Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
   1/*
   2 *  Copyright © 2003 Rick Bronson
   3 *
   4 *  Derived from drivers/mtd/nand/autcpu12.c
   5 *	 Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
   6 *
   7 *  Derived from drivers/mtd/spia.c
   8 *	 Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
   9 *
  10 *
  11 *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
  12 *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
  13 *
  14 *     Derived from Das U-Boot source code
  15 *     		(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
  16 *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
  17 *
  18 *  Add Programmable Multibit ECC support for various AT91 SoC
  19 *     © Copyright 2012 ATMEL, Hong Xu
  20 *
  21 *  Add Nand Flash Controller support for SAMA5 SoC
  22 *     © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License version 2 as
  26 * published by the Free Software Foundation.
  27 *
  28 */
  29
  30#include <linux/dma-mapping.h>
  31#include <linux/slab.h>
  32#include <linux/module.h>
  33#include <linux/moduleparam.h>
  34#include <linux/platform_device.h>
  35#include <linux/of.h>
  36#include <linux/of_device.h>
  37#include <linux/of_gpio.h>
  38#include <linux/of_mtd.h>
  39#include <linux/mtd/mtd.h>
  40#include <linux/mtd/nand.h>
  41#include <linux/mtd/partitions.h>
  42
  43#include <linux/delay.h>
  44#include <linux/dmaengine.h>
  45#include <linux/gpio.h>
  46#include <linux/interrupt.h>
  47#include <linux/io.h>
  48#include <linux/platform_data/atmel.h>
  49
  50static int use_dma = 1;
  51module_param(use_dma, int, 0);
  52
  53static int on_flash_bbt = 0;
  54module_param(on_flash_bbt, int, 0);
  55
  56/* Register access macros */
  57#define ecc_readl(add, reg)				\
  58	__raw_readl(add + ATMEL_ECC_##reg)
  59#define ecc_writel(add, reg, value)			\
  60	__raw_writel((value), add + ATMEL_ECC_##reg)
  61
  62#include "atmel_nand_ecc.h"	/* Hardware ECC registers */
  63#include "atmel_nand_nfc.h"	/* Nand Flash Controller definition */
  64
  65/* oob layout for large page size
  66 * bad block info is on bytes 0 and 1
  67 * the bytes have to be consecutives to avoid
  68 * several NAND_CMD_RNDOUT during read
  69 */
  70static struct nand_ecclayout atmel_oobinfo_large = {
  71	.eccbytes = 4,
  72	.eccpos = {60, 61, 62, 63},
  73	.oobfree = {
  74		{2, 58}
  75	},
  76};
  77
  78/* oob layout for small page size
  79 * bad block info is on bytes 4 and 5
  80 * the bytes have to be consecutives to avoid
  81 * several NAND_CMD_RNDOUT during read
  82 */
  83static struct nand_ecclayout atmel_oobinfo_small = {
  84	.eccbytes = 4,
  85	.eccpos = {0, 1, 2, 3},
  86	.oobfree = {
  87		{6, 10}
  88	},
  89};
  90
  91struct atmel_nfc {
  92	void __iomem		*base_cmd_regs;
  93	void __iomem		*hsmc_regs;
  94	void __iomem		*sram_bank0;
  95	dma_addr_t		sram_bank0_phys;
  96	bool			use_nfc_sram;
  97	bool			write_by_sram;
  98
  99	bool			is_initialized;
 100	struct completion	comp_nfc;
 101
 102	/* Point to the sram bank which include readed data via NFC */
 103	void __iomem		*data_in_sram;
 104	bool			will_write_sram;
 105};
 106static struct atmel_nfc	nand_nfc;
 107
 108struct atmel_nand_host {
 109	struct nand_chip	nand_chip;
 110	struct mtd_info		mtd;
 111	void __iomem		*io_base;
 112	dma_addr_t		io_phys;
 113	struct atmel_nand_data	board;
 114	struct device		*dev;
 115	void __iomem		*ecc;
 116
 117	struct completion	comp;
 118	struct dma_chan		*dma_chan;
 119
 120	struct atmel_nfc	*nfc;
 121
 122	bool			has_pmecc;
 123	u8			pmecc_corr_cap;
 124	u16			pmecc_sector_size;
 125	u32			pmecc_lookup_table_offset;
 126	u32			pmecc_lookup_table_offset_512;
 127	u32			pmecc_lookup_table_offset_1024;
 128
 129	int			pmecc_bytes_per_sector;
 130	int			pmecc_sector_number;
 131	int			pmecc_degree;	/* Degree of remainders */
 132	int			pmecc_cw_len;	/* Length of codeword */
 133
 134	void __iomem		*pmerrloc_base;
 135	void __iomem		*pmecc_rom_base;
 136
 137	/* lookup table for alpha_to and index_of */
 138	void __iomem		*pmecc_alpha_to;
 139	void __iomem		*pmecc_index_of;
 140
 141	/* data for pmecc computation */
 142	int16_t			*pmecc_partial_syn;
 143	int16_t			*pmecc_si;
 144	int16_t			*pmecc_smu;	/* Sigma table */
 145	int16_t			*pmecc_lmu;	/* polynomal order */
 146	int			*pmecc_mu;
 147	int			*pmecc_dmu;
 148	int			*pmecc_delta;
 149};
 150
 151static struct nand_ecclayout atmel_pmecc_oobinfo;
 152
 153/*
 154 * Enable NAND.
 155 */
 156static void atmel_nand_enable(struct atmel_nand_host *host)
 157{
 158	if (gpio_is_valid(host->board.enable_pin))
 159		gpio_set_value(host->board.enable_pin, 0);
 160}
 161
 162/*
 163 * Disable NAND.
 164 */
 165static void atmel_nand_disable(struct atmel_nand_host *host)
 166{
 167	if (gpio_is_valid(host->board.enable_pin))
 168		gpio_set_value(host->board.enable_pin, 1);
 169}
 170
 171/*
 172 * Hardware specific access to control-lines
 173 */
 174static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 175{
 176	struct nand_chip *nand_chip = mtd->priv;
 177	struct atmel_nand_host *host = nand_chip->priv;
 178
 179	if (ctrl & NAND_CTRL_CHANGE) {
 180		if (ctrl & NAND_NCE)
 181			atmel_nand_enable(host);
 182		else
 183			atmel_nand_disable(host);
 184	}
 185	if (cmd == NAND_CMD_NONE)
 186		return;
 187
 188	if (ctrl & NAND_CLE)
 189		writeb(cmd, host->io_base + (1 << host->board.cle));
 190	else
 191		writeb(cmd, host->io_base + (1 << host->board.ale));
 192}
 193
 194/*
 195 * Read the Device Ready pin.
 196 */
 197static int atmel_nand_device_ready(struct mtd_info *mtd)
 198{
 199	struct nand_chip *nand_chip = mtd->priv;
 200	struct atmel_nand_host *host = nand_chip->priv;
 201
 202	return gpio_get_value(host->board.rdy_pin) ^
 203                !!host->board.rdy_pin_active_low;
 204}
 205
 206/* Set up for hardware ready pin and enable pin. */
 207static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
 208{
 209	struct nand_chip *chip = mtd->priv;
 210	struct atmel_nand_host *host = chip->priv;
 211	int res = 0;
 212
 213	if (gpio_is_valid(host->board.rdy_pin)) {
 214		res = devm_gpio_request(host->dev,
 215				host->board.rdy_pin, "nand_rdy");
 216		if (res < 0) {
 217			dev_err(host->dev,
 218				"can't request rdy gpio %d\n",
 219				host->board.rdy_pin);
 220			return res;
 221		}
 222
 223		res = gpio_direction_input(host->board.rdy_pin);
 224		if (res < 0) {
 225			dev_err(host->dev,
 226				"can't request input direction rdy gpio %d\n",
 227				host->board.rdy_pin);
 228			return res;
 229		}
 230
 231		chip->dev_ready = atmel_nand_device_ready;
 232	}
 233
 234	if (gpio_is_valid(host->board.enable_pin)) {
 235		res = devm_gpio_request(host->dev,
 236				host->board.enable_pin, "nand_enable");
 237		if (res < 0) {
 238			dev_err(host->dev,
 239				"can't request enable gpio %d\n",
 240				host->board.enable_pin);
 241			return res;
 242		}
 243
 244		res = gpio_direction_output(host->board.enable_pin, 1);
 245		if (res < 0) {
 246			dev_err(host->dev,
 247				"can't request output direction enable gpio %d\n",
 248				host->board.enable_pin);
 249			return res;
 250		}
 251	}
 252
 253	return res;
 254}
 255
 256static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
 257{
 258	int i;
 259	u32 *t = trg;
 260	const __iomem u32 *s = src;
 261
 262	for (i = 0; i < (size >> 2); i++)
 263		*t++ = readl_relaxed(s++);
 264}
 265
 266static void memcpy32_toio(void __iomem *trg, const void *src, int size)
 267{
 268	int i;
 269	u32 __iomem *t = trg;
 270	const u32 *s = src;
 271
 272	for (i = 0; i < (size >> 2); i++)
 273		writel_relaxed(*s++, t++);
 274}
 275
 276/*
 277 * Minimal-overhead PIO for data access.
