Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 26#include <net/tcp.h>
 27#include <net/inet_common.h>
 28#include <net/xfrm.h>
 29
 30int sysctl_tcp_syncookies __read_mostly = 1;
 31EXPORT_SYMBOL(sysctl_tcp_syncookies);
 32
 33int sysctl_tcp_abort_on_overflow __read_mostly;
 34
 35struct inet_timewait_death_row tcp_death_row = {
 36	.sysctl_max_tw_buckets = NR_FILE * 2,
 37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
 38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
 39	.hashinfo	= &tcp_hashinfo,
 40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
 41					    (unsigned long)&tcp_death_row),
 42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
 43					     inet_twdr_twkill_work),
 44/* Short-time timewait calendar */
 45
 46	.twcal_hand	= -1,
 47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
 48					    (unsigned long)&tcp_death_row),
 49};
 50EXPORT_SYMBOL_GPL(tcp_death_row);
 51
 52static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 53{
 54	if (seq == s_win)
 55		return true;
 56	if (after(end_seq, s_win) && before(seq, e_win))
 57		return true;
 58	return seq == e_win && seq == end_seq;
 59}
 60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 61/*
 62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 63 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 64 *   (and, probably, tail of data) and one or more our ACKs are lost.
 65 * * What is TIME-WAIT timeout? It is associated with maximal packet
 66 *   lifetime in the internet, which results in wrong conclusion, that
 67 *   it is set to catch "old duplicate segments" wandering out of their path.
 68 *   It is not quite correct. This timeout is calculated so that it exceeds
 69 *   maximal retransmission timeout enough to allow to lose one (or more)
 70 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 71 * * When TIME-WAIT socket receives RST, it means that another end
 72 *   finally closed and we are allowed to kill TIME-WAIT too.
 73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 74 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 75 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 76 * * If we invented some more clever way to catch duplicates
 77 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 78 *
 79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 81 * from the very beginning.
 82 *
 83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 84 * is _not_ stateless. It means, that strictly speaking we must
 85 * spinlock it. I do not want! Well, probability of misbehaviour
 86 * is ridiculously low and, seems, we could use some mb() tricks
 87 * to avoid misread sequence numbers, states etc.  --ANK
 88 *
 89 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 90 */
 91enum tcp_tw_status
 92tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 93			   const struct tcphdr *th)
 94{
 95	struct tcp_options_received tmp_opt;
 96	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 97	bool paws_reject = false;
 98
 99	tmp_opt.saw_tstamp = 0;
100	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101		tcp_parse_options(skb, &tmp_opt, 0, NULL);
102
103		if (tmp_opt.saw_tstamp) {
104			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
105			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108		}
109	}
110
111	if (tw->tw_substate == TCP_FIN_WAIT2) {
112		/* Just repeat all the checks of tcp_rcv_state_process() */
113
114		/* Out of window, send ACK */
115		if (paws_reject ||
116		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117				   tcptw->tw_rcv_nxt,
118				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119			return TCP_TW_ACK;
 
120
121		if (th->rst)
122			goto kill;
123
124		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
125			goto kill_with_rst;
126
127		/* Dup ACK? */
128		if (!th->ack ||
129		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
130		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
131			inet_twsk_put(tw);
132			return TCP_TW_SUCCESS;
133		}
134
135		/* New data or FIN. If new data arrive after half-duplex close,
136		 * reset.
137		 */
138		if (!th->fin ||
139		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
140kill_with_rst:
141			inet_twsk_deschedule(tw, &tcp_death_row);
142			inet_twsk_put(tw);
143			return TCP_TW_RST;
144		}
145
146		/* FIN arrived, enter true time-wait state. */
147		tw->tw_substate	  = TCP_TIME_WAIT;
148		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
149		if (tmp_opt.saw_tstamp) {
150			tcptw->tw_ts_recent_stamp = get_seconds();
151			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
152		}
153
154		if (tcp_death_row.sysctl_tw_recycle &&
155		    tcptw->tw_ts_recent_stamp &&
156		    tcp_tw_remember_stamp(tw))
157			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
158					   TCP_TIMEWAIT_LEN);
159		else
160			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
161					   TCP_TIMEWAIT_LEN);
162		return TCP_TW_ACK;
163	}
164
165	/*
166	 *	Now real TIME-WAIT state.
167	 *
168	 *	RFC 1122:
169	 *	"When a connection is [...] on TIME-WAIT state [...]
170	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171	 *	reopen the connection directly, if it:
172	 *
173	 *	(1)  assigns its initial sequence number for the new
174	 *	connection to be larger than the largest sequence
175	 *	number it used on the previous connection incarnation,
176	 *	and
177	 *
178	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179	 *	to be an old duplicate".
180	 */
181
182	if (!paws_reject &&
183	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185		/* In window segment, it may be only reset or bare ack. */
186
187		if (th->rst) {
188			/* This is TIME_WAIT assassination, in two flavors.
189			 * Oh well... nobody has a sufficient solution to this
190			 * protocol bug yet.
191			 */
192			if (sysctl_tcp_rfc1337 == 0) {
193kill:
194				inet_twsk_deschedule(tw, &tcp_death_row);
195				inet_twsk_put(tw);
196				return TCP_TW_SUCCESS;
197			}
198		}
199		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
200				   TCP_TIMEWAIT_LEN);
201
202		if (tmp_opt.saw_tstamp) {
203			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
204			tcptw->tw_ts_recent_stamp = get_seconds();
205		}
206
207		inet_twsk_put(tw);
208		return TCP_TW_SUCCESS;
209	}
210
211	/* Out of window segment.
212
213	   All the segments are ACKed immediately.
214
215	   The only exception is new SYN. We accept it, if it is
216	   not old duplicate and we are not in danger to be killed
217	   by delayed old duplicates. RFC check is that it has
218	   newer sequence number works at rates <40Mbit/sec.
219	   However, if paws works, it is reliable AND even more,
220	   we even may relax silly seq space cutoff.
221
222	   RED-PEN: we violate main RFC requirement, if this SYN will appear
223	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
224	   we must return socket to time-wait state. It is not good,
225	   but not fatal yet.
226	 */
227
228	if (th->syn && !th->rst && !th->ack && !paws_reject &&
229	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
230	     (tmp_opt.saw_tstamp &&
231	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
232		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
233		if (isn == 0)
234			isn++;
235		TCP_SKB_CB(skb)->when = isn;
236		return TCP_TW_SYN;
237	}
238
239	if (paws_reject)
240		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
241
242	if (!th->rst) {
243		/* In this case we must reset the TIMEWAIT timer.
244		 *
245		 * If it is ACKless SYN it may be both old duplicate
246		 * and new good SYN with random sequence number <rcv_nxt.
247		 * Do not reschedule in the last case.
248		 */
249		if (paws_reject || th->ack)
250			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
251					   TCP_TIMEWAIT_LEN);
252
253		/* Send ACK. Note, we do not put the bucket,
254		 * it will be released by caller.
255		 */
256		return TCP_TW_ACK;
257	}
258	inet_twsk_put(tw);
259	return TCP_TW_SUCCESS;
260}
261EXPORT_SYMBOL(tcp_timewait_state_process);
262
263/*
264 * Move a socket to time-wait or dead fin-wait-2 state.
265 */
266void tcp_time_wait(struct sock *sk, int state, int timeo)
267{
268	struct inet_timewait_sock *tw = NULL;
269	const struct inet_connection_sock *icsk = inet_csk(sk);
270	const struct tcp_sock *tp = tcp_sk(sk);
 
