Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
   1/*
   2 * linux/mm/compaction.c
   3 *
   4 * Memory compaction for the reduction of external fragmentation. Note that
   5 * this heavily depends upon page migration to do all the real heavy
   6 * lifting
   7 *
   8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
   9 */
 
  10#include <linux/swap.h>
  11#include <linux/migrate.h>
  12#include <linux/compaction.h>
  13#include <linux/mm_inline.h>
  14#include <linux/backing-dev.h>
  15#include <linux/sysctl.h>
  16#include <linux/sysfs.h>
  17#include <linux/balloon_compaction.h>
  18#include <linux/page-isolation.h>
 
 
 
 
  19#include "internal.h"
  20
  21#ifdef CONFIG_COMPACTION
  22static inline void count_compact_event(enum vm_event_item item)
  23{
  24	count_vm_event(item);
  25}
  26
  27static inline void count_compact_events(enum vm_event_item item, long delta)
  28{
  29	count_vm_events(item, delta);
  30}
  31#else
  32#define count_compact_event(item) do { } while (0)
  33#define count_compact_events(item, delta) do { } while (0)
  34#endif
  35
  36#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/compaction.h>
  40
 
 
 
 
 
  41static unsigned long release_freepages(struct list_head *freelist)
  42{
  43	struct page *page, *next;
  44	unsigned long count = 0;
  45
  46	list_for_each_entry_safe(page, next, freelist, lru) {
 
  47		list_del(&page->lru);
  48		__free_page(page);
  49		count++;
 
  50	}
  51
  52	return count;
  53}
  54
  55static void map_pages(struct list_head *list)
  56{
  57	struct page *page;
 
 
  58
  59	list_for_each_entry(page, list, lru) {
  60		arch_alloc_page(page, 0);
  61		kernel_map_pages(page, 1, 1);
 
 
 
 
 
 
 
 
 
 
 
  62	}
 
 
  63}
  64
  65static inline bool migrate_async_suitable(int migratetype)
  66{
  67	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
  68}
  69
  70#ifdef CONFIG_COMPACTION
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71/* Returns true if the pageblock should be scanned for pages to isolate. */
  72static inline bool isolation_suitable(struct compact_control *cc,
  73					struct page *page)
  74{
  75	if (cc->ignore_skip_hint)
  76		return true;
  77
  78	return !get_pageblock_skip(page);
  79}
  80
 
 
 
 
 
 
 
 
  81/*
  82 * This function is called to clear all cached information on pageblocks that
  83 * should be skipped for page isolation when the migrate and free page scanner
  84 * meet.
  85 */
  86static void __reset_isolation_suitable(struct zone *zone)
  87{
  88	unsigned long start_pfn = zone->zone_start_pfn;
  89	unsigned long end_pfn = zone_end_pfn(zone);
  90	unsigned long pfn;
  91
  92	zone->compact_cached_migrate_pfn = start_pfn;
  93	zone->compact_cached_free_pfn = end_pfn;
  94	zone->compact_blockskip_flush = false;
  95
  96	/* Walk the zone and mark every pageblock as suitable for isolation */
  97	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  98		struct page *page;
  99
 100		cond_resched();
 101
 102		if (!pfn_valid(pfn))
 103			continue;
 104
 105		page = pfn_to_page(pfn);
 106		if (zone != page_zone(page))
 107			continue;
 108
 109		clear_pageblock_skip(page);
 110	}
 
 
 111}
 112
 113void reset_isolation_suitable(pg_data_t *pgdat)
 114{
 115	int zoneid;
 116
 117	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 118		struct zone *zone = &pgdat->node_zones[zoneid];
 119		if (!populated_zone(zone))
 120			continue;
 121
 122		/* Only flush if a full compaction finished recently */
 123		if (zone->compact_blockskip_flush)
 124			__reset_isolation_suitable(zone);
 125	}
 126}
 127
 128/*
 129 * If no pages were isolated then mark this pageblock to be skipped in the
 130 * future. The information is later cleared by __reset_isolation_suitable().
 131 */
 132static void update_pageblock_skip(struct compact_control *cc,
 133			struct page *page, unsigned long nr_isolated,
 134			bool migrate_scanner)
 135{
 136	struct zone *zone = cc->zone;
 
 137
 138	if (cc->ignore_skip_hint)
 139		return;
 140
 141	if (!page)
 142		return;
 143
 144	if (!nr_isolated) {
 145		unsigned long pfn = page_to_pfn(page);
 146		set_pageblock_skip(page);
 147
 148		/* Update where compaction should restart */
 149		if (migrate_scanner) {
 150			if (!cc->finished_update_migrate &&
 151			    pfn > zone->compact_cached_migrate_pfn)
 152				zone->compact_cached_migrate_pfn = pfn;
 153		} else {
 154			if (!cc->finished_update_free &&
 155			    pfn < zone->compact_cached_free_pfn)
 156				zone->compact_cached_free_pfn = pfn;
 157		}
 
 
 
 
 158	}
 159}
 160#else
 161static inline bool isolation_suitable(struct compact_control *cc,
 162					struct page *page)
 163{
 164	return true;
 165}
 166
 167static void update_pageblock_skip(struct compact_control *cc,
 168			struct page *page, unsigned long nr_isolated,
 169			bool migrate_scanner)
 170{
 171}
 172#endif /* CONFIG_COMPACTION */
 173
 174static inline bool should_release_lock(spinlock_t *lock)
 175{
 176	return need_resched() || spin_is_contended(lock);
 177}
 178
 179/*
 180 * Compaction requires the taking of some coarse locks that are potentially
 181 * very heavily contended. Check if the process needs to be scheduled or
 182 * if the lock is contended. For async compaction, back out in the event
 183 * if contention is severe. For sync compaction, schedule.
 184 *
 185 * Returns true if the lock is held.
 186 * Returns false if the lock is released and compaction should abort
 187 */
 188static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
 189				      bool locked, struct compact_control *cc)
 190{
 191	if (should_release_lock(lock)) {
 192		if (locked) {
 193			spin_unlock_irqrestore(lock, *flags);
 194			locked = false;
 195		}
 196
 197		/* async aborts if taking too long or contended */
 198		if (!cc->sync) {
 199			cc->contended = true;
 200			return false;
 201		}
 202
 203		cond_resched();
 204	}
 205
 206	if (!locked)
 207		spin_lock_irqsave(lock, *flags);
 208	return true;
 209}
 210
 211static inline bool compact_trylock_irqsave(spinlock_t *lock,
 212			unsigned long *flags, struct compact_control *cc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213{
 214	return compact_checklock_irqsave(lock, flags, false, cc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215}
 216
 217/* Returns true if the page is within a block suitable for migration to */
 218static bool suitable_migration_target(struct page *page)
 
 
 
 
 
 
 
 
 219{
 220	/* If the page is a large free page, then disallow migration */
 221	if (PageBuddy(page) && page_order(page) >= pageblock_order)
 222		return false;
 
 
 
 223
 224	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
 225	if (migrate_async_suitable(get_pageblock_migratetype(page)))
 226		return true;
 227
 228	/* Otherwise skip the block */
 229	return false;
 230}
 231
 232/*
 233 * Isolate free pages onto a private freelist. If @strict is true, will abort
 234 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 235 * (even though it may still end up isolating some pages).
 236 */
 237static unsigned long isolate_freepages_block(struct compact_control *cc,
 238				unsigned long blockpfn,
 239				unsigned long end_pfn,
 240				struct list_head *freelist,
 241				bool strict)
 242{
 243	int nr_scanned = 0, total_isolated = 0;
 244	struct page *cursor, *valid_page = NULL;
 245	unsigned long flags;
 246	bool locked = false;
 247	bool checked_pageblock = false;
 
 248
 249	cursor = pfn_to_page(blockpfn);
 250
 251	/* Isolate free pages. */
 252	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 253		int isolated, i;
 254		struct page *page = cursor;
 255
 
 
 
 
 
 
 
 
 
 
 256		nr_scanned++;
 257		if (!pfn_valid_within(blockpfn))
 258			goto isolate_fail;
 259
 260		if (!valid_page)
 261			valid_page = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262		if (!PageBuddy(page))
 263			goto isolate_fail;
 264
 265		/*
 266		 * The zone lock must be held to isolate freepages.
 267		 * Unfortunately this is a very coarse lock and can be
 268		 * heavily contended if there are parallel allocations
 269		 * or parallel compactions. For async compaction do not
 270		 * spin on the lock and we acquire the lock as late as
 271		 * possible.
 272		 */
 273		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
 274								locked, cc);
 275		if (!locked)
 276			break;
 277
 278		/* Recheck this is a suitable migration target under lock */
 279		if (!strict && !checked_pageblock) {
 280			/*
 281			 * We need to check suitability of pageblock only once
 282			 * and this isolate_freepages_block() is called with
 283			 * pageblock range, so just check once is sufficient.
 
 
 
 284			 */
 285			checked_pageblock = true;
 286			if (!suitable_migration_target(page))
 
 287				break;
 
 
 
 
 288		}
 289
 290		/* Recheck this is a buddy page under lock */
 291		if (!PageBuddy(page))
 292			goto isolate_fail;
 
 
 
 293
 294		/* Found a free page, break it into order-0 pages */
 295		isolated = split_free_page(page);
 296		total_isolated += isolated;
 297		for (i = 0; i < isolated; i++) {
 298			list_add(&page->lru, freelist);
 299			page++;
 300		}
 301
 302		/* If a page was split, advance to the end of it */
 303		if (isolated) {
 304			blockpfn += isolated - 1;
 305			cursor += isolated - 1;
 306			continue;
 307		}
 
 
 
 
 308
 309isolate_fail:
 310		if (strict)
 311			break;
 312		else
 313			continue;
 314
 315	}
 316
 317	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318
 319	/*
 320	 * If strict isolation is requested by CMA then check that all the
 321	 * pages requested were isolated. If there were any failures, 0 is
 322	 * returned and CMA will fail.
 323	 */
 324	if (strict && blockpfn < end_pfn)
 325		total_isolated = 0;
 326
 327	if (locked)
 328		spin_unlock_irqrestore(&cc->zone->lock, flags);
 329
 330	/* Update the pageblock-skip if the whole pageblock was scanned */
 331	if (blockpfn == end_pfn)
 332		update_pageblock_skip(cc, valid_page, total_isolated, false);
 333
 334	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
 335	if (total_isolated)
 336		count_compact_events(COMPACTISOLATED, total_isolated);
 337	return total_isolated;
 338}
 339
 340/**
 341 * isolate_freepages_range() - isolate free pages.
 342 * @start_pfn: The first PFN to start isolating.
 343 * @end_pfn:   The one-past-last PFN.
 344 *
 345 * Non-free pages, invalid PFNs, or zone boundaries within the
 346 * [start_pfn, end_pfn) range are considered errors, cause function to
 347 * undo its actions and return zero.
 348 *
 349 * Otherwise, function returns one-past-the-last PFN of isolated page
 350 * (which may be greater then end_pfn if end fell in a middle of
 351 * a free page).
 352 */
 353unsigned long
 354isolate_freepages_range(struct compact_control *cc,
 355			unsigned long start_pfn, unsigned long end_pfn)
 356{
 357	unsigned long isolated, pfn, block_end_pfn;
 358	LIST_HEAD(freelist);
 359
 360	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
 361		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
 362			break;
 
 
 
 
 
 
 
 
 
 
 363
 364		/*
 365		 * On subsequent iterations ALIGN() is actually not needed,
 366		 * but we keep it that we not to complicate the code.
 