 278 */
 279static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
 280{
 281	struct nand_chip	*nand_chip = mtd->priv;
 282	struct atmel_nand_host *host = nand_chip->priv;
 283
 284	if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
 285		memcpy32_fromio(buf, host->nfc->data_in_sram, len);
 286		host->nfc->data_in_sram += len;
 287	} else {
 288		__raw_readsb(nand_chip->IO_ADDR_R, buf, len);
 289	}
 290}
 291
 292static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
 293{
 294	struct nand_chip	*nand_chip = mtd->priv;
 295	struct atmel_nand_host *host = nand_chip->priv;
 296
 297	if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
 298		memcpy32_fromio(buf, host->nfc->data_in_sram, len);
 299		host->nfc->data_in_sram += len;
 300	} else {
 301		__raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
 302	}
 303}
 304
 305static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
 306{
 307	struct nand_chip	*nand_chip = mtd->priv;
 308
 309	__raw_writesb(nand_chip->IO_ADDR_W, buf, len);
 310}
 311
 312static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
 313{
 314	struct nand_chip	*nand_chip = mtd->priv;
 315
 316	__raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
 317}
 318
 319static void dma_complete_func(void *completion)
 320{
 321	complete(completion);
 322}
 323
 324static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
 325{
 326	/* NFC only has two banks. Must be 0 or 1 */
 327	if (bank > 1)
 328		return -EINVAL;
 329
 330	if (bank) {
 331		/* Only for a 2k-page or lower flash, NFC can handle 2 banks */
 332		if (host->mtd.writesize > 2048)
 333			return -EINVAL;
 334		nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
 335	} else {
 336		nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
 337	}
 338
 339	return 0;
 340}
 341
 342static uint nfc_get_sram_off(struct atmel_nand_host *host)
 343{
 344	if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
 345		return NFC_SRAM_BANK1_OFFSET;
 346	else
 347		return 0;
 348}
 349
 350static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
 351{
 352	if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
 353		return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
 354	else
 355		return host->nfc->sram_bank0_phys;
 356}
 357
 358static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
 359			       int is_read)
 360{
 361	struct dma_device *dma_dev;
 362	enum dma_ctrl_flags flags;
 363	dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
 364	struct dma_async_tx_descriptor *tx = NULL;
 365	dma_cookie_t cookie;
 366	struct nand_chip *chip = mtd->priv;
 367	struct atmel_nand_host *host = chip->priv;
 368	void *p = buf;
 369	int err = -EIO;
 370	enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
 371	struct atmel_nfc *nfc = host->nfc;
 372
 373	if (buf >= high_memory)
 374		goto err_buf;
 375
 376	dma_dev = host->dma_chan->device;
 377
 378	flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 379
 380	phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
 381	if (dma_mapping_error(dma_dev->dev, phys_addr)) {
 382		dev_err(host->dev, "Failed to dma_map_single\n");
 383		goto err_buf;
 384	}
 385
 386	if (is_read) {
 387		if (nfc && nfc->data_in_sram)
 388			dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
 389				- (nfc->sram_bank0 + nfc_get_sram_off(host)));
 390		else
 391			dma_src_addr = host->io_phys;
 392
 393		dma_dst_addr = phys_addr;
 394	} else {
 395		dma_src_addr = phys_addr;
 396
 397		if (nfc && nfc->write_by_sram)
 398			dma_dst_addr = nfc_sram_phys(host);
 399		else
 400			dma_dst_addr = host->io_phys;
 401	}
 402
 403	tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
 404					     dma_src_addr, len, flags);
 405	if (!tx) {
 406		dev_err(host->dev, "Failed to prepare DMA memcpy\n");
 407		goto err_dma;
 408	}
 409
 410	init_completion(&host->comp);
 411	tx->callback = dma_complete_func;
 412	tx->callback_param = &host->comp;
 413
 414	cookie = tx->tx_submit(tx);
 415	if (dma_submit_error(cookie)) {
 416		dev_err(host->dev, "Failed to do DMA tx_submit\n");
 417		goto err_dma;
 418	}
 419
 420	dma_async_issue_pending(host->dma_chan);
 421	wait_for_completion(&host->comp);
 422
 423	if (is_read && nfc && nfc->data_in_sram)
 424		/* After read data from SRAM, need to increase the position */
 425		nfc->data_in_sram += len;
 426
 427	err = 0;
 428
 429err_dma:
 430	dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
 431err_buf:
 432	if (err != 0)
 433		dev_dbg(host->dev, "Fall back to CPU I/O\n");
 434	return err;
 435}
 436
 437static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 438{
 439	struct nand_chip *chip = mtd->priv;
 440	struct atmel_nand_host *host = chip->priv;
 441
 442	if (use_dma && len > mtd->oobsize)
 443		/* only use DMA for bigger than oob size: better performances */
 444		if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
 445			return;
 446
 447	if (host->board.bus_width_16)
 448		atmel_read_buf16(mtd, buf, len);
 449	else
 450		atmel_read_buf8(mtd, buf, len);
 451}
 452
 453static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 454{
 455	struct nand_chip *chip = mtd->priv;
 456	struct atmel_nand_host *host = chip->priv;
 457
 458	if (use_dma && len > mtd->oobsize)
 459		/* only use DMA for bigger than oob size: better performances */
 460		if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
 461			return;
 462
 463	if (host->board.bus_width_16)
 464		atmel_write_buf16(mtd, buf, len);
 465	else
 466		atmel_write_buf8(mtd, buf, len);
 467}
 468
 469/*
 470 * Return number of ecc bytes per sector according to sector size and
 471 * correction capability
 472 *
 473 * Following table shows what at91 PMECC supported:
 474 * Correction Capability	Sector_512_bytes	Sector_1024_bytes
 475 * =====================	================	=================
 476 *                2-bits                 4-bytes                  4-bytes
 477 *                4-bits                 7-bytes                  7-bytes
 478 *                8-bits                13-bytes                 14-bytes
 479 *               12-bits                20-bytes                 21-bytes
 480 *               24-bits                39-bytes                 42-bytes
 481 */
 482static int pmecc_get_ecc_bytes(int cap, int sector_size)
 483{
 484	int m = 12 + sector_size / 512;
 485	return (m * cap + 7) / 8;
 486}
 487
 488static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
 489				    int oobsize, int ecc_len)
 490{
 491	int i;
 492
 493	layout->eccbytes = ecc_len;
 494
 495	/* ECC will occupy the last ecc_len bytes continuously */
 496	for (i = 0; i < ecc_len; i++)
 497		layout->eccpos[i] = oobsize - ecc_len + i;
 498
 499	layout->oobfree[0].offset = 2;
 500	layout->oobfree[0].length =
 501		oobsize - ecc_len - layout->oobfree[0].offset;
 502}
 503
 504static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
 505{
 506	int table_size;
 507
 508	table_size = host->pmecc_sector_size == 512 ?
