Linux Audio

Check our new training course

Loading...
  1/*
  2 * Copyright (C) 2012,2013 - ARM Ltd
  3 * Author: Marc Zyngier <marc.zyngier@arm.com>
  4 *
  5 * This program is free software; you can redistribute it and/or modify
  6 * it under the terms of the GNU General Public License version 2 as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 16 */
 17
 18#ifndef __ARM64_KVM_MMU_H__
 19#define __ARM64_KVM_MMU_H__
 20
 21#include <asm/page.h>
 22#include <asm/memory.h>
 23
 24/*
 25 * As we only have the TTBR0_EL2 register, we cannot express
 26 * "negative" addresses. This makes it impossible to directly share
 27 * mappings with the kernel.
 28 *
 29 * Instead, give the HYP mode its own VA region at a fixed offset from
 30 * the kernel by just masking the top bits (which are all ones for a
 31 * kernel address).
 32 */
 33#define HYP_PAGE_OFFSET_SHIFT	VA_BITS
 34#define HYP_PAGE_OFFSET_MASK	((UL(1) << HYP_PAGE_OFFSET_SHIFT) - 1)
 35#define HYP_PAGE_OFFSET		(PAGE_OFFSET & HYP_PAGE_OFFSET_MASK)
 36
 37/*
 38 * Our virtual mapping for the idmap-ed MMU-enable code. Must be
 39 * shared across all the page-tables. Conveniently, we use the last
 40 * possible page, where no kernel mapping will ever exist.
 41 */
 42#define TRAMPOLINE_VA		(HYP_PAGE_OFFSET_MASK & PAGE_MASK)
 43
 44#ifdef __ASSEMBLY__
 45
 46/*
 47 * Convert a kernel VA into a HYP VA.
 48 * reg: VA to be converted.
 49 */
 50.macro kern_hyp_va	reg
 51	and	\reg, \reg, #HYP_PAGE_OFFSET_MASK
 52.endm
 53
 54#else
 55
 56#include <asm/cachetype.h>
 57#include <asm/cacheflush.h>
 58
 59#define KERN_TO_HYP(kva)	((unsigned long)kva - PAGE_OFFSET + HYP_PAGE_OFFSET)
 60
 61/*
 62 * Align KVM with the kernel's view of physical memory. Should be
 63 * 40bit IPA, with PGD being 8kB aligned in the 4KB page configuration.
 64 */
 65#define KVM_PHYS_SHIFT	PHYS_MASK_SHIFT
 66#define KVM_PHYS_SIZE	(1UL << KVM_PHYS_SHIFT)
 67#define KVM_PHYS_MASK	(KVM_PHYS_SIZE - 1UL)
 68
 69/* Make sure we get the right size, and thus the right alignment */
 70#define PTRS_PER_S2_PGD (1 << (KVM_PHYS_SHIFT - PGDIR_SHIFT))
 71#define S2_PGD_ORDER	get_order(PTRS_PER_S2_PGD * sizeof(pgd_t))
 72
 73int create_hyp_mappings(void *from, void *to);
 74int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
 75void free_boot_hyp_pgd(void);
 76void free_hyp_pgds(void);
 77
 78int kvm_alloc_stage2_pgd(struct kvm *kvm);
 79void kvm_free_stage2_pgd(struct kvm *kvm);
 80int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
 81			  phys_addr_t pa, unsigned long size);
 82
 83int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
 84
 85void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
 86
 87phys_addr_t kvm_mmu_get_httbr(void);
 88phys_addr_t kvm_mmu_get_boot_httbr(void);
 89phys_addr_t kvm_get_idmap_vector(void);
 90int kvm_mmu_init(void);
 91void kvm_clear_hyp_idmap(void);
 92
 93#define	kvm_set_pte(ptep, pte)		set_pte(ptep, pte)
 94#define	kvm_set_pmd(pmdp, pmd)		set_pmd(pmdp, pmd)
 95
 96static inline bool kvm_is_write_fault(unsigned long esr)
 97{
