Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * linux/mm/compaction.c
   3 *
   4 * Memory compaction for the reduction of external fragmentation. Note that
   5 * this heavily depends upon page migration to do all the real heavy
   6 * lifting
   7 *
   8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
   9 */
 
  10#include <linux/swap.h>
  11#include <linux/migrate.h>
  12#include <linux/compaction.h>
  13#include <linux/mm_inline.h>
 
  14#include <linux/backing-dev.h>
  15#include <linux/sysctl.h>
  16#include <linux/sysfs.h>
  17#include <linux/balloon_compaction.h>
  18#include <linux/page-isolation.h>
 
 
 
 
 
  19#include "internal.h"
  20
  21#ifdef CONFIG_COMPACTION
 
 
 
 
 
  22static inline void count_compact_event(enum vm_event_item item)
  23{
  24	count_vm_event(item);
  25}
  26
  27static inline void count_compact_events(enum vm_event_item item, long delta)
  28{
  29	count_vm_events(item, delta);
  30}
  31#else
  32#define count_compact_event(item) do { } while (0)
  33#define count_compact_events(item, delta) do { } while (0)
  34#endif
  35
  36#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/compaction.h>
  40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41static unsigned long release_freepages(struct list_head *freelist)
  42{
  43	struct page *page, *next;
  44	unsigned long count = 0;
  45
  46	list_for_each_entry_safe(page, next, freelist, lru) {
 
  47		list_del(&page->lru);
  48		__free_page(page);
  49		count++;
 
  50	}
  51
  52	return count;
  53}
  54
  55static void map_pages(struct list_head *list)
  56{
  57	struct page *page;
 
 
 
 
 
 
 
 
  58
  59	list_for_each_entry(page, list, lru) {
  60		arch_alloc_page(page, 0);
  61		kernel_map_pages(page, 1, 1);
 
 
 
 
 
  62	}
 
 
  63}
  64
  65static inline bool migrate_async_suitable(int migratetype)
 
  66{
  67	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68}
  69
  70#ifdef CONFIG_COMPACTION
  71/* Returns true if the pageblock should be scanned for pages to isolate. */
  72static inline bool isolation_suitable(struct compact_control *cc,
  73					struct page *page)
  74{
  75	if (cc->ignore_skip_hint)
  76		return true;
  77
  78	return !get_pageblock_skip(page);
  79}
  80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81/*
  82 * This function is called to clear all cached information on pageblocks that
  83 * should be skipped for page isolation when the migrate and free page scanner
  84 * meet.
  85 */
  86static void __reset_isolation_suitable(struct zone *zone)
  87{
  88	unsigned long start_pfn = zone->zone_start_pfn;
  89	unsigned long end_pfn = zone_end_pfn(zone);
  90	unsigned long pfn;
 
 
 
  91
  92	zone->compact_cached_migrate_pfn = start_pfn;
  93	zone->compact_cached_free_pfn = end_pfn;
  94	zone->compact_blockskip_flush = false;
  95
  96	/* Walk the zone and mark every pageblock as suitable for isolation */
  97	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  98		struct page *page;
  99
 
 
 
 
 
 
 
 
 100		cond_resched();
 101
 102		if (!pfn_valid(pfn))
 103			continue;
 
 
 
 
 
 
 
 104
 105		page = pfn_to_page(pfn);
 106		if (zone != page_zone(page))
 107			continue;
 
 
 
 
 
 
 108
 109		clear_pageblock_skip(page);
 
 
 
 
 110	}
 111}
 112
 113void reset_isolation_suitable(pg_data_t *pgdat)
 114{
 115	int zoneid;
 116
 117	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 118		struct zone *zone = &pgdat->node_zones[zoneid];
 119		if (!populated_zone(zone))
 120			continue;
 121
 122		/* Only flush if a full compaction finished recently */
 123		if (zone->compact_blockskip_flush)
 124			__reset_isolation_suitable(zone);
 125	}
 126}
 127
 128/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129 * If no pages were isolated then mark this pageblock to be skipped in the
 130 * future. The information is later cleared by __reset_isolation_suitable().
 131 */
 132static void update_pageblock_skip(struct compact_control *cc,
 133			struct page *page, unsigned long nr_isolated,
 134			bool migrate_scanner)
 135{
 136	struct zone *zone = cc->zone;
 137
 138	if (cc->ignore_skip_hint)
 139		return;
 140
 141	if (!page)
 142		return;
 143
 144	if (!nr_isolated) {
 145		unsigned long pfn = page_to_pfn(page);
 146		set_pageblock_skip(page);
 147
 148		/* Update where compaction should restart */
 149		if (migrate_scanner) {
 150			if (!cc->finished_update_migrate &&
 151			    pfn > zone->compact_cached_migrate_pfn)
 152				zone->compact_cached_migrate_pfn = pfn;
 153		} else {
 154			if (!cc->finished_update_free &&
 155			    pfn < zone->compact_cached_free_pfn)
 156				zone->compact_cached_free_pfn = pfn;
 157		}
 158	}
 159}
 160#else
 161static inline bool isolation_suitable(struct compact_control *cc,
 162					struct page *page)
 163{
 164	return true;
 165}
 166
 167static void update_pageblock_skip(struct compact_control *cc,
 168			struct page *page, unsigned long nr_isolated,
 169			bool migrate_scanner)
 170{
 
 171}
 172#endif /* CONFIG_COMPACTION */
 173
 174static inline bool should_release_lock(spinlock_t *lock)
 
 175{
 176	return need_resched() || spin_is_contended(lock);
 177}
 178
 
 
 
 
 
 
 
 
 
 
 
 179/*
 180 * Compaction requires the taking of some coarse locks that are potentially
 181 * very heavily contended. Check if the process needs to be scheduled or
 182 * if the lock is contended. For async compaction, back out in the event
 183 * if contention is severe. For sync compaction, schedule.
 
 184 *
 185 * Returns true if the lock is held.
 186 * Returns false if the lock is released and compaction should abort
 187 */
 188static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
 189				      bool locked, struct compact_control *cc)
 
 190{
 191	if (should_release_lock(lock)) {
 192		if (locked) {
 193			spin_unlock_irqrestore(lock, *flags);
 194			locked = false;
 195		}
 196
 197		/* async aborts if taking too long or contended */
 198		if (!cc->sync) {
 199			cc->contended = true;
 200			return false;
 201		}
 202
 203		cond_resched();
 204	}
 205
 206	if (!locked)
 207		spin_lock_irqsave(lock, *flags);
 208	return true;
 209}
 210
 211static inline bool compact_trylock_irqsave(spinlock_t *lock,
 212			unsigned long *flags, struct compact_control *cc)
 213{
 214	return compact_checklock_irqsave(lock, flags, false, cc);
 215}
 216
 217/* Returns true if the page is within a block suitable for migration to */
 218static bool suitable_migration_target(struct page *page)
 
 
 
 
 
 
 219{
 220	/* If the page is a large free page, then disallow migration */
 221	if (PageBuddy(page) && page_order(page) >= pageblock_order)
 222		return false;
 
 223
 224	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
 225	if (migrate_async_suitable(get_pageblock_migratetype(page)))
 226		return true;
 
 
 
 227
 228	/* Otherwise skip the block */
 229	return false;
 230}
 231
 232/*
 233 * Isolate free pages onto a private freelist. If @strict is true, will abort
 234 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 235 * (even though it may still end up isolating some pages).
 236 */
 237static unsigned long isolate_freepages_block(struct compact_control *cc,
 238				unsigned long blockpfn,
 239				unsigned long end_pfn,
 240				struct list_head *freelist,
 
 241				bool strict)
 242{
 243	int nr_scanned = 0, total_isolated = 0;
 244	struct page *cursor, *valid_page = NULL;
 245	unsigned long flags;
 246	bool locked = false;
 247	bool checked_pageblock = false;
 
 
 
 
 
 248
 249	cursor = pfn_to_page(blockpfn);
 250
 251	/* Isolate free pages. */
 252	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 253		int isolated, i;
 254		struct page *page = cursor;
 255
 256		nr_scanned++;
 257		if (!pfn_valid_within(blockpfn))
 258			goto isolate_fail;
 
 
 
 
 
 
 259
 260		if (!valid_page)
 261			valid_page = page;
 262		if (!PageBuddy(page))
 263			goto isolate_fail;
 264
 265		/*
 266		 * The zone lock must be held to isolate freepages.
 267		 * Unfortunately this is a very coarse lock and can be
 268		 * heavily contended if there are parallel allocations
 269		 * or parallel compactions. For async compaction do not
 270		 * spin on the lock and we acquire the lock as late as
 271		 * possible.
 272		 */
 273		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
 274								locked, cc);
 275		if (!locked)
 276			break;
 277
 278		/* Recheck this is a suitable migration target under lock */
 279		if (!strict && !checked_pageblock) {
 280			/*
 281			 * We need to check suitability of pageblock only once
 282			 * and this isolate_freepages_block() is called with
 283			 * pageblock range, so just check once is sufficient.
 284			 */
 285			checked_pageblock = true;
 286			if (!suitable_migration_target(page))
 287				break;
 288		}
 289
 290		/* Recheck this is a buddy page under lock */
 291		if (!PageBuddy(page))
 292			goto isolate_fail;
 293
 294		/* Found a free page, break it into order-0 pages */
 295		isolated = split_free_page(page);
 296		total_isolated += isolated;
 297		for (i = 0; i < isolated; i++) {
 298			list_add(&page->lru, freelist);
 299			page++;
 
 
 300		}
 301
 302		/* If a page was split, advance to the end of it */
 303		if (isolated) {
 304			blockpfn += isolated - 1;
 305			cursor += isolated - 1;
 306			continue;
 
 
 
 
 
 
 
 
 
 
 307		}
 
 
 
 
 308
 309isolate_fail:
 310		if (strict)
 311			break;
 312		else
 313			continue;
 314
 315	}
 316
 317	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318
 319	/*
 320	 * If strict isolation is requested by CMA then check that all the
 321	 * pages requested were isolated. If there were any failures, 0 is
 322	 * returned and CMA will fail.
 323	 */
 324	if (strict && blockpfn < end_pfn)
 325		total_isolated = 0;
 326
 327	if (locked)
 328		spin_unlock_irqrestore(&cc->zone->lock, flags);
 329
 330	/* Update the pageblock-skip if the whole pageblock was scanned */
 331	if (blockpfn == end_pfn)
 332		update_pageblock_skip(cc, valid_page, total_isolated, false);
 333
 334	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
 335	if (total_isolated)
 336		count_compact_events(COMPACTISOLATED, total_isolated);
 337	return total_isolated;
 338}
 339
 340/**
 341 * isolate_freepages_range() - isolate free pages.
 
 342 * @start_pfn: The first PFN to start isolating.
 343 * @end_pfn:   The one-past-last PFN.
 344 *
 345 * Non-free pages, invalid PFNs, or zone boundaries within the
 346 * [start_pfn, end_pfn) range are considered errors, cause function to
 347 * undo its actions and return zero.
 348 *
 349 * Otherwise, function returns one-past-the-last PFN of isolated page
 350 * (which may be greater then end_pfn if end fell in a middle of
 351 * a free page).
 352 */
 353unsigned long
 354isolate_freepages_range(struct compact_control *cc,
 355			unsigned long start_pfn, unsigned long end_pfn)
 356{
 357	unsigned long isolated, pfn, block_end_pfn;
 358	LIST_HEAD(freelist);
 359
 360	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
 361		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
 362			break;
 
 
 
 
 
 
 
 
 
 
 363
 364		/*
 365		 * On subsequent iterations ALIGN() is actually not needed,
 366		 * but we keep it that we not to complicate the code.
 
 367		 */
 368		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 369		block_end_pfn = min(block_end_pfn, end_pfn);
 
 
 
 370
 371		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
 372						   &freelist, true);
 
 
 
 
 373
 374		/*
 375		 * In strict mode, isolate_freepages_block() returns 0 if
 376		 * there are any holes in the block (ie. invalid PFNs or
 377		 * non-free pages).
 378		 */
 379		if (!isolated)
 380			break;
 381
 382		/*
 383		 * If we managed to isolate pages, it is always (1 << n) *
 384		 * pageblock_nr_pages for some non-negative n.  (Max order
 385		 * page may span two pageblocks).
 386		 */
 387	}
 388
 389	/* split_free_page does not map the pages */
 390	map_pages(&freelist);
 391
 392	if (pfn < end_pfn) {
 393		/* Loop terminated early, cleanup. */
 394		release_freepages(&freelist);
 395		return 0;
 396	}
 397
 398	/* We don't use freelists for anything. */
 399	return pfn;
 400}
 401
 402/* Update the number of anon and file isolated pages in the zone */
 403static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
 404{
 405	struct page *page;
 406	unsigned int count[2] = { 0, };
 407
 408	list_for_each_entry(page, &cc->migratepages, lru)
 409		count[!!page_is_file_cache(page)]++;
 410
 411	/* If locked we can use the interrupt unsafe versions */
 412	if (locked) {
 413		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 414		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 415	} else {
 416		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 417		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 418	}
 419}
 420
 421/* Similar to reclaim, but different enough that they don't share logic */
 422static bool too_many_isolated(struct zone *zone)
 423{
 
 
 424	unsigned long active, inactive, isolated;
 425
 426	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
 427					zone_page_state(zone, NR_INACTIVE_ANON);
 428	active = zone_page_state(zone, NR_ACTIVE_FILE) +
 429					zone_page_state(zone, NR_ACTIVE_ANON);
 430	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
 431					zone_page_state(zone, NR_ISOLATED_ANON);
 
 
 
 
 432
 433	return isolated > (inactive + active) / 2;
 434}
 435
 436/**
 437 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 438 * @zone:	Zone pages are in.
 439 * @cc:		Compaction control structure.
 440 * @low_pfn:	The first PFN of the range.
 441 * @end_pfn:	The one-past-the-last PFN of the range.
 442 * @unevictable: true if it allows to isolate unevictable pages
 443 *
 444 * Isolate all pages that can be migrated from the range specified by
 445 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 446 * pending), otherwise PFN of the first page that was not scanned
 447 * (which may be both less, equal to or more then end_pfn).
 
 448 *
 449 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 450 * zero.
 451 *
 452 * Apart from cc->migratepages and cc->nr_migratetypes this function
 453 * does not modify any cc's fields, in particular it does not modify
 454 * (or read for that matter) cc->migrate_pfn.
 455 */
 456unsigned long
 457isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
 458		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
 459{
 460	unsigned long last_pageblock_nr = 0, pageblock_nr;
 461	unsigned long nr_scanned = 0, nr_isolated = 0;
 462	struct list_head *migratelist = &cc->migratepages;
 463	struct lruvec *lruvec;
 464	unsigned long flags;
 465	bool locked = false;
 466	struct page *page = NULL, *valid_page = NULL;
 467	bool skipped_async_unsuitable = false;
 468	const isolate_mode_t mode = (!cc->sync ? ISOLATE_ASYNC_MIGRATE : 0) |
 469				    (unevictable ? ISOLATE_UNEVICTABLE : 0);
 
 
 
 
 
 470
 471	/*
 472	 * Ensure that there are not too many pages isolated from the LRU
 473	 * list by either parallel reclaimers or compaction. If there are,
 474	 * delay for some time until fewer pages are isolated
 475	 */
 476	while (unlikely(too_many_isolated(zone))) {
 
 
 
 
 477		/* async migration should just abort */
 478		if (!cc->sync)
 479			return 0;
 480
 481		congestion_wait(BLK_RW_ASYNC, HZ/10);
 482
 483		if (fatal_signal_pending(current))
 484			return 0;
 485	}
 486
 487	/* Time to isolate some pages for migration */
 488	cond_resched();
 
 
 
 
 
 
 
 489	for (; low_pfn < end_pfn; low_pfn++) {
 490		/* give a chance to irqs before checking need_resched() */
 491		if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
 492			if (should_release_lock(&zone->lru_lock)) {
 493				spin_unlock_irqrestore(&zone->lru_lock, flags);
 494				locked = false;
 495			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496		}
 497
 498		/*
 499		 * migrate_pfn does not necessarily start aligned to a
 500		 * pageblock. Ensure that pfn_valid is called when moving
 501		 * into a new MAX_ORDER_NR_PAGES range in case of large
 502		 * memory holes within the zone
 503		 */
 504		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
 505			if (!pfn_valid(low_pfn)) {
 506				low_pfn += MAX_ORDER_NR_PAGES - 1;
 507				continue;
 
 
 
 
 
 
 
 508			}
 
 
 509		}
 510
 511		if (!pfn_valid_within(low_pfn))
 512			continue;
 513		nr_scanned++;
 514
 515		/*
 516		 * Get the page and ensure the page is within the same zone.
 517		 * See the comment in isolate_freepages about overlapping
 518		 * nodes. It is deliberate that the new zone lock is not taken
 519		 * as memory compaction should not move pages between nodes.
 520		 */
 521		page = pfn_to_page(low_pfn);
 522		if (page_zone(page) != zone)
 523			continue;
 524
 525		if (!valid_page)
 
 
 
 
 
 
 
 
 
 
 
 526			valid_page = page;
 
 527
 528		/* If isolation recently failed, do not retry */
 529		pageblock_nr = low_pfn >> pageblock_order;
 530		if (last_pageblock_nr != pageblock_nr) {
 531			int mt;
 532
 533			last_pageblock_nr = pageblock_nr;
 534			if (!isolation_suitable(cc, page))
 535				goto next_pageblock;
 536
 537			/*
 538			 * For async migration, also only scan in MOVABLE
 539			 * blocks. Async migration is optimistic to see if
 540			 * the minimum amount of work satisfies the allocation
 541			 */
 542			mt = get_pageblock_migratetype(page);
 543			if (!cc->sync && !migrate_async_suitable(mt)) {
 544				cc->finished_update_migrate = true;
 545				skipped_async_unsuitable = true;
 546				goto next_pageblock;
 
 547			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548		}
 549
 550		/*
 551		 * Skip if free. page_order cannot be used without zone->lock
 552		 * as nothing prevents parallel allocations or buddy merging.
 