271	bool recycle_ok = false;
272
273	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
274		recycle_ok = tcp_remember_stamp(sk);
275
276	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
277		tw = inet_twsk_alloc(sk, state);
278
279	if (tw != NULL) {
280		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282		struct inet_sock *inet = inet_sk(sk);
283
284		tw->tw_transparent	= inet->transparent;
285		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
286		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
287		tcptw->tw_snd_nxt	= tp->snd_nxt;
288		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
289		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
290		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291		tcptw->tw_ts_offset	= tp->tsoffset;
 
292
293#if IS_ENABLED(CONFIG_IPV6)
294		if (tw->tw_family == PF_INET6) {
295			struct ipv6_pinfo *np = inet6_sk(sk);
296
297			tw->tw_v6_daddr = sk->sk_v6_daddr;
298			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
299			tw->tw_tclass = np->tclass;
300			tw->tw_flowlabel = np->flow_label >> 12;
301			tw->tw_ipv6only = np->ipv6only;
302		}
303#endif
304
305#ifdef CONFIG_TCP_MD5SIG
306		/*
307		 * The timewait bucket does not have the key DB from the
308		 * sock structure. We just make a quick copy of the
309		 * md5 key being used (if indeed we are using one)
310		 * so the timewait ack generating code has the key.
311		 */
312		do {
313			struct tcp_md5sig_key *key;
314			tcptw->tw_md5_key = NULL;
315			key = tp->af_specific->md5_lookup(sk, sk);
316			if (key != NULL) {
317				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
318				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
319					BUG();
320			}
321		} while (0);
322#endif
323
324		/* Linkage updates. */
325		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
326
327		/* Get the TIME_WAIT timeout firing. */
328		if (timeo < rto)
329			timeo = rto;
330
331		if (recycle_ok) {
332			tw->tw_timeout = rto;
333		} else {
334			tw->tw_timeout = TCP_TIMEWAIT_LEN;
335			if (state == TCP_TIME_WAIT)
336				timeo = TCP_TIMEWAIT_LEN;
337		}
338
339		inet_twsk_schedule(tw, &tcp_death_row, timeo,
340				   TCP_TIMEWAIT_LEN);
 
341		inet_twsk_put(tw);
342	} else {
343		/* Sorry, if we're out of memory, just CLOSE this
344		 * socket up.  We've got bigger problems than
345		 * non-graceful socket closings.
346		 */
347		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
348	}
349
350	tcp_update_metrics(sk);
351	tcp_done(sk);
352}
353
354void tcp_twsk_destructor(struct sock *sk)
355{
356#ifdef CONFIG_TCP_MD5SIG
357	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
358
359	if (twsk->tw_md5_key)
360		kfree_rcu(twsk->tw_md5_key, rcu);
361#endif
362}
363EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
364
365static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
366					 struct request_sock *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367{
368	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
369}
370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371/* This is not only more efficient than what we used to do, it eliminates
372 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
373 *
374 * Actually, we could lots of memory writes here. tp of listening
375 * socket contains all necessary default parameters.
376 */
377struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
 
 
378{
379	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
380
381	if (newsk != NULL) {
382		const struct inet_request_sock *ireq = inet_rsk(req);
383		struct tcp_request_sock *treq = tcp_rsk(req);
384		struct inet_connection_sock *newicsk = inet_csk(newsk);
385		struct tcp_sock *newtp = tcp_sk(newsk);
386
387		/* Now setup tcp_sock */
388		newtp->pred_flags = 0;
389
390		newtp->rcv_wup = newtp->copied_seq =
391		newtp->rcv_nxt = treq->rcv_isn + 1;
 
392
393		newtp->snd_sml = newtp->snd_una =
394		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
395
396		tcp_prequeue_init(newtp);
397		INIT_LIST_HEAD(&newtp->tsq_node);
398
399		tcp_init_wl(newtp, treq->rcv_isn);
400
401		newtp->srtt_us = 0;
402		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 
403		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
404
405		newtp->packets_out = 0;
406		newtp->retrans_out = 0;
407		newtp->sacked_out = 0;
408		newtp->fackets_out = 0;
409		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
410		tcp_enable_early_retrans(newtp);
411		newtp->tlp_high_seq = 0;
412		newtp->lsndtime = treq->snt_synack;
 
