Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
 
 
   8#include <linux/mm.h>
   9#include <linux/sched.h>
 
 
 
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
  15#include <linux/shrinker.h>
  16#include <linux/mm_inline.h>
  17#include <linux/kthread.h>
 
 
  18#include <linux/khugepaged.h>
  19#include <linux/freezer.h>
 
  20#include <linux/mman.h>
 
  21#include <linux/pagemap.h>
 
  22#include <linux/migrate.h>
  23#include <linux/hashtable.h>
 
 
 
 
 
 
 
 
  24
  25#include <asm/tlb.h>
  26#include <asm/pgalloc.h>
  27#include "internal.h"
 
 
 
 
  28
  29/*
  30 * By default transparent hugepage support is disabled in order that avoid
  31 * to risk increase the memory footprint of applications without a guaranteed
  32 * benefit. When transparent hugepage support is enabled, is for all mappings,
  33 * and khugepaged scans all mappings.
  34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  35 * for all hugepage allocations.
  36 */
  37unsigned long transparent_hugepage_flags __read_mostly =
  38#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  39	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  40#endif
  41#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  42	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  43#endif
  44	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  45	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  46	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  47
  48/* default scan 8*512 pte (or vmas) every 30 second */
  49static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  50static unsigned int khugepaged_pages_collapsed;
  51static unsigned int khugepaged_full_scans;
  52static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  53/* during fragmentation poll the hugepage allocator once every minute */
  54static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  55static struct task_struct *khugepaged_thread __read_mostly;
  56static DEFINE_MUTEX(khugepaged_mutex);
  57static DEFINE_SPINLOCK(khugepaged_mm_lock);
  58static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  59/*
  60 * default collapse hugepages if there is at least one pte mapped like
  61 * it would have happened if the vma was large enough during page
  62 * fault.
  63 */
  64static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  65
  66static int khugepaged(void *none);
  67static int khugepaged_slab_init(void);
  68
  69#define MM_SLOTS_HASH_BITS 10
  70static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  71
  72static struct kmem_cache *mm_slot_cache __read_mostly;
  73
  74/**
  75 * struct mm_slot - hash lookup from mm to mm_slot
  76 * @hash: hash collision list
  77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  78 * @mm: the mm that this information is valid for
  79 */
  80struct mm_slot {
  81	struct hlist_node hash;
  82	struct list_head mm_node;
  83	struct mm_struct *mm;
  84};
  85
  86/**
  87 * struct khugepaged_scan - cursor for scanning
  88 * @mm_head: the head of the mm list to scan
  89 * @mm_slot: the current mm_slot we are scanning
  90 * @address: the next address inside that to be scanned
  91 *
  92 * There is only the one khugepaged_scan instance of this cursor structure.
  93 */
  94struct khugepaged_scan {
  95	struct list_head mm_head;
  96	struct mm_slot *mm_slot;
  97	unsigned long address;
  98};
  99static struct khugepaged_scan khugepaged_scan = {
 100	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 101};
 102
 
 
 
 103
 104static int set_recommended_min_free_kbytes(void)
 
 105{
 106	struct zone *zone;
 107	int nr_zones = 0;
 108	unsigned long recommended_min;
 109
 110	if (!khugepaged_enabled())
 111		return 0;
 112
 113	for_each_populated_zone(zone)
 114		nr_zones++;
 
 
 
 
 
 
 
 
 
 
 
 115
 116	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 117	recommended_min = pageblock_nr_pages * nr_zones * 2;
 
 118
 119	/*
 120	 * Make sure that on average at least two pageblocks are almost free
 121	 * of another type, one for a migratetype to fall back to and a
 122	 * second to avoid subsequent fallbacks of other types There are 3
 123	 * MIGRATE_TYPES we care about.
 124	 */
 125	recommended_min += pageblock_nr_pages * nr_zones *
 126			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 127
 128	/* don't ever allow to reserve more than 5% of the lowmem */
 129	recommended_min = min(recommended_min,
 130			      (unsigned long) nr_free_buffer_pages() / 20);
 131	recommended_min <<= (PAGE_SHIFT-10);
 
 
 
 
 
 132
 133	if (recommended_min > min_free_kbytes) {
 134		if (user_min_free_kbytes >= 0)
 135			pr_info("raising min_free_kbytes from %d to %lu "
 136				"to help transparent hugepage allocations\n",
 137				min_free_kbytes, recommended_min);
 
 
 
 
 
 
 
 
 138
 139		min_free_kbytes = recommended_min;
 140	}
 141	setup_per_zone_wmarks();
 142	return 0;
 143}
 144late_initcall(set_recommended_min_free_kbytes);
 145
 146static int start_khugepaged(void)
 147{
 148	int err = 0;
 149	if (khugepaged_enabled()) {
 150		if (!khugepaged_thread)
 151			khugepaged_thread = kthread_run(khugepaged, NULL,
 152							"khugepaged");
 153		if (unlikely(IS_ERR(khugepaged_thread))) {
 154			printk(KERN_ERR
 155			       "khugepaged: kthread_run(khugepaged) failed\n");
 156			err = PTR_ERR(khugepaged_thread);
 157			khugepaged_thread = NULL;
 158		}
 159
 160		if (!list_empty(&khugepaged_scan.mm_head))
 161			wake_up_interruptible(&khugepaged_wait);
 162
 163		set_recommended_min_free_kbytes();
 164	} else if (khugepaged_thread) {
 165		kthread_stop(khugepaged_thread);
 166		khugepaged_thread = NULL;
 167	}
 168
 169	return err;
 170}
 171
 172static atomic_t huge_zero_refcount;
 173static struct page *huge_zero_page __read_mostly;
 174
 175static inline bool is_huge_zero_page(struct page *page)
 176{
 177	return ACCESS_ONCE(huge_zero_page) == page;
 178}
 
 
 
 
 
 179
 180static inline bool is_huge_zero_pmd(pmd_t pmd)
 181{
 182	return is_huge_zero_page(pmd_page(pmd));
 183}
 184
 185static struct page *get_huge_zero_page(void)
 186{
 187	struct page *zero_page;
 188retry:
 189	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 190		return ACCESS_ONCE(huge_zero_page);
 191
 192	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 193			HPAGE_PMD_ORDER);
 194	if (!zero_page) {
 195		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 196		return NULL;
 197	}
 198	count_vm_event(THP_ZERO_PAGE_ALLOC);
 199	preempt_disable();
 200	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 201		preempt_enable();
 202		__free_page(zero_page);
 203		goto retry;
 204	}
 
 205
 206	/* We take additional reference here. It will be put back by shrinker */
 207	atomic_set(&huge_zero_refcount, 2);
 208	preempt_enable();
 209	return ACCESS_ONCE(huge_zero_page);
 
 210}
 211
 212static void put_huge_zero_page(void)
 213{
 214	/*
 215	 * Counter should never go to zero here. Only shrinker can put
 216	 * last reference.
 217	 */
 218	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 219}
 220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 221static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 222					struct shrink_control *sc)
 223{
 224	/* we can free zero page only if last reference remains */
 225	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 226}
 227
 228static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 229				       struct shrink_control *sc)
 230{
 231	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 232		struct page *zero_page = xchg(&huge_zero_page, NULL);
 233		BUG_ON(zero_page == NULL);
 234		__free_page(zero_page);
 
 235		return HPAGE_PMD_NR;
 236	}
 237
 238	return 0;
 239}
 240
 241static struct shrinker huge_zero_page_shrinker = {
 242	.count_objects = shrink_huge_zero_page_count,
 243	.scan_objects = shrink_huge_zero_page_scan,
 244	.seeks = DEFAULT_SEEKS,
 245};
 246
 247#ifdef CONFIG_SYSFS
 
 
 
 
 248
 249static ssize_t double_flag_show(struct kobject *kobj,
 250				struct kobj_attribute *attr, char *buf,
 251				enum transparent_hugepage_flag enabled,
 252				enum transparent_hugepage_flag req_madv)
 253{
 254	if (test_bit(enabled, &transparent_hugepage_flags)) {
 255		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 256		return sprintf(buf, "[always] madvise never\n");
 257	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 258		return sprintf(buf, "always [madvise] never\n");
 259	else
 260		return sprintf(buf, "always madvise [never]\n");
 261}
 262static ssize_t double_flag_store(struct kobject *kobj,
 263				 struct kobj_attribute *attr,
 264				 const char *buf, size_t count,
 265				 enum transparent_hugepage_flag enabled,
 266				 enum transparent_hugepage_flag req_madv)
 267{
 268	if (!memcmp("always", buf,
 269		    min(sizeof("always")-1, count))) {
 270		set_bit(enabled, &transparent_hugepage_flags);
 271		clear_bit(req_madv, &transparent_hugepage_flags);
 272	} else if (!memcmp("madvise", buf,
 273			   min(sizeof("madvise")-1, count))) {
 274		clear_bit(enabled, &transparent_hugepage_flags);
 275		set_bit(req_madv, &transparent_hugepage_flags);
 276	} else if (!memcmp("never", buf,
 277			   min(sizeof("never")-1, count))) {
 278		clear_bit(enabled, &transparent_hugepage_flags);
 279		clear_bit(req_madv, &transparent_hugepage_flags);
 280	} else
 281		return -EINVAL;
 282
 283	return count;
 284}
 285
 286static ssize_t enabled_show(struct kobject *kobj,
 287			    struct kobj_attribute *attr, char *buf)
 288{
 289	return double_flag_show(kobj, attr, buf,
 290				TRANSPARENT_HUGEPAGE_FLAG,
 291				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 292}
 293static ssize_t enabled_store(struct kobject *kobj,
 294			     struct kobj_attribute *attr,
 295			     const char *buf, size_t count)
 296{
 297	ssize_t ret;
 298
 299	ret = double_flag_store(kobj, attr, buf, count,
 300				TRANSPARENT_HUGEPAGE_FLAG,
 301				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 302
 303	if (ret > 0) {
 304		int err;
 305
 306		mutex_lock(&khugepaged_mutex);
 307		err = start_khugepaged();
 308		mutex_unlock(&khugepaged_mutex);
 309
 310		if (err)
 311			ret = err;
 312	}
 313
 314	return ret;
 315}
 316static struct kobj_attribute enabled_attr =
 317	__ATTR(enabled, 0644, enabled_show, enabled_store);
 318
 319static ssize_t single_flag_show(struct kobject *kobj,
 320				struct kobj_attribute *attr, char *buf,
 321				enum transparent_hugepage_flag flag)
 
 
 322{
 323	return sprintf(buf, "%d\n",
 324		       !!test_bit(flag, &transparent_hugepage_flags));
 325}
 326
 327static ssize_t single_flag_store(struct kobject *kobj,
 328				 struct kobj_attribute *attr,
 329				 const char *buf, size_t count,
 330				 enum transparent_hugepage_flag flag)
 331{
 332	unsigned long value;
 333	int ret;
 334
 335	ret = kstrtoul(buf, 10, &value);
 336	if (ret < 0)
 337		return ret;
 338	if (value > 1)
 339		return -EINVAL;
 340
 341	if (value)
 342		set_bit(flag, &transparent_hugepage_flags);
 343	else
 344		clear_bit(flag, &transparent_hugepage_flags);
 345
 346	return count;
 347}
 348
 349/*
 350 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 351 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 352 * memory just to allocate one more hugepage.
 353 */
 354static ssize_t defrag_show(struct kobject *kobj,
 355			   struct kobj_attribute *attr, char *buf)
 356{
 357	return double_flag_show(kobj, attr, buf,
 358				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 359				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360}
 
 361static ssize_t defrag_store(struct kobject *kobj,
 362			    struct kobj_attribute *attr,
 363			    const char *buf, size_t count)
 364{
 365	return double_flag_store(kobj, attr, buf, count,
 366				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 367				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368}
 369static struct kobj_attribute defrag_attr =
 370	__ATTR(defrag, 0644, defrag_show, defrag_store);
 371
 372static ssize_t use_zero_page_show(struct kobject *kobj,
 373		struct kobj_attribute *attr, char *buf)
 374{
 375	return single_flag_show(kobj, attr, buf,
 376				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 377}
 378static ssize_t use_zero_page_store(struct kobject *kobj,
 379		struct kobj_attribute *attr, const char *buf, size_t count)
 380{
 381	return single_flag_store(kobj, attr, buf, count,
 382				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 383}
 384static struct kobj_attribute use_zero_page_attr =
 385	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 386#ifdef CONFIG_DEBUG_VM
 387static ssize_t debug_cow_show(struct kobject *kobj,
 388				struct kobj_attribute *attr, char *buf)
 389{
 390	return single_flag_show(kobj, attr, buf,
 391				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 392}
 393static ssize_t debug_cow_store(struct kobject *kobj,
 394			       struct kobj_attribute *attr,
 395			       const char *buf, size_t count)
 396{
 397	return single_flag_store(kobj, attr, buf, count,
 398				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 399}
 400static struct kobj_attribute debug_cow_attr =
 401	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 402#endif /* CONFIG_DEBUG_VM */
 403
 404static struct attribute *hugepage_attr[] = {
 405	&enabled_attr.attr,
 406	&defrag_attr.attr,
 407	&use_zero_page_attr.attr,
 408#ifdef CONFIG_DEBUG_VM
 409	&debug_cow_attr.attr,
 
 410#endif
 411	NULL,
 412};
 413
 414static struct attribute_group hugepage_attr_group = {
 415	.attrs = hugepage_attr,
 416};
 417
 418static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 419					 struct kobj_attribute *attr,
 420					 char *buf)
 421{
 422	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 423}
 424
 425static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 426					  struct kobj_attribute *attr,
 427					  const char *buf, size_t count)
 428{
 429	unsigned long msecs;
 430	int err;
 431
 432	err = kstrtoul(buf, 10, &msecs);
 433	if (err || msecs > UINT_MAX)
 434		return -EINVAL;
 435
 436	khugepaged_scan_sleep_millisecs = msecs;
 437	wake_up_interruptible(&khugepaged_wait);
 438
 439	return count;
 440}
 441static struct kobj_attribute scan_sleep_millisecs_attr =
 442	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 443	       scan_sleep_millisecs_store);
 444
 445static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 446					  struct kobj_attribute *attr,
 447					  char *buf)
 448{
 449	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 450}
 451
 452static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 453					   struct kobj_attribute *attr,
 454					   const char *buf, size_t count)
 455{
 456	unsigned long msecs;
 457	int err;
 458
 459	err = kstrtoul(buf, 10, &msecs);
 460	if (err || msecs > UINT_MAX)
 461		return -EINVAL;
 462
 463	khugepaged_alloc_sleep_millisecs = msecs;
 464	wake_up_interruptible(&khugepaged_wait);
 465
 466	return count;
 467}
 468static struct kobj_attribute alloc_sleep_millisecs_attr =
 469	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 470	       alloc_sleep_millisecs_store);
 471
 472static ssize_t pages_to_scan_show(struct kobject *kobj,
 473				  struct kobj_attribute *attr,
 474				  char *buf)
 475{
 476	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 477}
 478static ssize_t pages_to_scan_store(struct kobject *kobj,
 479				   struct kobj_attribute *attr,
 480				   const char *buf, size_t count)
 481{
 482	int err;
 483	unsigned long pages;
 484
 485	err = kstrtoul(buf, 10, &pages);
 486	if (err || !pages || pages > UINT_MAX)
 487		return -EINVAL;
 488
 489	khugepaged_pages_to_scan = pages;
 490
 491	return count;
 492}
 493static struct kobj_attribute pages_to_scan_attr =
 494	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 495	       pages_to_scan_store);
 496
 497static ssize_t pages_collapsed_show(struct kobject *kobj,
 498				    struct kobj_attribute *attr,
 499				    char *buf)
 500{
 501	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 502}
 503static struct kobj_attribute pages_collapsed_attr =
 504	__ATTR_RO(pages_collapsed);
 505
 506static ssize_t full_scans_show(struct kobject *kobj,
 507			       struct kobj_attribute *attr,
 508			       char *buf)
 509{
 510	return sprintf(buf, "%u\n", khugepaged_full_scans);
 511}
 512static struct kobj_attribute full_scans_attr =
 513	__ATTR_RO(full_scans);
 514
 515static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 516				      struct kobj_attribute *attr, char *buf)
 517{
 518	return single_flag_show(kobj, attr, buf,
 519				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 520}
 521static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 522				       struct kobj_attribute *attr,
 523				       const char *buf, size_t count)
 524{
 525	return single_flag_store(kobj, attr, buf, count,
 526				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 527}
 528static struct kobj_attribute khugepaged_defrag_attr =
 529	__ATTR(defrag, 0644, khugepaged_defrag_show,
 530	       khugepaged_defrag_store);
 531
 532/*
 533 * max_ptes_none controls if khugepaged should collapse hugepages over
 534 * any unmapped ptes in turn potentially increasing the memory
 535 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 536 * reduce the available free memory in the system as it
 537 * runs. Increasing max_ptes_none will instead potentially reduce the
 538 * free memory in the system during the khugepaged scan.
 539 */
 540static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 541					     struct kobj_attribute *attr,
 542					     char *buf)
 543{
 544	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 545}
 546static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 547					      struct kobj_attribute *attr,
 548					      const char *buf, size_t count)
 549{
 550	int err;
 551	unsigned long max_ptes_none;
 552
 553	err = kstrtoul(buf, 10, &max_ptes_none);
 554	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 555		return -EINVAL;
 556
 557	khugepaged_max_ptes_none = max_ptes_none;
 558
 559	return count;
 560}
 561static struct kobj_attribute khugepaged_max_ptes_none_attr =
 562	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 563	       khugepaged_max_ptes_none_store);
 564
 565static struct attribute *khugepaged_attr[] = {
 566	&khugepaged_defrag_attr.attr,
 567	&khugepaged_max_ptes_none_attr.attr,
 568	&pages_to_scan_attr.attr,
 569	&pages_collapsed_attr.attr,
 570	&full_scans_attr.attr,
 571	&scan_sleep_millisecs_attr.attr,
 572	&alloc_sleep_millisecs_attr.attr,
 573	NULL,
 574};
 575
 576static struct attribute_group khugepaged_attr_group = {
 577	.attrs = khugepaged_attr,
 578	.name = "khugepaged",
 579};
 580
 581static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 582{
 583	int err;
 584
 585	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 586	if (unlikely(!*hugepage_kobj)) {
 587		printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
 588		return -ENOMEM;
 589	}
 590
 591	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 592	if (err) {
 593		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
 594		goto delete_obj;
 595	}
 596
 597	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 598	if (err) {
 599		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
 600		goto remove_hp_group;
 601	}
 602
 603	return 0;
 604
 605remove_hp_group:
 606	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 607delete_obj:
 608	kobject_put(*hugepage_kobj);
 609	return err;
 610}
 611
 612static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 613{
 614	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 615	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 616	kobject_put(hugepage_kobj);
 617}
 618#else
 619static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 620{
 621	return 0;
 622}
 623
 624static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 625{
 626}
 627#endif /* CONFIG_SYSFS */
 628
 629static int __init hugepage_init(void)
 630{
 631	int err;
 632	struct kobject *hugepage_kobj;
 633
 634	if (!has_transparent_hugepage()) {
 635		transparent_hugepage_flags = 0;
 
 
 
 
 636		return -EINVAL;
 637	}
 638
 
 
 
 
 
 
 
 
 
 
 639	err = hugepage_init_sysfs(&hugepage_kobj);
 640	if (err)
 641		return err;
 642
 643	err = khugepaged_slab_init();
 644	if (err)
 645		goto out;
 646
 647	register_shrinker(&huge_zero_page_shrinker);
 
 
 
 
 
 648
 649	/*
 650	 * By default disable transparent hugepages on smaller systems,
 651	 * where the extra memory used could hurt more than TLB overhead
 652	 * is likely to save.  The admin can still enable it through /sys.
 653	 */
 654	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 655		transparent_hugepage_flags = 0;
 
 
 656
 657	start_khugepaged();
 
 
 658
 659	return 0;
 660out:
 
 
 
 
 
 
 661	hugepage_exit_sysfs(hugepage_kobj);
 
 662	return err;
 663}
 664subsys_initcall(hugepage_init);
 665
 666static int __init setup_transparent_hugepage(char *str)
 667{
 668	int ret = 0;
 669	if (!str)
 670		goto out;
 671	if (!strcmp(str, "always")) {
 672		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 673			&transparent_hugepage_flags);
 674		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 675			  &transparent_hugepage_flags);
 676		ret = 1;
 677	} else if (!strcmp(str, "madvise")) {
 678		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 679			  &transparent_hugepage_flags);
 680		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 681			&transparent_hugepage_flags);
 682		ret = 1;
 683	} else if (!strcmp(str, "never")) {
 684		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 685			  &transparent_hugepage_flags);
 686		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 687			  &transparent_hugepage_flags);
 688		ret = 1;
 689	}
 690out:
 691	if (!ret)
 692		printk(KERN_WARNING
 693		       "transparent_hugepage= cannot parse, ignored\n");
 694	return ret;
 695}
 696__setup("transparent_hugepage=", setup_transparent_hugepage);
 697
 698pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 699{
 700	if (likely(vma->vm_flags & VM_WRITE))
 701		pmd = pmd_mkwrite(pmd);
 702	return pmd;
 703}
 704
 705static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
 
 706{
 707	pmd_t entry;
 708	entry = mk_pmd(page, prot);
 709	entry = pmd_mkhuge(entry);
 710	return entry;
 
 
 
 711}
 
 
 
 
 712
 713static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 714					struct vm_area_struct *vma,
 715					unsigned long haddr, pmd_t *pmd,
 716					struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718	pgtable_t pgtable;
 719	spinlock_t *ptl;
 
 720
 721	VM_BUG_ON_PAGE(!PageCompound(page), page);
 722	pgtable = pte_alloc_one(mm, haddr);
 723	if (unlikely(!pgtable))
 724		return VM_FAULT_OOM;
 725
 726	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727	/*
 728	 * The memory barrier inside __SetPageUptodate makes sure that
 729	 * clear_huge_page writes become visible before the set_pmd_at()
 730	 * write.
 731	 */
 732	__SetPageUptodate(page);
 733
 734	ptl = pmd_lock(mm, pmd);
 735	if (unlikely(!pmd_none(*pmd))) {
 736		spin_unlock(ptl);
 737		mem_cgroup_uncharge_page(page);
 738		put_page(page);
 739		pte_free(mm, pgtable);
 740	} else {
 741		pmd_t entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742		entry = mk_huge_pmd(page, vma->vm_page_prot);
 743		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 744		page_add_new_anon_rmap(page, vma, haddr);
 745		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 746		set_pmd_at(mm, haddr, pmd, entry);
 747		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 748		atomic_long_inc(&mm->nr_ptes);
 749		spin_unlock(ptl);
 
 
 
 
 750	}
 751
 752	return 0;
 753}
 
 
 
 
 
 
 754
 755static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 756{
 757	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 758}
 759
 760static inline struct page *alloc_hugepage_vma(int defrag,
 761					      struct vm_area_struct *vma,
 762					      unsigned long haddr, int nd,
 763					      gfp_t extra_gfp)
 
 
 
 
 
 
 764{
 765	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 766			       HPAGE_PMD_ORDER, vma, haddr, nd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 767}
 768
 769/* Caller must hold page table lock. */
 770static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 771		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 772		struct page *zero_page)
 773{
 774	pmd_t entry;
 775	if (!pmd_none(*pmd))
 776		return false;
 777	entry = mk_pmd(zero_page, vma->vm_page_prot);
 778	entry = pmd_wrprotect(entry);
 779	entry = pmd_mkhuge(entry);
 780	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 781	set_pmd_at(mm, haddr, pmd, entry);
 782	atomic_long_inc(&mm->nr_ptes);
 783	return true;
 784}
 785
 786int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 787			       unsigned long address, pmd_t *pmd,
 788			       unsigned int flags)
 789{
 790	struct page *page;
 791	unsigned long haddr = address & HPAGE_PMD_MASK;
 
