Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * balloc.c
  3 *
  4 * PURPOSE
  5 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
  6 *
  7 * COPYRIGHT
  8 *	This file is distributed under the terms of the GNU General Public
  9 *	License (GPL). Copies of the GPL can be obtained from:
 10 *		ftp://prep.ai.mit.edu/pub/gnu/GPL
 11 *	Each contributing author retains all rights to their own work.
 12 *
 13 *  (C) 1999-2001 Ben Fennema
 14 *  (C) 1999 Stelias Computing Inc
 15 *
 16 * HISTORY
 17 *
 18 *  02/24/99 blf  Created.
 19 *
 20 */
 21
 22#include "udfdecl.h"
 23
 24#include <linux/buffer_head.h>
 25#include <linux/bitops.h>
 26
 27#include "udf_i.h"
 28#include "udf_sb.h"
 29
 30#define udf_clear_bit	__test_and_clear_bit_le
 31#define udf_set_bit	__test_and_set_bit_le
 32#define udf_test_bit	test_bit_le
 33#define udf_find_next_one_bit	find_next_bit_le
 34
 35static int read_block_bitmap(struct super_block *sb,
 36			     struct udf_bitmap *bitmap, unsigned int block,
 37			     unsigned long bitmap_nr)
 38{
 39	struct buffer_head *bh = NULL;
 40	int retval = 0;
 41	struct kernel_lb_addr loc;
 42
 43	loc.logicalBlockNum = bitmap->s_extPosition;
 44	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
 45
 46	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
 47	if (!bh)
 48		retval = -EIO;
 49
 50	bitmap->s_block_bitmap[bitmap_nr] = bh;
 51	return retval;
 52}
 53
 54static int __load_block_bitmap(struct super_block *sb,
 55			       struct udf_bitmap *bitmap,
 56			       unsigned int block_group)
 57{
 58	int retval = 0;
 59	int nr_groups = bitmap->s_nr_groups;
 60
 61	if (block_group >= nr_groups) {
 62		udf_debug("block_group (%d) > nr_groups (%d)\n",
 63			  block_group, nr_groups);
 64	}
 65
 66	if (bitmap->s_block_bitmap[block_group]) {
 67		return block_group;
 68	} else {
 69		retval = read_block_bitmap(sb, bitmap, block_group,
 70					   block_group);
 71		if (retval < 0)
 72			return retval;
 73		return block_group;
 74	}
 75}
 76
 77static inline int load_block_bitmap(struct super_block *sb,
 78				    struct udf_bitmap *bitmap,
 79				    unsigned int block_group)
 80{
 81	int slot;
 82
 83	slot = __load_block_bitmap(sb, bitmap, block_group);
 84
 85	if (slot < 0)
 86		return slot;
 87
 88	if (!bitmap->s_block_bitmap[slot])
 89		return -EIO;
 90
 91	return slot;
 92}
 93
 94static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
 95{
 96	struct udf_sb_info *sbi = UDF_SB(sb);
 97	struct logicalVolIntegrityDesc *lvid;
 98
 99	if (!sbi->s_lvid_bh)
100		return;
101
102	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
103	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
104	udf_updated_lvid(sb);
105}
106
107static void udf_bitmap_free_blocks(struct super_block *sb,
108				   struct udf_bitmap *bitmap,
109				   struct kernel_lb_addr *bloc,
110				   uint32_t offset,
111				   uint32_t count)
112{
113	struct udf_sb_info *sbi = UDF_SB(sb);
114	struct buffer_head *bh = NULL;
115	struct udf_part_map *partmap;
116	unsigned long block;
117	unsigned long block_group;
118	unsigned long bit;
119	unsigned long i;
120	int bitmap_nr;
121	unsigned long overflow;
122
123	mutex_lock(&sbi->s_alloc_mutex);
124	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
125	if (bloc->logicalBlockNum + count < count ||
126	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
127		udf_debug("%d < %d || %d + %d > %d\n",
128			  bloc->logicalBlockNum, 0,
129			  bloc->logicalBlockNum, count,
130			  partmap->s_partition_len);
131		goto error_return;
132	}
133
134	block = bloc->logicalBlockNum + offset +
135		(sizeof(struct spaceBitmapDesc) << 3);
136
137	do {
138		overflow = 0;
139		block_group = block >> (sb->s_blocksize_bits + 3);
140		bit = block % (sb->s_blocksize << 3);
141
142		/*
143		* Check to see if we are freeing blocks across a group boundary.
144		*/
145		if (bit + count > (sb->s_blocksize << 3)) {
146			overflow = bit + count - (sb->s_blocksize << 3);
147			count -= overflow;
148		}
149		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
150		if (bitmap_nr < 0)
151			goto error_return;
152
153		bh = bitmap->s_block_bitmap[bitmap_nr];
154		for (i = 0; i < count; i++) {
155			if (udf_set_bit(bit + i, bh->b_data)) {
156				udf_debug("bit %ld already set\n", bit + i);
157				udf_debug("byte=%2x\n",
158					  ((char *)bh->b_data)[(bit + i) >> 3]);
159			}
160		}
161		udf_add_free_space(sb, sbi->s_partition, count);
162		mark_buffer_dirty(bh);
163		if (overflow) {
164			block += count;
165			count = overflow;
166		}
167	} while (overflow);
168
169error_return:
170	mutex_unlock(&sbi->s_alloc_mutex);
171}
172
173static int udf_bitmap_prealloc_blocks(struct super_block *sb,
174				      struct udf_bitmap *bitmap,
175				      uint16_t partition, uint32_t first_block,
176				      uint32_t block_count)
177{
178	struct udf_sb_info *sbi = UDF_SB(sb);
179	int alloc_count = 0;
180	int bit, block, block_group, group_start;
181	int nr_groups, bitmap_nr;
182	struct buffer_head *bh;
183	__u32 part_len;
184
185	mutex_lock(&sbi->s_alloc_mutex);
186	part_len = sbi->s_partmaps[partition].s_partition_len;
187	if (first_block >= part_len)
188		goto out;
189
190	if (first_block + block_count > part_len)
191		block_count = part_len - first_block;
192
193	do {
194		nr_groups = udf_compute_nr_groups(sb, partition);
195		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
196		block_group = block >> (sb->s_blocksize_bits + 3);
197		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
198
199		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
200		if (bitmap_nr < 0)
201			goto out;
202		bh = bitmap->s_block_bitmap[bitmap_nr];
203
204		bit = block % (sb->s_blocksize << 3);
205
206		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
207			if (!udf_clear_bit(bit, bh->b_data))
208				goto out;
209			block_count--;
210			alloc_count++;
211			bit++;
212			block++;
213		}
214		mark_buffer_dirty(bh);
215	} while (block_count > 0);
216
217out:
218	udf_add_free_space(sb, partition, -alloc_count);
219	mutex_unlock(&sbi->s_alloc_mutex);
220	return alloc_count;
221}
222
223static int udf_bitmap_new_block(struct super_block *sb,
224				struct udf_bitmap *bitmap, uint16_t partition,
225				uint32_t goal, int *err)
226{
227	struct udf_sb_info *sbi = UDF_SB(sb);
228	int newbit, bit = 0, block, block_group, group_start;
229	int end_goal, nr_groups, bitmap_nr, i;
230	struct buffer_head *bh = NULL;
231	char *ptr;
232	int newblock = 0;
233
234	*err = -ENOSPC;
235	mutex_lock(&sbi->s_alloc_mutex);
236
237repeat:
238	if (goal >= sbi->s_partmaps[partition].s_partition_len)
239		goal = 0;
240
241	nr_groups = bitmap->s_nr_groups;
242	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
243	block_group = block >> (sb->s_blocksize_bits + 3);
244	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