 
413		newtp->total_retrans = req->num_retrans;
414
415		/* So many TCP implementations out there (incorrectly) count the
416		 * initial SYN frame in their delayed-ACK and congestion control
417		 * algorithms that we must have the following bandaid to talk
418		 * efficiently to them.  -DaveM
419		 */
420		newtp->snd_cwnd = TCP_INIT_CWND;
421		newtp->snd_cwnd_cnt = 0;
422
423		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
424		    !try_module_get(newicsk->icsk_ca_ops->owner))
425			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
426
427		tcp_set_ca_state(newsk, TCP_CA_Open);
428		tcp_init_xmit_timers(newsk);
429		__skb_queue_head_init(&newtp->out_of_order_queue);
430		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
431
432		newtp->rx_opt.saw_tstamp = 0;
433
434		newtp->rx_opt.dsack = 0;
435		newtp->rx_opt.num_sacks = 0;
436
437		newtp->urg_data = 0;
438
439		if (sock_flag(newsk, SOCK_KEEPOPEN))
440			inet_csk_reset_keepalive_timer(newsk,
441						       keepalive_time_when(newtp));
442
443		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
444		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
445			if (sysctl_tcp_fack)
446				tcp_enable_fack(newtp);
447		}
448		newtp->window_clamp = req->window_clamp;
449		newtp->rcv_ssthresh = req->rcv_wnd;
450		newtp->rcv_wnd = req->rcv_wnd;
451		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
452		if (newtp->rx_opt.wscale_ok) {
453			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
454			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
455		} else {
456			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
457			newtp->window_clamp = min(newtp->window_clamp, 65535U);
458		}
459		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
460				  newtp->rx_opt.snd_wscale);
461		newtp->max_window = newtp->snd_wnd;
462
463		if (newtp->rx_opt.tstamp_ok) {
464			newtp->rx_opt.ts_recent = req->ts_recent;
465			newtp->rx_opt.ts_recent_stamp = get_seconds();
466			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
467		} else {
468			newtp->rx_opt.ts_recent_stamp = 0;
469			newtp->tcp_header_len = sizeof(struct tcphdr);
470		}
471		newtp->tsoffset = 0;
472#ifdef CONFIG_TCP_MD5SIG
473		newtp->md5sig_info = NULL;	/*XXX*/
474		if (newtp->af_specific->md5_lookup(sk, newsk))
475			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
476#endif
477		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
478			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
479		newtp->rx_opt.mss_clamp = req->mss;
480		TCP_ECN_openreq_child(newtp, req);
481		newtp->fastopen_rsk = NULL;
482		newtp->syn_data_acked = 0;
 
 
483
484		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
485	}
486	return newsk;
487}
488EXPORT_SYMBOL(tcp_create_openreq_child);
489
490/*
491 * Process an incoming packet for SYN_RECV sockets represented as a
492 * request_sock. Normally sk is the listener socket but for TFO it
493 * points to the child socket.
494 *
495 * XXX (TFO) - The current impl contains a special check for ack
496 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
497 *
498 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
499 */
500
501struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
502			   struct request_sock *req,
503			   struct request_sock **prev,
504			   bool fastopen)
505{
506	struct tcp_options_received tmp_opt;
507	struct sock *child;
508	const struct tcphdr *th = tcp_hdr(skb);
509	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
510	bool paws_reject = false;
511
512	BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
513
514	tmp_opt.saw_tstamp = 0;
515	if (th->doff > (sizeof(struct tcphdr)>>2)) {
516		tcp_parse_options(skb, &tmp_opt, 0, NULL);
517
518		if (tmp_opt.saw_tstamp) {
519			tmp_opt.ts_recent = req->ts_recent;
520			/* We do not store true stamp, but it is not required,
521			 * it can be estimated (approximately)
522			 * from another data.
523			 */
524			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
525			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
526		}
527	}
528
529	/* Check for pure retransmitted SYN. */
530	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
531	    flg == TCP_FLAG_SYN &&
532	    !paws_reject) {
533		/*
534		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
535		 * this case on figure 6 and figure 8, but formal
536		 * protocol description says NOTHING.
537		 * To be more exact, it says that we should send ACK,
538		 * because this segment (at least, if it has no data)
539		 * is out of window.
540		 *
541		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
542		 *  describe SYN-RECV state. All the description
543		 *  is wrong, we cannot believe to it and should
544		 *  rely only on common sense and implementation
545		 *  experience.
546		 *
547		 * Enforce "SYN-ACK" according to figure 8, figure 6
548		 * of RFC793, fixed by RFC1122.
549		 *
550		 * Note that even if there is new data in the SYN packet
551		 * they will be thrown away too.
552		 *
553		 * Reset timer after retransmitting SYNACK, similar to
554		 * the idea of fast retransmit in recovery.
555		 */
556		if (!inet_rtx_syn_ack(sk, req))
557			req->expires = min(TCP_TIMEOUT_INIT << req->num_timeout,
558					   TCP_RTO_MAX) + jiffies;
 
 
 
 
 
 
 
 
 
 
 