 367		 */
 368		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 369		block_end_pfn = min(block_end_pfn, end_pfn);
 
 
 
 370
 371		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
 372						   &freelist, true);
 
 
 
 
 373
 374		/*
 375		 * In strict mode, isolate_freepages_block() returns 0 if
 376		 * there are any holes in the block (ie. invalid PFNs or
 377		 * non-free pages).
 378		 */
 379		if (!isolated)
 380			break;
 381
 382		/*
 383		 * If we managed to isolate pages, it is always (1 << n) *
 384		 * pageblock_nr_pages for some non-negative n.  (Max order
 385		 * page may span two pageblocks).
 386		 */
 387	}
 388
 389	/* split_free_page does not map the pages */
 390	map_pages(&freelist);
 391
 392	if (pfn < end_pfn) {
 393		/* Loop terminated early, cleanup. */
 394		release_freepages(&freelist);
 395		return 0;
 396	}
 397
 398	/* We don't use freelists for anything. */
 399	return pfn;
 400}
 401
 402/* Update the number of anon and file isolated pages in the zone */
 403static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
 404{
 405	struct page *page;
 406	unsigned int count[2] = { 0, };
 407
 408	list_for_each_entry(page, &cc->migratepages, lru)
 409		count[!!page_is_file_cache(page)]++;
 410
 411	/* If locked we can use the interrupt unsafe versions */
 412	if (locked) {
 413		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 414		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 415	} else {
 416		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 417		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 418	}
 419}
 420
 421/* Similar to reclaim, but different enough that they don't share logic */
 422static bool too_many_isolated(struct zone *zone)
 423{
 424	unsigned long active, inactive, isolated;
 425
 426	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
 427					zone_page_state(zone, NR_INACTIVE_ANON);
 428	active = zone_page_state(zone, NR_ACTIVE_FILE) +
 429					zone_page_state(zone, NR_ACTIVE_ANON);
 430	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
 431					zone_page_state(zone, NR_ISOLATED_ANON);
 432
 433	return isolated > (inactive + active) / 2;
 434}
 435
 436/**
 437 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 438 * @zone:	Zone pages are in.
 439 * @cc:		Compaction control structure.
 440 * @low_pfn:	The first PFN of the range.
 441 * @end_pfn:	The one-past-the-last PFN of the range.
 442 * @unevictable: true if it allows to isolate unevictable pages
 443 *
 444 * Isolate all pages that can be migrated from the range specified by
 445 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 446 * pending), otherwise PFN of the first page that was not scanned
 447 * (which may be both less, equal to or more then end_pfn).
 
 448 *
 449 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 450 * zero.
 451 *
 452 * Apart from cc->migratepages and cc->nr_migratetypes this function
 453 * does not modify any cc's fields, in particular it does not modify
 454 * (or read for that matter) cc->migrate_pfn.
 455 */
 456unsigned long
 457isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
 458		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
 459{
 460	unsigned long last_pageblock_nr = 0, pageblock_nr;
 461	unsigned long nr_scanned = 0, nr_isolated = 0;
 462	struct list_head *migratelist = &cc->migratepages;
 463	struct lruvec *lruvec;
 464	unsigned long flags;
 465	bool locked = false;
 466	struct page *page = NULL, *valid_page = NULL;
 467	bool skipped_async_unsuitable = false;
 468	const isolate_mode_t mode = (!cc->sync ? ISOLATE_ASYNC_MIGRATE : 0) |
 469				    (unevictable ? ISOLATE_UNEVICTABLE : 0);
 470
 471	/*
 472	 * Ensure that there are not too many pages isolated from the LRU
 473	 * list by either parallel reclaimers or compaction. If there are,
 474	 * delay for some time until fewer pages are isolated
 475	 */
 476	while (unlikely(too_many_isolated(zone))) {
 477		/* async migration should just abort */
 478		if (!cc->sync)
 479			return 0;
 480
 481		congestion_wait(BLK_RW_ASYNC, HZ/10);
 482
 483		if (fatal_signal_pending(current))
 484			return 0;
 485	}
 486
 
 
 
 
 
 
 
 
 487	/* Time to isolate some pages for migration */
 488	cond_resched();
 489	for (; low_pfn < end_pfn; low_pfn++) {
 490		/* give a chance to irqs before checking need_resched() */
 491		if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
 492			if (should_release_lock(&zone->lru_lock)) {
 493				spin_unlock_irqrestore(&zone->lru_lock, flags);
 494				locked = false;
 495			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496		}
 497
 498		/*
 499		 * migrate_pfn does not necessarily start aligned to a
 500		 * pageblock. Ensure that pfn_valid is called when moving
 501		 * into a new MAX_ORDER_NR_PAGES range in case of large
 502		 * memory holes within the zone
 503		 */
 504		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
 505			if (!pfn_valid(low_pfn)) {
 506				low_pfn += MAX_ORDER_NR_PAGES - 1;
 507				continue;
 508			}
 509		}
 510
 511		if (!pfn_valid_within(low_pfn))
 512			continue;
 513		nr_scanned++;
 514
 515		/*
 516		 * Get the page and ensure the page is within the same zone.
 517		 * See the comment in isolate_freepages about overlapping
 518		 * nodes. It is deliberate that the new zone lock is not taken
 519		 * as memory compaction should not move pages between nodes.
 520		 */
 521		page = pfn_to_page(low_pfn);
 522		if (page_zone(page) != zone)
 523			continue;
 524
 525		if (!valid_page)
 526			valid_page = page;
 527
 528		/* If isolation recently failed, do not retry */
 529		pageblock_nr = low_pfn >> pageblock_order;
 530		if (last_pageblock_nr != pageblock_nr) {
 531			int mt;
 532
 533			last_pageblock_nr = pageblock_nr;
 534			if (!isolation_suitable(cc, page))
 535				goto next_pageblock;
 536
 537			/*
 538			 * For async migration, also only scan in MOVABLE
 539			 * blocks. Async migration is optimistic to see if
 540			 * the minimum amount of work satisfies the allocation
 541			 */
 542			mt = get_pageblock_migratetype(page);
 543			if (!cc->sync && !migrate_async_suitable(mt)) {
 544				cc->finished_update_migrate = true;
 545				skipped_async_unsuitable = true;
 546				goto next_pageblock;
 547			}
 548		}
 549
 550		/*
 551		 * Skip if free. page_order cannot be used without zone->lock
 552		 * as nothing prevents parallel allocations or buddy merging.
 
 
 
 553		 */
 554		if (PageBuddy(page))
 555			continue;
 
 
 
 
 
 
 556
 557		/*
 558		 * Check may be lockless but that's ok as we recheck later.
 559		 * It's possible to migrate LRU pages and balloon pages
 560		 * Skip any other type of page
 561		 */
 562		if (!PageLRU(page)) {
 563			if (unlikely(balloon_page_movable(page))) {
 564				if (locked && balloon_page_isolate(page)) {
 565					/* Successfully isolated */
 566					goto isolate_success;
 
 
 
 
 
 
 567				}
 
 
 
 568			}
 569			continue;
 570		}
 571
 572		/*
 573		 * PageLRU is set. lru_lock normally excludes isolation
 574		 * splitting and collapsing (collapsing has already happened
 575		 * if PageLRU is set) but the lock is not necessarily taken
 576		 * here and it is wasteful to take it just to check transhuge.
 577		 * Check TransHuge without lock and skip the whole pageblock if
 578		 * it's either a transhuge or hugetlbfs page, as calling
 579		 * compound_order() without preventing THP from splitting the
 580		 * page underneath us may return surprising results.
 581		 */
 582		if (PageTransHuge(page)) {
 583			if (!locked)
 584				goto next_pageblock;
 585			low_pfn += (1 << compound_order(page)) - 1;
 586			continue;
 587		}
 588
 589		/*
 590		 * Migration will fail if an anonymous page is pinned in memory,
 591		 * so avoid taking lru_lock and isolating it unnecessarily in an
 592		 * admittedly racy check.
 593		 */
 594		if (!page_mapping(page) &&
 595		    page_count(page) > page_mapcount(page))
 596			continue;
 597
 598		/* Check if it is ok to still hold the lock */
 599		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
 600								locked, cc);
 601		if (!locked || fatal_signal_pending(current))
 602			break;
 
 603
 604		/* Recheck PageLRU and PageTransHuge under lock */
 605		if (!PageLRU(page))
 606			continue;
 607		if (PageTransHuge(page)) {
 608			low_pfn += (1 << compound_order(page)) - 1;
 609			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610		}
 611
 612		lruvec = mem_cgroup_page_lruvec(page, zone);
 613
 614		/* Try isolate the page */
 615		if (__isolate_lru_page(page, mode) != 0)
 616			continue;
 617
 618		VM_BUG_ON_PAGE(PageTransCompound(page), page);
 619
 620		/* Successfully isolated */
 621		del_page_from_lru_list(page, lruvec, page_lru(page));
 
 
 622
 623isolate_success:
 624		cc->finished_update_migrate = true;
 625		list_add(&page->lru, migratelist);
 626		cc->nr_migratepages++;
 627		nr_isolated++;
 628
 