245
246	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
247	if (bitmap_nr < 0)
248		goto error_return;
249	bh = bitmap->s_block_bitmap[bitmap_nr];
250	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
251		      sb->s_blocksize - group_start);
252
253	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
254		bit = block % (sb->s_blocksize << 3);
255		if (udf_test_bit(bit, bh->b_data))
256			goto got_block;
257
258		end_goal = (bit + 63) & ~63;
259		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
260		if (bit < end_goal)
261			goto got_block;
262
263		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
264			      sb->s_blocksize - ((bit + 7) >> 3));
265		newbit = (ptr - ((char *)bh->b_data)) << 3;
266		if (newbit < sb->s_blocksize << 3) {
267			bit = newbit;
268			goto search_back;
269		}
270
271		newbit = udf_find_next_one_bit(bh->b_data,
272					       sb->s_blocksize << 3, bit);
273		if (newbit < sb->s_blocksize << 3) {
274			bit = newbit;
275			goto got_block;
276		}
277	}
278
279	for (i = 0; i < (nr_groups * 2); i++) {
280		block_group++;
281		if (block_group >= nr_groups)
282			block_group = 0;
283		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
284
285		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
286		if (bitmap_nr < 0)
287			goto error_return;
288		bh = bitmap->s_block_bitmap[bitmap_nr];
289		if (i < nr_groups) {
290			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
291				      sb->s_blocksize - group_start);
292			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
293				bit = (ptr - ((char *)bh->b_data)) << 3;
294				break;
295			}
296		} else {
297			bit = udf_find_next_one_bit(bh->b_data,
298						    sb->s_blocksize << 3,
299						    group_start << 3);
300			if (bit < sb->s_blocksize << 3)
301				break;
302		}
303	}
304	if (i >= (nr_groups * 2)) {
305		mutex_unlock(&sbi->s_alloc_mutex);
306		return newblock;
307	}
308	if (bit < sb->s_blocksize << 3)
309		goto search_back;
310	else
311		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
312					    group_start << 3);
313	if (bit >= sb->s_blocksize << 3) {
314		mutex_unlock(&sbi->s_alloc_mutex);
315		return 0;
316	}
317
318search_back:
319	i = 0;
320	while (i < 7 && bit > (group_start << 3) &&
321	       udf_test_bit(bit - 1, bh->b_data)) {
322		++i;
323		--bit;
324	}
325
326got_block:
327	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
328		(sizeof(struct spaceBitmapDesc) << 3);
329
330	if (!udf_clear_bit(bit, bh->b_data)) {
331		udf_debug("bit already cleared for block %d\n", bit);
332		goto repeat;
333	}
334
335	mark_buffer_dirty(bh);
336
337	udf_add_free_space(sb, partition, -1);
338	mutex_unlock(&sbi->s_alloc_mutex);
339	*err = 0;
340	return newblock;
341
342error_return:
343	*err = -EIO;
344	mutex_unlock(&sbi->s_alloc_mutex);
345	return 0;
346}
347
348static void udf_table_free_blocks(struct super_block *sb,
349				  struct inode *table,
350				  struct kernel_lb_addr *bloc,
351				  uint32_t offset,
352				  uint32_t count)
353{
354	struct udf_sb_info *sbi = UDF_SB(sb);
355	struct udf_part_map *partmap;
356	uint32_t start, end;
357	uint32_t elen;
358	struct kernel_lb_addr eloc;
359	struct extent_position oepos, epos;
360	int8_t etype;
361	int i;
362	struct udf_inode_info *iinfo;
363
364	mutex_lock(&sbi->s_alloc_mutex);
365	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
366	if (bloc->logicalBlockNum + count < count ||
367	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
368		udf_debug("%d < %d || %d + %d > %d\n",
369			  bloc->logicalBlockNum, 0,
370			  bloc->logicalBlockNum, count,
371			  partmap->s_partition_len);
372		goto error_return;
373	}
374
375	iinfo = UDF_I(table);
376	udf_add_free_space(sb, sbi->s_partition, count);
377
378	start = bloc->logicalBlockNum + offset;
379	end = bloc->logicalBlockNum + offset + count - 1;
380
381	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
382	elen = 0;
383	epos.block = oepos.block = iinfo->i_location;
384	epos.bh = oepos.bh = NULL;
385
386	while (count &&
387	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
388		if (((eloc.logicalBlockNum +
389			(elen >> sb->s_blocksize_bits)) == start)) {
390			if ((0x3FFFFFFF - elen) <
391					(count << sb->s_blocksize_bits)) {
392				uint32_t tmp = ((0x3FFFFFFF - elen) >>
393							sb->s_blocksize_bits);
394				count -= tmp;
395				start += tmp;
396				elen = (etype << 30) |
397					(0x40000000 - sb->s_blocksize);
398			} else {
399				elen = (etype << 30) |
400					(elen +
401					(count << sb->s_blocksize_bits));
402				start += count;
403				count = 0;
404			}
405			udf_write_aext(table, &oepos, &eloc, elen, 1);
406		} else if (eloc.logicalBlockNum == (end + 1)) {
407			if ((0x3FFFFFFF - elen) <
408					(count << sb->s_blocksize_bits)) {
409				uint32_t tmp = ((0x3FFFFFFF - elen) >>
410						sb->s_blocksize_bits);
411				count -= tmp;
412				end -= tmp;
413				eloc.logicalBlockNum -= tmp;
414				elen = (etype << 30) |
415					(0x40000000 - sb->s_blocksize);
416			} else {
417				eloc.logicalBlockNum = start;
418				elen = (etype << 30) |
419					(elen +
420					(count << sb->s_blocksize_bits));
421				end -= count;
422				count = 0;
423			}
424			udf_write_aext(table, &oepos, &eloc, elen, 1);
425		}
426
427		if (epos.bh != oepos.bh) {
428			i = -1;
429			oepos.block = epos.block;
430			brelse(oepos.bh);
431			get_bh(epos.bh);
432			oepos.bh = epos.bh;
433			oepos.offset = 0;
434		} else {
435			oepos.offset = epos.offset;
436		}
437	}
438
439	if (count) {
440		/*
441		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
442		 * allocate a new block, and since we hold the super block
443		 * lock already very bad things would happen :)
444		 *
445		 * We copy the behavior of udf_add_aext, but instead of
446		 * trying to allocate a new block close to the existing one,
447		 * we just steal a block from the extent we are trying to add.
448		 *
449		 * It would be nice if the blocks were close together, but it
450		 * isn't required.
451		 */
452
453		int adsize;
454		struct short_ad *sad = NULL;
455		struct long_ad *lad = NULL;
456		struct allocExtDesc *aed;
457
458		eloc.logicalBlockNum = start;
459		elen = EXT_RECORDED_ALLOCATED |
460			(count << sb->s_blocksize_bits);
461
462		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
463			adsize = sizeof(struct short_ad);
464		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
465			adsize = sizeof(struct long_ad);
466		else {
467			brelse(oepos.bh);
468			brelse(epos.bh);
469			goto error_return;
470		}
471
472		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
473			unsigned char *sptr, *dptr;
474			int loffset;
475
476			brelse(oepos.bh);
477			oepos = epos;
478
479			/* Steal a block from the extent being free'd */
480			epos.block.logicalBlockNum = eloc.logicalBlockNum;
 
