Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v3.15
 
  1/*
  2 * balloc.c
  3 *
  4 * PURPOSE
  5 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
  6 *
  7 * COPYRIGHT
  8 *	This file is distributed under the terms of the GNU General Public
  9 *	License (GPL). Copies of the GPL can be obtained from:
 10 *		ftp://prep.ai.mit.edu/pub/gnu/GPL
 11 *	Each contributing author retains all rights to their own work.
 12 *
 13 *  (C) 1999-2001 Ben Fennema
 14 *  (C) 1999 Stelias Computing Inc
 15 *
 16 * HISTORY
 17 *
 18 *  02/24/99 blf  Created.
 19 *
 20 */
 21
 22#include "udfdecl.h"
 23
 24#include <linux/buffer_head.h>
 25#include <linux/bitops.h>
 26
 27#include "udf_i.h"
 28#include "udf_sb.h"
 29
 30#define udf_clear_bit	__test_and_clear_bit_le
 31#define udf_set_bit	__test_and_set_bit_le
 32#define udf_test_bit	test_bit_le
 33#define udf_find_next_one_bit	find_next_bit_le
 34
 35static int read_block_bitmap(struct super_block *sb,
 36			     struct udf_bitmap *bitmap, unsigned int block,
 37			     unsigned long bitmap_nr)
 38{
 39	struct buffer_head *bh = NULL;
 40	int retval = 0;
 
 41	struct kernel_lb_addr loc;
 42
 43	loc.logicalBlockNum = bitmap->s_extPosition;
 44	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
 45
 46	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
 
 47	if (!bh)
 48		retval = -EIO;
 49
 50	bitmap->s_block_bitmap[bitmap_nr] = bh;
 51	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 52}
 53
 54static int __load_block_bitmap(struct super_block *sb,
 55			       struct udf_bitmap *bitmap,
 56			       unsigned int block_group)
 57{
 58	int retval = 0;
 59	int nr_groups = bitmap->s_nr_groups;
 60
 61	if (block_group >= nr_groups) {
 62		udf_debug("block_group (%d) > nr_groups (%d)\n",
 63			  block_group, nr_groups);
 64	}
 65
 66	if (bitmap->s_block_bitmap[block_group]) {
 67		return block_group;
 68	} else {
 69		retval = read_block_bitmap(sb, bitmap, block_group,
 70					   block_group);
 71		if (retval < 0)
 72			return retval;
 73		return block_group;
 74	}
 
 
 
 
 
 75}
 76
 77static inline int load_block_bitmap(struct super_block *sb,
 78				    struct udf_bitmap *bitmap,
 79				    unsigned int block_group)
 80{
 81	int slot;
 82
 83	slot = __load_block_bitmap(sb, bitmap, block_group);
 84
 85	if (slot < 0)
 86		return slot;
 87
 88	if (!bitmap->s_block_bitmap[slot])
 89		return -EIO;
 90
 91	return slot;
 92}
 93
 94static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
 95{
 96	struct udf_sb_info *sbi = UDF_SB(sb);
 97	struct logicalVolIntegrityDesc *lvid;
 98
 99	if (!sbi->s_lvid_bh)
100		return;
101
102	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
103	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
104	udf_updated_lvid(sb);
105}
106
107static void udf_bitmap_free_blocks(struct super_block *sb,
108				   struct udf_bitmap *bitmap,
109				   struct kernel_lb_addr *bloc,
110				   uint32_t offset,
111				   uint32_t count)
112{
113	struct udf_sb_info *sbi = UDF_SB(sb);
114	struct buffer_head *bh = NULL;
115	struct udf_part_map *partmap;
116	unsigned long block;
117	unsigned long block_group;
118	unsigned long bit;
119	unsigned long i;
120	int bitmap_nr;
121	unsigned long overflow;
122
123	mutex_lock(&sbi->s_alloc_mutex);
124	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
125	if (bloc->logicalBlockNum + count < count ||
126	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
127		udf_debug("%d < %d || %d + %d > %d\n",
128			  bloc->logicalBlockNum, 0,
129			  bloc->logicalBlockNum, count,
130			  partmap->s_partition_len);
131		goto error_return;
132	}
133
134	block = bloc->logicalBlockNum + offset +
135		(sizeof(struct spaceBitmapDesc) << 3);
136
137	do {
138		overflow = 0;
139		block_group = block >> (sb->s_blocksize_bits + 3);
140		bit = block % (sb->s_blocksize << 3);
141
142		/*
143		* Check to see if we are freeing blocks across a group boundary.
144		*/
145		if (bit + count > (sb->s_blocksize << 3)) {
146			overflow = bit + count - (sb->s_blocksize << 3);
147			count -= overflow;
148		}
149		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
150		if (bitmap_nr < 0)
151			goto error_return;
152
153		bh = bitmap->s_block_bitmap[bitmap_nr];
154		for (i = 0; i < count; i++) {
155			if (udf_set_bit(bit + i, bh->b_data)) {
156				udf_debug("bit %ld already set\n", bit + i);
157				udf_debug("byte=%2x\n",
158					  ((char *)bh->b_data)[(bit + i) >> 3]);
159			}
160		}
161		udf_add_free_space(sb, sbi->s_partition, count);
162		mark_buffer_dirty(bh);
163		if (overflow) {
164			block += count;
165			count = overflow;
166		}
167	} while (overflow);
168
169error_return:
170	mutex_unlock(&sbi->s_alloc_mutex);
171}
172
173static int udf_bitmap_prealloc_blocks(struct super_block *sb,
174				      struct udf_bitmap *bitmap,
175				      uint16_t partition, uint32_t first_block,
176				      uint32_t block_count)
177{
178	struct udf_sb_info *sbi = UDF_SB(sb);
179	int alloc_count = 0;
180	int bit, block, block_group, group_start;
181	int nr_groups, bitmap_nr;
182	struct buffer_head *bh;
183	__u32 part_len;
184
185	mutex_lock(&sbi->s_alloc_mutex);
186	part_len = sbi->s_partmaps[partition].s_partition_len;
187	if (first_block >= part_len)
188		goto out;
189
190	if (first_block + block_count > part_len)
191		block_count = part_len - first_block;
192
193	do {
194		nr_groups = udf_compute_nr_groups(sb, partition);
195		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
196		block_group = block >> (sb->s_blocksize_bits + 3);
197		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
198
199		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
200		if (bitmap_nr < 0)
201			goto out;
202		bh = bitmap->s_block_bitmap[bitmap_nr];
203
204		bit = block % (sb->s_blocksize << 3);
205
206		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
207			if (!udf_clear_bit(bit, bh->b_data))
208				goto out;
209			block_count--;
210			alloc_count++;
211			bit++;
212			block++;
213		}
214		mark_buffer_dirty(bh);
215	} while (block_count > 0);
216
217out:
218	udf_add_free_space(sb, partition, -alloc_count);
219	mutex_unlock(&sbi->s_alloc_mutex);
220	return alloc_count;
221}
222
223static int udf_bitmap_new_block(struct super_block *sb,
224				struct udf_bitmap *bitmap, uint16_t partition,
225				uint32_t goal, int *err)
226{
227	struct udf_sb_info *sbi = UDF_SB(sb);
228	int newbit, bit = 0, block, block_group, group_start;
 