 98	unsigned long esr_ec = esr >> ESR_EL2_EC_SHIFT;
 99
100	if (esr_ec == ESR_EL2_EC_IABT)
101		return false;
102
103	if ((esr & ESR_EL2_ISV) && !(esr & ESR_EL2_WNR))
104		return false;
105
106	return true;
107}
108
109static inline void kvm_clean_pgd(pgd_t *pgd) {}
110static inline void kvm_clean_pmd_entry(pmd_t *pmd) {}
111static inline void kvm_clean_pte(pte_t *pte) {}
112static inline void kvm_clean_pte_entry(pte_t *pte) {}
113
114static inline void kvm_set_s2pte_writable(pte_t *pte)
115{
116	pte_val(*pte) |= PTE_S2_RDWR;
117}
118
119static inline void kvm_set_s2pmd_writable(pmd_t *pmd)
120{
121	pmd_val(*pmd) |= PMD_S2_RDWR;
122}
123
124#define kvm_pgd_addr_end(addr, end)	pgd_addr_end(addr, end)
125#define kvm_pud_addr_end(addr, end)	pud_addr_end(addr, end)
126#define kvm_pmd_addr_end(addr, end)	pmd_addr_end(addr, end)
127
128struct kvm;
129
130#define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
131
132static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
133{
134	return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
135}
136
137static inline void coherent_cache_guest_page(struct kvm_vcpu *vcpu, hva_t hva,
138					     unsigned long size)
139{
140	if (!vcpu_has_cache_enabled(vcpu))
141		kvm_flush_dcache_to_poc((void *)hva, size);
142
143	if (!icache_is_aliasing()) {		/* PIPT */
144		flush_icache_range(hva, hva + size);
145	} else if (!icache_is_aivivt()) {	/* non ASID-tagged VIVT */
146		/* any kind of VIPT cache */
147		__flush_icache_all();
148	}
149}
150
151#define kvm_virt_to_phys(x)		__virt_to_phys((unsigned long)(x))
152
153void stage2_flush_vm(struct kvm *kvm);
154
155#endif /* __ASSEMBLY__ */
156#endif /* __ARM64_KVM_MMU_H__ */
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * Copyright (C) 2012,2013 - ARM Ltd
  4 * Author: Marc Zyngier <marc.zyngier@arm.com>
  5 */
  6
  7#ifndef __ARM64_KVM_MMU_H__
  8#define __ARM64_KVM_MMU_H__
  9
 10#include <asm/page.h>
 11#include <asm/memory.h>
 12#include <asm/cpufeature.h>
 13
 14/*
 15 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
 16 * "negative" addresses. This makes it impossible to directly share
 17 * mappings with the kernel.
 18 *
 19 * Instead, give the HYP mode its own VA region at a fixed offset from
 20 * the kernel by just masking the top bits (which are all ones for a
 21 * kernel address). We need to find out how many bits to mask.
 22 *
 23 * We want to build a set of page tables that cover both parts of the
 24 * idmap (the trampoline page used to initialize EL2), and our normal
 25 * runtime VA space, at the same time.
 26 *
 27 * Given that the kernel uses VA_BITS for its entire address space,
 28 * and that half of that space (VA_BITS - 1) is used for the linear
 29 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
 30 *
 31 * The main question is "Within the VA_BITS space, does EL2 use the
 32 * top or the bottom half of that space to shadow the kernel's linear
 33 * mapping?". As we need to idmap the trampoline page, this is
 34 * determined by the range in which this page lives.