 
 792
 793	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 794		return VM_FAULT_FALLBACK;
 795	if (unlikely(anon_vma_prepare(vma)))
 796		return VM_FAULT_OOM;
 797	if (unlikely(khugepaged_enter(vma)))
 798		return VM_FAULT_OOM;
 799	if (!(flags & FAULT_FLAG_WRITE) &&
 
 800			transparent_hugepage_use_zero_page()) {
 801		spinlock_t *ptl;
 802		pgtable_t pgtable;
 803		struct page *zero_page;
 804		bool set;
 805		pgtable = pte_alloc_one(mm, haddr);
 806		if (unlikely(!pgtable))
 807			return VM_FAULT_OOM;
 808		zero_page = get_huge_zero_page();
 809		if (unlikely(!zero_page)) {
 810			pte_free(mm, pgtable);
 811			count_vm_event(THP_FAULT_FALLBACK);
 812			return VM_FAULT_FALLBACK;
 813		}
 814		ptl = pmd_lock(mm, pmd);
 815		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
 816				zero_page);
 817		spin_unlock(ptl);
 818		if (!set) {
 819			pte_free(mm, pgtable);
 820			put_huge_zero_page();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821		}
 822		return 0;
 823	}
 824	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 825			vma, haddr, numa_node_id(), 0);
 826	if (unlikely(!page)) {
 827		count_vm_event(THP_FAULT_FALLBACK);
 828		return VM_FAULT_FALLBACK;
 829	}
 830	if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) {
 831		put_page(page);
 832		count_vm_event(THP_FAULT_FALLBACK);
 833		return VM_FAULT_FALLBACK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834	}
 835	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
 836		mem_cgroup_uncharge_page(page);
 837		put_page(page);
 838		count_vm_event(THP_FAULT_FALLBACK);
 839		return VM_FAULT_FALLBACK;
 
 
 840	}
 841
 842	count_vm_event(THP_FAULT_ALLOC);
 843	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844}
 845
 846int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 847		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 848		  struct vm_area_struct *vma)
 849{
 850	spinlock_t *dst_ptl, *src_ptl;
 851	struct page *src_page;
 852	pmd_t pmd;
 853	pgtable_t pgtable;
 854	int ret;
 855
 856	ret = -ENOMEM;
 857	pgtable = pte_alloc_one(dst_mm, addr);
 
 
 
 858	if (unlikely(!pgtable))
 859		goto out;
 860
 861	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 862	src_ptl = pmd_lockptr(src_mm, src_pmd);
 863	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 864
 865	ret = -EAGAIN;
 866	pmd = *src_pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867	if (unlikely(!pmd_trans_huge(pmd))) {
 868		pte_free(dst_mm, pgtable);
 869		goto out_unlock;
 870	}
 871	/*
 872	 * When page table lock is held, the huge zero pmd should not be
 873	 * under splitting since we don't split the page itself, only pmd to
 874	 * a page table.
 875	 */
 876	if (is_huge_zero_pmd(pmd)) {
 877		struct page *zero_page;
 878		bool set;
 879		/*
 880		 * get_huge_zero_page() will never allocate a new page here,
 881		 * since we already have a zero page to copy. It just takes a
 882		 * reference.
 883		 */
 884		zero_page = get_huge_zero_page();
 885		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 886				zero_page);
 887		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
 888		ret = 0;
 889		goto out_unlock;
 890	}
 891
 892	if (unlikely(pmd_trans_splitting(pmd))) {
 893		/* split huge page running from under us */
 894		spin_unlock(src_ptl);
 895		spin_unlock(dst_ptl);
 896		pte_free(dst_mm, pgtable);
 897
 898		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 899		goto out;
 900	}
 901	src_page = pmd_page(pmd);
 902	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 
 903	get_page(src_page);
 904	page_dup_rmap(src_page);
 
 
 
 
 
 
 
 
 905	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 906
 
 
 907	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 
 
 908	pmd = pmd_mkold(pmd_wrprotect(pmd));
 909	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 910	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 911	atomic_long_inc(&dst_mm->nr_ptes);
 912
 913	ret = 0;
 914out_unlock:
 915	spin_unlock(src_ptl);
 916	spin_unlock(dst_ptl);
 917out:
 918	return ret;
 919}
 920
 921void huge_pmd_set_accessed(struct mm_struct *mm,
 922			   struct vm_area_struct *vma,
 923			   unsigned long address,
 924			   pmd_t *pmd, pmd_t orig_pmd,
 925			   int dirty)
 926{
 927	spinlock_t *ptl;
 928	pmd_t entry;
 929	unsigned long haddr;
 930
 931	ptl = pmd_lock(mm, pmd);
 932	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 933		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 934
 935	entry = pmd_mkyoung(orig_pmd);
 936	haddr = address & HPAGE_PMD_MASK;
 937	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
 938		update_mmu_cache_pmd(vma, address, pmd);
 939
 940unlock:
 941	spin_unlock(ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942}
 943
 944static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 945					struct vm_area_struct *vma,
 946					unsigned long address,
 947					pmd_t *pmd, pmd_t orig_pmd,
 948					struct page *page,
 949					unsigned long haddr)
 950{
 951	spinlock_t *ptl;
 952	pgtable_t pgtable;
 953	pmd_t _pmd;
 954	int ret = 0, i;
 955	struct page **pages;
 956	unsigned long mmun_start;	/* For mmu_notifiers */
 957	unsigned long mmun_end;		/* For mmu_notifiers */
 958
 959	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 960			GFP_KERNEL);
 961	if (unlikely(!pages)) {
 962		ret |= VM_FAULT_OOM;
 963		goto out;
 964	}
 965
 966	for (i = 0; i < HPAGE_PMD_NR; i++) {
 967		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 968					       __GFP_OTHER_NODE,
 969					       vma, address, page_to_nid(page));
 970		if (unlikely(!pages[i] ||
 971			     mem_cgroup_charge_anon(pages[i], mm,
 972						       GFP_KERNEL))) {
 973			if (pages[i])
 974				put_page(pages[i]);
 975			mem_cgroup_uncharge_start();
 976			while (--i >= 0) {
 977				mem_cgroup_uncharge_page(pages[i]);
 978				put_page(pages[i]);
 979			}
 980			mem_cgroup_uncharge_end();
 981			kfree(pages);
 982			ret |= VM_FAULT_OOM;
 983			goto out;
 984		}
 985	}
 986
 987	for (i = 0; i < HPAGE_PMD_NR; i++) {
 988		copy_user_highpage(pages[i], page + i,
 989				   haddr + PAGE_SIZE * i, vma);
 990		__SetPageUptodate(pages[i]);
 991		cond_resched();
 992	}
 993
 994	mmun_start = haddr;
 995	mmun_end   = haddr + HPAGE_PMD_SIZE;
 996	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 
 
 
 
 
 997
 998	ptl = pmd_lock(mm, pmd);
 999	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1000		goto out_free_pages;
1001	VM_BUG_ON_PAGE(!PageHead(page), page);
 
 
 
1002
1003	pmdp_clear_flush(vma, haddr, pmd);
1004	/* leave pmd empty until pte is filled */
 
 
 
 
1005
1006	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1007	pmd_populate(mm, &_pmd, pgtable);
 
1008
1009	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1010		pte_t *pte, entry;
1011		entry = mk_pte(pages[i], vma->vm_page_prot);
1012		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1013		page_add_new_anon_rmap(pages[i], vma, haddr);
1014		pte = pte_offset_map(&_pmd, haddr);
1015		VM_BUG_ON(!pte_none(*pte));
1016		set_pte_at(mm, haddr, pte, entry);
1017		pte_unmap(pte);
1018	}
1019	kfree(pages);
1020
1021	smp_wmb(); /* make pte visible before pmd */
1022	pmd_populate(mm, pmd, pgtable);
1023	page_remove_rmap(page);
1024	spin_unlock(ptl);
 
1025
1026	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 
 
1027
1028	ret |= VM_FAULT_WRITE;
1029	put_page(page);
 
1030
1031out:
1032	return ret;
1033
1034out_free_pages:
1035	spin_unlock(ptl);
1036	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1037	mem_cgroup_uncharge_start();
1038	for (i = 0; i < HPAGE_PMD_NR; i++) {
1039		mem_cgroup_uncharge_page(pages[i]);
1040		put_page(pages[i]);
1041	}
1042	mem_cgroup_uncharge_end();
1043	kfree(pages);
1044	goto out;
1045}
1046
1047int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1048			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1049{
1050	spinlock_t *ptl;
1051	int ret = 0;
1052	struct page *page = NULL, *new_page;
1053	unsigned long haddr;
1054	unsigned long mmun_start;	/* For mmu_notifiers */
1055	unsigned long mmun_end;		/* For mmu_notifiers */
1056
1057	ptl = pmd_lockptr(mm, pmd);
1058	VM_BUG_ON(!vma->anon_vma);
1059	haddr = address & HPAGE_PMD_MASK;
1060	if (is_huge_zero_pmd(orig_pmd))
1061		goto alloc;
1062	spin_lock(ptl);
1063	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1064		goto out_unlock;
 
 
 
 
1065
1066	page = pmd_page(orig_pmd);
1067	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1068	if (page_mapcount(page) == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069		pmd_t entry;
 
 
 
 
 
 
 
 
1070		entry = pmd_mkyoung(orig_pmd);
1071		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1073			update_mmu_cache_pmd(vma, address, pmd);
1074		ret |= VM_FAULT_WRITE;
1075		goto out_unlock;
1076	}
1077	get_page(page);
1078	spin_unlock(ptl);
1079alloc:
1080	if (transparent_hugepage_enabled(vma) &&
1081	    !transparent_hugepage_debug_cow())
1082		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1083					      vma, haddr, numa_node_id(), 0);
1084	else
1085		new_page = NULL;
1086
1087	if (unlikely(!new_page)) {
1088		if (!page) {
1089			split_huge_page_pmd(vma, address, pmd);
1090			ret |= VM_FAULT_FALLBACK;
1091		} else {
1092			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1093					pmd, orig_pmd, page, haddr);
1094			if (ret & VM_FAULT_OOM) {
1095				split_huge_page(page);
1096				ret |= VM_FAULT_FALLBACK;
1097			}
1098			put_page(page);
1099		}
1100		count_vm_event(THP_FAULT_FALLBACK);
1101		goto out;
1102	}
1103
1104	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) {
1105		put_page(new_page);
1106		if (page) {
1107			split_huge_page(page);
1108			put_page(page);
1109		} else
1110			split_huge_page_pmd(vma, address, pmd);
1111		ret |= VM_FAULT_FALLBACK;
1112		count_vm_event(THP_FAULT_FALLBACK);
1113		goto out;
1114	}
1115
1116	count_vm_event(THP_FAULT_ALLOC);
 
1117
1118	if (!page)
1119		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1120	else
1121		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1122	__SetPageUptodate(new_page);
1123
1124	mmun_start = haddr;
1125	mmun_end   = haddr + HPAGE_PMD_SIZE;
1126	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1127
1128	spin_lock(ptl);
1129	if (page)
1130		put_page(page);
1131	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1132		spin_unlock(ptl);
1133		mem_cgroup_uncharge_page(new_page);
1134		put_page(new_page);
1135		goto out_mn;
1136	} else {
1137		pmd_t entry;
1138		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1139		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140		pmdp_clear_flush(vma, haddr, pmd);
1141		page_add_new_anon_rmap(new_page, vma, haddr);
1142		set_pmd_at(mm, haddr, pmd, entry);
1143		update_mmu_cache_pmd(vma, address, pmd);
1144		if (!page) {
1145			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146			put_huge_zero_page();
1147		} else {
1148			VM_BUG_ON_PAGE(!PageHead(page), page);
1149			page_remove_rmap(page);
1150			put_page(page);
1151		}
1152		ret |= VM_FAULT_WRITE;
1153	}
1154	spin_unlock(ptl);
1155out_mn:
1156	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1157out:
1158	return ret;
1159out_unlock:
1160	spin_unlock(ptl);
1161	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162}
1163
1164struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1165				   unsigned long addr,
1166				   pmd_t *pmd,
1167				   unsigned int flags)
1168{
1169	struct mm_struct *mm = vma->vm_mm;
1170	struct page *page = NULL;
 
1171
1172	assert_spin_locked(pmd_lockptr(mm, pmd));
1173
1174	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1175		goto out;
 
 
 
 
1176
1177	/* Avoid dumping huge zero page */
1178	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1179		return ERR_PTR(-EFAULT);
1180
1181	/* Full NUMA hinting faults to serialise migration in fault paths */
1182	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1183		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
1184
1185	page = pmd_page(*pmd);
1186	VM_BUG_ON_PAGE(!PageHead(page), page);
1187	if (flags & FOLL_TOUCH) {
1188		pmd_t _pmd;
1189		/*
1190		 * We should set the dirty bit only for FOLL_WRITE but
1191		 * for now the dirty bit in the pmd is meaningless.
1192		 * And if the dirty bit will become meaningful and
1193		 * we'll only set it with FOLL_WRITE, an atomic
1194		 * set_bit will be required on the pmd to set the
1195		 * young bit, instead of the current set_pmd_at.
1196		 */
1197		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1198		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1199					  pmd, _pmd,  1))
1200			update_mmu_cache_pmd(vma, addr, pmd);
1201	}
1202	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1203		if (page->mapping && trylock_page(page)) {
1204			lru_add_drain();
1205			if (page->mapping)
1206				mlock_vma_page(page);
1207			unlock_page(page);
1208		}
1209	}
1210	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1211	VM_BUG_ON_PAGE(!PageCompound(page), page);
1212	if (flags & FOLL_GET)
1213		get_page_foll(page);
1214
1215out:
1216	return page;
1217}
1218
1219/* NUMA hinting page fault entry point for trans huge pmds */
1220int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1221				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1222{
1223	spinlock_t *ptl;
1224	struct anon_vma *anon_vma = NULL;
 
1225	struct page *page;
1226	unsigned long haddr = addr & HPAGE_PMD_MASK;
1227	int page_nid = -1, this_nid = numa_node_id();
1228	int target_nid, last_cpupid = -1;
1229	bool page_locked;
1230	bool migrated = false;
1231	int flags = 0;
1232
1233	ptl = pmd_lock(mm, pmdp);
1234	if (unlikely(!pmd_same(pmd, *pmdp)))
1235		goto out_unlock;
1236
1237	/*
1238	 * If there are potential migrations, wait for completion and retry
1239	 * without disrupting NUMA hinting information. Do not relock and
1240	 * check_same as the page may no longer be mapped.
1241	 */
1242	if (unlikely(pmd_trans_migrating(*pmdp))) {
1243		spin_unlock(ptl);
1244		wait_migrate_huge_page(vma->anon_vma, pmdp);
1245		goto out;
1246	}
1247
1248	page = pmd_page(pmd);
1249	BUG_ON(is_huge_zero_page(page));
1250	page_nid = page_to_nid(page);
1251	last_cpupid = page_cpupid_last(page);
1252	count_vm_numa_event(NUMA_HINT_FAULTS);
1253	if (page_nid == this_nid) {
1254		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1255		flags |= TNF_FAULT_LOCAL;
1256	}
1257
1258	/*
1259	 * Avoid grouping on DSO/COW pages in specific and RO pages
1260	 * in general, RO pages shouldn't hurt as much anyway since
1261	 * they can be in shared cache state.
1262	 */
1263	if (!pmd_write(pmd))
 
 
 
 
 
 
 
 
 
 
1264		flags |= TNF_NO_GROUP;
1265
 
1266	/*
1267	 * Acquire the page lock to serialise THP migrations but avoid dropping
1268	 * page_table_lock if at all possible
1269	 */
1270	page_locked = trylock_page(page);
1271	target_nid = mpol_misplaced(page, vma, haddr);
1272	if (target_nid == -1) {
1273		/* If the page was locked, there are no parallel migrations */
1274		if (page_locked)
1275			goto clear_pmdnuma;
 
 
1276	}
1277
1278	/* Migration could have started since the pmd_trans_migrating check */
1279	if (!page_locked) {
1280		spin_unlock(ptl);
1281		wait_on_page_locked(page);
1282		page_nid = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283		goto out;
1284	}
1285
 
1286	/*
1287	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1288	 * to serialises splits
1289	 */
1290	get_page(page);
1291	spin_unlock(ptl);
1292	anon_vma = page_lock_anon_vma_read(page);
1293
1294	/* Confirm the PMD did not change while page_table_lock was released */
1295	spin_lock(ptl);
1296	if (unlikely(!pmd_same(pmd, *pmdp))) {
1297		unlock_page(page);
1298		put_page(page);
1299		page_nid = -1;
1300		goto out_unlock;
1301	}
1302
1303	/* Bail if we fail to protect against THP splits for any reason */
1304	if (unlikely(!anon_vma)) {
1305		put_page(page);
1306		page_nid = -1;
1307		goto clear_pmdnuma;
1308	}
1309
1310	/*
1311	 * Migrate the THP to the requested node, returns with page unlocked
1312	 * and pmd_numa cleared.
1313	 */
1314	spin_unlock(ptl);
1315	migrated = migrate_misplaced_transhuge_page(mm, vma,
1316				pmdp, pmd, addr, page, target_nid);
1317	if (migrated) {
1318		flags |= TNF_MIGRATED;
1319		page_nid = target_nid;
 
1320	}
1321
1322	goto out;
1323clear_pmdnuma:
1324	BUG_ON(!PageLocked(page));
1325	pmd = pmd_mknonnuma(pmd);
1326	set_pmd_at(mm, haddr, pmdp, pmd);
1327	VM_BUG_ON(pmd_numa(*pmdp));
1328	update_mmu_cache_pmd(vma, addr, pmdp);
1329	unlock_page(page);
1330out_unlock:
1331	spin_unlock(ptl);
1332
 
 
 
 
 
 
 
 
 
 
 
1333out:
1334	if (anon_vma)
1335		page_unlock_anon_vma_read(anon_vma);
 
 
1336
1337	if (page_nid != -1)
1338		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
 
1339
1340	return 0;
 
 
1341}
1342
1343int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1344		 pmd_t *pmd, unsigned long addr)
1345{
 
1346	spinlock_t *ptl;
1347	int ret = 0;
1348
1349	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1350		struct page *page;
1351		pgtable_t pgtable;
1352		pmd_t orig_pmd;
1353		/*
1354		 * For architectures like ppc64 we look at deposited pgtable
1355		 * when calling pmdp_get_and_clear. So do the
1356		 * pgtable_trans_huge_withdraw after finishing pmdp related
1357		 * operations.
1358		 */
1359		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1360		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1361		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1362		if (is_huge_zero_pmd(orig_pmd)) {
1363			atomic_long_dec(&tlb->mm->nr_ptes);
1364			spin_unlock(ptl);
1365			put_huge_zero_page();
1366		} else {
 
 
 
 
 
 
 
 
1367			page = pmd_page(orig_pmd);
1368			page_remove_rmap(page);
1369			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1370			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1371			VM_BUG_ON_PAGE(!PageHead(page), page);
1372			atomic_long_dec(&tlb->mm->nr_ptes);
1373			spin_unlock(ptl);
1374			tlb_remove_page(tlb, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375		}
1376		pte_free(tlb->mm, pgtable);
1377		ret = 1;
 
 
1378	}
1379	return ret;
1380}
1381
1382int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1383		unsigned long addr, unsigned long end,
1384		unsigned char *vec)
 
1385{
1386	spinlock_t *ptl;
1387	int ret = 0;
1388
1389	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1390		/*
1391		 * All logical pages in the range are present
1392		 * if backed by a huge page.
1393		 */
1394		spin_unlock(ptl);
1395		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1396		ret = 1;
1397	}
1398
1399	return ret;
 
 
 
 
 
 
 
 
1400}
1401
1402int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1403		  unsigned long old_addr,
1404		  unsigned long new_addr, unsigned long old_end,
1405		  pmd_t *old_pmd, pmd_t *new_pmd)
1406{
1407	spinlock_t *old_ptl, *new_ptl;
1408	int ret = 0;
1409	pmd_t pmd;
1410
1411	struct mm_struct *mm = vma->vm_mm;
1412
1413	if ((old_addr & ~HPAGE_PMD_MASK) ||
1414	    (new_addr & ~HPAGE_PMD_MASK) ||
1415	    old_end - old_addr < HPAGE_PMD_SIZE ||
1416	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1417		goto out;
1418
1419	/*
1420	 * The destination pmd shouldn't be established, free_pgtables()
1421	 * should have release it.
1422	 */
1423	if (WARN_ON(!pmd_none(*new_pmd))) {
1424		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1425		goto out;
1426	}
1427
1428	/*
1429	 * We don't have to worry about the ordering of src and dst
1430	 * ptlocks because exclusive mmap_sem prevents deadlock.
1431	 */
1432	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1433	if (ret == 1) {
1434		new_ptl = pmd_lockptr(mm, new_pmd);
1435		if (new_ptl != old_ptl)
1436			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1437		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
 
 
1438		VM_BUG_ON(!pmd_none(*new_pmd));
1439
1440		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1441			pgtable_t pgtable;
1442			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1443			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1444		}
1445		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
 
 
 
1446		if (new_ptl != old_ptl)
1447			spin_unlock(new_ptl);
1448		spin_unlock(old_ptl);
 
1449	}
1450out:
1451	return ret;
1452}
1453
1454/*
1455 * Returns
1456 *  - 0 if PMD could not be locked
1457 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1458 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 
1459 */
1460int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1461		unsigned long addr, pgprot_t newprot, int prot_numa)
 
1462{
1463	struct mm_struct *mm = vma->vm_mm;
1464	spinlock_t *ptl;
1465	int ret = 0;
 
 
 
 
1466
1467	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1468		pmd_t entry;
1469		ret = 1;
1470		if (!prot_numa) {
1471			entry = pmdp_get_and_clear(mm, addr, pmd);
1472			if (pmd_numa(entry))
1473				entry = pmd_mknonnuma(entry);
1474			entry = pmd_modify(entry, newprot);
1475			ret = HPAGE_PMD_NR;
1476			set_pmd_at(mm, addr, pmd, entry);
1477			BUG_ON(pmd_write(entry));
1478		} else {
1479			struct page *page = pmd_page(*pmd);
1480
 
 
 
 
 
 
 
 
 
 
 
 
1481			/*
1482			 * Do not trap faults against the zero page. The
1483			 * read-only data is likely to be read-cached on the
1484			 * local CPU cache and it is less useful to know about
1485			 * local vs remote hits on the zero page.
1486			 */
1487			if (!is_huge_zero_page(page) &&
1488			    !pmd_numa(*pmd)) {
1489				pmdp_set_numa(mm, addr, pmd);
1490				ret = HPAGE_PMD_NR;
1491			}
 
 
 
 
 
1492		}
1493		spin_unlock(ptl);
1494	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495
 
 
 
 
 
 
 
