
111	if (tw->tw_substate == TCP_FIN_WAIT2) {
112		/* Just repeat all the checks of tcp_rcv_state_process() */
113
114		/* Out of window, send ACK */
115		if (paws_reject ||
116		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117				   tcptw->tw_rcv_nxt,
118				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119			return TCP_TW_ACK;
 
120
121		if (th->rst)
122			goto kill;
123
124		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
125			goto kill_with_rst;
126
127		/* Dup ACK? */
128		if (!th->ack ||
129		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
130		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
131			inet_twsk_put(tw);
132			return TCP_TW_SUCCESS;
133		}
134
135		/* New data or FIN. If new data arrive after half-duplex close,
136		 * reset.
137		 */
138		if (!th->fin ||
139		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
140kill_with_rst:
141			inet_twsk_deschedule(tw, &tcp_death_row);
142			inet_twsk_put(tw);
143			return TCP_TW_RST;
144		}
145
146		/* FIN arrived, enter true time-wait state. */
147		tw->tw_substate	  = TCP_TIME_WAIT;
148		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
 
149		if (tmp_opt.saw_tstamp) {
150			tcptw->tw_ts_recent_stamp = get_seconds();
151			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
152		}
153
154		if (tcp_death_row.sysctl_tw_recycle &&
155		    tcptw->tw_ts_recent_stamp &&
156		    tcp_tw_remember_stamp(tw))
157			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
158					   TCP_TIMEWAIT_LEN);
159		else
160			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
161					   TCP_TIMEWAIT_LEN);
162		return TCP_TW_ACK;
163	}
164
165	/*
166	 *	Now real TIME-WAIT state.
167	 *
168	 *	RFC 1122:
169	 *	"When a connection is [...] on TIME-WAIT state [...]
170	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171	 *	reopen the connection directly, if it:
172	 *
173	 *	(1)  assigns its initial sequence number for the new
174	 *	connection to be larger than the largest sequence
175	 *	number it used on the previous connection incarnation,
176	 *	and
177	 *
178	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179	 *	to be an old duplicate".
180	 */
181
182	if (!paws_reject &&
183	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185		/* In window segment, it may be only reset or bare ack. */
186
187		if (th->rst) {
188			/* This is TIME_WAIT assassination, in two flavors.
189			 * Oh well... nobody has a sufficient solution to this
190			 * protocol bug yet.
191			 */
192			if (sysctl_tcp_rfc1337 == 0) {
193kill:
194				inet_twsk_deschedule(tw, &tcp_death_row);
195				inet_twsk_put(tw);
196				return TCP_TW_SUCCESS;
197			}
 
 
198		}
199		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
200				   TCP_TIMEWAIT_LEN);
201
202		if (tmp_opt.saw_tstamp) {
203			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
204			tcptw->tw_ts_recent_stamp = get_seconds();
205		}
206
207		inet_twsk_put(tw);
208		return TCP_TW_SUCCESS;
209	}
210
211	/* Out of window segment.
212
213	   All the segments are ACKed immediately.
214
215	   The only exception is new SYN. We accept it, if it is
216	   not old duplicate and we are not in danger to be killed
217	   by delayed old duplicates. RFC check is that it has
218	   newer sequence number works at rates <40Mbit/sec.
219	   However, if paws works, it is reliable AND even more,
220	   we even may relax silly seq space cutoff.
221
222	   RED-PEN: we violate main RFC requirement, if this SYN will appear
223	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
224	   we must return socket to time-wait state. It is not good,
225	   but not fatal yet.
226	 */
227
228	if (th->syn && !th->rst && !th->ack && !paws_reject &&
229	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
230	     (tmp_opt.saw_tstamp &&
231	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
232		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
233		if (isn == 0)
234			isn++;
235		TCP_SKB_CB(skb)->when = isn;
236		return TCP_TW_SYN;
237	}
238
239	if (paws_reject)
240		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
241
242	if (!th->rst) {
243		/* In this case we must reset the TIMEWAIT timer.
244		 *
245		 * If it is ACKless SYN it may be both old duplicate
246		 * and new good SYN with random sequence number <rcv_nxt.
247		 * Do not reschedule in the last case.
248		 */
249		if (paws_reject || th->ack)
250			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
251					   TCP_TIMEWAIT_LEN);
252
253		/* Send ACK. Note, we do not put the bucket,
254		 * it will be released by caller.
255		 */
256		return TCP_TW_ACK;
257	}
258	inet_twsk_put(tw);
259	return TCP_TW_SUCCESS;
260}
261EXPORT_SYMBOL(tcp_timewait_state_process);
262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263/*
264 * Move a socket to time-wait or dead fin-wait-2 state.
265 */
266void tcp_time_wait(struct sock *sk, int state, int timeo)
267{
268	struct inet_timewait_sock *tw = NULL;
269	const struct inet_connection_sock *icsk = inet_csk(sk);
270	const struct tcp_sock *tp = tcp_sk(sk);
271	bool recycle_ok = false;
272
273	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
274		recycle_ok = tcp_remember_stamp(sk);
275
276	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
277		tw = inet_twsk_alloc(sk, state);
278
279	if (tw != NULL) {
280		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282		struct inet_sock *inet = inet_sk(sk);
283
284		tw->tw_transparent	= inet->transparent;
 
 
285		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
286		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
287		tcptw->tw_snd_nxt	= tp->snd_nxt;
288		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
289		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
290		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291		tcptw->tw_ts_offset	= tp->tsoffset;
292
 
 
 
293#if IS_ENABLED(CONFIG_IPV6)
294		if (tw->tw_family == PF_INET6) {
295			struct ipv6_pinfo *np = inet6_sk(sk);
296
297			tw->tw_v6_daddr = sk->sk_v6_daddr;
298			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
299			tw->tw_tclass = np->tclass;
300			tw->tw_flowlabel = np->flow_label >> 12;
301			tw->tw_ipv6only = np->ipv6only;
302		}
303#endif
304
305#ifdef CONFIG_TCP_MD5SIG
306		/*
307		 * The timewait bucket does not have the key DB from the
308		 * sock structure. We just make a quick copy of the
309		 * md5 key being used (if indeed we are using one)
310		 * so the timewait ack generating code has the key.
311		 */
312		do {
313			struct tcp_md5sig_key *key;
314			tcptw->tw_md5_key = NULL;
315			key = tp->af_specific->md5_lookup(sk, sk);
316			if (key != NULL) {
317				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
318				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
319					BUG();
320			}
321		} while (0);
322#endif
323
324		/* Linkage updates. */
325		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
326
327		/* Get the TIME_WAIT timeout firing. */
328		if (timeo < rto)
329			timeo = rto;
330
331		if (recycle_ok) {
332			tw->tw_timeout = rto;
333		} else {
334			tw->tw_timeout = TCP_TIMEWAIT_LEN;
335			if (state == TCP_TIME_WAIT)
336				timeo = TCP_TIMEWAIT_LEN;
337		}
338
339		inet_twsk_schedule(tw, &tcp_death_row, timeo,
340				   TCP_TIMEWAIT_LEN);
341		inet_twsk_put(tw);
 