 509		PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
 510
 511	return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
 512			table_size * sizeof(int16_t);
 513}
 514
 515static int pmecc_data_alloc(struct atmel_nand_host *host)
 516{
 517	const int cap = host->pmecc_corr_cap;
 518	int size;
 519
 520	size = (2 * cap + 1) * sizeof(int16_t);
 521	host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
 522	host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
 523	host->pmecc_lmu = devm_kzalloc(host->dev,
 524			(cap + 1) * sizeof(int16_t), GFP_KERNEL);
 525	host->pmecc_smu = devm_kzalloc(host->dev,
 526			(cap + 2) * size, GFP_KERNEL);
 527
 528	size = (cap + 1) * sizeof(int);
 529	host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
 530	host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
 531	host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
 532
 533	if (!host->pmecc_partial_syn ||
 534		!host->pmecc_si ||
 535		!host->pmecc_lmu ||
 536		!host->pmecc_smu ||
 537		!host->pmecc_mu ||
 538		!host->pmecc_dmu ||
 539		!host->pmecc_delta)
 540		return -ENOMEM;
 541
 542	return 0;
 543}
 544
 545static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
 546{
 547	struct nand_chip *nand_chip = mtd->priv;
 548	struct atmel_nand_host *host = nand_chip->priv;
 549	int i;
 550	uint32_t value;
 551
 552	/* Fill odd syndromes */
 553	for (i = 0; i < host->pmecc_corr_cap; i++) {
 554		value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
 555		if (i & 1)
 556			value >>= 16;
 557		value &= 0xffff;
 558		host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
 559	}
 560}
 561
 562static void pmecc_substitute(struct mtd_info *mtd)
 563{
 564	struct nand_chip *nand_chip = mtd->priv;
 565	struct atmel_nand_host *host = nand_chip->priv;
 566	int16_t __iomem *alpha_to = host->pmecc_alpha_to;
 567	int16_t __iomem *index_of = host->pmecc_index_of;
 568	int16_t *partial_syn = host->pmecc_partial_syn;
 569	const int cap = host->pmecc_corr_cap;
 570	int16_t *si;
 571	int i, j;
 572
 573	/* si[] is a table that holds the current syndrome value,
 574	 * an element of that table belongs to the field
 575	 */
 576	si = host->pmecc_si;
 577
 578	memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
 579
 580	/* Computation 2t syndromes based on S(x) */
 581	/* Odd syndromes */
 582	for (i = 1; i < 2 * cap; i += 2) {
 583		for (j = 0; j < host->pmecc_degree; j++) {
 584			if (partial_syn[i] & ((unsigned short)0x1 << j))
 585				si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
 586		}
 587	}
 588	/* Even syndrome = (Odd syndrome) ** 2 */
 589	for (i = 2, j = 1; j <= cap; i = ++j << 1) {
 590		if (si[j] == 0) {
 591			si[i] = 0;
 592		} else {
 593			int16_t tmp;
 594
 595			tmp = readw_relaxed(index_of + si[j]);
 596			tmp = (tmp * 2) % host->pmecc_cw_len;
 597			si[i] = readw_relaxed(alpha_to + tmp);
 598		}
 599	}
 600
 601	return;
 602}
 603
 604static void pmecc_get_sigma(struct mtd_info *mtd)
 605{
 606	struct nand_chip *nand_chip = mtd->priv;
 607	struct atmel_nand_host *host = nand_chip->priv;
 608
 609	int16_t *lmu = host->pmecc_lmu;
 610	int16_t *si = host->pmecc_si;
 611	int *mu = host->pmecc_mu;
 612	int *dmu = host->pmecc_dmu;	/* Discrepancy */
 613	int *delta = host->pmecc_delta; /* Delta order */
 614	int cw_len = host->pmecc_cw_len;
 615	const int16_t cap = host->pmecc_corr_cap;
 616	const int num = 2 * cap + 1;
 617	int16_t __iomem	*index_of = host->pmecc_index_of;
 618	int16_t __iomem	*alpha_to = host->pmecc_alpha_to;
 619	int i, j, k;
 620	uint32_t dmu_0_count, tmp;
 621	int16_t *smu = host->pmecc_smu;
 622
 623	/* index of largest delta */
 624	int ro;
 625	int largest;
 626	int diff;
 627
 628	dmu_0_count = 0;
 629
 630	/* First Row */
 631
 632	/* Mu */
 633	mu[0] = -1;
 634
 635	memset(smu, 0, sizeof(int16_t) * num);
 636	smu[0] = 1;
 637
 638	/* discrepancy set to 1 */
 639	dmu[0] = 1;
 640	/* polynom order set to 0 */
 641	lmu[0] = 0;
 642	delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
 643
 644	/* Second Row */
 645
 646	/* Mu */
 647	mu[1] = 0;
 648	/* Sigma(x) set to 1 */
 649	memset(&smu[num], 0, sizeof(int16_t) * num);
 650	smu[num] = 1;
 651
 652	/* discrepancy set to S1 */
 653	dmu[1] = si[1];
 654
 655	/* polynom order set to 0 */
 656	lmu[1] = 0;
 657
 658	delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
 659
 660	/* Init the Sigma(x) last row */
 661	memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
 662
 663	for (i = 1; i <= cap; i++) {
 664		mu[i + 1] = i << 1;
 665		/* Begin Computing Sigma (Mu+1) and L(mu) */
 666		/* check if discrepancy is set to 0 */
 667		if (dmu[i] == 0) {
 668			dmu_0_count++;
 669
 670			tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
 671			if ((cap - (lmu[i] >> 1) - 1) & 0x1)
 672				tmp += 2;
 673			else
 674				tmp += 1;
 675
 676			if (dmu_0_count == tmp) {
 677				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
 678					smu[(cap + 1) * num + j] =
 679							smu[i * num + j];
 680
 681				lmu[cap + 1] = lmu[i];
 682				return;
 683			}
 684
 685			/* copy polynom */
 686			for (j = 0; j <= lmu[i] >> 1; j++)
 687				smu[(i + 1) * num + j] = smu[i * num + j];
 688
 689			/* copy previous polynom order to the next */
 690			lmu[i + 1] = lmu[i];
 691		} else {
 692			ro = 0;
 693			largest = -1;
 694			/* find largest delta with dmu != 0 */
 695			for (j = 0; j < i; j++) {
 696				if ((dmu[j]) && (delta[j] > largest)) {
 697					largest = delta[j];
 698					ro = j;
 699				}
 700			}
 701
 702			/* compute difference */
 703			diff = (mu[i] - mu[ro]);
 704
 705			/* Compute degree of the new smu polynomial */
 706			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
 707				lmu[i + 1] = lmu[i];
 708			else
 709				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
 710
 711			/* Init smu[i+1] with 0 */
 712			for (k = 0; k < num; k++)
 713				smu[(i + 1) * num + k] = 0;
 714
 715			/* Compute smu[i+1] */
 716			for (k = 0; k <= lmu[ro] >> 1; k++) {
 717				int16_t a, b, c;
 718
 719				if (!(smu[ro * num + k] && dmu[i]))
 720					continue;
 721				a = readw_relaxed(index_of + dmu[i]);
 722				b = readw_relaxed(index_of + dmu[ro]);
 723				c = readw_relaxed(index_of + smu[ro * num + k]);
 724				tmp = a + (cw_len - b) + c;
 725				a = readw_relaxed(alpha_to + tmp % cw_len);
 726				smu[(i + 1) * num + (k + diff)] = a;
 727			}
 728
 729			for (k = 0; k <= lmu[i] >> 1; k++)
 730				smu[(i + 1) * num + k] ^= smu[i * num + k];
 731		}
 732
 733		/* End Computing Sigma (Mu+1) and L(mu) */
 734		/* In either case compute delta */
 735		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
 736
 737		/* Do not compute discrepancy for the last iteration */
 738		if (i >= cap)
 739			continue;
 740
 741		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
 742			tmp = 2 * (i - 1);
 743			if (k == 0) {
 744				dmu[i + 1] = si[tmp + 3];
 745			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
 746				int16_t a, b, c;
 747				a = readw_relaxed(index_of +
 748						smu[(i + 1) * num + k]);
 749				b = si[2 * (i - 1) + 3 - k];
 750				c = readw_relaxed(index_of + b);
 751				tmp = a + c;
 752				tmp %= cw_len;
 753				dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
 754					dmu[i + 1];
 755			}
 756		}
 757	}
 758
 759	return;
 760}
 761
 762static int pmecc_err_location(struct mtd_info *mtd)
 763{
 764	struct nand_chip *nand_chip = mtd->priv;
 765	struct atmel_nand_host *host = nand_chip->priv;
 766	unsigned long end_time;
 767	const int cap = host->pmecc_corr_cap;
 768	const int num = 2 * cap + 1;
 769	int sector_size = host->pmecc_sector_size;
 770	int err_nbr = 0;	/* number of error */
 771	int roots_nbr;		/* number of roots */
 772	int i;
 773	uint32_t val;
 774	int16_t *smu = host->pmecc_smu;
 775
 776	pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
 777
 778	for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
 779		pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
 780				      smu[(cap + 1) * num + i]);
 781		err_nbr++;
 782	}
 783
 784	val = (err_nbr - 1) << 16;
 785	if (sector_size == 1024)
 786		val |= 1;
 787
 788	pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
 789	pmerrloc_writel(host->pmerrloc_base, ELEN,
 790			sector_size * 8 + host->pmecc_degree * cap);
 791
 792	end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
 793	while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
 794		 & PMERRLOC_CALC_DONE)) {
 795		if (unlikely(time_after(jiffies, end_time))) {
 796			dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
 797			return -1;
 798		}
 799		cpu_relax();
 800	}
 801
 802	roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
 803		& PMERRLOC_ERR_NUM_MASK) >> 8;
 804	/* Number of roots == degree of smu hence <= cap */
 805	if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
 806		return err_nbr - 1;
 807
 808	/* Number of roots does not match the degree of smu
 809	 * unable to correct error */
 810	return -1;
 811}
 812
 813static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
 814		int sector_num, int extra_bytes, int err_nbr)
 815{
 816	struct nand_chip *nand_chip = mtd->priv;
 817	struct atmel_nand_host *host = nand_chip->priv;
 818	int i = 0;
 819	int byte_pos, bit_pos, sector_size, pos;
 820	uint32_t tmp;
 821	uint8_t err_byte;
 822
 823	sector_size = host->pmecc_sector_size;