 
 553		 */
 554		if (PageBuddy(page))
 
 
 
 
 
 
 
 
 
 555			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556
 557		/*
 558		 * Check may be lockless but that's ok as we recheck later.
 559		 * It's possible to migrate LRU pages and balloon pages
 560		 * Skip any other type of page
 561		 */
 562		if (!PageLRU(page)) {
 563			if (unlikely(balloon_page_movable(page))) {
 564				if (locked && balloon_page_isolate(page)) {
 565					/* Successfully isolated */
 566					goto isolate_success;
 
 
 
 
 
 567				}
 
 
 
 568			}
 569			continue;
 
 570		}
 571
 572		/*
 573		 * PageLRU is set. lru_lock normally excludes isolation
 574		 * splitting and collapsing (collapsing has already happened
 575		 * if PageLRU is set) but the lock is not necessarily taken
 576		 * here and it is wasteful to take it just to check transhuge.
 577		 * Check TransHuge without lock and skip the whole pageblock if
 578		 * it's either a transhuge or hugetlbfs page, as calling
 579		 * compound_order() without preventing THP from splitting the
 580		 * page underneath us may return surprising results.
 581		 */
 582		if (PageTransHuge(page)) {
 583			if (!locked)
 584				goto next_pageblock;
 585			low_pfn += (1 << compound_order(page)) - 1;
 586			continue;
 587		}
 588
 589		/*
 590		 * Migration will fail if an anonymous page is pinned in memory,
 591		 * so avoid taking lru_lock and isolating it unnecessarily in an
 592		 * admittedly racy check.
 593		 */
 594		if (!page_mapping(page) &&
 595		    page_count(page) > page_mapcount(page))
 596			continue;
 597
 598		/* Check if it is ok to still hold the lock */
 599		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
 600								locked, cc);
 601		if (!locked || fatal_signal_pending(current))
 602			break;
 
 603
 604		/* Recheck PageLRU and PageTransHuge under lock */
 605		if (!PageLRU(page))
 606			continue;
 607		if (PageTransHuge(page)) {
 608			low_pfn += (1 << compound_order(page)) - 1;
 609			continue;
 610		}
 
 
 
 
 
 
 
 
 
 611
 612		lruvec = mem_cgroup_page_lruvec(page, zone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613
 614		/* Try isolate the page */
 615		if (__isolate_lru_page(page, mode) != 0)
 616			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617
 618		VM_BUG_ON_PAGE(PageTransCompound(page), page);
 
 
 619
 620		/* Successfully isolated */
 621		del_page_from_lru_list(page, lruvec, page_lru(page));
 
 
 
 622
 623isolate_success:
 624		cc->finished_update_migrate = true;
 625		list_add(&page->lru, migratelist);
 626		cc->nr_migratepages++;
 627		nr_isolated++;
 
 628
 629		/* Avoid isolating too much */
 630		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 
 
 
 
 
 
 631			++low_pfn;
 632			break;
 633		}
 634
 635		continue;
 636
 637next_pageblock:
 638		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639	}
 640
 641	acct_isolated(zone, locked, cc);
 
 
 
 
 
 
 
 642
 
 643	if (locked)
 644		spin_unlock_irqrestore(&zone->lru_lock, flags);
 
 
 
 
 645
 646	/*
 647	 * Update the pageblock-skip information and cached scanner pfn,
 648	 * if the whole pageblock was scanned without isolating any page.
 649	 * This is not done when pageblock was skipped due to being unsuitable
 650	 * for async compaction, so that eventual sync compaction can try.
 
 
 651	 */
 652	if (low_pfn == end_pfn && !skipped_async_unsuitable)
 653		update_pageblock_skip(cc, valid_page, nr_isolated, true);
 
 
 
 654
 655	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
 
 656
 657	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
 
 658	if (nr_isolated)
 659		count_compact_events(COMPACTISOLATED, nr_isolated);
 660
 661	return low_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662}
 663
 664#endif /* CONFIG_COMPACTION || CONFIG_CMA */
 665#ifdef CONFIG_COMPACTION
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666/*
 667 * Based on information in the current compact_control, find blocks
 668 * suitable for isolating free pages from and then isolate them.
 669 */
 670static void isolate_freepages(struct zone *zone,
 671				struct compact_control *cc)
 672{
 
 673	struct page *page;
 674	unsigned long high_pfn, low_pfn, pfn, z_end_pfn;
 675	int nr_freepages = cc->nr_freepages;
 
 
 676	struct list_head *freelist = &cc->freepages;
 
 
 
 
 
 
 677
 678	/*
 679	 * Initialise the free scanner. The starting point is where we last
 680	 * successfully isolated from, zone-cached value, or the end of the
 681	 * zone when isolating for the first time. We need this aligned to
 682	 * the pageblock boundary, because we do pfn -= pageblock_nr_pages
 683	 * in the for loop.
 
 
 684	 * The low boundary is the end of the pageblock the migration scanner
 685	 * is using.
 686	 */
 687	pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
 688	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
 689
 690	/*
 691	 * Take care that if the migration scanner is at the end of the zone
 692	 * that the free scanner does not accidentally move to the next zone
 693	 * in the next isolation cycle.
 694	 */
 695	high_pfn = min(low_pfn, pfn);
 696
 697	z_end_pfn = zone_end_pfn(zone);
 698
 699	/*
 700	 * Isolate free pages until enough are available to migrate the
 701	 * pages on cc->migratepages. We stop searching if the migrate
 702	 * and free page scanners meet or enough free pages are isolated.
 703	 */
 704	for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
 705					pfn -= pageblock_nr_pages) {
 706		unsigned long isolated;
 707		unsigned long end_pfn;
 
 708
 709		/*
 710		 * This can iterate a massively long zone without finding any
 711		 * suitable migration targets, so periodically check if we need
 712		 * to schedule.
 713		 */
 714		cond_resched();
 
 715
 716		if (!pfn_valid(pfn))
 717			continue;
 718
 719		/*
 720		 * Check for overlapping nodes/zones. It's possible on some
 721		 * configurations to have a setup like
 722		 * node0 node1 node0
 723		 * i.e. it's possible that all pages within a zones range of
 724		 * pages do not belong to a single zone.
 725		 */
 726		page = pfn_to_page(pfn);
 727		if (page_zone(page) != zone)
 728			continue;
 729
 730		/* Check the block is suitable for migration */
 731		if (!suitable_migration_target(page))
 732			continue;
 733
 734		/* If isolation recently failed, do not retry */
 735		if (!isolation_suitable(cc, page))
 736			continue;
 737
 738		/* Found a block suitable for isolating free pages from */
 739		isolated = 0;
 740
 741		/*
 742		 * Take care when isolating in last pageblock of a zone which
 743		 * ends in the middle of a pageblock.
 744		 */
 745		end_pfn = min(pfn + pageblock_nr_pages, z_end_pfn);
 746		isolated = isolate_freepages_block(cc, pfn, end_pfn,
 747						   freelist, false);
 748		nr_freepages += isolated;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749
 750		/*
 751		 * Record the highest PFN we isolated pages from. When next
 752		 * looking for free pages, the search will restart here as
 753		 * page migration may have returned some pages to the allocator
 754		 */
 755		if (isolated) {
 756			cc->finished_update_free = true;
 757			high_pfn = max(high_pfn, pfn);
 758		}
 
 759	}
 760
 761	/* split_free_page does not map the pages */
 762	map_pages(freelist);
 763
 764	/*
 765	 * If we crossed the migrate scanner, we want to keep it that way
 766	 * so that compact_finished() may detect this
 
 
 767	 */
 768	if (pfn < low_pfn)
 769		cc->free_pfn = max(pfn, zone->zone_start_pfn);
 770	else
 771		cc->free_pfn = high_pfn;
 772	cc->nr_freepages = nr_freepages;
 773}
 774
 775/*
 776 * This is a migrate-callback that "allocates" freepages by taking pages
 777 * from the isolated freelists in the block we are migrating to.
 778 */
 779static struct page *compaction_alloc(struct page *migratepage,
 780					unsigned long data,
 781					int **result)
 782{
 783	struct compact_control *cc = (struct compact_control *)data;
 784	struct page *freepage;
 785
 786	/* Isolate free pages if necessary */
 787	if (list_empty(&cc->freepages)) {
 788		isolate_freepages(cc->zone, cc);
 789
 790		if (list_empty(&cc->freepages))
 791			return NULL;
 792	}
 793
 794	freepage = list_entry(cc->freepages.next, struct page, lru);
 795	list_del(&freepage->lru);
 796	cc->nr_freepages--;
 797
 798	return freepage;
 799}
 800
 801/*
 802 * We cannot control nr_migratepages and nr_freepages fully when migration is
 803 * running as migrate_pages() has no knowledge of compact_control. When
 804 * migration is complete, we count the number of pages on the lists by hand.
 805 */
 806static void update_nr_listpages(struct compact_control *cc)
 807{
 808	int nr_migratepages = 0;
 809	int nr_freepages = 0;
 810	struct page *page;
 811
 812	list_for_each_entry(page, &cc->migratepages, lru)
 813		nr_migratepages++;
 814	list_for_each_entry(page, &cc->freepages, lru)
 815		nr_freepages++;
 816
 817	cc->nr_migratepages = nr_migratepages;
 818	cc->nr_freepages = nr_freepages;
 819}
 820
 821/* possible outcome of isolate_migratepages */
 822typedef enum {
 823	ISOLATE_ABORT,		/* Abort compaction now */
 824	ISOLATE_NONE,		/* No pages isolated, continue scanning */
 825	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
 826} isolate_migrate_t;
 827
 828/*
 829 * Isolate all pages that can be migrated from the block pointed to by
 830 * the migrate scanner within compact_control.
 831 */
 832static isolate_migrate_t isolate_migratepages(struct zone *zone,
 833					struct compact_control *cc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834{
 835	unsigned long low_pfn, end_pfn;
 
 
 
 
 
 
 
 836
 837	/* Do not scan outside zone boundaries */
 838	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839
 840	/* Only scan within a pageblock boundary */
 841	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
 842
 843	/* Do not cross the free scanner or scan within a memory hole */
 844	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
 845		cc->migrate_pfn = end_pfn;
 846		return ISOLATE_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847	}
 848
 849	/* Perform the isolation */
 850	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
 851	if (!low_pfn || cc->contended)
 852		return ISOLATE_ABORT;
 853
 854	cc->migrate_pfn = low_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855
 856	return ISOLATE_SUCCESS;
 857}
 858
 859static int compact_finished(struct zone *zone,
 860			    struct compact_control *cc)
 
 
 
 861{
 862	unsigned int order;
 863	unsigned long watermark;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 864
 865	if (fatal_signal_pending(current))
 866		return COMPACT_PARTIAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867
 868	/* Compaction run completes if the migrate and free scanner meet */
 869	if (cc->free_pfn <= cc->migrate_pfn) {
 870		/* Let the next compaction start anew. */
 871		zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
 872		zone->compact_cached_free_pfn = zone_end_pfn(zone);
 873
 874		/*
 875		 * Mark that the PG_migrate_skip information should be cleared
 876		 * by kswapd when it goes to sleep. kswapd does not set the
 877		 * flag itself as the decision to be clear should be directly
 878		 * based on an allocation request.
 879		 */
 880		if (!current_is_kswapd())
 881			zone->compact_blockskip_flush = true;
 882
 883		return COMPACT_COMPLETE;
 
 
 
 884	}
 885
 886	/*
 887	 * order == -1 is expected when compacting via
 888	 * /proc/sys/vm/compact_memory
 889	 */
 890	if (cc->order == -1)
 891		return COMPACT_CONTINUE;
 
 
 
 
 
 
 
 
 
 
 
 
 892
 893	/* Compaction run is not finished if the watermark is not met */
 894	watermark = low_wmark_pages(zone);
 895	watermark += (1 << cc->order);
 896
 897	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
 
 
 
 
 
 
 898		return COMPACT_CONTINUE;
 899
 900	/* Direct compactor: Is a suitable page free? */
 
 901	for (order = cc->order; order < MAX_ORDER; order++) {
 902		struct free_area *area = &zone->free_area[order];
 
 903
 904		/* Job done if page is free of the right migratetype */
 905		if (!list_empty(&area->free_list[cc->migratetype]))
 906			return COMPACT_PARTIAL;
 907
 908		/* Job done if allocation would set block type */
 909		if (cc->order >= pageblock_order && area->nr_free)
 910			return COMPACT_PARTIAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911	}
 912
 913	return COMPACT_CONTINUE;
 
 
 
 
 914}
 915
 916/*
 917 * compaction_suitable: Is this suitable to run compaction on this zone now?
 918 * Returns
 919 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 920 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 921 *   COMPACT_CONTINUE - If compaction should run now
 922 */
 923unsigned long compaction_suitable(struct zone *zone, int order)
 
 
 
 
 
 
 
 
 924{
 925	int fragindex;
 926	unsigned long watermark;
 927
 
 
 
 
 928	/*
 929	 * order == -1 is expected when compacting via
 930	 * /proc/sys/vm/compact_memory
 931	 */
 932	if (order == -1)
 933		return COMPACT_CONTINUE;
 
 934
 935	/*
 936	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
 937	 * This is because during migration, copies of pages need to be
 938	 * allocated and for a short time, the footprint is higher
 
 
 
 
 
 
 
 
 
 939	 */
 940	watermark = low_wmark_pages(zone) + (2UL << order);
 941	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
 
 
 
 942		return COMPACT_SKIPPED;
 943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944	/*
 945	 * fragmentation index determines if allocation failures are due to
 946	 * low memory or external fragmentation
 947	 *
 948	 * index of -1000 implies allocations might succeed depending on
 949	 * watermarks
 950	 * index towards 0 implies failure is due to lack of memory
 951	 * index towards 1000 implies failure is due to fragmentation
 952	 *
 953	 * Only compact if a failure would be due to fragmentation.
 
 
 
 
 
 954	 */
 955	fragindex = fragmentation_index(zone, order);
 956	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
 957		return COMPACT_SKIPPED;
 
 
 958
 959	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
 960	    0, 0))
 961		return COMPACT_PARTIAL;
 962
 963	return COMPACT_CONTINUE;
 964}
 965
 966static int compact_zone(struct zone *zone, struct compact_control *cc)
 
 967{
 968	int ret;
 969	unsigned long start_pfn = zone->zone_start_pfn;
 970	unsigned long end_pfn = zone_end_pfn(zone);
 971
 972	ret = compaction_suitable(zone, cc->order);
 973	switch (ret) {
 974	case COMPACT_PARTIAL:
 975	case COMPACT_SKIPPED:
 976		/* Compaction is likely to fail */
 977		return ret;
 978	case COMPACT_CONTINUE:
 979		/* Fall through to compaction */
 980		;
 
 
 
 
 
 
 
 
 
 
 
 
 981	}
 982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983	/*
 984	 * Clear pageblock skip if there were failures recently and compaction
 985	 * is about to be retried after being deferred. kswapd does not do
 986	 * this reset as it'll reset the cached information when going to sleep.
 987	 */
 988	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
 989		__reset_isolation_suitable(zone);
 990
 991	/*
 992	 * Setup to move all movable pages to the end of the zone. Used cached
 993	 * information on where the scanners should start but check that it
 994	 * is initialised by ensuring the values are within zone boundaries.
 