 
 
 
 
 
 
 
342	} else {
343		/* Sorry, if we're out of memory, just CLOSE this
344		 * socket up.  We've got bigger problems than
345		 * non-graceful socket closings.
346		 */
347		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
348	}
349
350	tcp_update_metrics(sk);
351	tcp_done(sk);
352}
 
 
 
 
 
 
 
 
 
 
 
 
 
353
354void tcp_twsk_destructor(struct sock *sk)
355{
356#ifdef CONFIG_TCP_MD5SIG
357	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
 
358
359	if (twsk->tw_md5_key)
360		kfree_rcu(twsk->tw_md5_key, rcu);
 
361#endif
 
362}
363EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
364
365static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
366					 struct request_sock *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367{
368	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
369}
370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371/* This is not only more efficient than what we used to do, it eliminates
372 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
373 *
374 * Actually, we could lots of memory writes here. tp of listening
375 * socket contains all necessary default parameters.
376 */
377struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
 
 
378{
379	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
380
381	if (newsk != NULL) {
382		const struct inet_request_sock *ireq = inet_rsk(req);
383		struct tcp_request_sock *treq = tcp_rsk(req);
384		struct inet_connection_sock *newicsk = inet_csk(newsk);
385		struct tcp_sock *newtp = tcp_sk(newsk);
386
387		/* Now setup tcp_sock */
388		newtp->pred_flags = 0;
389
390		newtp->rcv_wup = newtp->copied_seq =
391		newtp->rcv_nxt = treq->rcv_isn + 1;
392
393		newtp->snd_sml = newtp->snd_una =
394		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
395
396		tcp_prequeue_init(newtp);
397		INIT_LIST_HEAD(&newtp->tsq_node);
398
399		tcp_init_wl(newtp, treq->rcv_isn);
400
401		newtp->srtt_us = 0;
402		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
403		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
404
405		newtp->packets_out = 0;
406		newtp->retrans_out = 0;
407		newtp->sacked_out = 0;
408		newtp->fackets_out = 0;
409		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
410		tcp_enable_early_retrans(newtp);
411		newtp->tlp_high_seq = 0;
412		newtp->lsndtime = treq->snt_synack;
413		newtp->total_retrans = req->num_retrans;
414
415		/* So many TCP implementations out there (incorrectly) count the
416		 * initial SYN frame in their delayed-ACK and congestion control
417		 * algorithms that we must have the following bandaid to talk
418		 * efficiently to them.  -DaveM
419		 */
420		newtp->snd_cwnd = TCP_INIT_CWND;
421		newtp->snd_cwnd_cnt = 0;
422
423		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
424		    !try_module_get(newicsk->icsk_ca_ops->owner))
425			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
426
427		tcp_set_ca_state(newsk, TCP_CA_Open);
428		tcp_init_xmit_timers(newsk);
429		__skb_queue_head_init(&newtp->out_of_order_queue);
430		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
431
432		newtp->rx_opt.saw_tstamp = 0;
433
434		newtp->rx_opt.dsack = 0;
435		newtp->rx_opt.num_sacks = 0;
436
437		newtp->urg_data = 0;
438
439		if (sock_flag(newsk, SOCK_KEEPOPEN))
440			inet_csk_reset_keepalive_timer(newsk,
441						       keepalive_time_when(newtp));
442
443		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
444		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
445			if (sysctl_tcp_fack)
446				tcp_enable_fack(newtp);
447		}
448		newtp->window_clamp = req->window_clamp;
449		newtp->rcv_ssthresh = req->rcv_wnd;
450		newtp->rcv_wnd = req->rcv_wnd;
451		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
452		if (newtp->rx_opt.wscale_ok) {
453			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
454			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
455		} else {
456			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
457			newtp->window_clamp = min(newtp->window_clamp, 65535U);
458		}
459		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
460				  newtp->rx_opt.snd_wscale);
461		newtp->max_window = newtp->snd_wnd;
462
463		if (newtp->rx_opt.tstamp_ok) {
464			newtp->rx_opt.ts_recent = req->ts_recent;
465			newtp->rx_opt.ts_recent_stamp = get_seconds();
466			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467		} else {
468			newtp->rx_opt.ts_recent_stamp = 0;
469			newtp->tcp_header_len = sizeof(struct tcphdr);
 
 
470		}
471		newtp->tsoffset = 0;
 
 
472#ifdef CONFIG_TCP_MD5SIG
473		newtp->md5sig_info = NULL;	/*XXX*/
474		if (newtp->af_specific->md5_lookup(sk, newsk))
475			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
476#endif
477		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
478			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
479		newtp->rx_opt.mss_clamp = req->mss;
480		TCP_ECN_openreq_child(newtp, req);
481		newtp->fastopen_rsk = NULL;
482		newtp->syn_data_acked = 0;
 
 
 
 
 
 
 
 
 
 
 
 
483
484		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
485	}
486	return newsk;
487}
488EXPORT_SYMBOL(tcp_create_openreq_child);
489
490/*
491 * Process an incoming packet for SYN_RECV sockets represented as a
492 * request_sock. Normally sk is the listener socket but for TFO it
493 * points to the child socket.
494 *
495 * XXX (TFO) - The current impl contains a special check for ack
496 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
497 *
498 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
 
 
 
