Linux Audio

Check our new training course

Loading...
  1/*
  2 * Copyright (C) 2012,2013 - ARM Ltd
  3 * Author: Marc Zyngier <marc.zyngier@arm.com>
  4 *
  5 * This program is free software; you can redistribute it and/or modify
  6 * it under the terms of the GNU General Public License version 2 as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 16 */
 17
 18#ifndef __ARM64_KVM_MMU_H__
 19#define __ARM64_KVM_MMU_H__
 20
 21#include <asm/page.h>
 22#include <asm/memory.h>
 23
 24/*
 25 * As we only have the TTBR0_EL2 register, we cannot express
 26 * "negative" addresses. This makes it impossible to directly share
 27 * mappings with the kernel.
 28 *
 29 * Instead, give the HYP mode its own VA region at a fixed offset from
 30 * the kernel by just masking the top bits (which are all ones for a
 31 * kernel address).
 32 */
 33#define HYP_PAGE_OFFSET_SHIFT	VA_BITS
 34#define HYP_PAGE_OFFSET_MASK	((UL(1) << HYP_PAGE_OFFSET_SHIFT) - 1)
 35#define HYP_PAGE_OFFSET		(PAGE_OFFSET & HYP_PAGE_OFFSET_MASK)
 36
 37/*
 38 * Our virtual mapping for the idmap-ed MMU-enable code. Must be
 39 * shared across all the page-tables. Conveniently, we use the last
 40 * possible page, where no kernel mapping will ever exist.
 41 */
 42#define TRAMPOLINE_VA		(HYP_PAGE_OFFSET_MASK & PAGE_MASK)
 43
 44#ifdef __ASSEMBLY__
 45
 46/*
 47 * Convert a kernel VA into a HYP VA.
 48 * reg: VA to be converted.
 49 */
 50.macro kern_hyp_va	reg
 51	and	\reg, \reg, #HYP_PAGE_OFFSET_MASK
 52.endm
 53
 54#else
 55
 56#include <asm/cachetype.h>
 57#include <asm/cacheflush.h>
 58
 59#define KERN_TO_HYP(kva)	((unsigned long)kva - PAGE_OFFSET + HYP_PAGE_OFFSET)
 60
 61/*
 62 * Align KVM with the kernel's view of physical memory. Should be
 63 * 40bit IPA, with PGD being 8kB aligned in the 4KB page configuration.
 64 */
 65#define KVM_PHYS_SHIFT	PHYS_MASK_SHIFT
 66#define KVM_PHYS_SIZE	(1UL << KVM_PHYS_SHIFT)
 67#define KVM_PHYS_MASK	(KVM_PHYS_SIZE - 1UL)
 68
 69/* Make sure we get the right size, and thus the right alignment */
 70#define PTRS_PER_S2_PGD (1 << (KVM_PHYS_SHIFT - PGDIR_SHIFT))
 71#define S2_PGD_ORDER	get_order(PTRS_PER_S2_PGD * sizeof(pgd_t))
 72
 73int create_hyp_mappings(void *from, void *to);
 74int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
 75void free_boot_hyp_pgd(void);
 76void free_hyp_pgds(void);
 77
 78int kvm_alloc_stage2_pgd(struct kvm *kvm);
 79void kvm_free_stage2_pgd(struct kvm *kvm);
 80int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
 81			  phys_addr_t pa, unsigned long size);
 82
 83int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
 84
 85void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
 86
 87phys_addr_t kvm_mmu_get_httbr(void);
 88phys_addr_t kvm_mmu_get_boot_httbr(void);
 89phys_addr_t kvm_get_idmap_vector(void);
 90int kvm_mmu_init(void);
 91void kvm_clear_hyp_idmap(void);
 92
 93#define	kvm_set_pte(ptep, pte)		set_pte(ptep, pte)
 94#define	kvm_set_pmd(pmdp, pmd)		set_pmd(pmdp, pmd)
 95
 96static inline bool kvm_is_write_fault(unsigned long esr)
 97{
 98	unsigned long esr_ec = esr >> ESR_EL2_EC_SHIFT;
 99
100	if (esr_ec == ESR_EL2_EC_IABT)
101		return false;
102
103	if ((esr & ESR_EL2_ISV) && !(esr & ESR_EL2_WNR))
104		return false;
105
106	return true;
107}
108
109static inline void kvm_clean_pgd(pgd_t *pgd) {}
110static inline void kvm_clean_pmd_entry(pmd_t *pmd) {}
111static inline void kvm_clean_pte(pte_t *pte) {}
112static inline void kvm_clean_pte_entry(pte_t *pte) {}
113
114static inline void kvm_set_s2pte_writable(pte_t *pte)
115{