 995	 */
 996	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
 997	cc->free_pfn = zone->compact_cached_free_pfn;
 998	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
 999		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1000		zone->compact_cached_free_pfn = cc->free_pfn;
1001	}
1002	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1003		cc->migrate_pfn = start_pfn;
1004		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005	}
1006
1007	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
 
 
 
 
 
 
 
 
 
 
 
1008
1009	migrate_prep_local();
1010
1011	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1012		unsigned long nr_migrate, nr_remaining;
 
 
1013		int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014
1015		switch (isolate_migratepages(zone, cc)) {
1016		case ISOLATE_ABORT:
1017			ret = COMPACT_PARTIAL;
1018			putback_movable_pages(&cc->migratepages);
1019			cc->nr_migratepages = 0;
1020			goto out;
1021		case ISOLATE_NONE:
1022			continue;
 
 
 
 
 
 
 
 
 
 
1023		case ISOLATE_SUCCESS:
1024			;
 
1025		}
1026
1027		nr_migrate = cc->nr_migratepages;
1028		err = migrate_pages(&cc->migratepages, compaction_alloc,
1029				(unsigned long)cc,
1030				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1031				MR_COMPACTION);
1032		update_nr_listpages(cc);
1033		nr_remaining = cc->nr_migratepages;
1034
1035		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1036						nr_remaining);
1037
1038		/* Release isolated pages not migrated */
 
1039		if (err) {
1040			putback_movable_pages(&cc->migratepages);
1041			cc->nr_migratepages = 0;
1042			/*
1043			 * migrate_pages() may return -ENOMEM when scanners meet
1044			 * and we want compact_finished() to detect it
1045			 */
1046			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1047				ret = COMPACT_PARTIAL;
1048				goto out;
1049			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050		}
1051	}
1052
1053out:
1054	/* Release free pages and check accounting */
1055	cc->nr_freepages -= release_freepages(&cc->freepages);
1056	VM_BUG_ON(cc->nr_freepages != 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057
1058	trace_mm_compaction_end(ret);
1059
1060	return ret;
1061}
1062
1063static unsigned long compact_zone_order(struct zone *zone,
1064				 int order, gfp_t gfp_mask,
1065				 bool sync, bool *contended)
 
1066{
1067	unsigned long ret;
1068	struct compact_control cc = {
1069		.nr_freepages = 0,
1070		.nr_migratepages = 0,
1071		.order = order,
1072		.migratetype = allocflags_to_migratetype(gfp_mask),
 
1073		.zone = zone,
1074		.sync = sync,
 
 
 
 
 
 
 
1075	};
1076	INIT_LIST_HEAD(&cc.freepages);
1077	INIT_LIST_HEAD(&cc.migratepages);
 
 
 
 
 
 
 
 
 
 
1078
1079	ret = compact_zone(zone, &cc);
1080
1081	VM_BUG_ON(!list_empty(&cc.freepages));
1082	VM_BUG_ON(!list_empty(&cc.migratepages));
1083
1084	*contended = cc.contended;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085	return ret;
1086}
1087
1088int sysctl_extfrag_threshold = 500;
1089
1090/**
1091 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1092 * @zonelist: The zonelist used for the current allocation
1093 * @order: The order of the current allocation
1094 * @gfp_mask: The GFP mask of the current allocation
1095 * @nodemask: The allowed nodes to allocate from
1096 * @sync: Whether migration is synchronous or not
1097 * @contended: Return value that is true if compaction was aborted due to lock contention
1098 * @page: Optionally capture a free page of the requested order during compaction
 
1099 *
1100 * This is the main entry point for direct page compaction.
1101 */
1102unsigned long try_to_compact_pages(struct zonelist *zonelist,
1103			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1104			bool sync, bool *contended)
1105{
1106	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1107	int may_enter_fs = gfp_mask & __GFP_FS;
1108	int may_perform_io = gfp_mask & __GFP_IO;
1109	struct zoneref *z;
1110	struct zone *zone;
1111	int rc = COMPACT_SKIPPED;
1112	int alloc_flags = 0;
1113
1114	/* Check if the GFP flags allow compaction */
1115	if (!order || !may_enter_fs || !may_perform_io)
1116		return rc;
 
 
 
1117
1118	count_compact_event(COMPACTSTALL);
1119
1120#ifdef CONFIG_CMA
1121	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1122		alloc_flags |= ALLOC_CMA;
1123#endif
1124	/* Compact each zone in the list */
1125	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1126								nodemask) {
1127		int status;
 
 
 
 
 
 
1128
1129		status = compact_zone_order(zone, order, gfp_mask, sync,
1130						contended);
1131		rc = max(status, rc);
1132
1133		/* If a normal allocation would succeed, stop compacting */
1134		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1135				      alloc_flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136			break;
1137	}
1138
1139	return rc;
1140}
1141
1142
1143/* Compact all zones within a node */
1144static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
 
 
 
 
 
 
 
1145{
1146	int zoneid;
1147	struct zone *zone;
 
 
 
 
 
 
 
 
1148
1149	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1150
1151		zone = &pgdat->node_zones[zoneid];
1152		if (!populated_zone(zone))
1153			continue;
1154
1155		cc->nr_freepages = 0;
1156		cc->nr_migratepages = 0;
1157		cc->zone = zone;
1158		INIT_LIST_HEAD(&cc->freepages);
1159		INIT_LIST_HEAD(&cc->migratepages);
1160
1161		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1162			compact_zone(zone, cc);
1163
1164		if (cc->order > 0) {
1165			if (zone_watermark_ok(zone, cc->order,
1166						low_wmark_pages(zone), 0, 0))
1167				compaction_defer_reset(zone, cc->order, false);
1168			/* Currently async compaction is never deferred. */
1169			else if (cc->sync)
1170				defer_compaction(zone, cc->order);
1171		}
1172
1173		VM_BUG_ON(!list_empty(&cc->freepages));
1174		VM_BUG_ON(!list_empty(&cc->migratepages));
1175	}
1176}
1177
1178void compact_pgdat(pg_data_t *pgdat, int order)
1179{
1180	struct compact_control cc = {
1181		.order = order,
1182		.sync = false,
1183	};
1184
1185	if (!order)
1186		return;
1187
1188	__compact_pgdat(pgdat, &cc);
1189}
1190
1191static void compact_node(int nid)
1192{
 
 
 
1193	struct compact_control cc = {
1194		.order = -1,
1195		.sync = true,
1196		.ignore_skip_hint = true,
 
 
1197	};
1198
1199	__compact_pgdat(NODE_DATA(nid), &cc);
 
 
 
 
 
 
 
 
 
 
 
 
 
1200}
1201
1202/* Compact all nodes in the system */
1203static void compact_nodes(void)
1204{
1205	int nid;
1206
1207	/* Flush pending updates to the LRU lists */
1208	lru_add_drain_all();
1209
1210	for_each_online_node(nid)
1211		compact_node(nid);
1212}
1213
1214/* The written value is actually unused, all memory is compacted */
1215int sysctl_compact_memory;
 
 
 
 
1216
1217/* This is the entry point for compacting all nodes via /proc/sys/vm */
1218int sysctl_compaction_handler(struct ctl_table *table, int write,
1219			void __user *buffer, size_t *length, loff_t *ppos)
1220{
1221	if (write)
1222		compact_nodes();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223
1224	return 0;
1225}
1226
1227int sysctl_extfrag_handler(struct ctl_table *table, int write,
1228			void __user *buffer, size_t *length, loff_t *ppos)
 
 
 
 
1229{
1230	proc_dointvec_minmax(table, write, buffer, length, ppos);
 
1231
1232	return 0;
1233}
1234
1235#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1236static ssize_t sysfs_compact_node(struct device *dev,
1237			struct device_attribute *attr,
1238			const char *buf, size_t count)
1239{
1240	int nid = dev->id;
1241
1242	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1243		/* Flush pending updates to the LRU lists */
1244		lru_add_drain_all();
1245
1246		compact_node(nid);
1247	}
1248
1249	return count;
1250}
1251static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1252
1253int compaction_register_node(struct node *node)
1254{
1255	return device_create_file(&node->dev, &dev_attr_compact);
1256}
1257
1258void compaction_unregister_node(struct node *node)
1259{
1260	return device_remove_file(&node->dev, &dev_attr_compact);
1261}
1262#endif /* CONFIG_SYSFS && CONFIG_NUMA */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263
1264#endif /* CONFIG_COMPACTION */
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
 
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
  29/*
  30 * Fragmentation score check interval for proactive compaction purposes.
  31 */
  32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
  33
  34static inline void count_compact_event(enum vm_event_item item)
  35{
  36	count_vm_event(item);
  37}
  38
  39static inline void count_compact_events(enum vm_event_item item, long delta)
  40{
  41	count_vm_events(item, delta);
  42}
  43#else
  44#define count_compact_event(item) do { } while (0)
  45#define count_compact_events(item, delta) do { } while (0)
  46#endif
  47
  48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/compaction.h>
  52
  53#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  54#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
  55
  56/*
  57 * Page order with-respect-to which proactive compaction
  58 * calculates external fragmentation, which is used as
  59 * the "fragmentation score" of a node/zone.
  60 */
  61#if defined CONFIG_TRANSPARENT_HUGEPAGE
  62#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  63#elif defined CONFIG_HUGETLBFS
  64#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  65#else
  66#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  67#endif
  68
  69static unsigned long release_freepages(struct list_head *freelist)
  70{
  71	struct page *page, *next;
  72	unsigned long high_pfn = 0;
  73
  74	list_for_each_entry_safe(page, next, freelist, lru) {
  75		unsigned long pfn = page_to_pfn(page);
  76		list_del(&page->lru);
  77		__free_page(page);
  78		if (pfn > high_pfn)
  79			high_pfn = pfn;
  80	}
  81
  82	return high_pfn;
  83}
  84
  85static void split_map_pages(struct list_head *list)
  86{
  87	unsigned int i, order, nr_pages;
  88	struct page *page, *next;
  89	LIST_HEAD(tmp_list);
  90
  91	list_for_each_entry_safe(page, next, list, lru) {
  92		list_del(&page->lru);
  93
  94		order = page_private(page);
  95		nr_pages = 1 << order;
  96
  97		post_alloc_hook(page, order, __GFP_MOVABLE);
  98		if (order)
  99			split_page(page, order);
 100
 101		for (i = 0; i < nr_pages; i++) {
 102			list_add(&page->lru, &tmp_list);
 103			page++;
 104		}
 105	}
 106
 107	list_splice(&tmp_list, list);
 108}
 109
 110#ifdef CONFIG_COMPACTION
 111bool PageMovable(struct page *page)
 112{
 113	const struct movable_operations *mops;
 114
 115	VM_BUG_ON_PAGE(!PageLocked(page), page);
 116	if (!__PageMovable(page))
 117		return false;
 118
 119	mops = page_movable_ops(page);
 120	if (mops)
 121		return true;
 122
 123	return false;
 124}
 125EXPORT_SYMBOL(PageMovable);
 126
 127void __SetPageMovable(struct page *page, const struct movable_operations *mops)
 128{
 129	VM_BUG_ON_PAGE(!PageLocked(page), page);
 130	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
 131	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
 132}
 133EXPORT_SYMBOL(__SetPageMovable);
 134
 135void __ClearPageMovable(struct page *page)
 136{
 137	VM_BUG_ON_PAGE(!PageMovable(page), page);
 138	/*
 139	 * This page still has the type of a movable page, but it's
 140	 * actually not movable any more.
 141	 */
 142	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
 143}
 144EXPORT_SYMBOL(__ClearPageMovable);
 145
 146/* Do not skip compaction more than 64 times */
 147#define COMPACT_MAX_DEFER_SHIFT 6
 148
 149/*
 150 * Compaction is deferred when compaction fails to result in a page
 151 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 152 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 153 */
 154static void defer_compaction(struct zone *zone, int order)
 155{
 156	zone->compact_considered = 0;
 157	zone->compact_defer_shift++;
 158
 159	if (order < zone->compact_order_failed)
 160		zone->compact_order_failed = order;
 161
 162	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 163		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 164
 165	trace_mm_compaction_defer_compaction(zone, order);
 166}
 167
 168/* Returns true if compaction should be skipped this time */
 169static bool compaction_deferred(struct zone *zone, int order)
 170{
 171	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 172
 173	if (order < zone->compact_order_failed)
 174		return false;
 175
 176	/* Avoid possible overflow */
 177	if (++zone->compact_considered >= defer_limit) {
 178		zone->compact_considered = defer_limit;
 179		return false;
 180	}
 181
 182	trace_mm_compaction_deferred(zone, order);
 183
 184	return true;
 185}
 186
 187/*
 188 * Update defer tracking counters after successful compaction of given order,
 189 * which means an allocation either succeeded (alloc_success == true) or is
 190 * expected to succeed.
 191 */
 192void compaction_defer_reset(struct zone *zone, int order,
 193		bool alloc_success)
 194{
 195	if (alloc_success) {
 196		zone->compact_considered = 0;
 197		zone->compact_defer_shift = 0;
 198	}
 199	if (order >= zone->compact_order_failed)
 200		zone->compact_order_failed = order + 1;
 201
 202	trace_mm_compaction_defer_reset(zone, order);
 203}
 204
 205/* Returns true if restarting compaction after many failures */
 206static bool compaction_restarting(struct zone *zone, int order)
 207{
 208	if (order < zone->compact_order_failed)
 209		return false;
 210
 211	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 212		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 213}
 214
 
 215/* Returns true if the pageblock should be scanned for pages to isolate. */
 216static inline bool isolation_suitable(struct compact_control *cc,
 217					struct page *page)
 218{
 219	if (cc->ignore_skip_hint)
 220		return true;
 221
 222	return !get_pageblock_skip(page);
 223}
 224
 225static void reset_cached_positions(struct zone *zone)
 226{
 227	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 228	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 229	zone->compact_cached_free_pfn =
 230				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 231}
 232
 233/*
 234 * Compound pages of >= pageblock_order should consistently be skipped until
 235 * released. It is always pointless to compact pages of such order (if they are
 236 * migratable), and the pageblocks they occupy cannot contain any free pages.
 237 */
 238static bool pageblock_skip_persistent(struct page *page)
 239{
 240	if (!PageCompound(page))
 241		return false;
 242
 243	page = compound_head(page);
 244
 245	if (compound_order(page) >= pageblock_order)
 246		return true;
 247
 248	return false;
 249}
 250
 251static bool
 252__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 253							bool check_target)
 254{
 255	struct page *page = pfn_to_online_page(pfn);
 256	struct page *block_page;
 257	struct page *end_page;
 258	unsigned long block_pfn;
 259
 260	if (!page)
 261		return false;
 262	if (zone != page_zone(page))
 263		return false;
 264	if (pageblock_skip_persistent(page))
 265		return false;
 266
 267	/*
 268	 * If skip is already cleared do no further checking once the
 269	 * restart points have been set.
 270	 */
 271	if (check_source && check_target && !get_pageblock_skip(page))
 272		return true;
 273
 274	/*
 275	 * If clearing skip for the target scanner, do not select a
 276	 * non-movable pageblock as the starting point.
 277	 */
 278	if (!check_source && check_target &&
 279	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 280		return false;
 281
 282	/* Ensure the start of the pageblock or zone is online and valid */
 283	block_pfn = pageblock_start_pfn(pfn);
 284	block_pfn = max(block_pfn, zone->zone_start_pfn);
 285	block_page = pfn_to_online_page(block_pfn);
 286	if (block_page) {
 287		page = block_page;
 288		pfn = block_pfn;
 289	}
 290
 291	/* Ensure the end of the pageblock or zone is online and valid */
 292	block_pfn = pageblock_end_pfn(pfn) - 1;
 293	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 294	end_page = pfn_to_online_page(block_pfn);
 295	if (!end_page)
 296		return false;
 297
 298	/*
 299	 * Only clear the hint if a sample indicates there is either a
 300	 * free page or an LRU page in the block. One or other condition
 301	 * is necessary for the block to be a migration source/target.
 302	 */
 303	do {
 304		if (check_source && PageLRU(page)) {
 305			clear_pageblock_skip(page);
 306			return true;
 307		}
 308
 309		if (check_target && PageBuddy(page)) {
 310			clear_pageblock_skip(page);
 311			return true;
 312		}
 313
 314		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 315	} while (page <= end_page);
 316
 317	return false;
 318}
 319
 320/*
 321 * This function is called to clear all cached information on pageblocks that
 322 * should be skipped for page isolation when the migrate and free page scanner
 323 * meet.
 324 */
 325static void __reset_isolation_suitable(struct zone *zone)
 326{
 327	unsigned long migrate_pfn = zone->zone_start_pfn;
 328	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 329	unsigned long reset_migrate = free_pfn;
 330	unsigned long reset_free = migrate_pfn;
 331	bool source_set = false;
 332	bool free_set = false;
 333
 334	if (!zone->compact_blockskip_flush)
 335		return;
 
 336
 337	zone->compact_blockskip_flush = false;
 