 
481			eloc.logicalBlockNum++;
482			elen -= sb->s_blocksize;
483
484			epos.bh = udf_tread(sb,
485					udf_get_lb_pblock(sb, &epos.block, 0));
486			if (!epos.bh) {
487				brelse(oepos.bh);
488				goto error_return;
489			}
490			aed = (struct allocExtDesc *)(epos.bh->b_data);
491			aed->previousAllocExtLocation =
492				cpu_to_le32(oepos.block.logicalBlockNum);
493			if (epos.offset + adsize > sb->s_blocksize) {
494				loffset = epos.offset;
495				aed->lengthAllocDescs = cpu_to_le32(adsize);
496				sptr = iinfo->i_ext.i_data + epos.offset
497								- adsize;
498				dptr = epos.bh->b_data +
499					sizeof(struct allocExtDesc);
500				memcpy(dptr, sptr, adsize);
501				epos.offset = sizeof(struct allocExtDesc) +
502						adsize;
503			} else {
504				loffset = epos.offset + adsize;
505				aed->lengthAllocDescs = cpu_to_le32(0);
506				if (oepos.bh) {
507					sptr = oepos.bh->b_data + epos.offset;
508					aed = (struct allocExtDesc *)
509						oepos.bh->b_data;
510					le32_add_cpu(&aed->lengthAllocDescs,
511							adsize);
512				} else {
513					sptr = iinfo->i_ext.i_data +
514								epos.offset;
515					iinfo->i_lenAlloc += adsize;
516					mark_inode_dirty(table);
517				}
518				epos.offset = sizeof(struct allocExtDesc);
519			}
520			if (sbi->s_udfrev >= 0x0200)
521				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
522					    3, 1, epos.block.logicalBlockNum,
523					    sizeof(struct tag));
524			else
525				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
526					    2, 1, epos.block.logicalBlockNum,
527					    sizeof(struct tag));
528
529			switch (iinfo->i_alloc_type) {
530			case ICBTAG_FLAG_AD_SHORT:
531				sad = (struct short_ad *)sptr;
532				sad->extLength = cpu_to_le32(
533					EXT_NEXT_EXTENT_ALLOCDECS |
534					sb->s_blocksize);
535				sad->extPosition =
536					cpu_to_le32(epos.block.logicalBlockNum);
537				break;
538			case ICBTAG_FLAG_AD_LONG:
539				lad = (struct long_ad *)sptr;
540				lad->extLength = cpu_to_le32(
541					EXT_NEXT_EXTENT_ALLOCDECS |
542					sb->s_blocksize);
543				lad->extLocation =
544					cpu_to_lelb(epos.block);
545				break;
546			}
547			if (oepos.bh) {
548				udf_update_tag(oepos.bh->b_data, loffset);
549				mark_buffer_dirty(oepos.bh);
550			} else {
551				mark_inode_dirty(table);
552			}
553		}
554
555		/* It's possible that stealing the block emptied the extent */
556		if (elen) {
557			udf_write_aext(table, &epos, &eloc, elen, 1);
558
559			if (!epos.bh) {
560				iinfo->i_lenAlloc += adsize;
561				mark_inode_dirty(table);
562			} else {
563				aed = (struct allocExtDesc *)epos.bh->b_data;
564				le32_add_cpu(&aed->lengthAllocDescs, adsize);
565				udf_update_tag(epos.bh->b_data, epos.offset);
566				mark_buffer_dirty(epos.bh);
567			}
568		}
569	}
570
571	brelse(epos.bh);
572	brelse(oepos.bh);
573
574error_return:
575	mutex_unlock(&sbi->s_alloc_mutex);
576	return;
577}
578
579static int udf_table_prealloc_blocks(struct super_block *sb,
580				     struct inode *table, uint16_t partition,
581				     uint32_t first_block, uint32_t block_count)
582{
583	struct udf_sb_info *sbi = UDF_SB(sb);
584	int alloc_count = 0;
585	uint32_t elen, adsize;
586	struct kernel_lb_addr eloc;
587	struct extent_position epos;
588	int8_t etype = -1;
589	struct udf_inode_info *iinfo;
590
591	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
592		return 0;
593
594	iinfo = UDF_I(table);
595	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
596		adsize = sizeof(struct short_ad);
597	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
598		adsize = sizeof(struct long_ad);
599	else
600		return 0;
601
602	mutex_lock(&sbi->s_alloc_mutex);
603	epos.offset = sizeof(struct unallocSpaceEntry);
604	epos.block = iinfo->i_location;
605	epos.bh = NULL;
606	eloc.logicalBlockNum = 0xFFFFFFFF;
607
608	while (first_block != eloc.logicalBlockNum &&
609	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
610		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
611			  eloc.logicalBlockNum, elen, first_block);
612		; /* empty loop body */
613	}
614
615	if (first_block == eloc.logicalBlockNum) {
616		epos.offset -= adsize;
617
618		alloc_count = (elen >> sb->s_blocksize_bits);
619		if (alloc_count > block_count) {
620			alloc_count = block_count;
621			eloc.logicalBlockNum += alloc_count;
622			elen -= (alloc_count << sb->s_blocksize_bits);
623			udf_write_aext(table, &epos, &eloc,
624					(etype << 30) | elen, 1);
625		} else
626			udf_delete_aext(table, epos, eloc,
627					(etype << 30) | elen);
628	} else {
629		alloc_count = 0;
630	}
631
632	brelse(epos.bh);
633
634	if (alloc_count)
635		udf_add_free_space(sb, partition, -alloc_count);
636	mutex_unlock(&sbi->s_alloc_mutex);
637	return alloc_count;
638}
639
640static int udf_table_new_block(struct super_block *sb,
641			       struct inode *table, uint16_t partition,
642			       uint32_t goal, int *err)
643{
644	struct udf_sb_info *sbi = UDF_SB(sb);
645	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
646	uint32_t newblock = 0, adsize;
647	uint32_t elen, goal_elen = 0;
648	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
649	struct extent_position epos, goal_epos;
650	int8_t etype;
651	struct udf_inode_info *iinfo = UDF_I(table);
652
653	*err = -ENOSPC;
654
655	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
656		adsize = sizeof(struct short_ad);
657	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
658		adsize = sizeof(struct long_ad);
659	else
660		return newblock;
661
662	mutex_lock(&sbi->s_alloc_mutex);
663	if (goal >= sbi->s_partmaps[partition].s_partition_len)
664		goal = 0;
665
666	/* We search for the closest matching block to goal. If we find
667	   a exact hit, we stop. Otherwise we keep going till we run out
668	   of extents. We store the buffer_head, bloc, and extoffset
669	   of the current closest match and use that when we are done.
670	 */
671	epos.offset = sizeof(struct unallocSpaceEntry);
672	epos.block = iinfo->i_location;
673	epos.bh = goal_epos.bh = NULL;
674
675	while (spread &&
676	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
677		if (goal >= eloc.logicalBlockNum) {
678			if (goal < eloc.logicalBlockNum +
679					(elen >> sb->s_blocksize_bits))
680				nspread = 0;
681			else
682				nspread = goal - eloc.logicalBlockNum -
683					(elen >> sb->s_blocksize_bits);
684		} else {
685			nspread = eloc.logicalBlockNum - goal;
686		}
687
688		if (nspread < spread) {
689			spread = nspread;
690			if (goal_epos.bh != epos.bh) {
691				brelse(goal_epos.bh);
692				goal_epos.bh = epos.bh;
693				get_bh(goal_epos.bh);
694			}
695			goal_epos.block = epos.block;
696			goal_epos.offset = epos.offset - adsize;
697			goal_eloc = eloc;
698			goal_elen = (etype << 30) | elen;
699		}
700	}
701
702	brelse(epos.bh);
703
704	if (spread == 0xFFFFFFFF) {
705		brelse(goal_epos.bh);
706		mutex_unlock(&sbi->s_alloc_mutex);
707		return 0;
708	}
709
710	/* Only allocate blocks from the beginning of the extent.
711	   That way, we only delete (empty) extents, never have to insert an
712	   extent because of splitting */
713	/* This works, but very poorly.... */
714
715	newblock = goal_eloc.logicalBlockNum;
716	goal_eloc.logicalBlockNum++;
717	goal_elen -= sb->s_blocksize;
718
719	if (goal_elen)
720		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
721	else
722		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
723	brelse(goal_epos.bh);
724
725	udf_add_free_space(sb, partition, -1);
726
727	mutex_unlock(&sbi->s_alloc_mutex);
728	*err = 0;
729	return newblock;
730}
731
732void udf_free_blocks(struct super_block *sb, struct inode *inode,
733		     struct kernel_lb_addr *bloc, uint32_t offset,
734		     uint32_t count)
735{
736	uint16_t partition = bloc->partitionReferenceNum;
737	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
738
739	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
740		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
741				       bloc, offset, count);
742	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
743		udf_table_free_blocks(sb, map->s_uspace.s_table,
744				      bloc, offset, count);
745	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
746		udf_bitmap_free_blocks(sb, map->s_fspace.s_bitmap,
747				       bloc, offset, count);
748	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
749		udf_table_free_blocks(sb, map->s_fspace.s_table,
750				      bloc, offset, count);
751	}
752
753	if (inode) {
754		inode_sub_bytes(inode,
755				((sector_t)count) << sb->s_blocksize_bits);
756	}
757}
758
759inline int udf_prealloc_blocks(struct super_block *sb,
760			       struct inode *inode,
761			       uint16_t partition, uint32_t first_block,
762			       uint32_t block_count)
763{
764	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
765	sector_t allocated;
766
767	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
768		allocated = udf_bitmap_prealloc_blocks(sb,
769						       map->s_uspace.s_bitmap,
770						       partition, first_block,
771						       block_count);
772	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
773		allocated = udf_table_prealloc_blocks(sb,
774						      map->s_uspace.s_table,
775						      partition, first_block,
776						      block_count);
777	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
778		allocated = udf_bitmap_prealloc_blocks(sb,
779						       map->s_fspace.s_bitmap,
780						       partition, first_block,
781						       block_count);
782	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
783		allocated = udf_table_prealloc_blocks(sb,
784						      map->s_fspace.s_table,
785						      partition, first_block,
786						      block_count);
787	else
788		return 0;
789
790	if (inode && allocated > 0)
791		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
792	return allocated;
793}
794
795inline int udf_new_block(struct super_block *sb,
796			 struct inode *inode,
797			 uint16_t partition, uint32_t goal, int *err)
798{
799	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
800	int block;
801
802	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
803		block = udf_bitmap_new_block(sb,
804					     map->s_uspace.s_bitmap,
805					     partition, goal, err);
806	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
807		block = udf_table_new_block(sb,
808					    map->s_uspace.s_table,
809					    partition, goal, err);
810	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
811		block = udf_bitmap_new_block(sb,
812					     map->s_fspace.s_bitmap,
813					     partition, goal, err);
814	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
815		block = udf_table_new_block(sb,
816					    map->s_fspace.s_table,
817					    partition, goal, err);
818	else {
819		*err = -EIO;
820		return 0;
821	}
822	if (inode && block)
823		inode_add_bytes(inode, sb->s_blocksize);
824	return block;
825}
v4.6
  1/*
  2 * balloc.c
  3 *
  4 * PURPOSE
  5 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
  6 *
  7 * COPYRIGHT
  8 *	This file is distributed under the terms of the GNU General Public
  9 *	License (GPL). Copies of the GPL can be obtained from:
 10 *		ftp://prep.ai.mit.edu/pub/gnu/GPL
 11 *	Each contributing author retains all rights to their own work.
 12 *
 13 *  (C) 1999-2001 Ben Fennema
 14 *  (C) 1999 Stelias Computing Inc
 15 *
 16 * HISTORY
 17 *
 18 *  02/24/99 blf  Created.
 19 *
 20 */
 21
 22#include "udfdecl.h"
 23
 