559		return NULL;
560	}
561
562	/* Further reproduces section "SEGMENT ARRIVES"
563	   for state SYN-RECEIVED of RFC793.
564	   It is broken, however, it does not work only
565	   when SYNs are crossed.
566
567	   You would think that SYN crossing is impossible here, since
568	   we should have a SYN_SENT socket (from connect()) on our end,
569	   but this is not true if the crossed SYNs were sent to both
570	   ends by a malicious third party.  We must defend against this,
571	   and to do that we first verify the ACK (as per RFC793, page
572	   36) and reset if it is invalid.  Is this a true full defense?
573	   To convince ourselves, let us consider a way in which the ACK
574	   test can still pass in this 'malicious crossed SYNs' case.
575	   Malicious sender sends identical SYNs (and thus identical sequence
576	   numbers) to both A and B:
577
578		A: gets SYN, seq=7
579		B: gets SYN, seq=7
580
581	   By our good fortune, both A and B select the same initial
582	   send sequence number of seven :-)
583
584		A: sends SYN|ACK, seq=7, ack_seq=8
585		B: sends SYN|ACK, seq=7, ack_seq=8
586
587	   So we are now A eating this SYN|ACK, ACK test passes.  So
588	   does sequence test, SYN is truncated, and thus we consider
589	   it a bare ACK.
590
591	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
592	   bare ACK.  Otherwise, we create an established connection.  Both
593	   ends (listening sockets) accept the new incoming connection and try
594	   to talk to each other. 8-)
595
596	   Note: This case is both harmless, and rare.  Possibility is about the
597	   same as us discovering intelligent life on another plant tomorrow.
598
599	   But generally, we should (RFC lies!) to accept ACK
600	   from SYNACK both here and in tcp_rcv_state_process().
601	   tcp_rcv_state_process() does not, hence, we do not too.
602
603	   Note that the case is absolutely generic:
604	   we cannot optimize anything here without
605	   violating protocol. All the checks must be made
606	   before attempt to create socket.
607	 */
608
609	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
610	 *                  and the incoming segment acknowledges something not yet
611	 *                  sent (the segment carries an unacceptable ACK) ...
612	 *                  a reset is sent."
613	 *
614	 * Invalid ACK: reset will be sent by listening socket.
615	 * Note that the ACK validity check for a Fast Open socket is done
616	 * elsewhere and is checked directly against the child socket rather
617	 * than req because user data may have been sent out.
618	 */
619	if ((flg & TCP_FLAG_ACK) && !fastopen &&
620	    (TCP_SKB_CB(skb)->ack_seq !=
621	     tcp_rsk(req)->snt_isn + 1))
622		return sk;
623
624	/* Also, it would be not so bad idea to check rcv_tsecr, which
625	 * is essentially ACK extension and too early or too late values
626	 * should cause reset in unsynchronized states.
627	 */
628
629	/* RFC793: "first check sequence number". */
630
631	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
632					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
633		/* Out of window: send ACK and drop. */
634		if (!(flg & TCP_FLAG_RST))
635			req->rsk_ops->send_ack(sk, skb, req);
636		if (paws_reject)
637			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
638		return NULL;
639	}
640
641	/* In sequence, PAWS is OK. */
642
643	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
644		req->ts_recent = tmp_opt.rcv_tsval;
645
646	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
647		/* Truncate SYN, it is out of window starting
648		   at tcp_rsk(req)->rcv_isn + 1. */
649		flg &= ~TCP_FLAG_SYN;
650	}
651
652	/* RFC793: "second check the RST bit" and
653	 *	   "fourth, check the SYN bit"
654	 */
655	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
656		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
657		goto embryonic_reset;
658	}
659
660	/* ACK sequence verified above, just make sure ACK is
661	 * set.  If ACK not set, just silently drop the packet.
662	 *
663	 * XXX (TFO) - if we ever allow "data after SYN", the
664	 * following check needs to be removed.
665	 */
666	if (!(flg & TCP_FLAG_ACK))
667		return NULL;
668
669	/* For Fast Open no more processing is needed (sk is the
670	 * child socket).
671	 */
672	if (fastopen)
673		return sk;
674
675	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
676	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
677	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
678		inet_rsk(req)->acked = 1;
679		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
680		return NULL;
681	}
682
683	/* OK, ACK is valid, create big socket and
684	 * feed this segment to it. It will repeat all
685	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
686	 * ESTABLISHED STATE. If it will be dropped after
687	 * socket is created, wait for troubles.
688	 */
689	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
690	if (child == NULL)
 
691		goto listen_overflow;
692
693	inet_csk_reqsk_queue_unlink(sk, req, prev);
694	inet_csk_reqsk_queue_removed(sk, req);
695
696	inet_csk_reqsk_queue_add(sk, req, child);
697	return child;
698
699listen_overflow:
700	if (!sysctl_tcp_abort_on_overflow) {
701		inet_rsk(req)->acked = 1;
702		return NULL;
703	}
704
705embryonic_reset:
706	if (!(flg & TCP_FLAG_RST)) {
707		/* Received a bad SYN pkt - for TFO We try not to reset
708		 * the local connection unless it's really necessary to
709		 * avoid becoming vulnerable to outside attack aiming at
710		 * resetting legit local connections.
711		 */
712		req->rsk_ops->send_reset(sk, skb);
713	} else if (fastopen) { /* received a valid RST pkt */
714		reqsk_fastopen_remove(sk, req, true);
715		tcp_reset(sk);
716	}
717	if (!fastopen) {
718		inet_csk_reqsk_queue_drop(sk, req, prev);
719		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
720	}
721	return NULL;
722}
723EXPORT_SYMBOL(tcp_check_req);
724
725/*
726 * Queue segment on the new socket if the new socket is active,
727 * otherwise we just shortcircuit this and continue with
728 * the new socket.
729 *
730 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
731 * when entering. But other states are possible due to a race condition
732 * where after __inet_lookup_established() fails but before the listener
733 * locked is obtained, other packets cause the same connection to
734 * be created.
735 */
736
737int tcp_child_process(struct sock *parent, struct sock *child,
738		      struct sk_buff *skb)
739{
740	int ret = 0;
741	int state = child->sk_state;
742
 
743	if (!sock_owned_by_user(child)) {
744		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
745					    skb->len);
746		/* Wakeup parent, send SIGIO */
747		if (state == TCP_SYN_RECV && child->sk_state != state)
748			parent->sk_data_ready(parent);
749	} else {
750		/* Alas, it is possible again, because we do lookup
751		 * in main socket hash table and lock on listening
752		 * socket does not protect us more.
753		 */
754		__sk_add_backlog(child, skb);
755	}
756
757	bh_unlock_sock(child);
758	sock_put(child);
759	return ret;
760}
761EXPORT_SYMBOL(tcp_child_process);
v4.6
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 26#include <net/tcp.h>
 27#include <net/inet_common.h>
 28#include <net/xfrm.h>
 29
 
 
 
 30int sysctl_tcp_abort_on_overflow __read_mostly;
 31
 32struct inet_timewait_death_row tcp_death_row = {
 33	.sysctl_max_tw_buckets = NR_FILE * 2,
 
 
 34	.hashinfo	= &tcp_hashinfo,
 
 
 
 
 
 
 
 
 