 
 338
 339	/*
 340	 * Walk the zone and update pageblock skip information. Source looks
 341	 * for PageLRU while target looks for PageBuddy. When the scanner
 342	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 343	 * is suitable as both source and target.
 344	 */
 345	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 346					free_pfn -= pageblock_nr_pages) {
 347		cond_resched();
 348
 349		/* Update the migrate PFN */
 350		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 351		    migrate_pfn < reset_migrate) {
 352			source_set = true;
 353			reset_migrate = migrate_pfn;
 354			zone->compact_init_migrate_pfn = reset_migrate;
 355			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 356			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 357		}
 358
 359		/* Update the free PFN */
 360		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 361		    free_pfn > reset_free) {
 362			free_set = true;
 363			reset_free = free_pfn;
 364			zone->compact_init_free_pfn = reset_free;
 365			zone->compact_cached_free_pfn = reset_free;
 366		}
 367	}
 368
 369	/* Leave no distance if no suitable block was reset */
 370	if (reset_migrate >= reset_free) {
 371		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 372		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 373		zone->compact_cached_free_pfn = free_pfn;
 374	}
 375}
 376
 377void reset_isolation_suitable(pg_data_t *pgdat)
 378{
 379	int zoneid;
 380
 381	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 382		struct zone *zone = &pgdat->node_zones[zoneid];
 383		if (!populated_zone(zone))
 384			continue;
 385
 386		/* Only flush if a full compaction finished recently */
 387		if (zone->compact_blockskip_flush)
 388			__reset_isolation_suitable(zone);
 389	}
 390}
 391
 392/*
 393 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 394 * locks are not required for read/writers. Returns true if it was already set.
 395 */
 396static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 397							unsigned long pfn)
 398{
 399	bool skip;
 400
 401	/* Do no update if skip hint is being ignored */
 402	if (cc->ignore_skip_hint)
 403		return false;
 404
 405	if (!pageblock_aligned(pfn))
 406		return false;
 407
 408	skip = get_pageblock_skip(page);
 409	if (!skip && !cc->no_set_skip_hint)
 410		set_pageblock_skip(page);
 411
 412	return skip;
 413}
 414
 415static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 416{
 417	struct zone *zone = cc->zone;
 418
 419	pfn = pageblock_end_pfn(pfn);
 420
 421	/* Set for isolation rather than compaction */
 422	if (cc->no_set_skip_hint)
 423		return;
 424
 425	if (pfn > zone->compact_cached_migrate_pfn[0])
 426		zone->compact_cached_migrate_pfn[0] = pfn;
 427	if (cc->mode != MIGRATE_ASYNC &&
 428	    pfn > zone->compact_cached_migrate_pfn[1])
 429		zone->compact_cached_migrate_pfn[1] = pfn;
 430}
 431
 432/*
 433 * If no pages were isolated then mark this pageblock to be skipped in the
 434 * future. The information is later cleared by __reset_isolation_suitable().
 435 */
 436static void update_pageblock_skip(struct compact_control *cc,
 437			struct page *page, unsigned long pfn)
 
 438{
 439	struct zone *zone = cc->zone;
 440
 441	if (cc->no_set_skip_hint)
 442		return;
 443
 444	if (!page)
 445		return;
 446
 447	set_pageblock_skip(page);
 
 
 448
 449	/* Update where async and sync compaction should restart */
 450	if (pfn < zone->compact_cached_free_pfn)
 451		zone->compact_cached_free_pfn = pfn;
 
 
 
 
 
 
 
 
 452}
 453#else
 454static inline bool isolation_suitable(struct compact_control *cc,
 455					struct page *page)
 456{
 457	return true;
 458}
 459
 460static inline bool pageblock_skip_persistent(struct page *page)
 
 
 461{
 462	return false;
 463}
 
 464
 465static inline void update_pageblock_skip(struct compact_control *cc,
 466			struct page *page, unsigned long pfn)
 467{
 
 468}
 469
 470static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 471{
 472}
 473
 474static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 475							unsigned long pfn)
 476{
 477	return false;
 478}
 479#endif /* CONFIG_COMPACTION */
 480
 481/*
 482 * Compaction requires the taking of some coarse locks that are potentially
 483 * very heavily contended. For async compaction, trylock and record if the
 484 * lock is contended. The lock will still be acquired but compaction will
 485 * abort when the current block is finished regardless of success rate.
 486 * Sync compaction acquires the lock.
 487 *
 488 * Always returns true which makes it easier to track lock state in callers.
 
 489 */
 490static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 491						struct compact_control *cc)
 492	__acquires(lock)
 493{
 494	/* Track if the lock is contended in async mode */
 495	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 496		if (spin_trylock_irqsave(lock, *flags))
 497			return true;
 
 
 
 
 
 
 
 498
 499		cc->contended = true;
 500	}
 501
 502	spin_lock_irqsave(lock, *flags);
 
 503	return true;
 504}
 505
 506/*
 507 * Compaction requires the taking of some coarse locks that are potentially
 508 * very heavily contended. The lock should be periodically unlocked to avoid
 509 * having disabled IRQs for a long time, even when there is nobody waiting on
 510 * the lock. It might also be that allowing the IRQs will result in
 511 * need_resched() becoming true. If scheduling is needed, compaction schedules.
 512 * Either compaction type will also abort if a fatal signal is pending.
 513 * In either case if the lock was locked, it is dropped and not regained.
 514 *
 515 * Returns true if compaction should abort due to fatal signal pending.
 516 * Returns false when compaction can continue.
 517 */
 518static bool compact_unlock_should_abort(spinlock_t *lock,
 519		unsigned long flags, bool *locked, struct compact_control *cc)
 520{
 521	if (*locked) {
 522		spin_unlock_irqrestore(lock, flags);
 523		*locked = false;
 524	}
 525
 526	if (fatal_signal_pending(current)) {
 527		cc->contended = true;
 528		return true;
 529	}
 530
 531	cond_resched();
 532
 
 533	return false;
 534}
 535
 536/*
 537 * Isolate free pages onto a private freelist. If @strict is true, will abort
 538 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 539 * (even though it may still end up isolating some pages).
 540 */
 541static unsigned long isolate_freepages_block(struct compact_control *cc,
 542				unsigned long *start_pfn,
 543				unsigned long end_pfn,
 544				struct list_head *freelist,
 545				unsigned int stride,
 546				bool strict)
 547{
 548	int nr_scanned = 0, total_isolated = 0;
 549	struct page *cursor;
 550	unsigned long flags = 0;
 551	bool locked = false;
 552	unsigned long blockpfn = *start_pfn;
 553	unsigned int order;
 554
 555	/* Strict mode is for isolation, speed is secondary */
 556	if (strict)
 557		stride = 1;
 558
 559	cursor = pfn_to_page(blockpfn);
 560
 561	/* Isolate free pages. */
 562	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
 563		int isolated;
 564		struct page *page = cursor;
 565
 566		/*
 567		 * Periodically drop the lock (if held) regardless of its
 568		 * contention, to give chance to IRQs. Abort if fatal signal
 569		 * pending.
 570		 */
 571		if (!(blockpfn % COMPACT_CLUSTER_MAX)
 572		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 573								&locked, cc))
 574			break;
 575
 576		nr_scanned++;
 
 
 
 577
 578		/*
 579		 * For compound pages such as THP and hugetlbfs, we can save
 580		 * potentially a lot of iterations if we skip them at once.
 581		 * The check is racy, but we can consider only valid values
 582		 * and the only danger is skipping too much.
 583		 */
 584		if (PageCompound(page)) {
 585			const unsigned int order = compound_order(page);
 
 
 
 
 586
 587			if (likely(order < MAX_ORDER)) {
 588				blockpfn += (1UL << order) - 1;
 589				cursor += (1UL << order) - 1;
 590			}
 591			goto isolate_fail;
 
 
 
 
 
 592		}
 593
 
 594		if (!PageBuddy(page))
 595			goto isolate_fail;
 596
 597		/* If we already hold the lock, we can skip some rechecking. */
 598		if (!locked) {
 599			locked = compact_lock_irqsave(&cc->zone->lock,
 600								&flags, cc);
 601
 602			/* Recheck this is a buddy page under lock */
 603			if (!PageBuddy(page))
 604				goto isolate_fail;
 605		}
 606
 607		/* Found a free page, will break it into order-0 pages */
 608		order = buddy_order(page);
 609		isolated = __isolate_free_page(page, order);
 610		if (!isolated)
 611			break;
 612		set_page_private(page, order);
 613
 614		nr_scanned += isolated - 1;
 615		total_isolated += isolated;
 616		cc->nr_freepages += isolated;
 617		list_add_tail(&page->lru, freelist);
 618
 619		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 620			blockpfn += isolated;
 621			break;
 622		}
 623		/* Advance to the end of split page */
 624		blockpfn += isolated - 1;
 625		cursor += isolated - 1;
 626		continue;
 627
 628isolate_fail:
 629		if (strict)
 630			break;
 631		else
 632			continue;
 633
 634	}
 635
 636	if (locked)
 637		spin_unlock_irqrestore(&cc->zone->lock, flags);
 638
 639	/*
 640	 * There is a tiny chance that we have read bogus compound_order(),
 641	 * so be careful to not go outside of the pageblock.
 642	 */
 643	if (unlikely(blockpfn > end_pfn))
 644		blockpfn = end_pfn;
 645
 646	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 647					nr_scanned, total_isolated);
 648
 649	/* Record how far we have got within the block */
 650	*start_pfn = blockpfn;
 651
 652	/*
 653	 * If strict isolation is requested by CMA then check that all the
 654	 * pages requested were isolated. If there were any failures, 0 is
 655	 * returned and CMA will fail.
 656	 */
 657	if (strict && blockpfn < end_pfn)
 658		total_isolated = 0;
 659
 660	cc->total_free_scanned += nr_scanned;
 
 
 
 
 
 
 
 661	if (total_isolated)
 662		count_compact_events(COMPACTISOLATED, total_isolated);
 663	return total_isolated;
 664}
 665
 666/**
 667 * isolate_freepages_range() - isolate free pages.
 668 * @cc:        Compaction control structure.
 669 * @start_pfn: The first PFN to start isolating.
 670 * @end_pfn:   The one-past-last PFN.
 671 *
 672 * Non-free pages, invalid PFNs, or zone boundaries within the
 673 * [start_pfn, end_pfn) range are considered errors, cause function to
 674 * undo its actions and return zero.
 675 *
 676 * Otherwise, function returns one-past-the-last PFN of isolated page
 677 * (which may be greater then end_pfn if end fell in a middle of
 678 * a free page).
 679 */
 680unsigned long
 681isolate_freepages_range(struct compact_control *cc,
 682			unsigned long start_pfn, unsigned long end_pfn)
 683{
 684	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 685	LIST_HEAD(freelist);
 686
 687	pfn = start_pfn;
 688	block_start_pfn = pageblock_start_pfn(pfn);
 689	if (block_start_pfn < cc->zone->zone_start_pfn)
 690		block_start_pfn = cc->zone->zone_start_pfn;
 691	block_end_pfn = pageblock_end_pfn(pfn);
 692
 693	for (; pfn < end_pfn; pfn += isolated,
 694				block_start_pfn = block_end_pfn,
 695				block_end_pfn += pageblock_nr_pages) {
 696		/* Protect pfn from changing by isolate_freepages_block */
 697		unsigned long isolate_start_pfn = pfn;
 698
 699		block_end_pfn = min(block_end_pfn, end_pfn);
 700
 701		/*
 702		 * pfn could pass the block_end_pfn if isolated freepage
 703		 * is more than pageblock order. In this case, we adjust
 704		 * scanning range to right one.
 705		 */
 706		if (pfn >= block_end_pfn) {
 707			block_start_pfn = pageblock_start_pfn(pfn);
 708			block_end_pfn = pageblock_end_pfn(pfn);
 709			block_end_pfn = min(block_end_pfn, end_pfn);
 710		}
 711
 712		if (!pageblock_pfn_to_page(block_start_pfn,
 713					block_end_pfn, cc->zone))
 714			break;
 715
 716		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 717					block_end_pfn, &freelist, 0, true);
 718
 719		/*
 720		 * In strict mode, isolate_freepages_block() returns 0 if
 721		 * there are any holes in the block (ie. invalid PFNs or
 722		 * non-free pages).
 723		 */
 724		if (!isolated)
 725			break;
 726
 727		/*
 728		 * If we managed to isolate pages, it is always (1 << n) *
 729		 * pageblock_nr_pages for some non-negative n.  (Max order
 730		 * page may span two pageblocks).
 731		 */
 732	}
 733
 734	/* __isolate_free_page() does not map the pages */
 735	split_map_pages(&freelist);
 736
 737	if (pfn < end_pfn) {
 738		/* Loop terminated early, cleanup. */
 739		release_freepages(&freelist);
 740		return 0;
 741	}
 742
 743	/* We don't use freelists for anything. */
 744	return pfn;
 745}
 746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747/* Similar to reclaim, but different enough that they don't share logic */
 748static bool too_many_isolated(pg_data_t *pgdat)
 749{
 750	bool too_many;
 751
 752	unsigned long active, inactive, isolated;
 753
 754	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 755			node_page_state(pgdat, NR_INACTIVE_ANON);
 756	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 757			node_page_state(pgdat, NR_ACTIVE_ANON);
 758	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 759			node_page_state(pgdat, NR_ISOLATED_ANON);
 760
 761	too_many = isolated > (inactive + active) / 2;
 762	if (!too_many)
 763		wake_throttle_isolated(pgdat);
 764
 765	return too_many;
 766}
 767
 768/**
 769 * isolate_migratepages_block() - isolate all migrate-able pages within
 770 *				  a single pageblock
 771 * @cc:		Compaction control structure.
 772 * @low_pfn:	The first PFN to isolate
 773 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 774 * @mode:	Isolation mode to be used.
 775 *
 776 * Isolate all pages that can be migrated from the range specified by
 777 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 778 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 779 * -ENOMEM in case we could not allocate a page, or 0.
 780 * cc->migrate_pfn will contain the next pfn to scan.
 781 *
 782 * The pages are isolated on cc->migratepages list (not required to be empty),
 783 * and cc->nr_migratepages is updated accordingly.
 
 
 
 
 784 */
 785static int
 786isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 787			unsigned long end_pfn, isolate_mode_t mode)
 788{
 789	pg_data_t *pgdat = cc->zone->zone_pgdat;
 790	unsigned long nr_scanned = 0, nr_isolated = 0;
 
 791	struct lruvec *lruvec;
 792	unsigned long flags = 0;
 793	struct lruvec *locked = NULL;
 794	struct page *page = NULL, *valid_page = NULL;
 795	struct address_space *mapping;
 796	unsigned long start_pfn = low_pfn;
 797	bool skip_on_failure = false;
 798	unsigned long next_skip_pfn = 0;
 799	bool skip_updated = false;
 800	int ret = 0;
 801
 802	cc->migrate_pfn = low_pfn;
 803
 804	/*
 805	 * Ensure that there are not too many pages isolated from the LRU
 806	 * list by either parallel reclaimers or compaction. If there are,
 807	 * delay for some time until fewer pages are isolated
 808	 */
 809	while (unlikely(too_many_isolated(pgdat))) {
 810		/* stop isolation if there are still pages not migrated */
 811		if (cc->nr_migratepages)
 812			return -EAGAIN;
 813
 814		/* async migration should just abort */
 815		if (cc->mode == MIGRATE_ASYNC)
 816			return -EAGAIN;
 817
 818		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
 819
 820		if (fatal_signal_pending(current))
 821			return -EINTR;
 822	}
 823
 
 824	cond_resched();
 825
 826	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 827		skip_on_failure = true;
 828		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 829	}
 830
 831	/* Time to isolate some pages for migration */
 832	for (; low_pfn < end_pfn; low_pfn++) {
 833
 834		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 835			/*
 836			 * We have isolated all migration candidates in the
 837			 * previous order-aligned block, and did not skip it due
 838			 * to failure. We should migrate the pages now and
 839			 * hopefully succeed compaction.
 840			 */
 841			if (nr_isolated)
 842				break;
 843
 844			/*
 845			 * We failed to isolate in the previous order-aligned
 846			 * block. Set the new boundary to the end of the
 847			 * current block. Note we can't simply increase
 848			 * next_skip_pfn by 1 << order, as low_pfn might have
 849			 * been incremented by a higher number due to skipping
 850			 * a compound or a high-order buddy page in the
 851			 * previous loop iteration.
 852			 */
 853			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 854		}
 855
 856		/*
 857		 * Periodically drop the lock (if held) regardless of its
 858		 * contention, to give chance to IRQs. Abort completely if
 859		 * a fatal signal is pending.
 
 860		 */
 861		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
 862			if (locked) {
 863				unlock_page_lruvec_irqrestore(locked, flags);
 864				locked = NULL;
 865			}
 866
 867			if (fatal_signal_pending(current)) {
 868				cc->contended = true;
 869				ret = -EINTR;
 870
 871				goto fatal_pending;
 872			}
 873
 874			cond_resched();
 875		}
 876
 
 
 877		nr_scanned++;
 878
 
 
 
 
 
 
 879		page = pfn_to_page(low_pfn);
 
 
 880
 881		/*
 882		 * Check if the pageblock has already been marked skipped.
 883		 * Only the aligned PFN is checked as the caller isolates
 884		 * COMPACT_CLUSTER_MAX at a time so the second call must
 885		 * not falsely conclude that the block should be skipped.
 886		 */
 887		if (!valid_page && pageblock_aligned(low_pfn)) {
 888			if (!isolation_suitable(cc, page)) {
 889				low_pfn = end_pfn;
 890				page = NULL;
 891				goto isolate_abort;
 892			}
 893			valid_page = page;
 894		}
 895
 896		if (PageHuge(page) && cc->alloc_contig) {
 897			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
 
 
 
 
 
 
 898
 899			/*
 900			 * Fail isolation in case isolate_or_dissolve_huge_page()
 901			 * reports an error. In case of -ENOMEM, abort right away.
 