 824
 825	while (err_nbr) {
 826		tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
 827		byte_pos = tmp / 8;
 828		bit_pos  = tmp % 8;
 829
 830		if (byte_pos >= (sector_size + extra_bytes))
 831			BUG();	/* should never happen */
 832
 833		if (byte_pos < sector_size) {
 834			err_byte = *(buf + byte_pos);
 835			*(buf + byte_pos) ^= (1 << bit_pos);
 836
 837			pos = sector_num * host->pmecc_sector_size + byte_pos;
 838			dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 839				pos, bit_pos, err_byte, *(buf + byte_pos));
 840		} else {
 841			/* Bit flip in OOB area */
 842			tmp = sector_num * host->pmecc_bytes_per_sector
 843					+ (byte_pos - sector_size);
 844			err_byte = ecc[tmp];
 845			ecc[tmp] ^= (1 << bit_pos);
 846
 847			pos = tmp + nand_chip->ecc.layout->eccpos[0];
 848			dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 849				pos, bit_pos, err_byte, ecc[tmp]);
 850		}
 851
 852		i++;
 853		err_nbr--;
 854	}
 855
 856	return;
 857}
 858
 859static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
 860	u8 *ecc)
 861{
 862	struct nand_chip *nand_chip = mtd->priv;
 863	struct atmel_nand_host *host = nand_chip->priv;
 864	int i, err_nbr, eccbytes;
 865	uint8_t *buf_pos;
 866	int total_err = 0;
 867
 868	eccbytes = nand_chip->ecc.bytes;
 869	for (i = 0; i < eccbytes; i++)
 870		if (ecc[i] != 0xff)
 871			goto normal_check;
 872	/* Erased page, return OK */
 873	return 0;
 874
 875normal_check:
 876	for (i = 0; i < host->pmecc_sector_number; i++) {
 877		err_nbr = 0;
 878		if (pmecc_stat & 0x1) {
 879			buf_pos = buf + i * host->pmecc_sector_size;
 880
 881			pmecc_gen_syndrome(mtd, i);
 882			pmecc_substitute(mtd);
 883			pmecc_get_sigma(mtd);
 884
 885			err_nbr = pmecc_err_location(mtd);
 886			if (err_nbr == -1) {
 887				dev_err(host->dev, "PMECC: Too many errors\n");
 888				mtd->ecc_stats.failed++;
 889				return -EIO;
 890			} else {
 891				pmecc_correct_data(mtd, buf_pos, ecc, i,
 892					host->pmecc_bytes_per_sector, err_nbr);
 893				mtd->ecc_stats.corrected += err_nbr;
 894				total_err += err_nbr;
 895			}
 896		}
 897		pmecc_stat >>= 1;
 898	}
 899
 900	return total_err;
 901}
 902
 903static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
 904{
 905	u32 val;
 906
 907	if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
 908		dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
 909		return;
 910	}
 911
 912	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
 913	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
 914	val = pmecc_readl_relaxed(host->ecc, CFG);
 915
 916	if (ecc_op == NAND_ECC_READ)
 917		pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
 918			| PMECC_CFG_AUTO_ENABLE);
 919	else
 920		pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
 921			& ~PMECC_CFG_AUTO_ENABLE);
 922
 923	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
 924	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
 925}
 926
 927static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
 928	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
 929{
 930	struct atmel_nand_host *host = chip->priv;
 931	int eccsize = chip->ecc.size;
 932	uint8_t *oob = chip->oob_poi;
 933	uint32_t *eccpos = chip->ecc.layout->eccpos;
 934	uint32_t stat;
 935	unsigned long end_time;
 936	int bitflips = 0;
 937
 938	if (!host->nfc || !host->nfc->use_nfc_sram)
 939		pmecc_enable(host, NAND_ECC_READ);
 940
 941	chip->read_buf(mtd, buf, eccsize);
 942	chip->read_buf(mtd, oob, mtd->oobsize);
 943
 944	end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
 945	while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
 946		if (unlikely(time_after(jiffies, end_time))) {
 947			dev_err(host->dev, "PMECC: Timeout to get error status.\n");
 948			return -EIO;
 949		}
 950		cpu_relax();
 951	}
 952
 953	stat = pmecc_readl_relaxed(host->ecc, ISR);
 954	if (stat != 0) {
 955		bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
 956		if (bitflips < 0)
 957			/* uncorrectable errors */
 958			return 0;
 959	}
 960
 961	return bitflips;
 962}
 963
 964static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
 965		struct nand_chip *chip, const uint8_t *buf, int oob_required)
 966{
 967	struct atmel_nand_host *host = chip->priv;
 968	uint32_t *eccpos = chip->ecc.layout->eccpos;
 969	int i, j;
 970	unsigned long end_time;
 971
 972	if (!host->nfc || !host->nfc->write_by_sram) {
 973		pmecc_enable(host, NAND_ECC_WRITE);
 974		chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
 975	}
 976
 977	end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
 978	while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
 979		if (unlikely(time_after(jiffies, end_time))) {
 980			dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
 981			return -EIO;
 982		}
 983		cpu_relax();
 984	}
 985
 986	for (i = 0; i < host->pmecc_sector_number; i++) {
 987		for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
 988			int pos;
 989
 990			pos = i * host->pmecc_bytes_per_sector + j;
 991			chip->oob_poi[eccpos[pos]] =
 992				pmecc_readb_ecc_relaxed(host->ecc, i, j);
 993		}
 994	}
 995	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 996
 997	return 0;
 998}
 999
1000static void atmel_pmecc_core_init(struct mtd_info *mtd)
1001{
1002	struct nand_chip *nand_chip = mtd->priv;
1003	struct atmel_nand_host *host = nand_chip->priv;
1004	uint32_t val = 0;
1005	struct nand_ecclayout *ecc_layout;
1006
1007	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1008	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1009
1010	switch (host->pmecc_corr_cap) {
1011	case 2:
1012		val = PMECC_CFG_BCH_ERR2;
1013		break;
1014	case 4:
1015		val = PMECC_CFG_BCH_ERR4;
1016		break;
1017	case 8:
1018		val = PMECC_CFG_BCH_ERR8;
1019		break;
1020	case 12:
1021		val = PMECC_CFG_BCH_ERR12;
1022		break;
1023	case 24:
1024		val = PMECC_CFG_BCH_ERR24;
1025		break;
1026	}
1027
1028	if (host->pmecc_sector_size == 512)
1029		val |= PMECC_CFG_SECTOR512;
1030	else if (host->pmecc_sector_size == 1024)
1031		val |= PMECC_CFG_SECTOR1024;
1032
1033	switch (host->pmecc_sector_number) {
1034	case 1:
1035		val |= PMECC_CFG_PAGE_1SECTOR;
1036		break;
1037	case 2:
1038		val |= PMECC_CFG_PAGE_2SECTORS;
1039		break;
1040	case 4:
1041		val |= PMECC_CFG_PAGE_4SECTORS;
1042		break;
1043	case 8:
1044		val |= PMECC_CFG_PAGE_8SECTORS;
1045		break;
1046	}
1047
1048	val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1049		| PMECC_CFG_AUTO_DISABLE);
1050	pmecc_writel(host->ecc, CFG, val);
1051
1052	ecc_layout = nand_chip->ecc.layout;
1053	pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1054	pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1055	pmecc_writel(host->ecc, EADDR,
1056			ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1057	/* See datasheet about PMECC Clock Control Register */
1058	pmecc_writel(host->ecc, CLK, 2);
1059	pmecc_writel(host->ecc, IDR, 0xff);
1060	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1061}
1062
1063/*
1064 * Get minimum ecc requirements from NAND.
1065 * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1066 * will set them according to minimum ecc requirement. Otherwise, use the
1067 * value in DTS file.
1068 * return 0 if success. otherwise return error code.
1069 */
1070static int pmecc_choose_ecc(struct atmel_nand_host *host,
1071		int *cap, int *sector_size)
1072{
1073	/* Get minimum ECC requirements */
1074	if (host->nand_chip.ecc_strength_ds) {
1075		*cap = host->nand_chip.ecc_strength_ds;
1076		*sector_size = host->nand_chip.ecc_step_ds;
1077		dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
1078				*cap, *sector_size);
1079	} else {
1080		*cap = 2;
1081		*sector_size = 512;
1082		dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
1083	}
1084
1085	/* If device tree doesn't specify, use NAND's minimum ECC parameters */
1086	if (host->pmecc_corr_cap == 0) {
1087		/* use the most fitable ecc bits (the near bigger one ) */
1088		if (*cap <= 2)
1089			host->pmecc_corr_cap = 2;
1090		else if (*cap <= 4)
1091			host->pmecc_corr_cap = 4;
1092		else if (*cap <= 8)
1093			host->pmecc_corr_cap = 8;
1094		else if (*cap <= 12)
1095			host->pmecc_corr_cap = 12;
1096		else if (*cap <= 24)
1097			host->pmecc_corr_cap = 24;
1098		else
1099			return -EINVAL;
1100	}
1101	if (host->pmecc_sector_size == 0) {
1102		/* use the most fitable sector size (the near smaller one ) */
1103		if (*sector_size >= 1024)
1104			host->pmecc_sector_size = 1024;
1105		else if (*sector_size >= 512)
1106			host->pmecc_sector_size = 512;
1107		else
1108			return -EINVAL;
1109	}
1110	return 0;
1111}
1112
1113static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1114					 struct atmel_nand_host *host)
1115{
1116	struct mtd_info *mtd = &host->mtd;
1117	struct nand_chip *nand_chip = &host->nand_chip;
1118	struct resource *regs, *regs_pmerr, *regs_rom;
1119	int cap, sector_size, err_no;
1120
1121	err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1122	if (err_no) {
1123		dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1124		return err_no;
1125	}
1126
1127	if (cap > host->pmecc_corr_cap ||
1128			sector_size != host->pmecc_sector_size)
1129		dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1130
1131	cap = host->pmecc_corr_cap;
1132	sector_size = host->pmecc_sector_size;
1133	host->pmecc_lookup_table_offset = (sector_size == 512) ?