 24#include <linux/bitops.h>
 25
 26#include "udf_i.h"
 27#include "udf_sb.h"
 28
 29#define udf_clear_bit	__test_and_clear_bit_le
 30#define udf_set_bit	__test_and_set_bit_le
 31#define udf_test_bit	test_bit_le
 32#define udf_find_next_one_bit	find_next_bit_le
 33
 34static int read_block_bitmap(struct super_block *sb,
 35			     struct udf_bitmap *bitmap, unsigned int block,
 36			     unsigned long bitmap_nr)
 37{
 38	struct buffer_head *bh = NULL;
 39	int retval = 0;
 40	struct kernel_lb_addr loc;
 41
 42	loc.logicalBlockNum = bitmap->s_extPosition;
 43	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
 44
 45	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
 46	if (!bh)
 47		retval = -EIO;
 48
 49	bitmap->s_block_bitmap[bitmap_nr] = bh;
 50	return retval;
 51}
 52
 53static int __load_block_bitmap(struct super_block *sb,
 54			       struct udf_bitmap *bitmap,
 55			       unsigned int block_group)
 56{
 57	int retval = 0;
 58	int nr_groups = bitmap->s_nr_groups;
 59
 60	if (block_group >= nr_groups) {
 61		udf_debug("block_group (%d) > nr_groups (%d)\n",
 62			  block_group, nr_groups);
 63	}
 64
 65	if (bitmap->s_block_bitmap[block_group])
 66		return block_group;
 67
 68	retval = read_block_bitmap(sb, bitmap, block_group, block_group);
 69	if (retval < 0)
 70		return retval;
 71
 72	return block_group;
 