 902			 */
 903			if (ret < 0) {
 904				 /* Do not report -EBUSY down the chain */
 905				if (ret == -EBUSY)
 906					ret = 0;
 907				low_pfn += compound_nr(page) - 1;
 908				goto isolate_fail;
 909			}
 910
 911			if (PageHuge(page)) {
 912				/*
 913				 * Hugepage was successfully isolated and placed
 914				 * on the cc->migratepages list.
 915				 */
 916				low_pfn += compound_nr(page) - 1;
 917				goto isolate_success_no_list;
 918			}
 919
 920			/*
 921			 * Ok, the hugepage was dissolved. Now these pages are
 922			 * Buddy and cannot be re-allocated because they are
 923			 * isolated. Fall-through as the check below handles
 924			 * Buddy pages.
 925			 */
 926		}
 927
 928		/*
 929		 * Skip if free. We read page order here without zone lock
 930		 * which is generally unsafe, but the race window is small and
 931		 * the worst thing that can happen is that we skip some
 932		 * potential isolation targets.
 933		 */
 934		if (PageBuddy(page)) {
 935			unsigned long freepage_order = buddy_order_unsafe(page);
 936
 937			/*
 938			 * Without lock, we cannot be sure that what we got is
 939			 * a valid page order. Consider only values in the
 940			 * valid order range to prevent low_pfn overflow.
 941			 */
 942			if (freepage_order > 0 && freepage_order < MAX_ORDER)
 943				low_pfn += (1UL << freepage_order) - 1;
 944			continue;
 945		}
 946
 947		/*
 948		 * Regardless of being on LRU, compound pages such as THP and
 949		 * hugetlbfs are not to be compacted unless we are attempting
 950		 * an allocation much larger than the huge page size (eg CMA).
 951		 * We can potentially save a lot of iterations if we skip them
 952		 * at once. The check is racy, but we can consider only valid
 953		 * values and the only danger is skipping too much.
 954		 */
 955		if (PageCompound(page) && !cc->alloc_contig) {
 956			const unsigned int order = compound_order(page);
 957
 958			if (likely(order < MAX_ORDER))
 959				low_pfn += (1UL << order) - 1;
 960			goto isolate_fail;
 961		}
 962
 963		/*
 964		 * Check may be lockless but that's ok as we recheck later.
 965		 * It's possible to migrate LRU and non-lru movable pages.
 966		 * Skip any other type of page
 967		 */
 968		if (!PageLRU(page)) {
 969			/*
 970			 * __PageMovable can return false positive so we need
 971			 * to verify it under page_lock.
 972			 */
 973			if (unlikely(__PageMovable(page)) &&
 974					!PageIsolated(page)) {
 975				if (locked) {
 976					unlock_page_lruvec_irqrestore(locked, flags);
 977					locked = NULL;
 978				}
 979
 980				if (!isolate_movable_page(page, mode))
 981					goto isolate_success;
 982			}
 983
 984			goto isolate_fail;
 985		}
 986
 987		/*
 988		 * Be careful not to clear PageLRU until after we're
 989		 * sure the page is not being freed elsewhere -- the
 990		 * page release code relies on it.
 991		 */
 992		if (unlikely(!get_page_unless_zero(page)))
 993			goto isolate_fail;
 
 
 
 
 
 
 
 
 
 994
 995		/*
 996		 * Migration will fail if an anonymous page is pinned in memory,
 997		 * so avoid taking lru_lock and isolating it unnecessarily in an
 998		 * admittedly racy check.
 999		 */
1000		mapping = page_mapping(page);
1001		if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1002			goto isolate_fail_put;
1003
1004		/*
1005		 * Only allow to migrate anonymous pages in GFP_NOFS context
1006		 * because those do not depend on fs locks.
1007		 */
1008		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1009			goto isolate_fail_put;
1010
1011		/* Only take pages on LRU: a check now makes later tests safe */
1012		if (!PageLRU(page))
1013			goto isolate_fail_put;
1014
1015		/* Compaction might skip unevictable pages but CMA takes them */
1016		if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1017			goto isolate_fail_put;
1018
1019		/*
1020		 * To minimise LRU disruption, the caller can indicate with
1021		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1022		 * it will be able to migrate without blocking - clean pages
1023		 * for the most part.  PageWriteback would require blocking.
1024		 */
1025		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1026			goto isolate_fail_put;
1027
1028		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1029			bool migrate_dirty;
1030
1031			/*
1032			 * Only pages without mappings or that have a
1033			 * ->migrate_folio callback are possible to migrate
1034			 * without blocking. However, we can be racing with
1035			 * truncation so it's necessary to lock the page
1036			 * to stabilise the mapping as truncation holds
1037			 * the page lock until after the page is removed
1038			 * from the page cache.
1039			 */
1040			if (!trylock_page(page))
1041				goto isolate_fail_put;
1042
1043			mapping = page_mapping(page);
1044			migrate_dirty = !mapping ||
1045					mapping->a_ops->migrate_folio;
1046			unlock_page(page);
1047			if (!migrate_dirty)
1048				goto isolate_fail_put;
1049		}
1050
1051		/* Try isolate the page */
1052		if (!TestClearPageLRU(page))
1053			goto isolate_fail_put;
1054
1055		lruvec = folio_lruvec(page_folio(page));
1056
1057		/* If we already hold the lock, we can skip some rechecking */
1058		if (lruvec != locked) {
1059			if (locked)
1060				unlock_page_lruvec_irqrestore(locked, flags);
1061
1062			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1063			locked = lruvec;
1064
1065			lruvec_memcg_debug(lruvec, page_folio(page));
1066
1067			/* Try get exclusive access under lock */
1068			if (!skip_updated) {
1069				skip_updated = true;
1070				if (test_and_set_skip(cc, page, low_pfn))
1071					goto isolate_abort;
1072			}
1073
1074			/*
1075			 * Page become compound since the non-locked check,
1076			 * and it's on LRU. It can only be a THP so the order
1077			 * is safe to read and it's 0 for tail pages.
1078			 */
1079			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1080				low_pfn += compound_nr(page) - 1;
1081				SetPageLRU(page);
1082				goto isolate_fail_put;
1083			}
1084		}
1085
1086		/* The whole page is taken off the LRU; skip the tail pages. */
1087		if (PageCompound(page))
1088			low_pfn += compound_nr(page) - 1;
1089
1090		/* Successfully isolated */
1091		del_page_from_lru_list(page, lruvec);
1092		mod_node_page_state(page_pgdat(page),
1093				NR_ISOLATED_ANON + page_is_file_lru(page),
1094				thp_nr_pages(page));
1095
1096isolate_success:
1097		list_add(&page->lru, &cc->migratepages);
1098isolate_success_no_list:
1099		cc->nr_migratepages += compound_nr(page);
1100		nr_isolated += compound_nr(page);
1101		nr_scanned += compound_nr(page) - 1;
1102
1103		/*
1104		 * Avoid isolating too much unless this block is being
1105		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1106		 * or a lock is contended. For contention, isolate quickly to
1107		 * potentially remove one source of contention.
1108		 */
1109		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1110		    !cc->rescan && !cc->contended) {
1111			++low_pfn;
1112			break;
1113		}
1114
1115		continue;
1116
1117isolate_fail_put:
1118		/* Avoid potential deadlock in freeing page under lru_lock */
1119		if (locked) {
1120			unlock_page_lruvec_irqrestore(locked, flags);
1121			locked = NULL;
1122		}
1123		put_page(page);
1124
1125isolate_fail:
1126		if (!skip_on_failure && ret != -ENOMEM)
1127			continue;
1128
1129		/*
1130		 * We have isolated some pages, but then failed. Release them
1131		 * instead of migrating, as we cannot form the cc->order buddy
1132		 * page anyway.
1133		 */
1134		if (nr_isolated) {
1135			if (locked) {
1136				unlock_page_lruvec_irqrestore(locked, flags);
1137				locked = NULL;
1138			}
1139			putback_movable_pages(&cc->migratepages);
1140			cc->nr_migratepages = 0;
1141			nr_isolated = 0;
1142		}
1143
1144		if (low_pfn < next_skip_pfn) {
1145			low_pfn = next_skip_pfn - 1;
1146			/*
1147			 * The check near the loop beginning would have updated
1148			 * next_skip_pfn too, but this is a bit simpler.
1149			 */
1150			next_skip_pfn += 1UL << cc->order;
1151		}
1152
1153		if (ret == -ENOMEM)
1154			break;
1155	}
1156
1157	/*
1158	 * The PageBuddy() check could have potentially brought us outside
1159	 * the range to be scanned.
1160	 */
1161	if (unlikely(low_pfn > end_pfn))
1162		low_pfn = end_pfn;
1163
1164	page = NULL;
1165
1166isolate_abort:
1167	if (locked)
1168		unlock_page_lruvec_irqrestore(locked, flags);
1169	if (page) {
1170		SetPageLRU(page);
1171		put_page(page);
1172	}
1173
1174	/*
1175	 * Updated the cached scanner pfn once the pageblock has been scanned
1176	 * Pages will either be migrated in which case there is no point
1177	 * scanning in the near future or migration failed in which case the
1178	 * failure reason may persist. The block is marked for skipping if
1179	 * there were no pages isolated in the block or if the block is
1180	 * rescanned twice in a row.
1181	 */
1182	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1183		if (valid_page && !skip_updated)
1184			set_pageblock_skip(valid_page);
1185		update_cached_migrate(cc, low_pfn);
1186	}
1187
1188	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1189						nr_scanned, nr_isolated);
1190
1191fatal_pending:
1192	cc->total_migrate_scanned += nr_scanned;
1193	if (nr_isolated)
1194		count_compact_events(COMPACTISOLATED, nr_isolated);
1195
1196	cc->migrate_pfn = low_pfn;
1197
1198	return ret;
1199}
1200
1201/**
1202 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1203 * @cc:        Compaction control structure.
1204 * @start_pfn: The first PFN to start isolating.
1205 * @end_pfn:   The one-past-last PFN.
1206 *
1207 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1208 * in case we could not allocate a page, or 0.
1209 */
1210int
1211isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1212							unsigned long end_pfn)
1213{
1214	unsigned long pfn, block_start_pfn, block_end_pfn;
1215	int ret = 0;
1216
1217	/* Scan block by block. First and last block may be incomplete */
1218	pfn = start_pfn;
1219	block_start_pfn = pageblock_start_pfn(pfn);
1220	if (block_start_pfn < cc->zone->zone_start_pfn)
1221		block_start_pfn = cc->zone->zone_start_pfn;
1222	block_end_pfn = pageblock_end_pfn(pfn);
1223
1224	for (; pfn < end_pfn; pfn = block_end_pfn,
1225				block_start_pfn = block_end_pfn,
1226				block_end_pfn += pageblock_nr_pages) {
1227
1228		block_end_pfn = min(block_end_pfn, end_pfn);
1229
1230		if (!pageblock_pfn_to_page(block_start_pfn,
1231					block_end_pfn, cc->zone))
1232			continue;
1233
1234		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1235						 ISOLATE_UNEVICTABLE);
1236
1237		if (ret)
1238			break;
1239
1240		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1241			break;
1242	}
1243
1244	return ret;
1245}
1246
1247#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1248#ifdef CONFIG_COMPACTION
1249
1250static bool suitable_migration_source(struct compact_control *cc,
1251							struct page *page)
1252{
1253	int block_mt;
1254
1255	if (pageblock_skip_persistent(page))
1256		return false;
1257
1258	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1259		return true;
1260
1261	block_mt = get_pageblock_migratetype(page);
1262
1263	if (cc->migratetype == MIGRATE_MOVABLE)
1264		return is_migrate_movable(block_mt);
1265	else
1266		return block_mt == cc->migratetype;
1267}
1268
1269/* Returns true if the page is within a block suitable for migration to */
1270static bool suitable_migration_target(struct compact_control *cc,
1271							struct page *page)
1272{
1273	/* If the page is a large free page, then disallow migration */
1274	if (PageBuddy(page)) {
1275		/*
1276		 * We are checking page_order without zone->lock taken. But
1277		 * the only small danger is that we skip a potentially suitable
1278		 * pageblock, so it's not worth to check order for valid range.
1279		 */
1280		if (buddy_order_unsafe(page) >= pageblock_order)
1281			return false;
1282	}
1283
1284	if (cc->ignore_block_suitable)
1285		return true;
1286
1287	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1288	if (is_migrate_movable(get_pageblock_migratetype(page)))
1289		return true;
1290
1291	/* Otherwise skip the block */
1292	return false;
1293}
1294
1295static inline unsigned int
1296freelist_scan_limit(struct compact_control *cc)
1297{
1298	unsigned short shift = BITS_PER_LONG - 1;
1299
1300	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1301}
1302
1303/*
1304 * Test whether the free scanner has reached the same or lower pageblock than
1305 * the migration scanner, and compaction should thus terminate.
1306 */
1307static inline bool compact_scanners_met(struct compact_control *cc)
1308{
1309	return (cc->free_pfn >> pageblock_order)
1310		<= (cc->migrate_pfn >> pageblock_order);
1311}
1312
1313/*
1314 * Used when scanning for a suitable migration target which scans freelists
1315 * in reverse. Reorders the list such as the unscanned pages are scanned
1316 * first on the next iteration of the free scanner
1317 */
1318static void
1319move_freelist_head(struct list_head *freelist, struct page *freepage)
1320{
1321	LIST_HEAD(sublist);
1322
1323	if (!list_is_last(freelist, &freepage->lru)) {
1324		list_cut_before(&sublist, freelist, &freepage->lru);
1325		list_splice_tail(&sublist, freelist);
1326	}
1327}
1328
1329/*
1330 * Similar to move_freelist_head except used by the migration scanner
1331 * when scanning forward. It's possible for these list operations to
1332 * move against each other if they search the free list exactly in
1333 * lockstep.
1334 */
1335static void
1336move_freelist_tail(struct list_head *freelist, struct page *freepage)
1337{
1338	LIST_HEAD(sublist);
1339
1340	if (!list_is_first(freelist, &freepage->lru)) {
1341		list_cut_position(&sublist, freelist, &freepage->lru);
1342		list_splice_tail(&sublist, freelist);
1343	}
1344}
1345
1346static void
1347fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1348{
1349	unsigned long start_pfn, end_pfn;
1350	struct page *page;
1351
1352	/* Do not search around if there are enough pages already */
1353	if (cc->nr_freepages >= cc->nr_migratepages)
1354		return;
1355
1356	/* Minimise scanning during async compaction */
1357	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1358		return;
1359
1360	/* Pageblock boundaries */
1361	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1362	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1363
1364	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1365	if (!page)
1366		return;
1367
1368	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1369
1370	/* Skip this pageblock in the future as it's full or nearly full */
1371	if (cc->nr_freepages < cc->nr_migratepages)
1372		set_pageblock_skip(page);
1373
1374	return;
1375}
1376
1377/* Search orders in round-robin fashion */
1378static int next_search_order(struct compact_control *cc, int order)
1379{
1380	order--;
1381	if (order < 0)
1382		order = cc->order - 1;
1383
1384	/* Search wrapped around? */
1385	if (order == cc->search_order) {
1386		cc->search_order--;
1387		if (cc->search_order < 0)
1388			cc->search_order = cc->order - 1;
1389		return -1;
1390	}
1391
1392	return order;
1393}
1394
1395static unsigned long
1396fast_isolate_freepages(struct compact_control *cc)
1397{
1398	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1399	unsigned int nr_scanned = 0;
1400	unsigned long low_pfn, min_pfn, highest = 0;
1401	unsigned long nr_isolated = 0;
1402	unsigned long distance;
1403	struct page *page = NULL;
1404	bool scan_start = false;
1405	int order;
1406
1407	/* Full compaction passes in a negative order */
1408	if (cc->order <= 0)
1409		return cc->free_pfn;
1410
1411	/*
1412	 * If starting the scan, use a deeper search and use the highest
1413	 * PFN found if a suitable one is not found.
1414	 */
1415	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1416		limit = pageblock_nr_pages >> 1;
1417		scan_start = true;
1418	}
1419
1420	/*
1421	 * Preferred point is in the top quarter of the scan space but take
1422	 * a pfn from the top half if the search is problematic.
1423	 */
1424	distance = (cc->free_pfn - cc->migrate_pfn);
1425	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1426	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1427
1428	if (WARN_ON_ONCE(min_pfn > low_pfn))
1429		low_pfn = min_pfn;
1430
1431	/*
1432	 * Search starts from the last successful isolation order or the next
1433	 * order to search after a previous failure
1434	 */
1435	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1436
1437	for (order = cc->search_order;
1438	     !page && order >= 0;
1439	     order = next_search_order(cc, order)) {
1440		struct free_area *area = &cc->zone->free_area[order];
1441		struct list_head *freelist;
1442		struct page *freepage;
1443		unsigned long flags;
1444		unsigned int order_scanned = 0;
1445		unsigned long high_pfn = 0;
1446
1447		if (!area->nr_free)
1448			continue;
1449
1450		spin_lock_irqsave(&cc->zone->lock, flags);
1451		freelist = &area->free_list[MIGRATE_MOVABLE];
1452		list_for_each_entry_reverse(freepage, freelist, lru) {
1453			unsigned long pfn;
1454
1455			order_scanned++;
1456			nr_scanned++;
1457			pfn = page_to_pfn(freepage);
1458
1459			if (pfn >= highest)
1460				highest = max(pageblock_start_pfn(pfn),
1461					      cc->zone->zone_start_pfn);
1462
1463			if (pfn >= low_pfn) {
1464				cc->fast_search_fail = 0;
1465				cc->search_order = order;
1466				page = freepage;
1467				break;
1468			}
1469
1470			if (pfn >= min_pfn && pfn > high_pfn) {
1471				high_pfn = pfn;
1472
1473				/* Shorten the scan if a candidate is found */
1474				limit >>= 1;
1475			}
1476
1477			if (order_scanned >= limit)
1478				break;
1479		}
1480
1481		/* Use a minimum pfn if a preferred one was not found */
1482		if (!page && high_pfn) {
1483			page = pfn_to_page(high_pfn);
1484
1485			/* Update freepage for the list reorder below */
1486			freepage = page;
1487		}
1488
1489		/* Reorder to so a future search skips recent pages */
1490		move_freelist_head(freelist, freepage);
1491
1492		/* Isolate the page if available */
1493		if (page) {
1494			if (__isolate_free_page(page, order)) {
1495				set_page_private(page, order);
1496				nr_isolated = 1 << order;
1497				nr_scanned += nr_isolated - 1;
1498				cc->nr_freepages += nr_isolated;
1499				list_add_tail(&page->lru, &cc->freepages);
1500				count_compact_events(COMPACTISOLATED, nr_isolated);
1501			} else {
1502				/* If isolation fails, abort the search */
1503				order = cc->search_order + 1;
1504				page = NULL;
1505			}
1506		}
1507
1508		spin_unlock_irqrestore(&cc->zone->lock, flags);
1509
1510		/*
1511		 * Smaller scan on next order so the total scan is related
1512		 * to freelist_scan_limit.
1513		 */
1514		if (order_scanned >= limit)
1515			limit = max(1U, limit >> 1);
1516	}
1517
1518	if (!page) {
1519		cc->fast_search_fail++;
1520		if (scan_start) {
1521			/*
1522			 * Use the highest PFN found above min. If one was
1523			 * not found, be pessimistic for direct compaction
1524			 * and use the min mark.
1525			 */
1526			if (highest >= min_pfn) {
1527				page = pfn_to_page(highest);
1528				cc->free_pfn = highest;
1529			} else {
1530				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1531					page = pageblock_pfn_to_page(min_pfn,
1532						min(pageblock_end_pfn(min_pfn),
1533						    zone_end_pfn(cc->zone)),
1534						cc->zone);
1535					cc->free_pfn = min_pfn;
1536				}
1537			}
1538		}
1539	}
1540
1541	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1542		highest -= pageblock_nr_pages;
1543		cc->zone->compact_cached_free_pfn = highest;
1544	}
1545
1546	cc->total_free_scanned += nr_scanned;
1547	if (!page)
1548		return cc->free_pfn;
1549
1550	low_pfn = page_to_pfn(page);
1551	fast_isolate_around(cc, low_pfn);
1552	return low_pfn;
1553}
1554
1555/*
1556 * Based on information in the current compact_control, find blocks
1557 * suitable for isolating free pages from and then isolate them.
1558 */
1559static void isolate_freepages(struct compact_control *cc)
 