499 */
500
501struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
502			   struct request_sock *req,
503			   struct request_sock **prev,
504			   bool fastopen)
505{
506	struct tcp_options_received tmp_opt;
507	struct sock *child;
508	const struct tcphdr *th = tcp_hdr(skb);
509	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
510	bool paws_reject = false;
511
512	BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
513
514	tmp_opt.saw_tstamp = 0;
515	if (th->doff > (sizeof(struct tcphdr)>>2)) {
516		tcp_parse_options(skb, &tmp_opt, 0, NULL);
517
518		if (tmp_opt.saw_tstamp) {
519			tmp_opt.ts_recent = req->ts_recent;
 
 
520			/* We do not store true stamp, but it is not required,
521			 * it can be estimated (approximately)
522			 * from another data.
523			 */
524			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
525			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
526		}
527	}
528
529	/* Check for pure retransmitted SYN. */
530	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
531	    flg == TCP_FLAG_SYN &&
532	    !paws_reject) {
533		/*
534		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
535		 * this case on figure 6 and figure 8, but formal
536		 * protocol description says NOTHING.
537		 * To be more exact, it says that we should send ACK,
538		 * because this segment (at least, if it has no data)
539		 * is out of window.
540		 *
541		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
542		 *  describe SYN-RECV state. All the description
543		 *  is wrong, we cannot believe to it and should
544		 *  rely only on common sense and implementation
545		 *  experience.
546		 *
547		 * Enforce "SYN-ACK" according to figure 8, figure 6
548		 * of RFC793, fixed by RFC1122.
549		 *
550		 * Note that even if there is new data in the SYN packet
551		 * they will be thrown away too.
552		 *
553		 * Reset timer after retransmitting SYNACK, similar to
554		 * the idea of fast retransmit in recovery.
555		 */
556		if (!inet_rtx_syn_ack(sk, req))
557			req->expires = min(TCP_TIMEOUT_INIT << req->num_timeout,
558					   TCP_RTO_MAX) + jiffies;
 
 
 
 
 
 
 
 
 
 
559		return NULL;
560	}
561
562	/* Further reproduces section "SEGMENT ARRIVES"
563	   for state SYN-RECEIVED of RFC793.
564	   It is broken, however, it does not work only
565	   when SYNs are crossed.
566
567	   You would think that SYN crossing is impossible here, since
568	   we should have a SYN_SENT socket (from connect()) on our end,
569	   but this is not true if the crossed SYNs were sent to both
570	   ends by a malicious third party.  We must defend against this,
571	   and to do that we first verify the ACK (as per RFC793, page
572	   36) and reset if it is invalid.  Is this a true full defense?
573	   To convince ourselves, let us consider a way in which the ACK
574	   test can still pass in this 'malicious crossed SYNs' case.
575	   Malicious sender sends identical SYNs (and thus identical sequence
576	   numbers) to both A and B:
577
578		A: gets SYN, seq=7
579		B: gets SYN, seq=7
580
581	   By our good fortune, both A and B select the same initial
582	   send sequence number of seven :-)
583
584		A: sends SYN|ACK, seq=7, ack_seq=8
585		B: sends SYN|ACK, seq=7, ack_seq=8
586
587	   So we are now A eating this SYN|ACK, ACK test passes.  So
588	   does sequence test, SYN is truncated, and thus we consider
589	   it a bare ACK.
590
591	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
592	   bare ACK.  Otherwise, we create an established connection.  Both
593	   ends (listening sockets) accept the new incoming connection and try
594	   to talk to each other. 8-)
595
596	   Note: This case is both harmless, and rare.  Possibility is about the
597	   same as us discovering intelligent life on another plant tomorrow.
598
599	   But generally, we should (RFC lies!) to accept ACK
600	   from SYNACK both here and in tcp_rcv_state_process().
601	   tcp_rcv_state_process() does not, hence, we do not too.
602
603	   Note that the case is absolutely generic:
604	   we cannot optimize anything here without
605	   violating protocol. All the checks must be made
606	   before attempt to create socket.
607	 */
608
609	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
610	 *                  and the incoming segment acknowledges something not yet
611	 *                  sent (the segment carries an unacceptable ACK) ...
612	 *                  a reset is sent."
613	 *
614	 * Invalid ACK: reset will be sent by listening socket.
615	 * Note that the ACK validity check for a Fast Open socket is done
616	 * elsewhere and is checked directly against the child socket rather
617	 * than req because user data may have been sent out.
618	 */
619	if ((flg & TCP_FLAG_ACK) && !fastopen &&
620	    (TCP_SKB_CB(skb)->ack_seq !=
621	     tcp_rsk(req)->snt_isn + 1))
622		return sk;
623
624	/* Also, it would be not so bad idea to check rcv_tsecr, which
625	 * is essentially ACK extension and too early or too late values
626	 * should cause reset in unsynchronized states.
627	 */
628
629	/* RFC793: "first check sequence number". */
630
631	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
632					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
633		/* Out of window: send ACK and drop. */
634		if (!(flg & TCP_FLAG_RST))
 
 
 
635			req->rsk_ops->send_ack(sk, skb, req);
636		if (paws_reject)
637			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
638		return NULL;
639	}
640
641	/* In sequence, PAWS is OK. */
642
 
 
 
643	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
644		req->ts_recent = tmp_opt.rcv_tsval;
645
646	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
647		/* Truncate SYN, it is out of window starting
648		   at tcp_rsk(req)->rcv_isn + 1. */
649		flg &= ~TCP_FLAG_SYN;
650	}
651
652	/* RFC793: "second check the RST bit" and
653	 *	   "fourth, check the SYN bit"
654	 */
655	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
656		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
657		goto embryonic_reset;
658	}
659
660	/* ACK sequence verified above, just make sure ACK is
661	 * set.  If ACK not set, just silently drop the packet.
662	 *
663	 * XXX (TFO) - if we ever allow "data after SYN", the
664	 * following check needs to be removed.
665	 */
666	if (!(flg & TCP_FLAG_ACK))
667		return NULL;
668
669	/* For Fast Open no more processing is needed (sk is the
670	 * child socket).
671	 */
672	if (fastopen)
673		return sk;
674
675	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
676	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
677	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
678		inet_rsk(req)->acked = 1;
679		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
680		return NULL;
681	}
682
683	/* OK, ACK is valid, create big socket and
684	 * feed this segment to it. It will repeat all
685	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
686	 * ESTABLISHED STATE. If it will be dropped after
687	 * socket is created, wait for troubles.
688	 */
689	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
690	if (child == NULL)
 
691		goto listen_overflow;
692
693	inet_csk_reqsk_queue_unlink(sk, req, prev);
694	inet_csk_reqsk_queue_removed(sk, req);
 