 
 
 
 
 
 
 
 
 629		/* Avoid isolating too much */
 630		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 631			++low_pfn;
 632			break;
 633		}
 634
 635		continue;
 
 
 
 636
 637next_pageblock:
 638		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639	}
 640
 641	acct_isolated(zone, locked, cc);
 
 
 
 
 
 642
 643	if (locked)
 644		spin_unlock_irqrestore(&zone->lru_lock, flags);
 645
 646	/*
 647	 * Update the pageblock-skip information and cached scanner pfn,
 648	 * if the whole pageblock was scanned without isolating any page.
 649	 * This is not done when pageblock was skipped due to being unsuitable
 650	 * for async compaction, so that eventual sync compaction can try.
 651	 */
 652	if (low_pfn == end_pfn && !skipped_async_unsuitable)
 653		update_pageblock_skip(cc, valid_page, nr_isolated, true);
 654
 655	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
 
 656
 657	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
 658	if (nr_isolated)
 659		count_compact_events(COMPACTISOLATED, nr_isolated);
 660
 661	return low_pfn;
 662}
 663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664#endif /* CONFIG_COMPACTION || CONFIG_CMA */
 665#ifdef CONFIG_COMPACTION
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666/*
 667 * Based on information in the current compact_control, find blocks
 668 * suitable for isolating free pages from and then isolate them.
 669 */
 670static void isolate_freepages(struct zone *zone,
 671				struct compact_control *cc)
 672{
 
 673	struct page *page;
 674	unsigned long high_pfn, low_pfn, pfn, z_end_pfn;
 675	int nr_freepages = cc->nr_freepages;
 
 
 676	struct list_head *freelist = &cc->freepages;
 677
 678	/*
 679	 * Initialise the free scanner. The starting point is where we last
 680	 * successfully isolated from, zone-cached value, or the end of the
 681	 * zone when isolating for the first time. We need this aligned to
 682	 * the pageblock boundary, because we do pfn -= pageblock_nr_pages
 683	 * in the for loop.
 
 
 684	 * The low boundary is the end of the pageblock the migration scanner
 685	 * is using.
 686	 */
 687	pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
 688	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
 689
 690	/*
 691	 * Take care that if the migration scanner is at the end of the zone
 692	 * that the free scanner does not accidentally move to the next zone
 693	 * in the next isolation cycle.
 694	 */
 695	high_pfn = min(low_pfn, pfn);
 696
 697	z_end_pfn = zone_end_pfn(zone);
 698
 699	/*
 700	 * Isolate free pages until enough are available to migrate the
 701	 * pages on cc->migratepages. We stop searching if the migrate
 702	 * and free page scanners meet or enough free pages are isolated.
 703	 */
 704	for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
 705					pfn -= pageblock_nr_pages) {
 706		unsigned long isolated;
 707		unsigned long end_pfn;
 708
 709		/*
 710		 * This can iterate a massively long zone without finding any
 711		 * suitable migration targets, so periodically check if we need
 712		 * to schedule.
 713		 */
 714		cond_resched();
 
 
 715
 716		if (!pfn_valid(pfn))
 717			continue;
 718
 719		/*
 720		 * Check for overlapping nodes/zones. It's possible on some
 721		 * configurations to have a setup like
 722		 * node0 node1 node0
 723		 * i.e. it's possible that all pages within a zones range of
 724		 * pages do not belong to a single zone.
 725		 */
 726		page = pfn_to_page(pfn);
 727		if (page_zone(page) != zone)
 728			continue;
 729
 730		/* Check the block is suitable for migration */
 731		if (!suitable_migration_target(page))
 732			continue;
 733
 734		/* If isolation recently failed, do not retry */
 735		if (!isolation_suitable(cc, page))
 736			continue;
 737
 738		/* Found a block suitable for isolating free pages from */
 739		isolated = 0;
 
 740
 741		/*
 742		 * Take care when isolating in last pageblock of a zone which
 743		 * ends in the middle of a pageblock.
 744		 */
 745		end_pfn = min(pfn + pageblock_nr_pages, z_end_pfn);
 746		isolated = isolate_freepages_block(cc, pfn, end_pfn,
 747						   freelist, false);
 748		nr_freepages += isolated;
 749
 750		/*
 751		 * Record the highest PFN we isolated pages from. When next
 752		 * looking for free pages, the search will restart here as
 753		 * page migration may have returned some pages to the allocator
 754		 */
 755		if (isolated) {
 756			cc->finished_update_free = true;
 757			high_pfn = max(high_pfn, pfn);
 
 
 
 
 758		}
 759	}
 760
 761	/* split_free_page does not map the pages */
 762	map_pages(freelist);
 763
 764	/*
 765	 * If we crossed the migrate scanner, we want to keep it that way
 766	 * so that compact_finished() may detect this
 
 
 767	 */
 768	if (pfn < low_pfn)
 769		cc->free_pfn = max(pfn, zone->zone_start_pfn);
 770	else
 771		cc->free_pfn = high_pfn;
 772	cc->nr_freepages = nr_freepages;
 773}
 774
 775/*
 776 * This is a migrate-callback that "allocates" freepages by taking pages
 777 * from the isolated freelists in the block we are migrating to.
 778 */
 779static struct page *compaction_alloc(struct page *migratepage,
 780					unsigned long data,
 781					int **result)
 782{
 783	struct compact_control *cc = (struct compact_control *)data;
 784	struct page *freepage;
 785
 786	/* Isolate free pages if necessary */
 
 
 
 787	if (list_empty(&cc->freepages)) {
 788		isolate_freepages(cc->zone, cc);
 
 789
 790		if (list_empty(&cc->freepages))
 791			return NULL;
 792	}
 793
 794	freepage = list_entry(cc->freepages.next, struct page, lru);
 795	list_del(&freepage->lru);
 796	cc->nr_freepages--;
 797
 798	return freepage;
 799}
 800
 801/*
 802 * We cannot control nr_migratepages and nr_freepages fully when migration is
 803 * running as migrate_pages() has no knowledge of compact_control. When
 804 * migration is complete, we count the number of pages on the lists by hand.
 805 */
 806static void update_nr_listpages(struct compact_control *cc)
 807{
 808	int nr_migratepages = 0;
 809	int nr_freepages = 0;
 810	struct page *page;
 811
 812	list_for_each_entry(page, &cc->migratepages, lru)
 813		nr_migratepages++;
 814	list_for_each_entry(page, &cc->freepages, lru)
 815		nr_freepages++;
 816
 817	cc->nr_migratepages = nr_migratepages;
 818	cc->nr_freepages = nr_freepages;
 819}
 820
 821/* possible outcome of isolate_migratepages */
 822typedef enum {
 823	ISOLATE_ABORT,		/* Abort compaction now */
 824	ISOLATE_NONE,		/* No pages isolated, continue scanning */
 825	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
 826} isolate_migrate_t;
 827
 828/*
 829 * Isolate all pages that can be migrated from the block pointed to by
 830 * the migrate scanner within compact_control.
 
 
 
 
 
 
 
 831 */
 832static isolate_migrate_t isolate_migratepages(struct zone *zone,
 833					struct compact_control *cc)
 834{
 835	unsigned long low_pfn, end_pfn;
 
 
 
 
 
 
 836
 837	/* Do not scan outside zone boundaries */
 838	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
 
 
 
 
 
 
 839
 840	/* Only scan within a pageblock boundary */
 841	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
 842
 843	/* Do not cross the free scanner or scan within a memory hole */
 844	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
 845		cc->migrate_pfn = end_pfn;
 846		return ISOLATE_NONE;
 847	}
 
 
 
 
 
 
 
 
 
 
 
 
 848
 849	/* Perform the isolation */
 850	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
 851	if (!low_pfn || cc->contended)
 852		return ISOLATE_ABORT;
 
 
 
 
 853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854	cc->migrate_pfn = low_pfn;
 855
 856	return ISOLATE_SUCCESS;
 857}
 858
 859static int compact_finished(struct zone *zone,
 860			    struct compact_control *cc)
 
 
 
 
 
 
 
 
 
 861{
 862	unsigned int order;
 863	unsigned long watermark;
 864
 865	if (fatal_signal_pending(current))
 866		return COMPACT_PARTIAL;
 867
 868	/* Compaction run completes if the migrate and free scanner meet */
 869	if (cc->free_pfn <= cc->migrate_pfn) {
 870		/* Let the next compaction start anew. */
 871		zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
 872		zone->compact_cached_free_pfn = zone_end_pfn(zone);
 873
 874		/*
 875		 * Mark that the PG_migrate_skip information should be cleared
 876		 * by kswapd when it goes to sleep. kswapd does not set the
 877		 * flag itself as the decision to be clear should be directly
 878		 * based on an allocation request.
 879		 */
 880		if (!current_is_kswapd())
 881			zone->compact_blockskip_flush = true;
 882
 883		return COMPACT_COMPLETE;
 
 
 
 884	}
 885
 886	/*
 887	 * order == -1 is expected when compacting via
 888	 * /proc/sys/vm/compact_memory
 889	 */
 890	if (cc->order == -1)
 891		return COMPACT_CONTINUE;
 892
 893	/* Compaction run is not finished if the watermark is not met */
 894	watermark = low_wmark_pages(zone);
 895	watermark += (1 << cc->order);
 896
 897	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
 
 898		return COMPACT_CONTINUE;
 899
 900	/* Direct compactor: Is a suitable page free? */
 901	for (order = cc->order; order < MAX_ORDER; order++) {
 902		struct free_area *area = &zone->free_area[order];
 
 903
 904		/* Job done if page is free of the right migratetype */
 905		if (!list_empty(&area->free_list[cc->migratetype]))
 906			return COMPACT_PARTIAL;
 907
 908		/* Job done if allocation would set block type */
 909		if (cc->order >= pageblock_order && area->nr_free)
 910			return COMPACT_PARTIAL;
 
 
 
 
 
 
 
 
 
 
 911	}
 912
 913	return COMPACT_CONTINUE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914}
 915
 916/*
 917 * compaction_suitable: Is this suitable to run compaction on this zone now?
 918 * Returns
 919 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 920 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 921 *   COMPACT_CONTINUE - If compaction should run now
 922 */
 923unsigned long compaction_suitable(struct zone *zone, int order)
 
 
 
 924{
 925	int fragindex;
 926	unsigned long watermark;
 927
 
 
 
 
 928	/*
 929	 * order == -1 is expected when compacting via
 930	 * /proc/sys/vm/compact_memory
 931	 */
 932	if (order == -1)
 933		return COMPACT_CONTINUE;
 
 934
 935	/*
 936	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
 937	 * This is because during migration, copies of pages need to be
 938	 * allocated and for a short time, the footprint is higher
 
 
 
 
 
 
 
 
 
 939	 */
 940	watermark = low_wmark_pages(zone) + (2UL << order);
 941	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
 
 
 
 942		return COMPACT_SKIPPED;
 943
 
 
 
 
 
 
 
 
 
 
 
 
 944	/*
 945	 * fragmentation index determines if allocation failures are due to
 946	 * low memory or external fragmentation
 947	 *
 948	 * index of -1000 implies allocations might succeed depending on
 949	 * watermarks
 950	 * index towards 0 implies failure is due to lack of memory
 951	 * index towards 1000 implies failure is due to fragmentation
 952	 *
 953	 * Only compact if a failure would be due to fragmentation.
 