116	pte_val(*pte) |= PTE_S2_RDWR;
117}
118
119static inline void kvm_set_s2pmd_writable(pmd_t *pmd)
120{
121	pmd_val(*pmd) |= PMD_S2_RDWR;
122}
123
124#define kvm_pgd_addr_end(addr, end)	pgd_addr_end(addr, end)
125#define kvm_pud_addr_end(addr, end)	pud_addr_end(addr, end)
126#define kvm_pmd_addr_end(addr, end)	pmd_addr_end(addr, end)
127
128struct kvm;
129
130#define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
131
132static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
133{
134	return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
135}
136
137static inline void coherent_cache_guest_page(struct kvm_vcpu *vcpu, hva_t hva,
138					     unsigned long size)
139{
140	if (!vcpu_has_cache_enabled(vcpu))
141		kvm_flush_dcache_to_poc((void *)hva, size);
142
143	if (!icache_is_aliasing()) {		/* PIPT */
144		flush_icache_range(hva, hva + size);
145	} else if (!icache_is_aivivt()) {	/* non ASID-tagged VIVT */
146		/* any kind of VIPT cache */
147		__flush_icache_all();
148	}
149}
150
151#define kvm_virt_to_phys(x)		__virt_to_phys((unsigned long)(x))
152
153void stage2_flush_vm(struct kvm *kvm);
154
155#endif /* __ASSEMBLY__ */
156#endif /* __ARM64_KVM_MMU_H__ */
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * Copyright (C) 2012,2013 - ARM Ltd
  4 * Author: Marc Zyngier <marc.zyngier@arm.com>
  5 */
  6
  7#ifndef __ARM64_KVM_MMU_H__
  8#define __ARM64_KVM_MMU_H__
  9
 10#include <asm/page.h>
 11#include <asm/memory.h>
 12#include <asm/mmu.h>
 13#include <asm/cpufeature.h>
 14
 15/*
 16 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
 17 * "negative" addresses. This makes it impossible to directly share
 18 * mappings with the kernel.
 19 *
 20 * Instead, give the HYP mode its own VA region at a fixed offset from
 21 * the kernel by just masking the top bits (which are all ones for a
 22 * kernel address). We need to find out how many bits to mask.
 23 *
 24 * We want to build a set of page tables that cover both parts of the
 25 * idmap (the trampoline page used to initialize EL2), and our normal
 26 * runtime VA space, at the same time.
 27 *
 28 * Given that the kernel uses VA_BITS for its entire address space,
 29 * and that half of that space (VA_BITS - 1) is used for the linear
 30 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
 31 *
 32 * The main question is "Within the VA_BITS space, does EL2 use the
 33 * top or the bottom half of that space to shadow the kernel's linear
 34 * mapping?". As we need to idmap the trampoline page, this is
 35 * determined by the range in which this page lives.
 36 *
 37 * If the page is in the bottom half, we have to use the top half. If
 38 * the page is in the top half, we have to use the bottom half:
 39 *
 40 * T = __pa_symbol(__hyp_idmap_text_start)
 41 * if (T & BIT(VA_BITS - 1))
 42 *	HYP_VA_MIN = 0  //idmap in upper half
 43 * else
 44 *	HYP_VA_MIN = 1 << (VA_BITS - 1)
 45 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
 46 *
 47 * When using VHE, there are no separate hyp mappings and all KVM
 48 * functionality is already mapped as part of the main kernel
 49 * mappings, and none of this applies in that case.
 50 */
 51
 52#ifdef __ASSEMBLY__
 53
 54#include <asm/alternative.h>
 55
 56/*
 57 * Convert a kernel VA into a HYP VA.
 58 * reg: VA to be converted.
 59 *
 60 * The actual code generation takes place in kvm_update_va_mask, and
 61 * the instructions below are only there to reserve the space and
 62 * perform the register allocation (kvm_update_va_mask uses the
 63 * specific registers encoded in the instructions).