1134			host->pmecc_lookup_table_offset_512 :
1135			host->pmecc_lookup_table_offset_1024;
1136
1137	dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1138		 cap, sector_size);
1139
1140	regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1141	if (!regs) {
1142		dev_warn(host->dev,
1143			"Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1144		nand_chip->ecc.mode = NAND_ECC_SOFT;
1145		return 0;
1146	}
1147
1148	host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1149	if (IS_ERR(host->ecc)) {
1150		dev_err(host->dev, "ioremap failed\n");
1151		err_no = PTR_ERR(host->ecc);
1152		goto err;
1153	}
1154
1155	regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1156	host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1157	if (IS_ERR(host->pmerrloc_base)) {
1158		dev_err(host->dev,
1159			"Can not get I/O resource for PMECC ERRLOC controller!\n");
1160		err_no = PTR_ERR(host->pmerrloc_base);
1161		goto err;
1162	}
1163
1164	regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1165	host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom);
1166	if (IS_ERR(host->pmecc_rom_base)) {
1167		dev_err(host->dev, "Can not get I/O resource for ROM!\n");
1168		err_no = PTR_ERR(host->pmecc_rom_base);
1169		goto err;
1170	}
1171
1172	/* ECC is calculated for the whole page (1 step) */
1173	nand_chip->ecc.size = mtd->writesize;
1174
1175	/* set ECC page size and oob layout */
1176	switch (mtd->writesize) {
1177	case 2048:
1178		host->pmecc_degree = (sector_size == 512) ?
1179			PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1180		host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1181		host->pmecc_sector_number = mtd->writesize / sector_size;
1182		host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
1183			cap, sector_size);
1184		host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1185		host->pmecc_index_of = host->pmecc_rom_base +
1186			host->pmecc_lookup_table_offset;
1187
1188		nand_chip->ecc.steps = 1;
1189		nand_chip->ecc.strength = cap;
1190		nand_chip->ecc.bytes = host->pmecc_bytes_per_sector *
1191				       host->pmecc_sector_number;
1192		if (nand_chip->ecc.bytes > mtd->oobsize - 2) {
1193			dev_err(host->dev, "No room for ECC bytes\n");
1194			err_no = -EINVAL;
1195			goto err;
1196		}
1197		pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1198					mtd->oobsize,
1199					nand_chip->ecc.bytes);
1200		nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1201		break;
1202	case 512:
1203	case 1024:
1204	case 4096:
1205		/* TODO */
1206		dev_warn(host->dev,
1207			"Unsupported page size for PMECC, use Software ECC\n");
1208	default:
1209		/* page size not handled by HW ECC */
1210		/* switching back to soft ECC */
1211		nand_chip->ecc.mode = NAND_ECC_SOFT;
1212		return 0;
1213	}
1214
1215	/* Allocate data for PMECC computation */
1216	err_no = pmecc_data_alloc(host);
1217	if (err_no) {
1218		dev_err(host->dev,
1219				"Cannot allocate memory for PMECC computation!\n");
1220		goto err;
1221	}
1222
1223	nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
1224	nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1225	nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1226
1227	atmel_pmecc_core_init(mtd);
1228
1229	return 0;
1230
1231err:
1232	return err_no;
1233}
1234
1235/*
1236 * Calculate HW ECC
1237 *
1238 * function called after a write
1239 *
1240 * mtd:        MTD block structure
1241 * dat:        raw data (unused)
1242 * ecc_code:   buffer for ECC
1243 */
1244static int atmel_nand_calculate(struct mtd_info *mtd,
1245		const u_char *dat, unsigned char *ecc_code)
1246{
1247	struct nand_chip *nand_chip = mtd->priv;
1248	struct atmel_nand_host *host = nand_chip->priv;
1249	unsigned int ecc_value;
1250
1251	/* get the first 2 ECC bytes */
1252	ecc_value = ecc_readl(host->ecc, PR);
1253
1254	ecc_code[0] = ecc_value & 0xFF;
1255	ecc_code[1] = (ecc_value >> 8) & 0xFF;
1256
1257	/* get the last 2 ECC bytes */
1258	ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1259
1260	ecc_code[2] = ecc_value & 0xFF;
1261	ecc_code[3] = (ecc_value >> 8) & 0xFF;
1262
1263	return 0;
1264}
1265
1266/*
1267 * HW ECC read page function
1268 *
1269 * mtd:        mtd info structure
1270 * chip:       nand chip info structure
1271 * buf:        buffer to store read data
1272 * oob_required:    caller expects OOB data read to chip->oob_poi
1273 */
1274static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1275				uint8_t *buf, int oob_required, int page)
1276{
1277	int eccsize = chip->ecc.size;
1278	int eccbytes = chip->ecc.bytes;
1279	uint32_t *eccpos = chip->ecc.layout->eccpos;
1280	uint8_t *p = buf;
1281	uint8_t *oob = chip->oob_poi;
1282	uint8_t *ecc_pos;
1283	int stat;
1284	unsigned int max_bitflips = 0;
1285
1286	/*
1287	 * Errata: ALE is incorrectly wired up to the ECC controller
1288	 * on the AP7000, so it will include the address cycles in the
1289	 * ECC calculation.
1290	 *
1291	 * Workaround: Reset the parity registers before reading the
1292	 * actual data.
1293	 */
1294	struct atmel_nand_host *host = chip->priv;
1295	if (host->board.need_reset_workaround)
1296		ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1297
1298	/* read the page */
1299	chip->read_buf(mtd, p, eccsize);
1300
1301	/* move to ECC position if needed */
1302	if (eccpos[0] != 0) {
1303		/* This only works on large pages
1304		 * because the ECC controller waits for
1305		 * NAND_CMD_RNDOUTSTART after the
1306		 * NAND_CMD_RNDOUT.
1307		 * anyway, for small pages, the eccpos[0] == 0
1308		 */
1309		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1310				mtd->writesize + eccpos[0], -1);
1311	}
1312
1313	/* the ECC controller needs to read the ECC just after the data */
1314	ecc_pos = oob + eccpos[0];
1315	chip->read_buf(mtd, ecc_pos, eccbytes);
1316
1317	/* check if there's an error */
1318	stat = chip->ecc.correct(mtd, p, oob, NULL);
1319
1320	if (stat < 0) {
1321		mtd->ecc_stats.failed++;
1322	} else {
1323		mtd->ecc_stats.corrected += stat;
1324		max_bitflips = max_t(unsigned int, max_bitflips, stat);
1325	}
1326
1327	/* get back to oob start (end of page) */
1328	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1329
1330	/* read the oob */
1331	chip->read_buf(mtd, oob, mtd->oobsize);
1332
1333	return max_bitflips;
1334}
1335
1336/*
1337 * HW ECC Correction
1338 *
1339 * function called after a read
1340 *
1341 * mtd:        MTD block structure
1342 * dat:        raw data read from the chip
1343 * read_ecc:   ECC from the chip (unused)
1344 * isnull:     unused
1345 *
1346 * Detect and correct a 1 bit error for a page
1347 */
1348static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1349		u_char *read_ecc, u_char *isnull)
1350{
1351	struct nand_chip *nand_chip = mtd->priv;
1352	struct atmel_nand_host *host = nand_chip->priv;
1353	unsigned int ecc_status;
1354	unsigned int ecc_word, ecc_bit;
1355
1356	/* get the status from the Status Register */
1357	ecc_status = ecc_readl(host->ecc, SR);
1358
1359	/* if there's no error */
1360	if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1361		return 0;
1362
1363	/* get error bit offset (4 bits) */
1364	ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1365	/* get word address (12 bits) */
1366	ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1367	ecc_word >>= 4;
1368
1369	/* if there are multiple errors */
1370	if (ecc_status & ATMEL_ECC_MULERR) {
1371		/* check if it is a freshly erased block
1372		 * (filled with 0xff) */
1373		if ((ecc_bit == ATMEL_ECC_BITADDR)
1374				&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1375			/* the block has just been erased, return OK */
1376			return 0;
1377		}
1378		/* it doesn't seems to be a freshly
1379		 * erased block.
1380		 * We can't correct so many errors */
1381		dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1382				" Unable to correct.\n");
1383		return -EIO;
1384	}
1385
1386	/* if there's a single bit error : we can correct it */
1387	if (ecc_status & ATMEL_ECC_ECCERR) {
1388		/* there's nothing much to do here.
1389		 * the bit error is on the ECC itself.
1390		 */
1391		dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1392				" Nothing to correct\n");
1393		return 0;
1394	}
1395
1396	dev_dbg(host->dev, "atmel_nand : one bit error on data."