 35 *
 36 * If the page is in the bottom half, we have to use the top half. If
 37 * the page is in the top half, we have to use the bottom half:
 38 *
 39 * T = __pa_symbol(__hyp_idmap_text_start)
 40 * if (T & BIT(VA_BITS - 1))
 41 *	HYP_VA_MIN = 0  //idmap in upper half
 42 * else
 43 *	HYP_VA_MIN = 1 << (VA_BITS - 1)
 44 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
 45 *
 46 * This of course assumes that the trampoline page exists within the
 47 * VA_BITS range. If it doesn't, then it means we're in the odd case
 48 * where the kernel idmap (as well as HYP) uses more levels than the
 49 * kernel runtime page tables (as seen when the kernel is configured
 50 * for 4k pages, 39bits VA, and yet memory lives just above that
 51 * limit, forcing the idmap to use 4 levels of page tables while the
 52 * kernel itself only uses 3). In this particular case, it doesn't
 53 * matter which side of VA_BITS we use, as we're guaranteed not to
 54 * conflict with anything.
 55 *
 56 * When using VHE, there are no separate hyp mappings and all KVM
 57 * functionality is already mapped as part of the main kernel
 58 * mappings, and none of this applies in that case.
 59 */
 60
 61#ifdef __ASSEMBLY__
 62
 63#include <asm/alternative.h>
 64
 65/*
 66 * Convert a kernel VA into a HYP VA.
 67 * reg: VA to be converted.
 68 *
 69 * The actual code generation takes place in kvm_update_va_mask, and
 70 * the instructions below are only there to reserve the space and
 71 * perform the register allocation (kvm_update_va_mask uses the
 72 * specific registers encoded in the instructions).
 73 */
 74.macro kern_hyp_va	reg
 75alternative_cb kvm_update_va_mask
 76	and     \reg, \reg, #1		/* mask with va_mask */
 77	ror	\reg, \reg, #1		/* rotate to the first tag bit */
 78	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
 79	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
 80	ror	\reg, \reg, #63		/* rotate back */
 81alternative_cb_end
 82.endm
 83
 84#else
 85
 86#include <asm/pgalloc.h>
 87#include <asm/cache.h>
 88#include <asm/cacheflush.h>
 89#include <asm/mmu_context.h>
 90#include <asm/pgtable.h>
 91
 92void kvm_update_va_mask(struct alt_instr *alt,
 93			__le32 *origptr, __le32 *updptr, int nr_inst);
 94
 95static inline unsigned long __kern_hyp_va(unsigned long v)
 96{
 97	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
 98				    "ror %0, %0, #1\n"
 99				    "add %0, %0, #0\n"
100				    "add %0, %0, #0, lsl 12\n"
101				    "ror %0, %0, #63\n",
102				    kvm_update_va_mask)
103		     : "+r" (v));
104	return v;
105}
106
107#define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
108
109/*
110 * Obtain the PC-relative address of a kernel symbol
111 * s: symbol
112 *
113 * The goal of this macro is to return a symbol's address based on a
114 * PC-relative computation, as opposed to a loading the VA from a
115 * constant pool or something similar. This works well for HYP, as an
116 * absolute VA is guaranteed to be wrong. Only use this if trying to
117 * obtain the address of a symbol (i.e. not something you obtained by
118 * following a pointer).
119 */
120#define hyp_symbol_addr(s)						\
121	({								\
122		typeof(s) *addr;					\
123		asm("adrp	%0, %1\n"				\
124		    "add	%0, %0, :lo12:%1\n"			\
125		    : "=r" (addr) : "S" (&s));				\
126		addr;							\
127	})
128
129/*
130 * We currently support using a VM-specified IPA size. For backward
131 * compatibility, the default IPA size is fixed to 40bits.