 
229	int end_goal, nr_groups, bitmap_nr, i;
230	struct buffer_head *bh = NULL;
231	char *ptr;
232	int newblock = 0;
233
234	*err = -ENOSPC;
235	mutex_lock(&sbi->s_alloc_mutex);
236
237repeat:
238	if (goal >= sbi->s_partmaps[partition].s_partition_len)
239		goal = 0;
240
241	nr_groups = bitmap->s_nr_groups;
242	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
243	block_group = block >> (sb->s_blocksize_bits + 3);
244	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
245
246	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
247	if (bitmap_nr < 0)
248		goto error_return;
249	bh = bitmap->s_block_bitmap[bitmap_nr];
250	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
251		      sb->s_blocksize - group_start);
252
253	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
254		bit = block % (sb->s_blocksize << 3);
255		if (udf_test_bit(bit, bh->b_data))
256			goto got_block;
257
258		end_goal = (bit + 63) & ~63;
259		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
260		if (bit < end_goal)
261			goto got_block;
262
263		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
264			      sb->s_blocksize - ((bit + 7) >> 3));
265		newbit = (ptr - ((char *)bh->b_data)) << 3;
266		if (newbit < sb->s_blocksize << 3) {
267			bit = newbit;
268			goto search_back;
269		}
270
271		newbit = udf_find_next_one_bit(bh->b_data,
272					       sb->s_blocksize << 3, bit);
273		if (newbit < sb->s_blocksize << 3) {
274			bit = newbit;
275			goto got_block;
276		}
277	}
278
279	for (i = 0; i < (nr_groups * 2); i++) {
280		block_group++;
281		if (block_group >= nr_groups)
282			block_group = 0;
283		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
284
285		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
286		if (bitmap_nr < 0)
287			goto error_return;
288		bh = bitmap->s_block_bitmap[bitmap_nr];
289		if (i < nr_groups) {
290			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
291				      sb->s_blocksize - group_start);
292			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
293				bit = (ptr - ((char *)bh->b_data)) << 3;
294				break;
295			}
296		} else {
297			bit = udf_find_next_one_bit(bh->b_data,
298						    sb->s_blocksize << 3,
299						    group_start << 3);
300			if (bit < sb->s_blocksize << 3)
301				break;
302		}
303	}
304	if (i >= (nr_groups * 2)) {
305		mutex_unlock(&sbi->s_alloc_mutex);
306		return newblock;
307	}
308	if (bit < sb->s_blocksize << 3)
309		goto search_back;
310	else
311		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
312					    group_start << 3);
313	if (bit >= sb->s_blocksize << 3) {
314		mutex_unlock(&sbi->s_alloc_mutex);
315		return 0;
316	}
317
318search_back:
319	i = 0;
320	while (i < 7 && bit > (group_start << 3) &&
321	       udf_test_bit(bit - 1, bh->b_data)) {
322		++i;
323		--bit;
324	}
325
326got_block:
327	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
328		(sizeof(struct spaceBitmapDesc) << 3);
329
 
 
 
 
 
 
 
 
 
 
 