1496	return ret;
1497}
1498
1499/*
1500 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1501 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1502 *
1503 * Note that if it returns 1, this routine returns without unlocking page
1504 * table locks. So callers must unlock them.
1505 */
1506int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1507		spinlock_t **ptl)
1508{
1509	*ptl = pmd_lock(vma->vm_mm, pmd);
1510	if (likely(pmd_trans_huge(*pmd))) {
1511		if (unlikely(pmd_trans_splitting(*pmd))) {
1512			spin_unlock(*ptl);
1513			wait_split_huge_page(vma->anon_vma, pmd);
1514			return -1;
1515		} else {
1516			/* Thp mapped by 'pmd' is stable, so we can
1517			 * handle it as it is. */
1518			return 1;
1519		}
1520	}
1521	spin_unlock(*ptl);
1522	return 0;
1523}
1524
1525/*
1526 * This function returns whether a given @page is mapped onto the @address
1527 * in the virtual space of @mm.
1528 *
1529 * When it's true, this function returns *pmd with holding the page table lock
1530 * and passing it back to the caller via @ptl.
1531 * If it's false, returns NULL without holding the page table lock.
1532 */
1533pmd_t *page_check_address_pmd(struct page *page,
1534			      struct mm_struct *mm,
1535			      unsigned long address,
1536			      enum page_check_address_pmd_flag flag,
1537			      spinlock_t **ptl)
1538{
1539	pgd_t *pgd;
1540	pud_t *pud;
1541	pmd_t *pmd;
1542
1543	if (address & ~HPAGE_PMD_MASK)
1544		return NULL;
1545
1546	pgd = pgd_offset(mm, address);
1547	if (!pgd_present(*pgd))
1548		return NULL;
1549	pud = pud_offset(pgd, address);
1550	if (!pud_present(*pud))
1551		return NULL;
1552	pmd = pmd_offset(pud, address);
1553
1554	*ptl = pmd_lock(mm, pmd);
1555	if (!pmd_present(*pmd))
1556		goto unlock;
1557	if (pmd_page(*pmd) != page)
1558		goto unlock;
1559	/*
1560	 * split_vma() may create temporary aliased mappings. There is
1561	 * no risk as long as all huge pmd are found and have their
1562	 * splitting bit set before __split_huge_page_refcount
1563	 * runs. Finding the same huge pmd more than once during the
1564	 * same rmap walk is not a problem.
1565	 */
1566	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1567	    pmd_trans_splitting(*pmd))
1568		goto unlock;
1569	if (pmd_trans_huge(*pmd)) {
1570		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1571			  !pmd_trans_splitting(*pmd));
1572		return pmd;
1573	}
1574unlock:
1575	spin_unlock(*ptl);
1576	return NULL;
1577}
1578
1579static int __split_huge_page_splitting(struct page *page,
1580				       struct vm_area_struct *vma,
1581				       unsigned long address)
1582{
1583	struct mm_struct *mm = vma->vm_mm;
1584	spinlock_t *ptl;
1585	pmd_t *pmd;
1586	int ret = 0;
1587	/* For mmu_notifiers */
1588	const unsigned long mmun_start = address;
1589	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1590
1591	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1592	pmd = page_check_address_pmd(page, mm, address,
1593			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1594	if (pmd) {
1595		/*
1596		 * We can't temporarily set the pmd to null in order
1597		 * to split it, the pmd must remain marked huge at all
1598		 * times or the VM won't take the pmd_trans_huge paths
1599		 * and it won't wait on the anon_vma->root->rwsem to
1600		 * serialize against split_huge_page*.
1601		 */
1602		pmdp_splitting_flush(vma, address, pmd);
1603		ret = 1;
1604		spin_unlock(ptl);
 
 
 
 
1605	}
1606	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1607
1608	return ret;
1609}
1610
1611static void __split_huge_page_refcount(struct page *page,
1612				       struct list_head *list)
1613{
1614	int i;
1615	struct zone *zone = page_zone(page);
1616	struct lruvec *lruvec;
1617	int tail_count = 0;
1618
1619	/* prevent PageLRU to go away from under us, and freeze lru stats */
1620	spin_lock_irq(&zone->lru_lock);
1621	lruvec = mem_cgroup_page_lruvec(page, zone);
1622
1623	compound_lock(page);
1624	/* complete memcg works before add pages to LRU */
1625	mem_cgroup_split_huge_fixup(page);
1626
1627	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1628		struct page *page_tail = page + i;
1629
1630		/* tail_page->_mapcount cannot change */
1631		BUG_ON(page_mapcount(page_tail) < 0);
1632		tail_count += page_mapcount(page_tail);
1633		/* check for overflow */
1634		BUG_ON(tail_count < 0);
1635		BUG_ON(atomic_read(&page_tail->_count) != 0);
1636		/*
1637		 * tail_page->_count is zero and not changing from
1638		 * under us. But get_page_unless_zero() may be running
1639		 * from under us on the tail_page. If we used
1640		 * atomic_set() below instead of atomic_add(), we
1641		 * would then run atomic_set() concurrently with
1642		 * get_page_unless_zero(), and atomic_set() is
1643		 * implemented in C not using locked ops. spin_unlock
1644		 * on x86 sometime uses locked ops because of PPro
1645		 * errata 66, 92, so unless somebody can guarantee
1646		 * atomic_set() here would be safe on all archs (and
1647		 * not only on x86), it's safer to use atomic_add().
1648		 */
1649		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1650			   &page_tail->_count);
1651
1652		/* after clearing PageTail the gup refcount can be released */
1653		smp_mb();
 
 
 
1654
1655		/*
1656		 * retain hwpoison flag of the poisoned tail page:
1657		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1658		 *   by the memory-failure.
1659		 */
1660		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1661		page_tail->flags |= (page->flags &
1662				     ((1L << PG_referenced) |
1663				      (1L << PG_swapbacked) |
1664				      (1L << PG_mlocked) |
1665				      (1L << PG_uptodate) |
1666				      (1L << PG_active) |
1667				      (1L << PG_unevictable)));
1668		page_tail->flags |= (1L << PG_dirty);
1669
1670		/* clear PageTail before overwriting first_page */
1671		smp_wmb();
 
 
 
 
 
 
 
1672
1673		/*
1674		 * __split_huge_page_splitting() already set the
1675		 * splitting bit in all pmd that could map this
1676		 * hugepage, that will ensure no CPU can alter the
1677		 * mapcount on the head page. The mapcount is only
1678		 * accounted in the head page and it has to be
1679		 * transferred to all tail pages in the below code. So
1680		 * for this code to be safe, the split the mapcount
1681		 * can't change. But that doesn't mean userland can't
1682		 * keep changing and reading the page contents while
1683		 * we transfer the mapcount, so the pmd splitting
1684		 * status is achieved setting a reserved bit in the
1685		 * pmd, not by clearing the present bit.
1686		*/
1687		page_tail->_mapcount = page->_mapcount;
1688
1689		BUG_ON(page_tail->mapping);
1690		page_tail->mapping = page->mapping;
1691
1692		page_tail->index = page->index + i;
1693		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1694
1695		BUG_ON(!PageAnon(page_tail));
1696		BUG_ON(!PageUptodate(page_tail));
1697		BUG_ON(!PageDirty(page_tail));
1698		BUG_ON(!PageSwapBacked(page_tail));
1699
1700		lru_add_page_tail(page, page_tail, lruvec, list);
1701	}
1702	atomic_sub(tail_count, &page->_count);
1703	BUG_ON(atomic_read(&page->_count) <= 0);
1704
1705	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1706
1707	ClearPageCompound(page);
1708	compound_unlock(page);
1709	spin_unlock_irq(&zone->lru_lock);
1710
1711	for (i = 1; i < HPAGE_PMD_NR; i++) {
1712		struct page *page_tail = page + i;
1713		BUG_ON(page_count(page_tail) <= 0);
1714		/*
1715		 * Tail pages may be freed if there wasn't any mapping
1716		 * like if add_to_swap() is running on a lru page that
1717		 * had its mapping zapped. And freeing these pages
1718		 * requires taking the lru_lock so we do the put_page
1719		 * of the tail pages after the split is complete.
1720		 */
1721		put_page(page_tail);
1722	}
1723
1724	/*
1725	 * Only the head page (now become a regular page) is required
1726	 * to be pinned by the caller.
 
 
 
 
1727	 */
1728	BUG_ON(page_count(page) <= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729}
1730
1731static int __split_huge_page_map(struct page *page,
1732				 struct vm_area_struct *vma,
1733				 unsigned long address)
1734{
1735	struct mm_struct *mm = vma->vm_mm;
1736	spinlock_t *ptl;
1737	pmd_t *pmd, _pmd;
1738	int ret = 0, i;
1739	pgtable_t pgtable;
1740	unsigned long haddr;
 
 
 
 
1741
1742	pmd = page_check_address_pmd(page, mm, address,
1743			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1744	if (pmd) {
1745		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1746		pmd_populate(mm, &_pmd, pgtable);
1747
1748		haddr = address;
1749		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1750			pte_t *pte, entry;
1751			BUG_ON(PageCompound(page+i));
1752			entry = mk_pte(page + i, vma->vm_page_prot);
1753			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1754			if (!pmd_write(*pmd))
1755				entry = pte_wrprotect(entry);
1756			else
1757				BUG_ON(page_mapcount(page) != 1);
1758			if (!pmd_young(*pmd))
1759				entry = pte_mkold(entry);
1760			if (pmd_numa(*pmd))
1761				entry = pte_mknuma(entry);
1762			pte = pte_offset_map(&_pmd, haddr);
1763			BUG_ON(!pte_none(*pte));
1764			set_pte_at(mm, haddr, pte, entry);
1765			pte_unmap(pte);
 
 
 
 
 
 
 
1766		}
 
 
 
1767
1768		smp_wmb(); /* make pte visible before pmd */
1769		/*
1770		 * Up to this point the pmd is present and huge and
1771		 * userland has the whole access to the hugepage
1772		 * during the split (which happens in place). If we
1773		 * overwrite the pmd with the not-huge version
1774		 * pointing to the pte here (which of course we could
1775		 * if all CPUs were bug free), userland could trigger
1776		 * a small page size TLB miss on the small sized TLB
1777		 * while the hugepage TLB entry is still established
1778		 * in the huge TLB. Some CPU doesn't like that. See
1779		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1780		 * Erratum 383 on page 93. Intel should be safe but is
1781		 * also warns that it's only safe if the permission
1782		 * and cache attributes of the two entries loaded in
1783		 * the two TLB is identical (which should be the case
1784		 * here). But it is generally safer to never allow
1785		 * small and huge TLB entries for the same virtual
1786		 * address to be loaded simultaneously. So instead of
1787		 * doing "pmd_populate(); flush_tlb_range();" we first
1788		 * mark the current pmd notpresent (atomically because
1789		 * here the pmd_trans_huge and pmd_trans_splitting
1790		 * must remain set at all times on the pmd until the
1791		 * split is complete for this pmd), then we flush the
1792		 * SMP TLB and finally we write the non-huge version
1793		 * of the pmd entry with pmd_populate.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1794		 */
1795		pmdp_invalidate(vma, address, pmd);
1796		pmd_populate(mm, pmd, pgtable);
1797		ret = 1;
1798		spin_unlock(ptl);
 
1799	}
1800
1801	return ret;
1802}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1803
1804/* must be called with anon_vma->root->rwsem held */
1805static void __split_huge_page(struct page *page,
1806			      struct anon_vma *anon_vma,
1807			      struct list_head *list)
1808{
1809	int mapcount, mapcount2;
1810	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1811	struct anon_vma_chain *avc;
1812
1813	BUG_ON(!PageHead(page));
1814	BUG_ON(PageTail(page));
1815
1816	mapcount = 0;
1817	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1818		struct vm_area_struct *vma = avc->vma;
1819		unsigned long addr = vma_address(page, vma);
1820		BUG_ON(is_vma_temporary_stack(vma));
1821		mapcount += __split_huge_page_splitting(page, vma, addr);
1822	}
1823	/*
1824	 * It is critical that new vmas are added to the tail of the
1825	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1826	 * and establishes a child pmd before
1827	 * __split_huge_page_splitting() freezes the parent pmd (so if
1828	 * we fail to prevent copy_huge_pmd() from running until the
1829	 * whole __split_huge_page() is complete), we will still see
1830	 * the newly established pmd of the child later during the
1831	 * walk, to be able to set it as pmd_trans_splitting too.
1832	 */
1833	if (mapcount != page_mapcount(page))
1834		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1835		       mapcount, page_mapcount(page));
1836	BUG_ON(mapcount != page_mapcount(page));
1837
1838	__split_huge_page_refcount(page, list);
1839
1840	mapcount2 = 0;
1841	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1842		struct vm_area_struct *vma = avc->vma;
1843		unsigned long addr = vma_address(page, vma);
1844		BUG_ON(is_vma_temporary_stack(vma));
1845		mapcount2 += __split_huge_page_map(page, vma, addr);
1846	}
1847	if (mapcount != mapcount2)
1848		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1849		       mapcount, mapcount2, page_mapcount(page));
1850	BUG_ON(mapcount != mapcount2);
1851}
1852
1853/*
1854 * Split a hugepage into normal pages. This doesn't change the position of head
1855 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1856 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1857 * from the hugepage.
1858 * Return 0 if the hugepage is split successfully otherwise return 1.
1859 */
1860int split_huge_page_to_list(struct page *page, struct list_head *list)
1861{
1862	struct anon_vma *anon_vma;
1863	int ret = 1;
1864
1865	BUG_ON(is_huge_zero_page(page));
1866	BUG_ON(!PageAnon(page));
 
 
 
1867
1868	/*
1869	 * The caller does not necessarily hold an mmap_sem that would prevent
1870	 * the anon_vma disappearing so we first we take a reference to it
1871	 * and then lock the anon_vma for write. This is similar to
1872	 * page_lock_anon_vma_read except the write lock is taken to serialise
1873	 * against parallel split or collapse operations.
1874	 */
1875	anon_vma = page_get_anon_vma(page);
1876	if (!anon_vma)
1877		goto out;
1878	anon_vma_lock_write(anon_vma);
1879
1880	ret = 0;
1881	if (!PageCompound(page))
1882		goto out_unlock;
1883
1884	BUG_ON(!PageSwapBacked(page));
1885	__split_huge_page(page, anon_vma, list);
1886	count_vm_event(THP_SPLIT);
1887
1888	BUG_ON(PageCompound(page));
1889out_unlock:
1890	anon_vma_unlock_write(anon_vma);
1891	put_anon_vma(anon_vma);
1892out:
1893	return ret;
1894}
1895
1896#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1897
1898int hugepage_madvise(struct vm_area_struct *vma,
1899		     unsigned long *vm_flags, int advice)
1900{
1901	switch (advice) {
1902	case MADV_HUGEPAGE:
1903#ifdef CONFIG_S390
1904		/*
1905		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1906		 * can't handle this properly after s390_enable_sie, so we simply
1907		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1908		 */
1909		if (mm_has_pgste(vma->vm_mm))
1910			return 0;
1911#endif
1912		/*
1913		 * Be somewhat over-protective like KSM for now!
1914		 */
1915		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1916			return -EINVAL;
1917		*vm_flags &= ~VM_NOHUGEPAGE;
1918		*vm_flags |= VM_HUGEPAGE;
1919		/*
1920		 * If the vma become good for khugepaged to scan,
1921		 * register it here without waiting a page fault that
1922		 * may not happen any time soon.
1923		 */
1924		if (unlikely(khugepaged_enter_vma_merge(vma)))
1925			return -ENOMEM;
1926		break;
1927	case MADV_NOHUGEPAGE:
1928		/*
1929		 * Be somewhat over-protective like KSM for now!
1930		 */
1931		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1932			return -EINVAL;
1933		*vm_flags &= ~VM_HUGEPAGE;
1934		*vm_flags |= VM_NOHUGEPAGE;
1935		/*
1936		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1937		 * this vma even if we leave the mm registered in khugepaged if
1938		 * it got registered before VM_NOHUGEPAGE was set.
1939		 */
1940		break;
1941	}
1942
1943	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944}
1945
1946static int __init khugepaged_slab_init(void)
 
1947{
1948	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1949					  sizeof(struct mm_slot),
1950					  __alignof__(struct mm_slot), 0, NULL);
1951	if (!mm_slot_cache)
1952		return -ENOMEM;
1953
1954	return 0;
 
 
 
1955}
1956
1957static inline struct mm_slot *alloc_mm_slot(void)
1958{
1959	if (!mm_slot_cache)	/* initialization failed */
1960		return NULL;
1961	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 
 
 
 
 
1962}
1963
1964static inline void free_mm_slot(struct mm_slot *mm_slot)
 
 
 
1965{
1966	kmem_cache_free(mm_slot_cache, mm_slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967}
1968
1969static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1970{
1971	struct mm_slot *mm_slot;
 
1972
1973	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1974		if (mm == mm_slot->mm)
1975			return mm_slot;
1976
1977	return NULL;
 
 
 
 
 
 
 
 
1978}
1979
1980static void insert_to_mm_slots_hash(struct mm_struct *mm,
1981				    struct mm_slot *mm_slot)
1982{
1983	mm_slot->mm = mm;
1984	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
 
 
 
 
 
 
 
 
 
 
1985}
1986
1987static inline int khugepaged_test_exit(struct mm_struct *mm)
 
1988{
1989	return atomic_read(&mm->mm_users) == 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1990}
1991
1992int __khugepaged_enter(struct mm_struct *mm)
 
1993{
1994	struct mm_slot *mm_slot;
1995	int wakeup;
1996
1997	mm_slot = alloc_mm_slot();
1998	if (!mm_slot)
1999		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2000
2001	/* __khugepaged_exit() must not run from under us */
2002	VM_BUG_ON(khugepaged_test_exit(mm));
2003	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2004		free_mm_slot(mm_slot);
2005		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2006	}
2007
2008	spin_lock(&khugepaged_mm_lock);
2009	insert_to_mm_slots_hash(mm, mm_slot);
 
2010	/*
2011	 * Insert just behind the scanning cursor, to let the area settle
2012	 * down a little.
 
 
2013	 */
2014	wakeup = list_empty(&khugepaged_scan.mm_head);
2015	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2016	spin_unlock(&khugepaged_mm_lock);
2017
2018	atomic_inc(&mm->mm_count);
2019	if (wakeup)
2020		wake_up_interruptible(&khugepaged_wait);
2021
2022	return 0;
2023}
 
2024
2025int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2026{
2027	unsigned long hstart, hend;
2028	if (!vma->anon_vma)
2029		/*
2030		 * Not yet faulted in so we will register later in the
2031		 * page fault if needed.
2032		 */
2033		return 0;
2034	if (vma->vm_ops)
2035		/* khugepaged not yet working on file or special mappings */
2036		return 0;
2037	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2038	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2039	hend = vma->vm_end & HPAGE_PMD_MASK;
2040	if (hstart < hend)
2041		return khugepaged_enter(vma);
2042	return 0;
2043}
2044
2045void __khugepaged_exit(struct mm_struct *mm)
 
2046{
2047	struct mm_slot *mm_slot;
2048	int free = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049
2050	spin_lock(&khugepaged_mm_lock);
2051	mm_slot = get_mm_slot(mm);
2052	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2053		hash_del(&mm_slot->hash);
2054		list_del(&mm_slot->mm_node);
2055		free = 1;
2056	}
2057	spin_unlock(&khugepaged_mm_lock);
2058
2059	if (free) {
2060		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2061		free_mm_slot(mm_slot);
2062		mmdrop(mm);
2063	} else if (mm_slot) {
2064		/*
2065		 * This is required to serialize against
2066		 * khugepaged_test_exit() (which is guaranteed to run
2067		 * under mmap sem read mode). Stop here (after we
2068		 * return all pagetables will be destroyed) until
2069		 * khugepaged has finished working on the pagetables
2070		 * under the mmap_sem.
2071		 */
2072		down_write(&mm->mmap_sem);
2073		up_write(&mm->mmap_sem);
2074	}
2075}
2076
2077static void release_pte_page(struct page *page)
 
2078{
2079	/* 0 stands for page_is_file_cache(page) == false */
2080	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2081	unlock_page(page);
2082	putback_lru_page(page);
2083}
2084
2085static void release_pte_pages(pte_t *pte, pte_t *_pte)
2086{
2087	while (--_pte >= pte) {
2088		pte_t pteval = *_pte;
2089		if (!pte_none(pteval))
2090			release_pte_page(pte_page(pteval));
2091	}
 
 
2092}
2093
2094static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2095					unsigned long address,
2096					pte_t *pte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097{
2098	struct page *page;
2099	pte_t *_pte;
2100	int referenced = 0, none = 0;
2101	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2102	     _pte++, address += PAGE_SIZE) {
2103		pte_t pteval = *_pte;
2104		if (pte_none(pteval)) {
2105			if (++none <= khugepaged_max_ptes_none)
2106				continue;
2107			else
2108				goto out;
2109		}
2110		if (!pte_present(pteval) || !pte_write(pteval))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2111			goto out;
2112		page = vm_normal_page(vma, address, pteval);
2113		if (unlikely(!page))
 
 
 
 
 
 
 
 
 
 
2114			goto out;
 
2115
2116		VM_BUG_ON_PAGE(PageCompound(page), page);
2117		VM_BUG_ON_PAGE(!PageAnon(page), page);
2118		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2119
2120		/* cannot use mapcount: can't collapse if there's a gup pin */
2121		if (page_count(page) != 1)
 
2122			goto out;
2123		/*
2124		 * We can do it before isolate_lru_page because the
2125		 * page can't be freed from under us. NOTE: PG_lock
2126		 * is needed to serialize against split_huge_page
2127		 * when invoked from the VM.
2128		 */
2129		if (!trylock_page(page))
2130			goto out;
 
 
 
 
 
2131		/*
2132		 * Isolate the page to avoid collapsing an hugepage
2133		 * currently in use by the VM.
 