1397			" (word offset in the page :"
1398			" 0x%x bit offset : 0x%x)\n",
1399			ecc_word, ecc_bit);
1400	/* correct the error */
1401	if (nand_chip->options & NAND_BUSWIDTH_16) {
1402		/* 16 bits words */
1403		((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1404	} else {
1405		/* 8 bits words */
1406		dat[ecc_word] ^= (1 << ecc_bit);
1407	}
1408	dev_dbg(host->dev, "atmel_nand : error corrected\n");
1409	return 1;
1410}
1411
1412/*
1413 * Enable HW ECC : unused on most chips
1414 */
1415static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1416{
1417	struct nand_chip *nand_chip = mtd->priv;
1418	struct atmel_nand_host *host = nand_chip->priv;
1419
1420	if (host->board.need_reset_workaround)
1421		ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1422}
1423
1424static int atmel_of_init_port(struct atmel_nand_host *host,
1425			      struct device_node *np)
1426{
1427	u32 val;
1428	u32 offset[2];
1429	int ecc_mode;
1430	struct atmel_nand_data *board = &host->board;
1431	enum of_gpio_flags flags = 0;
1432
1433	if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1434		if (val >= 32) {
1435			dev_err(host->dev, "invalid addr-offset %u\n", val);
1436			return -EINVAL;
1437		}
1438		board->ale = val;
1439	}
1440
1441	if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1442		if (val >= 32) {
1443			dev_err(host->dev, "invalid cmd-offset %u\n", val);
1444			return -EINVAL;
1445		}
1446		board->cle = val;
1447	}
1448
1449	ecc_mode = of_get_nand_ecc_mode(np);
1450
1451	board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1452
1453	board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1454
1455	board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1456
1457	if (of_get_nand_bus_width(np) == 16)
1458		board->bus_width_16 = 1;
1459
1460	board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1461	board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1462
1463	board->enable_pin = of_get_gpio(np, 1);
1464	board->det_pin = of_get_gpio(np, 2);
1465
1466	host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1467
1468	/* load the nfc driver if there is */
1469	of_platform_populate(np, NULL, NULL, host->dev);
1470
1471	if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1472		return 0;	/* Not using PMECC */
1473
1474	/* use PMECC, get correction capability, sector size and lookup
1475	 * table offset.
1476	 * If correction bits and sector size are not specified, then find
1477	 * them from NAND ONFI parameters.
1478	 */
1479	if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1480		if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1481				(val != 24)) {
1482			dev_err(host->dev,
1483				"Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1484				val);
1485			return -EINVAL;
1486		}
1487		host->pmecc_corr_cap = (u8)val;
1488	}
1489
1490	if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1491		if ((val != 512) && (val != 1024)) {
1492			dev_err(host->dev,
1493				"Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1494				val);
1495			return -EINVAL;
1496		}
1497		host->pmecc_sector_size = (u16)val;
1498	}
1499
1500	if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1501			offset, 2) != 0) {
1502		dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
1503		return -EINVAL;
1504	}
1505	if (!offset[0] && !offset[1]) {
1506		dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1507		return -EINVAL;
1508	}
1509	host->pmecc_lookup_table_offset_512 = offset[0];
1510	host->pmecc_lookup_table_offset_1024 = offset[1];
1511
1512	return 0;
1513}
1514
1515static int atmel_hw_nand_init_params(struct platform_device *pdev,
1516					 struct atmel_nand_host *host)
1517{
1518	struct mtd_info *mtd = &host->mtd;
1519	struct nand_chip *nand_chip = &host->nand_chip;
1520	struct resource		*regs;
1521
1522	regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1523	if (!regs) {
1524		dev_err(host->dev,
1525			"Can't get I/O resource regs, use software ECC\n");
1526		nand_chip->ecc.mode = NAND_ECC_SOFT;
1527		return 0;
1528	}
1529
1530	host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1531	if (IS_ERR(host->ecc)) {
1532		dev_err(host->dev, "ioremap failed\n");
1533		return PTR_ERR(host->ecc);
1534	}
1535
1536	/* ECC is calculated for the whole page (1 step) */
1537	nand_chip->ecc.size = mtd->writesize;
1538
1539	/* set ECC page size and oob layout */
1540	switch (mtd->writesize) {
1541	case 512:
1542		nand_chip->ecc.layout = &atmel_oobinfo_small;
1543		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1544		break;
1545	case 1024:
1546		nand_chip->ecc.layout = &atmel_oobinfo_large;
1547		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1548		break;
1549	case 2048:
1550		nand_chip->ecc.layout = &atmel_oobinfo_large;
1551		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1552		break;
1553	case 4096:
1554		nand_chip->ecc.layout = &atmel_oobinfo_large;
1555		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1556		break;
1557	default:
1558		/* page size not handled by HW ECC */
1559		/* switching back to soft ECC */
1560		nand_chip->ecc.mode = NAND_ECC_SOFT;
1561		return 0;
1562	}
1563
1564	/* set up for HW ECC */
1565	nand_chip->ecc.calculate = atmel_nand_calculate;
1566	nand_chip->ecc.correct = atmel_nand_correct;
1567	nand_chip->ecc.hwctl = atmel_nand_hwctl;
1568	nand_chip->ecc.read_page = atmel_nand_read_page;
1569	nand_chip->ecc.bytes = 4;
1570	nand_chip->ecc.strength = 1;
1571
1572	return 0;
1573}
1574
1575/* SMC interrupt service routine */
1576static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1577{
1578	struct atmel_nand_host *host = dev_id;
1579	u32 status, mask, pending;
1580	irqreturn_t ret = IRQ_HANDLED;
1581
1582	status = nfc_readl(host->nfc->hsmc_regs, SR);
1583	mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1584	pending = status & mask;
1585
1586	if (pending & NFC_SR_XFR_DONE) {
1587		complete(&host->nfc->comp_nfc);
1588		nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1589	} else if (pending & NFC_SR_RB_EDGE) {
1590		complete(&host->nfc->comp_nfc);
1591		nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1592	} else if (pending & NFC_SR_CMD_DONE) {
1593		complete(&host->nfc->comp_nfc);
1594		nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1595	} else {
1596		ret = IRQ_NONE;
1597	}
1598
1599	return ret;
1600}
1601
1602/* NFC(Nand Flash Controller) related functions */
1603static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1604{
1605	unsigned long timeout;
1606	init_completion(&host->nfc->comp_nfc);
1607
1608	/* Enable interrupt that need to wait for */
1609	nfc_writel(host->nfc->hsmc_regs, IER, flag);
1610
1611	timeout = wait_for_completion_timeout(&host->nfc->comp_nfc,
1612			msecs_to_jiffies(NFC_TIME_OUT_MS));
1613	if (timeout)
1614		return 0;
1615
1616	/* Time out to wait for the interrupt */
1617	dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1618	return -ETIMEDOUT;
1619}
1620
1621static int nfc_send_command(struct atmel_nand_host *host,
1622	unsigned int cmd, unsigned int addr, unsigned char cycle0)
1623{
1624	unsigned long timeout;
1625	dev_dbg(host->dev,
1626		"nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1627		cmd, addr, cycle0);
1628
1629	timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1630	while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs)
1631			& NFCADDR_CMD_NFCBUSY) {
1632		if (time_after(jiffies, timeout)) {
1633			dev_err(host->dev,
1634				"Time out to wait CMD_NFCBUSY ready!\n");
1635			return -ETIMEDOUT;
1636		}
1637	}
1638	nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1639	nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1640	return nfc_wait_interrupt(host, NFC_SR_CMD_DONE);
1641}
1642
1643static int nfc_device_ready(struct mtd_info *mtd)
1644{
1645	struct nand_chip *nand_chip = mtd->priv;
1646	struct atmel_nand_host *host = nand_chip->priv;
1647	if (!nfc_wait_interrupt(host, NFC_SR_RB_EDGE))
1648		return 1;
1649	return 0;
1650}
1651
1652static void nfc_select_chip(struct mtd_info *mtd, int chip)
1653{
1654	struct nand_chip *nand_chip = mtd->priv;
1655	struct atmel_nand_host *host = nand_chip->priv;
1656
1657	if (chip == -1)
1658		nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1659	else
1660		nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1661}
1662
1663static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
1664		int page_addr, unsigned int *addr1234, unsigned int *cycle0)
1665{
1666	struct nand_chip *chip = mtd->priv;
1667
1668	int acycle = 0;
1669	unsigned char addr_bytes[8];
1670	int index = 0, bit_shift;
1671
1672	BUG_ON(addr1234 == NULL || cycle0 == NULL);
1673
1674	*cycle0 = 0;
1675	*addr1234 = 0;
1676
1677	if (column != -1) {
1678		if (chip->options & NAND_BUSWIDTH_16 &&
1679				!nand_opcode_8bits(command))
1680			column >>= 1;
1681		addr_bytes[acycle++] = column & 0xff;
1682		if (mtd->writesize > 512)
1683			addr_bytes[acycle++] = (column >> 8) & 0xff;
1684	}
1685
1686	if (page_addr != -1) {
1687		addr_bytes[acycle++] = page_addr & 0xff;
1688		addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1689		if (chip->chipsize > (128 << 20))
1690			addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1691	}
1692
1693	if (acycle > 4)
1694		*cycle0 = addr_bytes[index++];
1695
1696	for (bit_shift = 0; index < acycle; bit_shift += 8)
1697		*addr1234 += addr_bytes[index++] << bit_shift;
1698
1699	/* return acycle in cmd register */
1700	return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1701}
1702
1703static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1704				int column, int page_addr)
1705{
1706	struct nand_chip *chip = mtd->priv;
1707	struct atmel_nand_host *host = chip->priv;
1708	unsigned long timeout;
1709	unsigned int nfc_addr_cmd = 0;
1710
1711	unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1712
1713	/* Set default settings: no cmd2, no addr cycle. read from nand */
1714	unsigned int cmd2 = 0;
1715	unsigned int vcmd2 = 0;
1716	int acycle = NFCADDR_CMD_ACYCLE_NONE;
1717	int csid = NFCADDR_CMD_CSID_3;
1718	int dataen = NFCADDR_CMD_DATADIS;
1719	int nfcwr = NFCADDR_CMD_NFCRD;
1720	unsigned int addr1234 = 0;
1721	unsigned int cycle0 = 0;
1722	bool do_addr = true;
1723	host->nfc->data_in_sram = NULL;
1724
1725	dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1726	     __func__, command, column, page_addr);
1727
1728	switch (command) {
1729	case NAND_CMD_RESET:
1730		nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1731		nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1732		udelay(chip->chip_delay);
1733
1734		nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1735		timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1736		while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1737			if (time_after(jiffies, timeout)) {
1738				dev_err(host->dev,
1739					"Time out to wait status ready!\n");
1740				break;
1741			}
1742		}
1743		return;
1744	case NAND_CMD_STATUS:
1745		do_addr = false;
1746		break;
1747	case NAND_CMD_PARAM:
1748	case NAND_CMD_READID:
1749		do_addr = false;
1750		acycle = NFCADDR_CMD_ACYCLE_1;
1751		if (column != -1)
1752			addr1234 = column;
1753		break;
1754	case NAND_CMD_RNDOUT:
1755		cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1756		vcmd2 = NFCADDR_CMD_VCMD2;
1757		break;
1758	case NAND_CMD_READ0:
1759	case NAND_CMD_READOOB:
1760		if (command == NAND_CMD_READOOB) {
1761			column += mtd->writesize;
1762			command = NAND_CMD_READ0; /* only READ0 is valid */
1763			cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1764		}
1765		if (host->nfc->use_nfc_sram) {
1766			/* Enable Data transfer to sram */
1767			dataen = NFCADDR_CMD_DATAEN;
1768
1769			/* Need enable PMECC now, since NFC will transfer
1770			 * data in bus after sending nfc read command.