 73}
 74
 75static inline int load_block_bitmap(struct super_block *sb,
 76				    struct udf_bitmap *bitmap,
 77				    unsigned int block_group)
 78{
 79	int slot;
 80
 81	slot = __load_block_bitmap(sb, bitmap, block_group);
 82
 83	if (slot < 0)
 84		return slot;
 85
 86	if (!bitmap->s_block_bitmap[slot])
 87		return -EIO;
 88
 89	return slot;
 90}
 91
 92static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
 93{
 94	struct udf_sb_info *sbi = UDF_SB(sb);
 95	struct logicalVolIntegrityDesc *lvid;
 96
 97	if (!sbi->s_lvid_bh)
 98		return;
 99
100	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
102	udf_updated_lvid(sb);
103}
104
105static void udf_bitmap_free_blocks(struct super_block *sb,
106				   struct udf_bitmap *bitmap,
107				   struct kernel_lb_addr *bloc,
108				   uint32_t offset,
109				   uint32_t count)
110{
111	struct udf_sb_info *sbi = UDF_SB(sb);
112	struct buffer_head *bh = NULL;
113	struct udf_part_map *partmap;
114	unsigned long block;
115	unsigned long block_group;
116	unsigned long bit;
117	unsigned long i;
118	int bitmap_nr;
119	unsigned long overflow;
120
121	mutex_lock(&sbi->s_alloc_mutex);
122	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
123	if (bloc->logicalBlockNum + count < count ||
124	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
125		udf_debug("%d < %d || %d + %d > %d\n",
126			  bloc->logicalBlockNum, 0,
127			  bloc->logicalBlockNum, count,
128			  partmap->s_partition_len);
129		goto error_return;
130	}
131
132	block = bloc->logicalBlockNum + offset +
133		(sizeof(struct spaceBitmapDesc) << 3);
134
135	do {
136		overflow = 0;
137		block_group = block >> (sb->s_blocksize_bits + 3);
138		bit = block % (sb->s_blocksize << 3);
139
140		/*
141		* Check to see if we are freeing blocks across a group boundary.
142		*/
143		if (bit + count > (sb->s_blocksize << 3)) {
144			overflow = bit + count - (sb->s_blocksize << 3);
145			count -= overflow;
146		}
147		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
148		if (bitmap_nr < 0)
149			goto error_return;
150
151		bh = bitmap->s_block_bitmap[bitmap_nr];
152		for (i = 0; i < count; i++) {
153			if (udf_set_bit(bit + i, bh->b_data)) {
154				udf_debug("bit %ld already set\n", bit + i);
155				udf_debug("byte=%2x\n",
156					  ((char *)bh->b_data)[(bit + i) >> 3]);
157			}
158		}
159		udf_add_free_space(sb, sbi->s_partition, count);
160		mark_buffer_dirty(bh);
161		if (overflow) {
162			block += count;
163			count = overflow;
164		}
165	} while (overflow);
166
167error_return:
168	mutex_unlock(&sbi->s_alloc_mutex);
169}
170
171static int udf_bitmap_prealloc_blocks(struct super_block *sb,
172				      struct udf_bitmap *bitmap,
173				      uint16_t partition, uint32_t first_block,
174				      uint32_t block_count)
175{
176	struct udf_sb_info *sbi = UDF_SB(sb);
177	int alloc_count = 0;
178	int bit, block, block_group, group_start;
179	int nr_groups, bitmap_nr;
180	struct buffer_head *bh;
181	__u32 part_len;
182
183	mutex_lock(&sbi->s_alloc_mutex);
184	part_len = sbi->s_partmaps[partition].s_partition_len;
185	if (first_block >= part_len)
186		goto out;
187
188	if (first_block + block_count > part_len)
189		block_count = part_len - first_block;
190
191	do {
192		nr_groups = udf_compute_nr_groups(sb, partition);
193		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
194		block_group = block >> (sb->s_blocksize_bits + 3);
195		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
196
197		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
198		if (bitmap_nr < 0)
199			goto out;
200		bh = bitmap->s_block_bitmap[bitmap_nr];
201
202		bit = block % (sb->s_blocksize << 3);
203
204		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
205			if (!udf_clear_bit(bit, bh->b_data))
206				goto out;
207			block_count--;
208			alloc_count++;
209			bit++;
210			block++;
211		}
212		mark_buffer_dirty(bh);
213	} while (block_count > 0);
214
215out:
216	udf_add_free_space(sb, partition, -alloc_count);
217	mutex_unlock(&sbi->s_alloc_mutex);
218	return alloc_count;
219}
220
221static int udf_bitmap_new_block(struct super_block *sb,
222				struct udf_bitmap *bitmap, uint16_t partition,
223				uint32_t goal, int *err)
224{
225	struct udf_sb_info *sbi = UDF_SB(sb);
226	int newbit, bit = 0, block, block_group, group_start;
227	int end_goal, nr_groups, bitmap_nr, i;
228	struct buffer_head *bh = NULL;
229	char *ptr;
230	int newblock = 0;
231
232	*err = -ENOSPC;
233	mutex_lock(&sbi->s_alloc_mutex);
234
235repeat:
236	if (goal >= sbi->s_partmaps[partition].s_partition_len)
237		goal = 0;
238
239	nr_groups = bitmap->s_nr_groups;
240	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
241	block_group = block >> (sb->s_blocksize_bits + 3);
242	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
243
244	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
245	if (bitmap_nr < 0)
246		goto error_return;
247	bh = bitmap->s_block_bitmap[bitmap_nr];
248	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
249		      sb->s_blocksize - group_start);
250
251	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
252		bit = block % (sb->s_blocksize << 3);
253		if (udf_test_bit(bit, bh->b_data))
254			goto got_block;
255
256		end_goal = (bit + 63) & ~63;
257		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
258		if (bit < end_goal)
259			goto got_block;
260
261		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
262			      sb->s_blocksize - ((bit + 7) >> 3));
263		newbit = (ptr - ((char *)bh->b_data)) << 3;
264		if (newbit < sb->s_blocksize << 3) {
265			bit = newbit;
266			goto search_back;
267		}
268
269		newbit = udf_find_next_one_bit(bh->b_data,
270					       sb->s_blocksize << 3, bit);
271		if (newbit < sb->s_blocksize << 3) {
272			bit = newbit;
273			goto got_block;
274		}
275	}
276
277	for (i = 0; i < (nr_groups * 2); i++) {
278		block_group++;
279		if (block_group >= nr_groups)
280			block_group = 0;
281		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
282
283		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
284		if (bitmap_nr < 0)
285			goto error_return;
286		bh = bitmap->s_block_bitmap[bitmap_nr];
287		if (i < nr_groups) {
288			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
289				      sb->s_blocksize - group_start);
290			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
291				bit = (ptr - ((char *)bh->b_data)) << 3;
292				break;
293			}
294		} else {
295			bit = udf_find_next_one_bit(bh->b_data,
296						    sb->s_blocksize << 3,
297						    group_start << 3);
298			if (bit < sb->s_blocksize << 3)
299				break;
300		}
301	}
302	if (i >= (nr_groups * 2)) {
303		mutex_unlock(&sbi->s_alloc_mutex);
304		return newblock;
305	}
306	if (bit < sb->s_blocksize << 3)
307		goto search_back;
308	else
309		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
310					    group_start << 3);
311	if (bit >= sb->s_blocksize << 3) {
312		mutex_unlock(&sbi->s_alloc_mutex);
313		return 0;
314	}
315
316search_back:
317	i = 0;
318	while (i < 7 && bit > (group_start << 3) &&
319	       udf_test_bit(bit - 1, bh->b_data)) {
320		++i;
321		--bit;
322	}
323
324got_block:
325	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
326		(sizeof(struct spaceBitmapDesc) << 3);
327
328	if (!udf_clear_bit(bit, bh->b_data)) {
329		udf_debug("bit already cleared for block %d\n", bit);
330		goto repeat;
331	}
332
333	mark_buffer_dirty(bh);
334
335	udf_add_free_space(sb, partition, -1);
336	mutex_unlock(&sbi->s_alloc_mutex);
337	*err = 0;
338	return newblock;
339
340error_return:
341	*err = -EIO;
342	mutex_unlock(&sbi->s_alloc_mutex);
343	return 0;
344}
345
346static void udf_table_free_blocks(struct super_block *sb,
347				  struct inode *table,
348				  struct kernel_lb_addr *bloc,
349				  uint32_t offset,
350				  uint32_t count)
351{
352	struct udf_sb_info *sbi = UDF_SB(sb);
353	struct udf_part_map *partmap;
354	uint32_t start, end;
355	uint32_t elen;
356	struct kernel_lb_addr eloc;
357	struct extent_position oepos, epos;
358	int8_t etype;
 