330	if (!udf_clear_bit(bit, bh->b_data)) {
331		udf_debug("bit already cleared for block %d\n", bit);
332		goto repeat;
333	}
334
335	mark_buffer_dirty(bh);
336
337	udf_add_free_space(sb, partition, -1);
338	mutex_unlock(&sbi->s_alloc_mutex);
339	*err = 0;
340	return newblock;
341
342error_return:
343	*err = -EIO;
344	mutex_unlock(&sbi->s_alloc_mutex);
345	return 0;
346}
347
348static void udf_table_free_blocks(struct super_block *sb,
349				  struct inode *table,
350				  struct kernel_lb_addr *bloc,
351				  uint32_t offset,
352				  uint32_t count)
353{
354	struct udf_sb_info *sbi = UDF_SB(sb);
355	struct udf_part_map *partmap;
356	uint32_t start, end;
357	uint32_t elen;
358	struct kernel_lb_addr eloc;
359	struct extent_position oepos, epos;
360	int8_t etype;
361	int i;
362	struct udf_inode_info *iinfo;
363
364	mutex_lock(&sbi->s_alloc_mutex);
365	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
366	if (bloc->logicalBlockNum + count < count ||
367	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
368		udf_debug("%d < %d || %d + %d > %d\n",
369			  bloc->logicalBlockNum, 0,
370			  bloc->logicalBlockNum, count,
371			  partmap->s_partition_len);
372		goto error_return;
373	}
374
375	iinfo = UDF_I(table);
376	udf_add_free_space(sb, sbi->s_partition, count);
377
378	start = bloc->logicalBlockNum + offset;
379	end = bloc->logicalBlockNum + offset + count - 1;
380
381	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
382	elen = 0;
383	epos.block = oepos.block = iinfo->i_location;
384	epos.bh = oepos.bh = NULL;
385
386	while (count &&
387	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
388		if (((eloc.logicalBlockNum +
389			(elen >> sb->s_blocksize_bits)) == start)) {
390			if ((0x3FFFFFFF - elen) <
391					(count << sb->s_blocksize_bits)) {
392				uint32_t tmp = ((0x3FFFFFFF - elen) >>
393							sb->s_blocksize_bits);
394				count -= tmp;
395				start += tmp;
396				elen = (etype << 30) |
397					(0x40000000 - sb->s_blocksize);
398			} else {
399				elen = (etype << 30) |
400					(elen +
401					(count << sb->s_blocksize_bits));
402				start += count;
403				count = 0;
404			}
405			udf_write_aext(table, &oepos, &eloc, elen, 1);
406		} else if (eloc.logicalBlockNum == (end + 1)) {
407			if ((0x3FFFFFFF - elen) <
408					(count << sb->s_blocksize_bits)) {
409				uint32_t tmp = ((0x3FFFFFFF - elen) >>
410						sb->s_blocksize_bits);
411				count -= tmp;
412				end -= tmp;
413				eloc.logicalBlockNum -= tmp;
414				elen = (etype << 30) |
415					(0x40000000 - sb->s_blocksize);
416			} else {
417				eloc.logicalBlockNum = start;
418				elen = (etype << 30) |
419					(elen +
420					(count << sb->s_blocksize_bits));
421				end -= count;
422				count = 0;
423			}
424			udf_write_aext(table, &oepos, &eloc, elen, 1);
425		}
426
427		if (epos.bh != oepos.bh) {
428			i = -1;
429			oepos.block = epos.block;
430			brelse(oepos.bh);
431			get_bh(epos.bh);
432			oepos.bh = epos.bh;
433			oepos.offset = 0;
434		} else {
435			oepos.offset = epos.offset;
436		}
437	}
438
439	if (count) {
440		/*
441		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
442		 * allocate a new block, and since we hold the super block
443		 * lock already very bad things would happen :)
444		 *
445		 * We copy the behavior of udf_add_aext, but instead of
446		 * trying to allocate a new block close to the existing one,
447		 * we just steal a block from the extent we are trying to add.
448		 *
449		 * It would be nice if the blocks were close together, but it
450		 * isn't required.
451		 */
452
453		int adsize;
454		struct short_ad *sad = NULL;
455		struct long_ad *lad = NULL;
456		struct allocExtDesc *aed;
457
458		eloc.logicalBlockNum = start;
459		elen = EXT_RECORDED_ALLOCATED |
460			(count << sb->s_blocksize_bits);
461
462		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
463			adsize = sizeof(struct short_ad);
464		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
465			adsize = sizeof(struct long_ad);
466		else {
467			brelse(oepos.bh);
468			brelse(epos.bh);
469			goto error_return;
470		}
471
472		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
473			unsigned char *sptr, *dptr;
474			int loffset;
475
476			brelse(oepos.bh);
477			oepos = epos;
478
479			/* Steal a block from the extent being free'd */
480			epos.block.logicalBlockNum = eloc.logicalBlockNum;
 
 
481			eloc.logicalBlockNum++;
482			elen -= sb->s_blocksize;
483
484			epos.bh = udf_tread(sb,
485					udf_get_lb_pblock(sb, &epos.block, 0));
486			if (!epos.bh) {
487				brelse(oepos.bh);
488				goto error_return;
489			}
490			aed = (struct allocExtDesc *)(epos.bh->b_data);
491			aed->previousAllocExtLocation =
492				cpu_to_le32(oepos.block.logicalBlockNum);
493			if (epos.offset + adsize > sb->s_blocksize) {
494				loffset = epos.offset;
495				aed->lengthAllocDescs = cpu_to_le32(adsize);
496				sptr = iinfo->i_ext.i_data + epos.offset
497								- adsize;
498				dptr = epos.bh->b_data +
499					sizeof(struct allocExtDesc);
500				memcpy(dptr, sptr, adsize);
501				epos.offset = sizeof(struct allocExtDesc) +
502						adsize;
503			} else {
504				loffset = epos.offset + adsize;
505				aed->lengthAllocDescs = cpu_to_le32(0);
506				if (oepos.bh) {
507					sptr = oepos.bh->b_data + epos.offset;
508					aed = (struct allocExtDesc *)
509						oepos.bh->b_data;
510					le32_add_cpu(&aed->lengthAllocDescs,
511							adsize);
512				} else {
513					sptr = iinfo->i_ext.i_data +
514								epos.offset;
515					iinfo->i_lenAlloc += adsize;
516					mark_inode_dirty(table);
517				}
518				epos.offset = sizeof(struct allocExtDesc);
519			}
520			if (sbi->s_udfrev >= 0x0200)
521				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
522					    3, 1, epos.block.logicalBlockNum,
523					    sizeof(struct tag));
524			else
525				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
526					    2, 1, epos.block.logicalBlockNum,
527					    sizeof(struct tag));
528
529			switch (iinfo->i_alloc_type) {
530			case ICBTAG_FLAG_AD_SHORT:
531				sad = (struct short_ad *)sptr;
532				sad->extLength = cpu_to_le32(
533					EXT_NEXT_EXTENT_ALLOCDECS |
534					sb->s_blocksize);
535				sad->extPosition =
536					cpu_to_le32(epos.block.logicalBlockNum);
537				break;
538			case ICBTAG_FLAG_AD_LONG:
539				lad = (struct long_ad *)sptr;
540				lad->extLength = cpu_to_le32(
541					EXT_NEXT_EXTENT_ALLOCDECS |
542					sb->s_blocksize);
543				lad->extLocation =
544					cpu_to_lelb(epos.block);
545				break;
546			}
547			if (oepos.bh) {
548				udf_update_tag(oepos.bh->b_data, loffset);
549				mark_buffer_dirty(oepos.bh);
550			} else {
551				mark_inode_dirty(table);
552			}
553		}
554
555		/* It's possible that stealing the block emptied the extent */
556		if (elen) {
557			udf_write_aext(table, &epos, &eloc, elen, 1);
558
559			if (!epos.bh) {
560				iinfo->i_lenAlloc += adsize;
561				mark_inode_dirty(table);
562			} else {
563				aed = (struct allocExtDesc *)epos.bh->b_data;
564				le32_add_cpu(&aed->lengthAllocDescs, adsize);
565				udf_update_tag(epos.bh->b_data, epos.offset);
566				mark_buffer_dirty(epos.bh);
567			}
568		}
569	}
570
571	brelse(epos.bh);
572	brelse(oepos.bh);
573
574error_return:
575	mutex_unlock(&sbi->s_alloc_mutex);
576	return;
577}
578
579static int udf_table_prealloc_blocks(struct super_block *sb,
580				     struct inode *table, uint16_t partition,
581				     uint32_t first_block, uint32_t block_count)
582{
583	struct udf_sb_info *sbi = UDF_SB(sb);
584	int alloc_count = 0;
585	uint32_t elen, adsize;
586	struct kernel_lb_addr eloc;
587	struct extent_position epos;
588	int8_t etype = -1;
589	struct udf_inode_info *iinfo;
590
591	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
592		return 0;
593
594	iinfo = UDF_I(table);
595	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
596		adsize = sizeof(struct short_ad);
597	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
598		adsize = sizeof(struct long_ad);
599	else
600		return 0;
601
602	mutex_lock(&sbi->s_alloc_mutex);
603	epos.offset = sizeof(struct unallocSpaceEntry);
604	epos.block = iinfo->i_location;
605	epos.bh = NULL;
606	eloc.logicalBlockNum = 0xFFFFFFFF;
607
608	while (first_block != eloc.logicalBlockNum &&
609	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
610		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
611			  eloc.logicalBlockNum, elen, first_block);
612		; /* empty loop body */
613	}
614
615	if (first_block == eloc.logicalBlockNum) {
616		epos.offset -= adsize;
617
618		alloc_count = (elen >> sb->s_blocksize_bits);
619		if (alloc_count > block_count) {
620			alloc_count = block_count;
621			eloc.logicalBlockNum += alloc_count;
622			elen -= (alloc_count << sb->s_blocksize_bits);
623			udf_write_aext(table, &epos, &eloc,
624					(etype << 30) | elen, 1);
625		} else
626			udf_delete_aext(table, epos, eloc,
627					(etype << 30) | elen);
628	} else {
629		alloc_count = 0;
630	}
631
632	brelse(epos.bh);
633
634	if (alloc_count)
635		udf_add_free_space(sb, partition, -alloc_count);
636	mutex_unlock(&sbi->s_alloc_mutex);
637	return alloc_count;
638}
639
640static int udf_table_new_block(struct super_block *sb,
641			       struct inode *table, uint16_t partition,
642			       uint32_t goal, int *err)
643{
644	struct udf_sb_info *sbi = UDF_SB(sb);
645	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
646	uint32_t newblock = 0, adsize;
 