 
 
695
696	inet_csk_reqsk_queue_add(sk, req, child);
697	return child;
 
 
698
699listen_overflow:
700	if (!sysctl_tcp_abort_on_overflow) {
 
 
 
701		inet_rsk(req)->acked = 1;
702		return NULL;
703	}
704
705embryonic_reset:
706	if (!(flg & TCP_FLAG_RST)) {
707		/* Received a bad SYN pkt - for TFO We try not to reset
708		 * the local connection unless it's really necessary to
709		 * avoid becoming vulnerable to outside attack aiming at
710		 * resetting legit local connections.
711		 */
712		req->rsk_ops->send_reset(sk, skb);
713	} else if (fastopen) { /* received a valid RST pkt */
714		reqsk_fastopen_remove(sk, req, true);
715		tcp_reset(sk);
716	}
717	if (!fastopen) {
718		inet_csk_reqsk_queue_drop(sk, req, prev);
719		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
 
 
 
720	}
721	return NULL;
722}
723EXPORT_SYMBOL(tcp_check_req);
724
725/*
726 * Queue segment on the new socket if the new socket is active,
727 * otherwise we just shortcircuit this and continue with
728 * the new socket.
729 *
730 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
731 * when entering. But other states are possible due to a race condition
732 * where after __inet_lookup_established() fails but before the listener
733 * locked is obtained, other packets cause the same connection to
734 * be created.
735 */
736
737int tcp_child_process(struct sock *parent, struct sock *child,
738		      struct sk_buff *skb)
 
739{
740	int ret = 0;
741	int state = child->sk_state;
742
 
 
 
 
743	if (!sock_owned_by_user(child)) {
744		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
745					    skb->len);
746		/* Wakeup parent, send SIGIO */
747		if (state == TCP_SYN_RECV && child->sk_state != state)
748			parent->sk_data_ready(parent);
749	} else {
750		/* Alas, it is possible again, because we do lookup
751		 * in main socket hash table and lock on listening
752		 * socket does not protect us more.
753		 */
754		__sk_add_backlog(child, skb);
755	}
756
757	bh_unlock_sock(child);
758	sock_put(child);
759	return ret;
760}
761EXPORT_SYMBOL(tcp_child_process);
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Implementation of the Transmission Control Protocol(TCP).
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 13 *		Florian La Roche, <flla@stud.uni-sb.de>
 14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19 *		Jorge Cwik, <jorge@laser.satlink.net>
 20 */
 21
 
 
 
 
 
 22#include <net/tcp.h>
 
 23#include <net/xfrm.h>
 24#include <net/busy_poll.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25
 26static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 27{
 28	if (seq == s_win)
 29		return true;
 30	if (after(end_seq, s_win) && before(seq, e_win))
 31		return true;
 32	return seq == e_win && seq == end_seq;
 33}
 34
 35static enum tcp_tw_status
 36tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 37				  const struct sk_buff *skb, int mib_idx)
 38{
 39	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 40
 41	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 42				  &tcptw->tw_last_oow_ack_time)) {
 43		/* Send ACK. Note, we do not put the bucket,
 44		 * it will be released by caller.
 45		 */
 46		return TCP_TW_ACK;
 47	}
 48
 49	/* We are rate-limiting, so just release the tw sock and drop skb. */
 50	inet_twsk_put(tw);
 51	return TCP_TW_SUCCESS;
 52}
 53
 54static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq)
 55{
 56#ifdef CONFIG_TCP_AO
 57	struct tcp_ao_info *ao;
 58
 59	ao = rcu_dereference(tcptw->ao_info);
 60	if (unlikely(ao && seq < tcptw->tw_rcv_nxt))
 61		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
 62#endif
 63	tcptw->tw_rcv_nxt = seq;
 64}
 65
 66/*
 67 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 68 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 69 *   (and, probably, tail of data) and one or more our ACKs are lost.
 70 * * What is TIME-WAIT timeout? It is associated with maximal packet
 71 *   lifetime in the internet, which results in wrong conclusion, that
 72 *   it is set to catch "old duplicate segments" wandering out of their path.
 73 *   It is not quite correct. This timeout is calculated so that it exceeds
 74 *   maximal retransmission timeout enough to allow to lose one (or more)
 75 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 76 * * When TIME-WAIT socket receives RST, it means that another end
 77 *   finally closed and we are allowed to kill TIME-WAIT too.
 78 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 79 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 80 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 81 * * If we invented some more clever way to catch duplicates
 82 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 83 *
 84 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 85 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 86 * from the very beginning.
 87 *
 88 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 89 * is _not_ stateless. It means, that strictly speaking we must
 90 * spinlock it. I do not want! Well, probability of misbehaviour
 91 * is ridiculously low and, seems, we could use some mb() tricks
 92 * to avoid misread sequence numbers, states etc.  --ANK
 93 *
 94 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 95 */
 96enum tcp_tw_status
 97tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 98			   const struct tcphdr *th)
 99{
100	struct tcp_options_received tmp_opt;
101	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102	bool paws_reject = false;
103
104	tmp_opt.saw_tstamp = 0;
105	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
107
108		if (tmp_opt.saw_tstamp) {
109			if (tmp_opt.rcv_tsecr)
110				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
111			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
112			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
113			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
114		}
115	}
116
117	if (tw->tw_substate == TCP_FIN_WAIT2) {
118		/* Just repeat all the checks of tcp_rcv_state_process() */
119
120		/* Out of window, send ACK */
121		if (paws_reject ||
122		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
123				   tcptw->tw_rcv_nxt,
124				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
125			return tcp_timewait_check_oow_rate_limit(
126				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
127
128		if (th->rst)
129			goto kill;
130
131		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
132			return TCP_TW_RST;
133
134		/* Dup ACK? */
135		if (!th->ack ||
136		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
137		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
138			inet_twsk_put(tw);
139			return TCP_TW_SUCCESS;
140		}
141
142		/* New data or FIN. If new data arrive after half-duplex close,
143		 * reset.
144		 */
145		if (!th->fin ||
146		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
 
 
 
147			return TCP_TW_RST;
 
148
149		/* FIN arrived, enter true time-wait state. */
150		tw->tw_substate	  = TCP_TIME_WAIT;
151		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq);
152
153		if (tmp_opt.saw_tstamp) {
154			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
155			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
156		}
157
158		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
 