 
 
 
 
 954	 */
 955	fragindex = fragmentation_index(zone, order);
 956	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
 957		return COMPACT_SKIPPED;
 
 
 958
 959	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
 960	    0, 0))
 961		return COMPACT_PARTIAL;
 962
 963	return COMPACT_CONTINUE;
 964}
 965
 966static int compact_zone(struct zone *zone, struct compact_control *cc)
 
 967{
 968	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969	unsigned long start_pfn = zone->zone_start_pfn;
 970	unsigned long end_pfn = zone_end_pfn(zone);
 
 
 971
 972	ret = compaction_suitable(zone, cc->order);
 973	switch (ret) {
 974	case COMPACT_PARTIAL:
 975	case COMPACT_SKIPPED:
 976		/* Compaction is likely to fail */
 977		return ret;
 978	case COMPACT_CONTINUE:
 979		/* Fall through to compaction */
 980		;
 981	}
 982
 983	/*
 984	 * Clear pageblock skip if there were failures recently and compaction
 985	 * is about to be retried after being deferred. kswapd does not do
 986	 * this reset as it'll reset the cached information when going to sleep.
 987	 */
 988	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
 989		__reset_isolation_suitable(zone);
 990
 991	/*
 992	 * Setup to move all movable pages to the end of the zone. Used cached
 993	 * information on where the scanners should start but check that it
 994	 * is initialised by ensuring the values are within zone boundaries.
 
 995	 */
 996	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
 997	cc->free_pfn = zone->compact_cached_free_pfn;
 998	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
 999		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1000		zone->compact_cached_free_pfn = cc->free_pfn;
1001	}
1002	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1003		cc->migrate_pfn = start_pfn;
1004		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005	}
1006
1007	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
 
 
 
1008
1009	migrate_prep_local();
1010
1011	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1012		unsigned long nr_migrate, nr_remaining;
1013		int err;
1014
1015		switch (isolate_migratepages(zone, cc)) {
1016		case ISOLATE_ABORT:
1017			ret = COMPACT_PARTIAL;
1018			putback_movable_pages(&cc->migratepages);
1019			cc->nr_migratepages = 0;
1020			goto out;
1021		case ISOLATE_NONE:
1022			continue;
 
 
 
 
 
1023		case ISOLATE_SUCCESS:
1024			;
1025		}
1026
1027		nr_migrate = cc->nr_migratepages;
1028		err = migrate_pages(&cc->migratepages, compaction_alloc,
1029				(unsigned long)cc,
1030				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1031				MR_COMPACTION);
1032		update_nr_listpages(cc);
1033		nr_remaining = cc->nr_migratepages;
1034
1035		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1036						nr_remaining);
1037
1038		/* Release isolated pages not migrated */
 
1039		if (err) {
1040			putback_movable_pages(&cc->migratepages);
1041			cc->nr_migratepages = 0;
1042			/*
1043			 * migrate_pages() may return -ENOMEM when scanners meet
1044			 * and we want compact_finished() to detect it
1045			 */
1046			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1047				ret = COMPACT_PARTIAL;
1048				goto out;
1049			}
 
 
 
 
 
 
 
 
 
 
 
 
1050		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051	}
1052
1053out:
1054	/* Release free pages and check accounting */
1055	cc->nr_freepages -= release_freepages(&cc->freepages);
1056	VM_BUG_ON(cc->nr_freepages != 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057
1058	trace_mm_compaction_end(ret);
 
1059
1060	return ret;
1061}
1062
1063static unsigned long compact_zone_order(struct zone *zone,
1064				 int order, gfp_t gfp_mask,
1065				 bool sync, bool *contended)
1066{
1067	unsigned long ret;
1068	struct compact_control cc = {
1069		.nr_freepages = 0,
1070		.nr_migratepages = 0,
1071		.order = order,
1072		.migratetype = allocflags_to_migratetype(gfp_mask),
1073		.zone = zone,
1074		.sync = sync,
 
 
 
 
 
 
 
1075	};
1076	INIT_LIST_HEAD(&cc.freepages);
1077	INIT_LIST_HEAD(&cc.migratepages);
1078
1079	ret = compact_zone(zone, &cc);
1080
1081	VM_BUG_ON(!list_empty(&cc.freepages));
1082	VM_BUG_ON(!list_empty(&cc.migratepages));
1083
1084	*contended = cc.contended;
1085	return ret;
1086}
1087
1088int sysctl_extfrag_threshold = 500;
1089
1090/**
1091 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1092 * @zonelist: The zonelist used for the current allocation
1093 * @order: The order of the current allocation
1094 * @gfp_mask: The GFP mask of the current allocation
1095 * @nodemask: The allowed nodes to allocate from
1096 * @sync: Whether migration is synchronous or not
1097 * @contended: Return value that is true if compaction was aborted due to lock contention
1098 * @page: Optionally capture a free page of the requested order during compaction
1099 *
1100 * This is the main entry point for direct page compaction.
1101 */
1102unsigned long try_to_compact_pages(struct zonelist *zonelist,
1103			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1104			bool sync, bool *contended)
1105{
1106	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1107	int may_enter_fs = gfp_mask & __GFP_FS;
1108	int may_perform_io = gfp_mask & __GFP_IO;
1109	struct zoneref *z;
1110	struct zone *zone;
1111	int rc = COMPACT_SKIPPED;
1112	int alloc_flags = 0;
1113
1114	/* Check if the GFP flags allow compaction */
1115	if (!order || !may_enter_fs || !may_perform_io)
1116		return rc;
 
 
 
1117
1118	count_compact_event(COMPACTSTALL);
1119
1120#ifdef CONFIG_CMA
1121	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1122		alloc_flags |= ALLOC_CMA;
1123#endif
1124	/* Compact each zone in the list */
1125	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1126								nodemask) {
1127		int status;
 
 
 
 
 
 
1128
1129		status = compact_zone_order(zone, order, gfp_mask, sync,
1130						contended);
1131		rc = max(status, rc);
1132
1133		/* If a normal allocation would succeed, stop compacting */
1134		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1135				      alloc_flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136			break;
1137	}
1138
1139	return rc;
1140}
1141
1142
1143/* Compact all zones within a node */
1144static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1145{
 
1146	int zoneid;
1147	struct zone *zone;
 
 
 
 
 
 
 
 
1148
1149	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1150
1151		zone = &pgdat->node_zones[zoneid];
1152		if (!populated_zone(zone))
1153			continue;
1154
1155		cc->nr_freepages = 0;
1156		cc->nr_migratepages = 0;
1157		cc->zone = zone;
1158		INIT_LIST_HEAD(&cc->freepages);
1159		INIT_LIST_HEAD(&cc->migratepages);
1160
1161		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1162			compact_zone(zone, cc);
1163
1164		if (cc->order > 0) {
1165			if (zone_watermark_ok(zone, cc->order,
1166						low_wmark_pages(zone), 0, 0))
1167				compaction_defer_reset(zone, cc->order, false);
1168			/* Currently async compaction is never deferred. */
1169			else if (cc->sync)
1170				defer_compaction(zone, cc->order);
1171		}
1172
1173		VM_BUG_ON(!list_empty(&cc->freepages));
1174		VM_BUG_ON(!list_empty(&cc->migratepages));
1175	}
1176}
1177
1178void compact_pgdat(pg_data_t *pgdat, int order)
1179{
1180	struct compact_control cc = {
1181		.order = order,
1182		.sync = false,
1183	};
1184
1185	if (!order)
1186		return;
1187
1188	__compact_pgdat(pgdat, &cc);
1189}
1190
1191static void compact_node(int nid)
1192{
1193	struct compact_control cc = {
1194		.order = -1,
1195		.sync = true,
1196		.ignore_skip_hint = true,
1197	};
1198
1199	__compact_pgdat(NODE_DATA(nid), &cc);
1200}
1201
1202/* Compact all nodes in the system */
1203static void compact_nodes(void)
1204{
1205	int nid;
1206
1207	/* Flush pending updates to the LRU lists */
1208	lru_add_drain_all();
1209
1210	for_each_online_node(nid)
1211		compact_node(nid);
1212}
1213
1214/* The written value is actually unused, all memory is compacted */
1215int sysctl_compact_memory;
1216
1217/* This is the entry point for compacting all nodes via /proc/sys/vm */
 
 
 