647	uint32_t elen, goal_elen = 0;
648	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
649	struct extent_position epos, goal_epos;
650	int8_t etype;
651	struct udf_inode_info *iinfo = UDF_I(table);
652
653	*err = -ENOSPC;
654
655	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
656		adsize = sizeof(struct short_ad);
657	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
658		adsize = sizeof(struct long_ad);
659	else
660		return newblock;
661
662	mutex_lock(&sbi->s_alloc_mutex);
663	if (goal >= sbi->s_partmaps[partition].s_partition_len)
664		goal = 0;
665
666	/* We search for the closest matching block to goal. If we find
667	   a exact hit, we stop. Otherwise we keep going till we run out
668	   of extents. We store the buffer_head, bloc, and extoffset
669	   of the current closest match and use that when we are done.
670	 */
671	epos.offset = sizeof(struct unallocSpaceEntry);
672	epos.block = iinfo->i_location;
673	epos.bh = goal_epos.bh = NULL;
674
675	while (spread &&
676	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
677		if (goal >= eloc.logicalBlockNum) {
678			if (goal < eloc.logicalBlockNum +
679					(elen >> sb->s_blocksize_bits))
680				nspread = 0;
681			else
682				nspread = goal - eloc.logicalBlockNum -
683					(elen >> sb->s_blocksize_bits);
684		} else {
685			nspread = eloc.logicalBlockNum - goal;
686		}
687
688		if (nspread < spread) {
689			spread = nspread;
690			if (goal_epos.bh != epos.bh) {
691				brelse(goal_epos.bh);
692				goal_epos.bh = epos.bh;
693				get_bh(goal_epos.bh);
694			}
695			goal_epos.block = epos.block;
696			goal_epos.offset = epos.offset - adsize;
697			goal_eloc = eloc;
698			goal_elen = (etype << 30) | elen;
699		}
700	}
701
702	brelse(epos.bh);
703
704	if (spread == 0xFFFFFFFF) {
705		brelse(goal_epos.bh);
706		mutex_unlock(&sbi->s_alloc_mutex);
707		return 0;
708	}
709
710	/* Only allocate blocks from the beginning of the extent.
711	   That way, we only delete (empty) extents, never have to insert an
712	   extent because of splitting */
713	/* This works, but very poorly.... */
714
715	newblock = goal_eloc.logicalBlockNum;
716	goal_eloc.logicalBlockNum++;
717	goal_elen -= sb->s_blocksize;
718
719	if (goal_elen)
720		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
721	else
722		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
723	brelse(goal_epos.bh);
724
725	udf_add_free_space(sb, partition, -1);
726
727	mutex_unlock(&sbi->s_alloc_mutex);
728	*err = 0;
729	return newblock;
730}
731
732void udf_free_blocks(struct super_block *sb, struct inode *inode,
733		     struct kernel_lb_addr *bloc, uint32_t offset,
734		     uint32_t count)
735{
736	uint16_t partition = bloc->partitionReferenceNum;
737	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
738
739	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
740		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
741				       bloc, offset, count);
742	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
743		udf_table_free_blocks(sb, map->s_uspace.s_table,
744				      bloc, offset, count);
745	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
746		udf_bitmap_free_blocks(sb, map->s_fspace.s_bitmap,
747				       bloc, offset, count);
748	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
749		udf_table_free_blocks(sb, map->s_fspace.s_table,
750				      bloc, offset, count);
751	}
752
753	if (inode) {
754		inode_sub_bytes(inode,
755				((sector_t)count) << sb->s_blocksize_bits);
756	}
757}
758
759inline int udf_prealloc_blocks(struct super_block *sb,
760			       struct inode *inode,
761			       uint16_t partition, uint32_t first_block,
762			       uint32_t block_count)
763{
764	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
765	sector_t allocated;
766
767	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
768		allocated = udf_bitmap_prealloc_blocks(sb,
769						       map->s_uspace.s_bitmap,
770						       partition, first_block,
771						       block_count);
772	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
773		allocated = udf_table_prealloc_blocks(sb,
774						      map->s_uspace.s_table,
775						      partition, first_block,
776						      block_count);
777	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
778		allocated = udf_bitmap_prealloc_blocks(sb,
779						       map->s_fspace.s_bitmap,
780						       partition, first_block,
781						       block_count);
782	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
783		allocated = udf_table_prealloc_blocks(sb,
784						      map->s_fspace.s_table,
785						      partition, first_block,
786						      block_count);
787	else
788		return 0;
789
790	if (inode && allocated > 0)
791		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
792	return allocated;
793}
794
795inline int udf_new_block(struct super_block *sb,
796			 struct inode *inode,
797			 uint16_t partition, uint32_t goal, int *err)
798{
799	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
800	int block;
801
802	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
803		block = udf_bitmap_new_block(sb,
804					     map->s_uspace.s_bitmap,
805					     partition, goal, err);
806	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
807		block = udf_table_new_block(sb,
808					    map->s_uspace.s_table,
809					    partition, goal, err);
810	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
811		block = udf_bitmap_new_block(sb,
812					     map->s_fspace.s_bitmap,
813					     partition, goal, err);
814	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
815		block = udf_table_new_block(sb,
816					    map->s_fspace.s_table,
817					    partition, goal, err);
818	else {
819		*err = -EIO;
820		return 0;
821	}
822	if (inode && block)
823		inode_add_bytes(inode, sb->s_blocksize);
824	return block;
825}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * balloc.c
  4 *
  5 * PURPOSE
  6 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
  7 *
  8 * COPYRIGHT
 