 
 
2134		 */
2135		if (isolate_lru_page(page)) {
2136			unlock_page(page);
2137			goto out;
2138		}
2139		/* 0 stands for page_is_file_cache(page) == false */
2140		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2141		VM_BUG_ON_PAGE(!PageLocked(page), page);
2142		VM_BUG_ON_PAGE(PageLRU(page), page);
2143
2144		/* If there is no mapped pte young don't collapse the page */
2145		if (pte_young(pteval) || PageReferenced(page) ||
2146		    mmu_notifier_test_young(vma->vm_mm, address))
2147			referenced = 1;
2148	}
2149	if (likely(referenced))
2150		return 1;
2151out:
2152	release_pte_pages(pte, _pte);
2153	return 0;
2154}
2155
2156static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2157				      struct vm_area_struct *vma,
2158				      unsigned long address,
2159				      spinlock_t *ptl)
2160{
2161	pte_t *_pte;
2162	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2163		pte_t pteval = *_pte;
2164		struct page *src_page;
2165
2166		if (pte_none(pteval)) {
2167			clear_user_highpage(page, address);
2168			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2169		} else {
2170			src_page = pte_page(pteval);
2171			copy_user_highpage(page, src_page, address, vma);
2172			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2173			release_pte_page(src_page);
2174			/*
2175			 * ptl mostly unnecessary, but preempt has to
2176			 * be disabled to update the per-cpu stats
2177			 * inside page_remove_rmap().
2178			 */
2179			spin_lock(ptl);
2180			/*
2181			 * paravirt calls inside pte_clear here are
2182			 * superfluous.
2183			 */
2184			pte_clear(vma->vm_mm, address, _pte);
2185			page_remove_rmap(src_page);
2186			spin_unlock(ptl);
2187			free_page_and_swap_cache(src_page);
 
 
 
 
 
 
 
 
 
 
 
 
2188		}
2189
2190		address += PAGE_SIZE;
2191		page++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2192	}
 
 
 
 
 
 
2193}
2194
2195static void khugepaged_alloc_sleep(void)
2196{
2197	wait_event_freezable_timeout(khugepaged_wait, false,
2198			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2199}
2200
2201static int khugepaged_node_load[MAX_NUMNODES];
 
 
 
 
 
 
 
2202
2203#ifdef CONFIG_NUMA
2204static int khugepaged_find_target_node(void)
2205{
2206	static int last_khugepaged_target_node = NUMA_NO_NODE;
2207	int nid, target_node = 0, max_value = 0;
 
 
 
2208
2209	/* find first node with max normal pages hit */
2210	for (nid = 0; nid < MAX_NUMNODES; nid++)
2211		if (khugepaged_node_load[nid] > max_value) {
2212			max_value = khugepaged_node_load[nid];
2213			target_node = nid;
2214		}
2215
2216	/* do some balance if several nodes have the same hit record */
2217	if (target_node <= last_khugepaged_target_node)
2218		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2219				nid++)
2220			if (max_value == khugepaged_node_load[nid]) {
2221				target_node = nid;
2222				break;
2223			}
 
 
 
 
2224
2225	last_khugepaged_target_node = target_node;
2226	return target_node;
 
 
 
 
 
 
 
 
 
 
2227}
2228
2229static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 
2230{
2231	if (IS_ERR(*hpage)) {
2232		if (!*wait)
2233			return false;
2234
2235		*wait = false;
2236		*hpage = NULL;
2237		khugepaged_alloc_sleep();
2238	} else if (*hpage) {
2239		put_page(*hpage);
2240		*hpage = NULL;
2241	}
2242
2243	return true;
 
 
 
 
2244}
2245
2246static struct page
2247*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2248		       struct vm_area_struct *vma, unsigned long address,
2249		       int node)
2250{
2251	VM_BUG_ON_PAGE(*hpage, *hpage);
2252	/*
2253	 * Allocate the page while the vma is still valid and under
2254	 * the mmap_sem read mode so there is no memory allocation
2255	 * later when we take the mmap_sem in write mode. This is more
2256	 * friendly behavior (OTOH it may actually hide bugs) to
2257	 * filesystems in userland with daemons allocating memory in
2258	 * the userland I/O paths.  Allocating memory with the
2259	 * mmap_sem in read mode is good idea also to allow greater
2260	 * scalability.
2261	 */
2262	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2263		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2264	/*
2265	 * After allocating the hugepage, release the mmap_sem read lock in
2266	 * preparation for taking it in write mode.
2267	 */
2268	up_read(&mm->mmap_sem);
2269	if (unlikely(!*hpage)) {
2270		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2271		*hpage = ERR_PTR(-ENOMEM);
2272		return NULL;
2273	}
2274
2275	count_vm_event(THP_COLLAPSE_ALLOC);
2276	return *hpage;
2277}
2278#else
2279static int khugepaged_find_target_node(void)
2280{
2281	return 0;
2282}
 
 
 
 
2283
2284static inline struct page *alloc_hugepage(int defrag)
2285{
2286	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2287			   HPAGE_PMD_ORDER);
2288}
2289
2290static struct page *khugepaged_alloc_hugepage(bool *wait)
2291{
2292	struct page *hpage;
 
 
 
 
 
 
 
 
 
 
 
 
 
2293
2294	do {
2295		hpage = alloc_hugepage(khugepaged_defrag());
2296		if (!hpage) {
2297			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2298			if (!*wait)
2299				return NULL;
 
 
 
 
 
2300
2301			*wait = false;
2302			khugepaged_alloc_sleep();
2303		} else
2304			count_vm_event(THP_COLLAPSE_ALLOC);
2305	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2306
2307	return hpage;
 
 
 
 
 
 
2308}
2309
2310static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 
 
 
 
 
 
 
 
 
2311{
2312	if (!*hpage)
2313		*hpage = khugepaged_alloc_hugepage(wait);
 
 
2314
2315	if (unlikely(!*hpage))
2316		return false;
 
 
 
 
 
2317
2318	return true;
2319}
 
2320
2321static struct page
2322*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2323		       struct vm_area_struct *vma, unsigned long address,
2324		       int node)
2325{
2326	up_read(&mm->mmap_sem);
2327	VM_BUG_ON(!*hpage);
2328	return  *hpage;
2329}
2330#endif
2331
2332static bool hugepage_vma_check(struct vm_area_struct *vma)
2333{
2334	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2335	    (vma->vm_flags & VM_NOHUGEPAGE))
2336		return false;
2337
2338	if (!vma->anon_vma || vma->vm_ops)
2339		return false;
2340	if (is_vma_temporary_stack(vma))
2341		return false;
2342	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2343	return true;
 
 
 
 
 
 
 
 
2344}
2345
2346static void collapse_huge_page(struct mm_struct *mm,
2347				   unsigned long address,
2348				   struct page **hpage,
2349				   struct vm_area_struct *vma,
2350				   int node)
2351{
2352	pmd_t *pmd, _pmd;
2353	pte_t *pte;
2354	pgtable_t pgtable;
2355	struct page *new_page;
2356	spinlock_t *pmd_ptl, *pte_ptl;
2357	int isolated;
2358	unsigned long hstart, hend;
2359	unsigned long mmun_start;	/* For mmu_notifiers */
2360	unsigned long mmun_end;		/* For mmu_notifiers */
2361
2362	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2363
2364	/* release the mmap_sem read lock. */
2365	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2366	if (!new_page)
2367		return;
2368
2369	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)))
2370		return;
 
 
 
 
 
 
2371
2372	/*
2373	 * Prevent all access to pagetables with the exception of
2374	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2375	 * handled by the anon_vma lock + PG_lock.
2376	 */
2377	down_write(&mm->mmap_sem);
2378	if (unlikely(khugepaged_test_exit(mm)))
2379		goto out;
2380
2381	vma = find_vma(mm, address);
2382	if (!vma)
2383		goto out;
2384	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2385	hend = vma->vm_end & HPAGE_PMD_MASK;
2386	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2387		goto out;
2388	if (!hugepage_vma_check(vma))
2389		goto out;
2390	pmd = mm_find_pmd(mm, address);
2391	if (!pmd)
2392		goto out;
2393	if (pmd_trans_huge(*pmd))
2394		goto out;
2395
2396	anon_vma_lock_write(vma->anon_vma);
2397
2398	pte = pte_offset_map(pmd, address);
2399	pte_ptl = pte_lockptr(mm, pmd);
2400
2401	mmun_start = address;
2402	mmun_end   = address + HPAGE_PMD_SIZE;
2403	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2404	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2405	/*
2406	 * After this gup_fast can't run anymore. This also removes
2407	 * any huge TLB entry from the CPU so we won't allow
2408	 * huge and small TLB entries for the same virtual address
2409	 * to avoid the risk of CPU bugs in that area.
2410	 */
2411	_pmd = pmdp_clear_flush(vma, address, pmd);
2412	spin_unlock(pmd_ptl);
2413	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2414
2415	spin_lock(pte_ptl);
2416	isolated = __collapse_huge_page_isolate(vma, address, pte);
2417	spin_unlock(pte_ptl);
2418
2419	if (unlikely(!isolated)) {
2420		pte_unmap(pte);
2421		spin_lock(pmd_ptl);
2422		BUG_ON(!pmd_none(*pmd));
2423		/*
2424		 * We can only use set_pmd_at when establishing
2425		 * hugepmds and never for establishing regular pmds that
2426		 * points to regular pagetables. Use pmd_populate for that
2427		 */
2428		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2429		spin_unlock(pmd_ptl);
2430		anon_vma_unlock_write(vma->anon_vma);
2431		goto out;
2432	}
2433
 
 
 
 
2434	/*
2435	 * All pages are isolated and locked so anon_vma rmap
2436	 * can't run anymore.
2437	 */
2438	anon_vma_unlock_write(vma->anon_vma);
 
 
2439
2440	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2441	pte_unmap(pte);
2442	__SetPageUptodate(new_page);
2443	pgtable = pmd_pgtable(_pmd);
2444
2445	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2446	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
 
 
 
2447
2448	/*
2449	 * spin_lock() below is not the equivalent of smp_wmb(), so
2450	 * this is needed to avoid the copy_huge_page writes to become
2451	 * visible after the set_pmd_at() write.
2452	 */
2453	smp_wmb();
2454
2455	spin_lock(pmd_ptl);
2456	BUG_ON(!pmd_none(*pmd));
2457	page_add_new_anon_rmap(new_page, vma, address);
2458	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2459	set_pmd_at(mm, address, pmd, _pmd);
2460	update_mmu_cache_pmd(vma, address, pmd);
2461	spin_unlock(pmd_ptl);
2462
2463	*hpage = NULL;
2464
2465	khugepaged_pages_collapsed++;
2466out_up_write:
2467	up_write(&mm->mmap_sem);
2468	return;
2469
2470out:
2471	mem_cgroup_uncharge_page(new_page);
2472	goto out_up_write;
2473}
2474
2475static int khugepaged_scan_pmd(struct mm_struct *mm,
2476			       struct vm_area_struct *vma,
2477			       unsigned long address,
2478			       struct page **hpage)
2479{
2480	pmd_t *pmd;
2481	pte_t *pte, *_pte;
2482	int ret = 0, referenced = 0, none = 0;
2483	struct page *page;
2484	unsigned long _address;
2485	spinlock_t *ptl;
2486	int node = NUMA_NO_NODE;
2487
2488	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 
2489
2490	pmd = mm_find_pmd(mm, address);
2491	if (!pmd)
2492		goto out;
2493	if (pmd_trans_huge(*pmd))
2494		goto out;
2495
2496	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2497	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2498	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2499	     _pte++, _address += PAGE_SIZE) {
2500		pte_t pteval = *_pte;
2501		if (pte_none(pteval)) {
2502			if (++none <= khugepaged_max_ptes_none)
2503				continue;
2504			else
2505				goto out_unmap;
2506		}
2507		if (!pte_present(pteval) || !pte_write(pteval))
2508			goto out_unmap;
2509		page = vm_normal_page(vma, _address, pteval);
2510		if (unlikely(!page))
2511			goto out_unmap;
2512		/*
2513		 * Record which node the original page is from and save this
2514		 * information to khugepaged_node_load[].
2515		 * Khupaged will allocate hugepage from the node has the max
2516		 * hit record.
2517		 */
2518		node = page_to_nid(page);
2519		khugepaged_node_load[node]++;
2520		VM_BUG_ON_PAGE(PageCompound(page), page);
2521		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2522			goto out_unmap;
2523		/* cannot use mapcount: can't collapse if there's a gup pin */
2524		if (page_count(page) != 1)
2525			goto out_unmap;
2526		if (pte_young(pteval) || PageReferenced(page) ||
2527		    mmu_notifier_test_young(vma->vm_mm, address))
2528			referenced = 1;
2529	}
2530	if (referenced)
2531		ret = 1;
2532out_unmap:
2533	pte_unmap_unlock(pte, ptl);
2534	if (ret) {
2535		node = khugepaged_find_target_node();
2536		/* collapse_huge_page will return with the mmap_sem released */
2537		collapse_huge_page(mm, address, hpage, vma, node);
2538	}
 
 
 
 
 
2539out:
2540	return ret;
2541}
2542
2543static void collect_mm_slot(struct mm_slot *mm_slot)
 
2544{
2545	struct mm_struct *mm = mm_slot->mm;
2546
2547	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2548
2549	if (khugepaged_test_exit(mm)) {
2550		/* free mm_slot */
2551		hash_del(&mm_slot->hash);
2552		list_del(&mm_slot->mm_node);
2553
2554		/*
2555		 * Not strictly needed because the mm exited already.
2556		 *
2557		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2558		 */
2559
2560		/* khugepaged_mm_lock actually not necessary for the below */
2561		free_mm_slot(mm_slot);
2562		mmdrop(mm);
2563	}
2564}
2565
2566static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2567					    struct page **hpage)
2568	__releases(&khugepaged_mm_lock)
2569	__acquires(&khugepaged_mm_lock)
2570{
2571	struct mm_slot *mm_slot;
2572	struct mm_struct *mm;
2573	struct vm_area_struct *vma;
2574	int progress = 0;
2575
2576	VM_BUG_ON(!pages);
2577	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2578
2579	if (khugepaged_scan.mm_slot)
2580		mm_slot = khugepaged_scan.mm_slot;
2581	else {
2582		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2583				     struct mm_slot, mm_node);
2584		khugepaged_scan.address = 0;
2585		khugepaged_scan.mm_slot = mm_slot;
2586	}
2587	spin_unlock(&khugepaged_mm_lock);
2588
2589	mm = mm_slot->mm;
2590	down_read(&mm->mmap_sem);
2591	if (unlikely(khugepaged_test_exit(mm)))
2592		vma = NULL;
2593	else
2594		vma = find_vma(mm, khugepaged_scan.address);
2595
2596	progress++;
2597	for (; vma; vma = vma->vm_next) {
2598		unsigned long hstart, hend;
2599
2600		cond_resched();
2601		if (unlikely(khugepaged_test_exit(mm))) {
2602			progress++;
2603			break;
2604		}
2605		if (!hugepage_vma_check(vma)) {
2606skip:
2607			progress++;
2608			continue;
2609		}
2610		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2611		hend = vma->vm_end & HPAGE_PMD_MASK;
2612		if (hstart >= hend)
2613			goto skip;
2614		if (khugepaged_scan.address > hend)
2615			goto skip;
2616		if (khugepaged_scan.address < hstart)
2617			khugepaged_scan.address = hstart;
2618		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2619
2620		while (khugepaged_scan.address < hend) {
2621			int ret;
2622			cond_resched();
2623			if (unlikely(khugepaged_test_exit(mm)))
2624				goto breakouterloop;
2625
2626			VM_BUG_ON(khugepaged_scan.address < hstart ||
2627				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2628				  hend);
2629			ret = khugepaged_scan_pmd(mm, vma,
2630						  khugepaged_scan.address,
2631						  hpage);
2632			/* move to next address */
2633			khugepaged_scan.address += HPAGE_PMD_SIZE;
2634			progress += HPAGE_PMD_NR;
2635			if (ret)
2636				/* we released mmap_sem so break loop */
2637				goto breakouterloop_mmap_sem;
2638			if (progress >= pages)
2639				goto breakouterloop;
2640		}
2641	}
2642breakouterloop:
2643	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2644breakouterloop_mmap_sem:
2645
2646	spin_lock(&khugepaged_mm_lock);
2647	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2648	/*
2649	 * Release the current mm_slot if this mm is about to die, or
2650	 * if we scanned all vmas of this mm.
2651	 */
2652	if (khugepaged_test_exit(mm) || !vma) {
2653		/*
2654		 * Make sure that if mm_users is reaching zero while
2655		 * khugepaged runs here, khugepaged_exit will find
2656		 * mm_slot not pointing to the exiting mm.
2657		 */
2658		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2659			khugepaged_scan.mm_slot = list_entry(
2660				mm_slot->mm_node.next,
2661				struct mm_slot, mm_node);
2662			khugepaged_scan.address = 0;
2663		} else {
2664			khugepaged_scan.mm_slot = NULL;
2665			khugepaged_full_scans++;
2666		}
2667
2668		collect_mm_slot(mm_slot);
 
 
 
 
 
 
2669	}
2670
2671	return progress;
2672}
2673
2674static int khugepaged_has_work(void)
2675{
2676	return !list_empty(&khugepaged_scan.mm_head) &&
2677		khugepaged_enabled();
2678}
2679
2680static int khugepaged_wait_event(void)
2681{
2682	return !list_empty(&khugepaged_scan.mm_head) ||
2683		kthread_should_stop();
2684}
2685
2686static void khugepaged_do_scan(void)
 
2687{
2688	struct page *hpage = NULL;
2689	unsigned int progress = 0, pass_through_head = 0;
2690	unsigned int pages = khugepaged_pages_to_scan;
2691	bool wait = true;
2692
2693	barrier(); /* write khugepaged_pages_to_scan to local stack */
2694
2695	while (progress < pages) {
2696		if (!khugepaged_prealloc_page(&hpage, &wait))
2697			break;
2698
2699		cond_resched();
2700
2701		if (unlikely(kthread_should_stop() || freezing(current)))
2702			break;
 
2703
2704		spin_lock(&khugepaged_mm_lock);
2705		if (!khugepaged_scan.mm_slot)
2706			pass_through_head++;
2707		if (khugepaged_has_work() &&
2708		    pass_through_head < 2)
2709			progress += khugepaged_scan_mm_slot(pages - progress,
2710							    &hpage);
2711		else
2712			progress = pages;
2713		spin_unlock(&khugepaged_mm_lock);
2714	}
2715
2716	if (!IS_ERR_OR_NULL(hpage))
2717		put_page(hpage);
2718}
 
 
 
2719
2720static void khugepaged_wait_work(void)
2721{
2722	try_to_freeze();
 
 
 
 
2723
2724	if (khugepaged_has_work()) {
2725		if (!khugepaged_scan_sleep_millisecs)
2726			return;
 
 
 
 
 
2727
2728		wait_event_freezable_timeout(khugepaged_wait,
2729					     kthread_should_stop(),
2730			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2731		return;
2732	}
2733
2734	if (khugepaged_enabled())
2735		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2736}
 
 
 
 
 
 
2737
2738static int khugepaged(void *none)
2739{
2740	struct mm_slot *mm_slot;
 
 
 
2741
2742	set_freezable();
2743	set_user_nice(current, 19);
2744
2745	while (!kthread_should_stop()) {
2746		khugepaged_do_scan();
2747		khugepaged_wait_work();
2748	}
 
2749
2750	spin_lock(&khugepaged_mm_lock);
2751	mm_slot = khugepaged_scan.mm_slot;
2752	khugepaged_scan.mm_slot = NULL;
2753	if (mm_slot)
2754		collect_mm_slot(mm_slot);
2755	spin_unlock(&khugepaged_mm_lock);
2756	return 0;
2757}
 
 
2758
2759static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2760		unsigned long haddr, pmd_t *pmd)
 
2761{
 
2762	struct mm_struct *mm = vma->vm_mm;
2763	pgtable_t pgtable;
2764	pmd_t _pmd;
2765	int i;
 
 
2766
2767	pmdp_clear_flush(vma, haddr, pmd);
2768	/* leave pmd empty until pte is filled */
2769
2770	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2771	pmd_populate(mm, &_pmd, pgtable);
2772
2773	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2774		pte_t *pte, entry;
2775		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2776		entry = pte_mkspecial(entry);
2777		pte = pte_offset_map(&_pmd, haddr);
2778		VM_BUG_ON(!pte_none(*pte));
2779		set_pte_at(mm, haddr, pte, entry);
2780		pte_unmap(pte);
2781	}
2782	smp_wmb(); /* make pte visible before pmd */
2783	pmd_populate(mm, pmd, pgtable);
2784	put_huge_zero_page();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2785}
2786
2787void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2788		pmd_t *pmd)
2789{
2790	spinlock_t *ptl;
2791	struct page *page;
2792	struct mm_struct *mm = vma->vm_mm;
 
2793	unsigned long haddr = address & HPAGE_PMD_MASK;
2794	unsigned long mmun_start;	/* For mmu_notifiers */
2795	unsigned long mmun_end;		/* For mmu_notifiers */
2796
2797	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2798
2799	mmun_start = haddr;
2800	mmun_end   = haddr + HPAGE_PMD_SIZE;
2801again:
2802	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2803	ptl = pmd_lock(mm, pmd);
2804	if (unlikely(!pmd_trans_huge(*pmd))) {
2805		spin_unlock(ptl);
2806		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2807		return;
2808	}
2809	if (is_huge_zero_pmd(*pmd)) {
2810		__split_huge_zero_page_pmd(vma, haddr, pmd);
2811		spin_unlock(ptl);
2812		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2813		return;
2814	}
2815	page = pmd_page(*pmd);
2816	VM_BUG_ON_PAGE(!page_count(page), page);
2817	get_page(page);
2818	spin_unlock(ptl);
2819	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2820
2821	split_huge_page(page);
2822
2823	put_page(page);
2824
2825	/*
2826	 * We don't always have down_write of mmap_sem here: a racing
2827	 * do_huge_pmd_wp_page() might have copied-on-write to another
2828	 * huge page before our split_huge_page() got the anon_vma lock.
2829	 */
2830	if (unlikely(pmd_trans_huge(*pmd)))
2831		goto again;
2832}
2833
2834void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2835		pmd_t *pmd)
2836{
2837	struct vm_area_struct *vma;
2838
2839	vma = find_vma(mm, address);
2840	BUG_ON(vma == NULL);
2841	split_huge_page_pmd(vma, address, pmd);
2842}
2843
2844static void split_huge_page_address(struct mm_struct *mm,
2845				    unsigned long address)
2846{
2847	pmd_t *pmd;
2848
2849	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2850
2851	pmd = mm_find_pmd(mm, address);
2852	if (!pmd)
2853		return;
2854	/*
2855	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2856	 * materialize from under us.
2857	 */
2858	split_huge_page_pmd_mm(mm, address, pmd);
2859}
2860
2861void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2862			     unsigned long start,
2863			     unsigned long end,
2864			     long adjust_next)
2865{
2866	/*
2867	 * If the new start address isn't hpage aligned and it could
2868	 * previously contain an hugepage: check if we need to split
2869	 * an huge pmd.
2870	 */
2871	if (start & ~HPAGE_PMD_MASK &&
2872	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2873	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2874		split_huge_page_address(vma->vm_mm, start);
2875
2876	/*
2877	 * If the new end address isn't hpage aligned and it could
2878	 * previously contain an hugepage: check if we need to split
2879	 * an huge pmd.
2880	 */
2881	if (end & ~HPAGE_PMD_MASK &&
2882	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2883	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2884		split_huge_page_address(vma->vm_mm, end);
2885
2886	/*
2887	 * If we're also updating the vma->vm_next->vm_start, if the new
2888	 * vm_next->vm_start isn't page aligned and it could previously
2889	 * contain an hugepage: check if we need to split an huge pmd.
2890	 */
2891	if (adjust_next > 0) {
2892		struct vm_area_struct *next = vma->vm_next;
2893		unsigned long nstart = next->vm_start;
2894		nstart += adjust_next << PAGE_SHIFT;
2895		if (nstart & ~HPAGE_PMD_MASK &&
2896		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2897		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2898			split_huge_page_address(next->vm_mm, nstart);
2899	}
 
 
 
 
 
 
2900}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 2009  Red Hat, Inc.
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/coredump.h>
  12#include <linux/sched/numa_balancing.h>
  13#include <linux/highmem.h>
  14#include <linux/hugetlb.h>
  15#include <linux/mmu_notifier.h>
  16#include <linux/rmap.h>
  17#include <linux/swap.h>
  18#include <linux/shrinker.h>
  19#include <linux/mm_inline.h>
  20#include <linux/swapops.h>
  21#include <linux/backing-dev.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36#include <linux/numa.h>
  37#include <linux/page_owner.h>
  38#include <linux/sched/sysctl.h>
  39#include <linux/memory-tiers.h>
  40
  41#include <asm/tlb.h>
  42#include <asm/pgalloc.h>
  43#include "internal.h"
  44#include "swap.h"
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/thp.h>
  48
  49/*
  50 * By default, transparent hugepage support is disabled in order to avoid
  51 * risking an increased memory footprint for applications that are not
  52 * guaranteed to benefit from it. When transparent hugepage support is
  53 * enabled, it is for all mappings, and khugepaged scans all mappings.
  54 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  55 * for all hugepage allocations.
  56 */
  57unsigned long transparent_hugepage_flags __read_mostly =
  58#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  59	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  60#endif
  61#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  62	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  63#endif
  64	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  65	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  66	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  67
  68static struct shrinker deferred_split_shrinker;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69
  70static atomic_t huge_zero_refcount;
  71struct page *huge_zero_page __read_mostly;
  72unsigned long huge_zero_pfn __read_mostly = ~0UL;
  73
  74bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
  75			bool smaps, bool in_pf, bool enforce_sysfs)
  76{
  77	if (!vma->vm_mm)		/* vdso */
  78		return false;
 
 
 
 
  79
  80	/*
  81	 * Explicitly disabled through madvise or prctl, or some
  82	 * architectures may disable THP for some mappings, for
  83	 * example, s390 kvm.
  84	 * */
  85	if ((vm_flags & VM_NOHUGEPAGE) ||
  86	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
  87		return false;
  88	/*
  89	 * If the hardware/firmware marked hugepage support disabled.
  90	 */
  91	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
  92		return false;
  93
  94	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
  95	if (vma_is_dax(vma))
  96		return in_pf;
  97
  98	/*
  99	 * Special VMA and hugetlb VMA.
 100	 * Must be checked after dax since some dax mappings may have
 101	 * VM_MIXEDMAP set.
 