 35};
 36EXPORT_SYMBOL_GPL(tcp_death_row);
 37
 38static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 39{
 40	if (seq == s_win)
 41		return true;
 42	if (after(end_seq, s_win) && before(seq, e_win))
 43		return true;
 44	return seq == e_win && seq == end_seq;
 45}
 46
 47static enum tcp_tw_status
 48tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 49				  const struct sk_buff *skb, int mib_idx)
 50{
 51	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 52
 53	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 54				  &tcptw->tw_last_oow_ack_time)) {
 55		/* Send ACK. Note, we do not put the bucket,
 56		 * it will be released by caller.
 57		 */
 58		return TCP_TW_ACK;
 59	}
 60
 61	/* We are rate-limiting, so just release the tw sock and drop skb. */
 62	inet_twsk_put(tw);
 63	return TCP_TW_SUCCESS;
 64}
 65
 66/*
 67 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 68 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 69 *   (and, probably, tail of data) and one or more our ACKs are lost.
 70 * * What is TIME-WAIT timeout? It is associated with maximal packet
 71 *   lifetime in the internet, which results in wrong conclusion, that
 72 *   it is set to catch "old duplicate segments" wandering out of their path.
 73 *   It is not quite correct. This timeout is calculated so that it exceeds
 74 *   maximal retransmission timeout enough to allow to lose one (or more)
 75 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 76 * * When TIME-WAIT socket receives RST, it means that another end
 77 *   finally closed and we are allowed to kill TIME-WAIT too.
 78 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 79 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 80 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 81 * * If we invented some more clever way to catch duplicates
 82 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 83 *
 84 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 85 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 86 * from the very beginning.
 87 *
 88 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 89 * is _not_ stateless. It means, that strictly speaking we must
 90 * spinlock it. I do not want! Well, probability of misbehaviour
 91 * is ridiculously low and, seems, we could use some mb() tricks
 92 * to avoid misread sequence numbers, states etc.  --ANK
 93 *
 94 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 95 */
 96enum tcp_tw_status
 97tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 98			   const struct tcphdr *th)
 99{
100	struct tcp_options_received tmp_opt;
101	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102	bool paws_reject = false;
103
104	tmp_opt.saw_tstamp = 0;
105	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106		tcp_parse_options(skb, &tmp_opt, 0, NULL);
107
108		if (tmp_opt.saw_tstamp) {
109			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
110			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
111			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
112			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
113		}
114	}
115
116	if (tw->tw_substate == TCP_FIN_WAIT2) {
117		/* Just repeat all the checks of tcp_rcv_state_process() */
118
119		/* Out of window, send ACK */
120		if (paws_reject ||
121		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
122				   tcptw->tw_rcv_nxt,
123				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
124			return tcp_timewait_check_oow_rate_limit(
125				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
126
127		if (th->rst)
128			goto kill;
129
130		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
131			return TCP_TW_RST;
132
133		/* Dup ACK? */
134		if (!th->ack ||
135		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
136		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
137			inet_twsk_put(tw);
138			return TCP_TW_SUCCESS;
139		}
140
141		/* New data or FIN. If new data arrive after half-duplex close,
142		 * reset.
143		 */
144		if (!th->fin ||
145		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
 
 
 
146			return TCP_TW_RST;
 
147
148		/* FIN arrived, enter true time-wait state. */
149		tw->tw_substate	  = TCP_TIME_WAIT;
150		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
151		if (tmp_opt.saw_tstamp) {
152			tcptw->tw_ts_recent_stamp = get_seconds();
153			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
154		}
155
156		if (tcp_death_row.sysctl_tw_recycle &&
157		    tcptw->tw_ts_recent_stamp &&
158		    tcp_tw_remember_stamp(tw))
159			inet_twsk_reschedule(tw, tw->tw_timeout);
 
160		else
161			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
162		return TCP_TW_ACK;
163	}
164
165	/*
166	 *	Now real TIME-WAIT state.
167	 *
168	 *	RFC 1122:
169	 *	"When a connection is [...] on TIME-WAIT state [...]
170	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171	 *	reopen the connection directly, if it:
172	 *
173	 *	(1)  assigns its initial sequence number for the new
174	 *	connection to be larger than the largest sequence
175	 *	number it used on the previous connection incarnation,
176	 *	and
177	 *
178	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179	 *	to be an old duplicate".
180	 */
181
182	if (!paws_reject &&
183	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185		/* In window segment, it may be only reset or bare ack. */
186
187		if (th->rst) {
188			/* This is TIME_WAIT assassination, in two flavors.
189			 * Oh well... nobody has a sufficient solution to this
190			 * protocol bug yet.
191			 */
192			if (sysctl_tcp_rfc1337 == 0) {
193kill:
194				inet_twsk_deschedule_put(tw);
 
195				return TCP_TW_SUCCESS;
196			}
197		}
198		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
199
200		if (tmp_opt.saw_tstamp) {
201			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
202			tcptw->tw_ts_recent_stamp = get_seconds();
203		}
204
205		inet_twsk_put(tw);
206		return TCP_TW_SUCCESS;
207	}
208
209	/* Out of window segment.
210
211	   All the segments are ACKed immediately.
212
213	   The only exception is new SYN. We accept it, if it is
214	   not old duplicate and we are not in danger to be killed
215	   by delayed old duplicates. RFC check is that it has
216	   newer sequence number works at rates <40Mbit/sec.
217	   However, if paws works, it is reliable AND even more,
218	   we even may relax silly seq space cutoff.
219
220	   RED-PEN: we violate main RFC requirement, if this SYN will appear
221	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
222	   we must return socket to time-wait state. It is not good,
223	   but not fatal yet.
224	 */
225
226	if (th->syn && !th->rst && !th->ack && !paws_reject &&
227	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228	     (tmp_opt.saw_tstamp &&
229	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231		if (isn == 0)
232			isn++;
233		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
234		return TCP_TW_SYN;
235	}
236
237	if (paws_reject)
238		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239
240	if (!th->rst) {
241		/* In this case we must reset the TIMEWAIT timer.
242		 *
243		 * If it is ACKless SYN it may be both old duplicate
244		 * and new good SYN with random sequence number <rcv_nxt.
245		 * Do not reschedule in the last case.
246		 */
247		if (paws_reject || th->ack)
248			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
249
250		return tcp_timewait_check_oow_rate_limit(
251			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
 
 
252	}
253	inet_twsk_put(tw);
254	return TCP_TW_SUCCESS;
255}
256EXPORT_SYMBOL(tcp_timewait_state_process);
257
258/*
259 * Move a socket to time-wait or dead fin-wait-2 state.
260 */
261void tcp_time_wait(struct sock *sk, int state, int timeo)
262{
 
263	const struct inet_connection_sock *icsk = inet_csk(sk);
264	const struct tcp_sock *tp = tcp_sk(sk);
265	struct inet_timewait_sock *tw;
266	bool recycle_ok = false;
267
268	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
269		recycle_ok = tcp_remember_stamp(sk);
270
271	tw = inet_twsk_alloc(sk, &tcp_death_row, state);
 