 
 
 
 
 
159		return TCP_TW_ACK;
160	}
161
162	/*
163	 *	Now real TIME-WAIT state.
164	 *
165	 *	RFC 1122:
166	 *	"When a connection is [...] on TIME-WAIT state [...]
167	 *	[a TCP] MAY accept a new SYN from the remote TCP to
168	 *	reopen the connection directly, if it:
169	 *
170	 *	(1)  assigns its initial sequence number for the new
171	 *	connection to be larger than the largest sequence
172	 *	number it used on the previous connection incarnation,
173	 *	and
174	 *
175	 *	(2)  returns to TIME-WAIT state if the SYN turns out
176	 *	to be an old duplicate".
177	 */
178
179	if (!paws_reject &&
180	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
181	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
182		/* In window segment, it may be only reset or bare ack. */
183
184		if (th->rst) {
185			/* This is TIME_WAIT assassination, in two flavors.
186			 * Oh well... nobody has a sufficient solution to this
187			 * protocol bug yet.
188			 */
189			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
190kill:
191				inet_twsk_deschedule_put(tw);
 
192				return TCP_TW_SUCCESS;
193			}
194		} else {
195			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
196		}
 
 
197
198		if (tmp_opt.saw_tstamp) {
199			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
200			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
201		}
202
203		inet_twsk_put(tw);
204		return TCP_TW_SUCCESS;
205	}
206
207	/* Out of window segment.
208
209	   All the segments are ACKed immediately.
210
211	   The only exception is new SYN. We accept it, if it is
212	   not old duplicate and we are not in danger to be killed
213	   by delayed old duplicates. RFC check is that it has
214	   newer sequence number works at rates <40Mbit/sec.
215	   However, if paws works, it is reliable AND even more,
216	   we even may relax silly seq space cutoff.
217
218	   RED-PEN: we violate main RFC requirement, if this SYN will appear
219	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
220	   we must return socket to time-wait state. It is not good,
221	   but not fatal yet.
222	 */
223
224	if (th->syn && !th->rst && !th->ack && !paws_reject &&
225	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
226	     (tmp_opt.saw_tstamp &&
227	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
228		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
229		if (isn == 0)
230			isn++;
231		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
232		return TCP_TW_SYN;
233	}
234
235	if (paws_reject)
236		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
237
238	if (!th->rst) {
239		/* In this case we must reset the TIMEWAIT timer.
240		 *
241		 * If it is ACKless SYN it may be both old duplicate
242		 * and new good SYN with random sequence number <rcv_nxt.
243		 * Do not reschedule in the last case.
244		 */
245		if (paws_reject || th->ack)
246			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
247
248		return tcp_timewait_check_oow_rate_limit(
249			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
 
 
250	}
251	inet_twsk_put(tw);
252	return TCP_TW_SUCCESS;
253}
254EXPORT_SYMBOL(tcp_timewait_state_process);
255
256static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
257{
258#ifdef CONFIG_TCP_MD5SIG
259	const struct tcp_sock *tp = tcp_sk(sk);
260	struct tcp_md5sig_key *key;
261
262	/*
263	 * The timewait bucket does not have the key DB from the
264	 * sock structure. We just make a quick copy of the
265	 * md5 key being used (if indeed we are using one)
266	 * so the timewait ack generating code has the key.
267	 */
268	tcptw->tw_md5_key = NULL;
269	if (!static_branch_unlikely(&tcp_md5_needed.key))
270		return;
271
272	key = tp->af_specific->md5_lookup(sk, sk);
273	if (key) {
274		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
275		if (!tcptw->tw_md5_key)
276			return;
277		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
278			goto out_free;
279		tcp_md5_add_sigpool();
280	}
281	return;
282out_free:
283	WARN_ON_ONCE(1);
284	kfree(tcptw->tw_md5_key);
285	tcptw->tw_md5_key = NULL;
286#endif
287}
288
289/*
290 * Move a socket to time-wait or dead fin-wait-2 state.
291 */
292void tcp_time_wait(struct sock *sk, int state, int timeo)
293{
 
294	const struct inet_connection_sock *icsk = inet_csk(sk);
295	struct tcp_sock *tp = tcp_sk(sk);
296	struct net *net = sock_net(sk);
297	struct inet_timewait_sock *tw;
 
 
298
299	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
 
300
301	if (tw) {
302		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
303		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
 
304
305		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
306		tw->tw_mark		= sk->sk_mark;
307		tw->tw_priority		= READ_ONCE(sk->sk_priority);
308		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
309		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
310		tcptw->tw_snd_nxt	= tp->snd_nxt;
311		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
312		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
313		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
314		tcptw->tw_ts_offset	= tp->tsoffset;
315		tw->tw_usec_ts		= tp->tcp_usec_ts;
316		tcptw->tw_last_oow_ack_time = 0;
317		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
318		tw->tw_txhash		= sk->sk_txhash;
319#if IS_ENABLED(CONFIG_IPV6)
320		if (tw->tw_family == PF_INET6) {
321			struct ipv6_pinfo *np = inet6_sk(sk);
322
323			tw->tw_v6_daddr = sk->sk_v6_daddr;
324			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
325			tw->tw_tclass = np->tclass;
326			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
327			tw->tw_ipv6only = sk->sk_ipv6only;
328		}
329#endif
330
331		tcp_time_wait_init(sk, tcptw);
332		tcp_ao_time_wait(tcptw, tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333
334		/* Get the TIME_WAIT timeout firing. */
335		if (timeo < rto)
336			timeo = rto;
337
338		if (state == TCP_TIME_WAIT)
339			timeo = TCP_TIMEWAIT_LEN;
 
 
 
 
 