132 */
133#define KVM_PHYS_SHIFT	(40)
134
135#define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
136#define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
137#define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
138
139static inline bool kvm_page_empty(void *ptr)
140{
141	struct page *ptr_page = virt_to_page(ptr);
142	return page_count(ptr_page) == 1;
143}
144
145#include <asm/stage2_pgtable.h>
146
147int create_hyp_mappings(void *from, void *to, pgprot_t prot);
148int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
149			   void __iomem **kaddr,
150			   void __iomem **haddr);
151int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
152			     void **haddr);
153void free_hyp_pgds(void);
154
155void stage2_unmap_vm(struct kvm *kvm);
156int kvm_alloc_stage2_pgd(struct kvm *kvm);
157void kvm_free_stage2_pgd(struct kvm *kvm);
158int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
159			  phys_addr_t pa, unsigned long size, bool writable);
160
161int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
162
163void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
164
165phys_addr_t kvm_mmu_get_httbr(void);
166phys_addr_t kvm_get_idmap_vector(void);
167int kvm_mmu_init(void);
168void kvm_clear_hyp_idmap(void);
169
170#define kvm_mk_pmd(ptep)					\
171	__pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
172#define kvm_mk_pud(pmdp)					\
173	__pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
174#define kvm_mk_pgd(pudp)					\
175	__pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE)
176
177#define kvm_set_pud(pudp, pud)		set_pud(pudp, pud)
178
179#define kvm_pfn_pte(pfn, prot)		pfn_pte(pfn, prot)
180#define kvm_pfn_pmd(pfn, prot)		pfn_pmd(pfn, prot)
181#define kvm_pfn_pud(pfn, prot)		pfn_pud(pfn, prot)
182
183#define kvm_pud_pfn(pud)		pud_pfn(pud)
184
185#define kvm_pmd_mkhuge(pmd)		pmd_mkhuge(pmd)
186#define kvm_pud_mkhuge(pud)		pud_mkhuge(pud)
187
188static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
189{
190	pte_val(pte) |= PTE_S2_RDWR;
191	return pte;
192}
193
194static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
195{
196	pmd_val(pmd) |= PMD_S2_RDWR;
197	return pmd;
198}
199
200static inline pud_t kvm_s2pud_mkwrite(pud_t pud)
201{
202	pud_val(pud) |= PUD_S2_RDWR;
203	return pud;
204}
205
206static inline pte_t kvm_s2pte_mkexec(pte_t pte)
207{
208	pte_val(pte) &= ~PTE_S2_XN;
209	return pte;
210}
211
212static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
213{
214	pmd_val(pmd) &= ~PMD_S2_XN;
215	return pmd;
216}
217
218static inline pud_t kvm_s2pud_mkexec(pud_t pud)
219{
220	pud_val(pud) &= ~PUD_S2_XN;
221	return pud;
222}
223
224static inline void kvm_set_s2pte_readonly(pte_t *ptep)
225{
226	pteval_t old_pteval, pteval;
227
228	pteval = READ_ONCE(pte_val(*ptep));
229	do {
230		old_pteval = pteval;
231		pteval &= ~PTE_S2_RDWR;
232		pteval |= PTE_S2_RDONLY;
233		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
234	} while (pteval != old_pteval);
235}
236
237static inline bool kvm_s2pte_readonly(pte_t *ptep)
238{
239	return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
240}
241
242static inline bool kvm_s2pte_exec(pte_t *ptep)
243{
244	return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
245}
246
247static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
248{
249	kvm_set_s2pte_readonly((pte_t *)pmdp);
250}
251
252static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
253{
254	return kvm_s2pte_readonly((pte_t *)pmdp);
255}
256
257static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
258{
259	return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
260}
261
262static inline void kvm_set_s2pud_readonly(pud_t *pudp)
263{
264	kvm_set_s2pte_readonly((pte_t *)pudp);
265}
266
267static inline bool kvm_s2pud_readonly(pud_t *pudp)
268{
269	return kvm_s2pte_readonly((pte_t *)pudp);
270}
271
272static inline bool kvm_s2pud_exec(pud_t *pudp)
273{
274	return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN);
275}
276
277static inline pud_t kvm_s2pud_mkyoung(pud_t pud)
278{
279	return pud_mkyoung(pud);
280}
281
282static inline bool kvm_s2pud_young(pud_t pud)
283{
284	return pud_young(pud);
285}
286
287#define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
288
289#ifdef __PAGETABLE_PMD_FOLDED
290#define hyp_pmd_table_empty(pmdp) (0)
291#else
292#define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
293#endif
294
295#ifdef __PAGETABLE_PUD_FOLDED
296#define hyp_pud_table_empty(pudp) (0)
297#else
298#define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
299#endif
300
301struct kvm;
302
303#define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
304
305static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
306{
307	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
308}
309
310static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
311{
312	void *va = page_address(pfn_to_page(pfn));
313
314	/*
315	 * With FWB, we ensure that the guest always accesses memory using
316	 * cacheable attributes, and we don't have to clean to PoC when
317	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
318	 * PoU is not required either in this case.