 
 
 
 
  9 *  (C) 1999-2001 Ben Fennema
 10 *  (C) 1999 Stelias Computing Inc
 11 *
 12 * HISTORY
 13 *
 14 *  02/24/99 blf  Created.
 15 *
 16 */
 17
 18#include "udfdecl.h"
 19
 
 20#include <linux/bitops.h>
 21
 22#include "udf_i.h"
 23#include "udf_sb.h"
 24
 25#define udf_clear_bit	__test_and_clear_bit_le
 26#define udf_set_bit	__test_and_set_bit_le
 27#define udf_test_bit	test_bit_le
 28#define udf_find_next_one_bit	find_next_bit_le
 29
 30static int read_block_bitmap(struct super_block *sb,
 31			     struct udf_bitmap *bitmap, unsigned int block,
 32			     unsigned long bitmap_nr)
 33{
 34	struct buffer_head *bh = NULL;
 35	int i;
 36	int max_bits, off, count;
 37	struct kernel_lb_addr loc;
 38
 39	loc.logicalBlockNum = bitmap->s_extPosition;
 40	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
 41
 42	bh = sb_bread(sb, udf_get_lb_pblock(sb, &loc, block));
 43	bitmap->s_block_bitmap[bitmap_nr] = bh;
 44	if (!bh)
 45		return -EIO;
 46
 47	/* Check consistency of Space Bitmap buffer. */
 48	max_bits = sb->s_blocksize * 8;
 49	if (!bitmap_nr) {
 50		off = sizeof(struct spaceBitmapDesc) << 3;
 51		count = min(max_bits - off, bitmap->s_nr_groups);
 52	} else {
 53		/*
 54		 * Rough check if bitmap number is too big to have any bitmap
 55 		 * blocks reserved.
 56		 */
 57		if (bitmap_nr >
 58		    (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2)
 59			return 0;
 60		off = 0;
 61		count = bitmap->s_nr_groups - bitmap_nr * max_bits +
 62				(sizeof(struct spaceBitmapDesc) << 3);
 63		count = min(count, max_bits);
 64	}
 65
 66	for (i = 0; i < count; i++)
 67		if (udf_test_bit(i + off, bh->b_data))
 68			return -EFSCORRUPTED;
 69	return 0;
 70}
 71
 72static int __load_block_bitmap(struct super_block *sb,
 73			       struct udf_bitmap *bitmap,
 74			       unsigned int block_group)
 75{
 76	int retval = 0;
 77	int nr_groups = bitmap->s_nr_groups;
 78
 79	if (block_group >= nr_groups) {
 80		udf_debug("block_group (%u) > nr_groups (%d)\n",
 81			  block_group, nr_groups);
 82	}
 83
 84	if (bitmap->s_block_bitmap[block_group])
 
 
 
 
 