340
341		/* tw_timer is pinned, so we need to make sure BH are disabled
342		 * in following section, otherwise timer handler could run before
343		 * we complete the initialization.
344		 */
345		local_bh_disable();
346		inet_twsk_schedule(tw, timeo);
347		/* Linkage updates.
348		 * Note that access to tw after this point is illegal.
349		 */
350		inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
351		local_bh_enable();
352	} else {
353		/* Sorry, if we're out of memory, just CLOSE this
354		 * socket up.  We've got bigger problems than
355		 * non-graceful socket closings.
356		 */
357		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
358	}
359
360	tcp_update_metrics(sk);
361	tcp_done(sk);
362}
363EXPORT_SYMBOL(tcp_time_wait);
364
365#ifdef CONFIG_TCP_MD5SIG
366static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
367{
368	struct tcp_md5sig_key *key;
369
370	key = container_of(head, struct tcp_md5sig_key, rcu);
371	kfree(key);
372	static_branch_slow_dec_deferred(&tcp_md5_needed);
373	tcp_md5_release_sigpool();
374}
375#endif
376
377void tcp_twsk_destructor(struct sock *sk)
378{
379#ifdef CONFIG_TCP_MD5SIG
380	if (static_branch_unlikely(&tcp_md5_needed.key)) {
381		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
382
383		if (twsk->tw_md5_key)
384			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
385	}
386#endif
387	tcp_ao_destroy_sock(sk, true);
388}
389EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
390
391void tcp_twsk_purge(struct list_head *net_exit_list, int family)
392{
393	bool purged_once = false;
394	struct net *net;
395
396	list_for_each_entry(net, net_exit_list, exit_list) {
397		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
398			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
399			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family);
400		} else if (!purged_once) {
401			/* The last refcount is decremented in tcp_sk_exit_batch() */
402			if (refcount_read(&net->ipv4.tcp_death_row.tw_refcount) == 1)
403				continue;
404
405			inet_twsk_purge(&tcp_hashinfo, family);
406			purged_once = true;
407		}
408	}
409}
410EXPORT_SYMBOL_GPL(tcp_twsk_purge);
411
412/* Warning : This function is called without sk_listener being locked.
413 * Be sure to read socket fields once, as their value could change under us.
414 */
415void tcp_openreq_init_rwin(struct request_sock *req,
416			   const struct sock *sk_listener,
417			   const struct dst_entry *dst)
418{
419	struct inet_request_sock *ireq = inet_rsk(req);
420	const struct tcp_sock *tp = tcp_sk(sk_listener);
421	int full_space = tcp_full_space(sk_listener);
422	u32 window_clamp;
423	__u8 rcv_wscale;
424	u32 rcv_wnd;
425	int mss;
426
427	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
428	window_clamp = READ_ONCE(tp->window_clamp);
429	/* Set this up on the first call only */
430	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
431
432	/* limit the window selection if the user enforce a smaller rx buffer */
433	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
434	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
435		req->rsk_window_clamp = full_space;
436
437	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
438	if (rcv_wnd == 0)
439		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
440	else if (full_space < rcv_wnd * mss)
441		full_space = rcv_wnd * mss;
442
443	/* tcp_full_space because it is guaranteed to be the first packet */
444	tcp_select_initial_window(sk_listener, full_space,
445		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
446		&req->rsk_rcv_wnd,
447		&req->rsk_window_clamp,
448		ireq->wscale_ok,
449		&rcv_wscale,
450		rcv_wnd);
451	ireq->rcv_wscale = rcv_wscale;
452}
453EXPORT_SYMBOL(tcp_openreq_init_rwin);
454
455static void tcp_ecn_openreq_child(struct tcp_sock *tp,
456				  const struct request_sock *req)
457{
458	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
459}
460
461void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
462{
463	struct inet_connection_sock *icsk = inet_csk(sk);
464	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
465	bool ca_got_dst = false;
466
467	if (ca_key != TCP_CA_UNSPEC) {
468		const struct tcp_congestion_ops *ca;
469
470		rcu_read_lock();
471		ca = tcp_ca_find_key(ca_key);
472		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
473			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
474			icsk->icsk_ca_ops = ca;
475			ca_got_dst = true;
476		}
477		rcu_read_unlock();
478	}
479
480	/* If no valid choice made yet, assign current system default ca. */
481	if (!ca_got_dst &&
482	    (!icsk->icsk_ca_setsockopt ||
483	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
484		tcp_assign_congestion_control(sk);
485
486	tcp_set_ca_state(sk, TCP_CA_Open);
487}
488EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
489
490static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
491				    struct request_sock *req,
492				    struct tcp_sock *newtp)
493{
494#if IS_ENABLED(CONFIG_SMC)
495	struct inet_request_sock *ireq;
496
497	if (static_branch_unlikely(&tcp_have_smc)) {
498		ireq = inet_rsk(req);
499		if (oldtp->syn_smc && !ireq->smc_ok)
500			newtp->syn_smc = 0;
501	}
502#endif
503}
504
505/* This is not only more efficient than what we used to do, it eliminates
506 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
507 *
508 * Actually, we could lots of memory writes here. tp of listening
509 * socket contains all necessary default parameters.
510 */
511struct sock *tcp_create_openreq_child(const struct sock *sk,
512				      struct request_sock *req,
513				      struct sk_buff *skb)
514{
515	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
516	const struct inet_request_sock *ireq = inet_rsk(req);
517	struct tcp_request_sock *treq = tcp_rsk(req);
518	struct inet_connection_sock *newicsk;
519	const struct tcp_sock *oldtp;
520	struct tcp_sock *newtp;
521	u32 seq;
522#ifdef CONFIG_TCP_AO
523	struct tcp_ao_key *ao_key;
524#endif
525
526	if (!newsk)
527		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528
529	newicsk = inet_csk(newsk);
530	newtp = tcp_sk(newsk);
531	oldtp = tcp_sk(sk);
532
533	smc_check_reset_syn_req(oldtp, req, newtp);
534
535	/* Now setup tcp_sock */
536	newtp->pred_flags = 0;
537
538	seq = treq->rcv_isn + 1;
539	newtp->rcv_wup = seq;
540	WRITE_ONCE(newtp->copied_seq, seq);
541	WRITE_ONCE(newtp->rcv_nxt, seq);
542	newtp->segs_in = 1;
543
544	seq = treq->snt_isn + 1;
545	newtp->snd_sml = newtp->snd_una = seq;
546	WRITE_ONCE(newtp->snd_nxt, seq);
547	newtp->snd_up = seq;
548
549	INIT_LIST_HEAD(&newtp->tsq_node);
550	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
551
552	tcp_init_wl(newtp, treq->rcv_isn);
553
554	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
555	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
556
557	newtp->lsndtime = tcp_jiffies32;
558	newsk->sk_txhash = READ_ONCE(treq->txhash);
559	newtp->total_retrans = req->num_retrans;
560
561	tcp_init_xmit_timers(newsk);
562	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
563
564	if (sock_flag(newsk, SOCK_KEEPOPEN))
565		inet_csk_reset_keepalive_timer(newsk,
566					       keepalive_time_when(newtp));
567
568	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
569	newtp->rx_opt.sack_ok = ireq->sack_ok;
570	newtp->window_clamp = req->rsk_window_clamp;
571	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
572	newtp->rcv_wnd = req->rsk_rcv_wnd;
573	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
574	if (newtp->rx_opt.wscale_ok) {
575		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
576		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
577	} else {
578		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
579		newtp->window_clamp = min(newtp->window_clamp, 65535U);
580	}
581	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
582	newtp->max_window = newtp->snd_wnd;
583
584	if (newtp->rx_opt.tstamp_ok) {
585		newtp->tcp_usec_ts = treq->req_usec_ts;
586		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
587		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
588		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
589	} else {
590		newtp->tcp_usec_ts = 0;
591		newtp->rx_opt.ts_recent_stamp = 0;
592		newtp->tcp_header_len = sizeof(struct tcphdr);
593	}
594	if (req->num_timeout) {
595		newtp->total_rto = req->num_timeout;
596		newtp->undo_marker = treq->snt_isn;
597		if (newtp->tcp_usec_ts) {
598			newtp->retrans_stamp = treq->snt_synack;
599			newtp->total_rto_time = (u32)(tcp_clock_us() -
600						      newtp->retrans_stamp) / USEC_PER_MSEC;
601		} else {
602			newtp->retrans_stamp = div_u64(treq->snt_synack,
603						       USEC_PER_SEC / TCP_TS_HZ);
604			newtp->total_rto_time = tcp_clock_ms() -
605						newtp->retrans_stamp;
606		}
607		newtp->total_rto_recoveries = 1;
608	}
609	newtp->tsoffset = treq->ts_off;
610#ifdef CONFIG_TCP_MD5SIG
611	newtp->md5sig_info = NULL;	/*XXX*/
 