359	struct udf_inode_info *iinfo;
360
361	mutex_lock(&sbi->s_alloc_mutex);
362	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
363	if (bloc->logicalBlockNum + count < count ||
364	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
365		udf_debug("%d < %d || %d + %d > %d\n",
366			  bloc->logicalBlockNum, 0,
367			  bloc->logicalBlockNum, count,
368			  partmap->s_partition_len);
369		goto error_return;
370	}
371
372	iinfo = UDF_I(table);
373	udf_add_free_space(sb, sbi->s_partition, count);
374
375	start = bloc->logicalBlockNum + offset;
376	end = bloc->logicalBlockNum + offset + count - 1;
377
378	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
379	elen = 0;
380	epos.block = oepos.block = iinfo->i_location;
381	epos.bh = oepos.bh = NULL;
382
383	while (count &&
384	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
385		if (((eloc.logicalBlockNum +
386			(elen >> sb->s_blocksize_bits)) == start)) {
387			if ((0x3FFFFFFF - elen) <
388					(count << sb->s_blocksize_bits)) {
389				uint32_t tmp = ((0x3FFFFFFF - elen) >>
390							sb->s_blocksize_bits);
391				count -= tmp;
392				start += tmp;
393				elen = (etype << 30) |
394					(0x40000000 - sb->s_blocksize);
395			} else {
396				elen = (etype << 30) |
397					(elen +
398					(count << sb->s_blocksize_bits));
399				start += count;
400				count = 0;
401			}
402			udf_write_aext(table, &oepos, &eloc, elen, 1);
403		} else if (eloc.logicalBlockNum == (end + 1)) {
404			if ((0x3FFFFFFF - elen) <
405					(count << sb->s_blocksize_bits)) {
406				uint32_t tmp = ((0x3FFFFFFF - elen) >>
407						sb->s_blocksize_bits);
408				count -= tmp;
409				end -= tmp;
410				eloc.logicalBlockNum -= tmp;
411				elen = (etype << 30) |
412					(0x40000000 - sb->s_blocksize);
413			} else {
414				eloc.logicalBlockNum = start;
415				elen = (etype << 30) |
416					(elen +
417					(count << sb->s_blocksize_bits));
418				end -= count;
419				count = 0;
420			}
421			udf_write_aext(table, &oepos, &eloc, elen, 1);
422		}
423
424		if (epos.bh != oepos.bh) {
 