 102	 */
 103	if (vm_flags & VM_NO_KHUGEPAGED)
 104		return false;
 105
 106	/*
 107	 * Check alignment for file vma and size for both file and anon vma.
 108	 *
 109	 * Skip the check for page fault. Huge fault does the check in fault
 110	 * handlers. And this check is not suitable for huge PUD fault.
 111	 */
 112	if (!in_pf &&
 113	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
 114		return false;
 115
 116	/*
 117	 * Enabled via shmem mount options or sysfs settings.
 118	 * Must be done before hugepage flags check since shmem has its
 119	 * own flags.
 120	 */
 121	if (!in_pf && shmem_file(vma->vm_file))
 122		return shmem_huge_enabled(vma, !enforce_sysfs);
 123
 124	/* Enforce sysfs THP requirements as necessary */
 125	if (enforce_sysfs &&
 126	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
 127					   !hugepage_flags_always())))
 128		return false;
 129
 130	/* Only regular file is valid */
 131	if (!in_pf && file_thp_enabled(vma))
 132		return true;
 
 
 
 133
 134	if (!vma_is_anonymous(vma))
 135		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136
 137	if (vma_is_temporary_stack(vma))
 138		return false;
 139
 140	/*
 141	 * THPeligible bit of smaps should show 1 for proper VMAs even
 142	 * though anon_vma is not initialized yet.
 143	 *
 144	 * Allow page fault since anon_vma may be not initialized until
 145	 * the first page fault.
 146	 */
 147	if (!vma->anon_vma)
 148		return (smaps || in_pf);
 149
 150	return true;
 
 
 151}
 152
 153static bool get_huge_zero_page(void)
 154{
 155	struct page *zero_page;
 156retry:
 157	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 158		return true;
 159
 160	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 161			HPAGE_PMD_ORDER);
 162	if (!zero_page) {
 163		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 164		return false;
 165	}
 
 166	preempt_disable();
 167	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 168		preempt_enable();
 169		__free_pages(zero_page, compound_order(zero_page));
 170		goto retry;
 171	}
 172	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
 173
 174	/* We take additional reference here. It will be put back by shrinker */
 175	atomic_set(&huge_zero_refcount, 2);
 176	preempt_enable();
 177	count_vm_event(THP_ZERO_PAGE_ALLOC);
 178	return true;
 179}
 180
 181static void put_huge_zero_page(void)
 182{
 183	/*
 184	 * Counter should never go to zero here. Only shrinker can put
 185	 * last reference.
 186	 */
 187	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 188}
 189
 190struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 191{
 192	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 193		return READ_ONCE(huge_zero_page);
 194
 195	if (!get_huge_zero_page())
 196		return NULL;
 197
 198	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 199		put_huge_zero_page();
 200
 201	return READ_ONCE(huge_zero_page);
 202}
 203
 204void mm_put_huge_zero_page(struct mm_struct *mm)
 205{
 206	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 207		put_huge_zero_page();
 208}
 209
 210static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 211					struct shrink_control *sc)
 212{
 213	/* we can free zero page only if last reference remains */
 214	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 215}
 216
 217static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 218				       struct shrink_control *sc)
 219{
 220	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 221		struct page *zero_page = xchg(&huge_zero_page, NULL);
 222		BUG_ON(zero_page == NULL);
 223		WRITE_ONCE(huge_zero_pfn, ~0UL);
 224		__free_pages(zero_page, compound_order(zero_page));
 225		return HPAGE_PMD_NR;
 226	}
 227
 228	return 0;
 229}
 230
 231static struct shrinker huge_zero_page_shrinker = {
 232	.count_objects = shrink_huge_zero_page_count,
 233	.scan_objects = shrink_huge_zero_page_scan,
 234	.seeks = DEFAULT_SEEKS,
 235};
 236
 237#ifdef CONFIG_SYSFS
 238static ssize_t enabled_show(struct kobject *kobj,
 239			    struct kobj_attribute *attr, char *buf)
 240{
 241	const char *output;
 242
 243	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 244		output = "[always] madvise never";
 245	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 246			  &transparent_hugepage_flags))
 247		output = "always [madvise] never";
 
 
 
 
 
 248	else
 249		output = "always madvise [never]";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250
 251	return sysfs_emit(buf, "%s\n", output);
 252}
 253
 
 
 
 
 
 
 
 254static ssize_t enabled_store(struct kobject *kobj,
 255			     struct kobj_attribute *attr,
 256			     const char *buf, size_t count)
 257{
 258	ssize_t ret = count;
 259
 260	if (sysfs_streq(buf, "always")) {
 261		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 263	} else if (sysfs_streq(buf, "madvise")) {
 264		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 265		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 266	} else if (sysfs_streq(buf, "never")) {
 267		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 268		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 269	} else
 270		ret = -EINVAL;
 271
 272	if (ret > 0) {
 273		int err = start_stop_khugepaged();
 
 
 
 
 
 274		if (err)
 275			ret = err;
 276	}
 
 277	return ret;
 278}
 
 
 279
 280static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
 281
 282ssize_t single_hugepage_flag_show(struct kobject *kobj,
 283				  struct kobj_attribute *attr, char *buf,
 284				  enum transparent_hugepage_flag flag)
 285{
 286	return sysfs_emit(buf, "%d\n",
 287			  !!test_bit(flag, &transparent_hugepage_flags));
 288}
 289
 290ssize_t single_hugepage_flag_store(struct kobject *kobj,
 291				 struct kobj_attribute *attr,
 292				 const char *buf, size_t count,
 293				 enum transparent_hugepage_flag flag)
 294{
 295	unsigned long value;
 296	int ret;
 297
 298	ret = kstrtoul(buf, 10, &value);
 299	if (ret < 0)
 300		return ret;
 301	if (value > 1)
 302		return -EINVAL;
 303
 304	if (value)
 305		set_bit(flag, &transparent_hugepage_flags);
 306	else
 307		clear_bit(flag, &transparent_hugepage_flags);
 308
 309	return count;
 310}
 311
 
 
 
 
 
 312static ssize_t defrag_show(struct kobject *kobj,
 313			   struct kobj_attribute *attr, char *buf)
 314{
 315	const char *output;
 316
 317	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 318		     &transparent_hugepage_flags))
 319		output = "[always] defer defer+madvise madvise never";
 320	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 321			  &transparent_hugepage_flags))
 322		output = "always [defer] defer+madvise madvise never";
 323	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
 324			  &transparent_hugepage_flags))
 325		output = "always defer [defer+madvise] madvise never";
 326	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 327			  &transparent_hugepage_flags))
 328		output = "always defer defer+madvise [madvise] never";
 329	else
 330		output = "always defer defer+madvise madvise [never]";
 331
 332	return sysfs_emit(buf, "%s\n", output);
 333}
 334
 335static ssize_t defrag_store(struct kobject *kobj,
 336			    struct kobj_attribute *attr,
 337			    const char *buf, size_t count)
 338{
 339	if (sysfs_streq(buf, "always")) {
 340		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 341		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 342		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 343		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 344	} else if (sysfs_streq(buf, "defer+madvise")) {
 345		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 346		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 347		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 348		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 349	} else if (sysfs_streq(buf, "defer")) {
 350		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 351		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 352		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 353		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 354	} else if (sysfs_streq(buf, "madvise")) {
 355		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 356		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 357		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 358		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 359	} else if (sysfs_streq(buf, "never")) {
 360		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 361		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 362		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 363		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 364	} else
 365		return -EINVAL;
 366
 367	return count;
 368}
 369static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
 
 370
 371static ssize_t use_zero_page_show(struct kobject *kobj,
 372				  struct kobj_attribute *attr, char *buf)
 373{
 374	return single_hugepage_flag_show(kobj, attr, buf,
 375					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 376}
 377static ssize_t use_zero_page_store(struct kobject *kobj,
 378		struct kobj_attribute *attr, const char *buf, size_t count)
 379{
 380	return single_hugepage_flag_store(kobj, attr, buf, count,
 381				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 382}
 383static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
 384
 385static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 386				   struct kobj_attribute *attr, char *buf)
 387{
 388	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
 389}
 390static struct kobj_attribute hpage_pmd_size_attr =
 391	__ATTR_RO(hpage_pmd_size);
 
 
 
 
 
 
 
 
 
 
 392
 393static struct attribute *hugepage_attr[] = {
 394	&enabled_attr.attr,
 395	&defrag_attr.attr,
 396	&use_zero_page_attr.attr,
 397	&hpage_pmd_size_attr.attr,
 398#ifdef CONFIG_SHMEM
 399	&shmem_enabled_attr.attr,
 400#endif
 401	NULL,
 402};
 403
 404static const struct attribute_group hugepage_attr_group = {
 405	.attrs = hugepage_attr,
 406};
 407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 409{
 410	int err;
 411
 412	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 413	if (unlikely(!*hugepage_kobj)) {
 414		pr_err("failed to create transparent hugepage kobject\n");
 415		return -ENOMEM;
 416	}
 417
 418	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 419	if (err) {
 420		pr_err("failed to register transparent hugepage group\n");
 421		goto delete_obj;
 422	}
 423
 424	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 425	if (err) {
 426		pr_err("failed to register transparent hugepage group\n");
 427		goto remove_hp_group;
 428	}
 429
 430	return 0;
 431
 432remove_hp_group:
 433	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 434delete_obj:
 435	kobject_put(*hugepage_kobj);
 436	return err;
 437}
 438
 439static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 440{
 441	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 442	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 443	kobject_put(hugepage_kobj);
 444}
 445#else
 446static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 447{
 448	return 0;
 449}
 450
 451static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 452{
 453}
 454#endif /* CONFIG_SYSFS */
 455
 456static int __init hugepage_init(void)
 457{
 458	int err;
 459	struct kobject *hugepage_kobj;
 460
 461	if (!has_transparent_hugepage()) {
 462		/*
 463		 * Hardware doesn't support hugepages, hence disable
 464		 * DAX PMD support.
 465		 */
 466		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
 467		return -EINVAL;
 468	}
 469
 470	/*
 471	 * hugepages can't be allocated by the buddy allocator
 472	 */
 473	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 474	/*
 475	 * we use page->mapping and page->index in second tail page
 476	 * as list_head: assuming THP order >= 2
 477	 */
 478	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 479
 480	err = hugepage_init_sysfs(&hugepage_kobj);
 481	if (err)
 482		goto err_sysfs;
 483
 484	err = khugepaged_init();
 485	if (err)
 486		goto err_slab;
 487
 488	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
 489	if (err)
 490		goto err_hzp_shrinker;
 491	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
 492	if (err)
 493		goto err_split_shrinker;
 494
 495	/*
 496	 * By default disable transparent hugepages on smaller systems,
 497	 * where the extra memory used could hurt more than TLB overhead
 498	 * is likely to save.  The admin can still enable it through /sys.
 499	 */
 500	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
 501		transparent_hugepage_flags = 0;
 502		return 0;
 503	}
 504
 505	err = start_stop_khugepaged();
 506	if (err)
 507		goto err_khugepaged;
 508
 509	return 0;
 510err_khugepaged:
 511	unregister_shrinker(&deferred_split_shrinker);
 512err_split_shrinker:
 513	unregister_shrinker(&huge_zero_page_shrinker);
 514err_hzp_shrinker:
 515	khugepaged_destroy();
 516err_slab:
 517	hugepage_exit_sysfs(hugepage_kobj);
 518err_sysfs:
 519	return err;
 520}
 521subsys_initcall(hugepage_init);
 522
 523static int __init setup_transparent_hugepage(char *str)
 524{
 525	int ret = 0;
 526	if (!str)
 527		goto out;
 528	if (!strcmp(str, "always")) {
 529		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 530			&transparent_hugepage_flags);
 531		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 532			  &transparent_hugepage_flags);
 533		ret = 1;
 534	} else if (!strcmp(str, "madvise")) {
 535		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 536			  &transparent_hugepage_flags);
 537		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 538			&transparent_hugepage_flags);
 539		ret = 1;
 540	} else if (!strcmp(str, "never")) {
 541		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 542			  &transparent_hugepage_flags);
 543		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 544			  &transparent_hugepage_flags);
 545		ret = 1;
 546	}
 547out:
 548	if (!ret)
 549		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 
 550	return ret;
 551}
 552__setup("transparent_hugepage=", setup_transparent_hugepage);
 553
 554pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 555{
 556	if (likely(vma->vm_flags & VM_WRITE))
 557		pmd = pmd_mkwrite(pmd);
 558	return pmd;
 559}
 560
 561#ifdef CONFIG_MEMCG
 562static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 563{
 564	struct mem_cgroup *memcg = page_memcg(compound_head(page));
 565	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 566
 567	if (memcg)
 568		return &memcg->deferred_split_queue;
 569	else
 570		return &pgdat->deferred_split_queue;
 571}
 572#else
 573static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 574{
 575	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 576
 577	return &pgdat->deferred_split_queue;
 578}
 579#endif
 580
 581void prep_transhuge_page(struct page *page)
 582{
 583	/*
 584	 * we use page->mapping and page->index in second tail page
 585	 * as list_head: assuming THP order >= 2
 586	 */
 587
 588	INIT_LIST_HEAD(page_deferred_list(page));
 589	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 590}
 591
 592static inline bool is_transparent_hugepage(struct page *page)
 593{
 594	if (!PageCompound(page))
 595		return false;
 596
 597	page = compound_head(page);
 598	return is_huge_zero_page(page) ||
 599	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
 600}
 601
 602static unsigned long __thp_get_unmapped_area(struct file *filp,
 603		unsigned long addr, unsigned long len,
 604		loff_t off, unsigned long flags, unsigned long size)
 605{
 606	loff_t off_end = off + len;
 607	loff_t off_align = round_up(off, size);
 608	unsigned long len_pad, ret;
 609
 610	if (off_end <= off_align || (off_end - off_align) < size)
 611		return 0;
 612
 613	len_pad = len + size;
 614	if (len_pad < len || (off + len_pad) < off)
 615		return 0;
 616
 617	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
 618					      off >> PAGE_SHIFT, flags);
 619
 620	/*
 621	 * The failure might be due to length padding. The caller will retry
 622	 * without the padding.
 623	 */
 624	if (IS_ERR_VALUE(ret))
 625		return 0;
 626
 627	/*
 628	 * Do not try to align to THP boundary if allocation at the address
 629	 * hint succeeds.
 630	 */
 631	if (ret == addr)
 632		return addr;
 633
 634	ret += (off - ret) & (size - 1);
 635	return ret;
 636}
 637
 638unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 639		unsigned long len, unsigned long pgoff, unsigned long flags)
 640{
 641	unsigned long ret;
 642	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 643
 644	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
 645	if (ret)
 646		return ret;
 647
 648	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 649}
 650EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 651
 652static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
 653			struct page *page, gfp_t gfp)
 654{
 655	struct vm_area_struct *vma = vmf->vma;
 656	pgtable_t pgtable;
 657	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 658	vm_fault_t ret = 0;
 659
 660	VM_BUG_ON_PAGE(!PageCompound(page), page);
 
 
 
 661
 662	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
 663		put_page(page);
 664		count_vm_event(THP_FAULT_FALLBACK);
 665		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
 666		return VM_FAULT_FALLBACK;
 667	}
 668	cgroup_throttle_swaprate(page, gfp);
 669
 670	pgtable = pte_alloc_one(vma->vm_mm);
 671	if (unlikely(!pgtable)) {
 672		ret = VM_FAULT_OOM;
 673		goto release;
 674	}
 675
 676	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 677	/*
 678	 * The memory barrier inside __SetPageUptodate makes sure that
 679	 * clear_huge_page writes become visible before the set_pmd_at()
 680	 * write.
 681	 */
 682	__SetPageUptodate(page);
 683
 684	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 685	if (unlikely(!pmd_none(*vmf->pmd))) {
 686		goto unlock_release;
 
 
 
 687	} else {
 688		pmd_t entry;
 689
 690		ret = check_stable_address_space(vma->vm_mm);
 691		if (ret)
 692			goto unlock_release;
 693
 694		/* Deliver the page fault to userland */
 695		if (userfaultfd_missing(vma)) {
 696			spin_unlock(vmf->ptl);
 697			put_page(page);
 698			pte_free(vma->vm_mm, pgtable);
 699			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 700			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 701			return ret;
 702		}
 703
 704		entry = mk_huge_pmd(page, vma->vm_page_prot);
 705		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 706		page_add_new_anon_rmap(page, vma, haddr);
 707		lru_cache_add_inactive_or_unevictable(page, vma);
 708		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 709		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 710		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 711		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 712		mm_inc_nr_ptes(vma->vm_mm);
 713		spin_unlock(vmf->ptl);
 714		count_vm_event(THP_FAULT_ALLOC);
 715		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
 716	}
 717
 718	return 0;
 719unlock_release:
 720	spin_unlock(vmf->ptl);
 721release:
 722	if (pgtable)
 723		pte_free(vma->vm_mm, pgtable);
 724	put_page(page);
 725	return ret;
 726
 
 
 
 727}
 728
 729/*
 730 * always: directly stall for all thp allocations
 731 * defer: wake kswapd and fail if not immediately available
 732 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 733 *		  fail if not immediately available
 734 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 735 *	    available
 736 * never: never stall for any thp allocation
 737 */
 738gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
 739{
 740	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
 741
 742	/* Always do synchronous compaction */
 743	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 744		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 745
 746	/* Kick kcompactd and fail quickly */
 747	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 748		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 749
 750	/* Synchronous compaction if madvised, otherwise kick kcompactd */
 751	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 752		return GFP_TRANSHUGE_LIGHT |
 753			(vma_madvised ? __GFP_DIRECT_RECLAIM :
 754					__GFP_KSWAPD_RECLAIM);
 755
 756	/* Only do synchronous compaction if madvised */
 757	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 758		return GFP_TRANSHUGE_LIGHT |
 759		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
 760
 761	return GFP_TRANSHUGE_LIGHT;
 762}
 763
 764/* Caller must hold page table lock. */
 765static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 766		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 767		struct page *zero_page)
 768{
 769	pmd_t entry;
 770	if (!pmd_none(*pmd))
 771		return;
 772	entry = mk_pmd(zero_page, vma->vm_page_prot);
 
 773	entry = pmd_mkhuge(entry);
 774	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 775	set_pmd_at(mm, haddr, pmd, entry);
 776	mm_inc_nr_ptes(mm);
 
 777}
 778
 779vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 
 
 780{
 781	struct vm_area_struct *vma = vmf->vma;
 782	gfp_t gfp;
 783	struct folio *folio;
 784	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 785
 786	if (!transhuge_vma_suitable(vma, haddr))
 787		return VM_FAULT_FALLBACK;
 788	if (unlikely(anon_vma_prepare(vma)))
 789		return VM_FAULT_OOM;
 790	khugepaged_enter_vma(vma, vma->vm_flags);
 791
 792	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 793			!mm_forbids_zeropage(vma->vm_mm) &&
 794			transparent_hugepage_use_zero_page()) {
 
 795		pgtable_t pgtable;
 796		struct page *zero_page;
 797		vm_fault_t ret;
 798		pgtable = pte_alloc_one(vma->vm_mm);
 799		if (unlikely(!pgtable))
 800			return VM_FAULT_OOM;
 801		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 802		if (unlikely(!zero_page)) {
 803			pte_free(vma->vm_mm, pgtable);
 804			count_vm_event(THP_FAULT_FALLBACK);
 805			return VM_FAULT_FALLBACK;
 806		}
 807		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 808		ret = 0;
 809		if (pmd_none(*vmf->pmd)) {
 810			ret = check_stable_address_space(vma->vm_mm);
 811			if (ret) {
 812				spin_unlock(vmf->ptl);
 813				pte_free(vma->vm_mm, pgtable);
 814			} else if (userfaultfd_missing(vma)) {
 815				spin_unlock(vmf->ptl);
 816				pte_free(vma->vm_mm, pgtable);
 817				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 818				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 819			} else {
 820				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 821						   haddr, vmf->pmd, zero_page);
 822				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 823				spin_unlock(vmf->ptl);
 824			}
 825		} else {
 826			spin_unlock(vmf->ptl);
 827			pte_free(vma->vm_mm, pgtable);
 828		}
 829		return ret;
 830	}
 831	gfp = vma_thp_gfp_mask(vma);
 832	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
 833	if (unlikely(!folio)) {
 834		count_vm_event(THP_FAULT_FALLBACK);
 835		return VM_FAULT_FALLBACK;
 836	}
 837	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
 838}
 839
 840static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 841		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 842		pgtable_t pgtable)
 843{
 844	struct mm_struct *mm = vma->vm_mm;
 845	pmd_t entry;
 846	spinlock_t *ptl;
 847
 848	ptl = pmd_lock(mm, pmd);
 849	if (!pmd_none(*pmd)) {
 850		if (write) {
 851			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
 852				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
 853				goto out_unlock;
 854			}
 855			entry = pmd_mkyoung(*pmd);
 856			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 857			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
 858				update_mmu_cache_pmd(vma, addr, pmd);
 859		}
 860
 861		goto out_unlock;
 862	}
 863
 864	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 865	if (pfn_t_devmap(pfn))
 866		entry = pmd_mkdevmap(entry);
 867	if (write) {
 868		entry = pmd_mkyoung(pmd_mkdirty(entry));
 869		entry = maybe_pmd_mkwrite(entry, vma);
 870	}
 871
 872	if (pgtable) {
 873		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 874		mm_inc_nr_ptes(mm);
 875		pgtable = NULL;
 876	}
 877
 878	set_pmd_at(mm, addr, pmd, entry);
 879	update_mmu_cache_pmd(vma, addr, pmd);
 880
 881out_unlock:
 882	spin_unlock(ptl);
 883	if (pgtable)
 884		pte_free(mm, pgtable);
 885}
 886
 887/**
 888 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 889 * @vmf: Structure describing the fault
 890 * @pfn: pfn to insert
 891 * @pgprot: page protection to use
 892 * @write: whether it's a write fault
 893 *
 894 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 895 * also consult the vmf_insert_mixed_prot() documentation when
 896 * @pgprot != @vmf->vma->vm_page_prot.
 897 *
 898 * Return: vm_fault_t value.
 899 */
 900vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
 901				   pgprot_t pgprot, bool write)
 902{
 903	unsigned long addr = vmf->address & PMD_MASK;
 904	struct vm_area_struct *vma = vmf->vma;
 905	pgtable_t pgtable = NULL;
 906
 907	/*
 908	 * If we had pmd_special, we could avoid all these restrictions,
 909	 * but we need to be consistent with PTEs and architectures that
 910	 * can't support a 'special' bit.
 911	 */
 912	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 913			!pfn_t_devmap(pfn));
 914	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 915						(VM_PFNMAP|VM_MIXEDMAP));
 916	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 917
 918	if (addr < vma->vm_start || addr >= vma->vm_end)
 919		return VM_FAULT_SIGBUS;
 920
 921	if (arch_needs_pgtable_deposit()) {
 922		pgtable = pte_alloc_one(vma->vm_mm);
 923		if (!pgtable)
 924			return VM_FAULT_OOM;
 925	}
 926
 927	track_pfn_insert(vma, &pgprot, pfn);
 928
 929	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
 930	return VM_FAULT_NOPAGE;
 931}
 932EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
 933
 934#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 935static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 936{
 937	if (likely(vma->vm_flags & VM_WRITE))
 938		pud = pud_mkwrite(pud);
 939	return pud;
 940}
 941
 942static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 943		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 944{
 945	struct mm_struct *mm = vma->vm_mm;
 946	pud_t entry;
 947	spinlock_t *ptl;
 948
 949	ptl = pud_lock(mm, pud);
 950	if (!pud_none(*pud)) {
 951		if (write) {
 952			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
 953				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
 954				goto out_unlock;
 955			}
 956			entry = pud_mkyoung(*pud);
 957			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
 958			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
 959				update_mmu_cache_pud(vma, addr, pud);
 960		}
 961		goto out_unlock;
 962	}
 963
 964	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 965	if (pfn_t_devmap(pfn))
 966		entry = pud_mkdevmap(entry);
 967	if (write) {
 968		entry = pud_mkyoung(pud_mkdirty(entry));
 969		entry = maybe_pud_mkwrite(entry, vma);
 970	}
 971	set_pud_at(mm, addr, pud, entry);
 972	update_mmu_cache_pud(vma, addr, pud);
 973
 974out_unlock:
 975	spin_unlock(ptl);
 976}
 977
 978/**
 979 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 980 * @vmf: Structure describing the fault
 981 * @pfn: pfn to insert
 982 * @pgprot: page protection to use
 983 * @write: whether it's a write fault
 984 *
 985 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 986 * also consult the vmf_insert_mixed_prot() documentation when
 987 * @pgprot != @vmf->vma->vm_page_prot.
 988 *
 989 * Return: vm_fault_t value.
 990 */
 991vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
 992				   pgprot_t pgprot, bool write)
 993{
 994	unsigned long addr = vmf->address & PUD_MASK;
 995	struct vm_area_struct *vma = vmf->vma;
 996
 997	/*
 998	 * If we had pud_special, we could avoid all these restrictions,
 999	 * but we need to be consistent with PTEs and architectures that
1000	 * can't support a 'special' bit.
1001	 */
1002	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1003			!pfn_t_devmap(pfn));
1004	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005						(VM_PFNMAP|VM_MIXEDMAP));
1006	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007
1008	if (addr < vma->vm_start || addr >= vma->vm_end)
1009		return VM_FAULT_SIGBUS;
1010
1011	track_pfn_insert(vma, &pgprot, pfn);
1012
1013	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1014	return VM_FAULT_NOPAGE;
1015}
1016EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1017#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1018
1019static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1020		      pmd_t *pmd, bool write)
1021{
1022	pmd_t _pmd;
1023
1024	_pmd = pmd_mkyoung(*pmd);
1025	if (write)
1026		_pmd = pmd_mkdirty(_pmd);
1027	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1028				  pmd, _pmd, write))
1029		update_mmu_cache_pmd(vma, addr, pmd);
1030}
1031
1032struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1033		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1034{
1035	unsigned long pfn = pmd_pfn(*pmd);
1036	struct mm_struct *mm = vma->vm_mm;
1037	struct page *page;
1038	int ret;
1039
1040	assert_spin_locked(pmd_lockptr(mm, pmd));
1041
1042	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1043	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1044			 (FOLL_PIN | FOLL_GET)))
1045		return NULL;
1046
1047	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1048		return NULL;
1049
1050	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1051		/* pass */;
1052	else
1053		return NULL;
1054
1055	if (flags & FOLL_TOUCH)
1056		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1057
1058	/*
1059	 * device mapped pages can only be returned if the
1060	 * caller will manage the page reference count.
1061	 */
1062	if (!(flags & (FOLL_GET | FOLL_PIN)))
1063		return ERR_PTR(-EEXIST);
1064
1065	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1066	*pgmap = get_dev_pagemap(pfn, *pgmap);
1067	if (!*pgmap)
1068		return ERR_PTR(-EFAULT);
1069	page = pfn_to_page(pfn);
1070	ret = try_grab_page(page, flags);
1071	if (ret)
1072		page = ERR_PTR(ret);
1073
1074	return page;
1075}
1076
1077int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1078		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1080{
1081	spinlock_t *dst_ptl, *src_ptl;
1082	struct page *src_page;
1083	pmd_t pmd;
1084	pgtable_t pgtable = NULL;
1085	int ret = -ENOMEM;
1086
1087	/* Skip if can be re-fill on fault */
1088	if (!vma_is_anonymous(dst_vma))
1089		return 0;
1090
1091	pgtable = pte_alloc_one(dst_mm);
1092	if (unlikely(!pgtable))
1093		goto out;
1094
1095	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1096	src_ptl = pmd_lockptr(src_mm, src_pmd);
1097	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1098
1099	ret = -EAGAIN;
1100	pmd = *src_pmd;
1101
1102#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1103	if (unlikely(is_swap_pmd(pmd))) {
1104		swp_entry_t entry = pmd_to_swp_entry(pmd);
1105
1106		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1107		if (!is_readable_migration_entry(entry)) {
1108			entry = make_readable_migration_entry(
1109							swp_offset(entry));
1110			pmd = swp_entry_to_pmd(entry);
1111			if (pmd_swp_soft_dirty(*src_pmd))
1112				pmd = pmd_swp_mksoft_dirty(pmd);
1113			if (pmd_swp_uffd_wp(*src_pmd))
1114				pmd = pmd_swp_mkuffd_wp(pmd);
1115			set_pmd_at(src_mm, addr, src_pmd, pmd);
1116		}
1117		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118		mm_inc_nr_ptes(dst_mm);
1119		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1120		if (!userfaultfd_wp(dst_vma))
1121			pmd = pmd_swp_clear_uffd_wp(pmd);
1122		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1123		ret = 0;
1124		goto out_unlock;
1125	}
1126#endif
1127
1128	if (unlikely(!pmd_trans_huge(pmd))) {
1129		pte_free(dst_mm, pgtable);
1130		goto out_unlock;
1131	}
1132	/*
1133	 * When page table lock is held, the huge zero pmd should not be
1134	 * under splitting since we don't split the page itself, only pmd to
1135	 * a page table.
1136	 */
1137	if (is_huge_zero_pmd(pmd)) {
 