 
612#endif
613#ifdef CONFIG_TCP_AO
614	newtp->ao_info = NULL;
615	ao_key = treq->af_specific->ao_lookup(sk, req,
616				tcp_rsk(req)->ao_keyid, -1);
617	if (ao_key)
618		newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
619 #endif
620	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
621		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
622	newtp->rx_opt.mss_clamp = req->mss;
623	tcp_ecn_openreq_child(newtp, req);
624	newtp->fastopen_req = NULL;
625	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
626
627	newtp->bpf_chg_cc_inprogress = 0;
628	tcp_bpf_clone(sk, newsk);
629
630	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
631
 
 
632	return newsk;
633}
634EXPORT_SYMBOL(tcp_create_openreq_child);
635
636/*
637 * Process an incoming packet for SYN_RECV sockets represented as a
638 * request_sock. Normally sk is the listener socket but for TFO it
639 * points to the child socket.
640 *
641 * XXX (TFO) - The current impl contains a special check for ack
642 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
643 *
644 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
645 *
646 * Note: If @fastopen is true, this can be called from process context.
647 *       Otherwise, this is from BH context.
648 */
649
650struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
651			   struct request_sock *req,
652			   bool fastopen, bool *req_stolen)
 
653{
654	struct tcp_options_received tmp_opt;
655	struct sock *child;
656	const struct tcphdr *th = tcp_hdr(skb);
657	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
658	bool paws_reject = false;
659	bool own_req;
 