 64 */
 65.macro kern_hyp_va	reg
 66#ifndef __KVM_VHE_HYPERVISOR__
 67alternative_cb ARM64_ALWAYS_SYSTEM, kvm_update_va_mask
 68	and     \reg, \reg, #1		/* mask with va_mask */
 69	ror	\reg, \reg, #1		/* rotate to the first tag bit */
 70	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
 71	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
 72	ror	\reg, \reg, #63		/* rotate back */
 73alternative_cb_end
 74#endif
 75.endm
 76
 77/*
 78 * Convert a hypervisor VA to a PA
 79 * reg: hypervisor address to be converted in place
 80 * tmp: temporary register
 81 */
 82.macro hyp_pa reg, tmp
 83	ldr_l	\tmp, hyp_physvirt_offset
 84	add	\reg, \reg, \tmp
 85.endm
 86
 87/*
 88 * Convert a hypervisor VA to a kernel image address
 89 * reg: hypervisor address to be converted in place
 90 * tmp: temporary register
 91 *
 92 * The actual code generation takes place in kvm_get_kimage_voffset, and
 93 * the instructions below are only there to reserve the space and
 94 * perform the register allocation (kvm_get_kimage_voffset uses the
 95 * specific registers encoded in the instructions).
 96 */
 97.macro hyp_kimg_va reg, tmp
 98	/* Convert hyp VA -> PA. */
 99	hyp_pa	\reg, \tmp
100
101	/* Load kimage_voffset. */
102alternative_cb ARM64_ALWAYS_SYSTEM, kvm_get_kimage_voffset
103	movz	\tmp, #0
104	movk	\tmp, #0, lsl #16
105	movk	\tmp, #0, lsl #32
106	movk	\tmp, #0, lsl #48
107alternative_cb_end
108
109	/* Convert PA -> kimg VA. */
110	add	\reg, \reg, \tmp
111.endm
112
113#else
114
115#include <linux/pgtable.h>
116#include <asm/pgalloc.h>
117#include <asm/cache.h>
118#include <asm/cacheflush.h>
119#include <asm/mmu_context.h>
120#include <asm/kvm_emulate.h>
121#include <asm/kvm_host.h>
122
123void kvm_update_va_mask(struct alt_instr *alt,
124			__le32 *origptr, __le32 *updptr, int nr_inst);
125void kvm_compute_layout(void);
126void kvm_apply_hyp_relocations(void);
127
128#define __hyp_pa(x) (((phys_addr_t)(x)) + hyp_physvirt_offset)
129
130static __always_inline unsigned long __kern_hyp_va(unsigned long v)
131{
132#ifndef __KVM_VHE_HYPERVISOR__
133	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
134				    "ror %0, %0, #1\n"
135				    "add %0, %0, #0\n"
136				    "add %0, %0, #0, lsl 12\n"
137				    "ror %0, %0, #63\n",
138				    ARM64_ALWAYS_SYSTEM,
139				    kvm_update_va_mask)
140		     : "+r" (v));
141#endif
142	return v;
143}
144
145#define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
146
147/*
148 * We currently support using a VM-specified IPA size. For backward
149 * compatibility, the default IPA size is fixed to 40bits.
150 */
151#define KVM_PHYS_SHIFT	(40)
152
153#define kvm_phys_shift(mmu)		VTCR_EL2_IPA((mmu)->vtcr)
154#define kvm_phys_size(mmu)		(_AC(1, ULL) << kvm_phys_shift(mmu))
155#define kvm_phys_mask(mmu)		(kvm_phys_size(mmu) - _AC(1, ULL))
156
157#include <asm/kvm_pgtable.h>
158#include <asm/stage2_pgtable.h>
159
160int kvm_share_hyp(void *from, void *to);
161void kvm_unshare_hyp(void *from, void *to);
162int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
163int __create_hyp_mappings(unsigned long start, unsigned long size,
164			  unsigned long phys, enum kvm_pgtable_prot prot);
165int hyp_alloc_private_va_range(size_t size, unsigned long *haddr);
166int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
167			   void __iomem **kaddr,
168			   void __iomem **haddr);
169int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
170			     void **haddr);
171int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr);
172void __init free_hyp_pgds(void);
173
174void stage2_unmap_vm(struct kvm *kvm);
175int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type);
176void kvm_uninit_stage2_mmu(struct kvm *kvm);
177void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
178int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
179			  phys_addr_t pa, unsigned long size, bool writable);
180
181int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
182
183phys_addr_t kvm_mmu_get_httbr(void);
184phys_addr_t kvm_get_idmap_vector(void);
185int __init kvm_mmu_init(u32 *hyp_va_bits);
186
187static inline void *__kvm_vector_slot2addr(void *base,
188					   enum arm64_hyp_spectre_vector slot)
189{
190	int idx = slot - (slot != HYP_VECTOR_DIRECT);
191
192	return base + (idx * SZ_2K);
193}
194
195struct kvm;
196
197#define kvm_flush_dcache_to_poc(a,l)	\
198	dcache_clean_inval_poc((unsigned long)(a), (unsigned long)(a)+(l))
199
200static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
201{
202	u64 cache_bits = SCTLR_ELx_M | SCTLR_ELx_C;
203	int reg;
204
205	if (vcpu_is_el2(vcpu))
206		reg = SCTLR_EL2;
207	else
208		reg = SCTLR_EL1;
209
210	return (vcpu_read_sys_reg(vcpu, reg) & cache_bits) == cache_bits;
211}
212
213static inline void __clean_dcache_guest_page(void *va, size_t size)
214{
215	/*
216	 * With FWB, we ensure that the guest always accesses memory using
217	 * cacheable attributes, and we don't have to clean to PoC when
218	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
219	 * PoU is not required either in this case.