 
 85		return block_group;
 86
 87	retval = read_block_bitmap(sb, bitmap, block_group, block_group);
 88	if (retval < 0)
 89		return retval;
 90
 91	return block_group;
 92}
 93
 94static inline int load_block_bitmap(struct super_block *sb,
 95				    struct udf_bitmap *bitmap,
 96				    unsigned int block_group)
 97{
 98	int slot;
 99
100	slot = __load_block_bitmap(sb, bitmap, block_group);
101
102	if (slot < 0)
103		return slot;
104
105	if (!bitmap->s_block_bitmap[slot])
106		return -EIO;
107
108	return slot;
109}
110
111static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
112{
113	struct udf_sb_info *sbi = UDF_SB(sb);
114	struct logicalVolIntegrityDesc *lvid;
115
116	if (!sbi->s_lvid_bh)
117		return;
118
119	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
120	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
121	udf_updated_lvid(sb);
122}
123
124static void udf_bitmap_free_blocks(struct super_block *sb,
125				   struct udf_bitmap *bitmap,
126				   struct kernel_lb_addr *bloc,
127				   uint32_t offset,
128				   uint32_t count)
129{
130	struct udf_sb_info *sbi = UDF_SB(sb);
131	struct buffer_head *bh = NULL;
132	struct udf_part_map *partmap;
133	unsigned long block;
134	unsigned long block_group;
135	unsigned long bit;
136	unsigned long i;
137	int bitmap_nr;
138	unsigned long overflow;
139
140	mutex_lock(&sbi->s_alloc_mutex);
141	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
142	if (bloc->logicalBlockNum + count < count ||
143	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
144		udf_debug("%u < %d || %u + %u > %u\n",
145			  bloc->logicalBlockNum, 0,
146			  bloc->logicalBlockNum, count,
147			  partmap->s_partition_len);
148		goto error_return;
149	}
150
151	block = bloc->logicalBlockNum + offset +
152		(sizeof(struct spaceBitmapDesc) << 3);
153
154	do {
155		overflow = 0;
156		block_group = block >> (sb->s_blocksize_bits + 3);
157		bit = block % (sb->s_blocksize << 3);
158
159		/*
160		* Check to see if we are freeing blocks across a group boundary.
161		*/
162		if (bit + count > (sb->s_blocksize << 3)) {
163			overflow = bit + count - (sb->s_blocksize << 3);
164			count -= overflow;
165		}
166		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
167		if (bitmap_nr < 0)
168			goto error_return;
169
170		bh = bitmap->s_block_bitmap[bitmap_nr];
171		for (i = 0; i < count; i++) {
172			if (udf_set_bit(bit + i, bh->b_data)) {
173				udf_debug("bit %lu already set\n", bit + i);
174				udf_debug("byte=%2x\n",
175					  ((__u8 *)bh->b_data)[(bit + i) >> 3]);
176			}
177		}
178		udf_add_free_space(sb, sbi->s_partition, count);
179		mark_buffer_dirty(bh);
180		if (overflow) {
181			block += count;
182			count = overflow;
183		}
184	} while (overflow);
185
186error_return:
187	mutex_unlock(&sbi->s_alloc_mutex);
188}
189
190static int udf_bitmap_prealloc_blocks(struct super_block *sb,
191				      struct udf_bitmap *bitmap,
192				      uint16_t partition, uint32_t first_block,
193				      uint32_t block_count)
194{
195	struct udf_sb_info *sbi = UDF_SB(sb);
196	int alloc_count = 0;
197	int bit, block, block_group;
198	int bitmap_nr;
199	struct buffer_head *bh;
200	__u32 part_len;
201
202	mutex_lock(&sbi->s_alloc_mutex);
203	part_len = sbi->s_partmaps[partition].s_partition_len;
204	if (first_block >= part_len)
205		goto out;
206
207	if (first_block + block_count > part_len)
208		block_count = part_len - first_block;
209
210	do {
 
211		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
212		block_group = block >> (sb->s_blocksize_bits + 3);
 
213
214		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
215		if (bitmap_nr < 0)
216			goto out;
217		bh = bitmap->s_block_bitmap[bitmap_nr];
218
219		bit = block % (sb->s_blocksize << 3);
220
221		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
222			if (!udf_clear_bit(bit, bh->b_data))
223				goto out;
224			block_count--;
225			alloc_count++;
226			bit++;
227			block++;
228		}
229		mark_buffer_dirty(bh);
230	} while (block_count > 0);
231
232out:
233	udf_add_free_space(sb, partition, -alloc_count);
234	mutex_unlock(&sbi->s_alloc_mutex);
235	return alloc_count;
236}
237
238static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
239				struct udf_bitmap *bitmap, uint16_t partition,
240				uint32_t goal, int *err)
241{
242	struct udf_sb_info *sbi = UDF_SB(sb);
243	int newbit, bit = 0;
244	udf_pblk_t block;
245	int block_group, group_start;
246	int end_goal, nr_groups, bitmap_nr, i;
247	struct buffer_head *bh = NULL;
248	char *ptr;
249	udf_pblk_t newblock = 0;
250
251	*err = -ENOSPC;
252	mutex_lock(&sbi->s_alloc_mutex);
253
254repeat:
255	if (goal >= sbi->s_partmaps[partition].s_partition_len)
256		goal = 0;
257
258	nr_groups = bitmap->s_nr_groups;
259	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
260	block_group = block >> (sb->s_blocksize_bits + 3);
261	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
262
263	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
264	if (bitmap_nr < 0)
265		goto error_return;
266	bh = bitmap->s_block_bitmap[bitmap_nr];
267	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
268		      sb->s_blocksize - group_start);
269
270	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
271		bit = block % (sb->s_blocksize << 3);
272		if (udf_test_bit(bit, bh->b_data))
273			goto got_block;
274
275		end_goal = (bit + 63) & ~63;
276		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
277		if (bit < end_goal)
278			goto got_block;
279
280		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
281			      sb->s_blocksize - ((bit + 7) >> 3));
282		newbit = (ptr - ((char *)bh->b_data)) << 3;
283		if (newbit < sb->s_blocksize << 3) {
284			bit = newbit;
285			goto search_back;
286		}
287
288		newbit = udf_find_next_one_bit(bh->b_data,
289					       sb->s_blocksize << 3, bit);
290		if (newbit < sb->s_blocksize << 3) {
291			bit = newbit;
292			goto got_block;
293		}
294	}
295
296	for (i = 0; i < (nr_groups * 2); i++) {
297		block_group++;
298		if (block_group >= nr_groups)
299			block_group = 0;
300		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
301
302		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
303		if (bitmap_nr < 0)
304			goto error_return;
305		bh = bitmap->s_block_bitmap[bitmap_nr];
306		if (i < nr_groups) {
307			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
308				      sb->s_blocksize - group_start);
309			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
310				bit = (ptr - ((char *)bh->b_data)) << 3;
311				break;
312			}
313		} else {
314			bit = udf_find_next_one_bit(bh->b_data,
315						    sb->s_blocksize << 3,
316						    group_start << 3);
317			if (bit < sb->s_blocksize << 3)
318				break;
319		}
320	}
321	if (i >= (nr_groups * 2)) {
322		mutex_unlock(&sbi->s_alloc_mutex);
323		return newblock;
324	}
325	if (bit < sb->s_blocksize << 3)
326		goto search_back;
327	else
328		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
329					    group_start << 3);
330	if (bit >= sb->s_blocksize << 3) {
331		mutex_unlock(&sbi->s_alloc_mutex);
332		return 0;
333	}
334
335search_back:
336	i = 0;
337	while (i < 7 && bit > (group_start << 3) &&
338	       udf_test_bit(bit - 1, bh->b_data)) {
339		++i;
340		--bit;
341	}
342
343got_block:
344	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
345		(sizeof(struct spaceBitmapDesc) << 3);
346
347	if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
348		/*
349		 * Ran off the end of the bitmap, and bits following are
350		 * non-compliant (not all zero)
351		 */
352		udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
353			" as free, partition length is %u)\n", partition,
354			newblock, sbi->s_partmaps[partition].s_partition_len);
355		goto error_return;
356	}
357
358	if (!udf_clear_bit(bit, bh->b_data)) {
359		udf_debug("bit already cleared for block %d\n", bit);
360		goto repeat;
361	}
362
363	mark_buffer_dirty(bh);
364
365	udf_add_free_space(sb, partition, -1);
366	mutex_unlock(&sbi->s_alloc_mutex);
367	*err = 0;
368	return newblock;
369
370error_return:
371	*err = -EIO;
372	mutex_unlock(&sbi->s_alloc_mutex);
373	return 0;
374}
375
376static void udf_table_free_blocks(struct super_block *sb,
377				  struct inode *table,
378				  struct kernel_lb_addr *bloc,
379				  uint32_t offset,
380				  uint32_t count)
381{
382	struct udf_sb_info *sbi = UDF_SB(sb);
383	struct udf_part_map *partmap;
384	uint32_t start, end;
385	uint32_t elen;
386	struct kernel_lb_addr eloc;
387	struct extent_position oepos, epos;
388	int8_t etype;
 