272
273	if (tw) {
274		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
275		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
276		struct inet_sock *inet = inet_sk(sk);
277
278		tw->tw_transparent	= inet->transparent;
279		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
280		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
281		tcptw->tw_snd_nxt	= tp->snd_nxt;
282		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
283		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
284		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
285		tcptw->tw_ts_offset	= tp->tsoffset;
286		tcptw->tw_last_oow_ack_time = 0;
287
288#if IS_ENABLED(CONFIG_IPV6)
289		if (tw->tw_family == PF_INET6) {
290			struct ipv6_pinfo *np = inet6_sk(sk);
291
292			tw->tw_v6_daddr = sk->sk_v6_daddr;
293			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
294			tw->tw_tclass = np->tclass;
295			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
296			tw->tw_ipv6only = sk->sk_ipv6only;
297		}
298#endif
299
300#ifdef CONFIG_TCP_MD5SIG
301		/*
302		 * The timewait bucket does not have the key DB from the
303		 * sock structure. We just make a quick copy of the
304		 * md5 key being used (if indeed we are using one)
305		 * so the timewait ack generating code has the key.
306		 */
307		do {
308			struct tcp_md5sig_key *key;
309			tcptw->tw_md5_key = NULL;
310			key = tp->af_specific->md5_lookup(sk, sk);
311			if (key) {
312				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
313				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
314					BUG();
315			}
316		} while (0);
317#endif
318
 
 
 
319		/* Get the TIME_WAIT timeout firing. */
320		if (timeo < rto)
321			timeo = rto;
322
323		if (recycle_ok) {
324			tw->tw_timeout = rto;
325		} else {
326			tw->tw_timeout = TCP_TIMEWAIT_LEN;
327			if (state == TCP_TIME_WAIT)
328				timeo = TCP_TIMEWAIT_LEN;
329		}
330
331		inet_twsk_schedule(tw, timeo);
332		/* Linkage updates. */
333		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
334		inet_twsk_put(tw);
335	} else {
336		/* Sorry, if we're out of memory, just CLOSE this
337		 * socket up.  We've got bigger problems than
338		 * non-graceful socket closings.
339		 */
340		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
341	}
342
343	tcp_update_metrics(sk);
344	tcp_done(sk);
345}
346
347void tcp_twsk_destructor(struct sock *sk)
348{
349#ifdef CONFIG_TCP_MD5SIG
350	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
351
352	if (twsk->tw_md5_key)
353		kfree_rcu(twsk->tw_md5_key, rcu);
354#endif
355}
356EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
357
358/* Warning : This function is called without sk_listener being locked.
359 * Be sure to read socket fields once, as their value could change under us.
360 */
361void tcp_openreq_init_rwin(struct request_sock *req,
362			   const struct sock *sk_listener,
363			   const struct dst_entry *dst)
364{
365	struct inet_request_sock *ireq = inet_rsk(req);
366	const struct tcp_sock *tp = tcp_sk(sk_listener);
367	u16 user_mss = READ_ONCE(tp->rx_opt.user_mss);
368	int full_space = tcp_full_space(sk_listener);
369	int mss = dst_metric_advmss(dst);
370	u32 window_clamp;
371	__u8 rcv_wscale;
372
373	if (user_mss && user_mss < mss)
374		mss = user_mss;
375
376	window_clamp = READ_ONCE(tp->window_clamp);
377	/* Set this up on the first call only */
378	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
379
380	/* limit the window selection if the user enforce a smaller rx buffer */
381	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
382	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
383		req->rsk_window_clamp = full_space;
384
385	/* tcp_full_space because it is guaranteed to be the first packet */
386	tcp_select_initial_window(full_space,
387		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
388		&req->rsk_rcv_wnd,
389		&req->rsk_window_clamp,
390		ireq->wscale_ok,
391		&rcv_wscale,
392		dst_metric(dst, RTAX_INITRWND));
393	ireq->rcv_wscale = rcv_wscale;
394}
395EXPORT_SYMBOL(tcp_openreq_init_rwin);
396
397static void tcp_ecn_openreq_child(struct tcp_sock *tp,
398				  const struct request_sock *req)
399{
400	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
401}
402
403void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
404{
405	struct inet_connection_sock *icsk = inet_csk(sk);
406	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
407	bool ca_got_dst = false;
408
409	if (ca_key != TCP_CA_UNSPEC) {
410		const struct tcp_congestion_ops *ca;
411
412		rcu_read_lock();
413		ca = tcp_ca_find_key(ca_key);
414		if (likely(ca && try_module_get(ca->owner))) {
415			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
416			icsk->icsk_ca_ops = ca;
417			ca_got_dst = true;
418		}
419		rcu_read_unlock();
420	}
421
422	/* If no valid choice made yet, assign current system default ca. */
423	if (!ca_got_dst &&
424	    (!icsk->icsk_ca_setsockopt ||
425	     !try_module_get(icsk->icsk_ca_ops->owner)))
426		tcp_assign_congestion_control(sk);
427
428	tcp_set_ca_state(sk, TCP_CA_Open);
429}
430EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
431
432/* This is not only more efficient than what we used to do, it eliminates
433 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
434 *
435 * Actually, we could lots of memory writes here. tp of listening
436 * socket contains all necessary default parameters.
437 */
438struct sock *tcp_create_openreq_child(const struct sock *sk,
439				      struct request_sock *req,
440				      struct sk_buff *skb)
441{
442	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
443
444	if (newsk) {
445		const struct inet_request_sock *ireq = inet_rsk(req);
446		struct tcp_request_sock *treq = tcp_rsk(req);
447		struct inet_connection_sock *newicsk = inet_csk(newsk);
448		struct tcp_sock *newtp = tcp_sk(newsk);
449
450		/* Now setup tcp_sock */
451		newtp->pred_flags = 0;
452
453		newtp->rcv_wup = newtp->copied_seq =
454		newtp->rcv_nxt = treq->rcv_isn + 1;
455		newtp->segs_in = 1;
456
457		newtp->snd_sml = newtp->snd_una =
458		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
459
460		tcp_prequeue_init(newtp);
461		INIT_LIST_HEAD(&newtp->tsq_node);
462
463		tcp_init_wl(newtp, treq->rcv_isn);
464
465		newtp->srtt_us = 0;
466		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
467		newtp->rtt_min[0].rtt = ~0U;
468		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
469
470		newtp->packets_out = 0;
471		newtp->retrans_out = 0;
472		newtp->sacked_out = 0;
473		newtp->fackets_out = 0;
474		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
475		tcp_enable_early_retrans(newtp);
476		newtp->tlp_high_seq = 0;
477		newtp->lsndtime = treq->snt_synack.stamp_jiffies;
478		newsk->sk_txhash = treq->txhash;
479		newtp->last_oow_ack_time = 0;
480		newtp->total_retrans = req->num_retrans;
481
482		/* So many TCP implementations out there (incorrectly) count the
483		 * initial SYN frame in their delayed-ACK and congestion control
484		 * algorithms that we must have the following bandaid to talk
485		 * efficiently to them.  -DaveM
486		 */
487		newtp->snd_cwnd = TCP_INIT_CWND;
488		newtp->snd_cwnd_cnt = 0;
489
 