1218int sysctl_compaction_handler(struct ctl_table *table, int write,
1219			void __user *buffer, size_t *length, loff_t *ppos)
1220{
1221	if (write)
1222		compact_nodes();
1223
1224	return 0;
1225}
1226
1227int sysctl_extfrag_handler(struct ctl_table *table, int write,
1228			void __user *buffer, size_t *length, loff_t *ppos)
1229{
1230	proc_dointvec_minmax(table, write, buffer, length, ppos);
1231
1232	return 0;
1233}
1234
1235#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1236static ssize_t sysfs_compact_node(struct device *dev,
1237			struct device_attribute *attr,
1238			const char *buf, size_t count)
1239{
1240	int nid = dev->id;
1241
1242	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1243		/* Flush pending updates to the LRU lists */
1244		lru_add_drain_all();
1245
1246		compact_node(nid);
1247	}
1248
1249	return count;
1250}
1251static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1252
1253int compaction_register_node(struct node *node)
1254{
1255	return device_create_file(&node->dev, &dev_attr_compact);
1256}
1257
1258void compaction_unregister_node(struct node *node)
1259{
1260	return device_remove_file(&node->dev, &dev_attr_compact);
1261}
1262#endif /* CONFIG_SYSFS && CONFIG_NUMA */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263
1264#endif /* CONFIG_COMPACTION */
   1/*
   2 * linux/mm/compaction.c
   3 *
   4 * Memory compaction for the reduction of external fragmentation. Note that
   5 * this heavily depends upon page migration to do all the real heavy
   6 * lifting
   7 *
   8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
   9 */
  10#include <linux/cpu.h>
  11#include <linux/swap.h>
  12#include <linux/migrate.h>
  13#include <linux/compaction.h>
  14#include <linux/mm_inline.h>
  15#include <linux/backing-dev.h>
  16#include <linux/sysctl.h>
  17#include <linux/sysfs.h>
 
  18#include <linux/page-isolation.h>
  19#include <linux/kasan.h>
  20#include <linux/kthread.h>
  21#include <linux/freezer.h>
  22#include <linux/page_owner.h>
  23#include "internal.h"
  24
  25#ifdef CONFIG_COMPACTION
  26static inline void count_compact_event(enum vm_event_item item)
  27{
  28	count_vm_event(item);
  29}
  30
  31static inline void count_compact_events(enum vm_event_item item, long delta)
  32{
  33	count_vm_events(item, delta);
  34}
  35#else
  36#define count_compact_event(item) do { } while (0)
  37#define count_compact_events(item, delta) do { } while (0)
  38#endif
  39
  40#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  41
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/compaction.h>
  44
  45#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  46#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
  47#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
  48#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
  49
  50static unsigned long release_freepages(struct list_head *freelist)
  51{
  52	struct page *page, *next;
  53	unsigned long high_pfn = 0;
  54
  55	list_for_each_entry_safe(page, next, freelist, lru) {
  56		unsigned long pfn = page_to_pfn(page);
  57		list_del(&page->lru);
  58		__free_page(page);
  59		if (pfn > high_pfn)
  60			high_pfn = pfn;
  61	}
  62
  63	return high_pfn;
  64}
  65
  66static void map_pages(struct list_head *list)
  67{
  68	unsigned int i, order, nr_pages;
  69	struct page *page, *next;
  70	LIST_HEAD(tmp_list);
  71
  72	list_for_each_entry_safe(page, next, list, lru) {
  73		list_del(&page->lru);
  74
  75		order = page_private(page);
  76		nr_pages = 1 << order;
  77
  78		post_alloc_hook(page, order, __GFP_MOVABLE);
  79		if (order)
  80			split_page(page, order);
  81
  82		for (i = 0; i < nr_pages; i++) {
  83			list_add(&page->lru, &tmp_list);
  84			page++;
  85		}
  86	}
  87
  88	list_splice(&tmp_list, list);
  89}
  90
  91static inline bool migrate_async_suitable(int migratetype)
  92{
  93	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
  94}
  95
  96#ifdef CONFIG_COMPACTION
  97
  98int PageMovable(struct page *page)
  99{
 100	struct address_space *mapping;
 101
 102	VM_BUG_ON_PAGE(!PageLocked(page), page);
 103	if (!__PageMovable(page))
 104		return 0;
 105
 106	mapping = page_mapping(page);
 107	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 108		return 1;
 109
 110	return 0;
 111}
 112EXPORT_SYMBOL(PageMovable);
 113
 114void __SetPageMovable(struct page *page, struct address_space *mapping)
 115{
 116	VM_BUG_ON_PAGE(!PageLocked(page), page);
 117	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 118	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 119}
 120EXPORT_SYMBOL(__SetPageMovable);
 121
 122void __ClearPageMovable(struct page *page)
 123{
 124	VM_BUG_ON_PAGE(!PageLocked(page), page);
 125	VM_BUG_ON_PAGE(!PageMovable(page), page);
 126	/*
 127	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 128	 * flag so that VM can catch up released page by driver after isolation.
 129	 * With it, VM migration doesn't try to put it back.
 130	 */
 131	page->mapping = (void *)((unsigned long)page->mapping &
 132				PAGE_MAPPING_MOVABLE);
 133}
 134EXPORT_SYMBOL(__ClearPageMovable);
 135
 136/* Do not skip compaction more than 64 times */
 137#define COMPACT_MAX_DEFER_SHIFT 6
 138
 139/*
 140 * Compaction is deferred when compaction fails to result in a page
 141 * allocation success. 1 << compact_defer_limit compactions are skipped up
 142 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 143 */
 144void defer_compaction(struct zone *zone, int order)
 145{
 146	zone->compact_considered = 0;
 147	zone->compact_defer_shift++;
 148
 149	if (order < zone->compact_order_failed)
 150		zone->compact_order_failed = order;
 151
 152	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 153		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 154
 155	trace_mm_compaction_defer_compaction(zone, order);
 156}
 157
 158/* Returns true if compaction should be skipped this time */
 159bool compaction_deferred(struct zone *zone, int order)
 160{
 161	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 162
 163	if (order < zone->compact_order_failed)
 164		return false;
 165
 166	/* Avoid possible overflow */
 167	if (++zone->compact_considered > defer_limit)
 168		zone->compact_considered = defer_limit;
 169
 170	if (zone->compact_considered >= defer_limit)
 171		return false;
 172
 173	trace_mm_compaction_deferred(zone, order);
 174
 175	return true;
 176}
 177
 178/*
 179 * Update defer tracking counters after successful compaction of given order,
 180 * which means an allocation either succeeded (alloc_success == true) or is
 181 * expected to succeed.
 182 */
 183void compaction_defer_reset(struct zone *zone, int order,
 184		bool alloc_success)
 185{
 186	if (alloc_success) {
 187		zone->compact_considered = 0;
 188		zone->compact_defer_shift = 0;
 189	}
 190	if (order >= zone->compact_order_failed)
 191		zone->compact_order_failed = order + 1;
 192
 193	trace_mm_compaction_defer_reset(zone, order);
 194}
 195
 196/* Returns true if restarting compaction after many failures */
 197bool compaction_restarting(struct zone *zone, int order)
 198{
 199	if (order < zone->compact_order_failed)
 200		return false;
 201
 202	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 203		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 204}
 205
 206/* Returns true if the pageblock should be scanned for pages to isolate. */
 207static inline bool isolation_suitable(struct compact_control *cc,
 208					struct page *page)
 209{
 210	if (cc->ignore_skip_hint)
 211		return true;
 212
 213	return !get_pageblock_skip(page);
 214}
 215
 216static void reset_cached_positions(struct zone *zone)
 217{
 218	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 219	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 220	zone->compact_cached_free_pfn =
 221				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 222}
 223
 224/*
 225 * This function is called to clear all cached information on pageblocks that
 226 * should be skipped for page isolation when the migrate and free page scanner
 227 * meet.
 228 */
 229static void __reset_isolation_suitable(struct zone *zone)
 230{
 231	unsigned long start_pfn = zone->zone_start_pfn;
 232	unsigned long end_pfn = zone_end_pfn(zone);
 233	unsigned long pfn;
 234
 
 
 235	zone->compact_blockskip_flush = false;
 236
 237	/* Walk the zone and mark every pageblock as suitable for isolation */
 238	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
 239		struct page *page;
 240
 241		cond_resched();
 242
 243		if (!pfn_valid(pfn))
 244			continue;
 245
 246		page = pfn_to_page(pfn);
 247		if (zone != page_zone(page))
 248			continue;
 249
 250		clear_pageblock_skip(page);
 251	}
 252
 253	reset_cached_positions(zone);
 254}
 255
 256void reset_isolation_suitable(pg_data_t *pgdat)
 257{
 258	int zoneid;
 259
 260	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 261		struct zone *zone = &pgdat->node_zones[zoneid];
 262		if (!populated_zone(zone))
 263			continue;
 264
 265		/* Only flush if a full compaction finished recently */
 266		if (zone->compact_blockskip_flush)
 267			__reset_isolation_suitable(zone);
 268	}
 269}
 270
 271/*
 272 * If no pages were isolated then mark this pageblock to be skipped in the
 273 * future. The information is later cleared by __reset_isolation_suitable().
 274 */
 275static void update_pageblock_skip(struct compact_control *cc,
 276			struct page *page, unsigned long nr_isolated,
 277			bool migrate_scanner)
 278{
 279	struct zone *zone = cc->zone;
 280	unsigned long pfn;
 281
 282	if (cc->ignore_skip_hint)
 283		return;
 284
 285	if (!page)
 286		return;
 287
 288	if (nr_isolated)
 289		return;
 
 290
 291	set_pageblock_skip(page);
 292
 293	pfn = page_to_pfn(page);
 294
 295	/* Update where async and sync compaction should restart */
 296	if (migrate_scanner) {
 297		if (pfn > zone->compact_cached_migrate_pfn[0])
 298			zone->compact_cached_migrate_pfn[0] = pfn;
 299		if (cc->mode != MIGRATE_ASYNC &&
 300		    pfn > zone->compact_cached_migrate_pfn[1])
 301			zone->compact_cached_migrate_pfn[1] = pfn;
 302	} else {
 303		if (pfn < zone->compact_cached_free_pfn)
 304			zone->compact_cached_free_pfn = pfn;
 305	}
 306}
 307#else
 308static inline bool isolation_suitable(struct compact_control *cc,
 309					struct page *page)
 310{
 311	return true;
 312}
 313
 314static void update_pageblock_skip(struct compact_control *cc,
 315			struct page *page, unsigned long nr_isolated,
 316			bool migrate_scanner)
 317{
 318}
 319#endif /* CONFIG_COMPACTION */
 320
 
 
 
 
 
 321/*
 322 * Compaction requires the taking of some coarse locks that are potentially
 323 * very heavily contended. For async compaction, back out if the lock cannot
 324 * be taken immediately. For sync compaction, spin on the lock if needed.
 