389	struct udf_inode_info *iinfo;
390
391	mutex_lock(&sbi->s_alloc_mutex);
392	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
393	if (bloc->logicalBlockNum + count < count ||
394	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
395		udf_debug("%u < %d || %u + %u > %u\n",
396			  bloc->logicalBlockNum, 0,
397			  bloc->logicalBlockNum, count,
398			  partmap->s_partition_len);
399		goto error_return;
400	}
401
402	iinfo = UDF_I(table);
403	udf_add_free_space(sb, sbi->s_partition, count);
404
405	start = bloc->logicalBlockNum + offset;
406	end = bloc->logicalBlockNum + offset + count - 1;
407
408	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
409	elen = 0;
410	epos.block = oepos.block = iinfo->i_location;
411	epos.bh = oepos.bh = NULL;
412
413	while (count &&
414	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
415		if (((eloc.logicalBlockNum +
416			(elen >> sb->s_blocksize_bits)) == start)) {
417			if ((0x3FFFFFFF - elen) <
418					(count << sb->s_blocksize_bits)) {
419				uint32_t tmp = ((0x3FFFFFFF - elen) >>
420							sb->s_blocksize_bits);
421				count -= tmp;
422				start += tmp;
423				elen = (etype << 30) |
424					(0x40000000 - sb->s_blocksize);
425			} else {
426				elen = (etype << 30) |
427					(elen +
428					(count << sb->s_blocksize_bits));
429				start += count;
430				count = 0;
431			}
432			udf_write_aext(table, &oepos, &eloc, elen, 1);
433		} else if (eloc.logicalBlockNum == (end + 1)) {
434			if ((0x3FFFFFFF - elen) <
435					(count << sb->s_blocksize_bits)) {
436				uint32_t tmp = ((0x3FFFFFFF - elen) >>
437						sb->s_blocksize_bits);
438				count -= tmp;
439				end -= tmp;
440				eloc.logicalBlockNum -= tmp;
441				elen = (etype << 30) |
442					(0x40000000 - sb->s_blocksize);
443			} else {
444				eloc.logicalBlockNum = start;
445				elen = (etype << 30) |
446					(elen +
447					(count << sb->s_blocksize_bits));
448				end -= count;
449				count = 0;
450			}
451			udf_write_aext(table, &oepos, &eloc, elen, 1);
452		}
453
454		if (epos.bh != oepos.bh) {
 
455			oepos.block = epos.block;
456			brelse(oepos.bh);
457			get_bh(epos.bh);
458			oepos.bh = epos.bh;
459			oepos.offset = 0;
460		} else {
461			oepos.offset = epos.offset;
462		}
463	}
464
465	if (count) {
466		/*
467		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
468		 * allocate a new block, and since we hold the super block
469		 * lock already very bad things would happen :)
470		 *
471		 * We copy the behavior of udf_add_aext, but instead of
472		 * trying to allocate a new block close to the existing one,
473		 * we just steal a block from the extent we are trying to add.
474		 *
475		 * It would be nice if the blocks were close together, but it
476		 * isn't required.
477		 */
478
479		int adsize;
 
 
 
480
481		eloc.logicalBlockNum = start;
482		elen = EXT_RECORDED_ALLOCATED |
483			(count << sb->s_blocksize_bits);
484
485		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
486			adsize = sizeof(struct short_ad);
487		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
488			adsize = sizeof(struct long_ad);
489		else {
490			brelse(oepos.bh);
491			brelse(epos.bh);
492			goto error_return;
493		}
494
495		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
 
 
 
 
 
 
496			/* Steal a block from the extent being free'd */
497			udf_setup_indirect_aext(table, eloc.logicalBlockNum,
498						&epos);
499
500			eloc.logicalBlockNum++;
501			elen -= sb->s_blocksize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
502		}
503
504		/* It's possible that stealing the block emptied the extent */
505		if (elen)
506			__udf_add_aext(table, &epos, &eloc, elen, 1);
 
 
 
 
 
 
 
 
 
 
 
507	}
508
509	brelse(epos.bh);
510	brelse(oepos.bh);
511
512error_return:
513	mutex_unlock(&sbi->s_alloc_mutex);
514	return;
515}
516
517static int udf_table_prealloc_blocks(struct super_block *sb,
518				     struct inode *table, uint16_t partition,
519				     uint32_t first_block, uint32_t block_count)
520{
521	struct udf_sb_info *sbi = UDF_SB(sb);
522	int alloc_count = 0;
523	uint32_t elen, adsize;
524	struct kernel_lb_addr eloc;
525	struct extent_position epos;
526	int8_t etype = -1;
527	struct udf_inode_info *iinfo;
528
529	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
530		return 0;
531
532	iinfo = UDF_I(table);
533	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
534		adsize = sizeof(struct short_ad);
535	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
536		adsize = sizeof(struct long_ad);
537	else
538		return 0;
539
540	mutex_lock(&sbi->s_alloc_mutex);
541	epos.offset = sizeof(struct unallocSpaceEntry);
542	epos.block = iinfo->i_location;
543	epos.bh = NULL;
544	eloc.logicalBlockNum = 0xFFFFFFFF;
545
546	while (first_block != eloc.logicalBlockNum &&
547	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
548		udf_debug("eloc=%u, elen=%u, first_block=%u\n",
549			  eloc.logicalBlockNum, elen, first_block);
550		; /* empty loop body */
551	}
552
553	if (first_block == eloc.logicalBlockNum) {
554		epos.offset -= adsize;
555
556		alloc_count = (elen >> sb->s_blocksize_bits);
557		if (alloc_count > block_count) {
558			alloc_count = block_count;
559			eloc.logicalBlockNum += alloc_count;
560			elen -= (alloc_count << sb->s_blocksize_bits);
561			udf_write_aext(table, &epos, &eloc,
562					(etype << 30) | elen, 1);
563		} else
564			udf_delete_aext(table, epos);
 