1560{
1561	struct zone *zone = cc->zone;
1562	struct page *page;
1563	unsigned long block_start_pfn;	/* start of current pageblock */
1564	unsigned long isolate_start_pfn; /* exact pfn we start at */
1565	unsigned long block_end_pfn;	/* end of current pageblock */
1566	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1567	struct list_head *freelist = &cc->freepages;
1568	unsigned int stride;
1569
1570	/* Try a small search of the free lists for a candidate */
1571	fast_isolate_freepages(cc);
1572	if (cc->nr_freepages)
1573		goto splitmap;
1574
1575	/*
1576	 * Initialise the free scanner. The starting point is where we last
1577	 * successfully isolated from, zone-cached value, or the end of the
1578	 * zone when isolating for the first time. For looping we also need
1579	 * this pfn aligned down to the pageblock boundary, because we do
1580	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1581	 * For ending point, take care when isolating in last pageblock of a
1582	 * zone which ends in the middle of a pageblock.
1583	 * The low boundary is the end of the pageblock the migration scanner
1584	 * is using.
1585	 */
1586	isolate_start_pfn = cc->free_pfn;
1587	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1588	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1589						zone_end_pfn(zone));
1590	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1591	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
 
 
 
 
 
1592
1593	/*
1594	 * Isolate free pages until enough are available to migrate the
1595	 * pages on cc->migratepages. We stop searching if the migrate
1596	 * and free page scanners meet or enough free pages are isolated.
1597	 */
1598	for (; block_start_pfn >= low_pfn;
1599				block_end_pfn = block_start_pfn,
1600				block_start_pfn -= pageblock_nr_pages,
1601				isolate_start_pfn = block_start_pfn) {
1602		unsigned long nr_isolated;
1603
1604		/*
1605		 * This can iterate a massively long zone without finding any
1606		 * suitable migration targets, so periodically check resched.
 
1607		 */
1608		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1609			cond_resched();
1610
1611		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1612									zone);
1613		if (!page)
 
 
 
 
 
 
 
 
 
1614			continue;
1615
1616		/* Check the block is suitable for migration */
1617		if (!suitable_migration_target(cc, page))
1618			continue;
1619
1620		/* If isolation recently failed, do not retry */
1621		if (!isolation_suitable(cc, page))
1622			continue;
1623
1624		/* Found a block suitable for isolating free pages from. */
1625		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1626					block_end_pfn, freelist, stride, false);
1627
1628		/* Update the skip hint if the full pageblock was scanned */
1629		if (isolate_start_pfn == block_end_pfn)
1630			update_pageblock_skip(cc, page, block_start_pfn);
1631
1632		/* Are enough freepages isolated? */
1633		if (cc->nr_freepages >= cc->nr_migratepages) {
1634			if (isolate_start_pfn >= block_end_pfn) {
1635				/*
1636				 * Restart at previous pageblock if more
1637				 * freepages can be isolated next time.
1638				 */
1639				isolate_start_pfn =
1640					block_start_pfn - pageblock_nr_pages;
1641			}
1642			break;
1643		} else if (isolate_start_pfn < block_end_pfn) {
1644			/*
1645			 * If isolation failed early, do not continue
1646			 * needlessly.
1647			 */
1648			break;
1649		}
1650
1651		/* Adjust stride depending on isolation */
1652		if (nr_isolated) {
1653			stride = 1;
1654			continue;
 
 
 
 
1655		}
1656		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1657	}
1658
 
 
 
1659	/*
1660	 * Record where the free scanner will restart next time. Either we
1661	 * broke from the loop and set isolate_start_pfn based on the last
1662	 * call to isolate_freepages_block(), or we met the migration scanner
1663	 * and the loop terminated due to isolate_start_pfn < low_pfn
1664	 */
1665	cc->free_pfn = isolate_start_pfn;
1666
1667splitmap:
1668	/* __isolate_free_page() does not map the pages */
1669	split_map_pages(freelist);
1670}
1671
1672/*
1673 * This is a migrate-callback that "allocates" freepages by taking pages
1674 * from the isolated freelists in the block we are migrating to.
1675 */
1676static struct page *compaction_alloc(struct page *migratepage,
1677					unsigned long data)
 
1678{
1679	struct compact_control *cc = (struct compact_control *)data;
1680	struct page *freepage;
1681
 
1682	if (list_empty(&cc->freepages)) {
1683		isolate_freepages(cc);
1684
1685		if (list_empty(&cc->freepages))
1686			return NULL;
1687	}
1688
1689	freepage = list_entry(cc->freepages.next, struct page, lru);
1690	list_del(&freepage->lru);
1691	cc->nr_freepages--;
1692
1693	return freepage;
1694}
1695
1696/*
1697 * This is a migrate-callback that "frees" freepages back to the isolated
1698 * freelist.  All pages on the freelist are from the same zone, so there is no
1699 * special handling needed for NUMA.
1700 */
1701static void compaction_free(struct page *page, unsigned long data)
1702{
1703	struct compact_control *cc = (struct compact_control *)data;
 
 
 
 
 
 
 
1704
1705	list_add(&page->lru, &cc->freepages);
1706	cc->nr_freepages++;
1707}
1708
1709/* possible outcome of isolate_migratepages */
1710typedef enum {
1711	ISOLATE_ABORT,		/* Abort compaction now */
1712	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1713	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1714} isolate_migrate_t;
1715
1716/*
1717 * Allow userspace to control policy on scanning the unevictable LRU for
1718 * compactable pages.
1719 */
1720int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1721
1722static inline void
1723update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1724{
1725	if (cc->fast_start_pfn == ULONG_MAX)
1726		return;
1727
1728	if (!cc->fast_start_pfn)
1729		cc->fast_start_pfn = pfn;
1730
1731	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1732}
1733
1734static inline unsigned long
1735reinit_migrate_pfn(struct compact_control *cc)
1736{
1737	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1738		return cc->migrate_pfn;
1739
1740	cc->migrate_pfn = cc->fast_start_pfn;
1741	cc->fast_start_pfn = ULONG_MAX;
1742
1743	return cc->migrate_pfn;
1744}
1745
1746/*
1747 * Briefly search the free lists for a migration source that already has
1748 * some free pages to reduce the number of pages that need migration
1749 * before a pageblock is free.
1750 */
1751static unsigned long fast_find_migrateblock(struct compact_control *cc)
1752{
1753	unsigned int limit = freelist_scan_limit(cc);
1754	unsigned int nr_scanned = 0;
1755	unsigned long distance;
1756	unsigned long pfn = cc->migrate_pfn;
1757	unsigned long high_pfn;
1758	int order;
1759	bool found_block = false;
1760
1761	/* Skip hints are relied on to avoid repeats on the fast search */
1762	if (cc->ignore_skip_hint)
1763		return pfn;
1764
1765	/*
1766	 * If the migrate_pfn is not at the start of a zone or the start
1767	 * of a pageblock then assume this is a continuation of a previous
1768	 * scan restarted due to COMPACT_CLUSTER_MAX.
1769	 */
1770	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1771		return pfn;
1772
1773	/*
1774	 * For smaller orders, just linearly scan as the number of pages
1775	 * to migrate should be relatively small and does not necessarily
1776	 * justify freeing up a large block for a small allocation.
1777	 */
1778	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1779		return pfn;
1780
1781	/*
1782	 * Only allow kcompactd and direct requests for movable pages to
1783	 * quickly clear out a MOVABLE pageblock for allocation. This
1784	 * reduces the risk that a large movable pageblock is freed for
1785	 * an unmovable/reclaimable small allocation.
1786	 */
1787	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1788		return pfn;
1789
1790	/*
1791	 * When starting the migration scanner, pick any pageblock within the
1792	 * first half of the search space. Otherwise try and pick a pageblock
1793	 * within the first eighth to reduce the chances that a migration
1794	 * target later becomes a source.
1795	 */
1796	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1797	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1798		distance >>= 2;
1799	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1800
1801	for (order = cc->order - 1;
1802	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1803	     order--) {
1804		struct free_area *area = &cc->zone->free_area[order];
1805		struct list_head *freelist;
1806		unsigned long flags;
1807		struct page *freepage;
1808
1809		if (!area->nr_free)
1810			continue;
1811
1812		spin_lock_irqsave(&cc->zone->lock, flags);
1813		freelist = &area->free_list[MIGRATE_MOVABLE];
1814		list_for_each_entry(freepage, freelist, lru) {
1815			unsigned long free_pfn;
1816
1817			if (nr_scanned++ >= limit) {
1818				move_freelist_tail(freelist, freepage);
1819				break;
1820			}
1821
1822			free_pfn = page_to_pfn(freepage);
1823			if (free_pfn < high_pfn) {
1824				/*
1825				 * Avoid if skipped recently. Ideally it would
1826				 * move to the tail but even safe iteration of
1827				 * the list assumes an entry is deleted, not
1828				 * reordered.
1829				 */
1830				if (get_pageblock_skip(freepage))
1831					continue;
1832
1833				/* Reorder to so a future search skips recent pages */
1834				move_freelist_tail(freelist, freepage);
1835
1836				update_fast_start_pfn(cc, free_pfn);
1837				pfn = pageblock_start_pfn(free_pfn);
1838				if (pfn < cc->zone->zone_start_pfn)
1839					pfn = cc->zone->zone_start_pfn;
1840				cc->fast_search_fail = 0;
1841				found_block = true;
1842				set_pageblock_skip(freepage);
1843				break;
1844			}
1845		}
1846		spin_unlock_irqrestore(&cc->zone->lock, flags);
1847	}
1848
1849	cc->total_migrate_scanned += nr_scanned;
1850
1851	/*
1852	 * If fast scanning failed then use a cached entry for a page block
1853	 * that had free pages as the basis for starting a linear scan.
1854	 */
1855	if (!found_block) {
1856		cc->fast_search_fail++;
1857		pfn = reinit_migrate_pfn(cc);
1858	}
1859	return pfn;
1860}
1861
1862/*
1863 * Isolate all pages that can be migrated from the first suitable block,
1864 * starting at the block pointed to by the migrate scanner pfn within
1865 * compact_control.
1866 */
1867static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1868{
1869	unsigned long block_start_pfn;
1870	unsigned long block_end_pfn;
1871	unsigned long low_pfn;
1872	struct page *page;
1873	const isolate_mode_t isolate_mode =
1874		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1875		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1876	bool fast_find_block;
1877
1878	/*
1879	 * Start at where we last stopped, or beginning of the zone as
1880	 * initialized by compact_zone(). The first failure will use
1881	 * the lowest PFN as the starting point for linear scanning.
1882	 */
1883	low_pfn = fast_find_migrateblock(cc);
1884	block_start_pfn = pageblock_start_pfn(low_pfn);
1885	if (block_start_pfn < cc->zone->zone_start_pfn)
1886		block_start_pfn = cc->zone->zone_start_pfn;
1887
1888	/*
1889	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1890	 * the isolation_suitable check below, check whether the fast
1891	 * search was successful.
1892	 */
1893	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1894
1895	/* Only scan within a pageblock boundary */
1896	block_end_pfn = pageblock_end_pfn(low_pfn);
1897
1898	/*
1899	 * Iterate over whole pageblocks until we find the first suitable.
1900	 * Do not cross the free scanner.
1901	 */
1902	for (; block_end_pfn <= cc->free_pfn;
1903			fast_find_block = false,
1904			cc->migrate_pfn = low_pfn = block_end_pfn,
1905			block_start_pfn = block_end_pfn,
1906			block_end_pfn += pageblock_nr_pages) {
1907
1908		/*
1909		 * This can potentially iterate a massively long zone with
1910		 * many pageblocks unsuitable, so periodically check if we
1911		 * need to schedule.
1912		 */
1913		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1914			cond_resched();
1915
1916		page = pageblock_pfn_to_page(block_start_pfn,
1917						block_end_pfn, cc->zone);
1918		if (!page)
1919			continue;
1920
1921		/*
1922		 * If isolation recently failed, do not retry. Only check the
1923		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1924		 * to be visited multiple times. Assume skip was checked
1925		 * before making it "skip" so other compaction instances do
1926		 * not scan the same block.
1927		 */
1928		if (pageblock_aligned(low_pfn) &&
1929		    !fast_find_block && !isolation_suitable(cc, page))
1930			continue;
1931
1932		/*
1933		 * For async direct compaction, only scan the pageblocks of the
1934		 * same migratetype without huge pages. Async direct compaction
1935		 * is optimistic to see if the minimum amount of work satisfies
1936		 * the allocation. The cached PFN is updated as it's possible
1937		 * that all remaining blocks between source and target are
1938		 * unsuitable and the compaction scanners fail to meet.
1939		 */
1940		if (!suitable_migration_source(cc, page)) {
1941			update_cached_migrate(cc, block_end_pfn);
1942			continue;
1943		}
1944
1945		/* Perform the isolation */
1946		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1947						isolate_mode))
1948			return ISOLATE_ABORT;
1949
1950		/*
1951		 * Either we isolated something and proceed with migration. Or
1952		 * we failed and compact_zone should decide if we should
1953		 * continue or not.
1954		 */
1955		break;
1956	}
1957
1958	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1959}
 