 325 *
 326 * Returns true if the lock is held
 327 * Returns false if the lock is not held and compaction should abort
 328 */
 329static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
 330						struct compact_control *cc)
 331{
 332	if (cc->mode == MIGRATE_ASYNC) {
 333		if (!spin_trylock_irqsave(lock, *flags)) {
 
 
 
 
 
 
 334			cc->contended = true;
 335			return false;
 336		}
 337	} else {
 338		spin_lock_irqsave(lock, *flags);
 339	}
 340
 
 
 341	return true;
 342}
 343
 344/*
 345 * Compaction requires the taking of some coarse locks that are potentially
 346 * very heavily contended. The lock should be periodically unlocked to avoid
 347 * having disabled IRQs for a long time, even when there is nobody waiting on
 348 * the lock. It might also be that allowing the IRQs will result in
 349 * need_resched() becoming true. If scheduling is needed, async compaction
 350 * aborts. Sync compaction schedules.
 351 * Either compaction type will also abort if a fatal signal is pending.
 352 * In either case if the lock was locked, it is dropped and not regained.
 353 *
 354 * Returns true if compaction should abort due to fatal signal pending, or
 355 *		async compaction due to need_resched()
 356 * Returns false when compaction can continue (sync compaction might have
 357 *		scheduled)
 358 */
 359static bool compact_unlock_should_abort(spinlock_t *lock,
 360		unsigned long flags, bool *locked, struct compact_control *cc)
 361{
 362	if (*locked) {
 363		spin_unlock_irqrestore(lock, flags);
 364		*locked = false;
 365	}
 366
 367	if (fatal_signal_pending(current)) {
 368		cc->contended = true;
 369		return true;
 370	}
 371
 372	if (need_resched()) {
 373		if (cc->mode == MIGRATE_ASYNC) {
 374			cc->contended = true;
 375			return true;
 376		}
 377		cond_resched();
 378	}
 379
 380	return false;
 381}
 382
 383/*
 384 * Aside from avoiding lock contention, compaction also periodically checks
 385 * need_resched() and either schedules in sync compaction or aborts async
 386 * compaction. This is similar to what compact_unlock_should_abort() does, but
 387 * is used where no lock is concerned.
 388 *
 389 * Returns false when no scheduling was needed, or sync compaction scheduled.
 390 * Returns true when async compaction should abort.
 391 */
 392static inline bool compact_should_abort(struct compact_control *cc)
 393{
 394	/* async compaction aborts if contended */
 395	if (need_resched()) {
 396		if (cc->mode == MIGRATE_ASYNC) {
 397			cc->contended = true;
 398			return true;
 399		}
 400
 401		cond_resched();
 402	}
 
 403
 
 404	return false;
 405}
 406
 407/*
 408 * Isolate free pages onto a private freelist. If @strict is true, will abort
 409 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 410 * (even though it may still end up isolating some pages).
 411 */
 412static unsigned long isolate_freepages_block(struct compact_control *cc,
 413				unsigned long *start_pfn,
 414				unsigned long end_pfn,
 415				struct list_head *freelist,
 416				bool strict)
 417{
 418	int nr_scanned = 0, total_isolated = 0;
 419	struct page *cursor, *valid_page = NULL;
 420	unsigned long flags = 0;
 421	bool locked = false;
 422	unsigned long blockpfn = *start_pfn;
 423	unsigned int order;
 424
 425	cursor = pfn_to_page(blockpfn);
 426
 427	/* Isolate free pages. */
 428	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 429		int isolated;
 430		struct page *page = cursor;
 431
 432		/*
 433		 * Periodically drop the lock (if held) regardless of its
 434		 * contention, to give chance to IRQs. Abort if fatal signal
 435		 * pending or async compaction detects need_resched()
 436		 */
 437		if (!(blockpfn % SWAP_CLUSTER_MAX)
 438		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 439								&locked, cc))
 440			break;
 441
 442		nr_scanned++;
 443		if (!pfn_valid_within(blockpfn))
 444			goto isolate_fail;
 445
 446		if (!valid_page)
 447			valid_page = page;
 448
 449		/*
 450		 * For compound pages such as THP and hugetlbfs, we can save
 451		 * potentially a lot of iterations if we skip them at once.
 452		 * The check is racy, but we can consider only valid values
 453		 * and the only danger is skipping too much.
 454		 */
 455		if (PageCompound(page)) {
 456			unsigned int comp_order = compound_order(page);
 457
 458			if (likely(comp_order < MAX_ORDER)) {
 459				blockpfn += (1UL << comp_order) - 1;
 460				cursor += (1UL << comp_order) - 1;
 461			}
 462
 463			goto isolate_fail;
 464		}
 465
 466		if (!PageBuddy(page))
 467			goto isolate_fail;
 468
 469		/*
 470		 * If we already hold the lock, we can skip some rechecking.
 471		 * Note that if we hold the lock now, checked_pageblock was
 472		 * already set in some previous iteration (or strict is true),
 473		 * so it is correct to skip the suitable migration target
 474		 * recheck as well.
 475		 */
 476		if (!locked) {
 
 
 
 
 
 
 
 477			/*
 478			 * The zone lock must be held to isolate freepages.
 479			 * Unfortunately this is a very coarse lock and can be
 480			 * heavily contended if there are parallel allocations
 481			 * or parallel compactions. For async compaction do not
 482			 * spin on the lock and we acquire the lock as late as
 483			 * possible.
 484			 */
 485			locked = compact_trylock_irqsave(&cc->zone->lock,
 486								&flags, cc);
 487			if (!locked)
 488				break;
 489
 490			/* Recheck this is a buddy page under lock */
 491			if (!PageBuddy(page))
 492				goto isolate_fail;
 493		}
 494
 495		/* Found a free page, will break it into order-0 pages */
 496		order = page_order(page);
 497		isolated = __isolate_free_page(page, order);
 498		if (!isolated)
 499			break;
 500		set_page_private(page, order);
 501
 
 
 502		total_isolated += isolated;
 503		cc->nr_freepages += isolated;
 504		list_add_tail(&page->lru, freelist);
 
 
 505
 506		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 507			blockpfn += isolated;
 508			break;
 
 
 509		}
 510		/* Advance to the end of split page */
 511		blockpfn += isolated - 1;
 512		cursor += isolated - 1;
 513		continue;
 514
 515isolate_fail:
 516		if (strict)
 517			break;
 518		else
 519			continue;
 520
 521	}
 522
 523	if (locked)
 524		spin_unlock_irqrestore(&cc->zone->lock, flags);
 525
 526	/*
 527	 * There is a tiny chance that we have read bogus compound_order(),
 528	 * so be careful to not go outside of the pageblock.
 529	 */
 530	if (unlikely(blockpfn > end_pfn))
 531		blockpfn = end_pfn;
 532
 533	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 534					nr_scanned, total_isolated);
 535
 536	/* Record how far we have got within the block */
 537	*start_pfn = blockpfn;
 538
 539	/*
 540	 * If strict isolation is requested by CMA then check that all the
 541	 * pages requested were isolated. If there were any failures, 0 is
 542	 * returned and CMA will fail.
 543	 */
 544	if (strict && blockpfn < end_pfn)
 545		total_isolated = 0;
 546
 
 
 
 547	/* Update the pageblock-skip if the whole pageblock was scanned */
 548	if (blockpfn == end_pfn)
 549		update_pageblock_skip(cc, valid_page, total_isolated, false);
 550
 551	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
 552	if (total_isolated)
 553		count_compact_events(COMPACTISOLATED, total_isolated);
 554	return total_isolated;
 555}
 556
 557/**
 558 * isolate_freepages_range() - isolate free pages.
 559 * @start_pfn: The first PFN to start isolating.
 560 * @end_pfn:   The one-past-last PFN.
 561 *
 562 * Non-free pages, invalid PFNs, or zone boundaries within the
 563 * [start_pfn, end_pfn) range are considered errors, cause function to
 564 * undo its actions and return zero.
 565 *
 566 * Otherwise, function returns one-past-the-last PFN of isolated page
 567 * (which may be greater then end_pfn if end fell in a middle of
 568 * a free page).
 569 */
 570unsigned long
 571isolate_freepages_range(struct compact_control *cc,
 572			unsigned long start_pfn, unsigned long end_pfn)
 573{
 574	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 575	LIST_HEAD(freelist);
 576
 577	pfn = start_pfn;
 578	block_start_pfn = pageblock_start_pfn(pfn);
 579	if (block_start_pfn < cc->zone->zone_start_pfn)
 580		block_start_pfn = cc->zone->zone_start_pfn;
 581	block_end_pfn = pageblock_end_pfn(pfn);
 582
 583	for (; pfn < end_pfn; pfn += isolated,
 584				block_start_pfn = block_end_pfn,
 585				block_end_pfn += pageblock_nr_pages) {
 586		/* Protect pfn from changing by isolate_freepages_block */
 587		unsigned long isolate_start_pfn = pfn;
 588
 589		block_end_pfn = min(block_end_pfn, end_pfn);
 590
 591		/*
 592		 * pfn could pass the block_end_pfn if isolated freepage
 593		 * is more than pageblock order. In this case, we adjust
 594		 * scanning range to right one.
 595		 */
 596		if (pfn >= block_end_pfn) {
 597			block_start_pfn = pageblock_start_pfn(pfn);
 598			block_end_pfn = pageblock_end_pfn(pfn);
 599			block_end_pfn = min(block_end_pfn, end_pfn);
 600		}
 601
 602		if (!pageblock_pfn_to_page(block_start_pfn,
 603					block_end_pfn, cc->zone))
 604			break;
 605
 606		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 607						block_end_pfn, &freelist, true);
 608
 609		/*
 610		 * In strict mode, isolate_freepages_block() returns 0 if
 611		 * there are any holes in the block (ie. invalid PFNs or
 612		 * non-free pages).
 613		 */
 614		if (!isolated)
 615			break;
 616
 617		/*
 618		 * If we managed to isolate pages, it is always (1 << n) *
 619		 * pageblock_nr_pages for some non-negative n.  (Max order
 620		 * page may span two pageblocks).
 621		 */
 622	}
 623
 624	/* __isolate_free_page() does not map the pages */
 625	map_pages(&freelist);
 626
 627	if (pfn < end_pfn) {
 628		/* Loop terminated early, cleanup. */
 629		release_freepages(&freelist);
 630		return 0;
 631	}
 632
 633	/* We don't use freelists for anything. */
 634	return pfn;
 635}
 636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637/* Similar to reclaim, but different enough that they don't share logic */
 638static bool too_many_isolated(struct zone *zone)
 639{
 640	unsigned long active, inactive, isolated;
 641
 642	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
 643			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
 644	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
 645			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
 646	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
 647			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
 648
 649	return isolated > (inactive + active) / 2;
 650}
 651
 652/**
 653 * isolate_migratepages_block() - isolate all migrate-able pages within
 654 *				  a single pageblock
 655 * @cc:		Compaction control structure.
 656 * @low_pfn:	The first PFN to isolate
 657 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 658 * @isolate_mode: Isolation mode to be used.
 659 *
 660 * Isolate all pages that can be migrated from the range specified by
 661 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 662 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 663 * first page that was not scanned (which may be both less, equal to or more
 664 * than end_pfn).
 665 *
 666 * The pages are isolated on cc->migratepages list (not required to be empty),
 667 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 668 * is neither read nor updated.
 