565	} else {
566		alloc_count = 0;
567	}
568
569	brelse(epos.bh);
570
571	if (alloc_count)
572		udf_add_free_space(sb, partition, -alloc_count);
573	mutex_unlock(&sbi->s_alloc_mutex);
574	return alloc_count;
575}
576
577static udf_pblk_t udf_table_new_block(struct super_block *sb,
578			       struct inode *table, uint16_t partition,
579			       uint32_t goal, int *err)
580{
581	struct udf_sb_info *sbi = UDF_SB(sb);
582	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
583	udf_pblk_t newblock = 0;
584	uint32_t adsize;
585	uint32_t elen, goal_elen = 0;
586	struct kernel_lb_addr eloc, goal_eloc;
587	struct extent_position epos, goal_epos;
588	int8_t etype;
589	struct udf_inode_info *iinfo = UDF_I(table);
590
591	*err = -ENOSPC;
592
593	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
594		adsize = sizeof(struct short_ad);
595	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
596		adsize = sizeof(struct long_ad);
597	else
598		return newblock;
599
600	mutex_lock(&sbi->s_alloc_mutex);
601	if (goal >= sbi->s_partmaps[partition].s_partition_len)
602		goal = 0;
603
604	/* We search for the closest matching block to goal. If we find
605	   a exact hit, we stop. Otherwise we keep going till we run out
606	   of extents. We store the buffer_head, bloc, and extoffset
607	   of the current closest match and use that when we are done.
608	 */
609	epos.offset = sizeof(struct unallocSpaceEntry);
610	epos.block = iinfo->i_location;
611	epos.bh = goal_epos.bh = NULL;
612
613	while (spread &&
614	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
615		if (goal >= eloc.logicalBlockNum) {
616			if (goal < eloc.logicalBlockNum +
617					(elen >> sb->s_blocksize_bits))
618				nspread = 0;
619			else
620				nspread = goal - eloc.logicalBlockNum -
621					(elen >> sb->s_blocksize_bits);
622		} else {
623			nspread = eloc.logicalBlockNum - goal;
624		}
625
626		if (nspread < spread) {
627			spread = nspread;
628			if (goal_epos.bh != epos.bh) {
629				brelse(goal_epos.bh);
630				goal_epos.bh = epos.bh;
631				get_bh(goal_epos.bh);
632			}
633			goal_epos.block = epos.block;
634			goal_epos.offset = epos.offset - adsize;
635			goal_eloc = eloc;
636			goal_elen = (etype << 30) | elen;
637		}
638	}
639
640	brelse(epos.bh);
641
642	if (spread == 0xFFFFFFFF) {
643		brelse(goal_epos.bh);
644		mutex_unlock(&sbi->s_alloc_mutex);
645		return 0;
646	}
647
648	/* Only allocate blocks from the beginning of the extent.
649	   That way, we only delete (empty) extents, never have to insert an
650	   extent because of splitting */
651	/* This works, but very poorly.... */
652
653	newblock = goal_eloc.logicalBlockNum;
654	goal_eloc.logicalBlockNum++;
655	goal_elen -= sb->s_blocksize;
656
657	if (goal_elen)
658		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
659	else
660		udf_delete_aext(table, goal_epos);
661	brelse(goal_epos.bh);
662
663	udf_add_free_space(sb, partition, -1);
664
665	mutex_unlock(&sbi->s_alloc_mutex);
666	*err = 0;
667	return newblock;
668}
669
670void udf_free_blocks(struct super_block *sb, struct inode *inode,
671		     struct kernel_lb_addr *bloc, uint32_t offset,
672		     uint32_t count)
673{
674	uint16_t partition = bloc->partitionReferenceNum;
675	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
676
677	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
678		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
679				       bloc, offset, count);
680	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
681		udf_table_free_blocks(sb, map->s_uspace.s_table,
682				      bloc, offset, count);
 
 
 
 
 
 
683	}
684
685	if (inode) {
686		inode_sub_bytes(inode,
687				((sector_t)count) << sb->s_blocksize_bits);
688	}
689}
690
691inline int udf_prealloc_blocks(struct super_block *sb,
692			       struct inode *inode,
693			       uint16_t partition, uint32_t first_block,
694			       uint32_t block_count)
695{
696	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
697	int allocated;
698
699	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
700		allocated = udf_bitmap_prealloc_blocks(sb,
701						       map->s_uspace.s_bitmap,
702						       partition, first_block,
703						       block_count);
704	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
705		allocated = udf_table_prealloc_blocks(sb,
706						      map->s_uspace.s_table,
707						      partition, first_block,
708						      block_count);
 
 
 
 
 
 
 
 
 
 
709	else
710		return 0;
711
712	if (inode && allocated > 0)
713		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
714	return allocated;
715}
716
717inline udf_pblk_t udf_new_block(struct super_block *sb,
718			 struct inode *inode,
719			 uint16_t partition, uint32_t goal, int *err)
720{
721	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
722	udf_pblk_t block;
723
724	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
725		block = udf_bitmap_new_block(sb,
726					     map->s_uspace.s_bitmap,
727					     partition, goal, err);
728	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
729		block = udf_table_new_block(sb,
730					    map->s_uspace.s_table,
 
 
 
 
 
 
 
 
731					    partition, goal, err);
732	else {
733		*err = -EIO;
734		return 0;
735	}
736	if (inode && block)
737		inode_add_bytes(inode, sb->s_blocksize);
738	return block;
739}