 
1138		/*
1139		 * get_huge_zero_page() will never allocate a new page here,
1140		 * since we already have a zero page to copy. It just takes a
1141		 * reference.
1142		 */
1143		mm_get_huge_zero_page(dst_mm);
1144		goto out_zero_page;
 
 
 
 
1145	}
1146
 
 
 
 
 
 
 
 
 
1147	src_page = pmd_page(pmd);
1148	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1149
1150	get_page(src_page);
1151	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1152		/* Page maybe pinned: split and retry the fault on PTEs. */
1153		put_page(src_page);
1154		pte_free(dst_mm, pgtable);
1155		spin_unlock(src_ptl);
1156		spin_unlock(dst_ptl);
1157		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1158		return -EAGAIN;
1159	}
1160	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1161out_zero_page:
1162	mm_inc_nr_ptes(dst_mm);
1163	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1164	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1165	if (!userfaultfd_wp(dst_vma))
1166		pmd = pmd_clear_uffd_wp(pmd);
1167	pmd = pmd_mkold(pmd_wrprotect(pmd));
 
1168	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 
1169
1170	ret = 0;
1171out_unlock:
1172	spin_unlock(src_ptl);
1173	spin_unlock(dst_ptl);
1174out:
1175	return ret;
1176}
1177
1178#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1179static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1180		      pud_t *pud, bool write)
 
 
1181{
1182	pud_t _pud;
 
 
1183
1184	_pud = pud_mkyoung(*pud);
1185	if (write)
1186		_pud = pud_mkdirty(_pud);
1187	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1188				  pud, _pud, write))
1189		update_mmu_cache_pud(vma, addr, pud);
1190}
1191
1192struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1193		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1194{
1195	unsigned long pfn = pud_pfn(*pud);
1196	struct mm_struct *mm = vma->vm_mm;
1197	struct page *page;
1198	int ret;
1199
1200	assert_spin_locked(pud_lockptr(mm, pud));
 
 
 
1201
1202	if (flags & FOLL_WRITE && !pud_write(*pud))
1203		return NULL;
1204
1205	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1206	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1207			 (FOLL_PIN | FOLL_GET)))
1208		return NULL;
1209
1210	if (pud_present(*pud) && pud_devmap(*pud))
1211		/* pass */;
1212	else
1213		return NULL;
1214
1215	if (flags & FOLL_TOUCH)
1216		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1217
1218	/*
1219	 * device mapped pages can only be returned if the
1220	 * caller will manage the page reference count.
1221	 *
1222	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1223	 */
1224	if (!(flags & (FOLL_GET | FOLL_PIN)))
1225		return ERR_PTR(-EEXIST);
1226
1227	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1228	*pgmap = get_dev_pagemap(pfn, *pgmap);
1229	if (!*pgmap)
1230		return ERR_PTR(-EFAULT);
1231	page = pfn_to_page(pfn);
1232
1233	ret = try_grab_page(page, flags);
1234	if (ret)
1235		page = ERR_PTR(ret);
1236
1237	return page;
1238}
1239
1240int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1241		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1242		  struct vm_area_struct *vma)
 
 
 
1243{
1244	spinlock_t *dst_ptl, *src_ptl;
1245	pud_t pud;
1246	int ret;
 
 
 
 
 
 
 
 
 
 
 
1247
1248	dst_ptl = pud_lock(dst_mm, dst_pud);
1249	src_ptl = pud_lockptr(src_mm, src_pud);
1250	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251
1252	ret = -EAGAIN;
1253	pud = *src_pud;
1254	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1255		goto out_unlock;
 
 
1256
1257	/*
1258	 * When page table lock is held, the huge zero pud should not be
1259	 * under splitting since we don't split the page itself, only pud to
1260	 * a page table.
1261	 */
1262	if (is_huge_zero_pud(pud)) {
1263		/* No huge zero pud yet */
1264	}
1265
1266	/*
1267	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1268	 * and split if duplicating fails.
1269	 */
1270	pudp_set_wrprotect(src_mm, addr, src_pud);
1271	pud = pud_mkold(pud_wrprotect(pud));
1272	set_pud_at(dst_mm, addr, dst_pud, pud);
1273
1274	ret = 0;
1275out_unlock:
1276	spin_unlock(src_ptl);
1277	spin_unlock(dst_ptl);
1278	return ret;
1279}
1280
1281void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1282{
1283	bool write = vmf->flags & FAULT_FLAG_WRITE;
1284
1285	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1286	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1287		goto unlock;
 
 
 
 
 
 
 
 
1288
1289	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1290unlock:
1291	spin_unlock(vmf->ptl);
1292}
1293#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1294
1295void huge_pmd_set_accessed(struct vm_fault *vmf)
1296{
1297	bool write = vmf->flags & FAULT_FLAG_WRITE;
1298
1299	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1300	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1301		goto unlock;
1302
1303	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
 
1304
1305unlock:
1306	spin_unlock(vmf->ptl);
 
 
 
 
 
 
 
 
 
1307}
1308
1309vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
 
1310{
1311	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1312	struct vm_area_struct *vma = vmf->vma;
1313	struct folio *folio;
1314	struct page *page;
1315	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1316	pmd_t orig_pmd = vmf->orig_pmd;
1317
1318	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1319	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1320
1321	if (is_huge_zero_pmd(orig_pmd))
1322		goto fallback;
1323
1324	spin_lock(vmf->ptl);
1325
1326	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1327		spin_unlock(vmf->ptl);
1328		return 0;
1329	}
1330
1331	page = pmd_page(orig_pmd);
1332	folio = page_folio(page);
1333	VM_BUG_ON_PAGE(!PageHead(page), page);
1334
1335	/* Early check when only holding the PT lock. */
1336	if (PageAnonExclusive(page))
1337		goto reuse;
1338
1339	if (!folio_trylock(folio)) {
1340		folio_get(folio);
1341		spin_unlock(vmf->ptl);
1342		folio_lock(folio);
1343		spin_lock(vmf->ptl);
1344		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345			spin_unlock(vmf->ptl);
1346			folio_unlock(folio);
1347			folio_put(folio);
1348			return 0;
1349		}
1350		folio_put(folio);
1351	}
1352
1353	/* Recheck after temporarily dropping the PT lock. */
1354	if (PageAnonExclusive(page)) {
1355		folio_unlock(folio);
1356		goto reuse;
1357	}
1358
1359	/*
1360	 * See do_wp_page(): we can only reuse the folio exclusively if
1361	 * there are no additional references. Note that we always drain
1362	 * the LRU pagevecs immediately after adding a THP.
1363	 */
1364	if (folio_ref_count(folio) >
1365			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1366		goto unlock_fallback;
1367	if (folio_test_swapcache(folio))
1368		folio_free_swap(folio);
1369	if (folio_ref_count(folio) == 1) {
1370		pmd_t entry;
1371
1372		page_move_anon_rmap(page, vma);
1373		folio_unlock(folio);
1374reuse:
1375		if (unlikely(unshare)) {
1376			spin_unlock(vmf->ptl);
1377			return 0;
1378		}
1379		entry = pmd_mkyoung(orig_pmd);
1380		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1381		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1382			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1383		spin_unlock(vmf->ptl);
1384		return 0;
1385	}
 
 
 
 
 
 
 
 
 
1386
1387unlock_fallback:
1388	folio_unlock(folio);
1389	spin_unlock(vmf->ptl);
1390fallback:
1391	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1392	return VM_FAULT_FALLBACK;
1393}
 
 
 
 
 
 
 
 
 
1394
1395static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1396					   unsigned long addr, pmd_t pmd)
1397{
1398	struct page *page;
 
 
 
 
 
 
 
1399
1400	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1401		return false;
1402
1403	/* Don't touch entries that are not even readable (NUMA hinting). */
1404	if (pmd_protnone(pmd))
1405		return false;
 
 
1406
1407	/* Do we need write faults for softdirty tracking? */
1408	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1409		return false;
1410
1411	/* Do we need write faults for uffd-wp tracking? */
1412	if (userfaultfd_huge_pmd_wp(vma, pmd))
1413		return false;
1414
1415	if (!(vma->vm_flags & VM_SHARED)) {
1416		/* See can_change_pte_writable(). */
1417		page = vm_normal_page_pmd(vma, addr, pmd);
1418		return page && PageAnon(page) && PageAnonExclusive(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419	}
1420
1421	/* See can_change_pte_writable(). */
1422	return pmd_dirty(pmd);
1423}
1424
1425/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1426static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1427					struct vm_area_struct *vma,
1428					unsigned int flags)
1429{
1430	/* If the pmd is writable, we can write to the page. */
1431	if (pmd_write(pmd))
1432		return true;
1433
1434	/* Maybe FOLL_FORCE is set to override it? */
1435	if (!(flags & FOLL_FORCE))
1436		return false;
1437
1438	/* But FOLL_FORCE has no effect on shared mappings */
1439	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1440		return false;
1441
1442	/* ... or read-only private ones */
1443	if (!(vma->vm_flags & VM_MAYWRITE))
1444		return false;
1445
1446	/* ... or already writable ones that just need to take a write fault */
1447	if (vma->vm_flags & VM_WRITE)
1448		return false;
1449
1450	/*
1451	 * See can_change_pte_writable(): we broke COW and could map the page
1452	 * writable if we have an exclusive anonymous page ...
1453	 */
1454	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1455		return false;
1456
1457	/* ... and a write-fault isn't required for other reasons. */
1458	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1459		return false;
1460	return !userfaultfd_huge_pmd_wp(vma, pmd);
1461}
1462
1463struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1464				   unsigned long addr,
1465				   pmd_t *pmd,
1466				   unsigned int flags)
1467{
1468	struct mm_struct *mm = vma->vm_mm;
1469	struct page *page;
1470	int ret;
1471
1472	assert_spin_locked(pmd_lockptr(mm, pmd));
1473
1474	page = pmd_page(*pmd);
1475	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1476
1477	if ((flags & FOLL_WRITE) &&
1478	    !can_follow_write_pmd(*pmd, page, vma, flags))
1479		return NULL;
1480
1481	/* Avoid dumping huge zero page */
1482	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1483		return ERR_PTR(-EFAULT);
1484
1485	/* Full NUMA hinting faults to serialise migration in fault paths */
1486	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1487		return NULL;
1488
1489	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1490		return ERR_PTR(-EMLINK);
1491
1492	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1493			!PageAnonExclusive(page), page);
1494
1495	ret = try_grab_page(page, flags);
1496	if (ret)
1497		return ERR_PTR(ret);
1498
1499	if (flags & FOLL_TOUCH)
1500		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1502	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1503	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
 
 
1504
 
1505	return page;
1506}
1507
1508/* NUMA hinting page fault entry point for trans huge pmds */
1509vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
 
1510{
1511	struct vm_area_struct *vma = vmf->vma;
1512	pmd_t oldpmd = vmf->orig_pmd;
1513	pmd_t pmd;
1514	struct page *page;
1515	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1516	int page_nid = NUMA_NO_NODE;
1517	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1518	bool migrated = false, writable = false;
 
1519	int flags = 0;
1520
1521	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1522	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1523		spin_unlock(vmf->ptl);
 
 
 
 
 
 
 
 
 
1524		goto out;
1525	}
1526
1527	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
 
 
 
 
 
 
 
 
1528
1529	/*
1530	 * Detect now whether the PMD could be writable; this information
1531	 * is only valid while holding the PT lock.
 
1532	 */
1533	writable = pmd_write(pmd);
1534	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1535	    can_change_pmd_writable(vma, vmf->address, pmd))
1536		writable = true;
1537
1538	page = vm_normal_page_pmd(vma, haddr, pmd);
1539	if (!page)
1540		goto out_map;
1541
1542	/* See similar comment in do_numa_page for explanation */
1543	if (!writable)
1544		flags |= TNF_NO_GROUP;
1545
1546	page_nid = page_to_nid(page);
1547	/*
1548	 * For memory tiering mode, cpupid of slow memory page is used
1549	 * to record page access time.  So use default value.
1550	 */
1551	if (node_is_toptier(page_nid))
1552		last_cpupid = page_cpupid_last(page);
1553	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1554				       &flags);
1555
1556	if (target_nid == NUMA_NO_NODE) {
1557		put_page(page);
1558		goto out_map;
1559	}
1560
1561	spin_unlock(vmf->ptl);
1562	writable = false;
1563
1564	migrated = migrate_misplaced_page(page, vma, target_nid);
1565	if (migrated) {
1566		flags |= TNF_MIGRATED;
1567		page_nid = target_nid;
1568	} else {
1569		flags |= TNF_MIGRATE_FAIL;
1570		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1571		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1572			spin_unlock(vmf->ptl);
1573			goto out;
1574		}
1575		goto out_map;
1576	}
1577
1578out:
1579	if (page_nid != NUMA_NO_NODE)
1580		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1581				flags);
1582
1583	return 0;
1584
1585out_map:
1586	/* Restore the PMD */
1587	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1588	pmd = pmd_mkyoung(pmd);
1589	if (writable)
1590		pmd = pmd_mkwrite(pmd);
1591	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593	spin_unlock(vmf->ptl);
1594	goto out;
1595}
1596
1597/*
1598 * Return true if we do MADV_FREE successfully on entire pmd page.
1599 * Otherwise, return false.
1600 */
1601bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1602		pmd_t *pmd, unsigned long addr, unsigned long next)
1603{
1604	spinlock_t *ptl;
1605	pmd_t orig_pmd;
1606	struct page *page;
1607	struct mm_struct *mm = tlb->mm;
1608	bool ret = false;
1609
1610	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1611
1612	ptl = pmd_trans_huge_lock(pmd, vma);
1613	if (!ptl)
1614		goto out_unlocked;
1615
1616	orig_pmd = *pmd;
1617	if (is_huge_zero_pmd(orig_pmd))
1618		goto out;
1619
1620	if (unlikely(!pmd_present(orig_pmd))) {
1621		VM_BUG_ON(thp_migration_supported() &&
1622				  !is_pmd_migration_entry(orig_pmd));
1623		goto out;
1624	}
1625
1626	page = pmd_page(orig_pmd);
1627	/*
1628	 * If other processes are mapping this page, we couldn't discard
1629	 * the page unless they all do MADV_FREE so let's skip the page.
1630	 */
1631	if (total_mapcount(page) != 1)
1632		goto out;
 
 
 
 
 
 
 
 
 
 
1633
1634	if (!trylock_page(page))
1635		goto out;
 
 
 
 
1636
1637	/*
1638	 * If user want to discard part-pages of THP, split it so MADV_FREE
1639	 * will deactivate only them.
1640	 */
1641	if (next - addr != HPAGE_PMD_SIZE) {
1642		get_page(page);
1643		spin_unlock(ptl);
1644		split_huge_page(page);
1645		unlock_page(page);
1646		put_page(page);
1647		goto out_unlocked;
1648	}
1649
1650	if (PageDirty(page))
1651		ClearPageDirty(page);
 
 
 
 
 
1652	unlock_page(page);
 
 
1653
1654	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1655		pmdp_invalidate(vma, addr, pmd);
1656		orig_pmd = pmd_mkold(orig_pmd);
1657		orig_pmd = pmd_mkclean(orig_pmd);
1658
1659		set_pmd_at(mm, addr, pmd, orig_pmd);
1660		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1661	}
1662
1663	mark_page_lazyfree(page);
1664	ret = true;
1665out:
1666	spin_unlock(ptl);
1667out_unlocked:
1668	return ret;
1669}
1670
1671static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1672{
1673	pgtable_t pgtable;
1674
1675	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1676	pte_free(mm, pgtable);
1677	mm_dec_nr_ptes(mm);
1678}
1679
1680int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1681		 pmd_t *pmd, unsigned long addr)
1682{
1683	pmd_t orig_pmd;
1684	spinlock_t *ptl;
 
1685
1686	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1687
1688	ptl = __pmd_trans_huge_lock(pmd, vma);
1689	if (!ptl)
1690		return 0;
1691	/*
1692	 * For architectures like ppc64 we look at deposited pgtable
1693	 * when calling pmdp_huge_get_and_clear. So do the
1694	 * pgtable_trans_huge_withdraw after finishing pmdp related
1695	 * operations.
1696	 */
1697	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1698						tlb->fullmm);
1699	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1700	if (vma_is_special_huge(vma)) {
1701		if (arch_needs_pgtable_deposit())
1702			zap_deposited_table(tlb->mm, pmd);
1703		spin_unlock(ptl);
1704	} else if (is_huge_zero_pmd(orig_pmd)) {
1705		zap_deposited_table(tlb->mm, pmd);
1706		spin_unlock(ptl);
1707	} else {
1708		struct page *page = NULL;
1709		int flush_needed = 1;
1710
1711		if (pmd_present(orig_pmd)) {
1712			page = pmd_page(orig_pmd);
1713			page_remove_rmap(page, vma, true);
1714			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
 
1715			VM_BUG_ON_PAGE(!PageHead(page), page);
1716		} else if (thp_migration_supported()) {
1717			swp_entry_t entry;
1718
1719			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1720			entry = pmd_to_swp_entry(orig_pmd);
1721			page = pfn_swap_entry_to_page(entry);
1722			flush_needed = 0;
1723		} else
1724			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1725
1726		if (PageAnon(page)) {
1727			zap_deposited_table(tlb->mm, pmd);
1728			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1729		} else {
1730			if (arch_needs_pgtable_deposit())
1731				zap_deposited_table(tlb->mm, pmd);
1732			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1733		}
1734
1735		spin_unlock(ptl);
1736		if (flush_needed)
1737			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1738	}
1739	return 1;
1740}
1741
1742#ifndef pmd_move_must_withdraw
1743static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1744					 spinlock_t *old_pmd_ptl,
1745					 struct vm_area_struct *vma)
1746{
1747	/*
1748	 * With split pmd lock we also need to move preallocated
1749	 * PTE page table if new_pmd is on different PMD page table.
1750	 *
1751	 * We also don't deposit and withdraw tables for file pages.
1752	 */
1753	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1754}
1755#endif
 
 
 
1756
1757static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1758{
1759#ifdef CONFIG_MEM_SOFT_DIRTY
1760	if (unlikely(is_pmd_migration_entry(pmd)))
1761		pmd = pmd_swp_mksoft_dirty(pmd);
1762	else if (pmd_present(pmd))
1763		pmd = pmd_mksoft_dirty(pmd);
1764#endif
1765	return pmd;
1766}
1767
1768bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1769		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
 
 
1770{
1771	spinlock_t *old_ptl, *new_ptl;
 
1772	pmd_t pmd;
 
1773	struct mm_struct *mm = vma->vm_mm;
1774	bool force_flush = false;
 
 
 
 
 