 
1960
1961/*
1962 * order == -1 is expected when compacting via
1963 * /proc/sys/vm/compact_memory
1964 */
1965static inline bool is_via_compact_memory(int order)
1966{
1967	return order == -1;
1968}
1969
1970/*
1971 * Determine whether kswapd is (or recently was!) running on this node.
1972 *
1973 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1974 * zero it.
1975 */
1976static bool kswapd_is_running(pg_data_t *pgdat)
1977{
1978	bool running;
1979
1980	pgdat_kswapd_lock(pgdat);
1981	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
1982	pgdat_kswapd_unlock(pgdat);
1983
1984	return running;
1985}
1986
1987/*
1988 * A zone's fragmentation score is the external fragmentation wrt to the
1989 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1990 */
1991static unsigned int fragmentation_score_zone(struct zone *zone)
1992{
1993	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1994}
1995
1996/*
1997 * A weighted zone's fragmentation score is the external fragmentation
1998 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1999 * returns a value in the range [0, 100].
2000 *
2001 * The scaling factor ensures that proactive compaction focuses on larger
2002 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2003 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2004 * and thus never exceeds the high threshold for proactive compaction.
2005 */
2006static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2007{
2008	unsigned long score;
2009
2010	score = zone->present_pages * fragmentation_score_zone(zone);
2011	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2012}
2013
2014/*
2015 * The per-node proactive (background) compaction process is started by its
2016 * corresponding kcompactd thread when the node's fragmentation score
2017 * exceeds the high threshold. The compaction process remains active till
2018 * the node's score falls below the low threshold, or one of the back-off
2019 * conditions is met.
2020 */
2021static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2022{
2023	unsigned int score = 0;
2024	int zoneid;
2025
2026	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2027		struct zone *zone;
2028
2029		zone = &pgdat->node_zones[zoneid];
2030		score += fragmentation_score_zone_weighted(zone);
2031	}
2032
2033	return score;
2034}
2035
2036static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2037{
2038	unsigned int wmark_low;
2039
2040	/*
2041	 * Cap the low watermark to avoid excessive compaction
2042	 * activity in case a user sets the proactiveness tunable
2043	 * close to 100 (maximum).
2044	 */
2045	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2046	return low ? wmark_low : min(wmark_low + 10, 100U);
2047}
2048
2049static bool should_proactive_compact_node(pg_data_t *pgdat)
2050{
2051	int wmark_high;
2052
2053	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2054		return false;
2055
2056	wmark_high = fragmentation_score_wmark(pgdat, false);
2057	return fragmentation_score_node(pgdat) > wmark_high;
2058}
2059
2060static enum compact_result __compact_finished(struct compact_control *cc)
2061{
2062	unsigned int order;
2063	const int migratetype = cc->migratetype;
2064	int ret;
2065
2066	/* Compaction run completes if the migrate and free scanner meet */
2067	if (compact_scanners_met(cc)) {
2068		/* Let the next compaction start anew. */
2069		reset_cached_positions(cc->zone);
 
2070
2071		/*
2072		 * Mark that the PG_migrate_skip information should be cleared
2073		 * by kswapd when it goes to sleep. kcompactd does not set the
2074		 * flag itself as the decision to be clear should be directly
2075		 * based on an allocation request.
2076		 */
2077		if (cc->direct_compaction)
2078			cc->zone->compact_blockskip_flush = true;
2079
2080		if (cc->whole_zone)
2081			return COMPACT_COMPLETE;
2082		else
2083			return COMPACT_PARTIAL_SKIPPED;
2084	}
2085
2086	if (cc->proactive_compaction) {
2087		int score, wmark_low;
2088		pg_data_t *pgdat;
2089
2090		pgdat = cc->zone->zone_pgdat;
2091		if (kswapd_is_running(pgdat))
2092			return COMPACT_PARTIAL_SKIPPED;
2093
2094		score = fragmentation_score_zone(cc->zone);
2095		wmark_low = fragmentation_score_wmark(pgdat, true);
2096
2097		if (score > wmark_low)
2098			ret = COMPACT_CONTINUE;
2099		else
2100			ret = COMPACT_SUCCESS;
2101
2102		goto out;
2103	}
2104
2105	if (is_via_compact_memory(cc->order))
2106		return COMPACT_CONTINUE;
 
2107
2108	/*
2109	 * Always finish scanning a pageblock to reduce the possibility of
2110	 * fallbacks in the future. This is particularly important when
2111	 * migration source is unmovable/reclaimable but it's not worth
2112	 * special casing.
2113	 */
2114	if (!pageblock_aligned(cc->migrate_pfn))
2115		return COMPACT_CONTINUE;
2116
2117	/* Direct compactor: Is a suitable page free? */
2118	ret = COMPACT_NO_SUITABLE_PAGE;
2119	for (order = cc->order; order < MAX_ORDER; order++) {
2120		struct free_area *area = &cc->zone->free_area[order];
2121		bool can_steal;
2122
2123		/* Job done if page is free of the right migratetype */
2124		if (!free_area_empty(area, migratetype))
2125			return COMPACT_SUCCESS;
2126
2127#ifdef CONFIG_CMA
2128		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2129		if (migratetype == MIGRATE_MOVABLE &&
2130			!free_area_empty(area, MIGRATE_CMA))
2131			return COMPACT_SUCCESS;
2132#endif
2133		/*
2134		 * Job done if allocation would steal freepages from
2135		 * other migratetype buddy lists.
2136		 */
2137		if (find_suitable_fallback(area, order, migratetype,
2138						true, &can_steal) != -1)
2139			/*
2140			 * Movable pages are OK in any pageblock. If we are
2141			 * stealing for a non-movable allocation, make sure
2142			 * we finish compacting the current pageblock first
2143			 * (which is assured by the above migrate_pfn align
2144			 * check) so it is as free as possible and we won't
2145			 * have to steal another one soon.
2146			 */
2147			return COMPACT_SUCCESS;
2148	}
2149
2150out:
2151	if (cc->contended || fatal_signal_pending(current))
2152		ret = COMPACT_CONTENDED;
2153
2154	return ret;
2155}
2156
2157static enum compact_result compact_finished(struct compact_control *cc)
2158{
2159	int ret;
2160
2161	ret = __compact_finished(cc);
2162	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2163	if (ret == COMPACT_NO_SUITABLE_PAGE)
2164		ret = COMPACT_CONTINUE;
2165
2166	return ret;
2167}
2168
2169static enum compact_result __compaction_suitable(struct zone *zone, int order,
2170					unsigned int alloc_flags,
2171					int highest_zoneidx,
2172					unsigned long wmark_target)
2173{
 
2174	unsigned long watermark;
2175
2176	if (is_via_compact_memory(order))
2177		return COMPACT_CONTINUE;
2178
2179	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2180	/*
2181	 * If watermarks for high-order allocation are already met, there
2182	 * should be no need for compaction at all.
2183	 */
2184	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2185								alloc_flags))
2186		return COMPACT_SUCCESS;
2187
2188	/*
2189	 * Watermarks for order-0 must be met for compaction to be able to
2190	 * isolate free pages for migration targets. This means that the
2191	 * watermark and alloc_flags have to match, or be more pessimistic than
2192	 * the check in __isolate_free_page(). We don't use the direct
2193	 * compactor's alloc_flags, as they are not relevant for freepage
2194	 * isolation. We however do use the direct compactor's highest_zoneidx
2195	 * to skip over zones where lowmem reserves would prevent allocation
2196	 * even if compaction succeeds.
2197	 * For costly orders, we require low watermark instead of min for
2198	 * compaction to proceed to increase its chances.
2199	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2200	 * suitable migration targets
2201	 */
2202	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2203				low_wmark_pages(zone) : min_wmark_pages(zone);
2204	watermark += compact_gap(order);
2205	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2206						ALLOC_CMA, wmark_target))
2207		return COMPACT_SKIPPED;
2208
2209	return COMPACT_CONTINUE;
2210}
2211
2212/*
2213 * compaction_suitable: Is this suitable to run compaction on this zone now?
2214 * Returns
2215 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2216 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2217 *   COMPACT_CONTINUE - If compaction should run now
2218 */
2219enum compact_result compaction_suitable(struct zone *zone, int order,
2220					unsigned int alloc_flags,
2221					int highest_zoneidx)
2222{
2223	enum compact_result ret;
2224	int fragindex;
2225
2226	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2227				    zone_page_state(zone, NR_FREE_PAGES));
2228	/*
2229	 * fragmentation index determines if allocation failures are due to
2230	 * low memory or external fragmentation
2231	 *
2232	 * index of -1000 would imply allocations might succeed depending on
2233	 * watermarks, but we already failed the high-order watermark check
2234	 * index towards 0 implies failure is due to lack of memory
2235	 * index towards 1000 implies failure is due to fragmentation
2236	 *
2237	 * Only compact if a failure would be due to fragmentation. Also
2238	 * ignore fragindex for non-costly orders where the alternative to
2239	 * a successful reclaim/compaction is OOM. Fragindex and the
2240	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2241	 * excessive compaction for costly orders, but it should not be at the
2242	 * expense of system stability.
2243	 */
2244	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2245		fragindex = fragmentation_index(zone, order);
2246		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2247			ret = COMPACT_NOT_SUITABLE_ZONE;
2248	}
2249
2250	trace_mm_compaction_suitable(zone, order, ret);
2251	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2252		ret = COMPACT_SKIPPED;
2253
2254	return ret;
2255}
2256
2257bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2258		int alloc_flags)
2259{
2260	struct zone *zone;
2261	struct zoneref *z;
 
2262
2263	/*
2264	 * Make sure at least one zone would pass __compaction_suitable if we continue
2265	 * retrying the reclaim.
2266	 */
2267	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2268				ac->highest_zoneidx, ac->nodemask) {
2269		unsigned long available;
2270		enum compact_result compact_result;
2271
2272		/*
2273		 * Do not consider all the reclaimable memory because we do not
2274		 * want to trash just for a single high order allocation which
2275		 * is even not guaranteed to appear even if __compaction_suitable
2276		 * is happy about the watermark check.
2277		 */
2278		available = zone_reclaimable_pages(zone) / order;
2279		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2280		compact_result = __compaction_suitable(zone, order, alloc_flags,
2281				ac->highest_zoneidx, available);
2282		if (compact_result == COMPACT_CONTINUE)
2283			return true;
2284	}
2285
2286	return false;
2287}
2288
2289static enum compact_result
2290compact_zone(struct compact_control *cc, struct capture_control *capc)
2291{
2292	enum compact_result ret;
2293	unsigned long start_pfn = cc->zone->zone_start_pfn;
2294	unsigned long end_pfn = zone_end_pfn(cc->zone);
2295	unsigned long last_migrated_pfn;
2296	const bool sync = cc->mode != MIGRATE_ASYNC;
2297	bool update_cached;
2298	unsigned int nr_succeeded = 0;
2299
2300	/*
2301	 * These counters track activities during zone compaction.  Initialize
2302	 * them before compacting a new zone.
2303	 */
2304	cc->total_migrate_scanned = 0;
2305	cc->total_free_scanned = 0;
2306	cc->nr_migratepages = 0;
2307	cc->nr_freepages = 0;
2308	INIT_LIST_HEAD(&cc->freepages);
2309	INIT_LIST_HEAD(&cc->migratepages);
2310
2311	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2312	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2313							cc->highest_zoneidx);
2314	/* Compaction is likely to fail */
2315	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2316		return ret;
2317
2318	/* huh, compaction_suitable is returning something unexpected */
2319	VM_BUG_ON(ret != COMPACT_CONTINUE);
2320
2321	/*
2322	 * Clear pageblock skip if there were failures recently and compaction
2323	 * is about to be retried after being deferred.
 
2324	 */
2325	if (compaction_restarting(cc->zone, cc->order))
2326		__reset_isolation_suitable(cc->zone);
2327
2328	/*
2329	 * Setup to move all movable pages to the end of the zone. Used cached
2330	 * information on where the scanners should start (unless we explicitly
2331	 * want to compact the whole zone), but check that it is initialised
2332	 * by ensuring the values are within zone boundaries.
2333	 */
2334	cc->fast_start_pfn = 0;
2335	if (cc->whole_zone) {
 
 
 
 
 
2336		cc->migrate_pfn = start_pfn;
2337		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2338	} else {
2339		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2340		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2341		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2342			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2343			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2344		}
2345		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2346			cc->migrate_pfn = start_pfn;
2347			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2348			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2349		}
2350
2351		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2352			cc->whole_zone = true;
2353	}
2354
2355	last_migrated_pfn = 0;
2356
2357	/*
2358	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2359	 * the basis that some migrations will fail in ASYNC mode. However,
2360	 * if the cached PFNs match and pageblocks are skipped due to having
2361	 * no isolation candidates, then the sync state does not matter.
2362	 * Until a pageblock with isolation candidates is found, keep the
2363	 * cached PFNs in sync to avoid revisiting the same blocks.
2364	 */
2365	update_cached = !sync &&
2366		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2367
2368	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2369
2370	/* lru_add_drain_all could be expensive with involving other CPUs */
2371	lru_add_drain();
2372
2373	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2374		int err;
2375		unsigned long iteration_start_pfn = cc->migrate_pfn;
2376
2377		/*
2378		 * Avoid multiple rescans which can happen if a page cannot be
2379		 * isolated (dirty/writeback in async mode) or if the migrated
2380		 * pages are being allocated before the pageblock is cleared.
2381		 * The first rescan will capture the entire pageblock for
2382		 * migration. If it fails, it'll be marked skip and scanning
2383		 * will proceed as normal.
2384		 */
2385		cc->rescan = false;
2386		if (pageblock_start_pfn(last_migrated_pfn) ==
2387		    pageblock_start_pfn(iteration_start_pfn)) {
2388			cc->rescan = true;
2389		}
2390
2391		switch (isolate_migratepages(cc)) {
2392		case ISOLATE_ABORT:
2393			ret = COMPACT_CONTENDED;
2394			putback_movable_pages(&cc->migratepages);
2395			cc->nr_migratepages = 0;
2396			goto out;
2397		case ISOLATE_NONE:
2398			if (update_cached) {
2399				cc->zone->compact_cached_migrate_pfn[1] =
2400					cc->zone->compact_cached_migrate_pfn[0];
2401			}
2402
2403			/*
2404			 * We haven't isolated and migrated anything, but
2405			 * there might still be unflushed migrations from
2406			 * previous cc->order aligned block.
2407			 */
2408			goto check_drain;
2409		case ISOLATE_SUCCESS:
2410			update_cached = false;
2411			last_migrated_pfn = iteration_start_pfn;
2412		}
2413
 
2414		err = migrate_pages(&cc->migratepages, compaction_alloc,
2415				compaction_free, (unsigned long)cc, cc->mode,
2416				MR_COMPACTION, &nr_succeeded);
 
 
 
2417
2418		trace_mm_compaction_migratepages(cc, nr_succeeded);
 
2419
2420		/* All pages were either migrated or will be released */
2421		cc->nr_migratepages = 0;
2422		if (err) {
2423			putback_movable_pages(&cc->migratepages);
 
2424			/*
2425			 * migrate_pages() may return -ENOMEM when scanners meet
2426			 * and we want compact_finished() to detect it
2427			 */
2428			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2429				ret = COMPACT_CONTENDED;
2430				goto out;
2431			}
2432			/*
2433			 * We failed to migrate at least one page in the current
2434			 * order-aligned block, so skip the rest of it.
2435			 */
2436			if (cc->direct_compaction &&
2437						(cc->mode == MIGRATE_ASYNC)) {
2438				cc->migrate_pfn = block_end_pfn(
2439						cc->migrate_pfn - 1, cc->order);
2440				/* Draining pcplists is useless in this case */
2441				last_migrated_pfn = 0;
2442			}
2443		}
2444
2445check_drain:
2446		/*
2447		 * Has the migration scanner moved away from the previous
2448		 * cc->order aligned block where we migrated from? If yes,
2449		 * flush the pages that were freed, so that they can merge and
2450		 * compact_finished() can detect immediately if allocation
2451		 * would succeed.
2452		 */
2453		if (cc->order > 0 && last_migrated_pfn) {
2454			unsigned long current_block_start =
2455				block_start_pfn(cc->migrate_pfn, cc->order);
2456
2457			if (last_migrated_pfn < current_block_start) {
2458				lru_add_drain_cpu_zone(cc->zone);
2459				/* No more flushing until we migrate again */
2460				last_migrated_pfn = 0;
2461			}
2462		}
2463
2464		/* Stop if a page has been captured */
2465		if (capc && capc->page) {
2466			ret = COMPACT_SUCCESS;
2467			break;
2468		}
2469	}
2470
2471out:
2472	/*
2473	 * Release free pages and update where the free scanner should restart,
2474	 * so we don't leave any returned pages behind in the next attempt.
2475	 */
2476	if (cc->nr_freepages > 0) {
2477		unsigned long free_pfn = release_freepages(&cc->freepages);
2478
2479		cc->nr_freepages = 0;
2480		VM_BUG_ON(free_pfn == 0);
2481		/* The cached pfn is always the first in a pageblock */
2482		free_pfn = pageblock_start_pfn(free_pfn);
2483		/*
2484		 * Only go back, not forward. The cached pfn might have been
2485		 * already reset to zone end in compact_finished()
2486		 */
2487		if (free_pfn > cc->zone->compact_cached_free_pfn)
2488			cc->zone->compact_cached_free_pfn = free_pfn;
2489	}
2490
2491	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2492	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2493
2494	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2495
2496	return ret;
2497}
2498
2499static enum compact_result compact_zone_order(struct zone *zone, int order,
2500		gfp_t gfp_mask, enum compact_priority prio,
2501		unsigned int alloc_flags, int highest_zoneidx,
2502		struct page **capture)
2503{
2504	enum compact_result ret;
2505	struct compact_control cc = {
 