 
 
 
 
490		tcp_init_xmit_timers(newsk);
491		__skb_queue_head_init(&newtp->out_of_order_queue);
492		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
493
494		newtp->rx_opt.saw_tstamp = 0;
495
496		newtp->rx_opt.dsack = 0;
497		newtp->rx_opt.num_sacks = 0;
498
499		newtp->urg_data = 0;
500
501		if (sock_flag(newsk, SOCK_KEEPOPEN))
502			inet_csk_reset_keepalive_timer(newsk,
503						       keepalive_time_when(newtp));
504
505		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
506		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
507			if (sysctl_tcp_fack)
508				tcp_enable_fack(newtp);
509		}
510		newtp->window_clamp = req->rsk_window_clamp;
511		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
512		newtp->rcv_wnd = req->rsk_rcv_wnd;
513		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
514		if (newtp->rx_opt.wscale_ok) {
515			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
516			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
517		} else {
518			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
519			newtp->window_clamp = min(newtp->window_clamp, 65535U);
520		}
521		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
522				  newtp->rx_opt.snd_wscale);
523		newtp->max_window = newtp->snd_wnd;
524
525		if (newtp->rx_opt.tstamp_ok) {
526			newtp->rx_opt.ts_recent = req->ts_recent;
527			newtp->rx_opt.ts_recent_stamp = get_seconds();
528			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
529		} else {
530			newtp->rx_opt.ts_recent_stamp = 0;
531			newtp->tcp_header_len = sizeof(struct tcphdr);
532		}
533		newtp->tsoffset = 0;
534#ifdef CONFIG_TCP_MD5SIG
535		newtp->md5sig_info = NULL;	/*XXX*/
536		if (newtp->af_specific->md5_lookup(sk, newsk))
537			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
538#endif
539		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
540			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
541		newtp->rx_opt.mss_clamp = req->mss;
542		tcp_ecn_openreq_child(newtp, req);
543		newtp->fastopen_rsk = NULL;
544		newtp->syn_data_acked = 0;
545		newtp->rack.mstamp.v64 = 0;
546		newtp->rack.advanced = 0;
547
548		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
549	}
550	return newsk;
551}
552EXPORT_SYMBOL(tcp_create_openreq_child);
553
554/*
555 * Process an incoming packet for SYN_RECV sockets represented as a
556 * request_sock. Normally sk is the listener socket but for TFO it
557 * points to the child socket.
558 *
559 * XXX (TFO) - The current impl contains a special check for ack
560 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
561 *
562 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
563 */
564
565struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
566			   struct request_sock *req,
 
567			   bool fastopen)
568{
569	struct tcp_options_received tmp_opt;
570	struct sock *child;
571	const struct tcphdr *th = tcp_hdr(skb);
572	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
573	bool paws_reject = false;
574	bool own_req;
 