 
 
 669 */
 670static unsigned long
 671isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 672			unsigned long end_pfn, isolate_mode_t isolate_mode)
 673{
 674	struct zone *zone = cc->zone;
 675	unsigned long nr_scanned = 0, nr_isolated = 0;
 
 676	struct lruvec *lruvec;
 677	unsigned long flags = 0;
 678	bool locked = false;
 679	struct page *page = NULL, *valid_page = NULL;
 680	unsigned long start_pfn = low_pfn;
 681	bool skip_on_failure = false;
 682	unsigned long next_skip_pfn = 0;
 683
 684	/*
 685	 * Ensure that there are not too many pages isolated from the LRU
 686	 * list by either parallel reclaimers or compaction. If there are,
 687	 * delay for some time until fewer pages are isolated
 688	 */
 689	while (unlikely(too_many_isolated(zone))) {
 690		/* async migration should just abort */
 691		if (cc->mode == MIGRATE_ASYNC)
 692			return 0;
 693
 694		congestion_wait(BLK_RW_ASYNC, HZ/10);
 695
 696		if (fatal_signal_pending(current))
 697			return 0;
 698	}
 699
 700	if (compact_should_abort(cc))
 701		return 0;
 702
 703	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 704		skip_on_failure = true;
 705		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 706	}
 707
 708	/* Time to isolate some pages for migration */
 
 709	for (; low_pfn < end_pfn; low_pfn++) {
 710
 711		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 712			/*
 713			 * We have isolated all migration candidates in the
 714			 * previous order-aligned block, and did not skip it due
 715			 * to failure. We should migrate the pages now and
 716			 * hopefully succeed compaction.
 717			 */
 718			if (nr_isolated)
 719				break;
 720
 721			/*
 722			 * We failed to isolate in the previous order-aligned
 723			 * block. Set the new boundary to the end of the
 724			 * current block. Note we can't simply increase
 725			 * next_skip_pfn by 1 << order, as low_pfn might have
 726			 * been incremented by a higher number due to skipping
 727			 * a compound or a high-order buddy page in the
 728			 * previous loop iteration.
 729			 */
 730			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 731		}
 732
 733		/*
 734		 * Periodically drop the lock (if held) regardless of its
 735		 * contention, to give chance to IRQs. Abort async compaction
 736		 * if contended.
 737		 */
 738		if (!(low_pfn % SWAP_CLUSTER_MAX)
 739		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
 740								&locked, cc))
 741			break;
 
 
 
 742
 743		if (!pfn_valid_within(low_pfn))
 744			goto isolate_fail;
 745		nr_scanned++;
 746
 
 
 
 
 
 
 747		page = pfn_to_page(low_pfn);
 
 
 748
 749		if (!valid_page)
 750			valid_page = page;
 751
 752		/*
 753		 * Skip if free. We read page order here without zone lock
 754		 * which is generally unsafe, but the race window is small and
 755		 * the worst thing that can happen is that we skip some
 756		 * potential isolation targets.
 757		 */
 758		if (PageBuddy(page)) {
 759			unsigned long freepage_order = page_order_unsafe(page);
 760
 761			/*
 762			 * Without lock, we cannot be sure that what we got is
 763			 * a valid page order. Consider only values in the
 764			 * valid order range to prevent low_pfn overflow.
 765			 */
 766			if (freepage_order > 0 && freepage_order < MAX_ORDER)
 767				low_pfn += (1UL << freepage_order) - 1;
 768			continue;
 
 
 
 769		}
 770
 771		/*
 772		 * Regardless of being on LRU, compound pages such as THP and
 773		 * hugetlbfs are not to be compacted. We can potentially save
 774		 * a lot of iterations if we skip them at once. The check is
 775		 * racy, but we can consider only valid values and the only
 776		 * danger is skipping too much.
 777		 */
 778		if (PageCompound(page)) {
 779			unsigned int comp_order = compound_order(page);
 780
 781			if (likely(comp_order < MAX_ORDER))
 782				low_pfn += (1UL << comp_order) - 1;
 783
 784			goto isolate_fail;
 785		}
 786
 787		/*
 788		 * Check may be lockless but that's ok as we recheck later.
 789		 * It's possible to migrate LRU and non-lru movable pages.
 790		 * Skip any other type of page
 791		 */
 792		if (!PageLRU(page)) {
 793			/*
 794			 * __PageMovable can return false positive so we need
 795			 * to verify it under page_lock.
 796			 */
 797			if (unlikely(__PageMovable(page)) &&
 798					!PageIsolated(page)) {
 799				if (locked) {
 800					spin_unlock_irqrestore(zone_lru_lock(zone),
 801									flags);
 802					locked = false;
 803				}
 804
 805				if (isolate_movable_page(page, isolate_mode))
 806					goto isolate_success;
 807			}
 
 
 808
 809			goto isolate_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810		}
 811
 812		/*
 813		 * Migration will fail if an anonymous page is pinned in memory,
 814		 * so avoid taking lru_lock and isolating it unnecessarily in an
 815		 * admittedly racy check.
 816		 */
 817		if (!page_mapping(page) &&
 818		    page_count(page) > page_mapcount(page))
 819			goto isolate_fail;
 820
 821		/*
 822		 * Only allow to migrate anonymous pages in GFP_NOFS context
 823		 * because those do not depend on fs locks.
 824		 */
 825		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
 826			goto isolate_fail;
 827
 828		/* If we already hold the lock, we can skip some rechecking */
 829		if (!locked) {
 830			locked = compact_trylock_irqsave(zone_lru_lock(zone),
 831								&flags, cc);
 832			if (!locked)
 833				break;
 834
 835			/* Recheck PageLRU and PageCompound under lock */
 836			if (!PageLRU(page))
 837				goto isolate_fail;
 838
 839			/*
 840			 * Page become compound since the non-locked check,
 841			 * and it's on LRU. It can only be a THP so the order
 842			 * is safe to read and it's 0 for tail pages.
 843			 */
 844			if (unlikely(PageCompound(page))) {
 845				low_pfn += (1UL << compound_order(page)) - 1;
 846				goto isolate_fail;
 847			}
 848		}
 849
 850		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
 851
 852		/* Try isolate the page */
 853		if (__isolate_lru_page(page, isolate_mode) != 0)
 854			goto isolate_fail;
 855
 856		VM_BUG_ON_PAGE(PageCompound(page), page);
 857
 858		/* Successfully isolated */
 859		del_page_from_lru_list(page, lruvec, page_lru(page));
 860		inc_node_page_state(page,
 861				NR_ISOLATED_ANON + page_is_file_cache(page));
 862
 863isolate_success:
 864		list_add(&page->lru, &cc->migratepages);
 
 865		cc->nr_migratepages++;
 866		nr_isolated++;
 867
 868		/*
 869		 * Record where we could have freed pages by migration and not
 870		 * yet flushed them to buddy allocator.
 871		 * - this is the lowest page that was isolated and likely be
 872		 * then freed by migration.
 873		 */
 874		if (!cc->last_migrated_pfn)
 875			cc->last_migrated_pfn = low_pfn;
 876
 877		/* Avoid isolating too much */
 878		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 879			++low_pfn;
 880			break;
 881		}
 882
 883		continue;
 884isolate_fail:
 885		if (!skip_on_failure)
 886			continue;
 887
 888		/*
 889		 * We have isolated some pages, but then failed. Release them
 890		 * instead of migrating, as we cannot form the cc->order buddy
 891		 * page anyway.
 892		 */
 893		if (nr_isolated) {
 894			if (locked) {
 895				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
 896				locked = false;
 897			}
 898			putback_movable_pages(&cc->migratepages);
 899			cc->nr_migratepages = 0;
 900			cc->last_migrated_pfn = 0;
 901			nr_isolated = 0;
 902		}
 903
 904		if (low_pfn < next_skip_pfn) {
 905			low_pfn = next_skip_pfn - 1;
 906			/*
 907			 * The check near the loop beginning would have updated
 908			 * next_skip_pfn too, but this is a bit simpler.
 909			 */
 910			next_skip_pfn += 1UL << cc->order;
 911		}
 912	}
 913
 914	/*
 915	 * The PageBuddy() check could have potentially brought us outside
 916	 * the range to be scanned.
 917	 */
 918	if (unlikely(low_pfn > end_pfn))
 919		low_pfn = end_pfn;
 920
 921	if (locked)
 922		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
 923
 924	/*
 925	 * Update the pageblock-skip information and cached scanner pfn,
 926	 * if the whole pageblock was scanned without isolating any page.
 