 
2506		.order = order,
2507		.search_order = order,
2508		.gfp_mask = gfp_mask,
2509		.zone = zone,
2510		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2511					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2512		.alloc_flags = alloc_flags,
2513		.highest_zoneidx = highest_zoneidx,
2514		.direct_compaction = true,
2515		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2516		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2517		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2518	};
2519	struct capture_control capc = {
2520		.cc = &cc,
2521		.page = NULL,
2522	};
2523
2524	/*
2525	 * Make sure the structs are really initialized before we expose the
2526	 * capture control, in case we are interrupted and the interrupt handler
2527	 * frees a page.
2528	 */
2529	barrier();
2530	WRITE_ONCE(current->capture_control, &capc);
2531
2532	ret = compact_zone(&cc, &capc);
2533
2534	VM_BUG_ON(!list_empty(&cc.freepages));
2535	VM_BUG_ON(!list_empty(&cc.migratepages));
2536
2537	/*
2538	 * Make sure we hide capture control first before we read the captured
2539	 * page pointer, otherwise an interrupt could free and capture a page
2540	 * and we would leak it.
2541	 */
2542	WRITE_ONCE(current->capture_control, NULL);
2543	*capture = READ_ONCE(capc.page);
2544	/*
2545	 * Technically, it is also possible that compaction is skipped but
2546	 * the page is still captured out of luck(IRQ came and freed the page).
2547	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2548	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2549	 */
2550	if (*capture)
2551		ret = COMPACT_SUCCESS;
2552
2553	return ret;
2554}
2555
2556int sysctl_extfrag_threshold = 500;
2557
2558/**
2559 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 
 
2560 * @gfp_mask: The GFP mask of the current allocation
2561 * @order: The order of the current allocation
2562 * @alloc_flags: The allocation flags of the current allocation
2563 * @ac: The context of current allocation
2564 * @prio: Determines how hard direct compaction should try to succeed
2565 * @capture: Pointer to free page created by compaction will be stored here
2566 *
2567 * This is the main entry point for direct page compaction.
2568 */
2569enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2570		unsigned int alloc_flags, const struct alloc_context *ac,
2571		enum compact_priority prio, struct page **capture)
2572{
2573	int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
 
 
2574	struct zoneref *z;
2575	struct zone *zone;
2576	enum compact_result rc = COMPACT_SKIPPED;
 
2577
2578	/*
2579	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2580	 * tricky context because the migration might require IO
2581	 */
2582	if (!may_perform_io)
2583		return COMPACT_SKIPPED;
2584
2585	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2586
 
 
 
 
2587	/* Compact each zone in the list */
2588	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2589					ac->highest_zoneidx, ac->nodemask) {
2590		enum compact_result status;
2591
2592		if (prio > MIN_COMPACT_PRIORITY
2593					&& compaction_deferred(zone, order)) {
2594			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2595			continue;
2596		}
2597
2598		status = compact_zone_order(zone, order, gfp_mask, prio,
2599				alloc_flags, ac->highest_zoneidx, capture);
2600		rc = max(status, rc);
2601
2602		/* The allocation should succeed, stop compacting */
2603		if (status == COMPACT_SUCCESS) {
2604			/*
2605			 * We think the allocation will succeed in this zone,
2606			 * but it is not certain, hence the false. The caller
2607			 * will repeat this with true if allocation indeed
2608			 * succeeds in this zone.
2609			 */
2610			compaction_defer_reset(zone, order, false);
2611
2612			break;
2613		}
2614
2615		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2616					status == COMPACT_PARTIAL_SKIPPED))
2617			/*
2618			 * We think that allocation won't succeed in this zone
2619			 * so we defer compaction there. If it ends up
2620			 * succeeding after all, it will be reset.
2621			 */
2622			defer_compaction(zone, order);
2623
2624		/*
2625		 * We might have stopped compacting due to need_resched() in
2626		 * async compaction, or due to a fatal signal detected. In that
2627		 * case do not try further zones
2628		 */
2629		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2630					|| fatal_signal_pending(current))
2631			break;
2632	}
2633
2634	return rc;
2635}
2636
2637/*
2638 * Compact all zones within a node till each zone's fragmentation score
2639 * reaches within proactive compaction thresholds (as determined by the
2640 * proactiveness tunable).
2641 *
2642 * It is possible that the function returns before reaching score targets
2643 * due to various back-off conditions, such as, contention on per-node or
2644 * per-zone locks.
2645 */
2646static void proactive_compact_node(pg_data_t *pgdat)
2647{
2648	int zoneid;
2649	struct zone *zone;
2650	struct compact_control cc = {
2651		.order = -1,
2652		.mode = MIGRATE_SYNC_LIGHT,
2653		.ignore_skip_hint = true,
2654		.whole_zone = true,
2655		.gfp_mask = GFP_KERNEL,
2656		.proactive_compaction = true,
2657	};
2658
2659	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 
2660		zone = &pgdat->node_zones[zoneid];
2661		if (!populated_zone(zone))
2662			continue;
2663
2664		cc.zone = zone;
 
 
 
 
2665
2666		compact_zone(&cc, NULL);
 
 
 
 
 
 
 
 
 
 
2667
2668		VM_BUG_ON(!list_empty(&cc.freepages));
2669		VM_BUG_ON(!list_empty(&cc.migratepages));
2670	}
2671}
2672
2673/* Compact all zones within a node */
 
 
 
 
 
 
 
 
 
 
 
 
2674static void compact_node(int nid)
2675{
2676	pg_data_t *pgdat = NODE_DATA(nid);
2677	int zoneid;
2678	struct zone *zone;
2679	struct compact_control cc = {
2680		.order = -1,
2681		.mode = MIGRATE_SYNC,
2682		.ignore_skip_hint = true,
2683		.whole_zone = true,
2684		.gfp_mask = GFP_KERNEL,
2685	};
2686
2687
2688	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2689
2690		zone = &pgdat->node_zones[zoneid];
2691		if (!populated_zone(zone))
2692			continue;
2693
2694		cc.zone = zone;
2695
2696		compact_zone(&cc, NULL);
2697
2698		VM_BUG_ON(!list_empty(&cc.freepages));
2699		VM_BUG_ON(!list_empty(&cc.migratepages));
2700	}
2701}
2702
2703/* Compact all nodes in the system */
2704static void compact_nodes(void)
2705{
2706	int nid;
2707
2708	/* Flush pending updates to the LRU lists */
2709	lru_add_drain_all();
2710
2711	for_each_online_node(nid)
2712		compact_node(nid);
2713}
2714
2715/*
2716 * Tunable for proactive compaction. It determines how
2717 * aggressively the kernel should compact memory in the
2718 * background. It takes values in the range [0, 100].
2719 */
2720unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2721
2722int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2723		void *buffer, size_t *length, loff_t *ppos)
 
2724{
2725	int rc, nid;
2726
2727	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2728	if (rc)
2729		return rc;
2730
2731	if (write && sysctl_compaction_proactiveness) {
2732		for_each_online_node(nid) {
2733			pg_data_t *pgdat = NODE_DATA(nid);
2734
2735			if (pgdat->proactive_compact_trigger)
2736				continue;
2737
2738			pgdat->proactive_compact_trigger = true;
2739			wake_up_interruptible(&pgdat->kcompactd_wait);
2740		}
2741	}
2742
2743	return 0;
2744}
2745
2746/*
2747 * This is the entry point for compacting all nodes via
2748 * /proc/sys/vm/compact_memory
2749 */
2750int sysctl_compaction_handler(struct ctl_table *table, int write,
2751			void *buffer, size_t *length, loff_t *ppos)
2752{
2753	if (write)
2754		compact_nodes();
2755
2756	return 0;
2757}
2758
2759#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2760static ssize_t compact_store(struct device *dev,
2761			     struct device_attribute *attr,
2762			     const char *buf, size_t count)
2763{
2764	int nid = dev->id;
2765
2766	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2767		/* Flush pending updates to the LRU lists */
2768		lru_add_drain_all();
2769
2770		compact_node(nid);
2771	}
2772
2773	return count;
2774}
2775static DEVICE_ATTR_WO(compact);
2776
2777int compaction_register_node(struct node *node)
2778{
2779	return device_create_file(&node->dev, &dev_attr_compact);
2780}
2781
2782void compaction_unregister_node(struct node *node)
2783{
2784	return device_remove_file(&node->dev, &dev_attr_compact);
2785}
2786#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2787
2788static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2789{
2790	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2791		pgdat->proactive_compact_trigger;
2792}
2793
2794static bool kcompactd_node_suitable(pg_data_t *pgdat)
2795{
2796	int zoneid;
2797	struct zone *zone;
2798	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2799
2800	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2801		zone = &pgdat->node_zones[zoneid];
2802
2803		if (!populated_zone(zone))
2804			continue;
2805
2806		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2807					highest_zoneidx) == COMPACT_CONTINUE)
2808			return true;
2809	}
2810
2811	return false;
2812}
2813
2814static void kcompactd_do_work(pg_data_t *pgdat)
2815{
2816	/*
2817	 * With no special task, compact all zones so that a page of requested
2818	 * order is allocatable.
2819	 */
2820	int zoneid;
2821	struct zone *zone;
2822	struct compact_control cc = {
2823		.order = pgdat->kcompactd_max_order,
2824		.search_order = pgdat->kcompactd_max_order,
2825		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2826		.mode = MIGRATE_SYNC_LIGHT,
2827		.ignore_skip_hint = false,
2828		.gfp_mask = GFP_KERNEL,
2829	};
2830	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2831							cc.highest_zoneidx);
2832	count_compact_event(KCOMPACTD_WAKE);
2833
2834	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2835		int status;
2836
2837		zone = &pgdat->node_zones[zoneid];
2838		if (!populated_zone(zone))
2839			continue;
2840
2841		if (compaction_deferred(zone, cc.order))
2842			continue;
2843
2844		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2845							COMPACT_CONTINUE)
2846			continue;
2847
2848		if (kthread_should_stop())
2849			return;
2850
2851		cc.zone = zone;
2852		status = compact_zone(&cc, NULL);
2853
2854		if (status == COMPACT_SUCCESS) {
2855			compaction_defer_reset(zone, cc.order, false);
2856		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2857			/*
2858			 * Buddy pages may become stranded on pcps that could
2859			 * otherwise coalesce on the zone's free area for
2860			 * order >= cc.order.  This is ratelimited by the
2861			 * upcoming deferral.
2862			 */
2863			drain_all_pages(zone);
2864
2865			/*
2866			 * We use sync migration mode here, so we defer like
2867			 * sync direct compaction does.
2868			 */
2869			defer_compaction(zone, cc.order);
2870		}
2871
2872		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2873				     cc.total_migrate_scanned);
2874		count_compact_events(KCOMPACTD_FREE_SCANNED,
2875				     cc.total_free_scanned);
2876
2877		VM_BUG_ON(!list_empty(&cc.freepages));
2878		VM_BUG_ON(!list_empty(&cc.migratepages));
2879	}
2880
2881	/*
2882	 * Regardless of success, we are done until woken up next. But remember
2883	 * the requested order/highest_zoneidx in case it was higher/tighter
2884	 * than our current ones
2885	 */
2886	if (pgdat->kcompactd_max_order <= cc.order)
2887		pgdat->kcompactd_max_order = 0;
2888	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2889		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2890}
2891
2892void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2893{
2894	if (!order)
2895		return;
2896
2897	if (pgdat->kcompactd_max_order < order)
2898		pgdat->kcompactd_max_order = order;
2899
2900	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2901		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2902
2903	/*
2904	 * Pairs with implicit barrier in wait_event_freezable()
2905	 * such that wakeups are not missed.
2906	 */
2907	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2908		return;
2909
2910	if (!kcompactd_node_suitable(pgdat))
2911		return;
2912
2913	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2914							highest_zoneidx);
2915	wake_up_interruptible(&pgdat->kcompactd_wait);
2916}
2917
2918/*
2919 * The background compaction daemon, started as a kernel thread
2920 * from the init process.
2921 */
2922static int kcompactd(void *p)
2923{
2924	pg_data_t *pgdat = (pg_data_t *)p;
2925	struct task_struct *tsk = current;
2926	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2927	long timeout = default_timeout;
2928
2929	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2930
2931	if (!cpumask_empty(cpumask))
2932		set_cpus_allowed_ptr(tsk, cpumask);
2933
2934	set_freezable();
2935
2936	pgdat->kcompactd_max_order = 0;
2937	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2938
2939	while (!kthread_should_stop()) {
2940		unsigned long pflags;
2941
2942		/*
2943		 * Avoid the unnecessary wakeup for proactive compaction
2944		 * when it is disabled.
2945		 */
2946		if (!sysctl_compaction_proactiveness)
2947			timeout = MAX_SCHEDULE_TIMEOUT;
2948		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2949		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2950			kcompactd_work_requested(pgdat), timeout) &&
2951			!pgdat->proactive_compact_trigger) {
2952
2953			psi_memstall_enter(&pflags);
2954			kcompactd_do_work(pgdat);
2955			psi_memstall_leave(&pflags);
2956			/*
2957			 * Reset the timeout value. The defer timeout from
2958			 * proactive compaction is lost here but that is fine
2959			 * as the condition of the zone changing substantionally
2960			 * then carrying on with the previous defer interval is
2961			 * not useful.
2962			 */
2963			timeout = default_timeout;
2964			continue;
2965		}
2966
2967		/*
2968		 * Start the proactive work with default timeout. Based
2969		 * on the fragmentation score, this timeout is updated.
2970		 */
2971		timeout = default_timeout;
2972		if (should_proactive_compact_node(pgdat)) {
2973			unsigned int prev_score, score;
2974
2975			prev_score = fragmentation_score_node(pgdat);
2976			proactive_compact_node(pgdat);
2977			score = fragmentation_score_node(pgdat);
2978			/*
2979			 * Defer proactive compaction if the fragmentation
2980			 * score did not go down i.e. no progress made.
2981			 */
2982			if (unlikely(score >= prev_score))
2983				timeout =
2984				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
2985		}
2986		if (unlikely(pgdat->proactive_compact_trigger))
2987			pgdat->proactive_compact_trigger = false;
2988	}
2989
2990	return 0;
2991}
2992
2993/*
2994 * This kcompactd start function will be called by init and node-hot-add.
2995 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2996 */
2997void kcompactd_run(int nid)
2998{
2999	pg_data_t *pgdat = NODE_DATA(nid);
3000
3001	if (pgdat->kcompactd)
3002		return;
3003
3004	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3005	if (IS_ERR(pgdat->kcompactd)) {
3006		pr_err("Failed to start kcompactd on node %d\n", nid);
3007		pgdat->kcompactd = NULL;
3008	}
3009}
3010
3011/*
3012 * Called by memory hotplug when all memory in a node is offlined. Caller must
3013 * be holding mem_hotplug_begin/done().
3014 */
3015void kcompactd_stop(int nid)
3016{
3017	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3018
3019	if (kcompactd) {
3020		kthread_stop(kcompactd);
3021		NODE_DATA(nid)->kcompactd = NULL;
3022	}
3023}
3024
3025/*
3026 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3027 * not required for correctness. So if the last cpu in a node goes
3028 * away, we get changed to run anywhere: as the first one comes back,
3029 * restore their cpu bindings.
3030 */
3031static int kcompactd_cpu_online(unsigned int cpu)
3032{
3033	int nid;
3034
3035	for_each_node_state(nid, N_MEMORY) {
3036		pg_data_t *pgdat = NODE_DATA(nid);
3037		const struct cpumask *mask;
3038
3039		mask = cpumask_of_node(pgdat->node_id);
3040
3041		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3042			/* One of our CPUs online: restore mask */
3043			if (pgdat->kcompactd)
3044				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3045	}
3046	return 0;
3047}
3048
3049static int __init kcompactd_init(void)
3050{
3051	int nid;
3052	int ret;
3053
3054	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3055					"mm/compaction:online",
3056					kcompactd_cpu_online, NULL);
3057	if (ret < 0) {
3058		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3059		return ret;
3060	}
3061
3062	for_each_node_state(nid, N_MEMORY)
3063		kcompactd_run(nid);
3064	return 0;
3065}
3066subsys_initcall(kcompactd_init)
3067
3068#endif /* CONFIG_COMPACTION */