660
661	tmp_opt.saw_tstamp = 0;
662	if (th->doff > (sizeof(struct tcphdr)>>2)) {
663		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
664
665		if (tmp_opt.saw_tstamp) {
666			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
667			if (tmp_opt.rcv_tsecr)
668				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
669			/* We do not store true stamp, but it is not required,
670			 * it can be estimated (approximately)
671			 * from another data.
672			 */
673			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
674			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
675		}
676	}
677
678	/* Check for pure retransmitted SYN. */
679	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
680	    flg == TCP_FLAG_SYN &&
681	    !paws_reject) {
682		/*
683		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
684		 * this case on figure 6 and figure 8, but formal
685		 * protocol description says NOTHING.
686		 * To be more exact, it says that we should send ACK,
687		 * because this segment (at least, if it has no data)
688		 * is out of window.
689		 *
690		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
691		 *  describe SYN-RECV state. All the description
692		 *  is wrong, we cannot believe to it and should
693		 *  rely only on common sense and implementation
694		 *  experience.
695		 *
696		 * Enforce "SYN-ACK" according to figure 8, figure 6
697		 * of RFC793, fixed by RFC1122.
698		 *
699		 * Note that even if there is new data in the SYN packet
700		 * they will be thrown away too.
701		 *
702		 * Reset timer after retransmitting SYNACK, similar to
703		 * the idea of fast retransmit in recovery.
704		 */
705		if (!tcp_oow_rate_limited(sock_net(sk), skb,
706					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
707					  &tcp_rsk(req)->last_oow_ack_time) &&
708
709		    !inet_rtx_syn_ack(sk, req)) {
710			unsigned long expires = jiffies;
711
712			expires += reqsk_timeout(req, TCP_RTO_MAX);
713			if (!fastopen)
714				mod_timer_pending(&req->rsk_timer, expires);
715			else
716				req->rsk_timer.expires = expires;
717		}
718		return NULL;
719	}
720
721	/* Further reproduces section "SEGMENT ARRIVES"
722	   for state SYN-RECEIVED of RFC793.
723	   It is broken, however, it does not work only
724	   when SYNs are crossed.
725
726	   You would think that SYN crossing is impossible here, since
727	   we should have a SYN_SENT socket (from connect()) on our end,
728	   but this is not true if the crossed SYNs were sent to both
729	   ends by a malicious third party.  We must defend against this,
730	   and to do that we first verify the ACK (as per RFC793, page
731	   36) and reset if it is invalid.  Is this a true full defense?
732	   To convince ourselves, let us consider a way in which the ACK
733	   test can still pass in this 'malicious crossed SYNs' case.
734	   Malicious sender sends identical SYNs (and thus identical sequence
735	   numbers) to both A and B:
736
737		A: gets SYN, seq=7
738		B: gets SYN, seq=7
739
740	   By our good fortune, both A and B select the same initial
741	   send sequence number of seven :-)
742
743		A: sends SYN|ACK, seq=7, ack_seq=8
744		B: sends SYN|ACK, seq=7, ack_seq=8
745
746	   So we are now A eating this SYN|ACK, ACK test passes.  So
747	   does sequence test, SYN is truncated, and thus we consider
748	   it a bare ACK.
749
750	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
751	   bare ACK.  Otherwise, we create an established connection.  Both
752	   ends (listening sockets) accept the new incoming connection and try
753	   to talk to each other. 8-)
754
755	   Note: This case is both harmless, and rare.  Possibility is about the
756	   same as us discovering intelligent life on another plant tomorrow.
757
758	   But generally, we should (RFC lies!) to accept ACK
759	   from SYNACK both here and in tcp_rcv_state_process().
760	   tcp_rcv_state_process() does not, hence, we do not too.
761
762	   Note that the case is absolutely generic:
763	   we cannot optimize anything here without
764	   violating protocol. All the checks must be made
765	   before attempt to create socket.
766	 */
767
768	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
769	 *                  and the incoming segment acknowledges something not yet
770	 *                  sent (the segment carries an unacceptable ACK) ...
771	 *                  a reset is sent."
772	 *
773	 * Invalid ACK: reset will be sent by listening socket.
774	 * Note that the ACK validity check for a Fast Open socket is done
775	 * elsewhere and is checked directly against the child socket rather
776	 * than req because user data may have been sent out.
777	 */
778	if ((flg & TCP_FLAG_ACK) && !fastopen &&
779	    (TCP_SKB_CB(skb)->ack_seq !=
780	     tcp_rsk(req)->snt_isn + 1))
781		return sk;
782
783	/* Also, it would be not so bad idea to check rcv_tsecr, which
784	 * is essentially ACK extension and too early or too late values
785	 * should cause reset in unsynchronized states.
786	 */
787
788	/* RFC793: "first check sequence number". */
789
790	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
791					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
792		/* Out of window: send ACK and drop. */
793		if (!(flg & TCP_FLAG_RST) &&
794		    !tcp_oow_rate_limited(sock_net(sk), skb,
795					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
796					  &tcp_rsk(req)->last_oow_ack_time))
797			req->rsk_ops->send_ack(sk, skb, req);
798		if (paws_reject)
799			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
800		return NULL;
801	}
802
803	/* In sequence, PAWS is OK. */
804
805	/* TODO: We probably should defer ts_recent change once
806	 * we take ownership of @req.
807	 */
808	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
809		WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
810
811	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
812		/* Truncate SYN, it is out of window starting
813		   at tcp_rsk(req)->rcv_isn + 1. */
814		flg &= ~TCP_FLAG_SYN;
815	}
816
817	/* RFC793: "second check the RST bit" and
818	 *	   "fourth, check the SYN bit"
819	 */
820	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
821		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
822		goto embryonic_reset;
823	}
824
825	/* ACK sequence verified above, just make sure ACK is
826	 * set.  If ACK not set, just silently drop the packet.
827	 *
828	 * XXX (TFO) - if we ever allow "data after SYN", the
829	 * following check needs to be removed.
830	 */
831	if (!(flg & TCP_FLAG_ACK))
832		return NULL;
833
834	/* For Fast Open no more processing is needed (sk is the
835	 * child socket).
836	 */
837	if (fastopen)
838		return sk;
839
840	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
841	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
842	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
843		inet_rsk(req)->acked = 1;
844		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
845		return NULL;
846	}
847
848	/* OK, ACK is valid, create big socket and
849	 * feed this segment to it. It will repeat all
850	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
851	 * ESTABLISHED STATE. If it will be dropped after
852	 * socket is created, wait for troubles.
853	 */
854	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
855							 req, &own_req);
856	if (!child)
857		goto listen_overflow;
858
859	if (own_req && rsk_drop_req(req)) {
860		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
861		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
862		return child;
863	}
864
865	sock_rps_save_rxhash(child, skb);
866	tcp_synack_rtt_meas(child, req);
867	*req_stolen = !own_req;
868	return inet_csk_complete_hashdance(sk, child, req, own_req);
869
870listen_overflow:
871	if (sk != req->rsk_listener)
872		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
873
874	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
875		inet_rsk(req)->acked = 1;
876		return NULL;
877	}
878
879embryonic_reset:
880	if (!(flg & TCP_FLAG_RST)) {
881		/* Received a bad SYN pkt - for TFO We try not to reset
882		 * the local connection unless it's really necessary to
883		 * avoid becoming vulnerable to outside attack aiming at
884		 * resetting legit local connections.
885		 */
886		req->rsk_ops->send_reset(sk, skb);
887	} else if (fastopen) { /* received a valid RST pkt */
888		reqsk_fastopen_remove(sk, req, true);
889		tcp_reset(sk, skb);
890	}
891	if (!fastopen) {
892		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
893
894		if (unlinked)
895			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
896		*req_stolen = !unlinked;
897	}
898	return NULL;
899}
900EXPORT_SYMBOL(tcp_check_req);
901
902/*
903 * Queue segment on the new socket if the new socket is active,
904 * otherwise we just shortcircuit this and continue with
905 * the new socket.
906 *
907 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
908 * when entering. But other states are possible due to a race condition
909 * where after __inet_lookup_established() fails but before the listener
910 * locked is obtained, other packets cause the same connection to
911 * be created.
912 */
913
914int tcp_child_process(struct sock *parent, struct sock *child,
915		      struct sk_buff *skb)
916	__releases(&((child)->sk_lock.slock))
917{
918	int ret = 0;
919	int state = child->sk_state;
920
921	/* record sk_napi_id and sk_rx_queue_mapping of child. */
922	sk_mark_napi_id_set(child, skb);
923
924	tcp_segs_in(tcp_sk(child), skb);
925	if (!sock_owned_by_user(child)) {
926		ret = tcp_rcv_state_process(child, skb);
 
927		/* Wakeup parent, send SIGIO */
928		if (state == TCP_SYN_RECV && child->sk_state != state)
929			parent->sk_data_ready(parent);
930	} else {
931		/* Alas, it is possible again, because we do lookup
932		 * in main socket hash table and lock on listening
933		 * socket does not protect us more.
934		 */
935		__sk_add_backlog(child, skb);
936	}
937
938	bh_unlock_sock(child);
939	sock_put(child);
940	return ret;
941}
942EXPORT_SYMBOL(tcp_child_process);