1775
1776	/*
1777	 * The destination pmd shouldn't be established, free_pgtables()
1778	 * should have release it.
1779	 */
1780	if (WARN_ON(!pmd_none(*new_pmd))) {
1781		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1782		return false;
1783	}
1784
1785	/*
1786	 * We don't have to worry about the ordering of src and dst
1787	 * ptlocks because exclusive mmap_lock prevents deadlock.
1788	 */
1789	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1790	if (old_ptl) {
1791		new_ptl = pmd_lockptr(mm, new_pmd);
1792		if (new_ptl != old_ptl)
1793			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1794		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1795		if (pmd_present(pmd))
1796			force_flush = true;
1797		VM_BUG_ON(!pmd_none(*new_pmd));
1798
1799		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1800			pgtable_t pgtable;
1801			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1802			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1803		}
1804		pmd = move_soft_dirty_pmd(pmd);
1805		set_pmd_at(mm, new_addr, new_pmd, pmd);
1806		if (force_flush)
1807			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1808		if (new_ptl != old_ptl)
1809			spin_unlock(new_ptl);
1810		spin_unlock(old_ptl);
1811		return true;
1812	}
1813	return false;
 
1814}
1815
1816/*
1817 * Returns
1818 *  - 0 if PMD could not be locked
1819 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1820 *      or if prot_numa but THP migration is not supported
1821 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1822 */
1823int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1824		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1825		    unsigned long cp_flags)
1826{
1827	struct mm_struct *mm = vma->vm_mm;
1828	spinlock_t *ptl;
1829	pmd_t oldpmd, entry;
1830	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1831	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1832	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1833	int ret = 1;
1834
1835	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1836
1837	if (prot_numa && !thp_migration_supported())
1838		return 1;
 
 
 
 
 
 
 
 
 
1839
1840	ptl = __pmd_trans_huge_lock(pmd, vma);
1841	if (!ptl)
1842		return 0;
1843
1844#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1845	if (is_swap_pmd(*pmd)) {
1846		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1847		struct page *page = pfn_swap_entry_to_page(entry);
1848
1849		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1850		if (is_writable_migration_entry(entry)) {
1851			pmd_t newpmd;
1852			/*
1853			 * A protection check is difficult so
1854			 * just be safe and disable write
 
 
1855			 */
1856			if (PageAnon(page))
1857				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1858			else
1859				entry = make_readable_migration_entry(swp_offset(entry));
1860			newpmd = swp_entry_to_pmd(entry);
1861			if (pmd_swp_soft_dirty(*pmd))
1862				newpmd = pmd_swp_mksoft_dirty(newpmd);
1863			if (pmd_swp_uffd_wp(*pmd))
1864				newpmd = pmd_swp_mkuffd_wp(newpmd);
1865			set_pmd_at(mm, addr, pmd, newpmd);
1866		}
1867		goto unlock;
1868	}
1869#endif
1870
1871	if (prot_numa) {
1872		struct page *page;
1873		bool toptier;
1874		/*
1875		 * Avoid trapping faults against the zero page. The read-only
1876		 * data is likely to be read-cached on the local CPU and
1877		 * local/remote hits to the zero page are not interesting.
1878		 */
1879		if (is_huge_zero_pmd(*pmd))
1880			goto unlock;
1881
1882		if (pmd_protnone(*pmd))
1883			goto unlock;
1884
1885		page = pmd_page(*pmd);
1886		toptier = node_is_toptier(page_to_nid(page));
1887		/*
1888		 * Skip scanning top tier node if normal numa
1889		 * balancing is disabled
1890		 */
1891		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1892		    toptier)
1893			goto unlock;
1894
1895		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1896		    !toptier)
1897			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1898	}
1899	/*
1900	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1901	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1902	 * which is also under mmap_read_lock(mm):
1903	 *
1904	 *	CPU0:				CPU1:
1905	 *				change_huge_pmd(prot_numa=1)
1906	 *				 pmdp_huge_get_and_clear_notify()
1907	 * madvise_dontneed()
1908	 *  zap_pmd_range()
1909	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1910	 *   // skip the pmd
1911	 *				 set_pmd_at();
1912	 *				 // pmd is re-established
1913	 *
1914	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1915	 * which may break userspace.
1916	 *
1917	 * pmdp_invalidate_ad() is required to make sure we don't miss
1918	 * dirty/young flags set by hardware.
1919	 */
1920	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1921
1922	entry = pmd_modify(oldpmd, newprot);
1923	if (uffd_wp) {
1924		entry = pmd_wrprotect(entry);
1925		entry = pmd_mkuffd_wp(entry);
1926	} else if (uffd_wp_resolve) {
1927		/*
1928		 * Leave the write bit to be handled by PF interrupt
1929		 * handler, then things like COW could be properly
1930		 * handled.
1931		 */
1932		entry = pmd_clear_uffd_wp(entry);
1933	}
1934
1935	/* See change_pte_range(). */
1936	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1937	    can_change_pmd_writable(vma, addr, entry))
1938		entry = pmd_mkwrite(entry);
1939
1940	ret = HPAGE_PMD_NR;
1941	set_pmd_at(mm, addr, pmd, entry);
1942
1943	if (huge_pmd_needs_flush(oldpmd, entry))
1944		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1945unlock:
1946	spin_unlock(ptl);
1947	return ret;
1948}
1949
1950/*
1951 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
 
1952 *
1953 * Note that if it returns page table lock pointer, this routine returns without
1954 * unlocking page table lock. So callers must unlock it.
1955 */
1956spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
 
1957{
1958	spinlock_t *ptl;
1959	ptl = pmd_lock(vma->vm_mm, pmd);
1960	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1961			pmd_devmap(*pmd)))
1962		return ptl;
1963	spin_unlock(ptl);
1964	return NULL;
 
 
 
 
 
 
 
1965}
1966
1967/*
1968 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
 
1969 *
1970 * Note that if it returns page table lock pointer, this routine returns without
1971 * unlocking page table lock. So callers must unlock it.
 
1972 */
1973spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1974{
1975	spinlock_t *ptl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1976
1977	ptl = pud_lock(vma->vm_mm, pud);
1978	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1979		return ptl;
1980	spin_unlock(ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981	return NULL;
1982}
1983
1984#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1985int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1986		 pud_t *pud, unsigned long addr)
1987{
 
1988	spinlock_t *ptl;
1989
1990	ptl = __pud_trans_huge_lock(pud, vma);
1991	if (!ptl)
1992		return 0;
1993
1994	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1995	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1996	if (vma_is_special_huge(vma)) {
 
 
 
 
 
 
 
 
 
 
 
1997		spin_unlock(ptl);
1998		/* No zero page support yet */
1999	} else {
2000		/* No support for anonymous PUD pages yet */
2001		BUG();
2002	}
2003	return 1;
 
 
2004}
2005
2006static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2007		unsigned long haddr)
2008{
2009	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2010	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2011	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2012	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
 
 
 
 
 
 
 
 
2013
2014	count_vm_event(THP_SPLIT_PUD);
 
2015
2016	pudp_huge_clear_flush_notify(vma, haddr, pud);
2017}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2018
2019void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2020		unsigned long address)
2021{
2022	spinlock_t *ptl;
2023	struct mmu_notifier_range range;
2024
2025	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2026				address & HPAGE_PUD_MASK,
2027				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2028	mmu_notifier_invalidate_range_start(&range);
2029	ptl = pud_lock(vma->vm_mm, pud);
2030	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2031		goto out;
2032	__split_huge_pud_locked(vma, pud, range.start);
 
 
 
 
 
 
2033
2034out:
2035	spin_unlock(ptl);
2036	/*
2037	 * No need to double call mmu_notifier->invalidate_range() callback as
2038	 * the above pudp_huge_clear_flush_notify() did already call it.
2039	 */
2040	mmu_notifier_invalidate_range_only_end(&range);
2041}
2042#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2043
2044static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2045		unsigned long haddr, pmd_t *pmd)
2046{
2047	struct mm_struct *mm = vma->vm_mm;
2048	pgtable_t pgtable;
2049	pmd_t _pmd;
2050	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2051
2052	/*
2053	 * Leave pmd empty until pte is filled note that it is fine to delay
2054	 * notification until mmu_notifier_invalidate_range_end() as we are
2055	 * replacing a zero pmd write protected page with a zero pte write
2056	 * protected page.
2057	 *
2058	 * See Documentation/mm/mmu_notifier.rst
2059	 */
2060	pmdp_huge_clear_flush(vma, haddr, pmd);
2061
2062	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2063	pmd_populate(mm, &_pmd, pgtable);
2064
2065	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2066		pte_t *pte, entry;
2067		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2068		entry = pte_mkspecial(entry);
2069		pte = pte_offset_map(&_pmd, haddr);
2070		VM_BUG_ON(!pte_none(*pte));
2071		set_pte_at(mm, haddr, pte, entry);
2072		pte_unmap(pte);
2073	}
2074	smp_wmb(); /* make pte visible before pmd */
2075	pmd_populate(mm, pmd, pgtable);
2076}
2077
2078static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2079		unsigned long haddr, bool freeze)
 
2080{
2081	struct mm_struct *mm = vma->vm_mm;
2082	struct page *page;
 
 
2083	pgtable_t pgtable;
2084	pmd_t old_pmd, _pmd;
2085	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2086	bool anon_exclusive = false, dirty = false;
2087	unsigned long addr;
2088	int i;
2089
2090	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2091	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2092	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2093	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2094				&& !pmd_devmap(*pmd));
2095
2096	count_vm_event(THP_SPLIT_PMD);
2097
2098	if (!vma_is_anonymous(vma)) {
2099		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2100		/*
2101		 * We are going to unmap this huge page. So
2102		 * just go ahead and zap it
2103		 */
2104		if (arch_needs_pgtable_deposit())
2105			zap_deposited_table(mm, pmd);
2106		if (vma_is_special_huge(vma))
2107			return;
2108		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2109			swp_entry_t entry;
2110
2111			entry = pmd_to_swp_entry(old_pmd);
2112			page = pfn_swap_entry_to_page(entry);
2113		} else {
2114			page = pmd_page(old_pmd);
2115			if (!PageDirty(page) && pmd_dirty(old_pmd))
2116				set_page_dirty(page);
2117			if (!PageReferenced(page) && pmd_young(old_pmd))
2118				SetPageReferenced(page);
2119			page_remove_rmap(page, vma, true);
2120			put_page(page);
2121		}
2122		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2123		return;
2124	}
2125
2126	if (is_huge_zero_pmd(*pmd)) {
2127		/*
2128		 * FIXME: Do we want to invalidate secondary mmu by calling
2129		 * mmu_notifier_invalidate_range() see comments below inside
2130		 * __split_huge_pmd() ?
2131		 *
2132		 * We are going from a zero huge page write protected to zero
2133		 * small page also write protected so it does not seems useful
2134		 * to invalidate secondary mmu at this time.
2135		 */
2136		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2137	}
2138
2139	/*
2140	 * Up to this point the pmd is present and huge and userland has the
2141	 * whole access to the hugepage during the split (which happens in
2142	 * place). If we overwrite the pmd with the not-huge version pointing
2143	 * to the pte here (which of course we could if all CPUs were bug
2144	 * free), userland could trigger a small page size TLB miss on the
2145	 * small sized TLB while the hugepage TLB entry is still established in
2146	 * the huge TLB. Some CPU doesn't like that.
2147	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2148	 * 383 on page 105. Intel should be safe but is also warns that it's
2149	 * only safe if the permission and cache attributes of the two entries
2150	 * loaded in the two TLB is identical (which should be the case here).
2151	 * But it is generally safer to never allow small and huge TLB entries
2152	 * for the same virtual address to be loaded simultaneously. So instead
2153	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2154	 * current pmd notpresent (atomically because here the pmd_trans_huge
2155	 * must remain set at all times on the pmd until the split is complete
2156	 * for this pmd), then we flush the SMP TLB and finally we write the
2157	 * non-huge version of the pmd entry with pmd_populate.
2158	 */
2159	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2160
2161	pmd_migration = is_pmd_migration_entry(old_pmd);
2162	if (unlikely(pmd_migration)) {
2163		swp_entry_t entry;
2164
2165		entry = pmd_to_swp_entry(old_pmd);
2166		page = pfn_swap_entry_to_page(entry);
2167		write = is_writable_migration_entry(entry);
2168		if (PageAnon(page))
2169			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2170		young = is_migration_entry_young(entry);
2171		dirty = is_migration_entry_dirty(entry);
2172		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2173		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2174	} else {
2175		page = pmd_page(old_pmd);
2176		if (pmd_dirty(old_pmd)) {
2177			dirty = true;
2178			SetPageDirty(page);
2179		}
2180		write = pmd_write(old_pmd);
2181		young = pmd_young(old_pmd);
2182		soft_dirty = pmd_soft_dirty(old_pmd);
2183		uffd_wp = pmd_uffd_wp(old_pmd);
2184
2185		VM_BUG_ON_PAGE(!page_count(page), page);
2186
2187		/*
2188		 * Without "freeze", we'll simply split the PMD, propagating the
2189		 * PageAnonExclusive() flag for each PTE by setting it for
2190		 * each subpage -- no need to (temporarily) clear.
2191		 *
2192		 * With "freeze" we want to replace mapped pages by
2193		 * migration entries right away. This is only possible if we
2194		 * managed to clear PageAnonExclusive() -- see
2195		 * set_pmd_migration_entry().
2196		 *
2197		 * In case we cannot clear PageAnonExclusive(), split the PMD
2198		 * only and let try_to_migrate_one() fail later.
2199		 *
2200		 * See page_try_share_anon_rmap(): invalidate PMD first.
2201		 */
2202		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2203		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2204			freeze = false;
2205		if (!freeze)
2206			page_ref_add(page, HPAGE_PMD_NR - 1);
2207	}
2208
2209	/*
2210	 * Withdraw the table only after we mark the pmd entry invalid.
2211	 * This's critical for some architectures (Power).
2212	 */
2213	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2214	pmd_populate(mm, &_pmd, pgtable);
2215
2216	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2217		pte_t entry, *pte;
2218		/*
2219		 * Note that NUMA hinting access restrictions are not
2220		 * transferred to avoid any possibility of altering
2221		 * permissions across VMAs.
2222		 */
2223		if (freeze || pmd_migration) {
2224			swp_entry_t swp_entry;
2225			if (write)
2226				swp_entry = make_writable_migration_entry(
2227							page_to_pfn(page + i));
2228			else if (anon_exclusive)
2229				swp_entry = make_readable_exclusive_migration_entry(
2230							page_to_pfn(page + i));
2231			else
2232				swp_entry = make_readable_migration_entry(
2233							page_to_pfn(page + i));
2234			if (young)
2235				swp_entry = make_migration_entry_young(swp_entry);
2236			if (dirty)
2237				swp_entry = make_migration_entry_dirty(swp_entry);
2238			entry = swp_entry_to_pte(swp_entry);
2239			if (soft_dirty)
2240				entry = pte_swp_mksoft_dirty(entry);
2241			if (uffd_wp)
2242				entry = pte_swp_mkuffd_wp(entry);
2243		} else {
2244			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2245			entry = maybe_mkwrite(entry, vma);
2246			if (anon_exclusive)
2247				SetPageAnonExclusive(page + i);
2248			if (!young)
2249				entry = pte_mkold(entry);
2250			/* NOTE: this may set soft-dirty too on some archs */
2251			if (dirty)
2252				entry = pte_mkdirty(entry);
2253			/*
2254			 * NOTE: this needs to happen after pte_mkdirty,
2255			 * because some archs (sparc64, loongarch) could
2256			 * set hw write bit when mkdirty.
2257			 */
2258			if (!write)
2259				entry = pte_wrprotect(entry);
2260			if (soft_dirty)
2261				entry = pte_mksoft_dirty(entry);
2262			if (uffd_wp)
2263				entry = pte_mkuffd_wp(entry);
2264			page_add_anon_rmap(page + i, vma, addr, false);
2265		}
2266		pte = pte_offset_map(&_pmd, addr);
2267		BUG_ON(!pte_none(*pte));
2268		set_pte_at(mm, addr, pte, entry);
2269		pte_unmap(pte);
2270	}
2271
2272	if (!pmd_migration)
2273		page_remove_rmap(page, vma, true);
2274	if (freeze)
2275		put_page(page);
2276
2277	smp_wmb(); /* make pte visible before pmd */
2278	pmd_populate(mm, pmd, pgtable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2279}
2280
2281void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2282		unsigned long address, bool freeze, struct folio *folio)
 
 
 
 
 
 
2283{
2284	spinlock_t *ptl;
2285	struct mmu_notifier_range range;
2286
2287	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2288				address & HPAGE_PMD_MASK,
2289				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2290	mmu_notifier_invalidate_range_start(&range);
2291	ptl = pmd_lock(vma->vm_mm, pmd);
2292
2293	/*
2294	 * If caller asks to setup a migration entry, we need a folio to check
2295	 * pmd against. Otherwise we can end up replacing wrong folio.
 
 
 
2296	 */
2297	VM_BUG_ON(freeze && !folio);
2298	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
 
 
 
 
 
 
2299
2300	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2301	    is_pmd_migration_entry(*pmd)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2302		/*
2303		 * It's safe to call pmd_page when folio is set because it's
2304		 * guaranteed that pmd is present.
 
2305		 */
2306		if (folio && folio != page_folio(pmd_page(*pmd)))
2307			goto out;
2308		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2309	}
2310
2311out:
2312	spin_unlock(ptl);
2313	/*
2314	 * No need to double call mmu_notifier->invalidate_range() callback.
2315	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2316	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2317	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2318	 *    fault will trigger a flush_notify before pointing to a new page
2319	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2320	 *    page in the meantime)
2321	 *  3) Split a huge pmd into pte pointing to the same page. No need
2322	 *     to invalidate secondary tlb entry they are all still valid.
2323	 *     any further changes to individual pte will notify. So no need
2324	 *     to call mmu_notifier->invalidate_range()
2325	 */
2326	mmu_notifier_invalidate_range_only_end(&range);
2327}
2328
2329void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2330		bool freeze, struct folio *folio)
2331{
2332	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
 
 
 
 
2333
2334	if (!pmd)
2335		return;
2336
2337	__split_huge_pmd(vma, pmd, address, freeze, folio);
2338}
2339
2340static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2341{
2342	/*
2343	 * If the new address isn't hpage aligned and it could previously
2344	 * contain an hugepage: check if we need to split an huge pmd.
2345	 */
2346	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2347	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2348			 ALIGN(address, HPAGE_PMD_SIZE)))
2349		split_huge_pmd_address(vma, address, false, NULL);
2350}
2351
2352void vma_adjust_trans_huge(struct vm_area_struct *vma,
2353			     unsigned long start,
2354			     unsigned long end,
2355			     long adjust_next)
2356{
2357	/* Check if we need to split start first. */
2358	split_huge_pmd_if_needed(vma, start);
2359
2360	/* Check if we need to split end next. */
2361	split_huge_pmd_if_needed(vma, end);
2362
2363	/*
2364	 * If we're also updating the next vma vm_start,
2365	 * check if we need to split it.
2366	 */
2367	if (adjust_next > 0) {
2368		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2369		unsigned long nstart = next->vm_start;
2370		nstart += adjust_next;
2371		split_huge_pmd_if_needed(next, nstart);
2372	}
2373}
2374
2375static void unmap_folio(struct folio *folio)
2376{
2377	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2378		TTU_SYNC;
2379
2380	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
 
 
2381
2382	/*
2383	 * Anon pages need migration entries to preserve them, but file
2384	 * pages can simply be left unmapped, then faulted back on demand.
2385	 * If that is ever changed (perhaps for mlock), update remap_page().
2386	 */
2387	if (folio_test_anon(folio))
2388		try_to_migrate(folio, ttu_flags);
2389	else
2390		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2391}
2392
2393static void remap_page(struct folio *folio, unsigned long nr)
 
2394{
2395	int i = 0;
2396
2397	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2398	if (!folio_test_anon(folio))
2399		return;
2400	for (;;) {
2401		remove_migration_ptes(folio, folio, true);
2402		i += folio_nr_pages(folio);
2403		if (i >= nr)
2404			break;
2405		folio = folio_next(folio);
2406	}
2407}
2408
2409static void lru_add_page_tail(struct page *head, struct page *tail,
2410		struct lruvec *lruvec, struct list_head *list)
2411{
2412	VM_BUG_ON_PAGE(!PageHead(head), head);
2413	VM_BUG_ON_PAGE(PageCompound(tail), head);
2414	VM_BUG_ON_PAGE(PageLRU(tail), head);
2415	lockdep_assert_held(&lruvec->lru_lock);
2416
2417	if (list) {
2418		/* page reclaim is reclaiming a huge page */
2419		VM_WARN_ON(PageLRU(head));
2420		get_page(tail);
2421		list_add_tail(&tail->lru, list);
2422	} else {
2423		/* head is still on lru (and we have it frozen) */
2424		VM_WARN_ON(!PageLRU(head));
2425		if (PageUnevictable(tail))
2426			tail->mlock_count = 0;
2427		else
2428			list_add_tail(&tail->lru, &head->lru);
2429		SetPageLRU(tail);
2430	}
2431}
2432
2433static void __split_huge_page_tail(struct page *head, int tail,
2434		struct lruvec *lruvec, struct list_head *list)
2435{
2436	struct page *page_tail = head + tail;
2437
2438	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2439
2440	/*
2441	 * Clone page flags before unfreezing refcount.
2442	 *
2443	 * After successful get_page_unless_zero() might follow flags change,
2444	 * for example lock_page() which set PG_waiters.
2445	 *
2446	 * Note that for mapped sub-pages of an anonymous THP,
2447	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2448	 * the migration entry instead from where remap_page() will restore it.
2449	 * We can still have PG_anon_exclusive set on effectively unmapped and
2450	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2451	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2452	 */
2453	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2454	page_tail->flags |= (head->flags &
2455			((1L << PG_referenced) |
2456			 (1L << PG_swapbacked) |
2457			 (1L << PG_swapcache) |
2458			 (1L << PG_mlocked) |
2459			 (1L << PG_uptodate) |
2460			 (1L << PG_active) |
2461			 (1L << PG_workingset) |
2462			 (1L << PG_locked) |
2463			 (1L << PG_unevictable) |
2464#ifdef CONFIG_ARCH_USES_PG_ARCH_X
2465			 (1L << PG_arch_2) |
2466			 (1L << PG_arch_3) |
2467#endif
2468			 (1L << PG_dirty) |
2469			 LRU_GEN_MASK | LRU_REFS_MASK));
2470
2471	/* ->mapping in first and second tail page is replaced by other uses */
2472	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2473			page_tail);
2474	page_tail->mapping = head->mapping;
2475	page_tail->index = head->index + tail;
2476
2477	/*
2478	 * page->private should not be set in tail pages with the exception
2479	 * of swap cache pages that store the swp_entry_t in tail pages.
2480	 * Fix up and warn once if private is unexpectedly set.
2481	 *
2482	 * What of 32-bit systems, on which head[1].compound_pincount overlays
2483	 * head[1].private?  No problem: THP_SWAP is not enabled on 32-bit, and
2484	 * compound_pincount must be 0 for folio_ref_freeze() to have succeeded.
2485	 */
2486	if (!folio_test_swapcache(page_folio(head))) {
2487		VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2488		page_tail->private = 0;
2489	}
2490
2491	/* Page flags must be visible before we make the page non-compound. */
2492	smp_wmb();
2493
2494	/*
2495	 * Clear PageTail before unfreezing page refcount.
2496	 *
2497	 * After successful get_page_unless_zero() might follow put_page()
2498	 * which needs correct compound_head().
2499	 */
2500	clear_compound_head(page_tail);
 
 
 
 
 
 
2501
2502	/* Finally unfreeze refcount. Additional reference from page cache. */
2503	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2504					  PageSwapCache(head)));
2505
2506	if (page_is_young(head))
2507		set_page_young(page_tail);
2508	if (page_is_idle(head))
2509		set_page_idle(page_tail);
2510
2511	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2512
2513	/*
2514	 * always add to the tail because some iterators expect new
2515	 * pages to show after the currently processed elements - e.g.
2516	 * migrate_pages
2517	 */
2518	lru_add_page_tail(head, page_tail, lruvec, list);
 
 
 
 
 
2519}
2520
2521static void __split_huge_page(struct page *page, struct list_head *list,
2522		pgoff_t end)
2523{
2524	struct folio *folio = page_folio(page);
2525	struct page *head = &folio->page;
2526	struct lruvec *lruvec;
2527	struct address_space *swap_cache = NULL;
2528	unsigned long offset = 0;
2529	unsigned int nr = thp_nr_pages(head);
2530	int i;
2531
2532	/* complete memcg works before add pages to LRU */
2533	split_page_memcg(head, nr);
2534
2535	if (PageAnon(head) && PageSwapCache(head)) {
2536		swp_entry_t entry = { .val = page_private(head) };
2537
2538		offset = swp_offset(entry);
2539		swap_cache = swap_address_space(entry);
2540		xa_lock(&swap_cache->i_pages);
2541	}
2542
2543	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2544	lruvec = folio_lruvec_lock(folio);
2545
2546	ClearPageHasHWPoisoned(head);
2547
2548	for (i = nr - 1; i >= 1; i--) {
2549		__split_huge_page_tail(head, i, lruvec, list);
2550		/* Some pages can be beyond EOF: drop them from page cache */
2551		if (head[i].index >= end) {
2552			struct folio *tail = page_folio(head + i);
2553
2554			if (shmem_mapping(head->mapping))
2555				shmem_uncharge(head->mapping->host, 1);
2556			else if (folio_test_clear_dirty(tail))
2557				folio_account_cleaned(tail,
2558					inode_to_wb(folio->mapping->host));
2559			__filemap_remove_folio(tail, NULL);
2560			folio_put(tail);
2561		} else if (!PageAnon(page)) {
2562			__xa_store(&head->mapping->i_pages, head[i].index,
2563					head + i, 0);
2564		} else if (swap_cache) {
2565			__xa_store(&swap_cache->i_pages, offset + i,
2566					head + i, 0);
2567		}
2568	}
2569
2570	ClearPageCompound(head);
2571	unlock_page_lruvec(lruvec);
2572	/* Caller disabled irqs, so they are still disabled here */
2573
2574	split_page_owner(head, nr);
2575
2576	/* See comment in __split_huge_page_tail() */
2577	if (PageAnon(head)) {
2578		/* Additional pin to swap cache */
2579		if (PageSwapCache(head)) {
2580			page_ref_add(head, 2);
2581			xa_unlock(&swap_cache->i_pages);
2582		} else {
2583			page_ref_inc(head);
2584		}
2585	} else {
2586		/* Additional pin to page cache */
2587		page_ref_add(head, 2);
2588		xa_unlock(&head->mapping->i_pages);
2589	}
2590	local_irq_enable();
2591
2592	remap_page(folio, nr);
2593
2594	if (PageSwapCache(head)) {
2595		swp_entry_t entry = { .val = page_private(head) };
2596
2597		split_swap_cluster(entry);
2598	}
2599
2600	for (i = 0; i < nr; i++) {
2601		struct page *subpage = head + i;
2602		if (subpage == page)
2603			continue;
2604		unlock_page(subpage);
2605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2606		/*
2607		 * Subpages may be freed if there wasn't any mapping
2608		 * like if add_to_swap() is running on a lru page that
2609		 * had its mapping zapped. And freeing these pages
2610		 * requires taking the lru_lock so we do the put_page
2611		 * of the tail pages after the split is complete.
 