319	 */
320	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
321		return;
322
323	kvm_flush_dcache_to_poc(va, size);
324}
325
326static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
327						  unsigned long size)
328{
329	if (icache_is_aliasing()) {
330		/* any kind of VIPT cache */
331		__flush_icache_all();
332	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
333		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
334		void *va = page_address(pfn_to_page(pfn));
335
336		invalidate_icache_range((unsigned long)va,
337					(unsigned long)va + size);
338	}
339}
340
341static inline void __kvm_flush_dcache_pte(pte_t pte)
342{
343	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
344		struct page *page = pte_page(pte);
345		kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
346	}
347}
348
349static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
350{
351	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
352		struct page *page = pmd_page(pmd);
353		kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
354	}
355}
356
357static inline void __kvm_flush_dcache_pud(pud_t pud)
358{
359	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
360		struct page *page = pud_page(pud);
361		kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
362	}
363}
364
365#define kvm_virt_to_phys(x)		__pa_symbol(x)
366
367void kvm_set_way_flush(struct kvm_vcpu *vcpu);
368void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
369
370static inline bool __kvm_cpu_uses_extended_idmap(void)
371{
372	return __cpu_uses_extended_idmap_level();
373}
374
375static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
376{
377	return idmap_ptrs_per_pgd;
378}
379
380/*
381 * Can't use pgd_populate here, because the extended idmap adds an extra level
382 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
383 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
384 */
385static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
386				       pgd_t *hyp_pgd,
387				       pgd_t *merged_hyp_pgd,
388				       unsigned long hyp_idmap_start)
389{
390	int idmap_idx;
391	u64 pgd_addr;
392
393	/*
394	 * Use the first entry to access the HYP mappings. It is
395	 * guaranteed to be free, otherwise we wouldn't use an
396	 * extended idmap.
397	 */
398	VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
399	pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
400	merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
401
402	/*
403	 * Create another extended level entry that points to the boot HYP map,
404	 * which contains an ID mapping of the HYP init code. We essentially
405	 * merge the boot and runtime HYP maps by doing so, but they don't
406	 * overlap anyway, so this is fine.
407	 */
408	idmap_idx = hyp_idmap_start >> VA_BITS;
409	VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
410	pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
411	merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
412}
413
414static inline unsigned int kvm_get_vmid_bits(void)
415{
416	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
417
418	return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
419}
420
421/*
422 * We are not in the kvm->srcu critical section most of the time, so we take
423 * the SRCU read lock here. Since we copy the data from the user page, we
424 * can immediately drop the lock again.
425 */
426static inline int kvm_read_guest_lock(struct kvm *kvm,
427				      gpa_t gpa, void *data, unsigned long len)
428{
429	int srcu_idx = srcu_read_lock(&kvm->srcu);
430	int ret = kvm_read_guest(kvm, gpa, data, len);
431
432	srcu_read_unlock(&kvm->srcu, srcu_idx);
433
434	return ret;
435}
436
437static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
438				       const void *data, unsigned long len)
439{
440	int srcu_idx = srcu_read_lock(&kvm->srcu);
441	int ret = kvm_write_guest(kvm, gpa, data, len);
442
443	srcu_read_unlock(&kvm->srcu, srcu_idx);
444
445	return ret;
446}
447
448#ifdef CONFIG_KVM_INDIRECT_VECTORS
449/*
450 * EL2 vectors can be mapped and rerouted in a number of ways,
451 * depending on the kernel configuration and CPU present:
452 *
453 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
454 *   hardening sequence is placed in one of the vector slots, which is
455 *   executed before jumping to the real vectors.