1771			 */
1772			if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1773				pmecc_enable(host, NAND_ECC_READ);
1774		}
1775
1776		cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1777		vcmd2 = NFCADDR_CMD_VCMD2;
1778		break;
1779	/* For prgramming command, the cmd need set to write enable */
1780	case NAND_CMD_PAGEPROG:
1781	case NAND_CMD_SEQIN:
1782	case NAND_CMD_RNDIN:
1783		nfcwr = NFCADDR_CMD_NFCWR;
1784		if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1785			dataen = NFCADDR_CMD_DATAEN;
1786		break;
1787	default:
1788		break;
1789	}
1790
1791	if (do_addr)
1792		acycle = nfc_make_addr(mtd, command, column, page_addr,
1793				&addr1234, &cycle0);
1794
1795	nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1796	nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1797
1798	if (dataen == NFCADDR_CMD_DATAEN)
1799		if (nfc_wait_interrupt(host, NFC_SR_XFR_DONE))
1800			dev_err(host->dev, "something wrong, No XFR_DONE interrupt comes.\n");
1801
1802	/*
1803	 * Program and erase have their own busy handlers status, sequential
1804	 * in, and deplete1 need no delay.
1805	 */
1806	switch (command) {
1807	case NAND_CMD_CACHEDPROG:
1808	case NAND_CMD_PAGEPROG:
1809	case NAND_CMD_ERASE1:
1810	case NAND_CMD_ERASE2:
1811	case NAND_CMD_RNDIN:
1812	case NAND_CMD_STATUS:
1813	case NAND_CMD_RNDOUT:
1814	case NAND_CMD_SEQIN:
1815	case NAND_CMD_READID:
1816		return;
1817
1818	case NAND_CMD_READ0:
1819		if (dataen == NFCADDR_CMD_DATAEN) {
1820			host->nfc->data_in_sram = host->nfc->sram_bank0 +
1821				nfc_get_sram_off(host);
1822			return;
1823		}
1824		/* fall through */
1825	default:
1826		nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1827	}
1828}
1829
1830static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1831			uint32_t offset, int data_len, const uint8_t *buf,
1832			int oob_required, int page, int cached, int raw)
1833{
1834	int cfg, len;
1835	int status = 0;
1836	struct atmel_nand_host *host = chip->priv;
1837	void __iomem *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1838
1839	/* Subpage write is not supported */
1840	if (offset || (data_len < mtd->writesize))
1841		return -EINVAL;
1842
1843	cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1844	len = mtd->writesize;
1845
1846	if (unlikely(raw)) {
1847		len += mtd->oobsize;
1848		nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1849	} else
1850		nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1851
1852	/* Copy page data to sram that will write to nand via NFC */
1853	if (use_dma) {
1854		if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1855			/* Fall back to use cpu copy */
1856			memcpy32_toio(sram, buf, len);
1857	} else {
1858		memcpy32_toio(sram, buf, len);
1859	}
1860
1861	if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1862		/*
1863		 * When use NFC sram, need set up PMECC before send
1864		 * NAND_CMD_SEQIN command. Since when the nand command
1865		 * is sent, nfc will do transfer from sram and nand.
1866		 */
1867		pmecc_enable(host, NAND_ECC_WRITE);
1868
1869	host->nfc->will_write_sram = true;
1870	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1871	host->nfc->will_write_sram = false;
1872
1873	if (likely(!raw))
1874		/* Need to write ecc into oob */
1875		status = chip->ecc.write_page(mtd, chip, buf, oob_required);
1876
1877	if (status < 0)
1878		return status;
1879
1880	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1881	status = chip->waitfunc(mtd, chip);
1882
1883	if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1884		status = chip->errstat(mtd, chip, FL_WRITING, status, page);
1885
1886	if (status & NAND_STATUS_FAIL)
1887		return -EIO;
1888
1889	return 0;
1890}
1891
1892static int nfc_sram_init(struct mtd_info *mtd)
1893{
1894	struct nand_chip *chip = mtd->priv;
1895	struct atmel_nand_host *host = chip->priv;
1896	int res = 0;
1897
1898	/* Initialize the NFC CFG register */
1899	unsigned int cfg_nfc = 0;
1900
1901	/* set page size and oob layout */
1902	switch (mtd->writesize) {
1903	case 512:
1904		cfg_nfc = NFC_CFG_PAGESIZE_512;
1905		break;
1906	case 1024:
1907		cfg_nfc = NFC_CFG_PAGESIZE_1024;
1908		break;
1909	case 2048:
1910		cfg_nfc = NFC_CFG_PAGESIZE_2048;
1911		break;
1912	case 4096:
1913		cfg_nfc = NFC_CFG_PAGESIZE_4096;
1914		break;
1915	case 8192:
1916		cfg_nfc = NFC_CFG_PAGESIZE_8192;
1917		break;
1918	default:
1919		dev_err(host->dev, "Unsupported page size for NFC.\n");
1920		res = -ENXIO;
1921		return res;
1922	}
1923
1924	/* oob bytes size = (NFCSPARESIZE + 1) * 4
1925	 * Max support spare size is 512 bytes. */
1926	cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
1927		& NFC_CFG_NFC_SPARESIZE);
1928	/* default set a max timeout */
1929	cfg_nfc |= NFC_CFG_RSPARE |
1930			NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
1931
1932	nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
1933
1934	host->nfc->will_write_sram = false;
1935	nfc_set_sram_bank(host, 0);
1936
1937	/* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
1938	if (host->nfc->write_by_sram) {
1939		if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
1940				chip->ecc.mode == NAND_ECC_NONE)
1941			chip->write_page = nfc_sram_write_page;
1942		else
1943			host->nfc->write_by_sram = false;
1944	}
1945
1946	dev_info(host->dev, "Using NFC Sram read %s\n",
1947			host->nfc->write_by_sram ? "and write" : "");
1948	return 0;
1949}
1950
1951static struct platform_driver atmel_nand_nfc_driver;
1952/*
1953 * Probe for the NAND device.