2612		 */
2613		free_page_and_swap_cache(subpage);
 
2614	}
2615}
2616
2617/* Racy check whether the huge page can be split */
2618bool can_split_folio(struct folio *folio, int *pextra_pins)
2619{
2620	int extra_pins;
 
 
 
 
2621
2622	/* Additional pins from page cache */
2623	if (folio_test_anon(folio))
2624		extra_pins = folio_test_swapcache(folio) ?
2625				folio_nr_pages(folio) : 0;
2626	else
2627		extra_pins = folio_nr_pages(folio);
2628	if (pextra_pins)
2629		*pextra_pins = extra_pins;
2630	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2631}
2632
2633/*
2634 * This function splits huge page into normal pages. @page can point to any
2635 * subpage of huge page to split. Split doesn't change the position of @page.
2636 *
2637 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2638 * The huge page must be locked.
2639 *
2640 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2641 *
2642 * Both head page and tail pages will inherit mapping, flags, and so on from
2643 * the hugepage.
2644 *
2645 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2646 * they are not mapped.
2647 *
2648 * Returns 0 if the hugepage is split successfully.
2649 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2650 * us.
2651 */
2652int split_huge_page_to_list(struct page *page, struct list_head *list)
2653{
2654	struct folio *folio = page_folio(page);
2655	struct deferred_split *ds_queue = get_deferred_split_queue(&folio->page);
2656	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2657	struct anon_vma *anon_vma = NULL;
2658	struct address_space *mapping = NULL;
2659	int extra_pins, ret;
2660	pgoff_t end;
2661	bool is_hzp;
2662
2663	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2664	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2665
2666	is_hzp = is_huge_zero_page(&folio->page);
2667	VM_WARN_ON_ONCE_FOLIO(is_hzp, folio);
2668	if (is_hzp)
2669		return -EBUSY;
2670
2671	if (folio_test_writeback(folio))
2672		return -EBUSY;
2673
2674	if (folio_test_anon(folio)) {
2675		/*
2676		 * The caller does not necessarily hold an mmap_lock that would
2677		 * prevent the anon_vma disappearing so we first we take a
2678		 * reference to it and then lock the anon_vma for write. This
2679		 * is similar to folio_lock_anon_vma_read except the write lock
2680		 * is taken to serialise against parallel split or collapse
2681		 * operations.
2682		 */
2683		anon_vma = folio_get_anon_vma(folio);
2684		if (!anon_vma) {
2685			ret = -EBUSY;
2686			goto out;
2687		}
2688		end = -1;
2689		mapping = NULL;
2690		anon_vma_lock_write(anon_vma);
2691	} else {
2692		gfp_t gfp;
2693
2694		mapping = folio->mapping;
2695
2696		/* Truncated ? */
2697		if (!mapping) {
2698			ret = -EBUSY;
2699			goto out;
2700		}
2701
2702		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2703							GFP_RECLAIM_MASK);
 
2704
2705		if (folio_test_private(folio) &&
2706				!filemap_release_folio(folio, gfp)) {
2707			ret = -EBUSY;
2708			goto out;
2709		}
2710
2711		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2712		if (xas_error(&xas)) {
2713			ret = xas_error(&xas);
 
 
2714			goto out;
2715		}
2716
2717		anon_vma = NULL;
2718		i_mmap_lock_read(mapping);
2719
2720		/*
2721		 *__split_huge_page() may need to trim off pages beyond EOF:
2722		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2723		 * which cannot be nested inside the page tree lock. So note
2724		 * end now: i_size itself may be changed at any moment, but
2725		 * folio lock is good enough to serialize the trimming.
2726		 */
2727		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2728		if (shmem_mapping(mapping))
2729			end = shmem_fallocend(mapping->host, end);
 
 
 
 
 
 
 
 
 
 
2730	}
 
 
 
 
 
 
2731
2732	/*
2733	 * Racy check if we can split the page, before unmap_folio() will
2734	 * split PMDs
2735	 */
2736	if (!can_split_folio(folio, &extra_pins)) {
2737		ret = -EAGAIN;
2738		goto out_unlock;
2739	}
2740
2741	unmap_folio(folio);
2742
2743	/* block interrupt reentry in xa_lock and spinlock */
2744	local_irq_disable();
2745	if (mapping) {
2746		/*
2747		 * Check if the folio is present in page cache.
2748		 * We assume all tail are present too, if folio is there.
2749		 */
2750		xas_lock(&xas);
2751		xas_reset(&xas);
2752		if (xas_load(&xas) != folio)
2753			goto fail;
2754	}
2755
2756	/* Prevent deferred_split_scan() touching ->_refcount */
2757	spin_lock(&ds_queue->split_queue_lock);
2758	if (folio_ref_freeze(folio, 1 + extra_pins)) {
2759		if (!list_empty(page_deferred_list(&folio->page))) {
2760			ds_queue->split_queue_len--;
2761			list_del(page_deferred_list(&folio->page));
2762		}
2763		spin_unlock(&ds_queue->split_queue_lock);
2764		if (mapping) {
2765			int nr = folio_nr_pages(folio);
2766
2767			xas_split(&xas, folio, folio_order(folio));
2768			if (folio_test_swapbacked(folio)) {
2769				__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2770							-nr);
2771			} else {
2772				__lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2773							-nr);
2774				filemap_nr_thps_dec(mapping);
2775			}
2776		}
2777
2778		__split_huge_page(page, list, end);
2779		ret = 0;
2780	} else {
2781		spin_unlock(&ds_queue->split_queue_lock);
2782fail:
2783		if (mapping)
2784			xas_unlock(&xas);
2785		local_irq_enable();
2786		remap_page(folio, folio_nr_pages(folio));
2787		ret = -EAGAIN;
2788	}
2789
2790out_unlock:
2791	if (anon_vma) {
2792		anon_vma_unlock_write(anon_vma);
2793		put_anon_vma(anon_vma);
2794	}
2795	if (mapping)
2796		i_mmap_unlock_read(mapping);
2797out:
2798	xas_destroy(&xas);
2799	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2800	return ret;
2801}
2802
2803void free_transhuge_page(struct page *page)
2804{
2805	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2806	unsigned long flags;
 
2807
2808	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2809	if (!list_empty(page_deferred_list(page))) {
2810		ds_queue->split_queue_len--;
2811		list_del(page_deferred_list(page));
2812	}
2813	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2814	free_compound_page(page);
2815}
2816
2817void deferred_split_huge_page(struct page *page)
 
2818{
2819	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2820#ifdef CONFIG_MEMCG
2821	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2822#endif
2823	unsigned long flags;
2824
2825	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 
 
 
 
 
2826
2827	/*
2828	 * The try_to_unmap() in page reclaim path might reach here too,
2829	 * this may cause a race condition to corrupt deferred split queue.
2830	 * And, if page reclaim is already handling the same page, it is
2831	 * unnecessary to handle it again in shrinker.
2832	 *
2833	 * Check PageSwapCache to determine if the page is being
2834	 * handled by page reclaim since THP swap would add the page into
2835	 * swap cache before calling try_to_unmap().
2836	 */
2837	if (PageSwapCache(page))
2838		return;
2839
2840	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2841	if (list_empty(page_deferred_list(page))) {
2842		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2843		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2844		ds_queue->split_queue_len++;
2845#ifdef CONFIG_MEMCG
2846		if (memcg)
2847			set_shrinker_bit(memcg, page_to_nid(page),
2848					 deferred_split_shrinker.id);
2849#endif
2850	}
2851	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2852}
2853
2854static unsigned long deferred_split_count(struct shrinker *shrink,
2855		struct shrink_control *sc)
2856{
2857	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2858	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
 
 
 
 
 
 
 
 
 
2859
2860#ifdef CONFIG_MEMCG
2861	if (sc->memcg)
2862		ds_queue = &sc->memcg->deferred_split_queue;
2863#endif
2864	return READ_ONCE(ds_queue->split_queue_len);
2865}
2866
2867static unsigned long deferred_split_scan(struct shrinker *shrink,
2868		struct shrink_control *sc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2869{
2870	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2871	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2872	unsigned long flags;
2873	LIST_HEAD(list), *pos, *next;
2874	struct page *page;
2875	int split = 0;
2876
2877#ifdef CONFIG_MEMCG
2878	if (sc->memcg)
2879		ds_queue = &sc->memcg->deferred_split_queue;
2880#endif
 
2881
2882	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2883	/* Take pin on all head pages to avoid freeing them under us */
2884	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2885		page = list_entry((void *)pos, struct page, deferred_list);
2886		page = compound_head(page);
2887		if (get_page_unless_zero(page)) {
2888			list_move(page_deferred_list(page), &list);
2889		} else {
2890			/* We lost race with put_compound_page() */
2891			list_del_init(page_deferred_list(page));
2892			ds_queue->split_queue_len--;
2893		}
2894		if (!--sc->nr_to_scan)
2895			break;
2896	}
2897	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2898
2899	list_for_each_safe(pos, next, &list) {
2900		page = list_entry((void *)pos, struct page, deferred_list);
2901		if (!trylock_page(page))
2902			goto next;
2903		/* split_huge_page() removes page from list on success */
2904		if (!split_huge_page(page))
2905			split++;
2906		unlock_page(page);
2907next:
2908		put_page(page);
2909	}
2910
2911	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2912	list_splice_tail(&list, &ds_queue->split_queue);
2913	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
 
 
2914
2915	/*
2916	 * Stop shrinker if we didn't split any page, but the queue is empty.
2917	 * This can happen if pages were freed under us.
2918	 */
2919	if (!split && list_empty(&ds_queue->split_queue))
2920		return SHRINK_STOP;
2921	return split;
2922}
2923
2924static struct shrinker deferred_split_shrinker = {
2925	.count_objects = deferred_split_count,
2926	.scan_objects = deferred_split_scan,
2927	.seeks = DEFAULT_SEEKS,
2928	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2929		 SHRINKER_NONSLAB,
2930};
2931
2932#ifdef CONFIG_DEBUG_FS
2933static void split_huge_pages_all(void)
2934{
2935	struct zone *zone;
2936	struct page *page;
2937	unsigned long pfn, max_zone_pfn;
2938	unsigned long total = 0, split = 0;
2939
2940	pr_debug("Split all THPs\n");
2941	for_each_zone(zone) {
2942		if (!managed_zone(zone))
2943			continue;
2944		max_zone_pfn = zone_end_pfn(zone);
2945		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2946			int nr_pages;
2947
2948			page = pfn_to_online_page(pfn);
2949			if (!page || !get_page_unless_zero(page))
2950				continue;
2951
2952			if (zone != page_zone(page))
2953				goto next;
 
 
 
 
 
 
 
 
2954
2955			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2956				goto next;
 
 
 
2957
2958			total++;
2959			lock_page(page);
2960			nr_pages = thp_nr_pages(page);
2961			if (!split_huge_page(page))
2962				split++;
2963			pfn += nr_pages - 1;
2964			unlock_page(page);
2965next:
2966			put_page(page);
2967			cond_resched();
2968		}
2969	}
2970
2971	pr_debug("%lu of %lu THP split\n", split, total);
2972}
2973
2974static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
 
 
 
 
2975{
2976	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2977		    is_vm_hugetlb_page(vma);
2978}
 
 
 
 
 
 
 
 
 
 
 
 
 
2979
2980static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2981				unsigned long vaddr_end)
2982{
2983	int ret = 0;
2984	struct task_struct *task;
2985	struct mm_struct *mm;
2986	unsigned long total = 0, split = 0;
2987	unsigned long addr;
2988
2989	vaddr_start &= PAGE_MASK;
2990	vaddr_end &= PAGE_MASK;
 
 
 
 
 
 
2991
2992	/* Find the task_struct from pid */
2993	rcu_read_lock();
2994	task = find_task_by_vpid(pid);
2995	if (!task) {
2996		rcu_read_unlock();
2997		ret = -ESRCH;
2998		goto out;
2999	}
3000	get_task_struct(task);
3001	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
3002
3003	/* Find the mm_struct */
3004	mm = get_task_mm(task);
3005	put_task_struct(task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3006
3007	if (!mm) {
3008		ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
3009		goto out;
3010	}
3011
3012	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3013		 pid, vaddr_start, vaddr_end);
3014
3015	mmap_read_lock(mm);
3016	/*
3017	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3018	 * table filled with PTE-mapped THPs, each of which is distinct.
3019	 */
3020	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3021		struct vm_area_struct *vma = vma_lookup(mm, addr);
3022		struct page *page;
3023
3024		if (!vma)
3025			break;
 
 
3026
3027		/* skip special VMA and hugetlb VMA */
3028		if (vma_not_suitable_for_thp_split(vma)) {
3029			addr = vma->vm_end;
3030			continue;
3031		}
3032
3033		/* FOLL_DUMP to ignore special (like zero) pages */
3034		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
 
 
 
 
3035
3036		if (IS_ERR_OR_NULL(page))
3037			continue;
 
 
 
 
 
 
 
 
 
 
 
 
3038
3039		if (!is_transparent_hugepage(page))
3040			goto next;
 
 
3041
3042		total++;
3043		if (!can_split_folio(page_folio(page), NULL))
3044			goto next;
 
 
 
 
 
 
 
 
 
3045
3046		if (!trylock_page(page))
3047			goto next;
3048
3049		if (!split_huge_page(page))
3050			split++;
 
 
 
3051
3052		unlock_page(page);
3053next:
3054		put_page(page);
3055		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3056	}
3057	mmap_read_unlock(mm);
3058	mmput(mm);
3059
3060	pr_debug("%lu of %lu THP split\n", split, total);
3061
3062out:
3063	return ret;
3064}
3065
3066static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3067				pgoff_t off_end)
3068{
3069	struct filename *file;
3070	struct file *candidate;
3071	struct address_space *mapping;
3072	int ret = -EINVAL;
3073	pgoff_t index;
3074	int nr_pages = 1;
3075	unsigned long total = 0, split = 0;
 
 
 
 
 
 
 
3076
3077	file = getname_kernel(file_path);
3078	if (IS_ERR(file))
3079		return ret;
 
 
3080
3081	candidate = file_open_name(file, O_RDONLY, 0);
3082	if (IS_ERR(candidate))
3083		goto out;
 
 
 
 
 
 
3084
3085	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3086		 file_path, off_start, off_end);
3087
3088	mapping = candidate->f_mapping;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3089
3090	for (index = off_start; index < off_end; index += nr_pages) {
3091		struct folio *folio = __filemap_get_folio(mapping, index,
3092						FGP_ENTRY, 0);
3093
3094		nr_pages = 1;
3095		if (xa_is_value(folio) || !folio)
 
 
 
 
 
 
3096			continue;
 
 
 
 
 
 
 
 
 
 
3097
3098		if (!folio_test_large(folio))
3099			goto next;
 
 
 
3100
3101		total++;
3102		nr_pages = folio_nr_pages(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3103
3104		if (!folio_trylock(folio))
3105			goto next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3106
3107		if (!split_folio(folio))
3108			split++;
3109
3110		folio_unlock(folio);
3111next:
3112		folio_put(folio);
3113		cond_resched();
3114	}
3115
3116	filp_close(candidate, NULL);
3117	ret = 0;
3118
3119	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3120out:
3121	putname(file);
3122	return ret;
3123}
3124
3125#define MAX_INPUT_BUF_SZ 255
 
 
 
 
3126
3127static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3128				size_t count, loff_t *ppops)
3129{
3130	static DEFINE_MUTEX(split_debug_mutex);
3131	ssize_t ret;
3132	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3133	char input_buf[MAX_INPUT_BUF_SZ];
3134	int pid;
3135	unsigned long vaddr_start, vaddr_end;
3136
3137	ret = mutex_lock_interruptible(&split_debug_mutex);
3138	if (ret)
3139		return ret;
3140
3141	ret = -EFAULT;
3142
3143	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3144	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3145		goto out;
3146
3147	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
 
 
 
 
 
 
 
 
 
 
3148
3149	if (input_buf[0] == '/') {
3150		char *tok;
3151		char *buf = input_buf;
3152		char file_path[MAX_INPUT_BUF_SZ];
3153		pgoff_t off_start = 0, off_end = 0;
3154		size_t input_len = strlen(input_buf);
3155
3156		tok = strsep(&buf, ",");
3157		if (tok) {
3158			strcpy(file_path, tok);
3159		} else {
3160			ret = -EINVAL;
3161			goto out;
3162		}
3163
3164		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3165		if (ret != 2) {
3166			ret = -EINVAL;
3167			goto out;
3168		}
3169		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3170		if (!ret)
3171			ret = input_len;
3172
3173		goto out;
 
 
 
3174	}
3175
3176	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3177	if (ret == 1 && pid == 1) {
3178		split_huge_pages_all();
3179		ret = strlen(input_buf);
3180		goto out;
3181	} else if (ret != 3) {
3182		ret = -EINVAL;
3183		goto out;
3184	}
3185
3186	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3187	if (!ret)
3188		ret = strlen(input_buf);
3189out:
3190	mutex_unlock(&split_debug_mutex);
3191	return ret;
3192
3193}
 
3194
3195static const struct file_operations split_huge_pages_fops = {
3196	.owner	 = THIS_MODULE,
3197	.write	 = split_huge_pages_write,
3198	.llseek  = no_llseek,
3199};
3200
3201static int __init split_huge_pages_debugfs(void)
3202{
3203	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3204			    &split_huge_pages_fops);
 
 
3205	return 0;
3206}
3207late_initcall(split_huge_pages_debugfs);
3208#endif
3209
3210#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3211int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3212		struct page *page)
3213{
3214	struct vm_area_struct *vma = pvmw->vma;
3215	struct mm_struct *mm = vma->vm_mm;
3216	unsigned long address = pvmw->address;
3217	bool anon_exclusive;
3218	pmd_t pmdval;
3219	swp_entry_t entry;
3220	pmd_t pmdswp;
3221
3222	if (!(pvmw->pmd && !pvmw->pte))
3223		return 0;
3224
3225	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3226	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3227
3228	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3229	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3230	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3231		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3232		return -EBUSY;
3233	}
3234
3235	if (pmd_dirty(pmdval))
3236		set_page_dirty(page);
3237	if (pmd_write(pmdval))
3238		entry = make_writable_migration_entry(page_to_pfn(page));
3239	else if (anon_exclusive)
3240		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3241	else
3242		entry = make_readable_migration_entry(page_to_pfn(page));
3243	if (pmd_young(pmdval))
3244		entry = make_migration_entry_young(entry);
3245	if (pmd_dirty(pmdval))
3246		entry = make_migration_entry_dirty(entry);
3247	pmdswp = swp_entry_to_pmd(entry);
3248	if (pmd_soft_dirty(pmdval))
3249		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3250	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3251	page_remove_rmap(page, vma, true);
3252	put_page(page);
3253	trace_set_migration_pmd(address, pmd_val(pmdswp));
3254
3255	return 0;
3256}
3257
3258void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
 
3259{
3260	struct vm_area_struct *vma = pvmw->vma;
 
3261	struct mm_struct *mm = vma->vm_mm;
3262	unsigned long address = pvmw->address;
3263	unsigned long haddr = address & HPAGE_PMD_MASK;
3264	pmd_t pmde;
3265	swp_entry_t entry;
 
 
3266
3267	if (!(pvmw->pmd && !pvmw->pte))
 
 
 
 
 
 
 
 
 
 
 
 
 
3268		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3269
3270	entry = pmd_to_swp_entry(*pvmw->pmd);
3271	get_page(new);
3272	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3273	if (pmd_swp_soft_dirty(*pvmw->pmd))
3274		pmde = pmd_mksoft_dirty(pmde);
3275	if (pmd_swp_uffd_wp(*pvmw->pmd))
3276		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3277	if (!is_migration_entry_young(entry))
3278		pmde = pmd_mkold(pmde);
3279	/* NOTE: this may contain setting soft-dirty on some archs */
3280	if (PageDirty(new) && is_migration_entry_dirty(entry))
3281		pmde = pmd_mkdirty(pmde);
3282	if (is_writable_migration_entry(entry))
3283		pmde = maybe_pmd_mkwrite(pmde, vma);
3284	else
3285		pmde = pmd_wrprotect(pmde);
 
 
 
 
 
 
 
 
 
 
3286
3287	if (PageAnon(new)) {
3288		rmap_t rmap_flags = RMAP_COMPOUND;
 
 
 
 
 
 
 
 
 
 
 
 
3289
3290		if (!is_readable_migration_entry(entry))
3291			rmap_flags |= RMAP_EXCLUSIVE;
 
 
 
 
 
 
 
3292
3293		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3294	} else {
3295		page_add_file_rmap(new, vma, true);
 
 
 
 
 
 
 
 
 
 
3296	}
3297	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3298	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3299
3300	/* No need to invalidate - it was non-present before */
3301	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3302	trace_remove_migration_pmd(address, pmd_val(pmde));
3303}
3304#endif