220	 */
221	if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
222		return;
223
224	kvm_flush_dcache_to_poc(va, size);
225}
226
227static inline size_t __invalidate_icache_max_range(void)
228{
229	u8 iminline;
230	u64 ctr;
231
232	asm volatile(ALTERNATIVE_CB("movz %0, #0\n"
233				    "movk %0, #0, lsl #16\n"
234				    "movk %0, #0, lsl #32\n"
235				    "movk %0, #0, lsl #48\n",
236				    ARM64_ALWAYS_SYSTEM,
237				    kvm_compute_final_ctr_el0)
238		     : "=r" (ctr));
239
240	iminline = SYS_FIELD_GET(CTR_EL0, IminLine, ctr) + 2;
241	return MAX_DVM_OPS << iminline;
242}
243
244static inline void __invalidate_icache_guest_page(void *va, size_t size)
245{
246	/*
247	 * Blow the whole I-cache if it is aliasing (i.e. VIPT) or the
248	 * invalidation range exceeds our arbitrary limit on invadations by
249	 * cache line.
250	 */
251	if (icache_is_aliasing() || size > __invalidate_icache_max_range())
252		icache_inval_all_pou();
253	else
254		icache_inval_pou((unsigned long)va, (unsigned long)va + size);
255}
256
257void kvm_set_way_flush(struct kvm_vcpu *vcpu);
258void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
259
260static inline unsigned int kvm_get_vmid_bits(void)
261{
262	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
263
264	return get_vmid_bits(reg);
265}
266
267/*
268 * We are not in the kvm->srcu critical section most of the time, so we take
269 * the SRCU read lock here. Since we copy the data from the user page, we
270 * can immediately drop the lock again.
271 */
272static inline int kvm_read_guest_lock(struct kvm *kvm,
273				      gpa_t gpa, void *data, unsigned long len)
274{
275	int srcu_idx = srcu_read_lock(&kvm->srcu);
276	int ret = kvm_read_guest(kvm, gpa, data, len);
277
278	srcu_read_unlock(&kvm->srcu, srcu_idx);
279
280	return ret;
281}
282
283static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
284				       const void *data, unsigned long len)
285{
286	int srcu_idx = srcu_read_lock(&kvm->srcu);
287	int ret = kvm_write_guest(kvm, gpa, data, len);
288
289	srcu_read_unlock(&kvm->srcu, srcu_idx);
290
291	return ret;
292}
293
294#define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
295
296/*
297 * When this is (directly or indirectly) used on the TLB invalidation
298 * path, we rely on a previously issued DSB so that page table updates
299 * and VMID reads are correctly ordered.
300 */
301static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
302{
303	struct kvm_vmid *vmid = &mmu->vmid;
304	u64 vmid_field, baddr;
305	u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
306
307	baddr = mmu->pgd_phys;
308	vmid_field = atomic64_read(&vmid->id) << VTTBR_VMID_SHIFT;
309	vmid_field &= VTTBR_VMID_MASK(kvm_arm_vmid_bits);
310	return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
311}
312
313/*
314 * Must be called from hyp code running at EL2 with an updated VTTBR
315 * and interrupts disabled.
316 */
317static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu,
318					  struct kvm_arch *arch)
319{
320	write_sysreg(mmu->vtcr, vtcr_el2);
321	write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
322
323	/*
324	 * ARM errata 1165522 and 1530923 require the actual execution of the
325	 * above before we can switch to the EL1/EL0 translation regime used by
326	 * the guest.
327	 */
328	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
329}
330
331static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu)
332{
333	return container_of(mmu->arch, struct kvm, arch);
334}
335#endif /* __ASSEMBLY__ */
336#endif /* __ARM64_KVM_MMU_H__ */