575
576	tmp_opt.saw_tstamp = 0;
577	if (th->doff > (sizeof(struct tcphdr)>>2)) {
578		tcp_parse_options(skb, &tmp_opt, 0, NULL);
579
580		if (tmp_opt.saw_tstamp) {
581			tmp_opt.ts_recent = req->ts_recent;
582			/* We do not store true stamp, but it is not required,
583			 * it can be estimated (approximately)
584			 * from another data.
585			 */
586			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
587			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
588		}
589	}
590
591	/* Check for pure retransmitted SYN. */
592	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
593	    flg == TCP_FLAG_SYN &&
594	    !paws_reject) {
595		/*
596		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
597		 * this case on figure 6 and figure 8, but formal
598		 * protocol description says NOTHING.
599		 * To be more exact, it says that we should send ACK,
600		 * because this segment (at least, if it has no data)
601		 * is out of window.
602		 *
603		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
604		 *  describe SYN-RECV state. All the description
605		 *  is wrong, we cannot believe to it and should
606		 *  rely only on common sense and implementation
607		 *  experience.
608		 *
609		 * Enforce "SYN-ACK" according to figure 8, figure 6
610		 * of RFC793, fixed by RFC1122.
611		 *
612		 * Note that even if there is new data in the SYN packet
613		 * they will be thrown away too.
614		 *
615		 * Reset timer after retransmitting SYNACK, similar to
616		 * the idea of fast retransmit in recovery.
617		 */
618		if (!tcp_oow_rate_limited(sock_net(sk), skb,
619					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
620					  &tcp_rsk(req)->last_oow_ack_time) &&
621
622		    !inet_rtx_syn_ack(sk, req)) {
623			unsigned long expires = jiffies;
624
625			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
626				       TCP_RTO_MAX);
627			if (!fastopen)
628				mod_timer_pending(&req->rsk_timer, expires);
629			else
630				req->rsk_timer.expires = expires;
631		}
632		return NULL;
633	}
634
635	/* Further reproduces section "SEGMENT ARRIVES"
636	   for state SYN-RECEIVED of RFC793.
637	   It is broken, however, it does not work only
638	   when SYNs are crossed.
639
640	   You would think that SYN crossing is impossible here, since
641	   we should have a SYN_SENT socket (from connect()) on our end,
642	   but this is not true if the crossed SYNs were sent to both
643	   ends by a malicious third party.  We must defend against this,
644	   and to do that we first verify the ACK (as per RFC793, page
645	   36) and reset if it is invalid.  Is this a true full defense?
646	   To convince ourselves, let us consider a way in which the ACK
647	   test can still pass in this 'malicious crossed SYNs' case.
648	   Malicious sender sends identical SYNs (and thus identical sequence
649	   numbers) to both A and B:
650
651		A: gets SYN, seq=7
652		B: gets SYN, seq=7
653
654	   By our good fortune, both A and B select the same initial
655	   send sequence number of seven :-)
656
657		A: sends SYN|ACK, seq=7, ack_seq=8
658		B: sends SYN|ACK, seq=7, ack_seq=8
659
660	   So we are now A eating this SYN|ACK, ACK test passes.  So
661	   does sequence test, SYN is truncated, and thus we consider
662	   it a bare ACK.
663
664	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
665	   bare ACK.  Otherwise, we create an established connection.  Both
666	   ends (listening sockets) accept the new incoming connection and try
667	   to talk to each other. 8-)
668
669	   Note: This case is both harmless, and rare.  Possibility is about the
670	   same as us discovering intelligent life on another plant tomorrow.
671
672	   But generally, we should (RFC lies!) to accept ACK
673	   from SYNACK both here and in tcp_rcv_state_process().
674	   tcp_rcv_state_process() does not, hence, we do not too.
675
676	   Note that the case is absolutely generic:
677	   we cannot optimize anything here without
678	   violating protocol. All the checks must be made
679	   before attempt to create socket.
680	 */
681
682	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
683	 *                  and the incoming segment acknowledges something not yet
684	 *                  sent (the segment carries an unacceptable ACK) ...
685	 *                  a reset is sent."
686	 *
687	 * Invalid ACK: reset will be sent by listening socket.
688	 * Note that the ACK validity check for a Fast Open socket is done
689	 * elsewhere and is checked directly against the child socket rather
690	 * than req because user data may have been sent out.
691	 */
692	if ((flg & TCP_FLAG_ACK) && !fastopen &&
693	    (TCP_SKB_CB(skb)->ack_seq !=
694	     tcp_rsk(req)->snt_isn + 1))
695		return sk;
696
697	/* Also, it would be not so bad idea to check rcv_tsecr, which
698	 * is essentially ACK extension and too early or too late values
699	 * should cause reset in unsynchronized states.
700	 */
701
702	/* RFC793: "first check sequence number". */
703
704	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
705					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
706		/* Out of window: send ACK and drop. */
707		if (!(flg & TCP_FLAG_RST))
708			req->rsk_ops->send_ack(sk, skb, req);
709		if (paws_reject)
710			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
711		return NULL;
712	}
713
714	/* In sequence, PAWS is OK. */
715
716	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
717		req->ts_recent = tmp_opt.rcv_tsval;
718
719	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
720		/* Truncate SYN, it is out of window starting
721		   at tcp_rsk(req)->rcv_isn + 1. */
722		flg &= ~TCP_FLAG_SYN;
723	}
724
725	/* RFC793: "second check the RST bit" and
726	 *	   "fourth, check the SYN bit"
727	 */
728	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
729		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
730		goto embryonic_reset;
731	}
732
733	/* ACK sequence verified above, just make sure ACK is
734	 * set.  If ACK not set, just silently drop the packet.
735	 *
736	 * XXX (TFO) - if we ever allow "data after SYN", the
737	 * following check needs to be removed.
738	 */
739	if (!(flg & TCP_FLAG_ACK))
740		return NULL;
741
742	/* For Fast Open no more processing is needed (sk is the
743	 * child socket).
744	 */
745	if (fastopen)
746		return sk;
747
748	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
749	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
750	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
751		inet_rsk(req)->acked = 1;
752		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
753		return NULL;
754	}
755
756	/* OK, ACK is valid, create big socket and
757	 * feed this segment to it. It will repeat all
758	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
759	 * ESTABLISHED STATE. If it will be dropped after
760	 * socket is created, wait for troubles.
761	 */
762	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
763							 req, &own_req);
764	if (!child)
765		goto listen_overflow;
766
767	sock_rps_save_rxhash(child, skb);
768	tcp_synack_rtt_meas(child, req);
769	return inet_csk_complete_hashdance(sk, child, req, own_req);
 
 
770
771listen_overflow:
772	if (!sysctl_tcp_abort_on_overflow) {
773		inet_rsk(req)->acked = 1;
774		return NULL;
775	}
776
777embryonic_reset:
778	if (!(flg & TCP_FLAG_RST)) {
779		/* Received a bad SYN pkt - for TFO We try not to reset
780		 * the local connection unless it's really necessary to
781		 * avoid becoming vulnerable to outside attack aiming at
782		 * resetting legit local connections.
783		 */
784		req->rsk_ops->send_reset(sk, skb);
785	} else if (fastopen) { /* received a valid RST pkt */
786		reqsk_fastopen_remove(sk, req, true);
787		tcp_reset(sk);
788	}
789	if (!fastopen) {
790		inet_csk_reqsk_queue_drop(sk, req);
791		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
792	}
793	return NULL;
794}
795EXPORT_SYMBOL(tcp_check_req);
796
797/*
798 * Queue segment on the new socket if the new socket is active,
799 * otherwise we just shortcircuit this and continue with
800 * the new socket.
801 *
802 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
803 * when entering. But other states are possible due to a race condition
804 * where after __inet_lookup_established() fails but before the listener
805 * locked is obtained, other packets cause the same connection to
806 * be created.
807 */
808
809int tcp_child_process(struct sock *parent, struct sock *child,
810		      struct sk_buff *skb)
811{
812	int ret = 0;
813	int state = child->sk_state;
814
815	tcp_segs_in(tcp_sk(child), skb);
816	if (!sock_owned_by_user(child)) {
817		ret = tcp_rcv_state_process(child, skb);
 
818		/* Wakeup parent, send SIGIO */
819		if (state == TCP_SYN_RECV && child->sk_state != state)
820			parent->sk_data_ready(parent);
821	} else {
822		/* Alas, it is possible again, because we do lookup
823		 * in main socket hash table and lock on listening
824		 * socket does not protect us more.
825		 */
826		__sk_add_backlog(child, skb);
827	}
828
829	bh_unlock_sock(child);
830	sock_put(child);
831	return ret;
832}
833EXPORT_SYMBOL(tcp_child_process);