425			oepos.block = epos.block;
426			brelse(oepos.bh);
427			get_bh(epos.bh);
428			oepos.bh = epos.bh;
429			oepos.offset = 0;
430		} else {
431			oepos.offset = epos.offset;
432		}
433	}
434
435	if (count) {
436		/*
437		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
438		 * allocate a new block, and since we hold the super block
439		 * lock already very bad things would happen :)
440		 *
441		 * We copy the behavior of udf_add_aext, but instead of
442		 * trying to allocate a new block close to the existing one,
443		 * we just steal a block from the extent we are trying to add.
444		 *
445		 * It would be nice if the blocks were close together, but it
446		 * isn't required.
447		 */
448
449		int adsize;
 
 
 
450
451		eloc.logicalBlockNum = start;
452		elen = EXT_RECORDED_ALLOCATED |
453			(count << sb->s_blocksize_bits);
454
455		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
456			adsize = sizeof(struct short_ad);
457		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
458			adsize = sizeof(struct long_ad);
459		else {
460			brelse(oepos.bh);
461			brelse(epos.bh);
462			goto error_return;
463		}
464
465		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
 
 
 
 
 
 
466			/* Steal a block from the extent being free'd */
467			udf_setup_indirect_aext(table, eloc.logicalBlockNum,
468						&epos);
469
470			eloc.logicalBlockNum++;
471			elen -= sb->s_blocksize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472		}
473
474		/* It's possible that stealing the block emptied the extent */
475		if (elen)
476			__udf_add_aext(table, &epos, &eloc, elen, 1);
 
 
 
 
 
 
 
 
 
 
 