1954 */
1955static int atmel_nand_probe(struct platform_device *pdev)
1956{
1957	struct atmel_nand_host *host;
1958	struct mtd_info *mtd;
1959	struct nand_chip *nand_chip;
1960	struct resource *mem;
1961	struct mtd_part_parser_data ppdata = {};
1962	int res, irq;
1963
1964	/* Allocate memory for the device structure (and zero it) */
1965	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
1966	if (!host)
1967		return -ENOMEM;
1968
1969	res = platform_driver_register(&atmel_nand_nfc_driver);
1970	if (res)
1971		dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
1972
1973	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1974	host->io_base = devm_ioremap_resource(&pdev->dev, mem);
1975	if (IS_ERR(host->io_base)) {
1976		dev_err(&pdev->dev, "atmel_nand: ioremap resource failed\n");
1977		res = PTR_ERR(host->io_base);
1978		goto err_nand_ioremap;
1979	}
1980	host->io_phys = (dma_addr_t)mem->start;
1981
1982	mtd = &host->mtd;
1983	nand_chip = &host->nand_chip;
1984	host->dev = &pdev->dev;
1985	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1986		/* Only when CONFIG_OF is enabled of_node can be parsed */
1987		res = atmel_of_init_port(host, pdev->dev.of_node);
1988		if (res)
1989			goto err_nand_ioremap;
1990	} else {
1991		memcpy(&host->board, dev_get_platdata(&pdev->dev),
1992		       sizeof(struct atmel_nand_data));
1993	}
1994
1995	nand_chip->priv = host;		/* link the private data structures */
1996	mtd->priv = nand_chip;
1997	mtd->owner = THIS_MODULE;
1998
1999	/* Set address of NAND IO lines */
2000	nand_chip->IO_ADDR_R = host->io_base;
2001	nand_chip->IO_ADDR_W = host->io_base;
2002
2003	if (nand_nfc.is_initialized) {
2004		/* NFC driver is probed and initialized */
2005		host->nfc = &nand_nfc;
2006
2007		nand_chip->select_chip = nfc_select_chip;
2008		nand_chip->dev_ready = nfc_device_ready;
2009		nand_chip->cmdfunc = nfc_nand_command;
2010
2011		/* Initialize the interrupt for NFC */
2012		irq = platform_get_irq(pdev, 0);
2013		if (irq < 0) {
2014			dev_err(host->dev, "Cannot get HSMC irq!\n");
2015			res = irq;
2016			goto err_nand_ioremap;
2017		}
2018
2019		res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2020				0, "hsmc", host);
2021		if (res) {
2022			dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2023				irq);
2024			goto err_nand_ioremap;
2025		}
2026	} else {
2027		res = atmel_nand_set_enable_ready_pins(mtd);
2028		if (res)
2029			goto err_nand_ioremap;
2030
2031		nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2032	}
2033
2034	nand_chip->ecc.mode = host->board.ecc_mode;
2035	nand_chip->chip_delay = 20;		/* 20us command delay time */
2036
2037	if (host->board.bus_width_16)	/* 16-bit bus width */
2038		nand_chip->options |= NAND_BUSWIDTH_16;
2039
2040	nand_chip->read_buf = atmel_read_buf;
2041	nand_chip->write_buf = atmel_write_buf;
2042
2043	platform_set_drvdata(pdev, host);
2044	atmel_nand_enable(host);
2045
2046	if (gpio_is_valid(host->board.det_pin)) {
2047		res = devm_gpio_request(&pdev->dev,
2048				host->board.det_pin, "nand_det");
2049		if (res < 0) {
2050			dev_err(&pdev->dev,
2051				"can't request det gpio %d\n",
2052				host->board.det_pin);
2053			goto err_no_card;
2054		}
2055
2056		res = gpio_direction_input(host->board.det_pin);
2057		if (res < 0) {
2058			dev_err(&pdev->dev,
2059				"can't request input direction det gpio %d\n",
2060				host->board.det_pin);
2061			goto err_no_card;
2062		}
2063
2064		if (gpio_get_value(host->board.det_pin)) {
2065			dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
2066			res = -ENXIO;
2067			goto err_no_card;
2068		}
2069	}
2070
2071	if (host->board.on_flash_bbt || on_flash_bbt) {
2072		dev_info(&pdev->dev, "Use On Flash BBT\n");
2073		nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2074	}
2075
2076	if (!host->board.has_dma)
2077		use_dma = 0;
2078
2079	if (use_dma) {
2080		dma_cap_mask_t mask;
2081
2082		dma_cap_zero(mask);
2083		dma_cap_set(DMA_MEMCPY, mask);
2084		host->dma_chan = dma_request_channel(mask, NULL, NULL);
2085		if (!host->dma_chan) {
2086			dev_err(host->dev, "Failed to request DMA channel\n");
2087			use_dma = 0;
2088		}
2089	}
2090	if (use_dma)
2091		dev_info(host->dev, "Using %s for DMA transfers.\n",
2092					dma_chan_name(host->dma_chan));
2093	else
2094		dev_info(host->dev, "No DMA support for NAND access.\n");
2095
2096	/* first scan to find the device and get the page size */
2097	if (nand_scan_ident(mtd, 1, NULL)) {
2098		res = -ENXIO;
2099		goto err_scan_ident;
2100	}
2101
2102	if (nand_chip->ecc.mode == NAND_ECC_HW) {
2103		if (host->has_pmecc)
2104			res = atmel_pmecc_nand_init_params(pdev, host);
2105		else
2106			res = atmel_hw_nand_init_params(pdev, host);
2107
2108		if (res != 0)
2109			goto err_hw_ecc;
2110	}
2111
2112	/* initialize the nfc configuration register */
2113	if (host->nfc && host->nfc->use_nfc_sram) {
2114		res = nfc_sram_init(mtd);
2115		if (res) {
2116			host->nfc->use_nfc_sram = false;
2117			dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2118		}
2119	}
2120
2121	/* second phase scan */
2122	if (nand_scan_tail(mtd)) {
2123		res = -ENXIO;
2124		goto err_scan_tail;
2125	}
2126
2127	mtd->name = "atmel_nand";
2128	ppdata.of_node = pdev->dev.of_node;
2129	res = mtd_device_parse_register(mtd, NULL, &ppdata,
2130			host->board.parts, host->board.num_parts);
2131	if (!res)
2132		return res;
2133
2134err_scan_tail:
2135	if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2136		pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2137err_hw_ecc:
2138err_scan_ident:
2139err_no_card:
2140	atmel_nand_disable(host);
2141	if (host->dma_chan)
2142		dma_release_channel(host->dma_chan);
2143err_nand_ioremap:
2144	return res;
2145}
2146
2147/*
2148 * Remove a NAND device.
2149 */
2150static int atmel_nand_remove(struct platform_device *pdev)
2151{
2152	struct atmel_nand_host *host = platform_get_drvdata(pdev);
2153	struct mtd_info *mtd = &host->mtd;
2154
2155	nand_release(mtd);
2156
2157	atmel_nand_disable(host);
2158
2159	if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2160		pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2161		pmerrloc_writel(host->pmerrloc_base, ELDIS,
2162				PMERRLOC_DISABLE);
2163	}
2164
2165	if (host->dma_chan)
2166		dma_release_channel(host->dma_chan);
2167
2168	platform_driver_unregister(&atmel_nand_nfc_driver);
2169
2170	return 0;
2171}
2172
2173static const struct of_device_id atmel_nand_dt_ids[] = {
2174	{ .compatible = "atmel,at91rm9200-nand" },
2175	{ /* sentinel */ }
2176};
2177
2178MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2179
2180static int atmel_nand_nfc_probe(struct platform_device *pdev)
2181{
2182	struct atmel_nfc *nfc = &nand_nfc;
2183	struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2184
2185	nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2186	nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2187	if (IS_ERR(nfc->base_cmd_regs))
2188		return PTR_ERR(nfc->base_cmd_regs);
2189
2190	nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2191	nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2192	if (IS_ERR(nfc->hsmc_regs))
2193		return PTR_ERR(nfc->hsmc_regs);
2194
2195	nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2196	if (nfc_sram) {
2197		nfc->sram_bank0 = devm_ioremap_resource(&pdev->dev, nfc_sram);
2198		if (IS_ERR(nfc->sram_bank0)) {
2199			dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2200					PTR_ERR(nfc->sram_bank0));
2201		} else {
2202			nfc->use_nfc_sram = true;
2203			nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2204
2205			if (pdev->dev.of_node)
2206				nfc->write_by_sram = of_property_read_bool(
2207						pdev->dev.of_node,
2208						"atmel,write-by-sram");
2209		}
2210	}
2211
2212	nfc->is_initialized = true;
2213	dev_info(&pdev->dev, "NFC is probed.\n");
2214	return 0;
2215}
2216
2217static const struct of_device_id atmel_nand_nfc_match[] = {
2218	{ .compatible = "atmel,sama5d3-nfc" },
2219	{ /* sentinel */ }
2220};
2221MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
2222
2223static struct platform_driver atmel_nand_nfc_driver = {
2224	.driver = {
2225		.name = "atmel_nand_nfc",
2226		.owner = THIS_MODULE,
2227		.of_match_table = of_match_ptr(atmel_nand_nfc_match),
2228	},
2229	.probe = atmel_nand_nfc_probe,
2230};
2231
2232static struct platform_driver atmel_nand_driver = {
2233	.probe		= atmel_nand_probe,
2234	.remove		= atmel_nand_remove,
2235	.driver		= {
2236		.name	= "atmel_nand",
2237		.owner	= THIS_MODULE,
2238		.of_match_table	= of_match_ptr(atmel_nand_dt_ids),
2239	},
2240};
2241
2242module_platform_driver(atmel_nand_driver);
2243
2244MODULE_LICENSE("GPL");
2245MODULE_AUTHOR("Rick Bronson");
2246MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2247MODULE_ALIAS("platform:atmel_nand");
1