456 *
457 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
458 *   ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
459 *   hardening sequence is mapped next to the idmap page, and executed
460 *   before jumping to the real vectors.
461 *
462 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
463 *   empty slot is selected, mapped next to the idmap page, and
464 *   executed before jumping to the real vectors.
465 *
466 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
467 * VHE, as we don't have hypervisor-specific mappings. If the system
468 * is VHE and yet selects this capability, it will be ignored.
469 */
470#include <asm/mmu.h>
471
472extern void *__kvm_bp_vect_base;
473extern int __kvm_harden_el2_vector_slot;
474
475static inline void *kvm_get_hyp_vector(void)
476{
477	struct bp_hardening_data *data = arm64_get_bp_hardening_data();
478	void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
479	int slot = -1;
480
481	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
482		vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
483		slot = data->hyp_vectors_slot;
484	}
485
486	if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
487		vect = __kvm_bp_vect_base;
488		if (slot == -1)
489			slot = __kvm_harden_el2_vector_slot;
490	}
491
492	if (slot != -1)
493		vect += slot * SZ_2K;
494
495	return vect;
496}
497
498/*  This is only called on a !VHE system */
499static inline int kvm_map_vectors(void)
500{
501	/*
502	 * HBP  = ARM64_HARDEN_BRANCH_PREDICTOR
503	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
504	 *
505	 * !HBP + !HEL2 -> use direct vectors
506	 *  HBP + !HEL2 -> use hardened vectors in place
507	 * !HBP +  HEL2 -> allocate one vector slot and use exec mapping
508	 *  HBP +  HEL2 -> use hardened vertors and use exec mapping
509	 */
510	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
511		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
512		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
513	}
514
515	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
516		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
517		unsigned long size = (__bp_harden_hyp_vecs_end -
518				      __bp_harden_hyp_vecs_start);
519
520		/*
521		 * Always allocate a spare vector slot, as we don't
522		 * know yet which CPUs have a BP hardening slot that
523		 * we can reuse.
524		 */
525		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
526		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
527		return create_hyp_exec_mappings(vect_pa, size,
528						&__kvm_bp_vect_base);
529	}
530
531	return 0;
532}
533#else
534static inline void *kvm_get_hyp_vector(void)
535{
536	return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
537}
538
539static inline int kvm_map_vectors(void)
540{
541	return 0;
542}
543#endif
544
545#ifdef CONFIG_ARM64_SSBD
546DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
547
548static inline int hyp_map_aux_data(void)
549{
550	int cpu, err;
551
552	for_each_possible_cpu(cpu) {
553		u64 *ptr;
554
555		ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
556		err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
557		if (err)
558			return err;
559	}
560	return 0;
561}
562#else
563static inline int hyp_map_aux_data(void)
564{
565	return 0;
566}
567#endif
568
569#define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
570
571/*
572 * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
573 * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
574 * 52bit IPS.
575 */
576static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
577{
578	int x = ARM64_VTTBR_X(ipa_shift, levels);
579
580	return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
581}
582
583static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
584{
585	unsigned int x = arm64_vttbr_x(ipa_shift, levels);
586
587	return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
588}
589
590static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
591{
592	return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
593}
594
595static __always_inline u64 kvm_get_vttbr(struct kvm *kvm)
596{
597	struct kvm_vmid *vmid = &kvm->arch.vmid;
598	u64 vmid_field, baddr;
599	u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
600
601	baddr = kvm->arch.pgd_phys;
602	vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
603	return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
604}
605
606#endif /* __ASSEMBLY__ */
607#endif /* __ARM64_KVM_MMU_H__ */