477	}
478
479	brelse(epos.bh);
480	brelse(oepos.bh);
481
482error_return:
483	mutex_unlock(&sbi->s_alloc_mutex);
484	return;
485}
486
487static int udf_table_prealloc_blocks(struct super_block *sb,
488				     struct inode *table, uint16_t partition,
489				     uint32_t first_block, uint32_t block_count)
490{
491	struct udf_sb_info *sbi = UDF_SB(sb);
492	int alloc_count = 0;
493	uint32_t elen, adsize;
494	struct kernel_lb_addr eloc;
495	struct extent_position epos;
496	int8_t etype = -1;
497	struct udf_inode_info *iinfo;
498
499	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
500		return 0;
501
502	iinfo = UDF_I(table);
503	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
504		adsize = sizeof(struct short_ad);
505	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
506		adsize = sizeof(struct long_ad);
507	else
508		return 0;
509
510	mutex_lock(&sbi->s_alloc_mutex);
511	epos.offset = sizeof(struct unallocSpaceEntry);
512	epos.block = iinfo->i_location;
513	epos.bh = NULL;
514	eloc.logicalBlockNum = 0xFFFFFFFF;
515
516	while (first_block != eloc.logicalBlockNum &&
517	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
518		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
519			  eloc.logicalBlockNum, elen, first_block);
520		; /* empty loop body */
521	}
522
523	if (first_block == eloc.logicalBlockNum) {
524		epos.offset -= adsize;
525
526		alloc_count = (elen >> sb->s_blocksize_bits);
527		if (alloc_count > block_count) {
528			alloc_count = block_count;
529			eloc.logicalBlockNum += alloc_count;
530			elen -= (alloc_count << sb->s_blocksize_bits);
531			udf_write_aext(table, &epos, &eloc,
532					(etype << 30) | elen, 1);
533		} else
534			udf_delete_aext(table, epos, eloc,
535					(etype << 30) | elen);
536	} else {
537		alloc_count = 0;
538	}
539
540	brelse(epos.bh);
541
542	if (alloc_count)
543		udf_add_free_space(sb, partition, -alloc_count);
544	mutex_unlock(&sbi->s_alloc_mutex);
545	return alloc_count;
546}
547
548static int udf_table_new_block(struct super_block *sb,
549			       struct inode *table, uint16_t partition,
550			       uint32_t goal, int *err)
551{
552	struct udf_sb_info *sbi = UDF_SB(sb);
553	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
554	uint32_t newblock = 0, adsize;
555	uint32_t elen, goal_elen = 0;
556	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
557	struct extent_position epos, goal_epos;
558	int8_t etype;
559	struct udf_inode_info *iinfo = UDF_I(table);
560
561	*err = -ENOSPC;
562
563	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
564		adsize = sizeof(struct short_ad);
565	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
566		adsize = sizeof(struct long_ad);
567	else
568		return newblock;
569
570	mutex_lock(&sbi->s_alloc_mutex);
571	if (goal >= sbi->s_partmaps[partition].s_partition_len)
572		goal = 0;
573
574	/* We search for the closest matching block to goal. If we find
575	   a exact hit, we stop. Otherwise we keep going till we run out
576	   of extents. We store the buffer_head, bloc, and extoffset
577	   of the current closest match and use that when we are done.
578	 */
579	epos.offset = sizeof(struct unallocSpaceEntry);
580	epos.block = iinfo->i_location;
581	epos.bh = goal_epos.bh = NULL;
582
583	while (spread &&
584	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
585		if (goal >= eloc.logicalBlockNum) {
586			if (goal < eloc.logicalBlockNum +
587					(elen >> sb->s_blocksize_bits))
588				nspread = 0;
589			else
590				nspread = goal - eloc.logicalBlockNum -
591					(elen >> sb->s_blocksize_bits);
592		} else {
593			nspread = eloc.logicalBlockNum - goal;
594		}
595
596		if (nspread < spread) {
597			spread = nspread;
598			if (goal_epos.bh != epos.bh) {
599				brelse(goal_epos.bh);
600				goal_epos.bh = epos.bh;
601				get_bh(goal_epos.bh);
602			}
603			goal_epos.block = epos.block;
604			goal_epos.offset = epos.offset - adsize;
605			goal_eloc = eloc;
606			goal_elen = (etype << 30) | elen;
607		}
608	}
609
610	brelse(epos.bh);
611
612	if (spread == 0xFFFFFFFF) {
613		brelse(goal_epos.bh);
614		mutex_unlock(&sbi->s_alloc_mutex);
615		return 0;
616	}
617
618	/* Only allocate blocks from the beginning of the extent.
619	   That way, we only delete (empty) extents, never have to insert an
620	   extent because of splitting */
621	/* This works, but very poorly.... */
622
623	newblock = goal_eloc.logicalBlockNum;
624	goal_eloc.logicalBlockNum++;
625	goal_elen -= sb->s_blocksize;
626
627	if (goal_elen)
628		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
629	else
630		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
631	brelse(goal_epos.bh);
632
633	udf_add_free_space(sb, partition, -1);
634
635	mutex_unlock(&sbi->s_alloc_mutex);
636	*err = 0;
637	return newblock;
638}
639
640void udf_free_blocks(struct super_block *sb, struct inode *inode,
641		     struct kernel_lb_addr *bloc, uint32_t offset,
642		     uint32_t count)
643{
644	uint16_t partition = bloc->partitionReferenceNum;
645	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
646
647	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
648		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
649				       bloc, offset, count);
650	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
651		udf_table_free_blocks(sb, map->s_uspace.s_table,
652				      bloc, offset, count);
653	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
654		udf_bitmap_free_blocks(sb, map->s_fspace.s_bitmap,
655				       bloc, offset, count);
656	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
657		udf_table_free_blocks(sb, map->s_fspace.s_table,
658				      bloc, offset, count);
659	}
660
661	if (inode) {
662		inode_sub_bytes(inode,
663				((sector_t)count) << sb->s_blocksize_bits);
664	}
665}
666
667inline int udf_prealloc_blocks(struct super_block *sb,
668			       struct inode *inode,
669			       uint16_t partition, uint32_t first_block,
670			       uint32_t block_count)
671{
672	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
673	int allocated;
674
675	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
676		allocated = udf_bitmap_prealloc_blocks(sb,
677						       map->s_uspace.s_bitmap,
678						       partition, first_block,
679						       block_count);
680	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
681		allocated = udf_table_prealloc_blocks(sb,
682						      map->s_uspace.s_table,
683						      partition, first_block,
684						      block_count);
685	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
686		allocated = udf_bitmap_prealloc_blocks(sb,
687						       map->s_fspace.s_bitmap,
688						       partition, first_block,
689						       block_count);
690	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
691		allocated = udf_table_prealloc_blocks(sb,
692						      map->s_fspace.s_table,
693						      partition, first_block,
694						      block_count);
695	else
696		return 0;
697
698	if (inode && allocated > 0)
699		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
700	return allocated;
701}
702
703inline int udf_new_block(struct super_block *sb,
704			 struct inode *inode,
705			 uint16_t partition, uint32_t goal, int *err)
706{
707	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
708	int block;
709
710	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
711		block = udf_bitmap_new_block(sb,
712					     map->s_uspace.s_bitmap,
713					     partition, goal, err);
714	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
715		block = udf_table_new_block(sb,
716					    map->s_uspace.s_table,
717					    partition, goal, err);
718	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
719		block = udf_bitmap_new_block(sb,
720					     map->s_fspace.s_bitmap,
721					     partition, goal, err);
722	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
723		block = udf_table_new_block(sb,
724					    map->s_fspace.s_table,
725					    partition, goal, err);
726	else {
727		*err = -EIO;
728		return 0;
729	}
730	if (inode && block)
731		inode_add_bytes(inode, sb->s_blocksize);
732	return block;
733}