 
 927	 */
 928	if (low_pfn == end_pfn)
 929		update_pageblock_skip(cc, valid_page, nr_isolated, true);
 930
 931	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
 932						nr_scanned, nr_isolated);
 933
 934	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
 935	if (nr_isolated)
 936		count_compact_events(COMPACTISOLATED, nr_isolated);
 937
 938	return low_pfn;
 939}
 940
 941/**
 942 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 943 * @cc:        Compaction control structure.
 944 * @start_pfn: The first PFN to start isolating.
 945 * @end_pfn:   The one-past-last PFN.
 946 *
 947 * Returns zero if isolation fails fatally due to e.g. pending signal.
 948 * Otherwise, function returns one-past-the-last PFN of isolated page
 949 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 950 */
 951unsigned long
 952isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
 953							unsigned long end_pfn)
 954{
 955	unsigned long pfn, block_start_pfn, block_end_pfn;
 956
 957	/* Scan block by block. First and last block may be incomplete */
 958	pfn = start_pfn;
 959	block_start_pfn = pageblock_start_pfn(pfn);
 960	if (block_start_pfn < cc->zone->zone_start_pfn)
 961		block_start_pfn = cc->zone->zone_start_pfn;
 962	block_end_pfn = pageblock_end_pfn(pfn);
 963
 964	for (; pfn < end_pfn; pfn = block_end_pfn,
 965				block_start_pfn = block_end_pfn,
 966				block_end_pfn += pageblock_nr_pages) {
 967
 968		block_end_pfn = min(block_end_pfn, end_pfn);
 969
 970		if (!pageblock_pfn_to_page(block_start_pfn,
 971					block_end_pfn, cc->zone))
 972			continue;
 973
 974		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
 975							ISOLATE_UNEVICTABLE);
 976
 977		if (!pfn)
 978			break;
 979
 980		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
 981			break;
 982	}
 983
 984	return pfn;
 985}
 986
 987#endif /* CONFIG_COMPACTION || CONFIG_CMA */
 988#ifdef CONFIG_COMPACTION
 989
 990/* Returns true if the page is within a block suitable for migration to */
 991static bool suitable_migration_target(struct compact_control *cc,
 992							struct page *page)
 993{
 994	if (cc->ignore_block_suitable)
 995		return true;
 996
 997	/* If the page is a large free page, then disallow migration */
 998	if (PageBuddy(page)) {
 999		/*
1000		 * We are checking page_order without zone->lock taken. But
1001		 * the only small danger is that we skip a potentially suitable
1002		 * pageblock, so it's not worth to check order for valid range.
1003		 */
1004		if (page_order_unsafe(page) >= pageblock_order)
1005			return false;
1006	}
1007
1008	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1009	if (migrate_async_suitable(get_pageblock_migratetype(page)))
1010		return true;
1011
1012	/* Otherwise skip the block */
1013	return false;
1014}
1015
1016/*
1017 * Test whether the free scanner has reached the same or lower pageblock than
1018 * the migration scanner, and compaction should thus terminate.
1019 */
1020static inline bool compact_scanners_met(struct compact_control *cc)
1021{
1022	return (cc->free_pfn >> pageblock_order)
1023		<= (cc->migrate_pfn >> pageblock_order);
1024}
1025
1026/*
1027 * Based on information in the current compact_control, find blocks
1028 * suitable for isolating free pages from and then isolate them.
1029 */
1030static void isolate_freepages(struct compact_control *cc)
 
1031{
1032	struct zone *zone = cc->zone;
1033	struct page *page;
1034	unsigned long block_start_pfn;	/* start of current pageblock */
1035	unsigned long isolate_start_pfn; /* exact pfn we start at */
1036	unsigned long block_end_pfn;	/* end of current pageblock */
1037	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1038	struct list_head *freelist = &cc->freepages;
1039
1040	/*
1041	 * Initialise the free scanner. The starting point is where we last
1042	 * successfully isolated from, zone-cached value, or the end of the
1043	 * zone when isolating for the first time. For looping we also need
1044	 * this pfn aligned down to the pageblock boundary, because we do
1045	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1046	 * For ending point, take care when isolating in last pageblock of a
1047	 * a zone which ends in the middle of a pageblock.
1048	 * The low boundary is the end of the pageblock the migration scanner
1049	 * is using.
1050	 */
1051	isolate_start_pfn = cc->free_pfn;
1052	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1053	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1054						zone_end_pfn(zone));
1055	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
 
 
 
 
 
 
1056
1057	/*
1058	 * Isolate free pages until enough are available to migrate the
1059	 * pages on cc->migratepages. We stop searching if the migrate
1060	 * and free page scanners meet or enough free pages are isolated.
1061	 */
1062	for (; block_start_pfn >= low_pfn;
1063				block_end_pfn = block_start_pfn,
1064				block_start_pfn -= pageblock_nr_pages,
1065				isolate_start_pfn = block_start_pfn) {
 
1066		/*
1067		 * This can iterate a massively long zone without finding any
1068		 * suitable migration targets, so periodically check if we need
1069		 * to schedule, or even abort async compaction.
1070		 */
1071		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1072						&& compact_should_abort(cc))
1073			break;
1074
1075		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1076									zone);
1077		if (!page)
 
 
 
 
 
 
 
 
 
1078			continue;
1079
1080		/* Check the block is suitable for migration */
1081		if (!suitable_migration_target(cc, page))
1082			continue;
1083
1084		/* If isolation recently failed, do not retry */
1085		if (!isolation_suitable(cc, page))
1086			continue;
1087
1088		/* Found a block suitable for isolating free pages from. */
1089		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1090					freelist, false);
1091
1092		/*
1093		 * If we isolated enough freepages, or aborted due to lock
1094		 * contention, terminate.
1095		 */
1096		if ((cc->nr_freepages >= cc->nr_migratepages)
1097							|| cc->contended) {
1098			if (isolate_start_pfn >= block_end_pfn) {
1099				/*
1100				 * Restart at previous pageblock if more
1101				 * freepages can be isolated next time.
1102				 */
1103				isolate_start_pfn =
1104					block_start_pfn - pageblock_nr_pages;
1105			}
1106			break;
1107		} else if (isolate_start_pfn < block_end_pfn) {
1108			/*
1109			 * If isolation failed early, do not continue
1110			 * needlessly.
1111			 */
1112			break;
1113		}
1114	}
1115
1116	/* __isolate_free_page() does not map the pages */
1117	map_pages(freelist);
1118
1119	/*
1120	 * Record where the free scanner will restart next time. Either we
1121	 * broke from the loop and set isolate_start_pfn based on the last
1122	 * call to isolate_freepages_block(), or we met the migration scanner
1123	 * and the loop terminated due to isolate_start_pfn < low_pfn
1124	 */
1125	cc->free_pfn = isolate_start_pfn;
 
 
 
 
1126}
1127
1128/*
1129 * This is a migrate-callback that "allocates" freepages by taking pages
1130 * from the isolated freelists in the block we are migrating to.
1131 */
1132static struct page *compaction_alloc(struct page *migratepage,
1133					unsigned long data,
1134					int **result)
1135{
1136	struct compact_control *cc = (struct compact_control *)data;
1137	struct page *freepage;
1138
1139	/*
1140	 * Isolate free pages if necessary, and if we are not aborting due to
1141	 * contention.
1142	 */
1143	if (list_empty(&cc->freepages)) {
1144		if (!cc->contended)
1145			isolate_freepages(cc);
1146
1147		if (list_empty(&cc->freepages))
1148			return NULL;
1149	}
1150
1151	freepage = list_entry(cc->freepages.next, struct page, lru);
1152	list_del(&freepage->lru);
1153	cc->nr_freepages--;
1154
1155	return freepage;
1156}
1157
1158/*
1159 * This is a migrate-callback that "frees" freepages back to the isolated
1160 * freelist.  All pages on the freelist are from the same zone, so there is no
1161 * special handling needed for NUMA.
1162 */
1163static void compaction_free(struct page *page, unsigned long data)
1164{
1165	struct compact_control *cc = (struct compact_control *)data;
 
 
 
 
 
 
 
1166
1167	list_add(&page->lru, &cc->freepages);
1168	cc->nr_freepages++;
1169}
1170
1171/* possible outcome of isolate_migratepages */
1172typedef enum {
1173	ISOLATE_ABORT,		/* Abort compaction now */
1174	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1175	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1176} isolate_migrate_t;
1177
1178/*
1179 * Allow userspace to control policy on scanning the unevictable LRU for
1180 * compactable pages.
1181 */
1182int sysctl_compact_unevictable_allowed __read_mostly = 1;
1183
1184/*
1185 * Isolate all pages that can be migrated from the first suitable block,
1186 * starting at the block pointed to by the migrate scanner pfn within
1187 * compact_control.
1188 */
1189static isolate_migrate_t isolate_migratepages(struct zone *zone,
1190					struct compact_control *cc)
1191{
1192	unsigned long block_start_pfn;
1193	unsigned long block_end_pfn;
1194	unsigned long low_pfn;
1195	struct page *page;
1196	const isolate_mode_t isolate_mode =
1197		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1198		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1199
1200	/*
1201	 * Start at where we last stopped, or beginning of the zone as
1202	 * initialized by compact_zone()
1203	 */
1204	low_pfn = cc->migrate_pfn;
1205	block_start_pfn = pageblock_start_pfn(low_pfn);
1206	if (block_start_pfn < zone->zone_start_pfn)
1207		block_start_pfn = zone->zone_start_pfn;
1208
1209	/* Only scan within a pageblock boundary */
1210	block_end_pfn = pageblock_end_pfn(low_pfn);
1211
1212	/*
1213	 * Iterate over whole pageblocks until we find the first suitable.
1214	 * Do not cross the free scanner.
1215	 */
1216	for (; block_end_pfn <= cc->free_pfn;
1217			low_pfn = block_end_pfn,
1218			block_start_pfn = block_end_pfn,
1219			block_end_pfn += pageblock_nr_pages) {
1220
1221		/*
1222		 * This can potentially iterate a massively long zone with
1223		 * many pageblocks unsuitable, so periodically check if we
1224		 * need to schedule, or even abort async compaction.
1225		 */
1226		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1227						&& compact_should_abort(cc))
1228			break;
1229
1230		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1231									zone);
1232		if (!page)
1233			continue;
1234
1235		/* If isolation recently failed, do not retry */
1236		if (!isolation_suitable(cc, page))
1237			continue;
1238
1239		/*
1240		 * For async compaction, also only scan in MOVABLE blocks.
1241		 * Async compaction is optimistic to see if the minimum amount
1242		 * of work satisfies the allocation.
1243		 */
1244		if (cc->mode == MIGRATE_ASYNC &&
1245		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1246			continue;
1247
1248		/* Perform the isolation */
1249		low_pfn = isolate_migratepages_block(cc, low_pfn,
1250						block_end_pfn, isolate_mode);
1251
1252		if (!low_pfn || cc->contended)
1253			return ISOLATE_ABORT;
1254
1255		/*
1256		 * Either we isolated something and proceed with migration. Or
1257		 * we failed and compact_zone should decide if we should
1258		 * continue or not.
1259		 */
1260		break;
1261	}
1262
1263	/* Record where migration scanner will be restarted. */
1264	cc->migrate_pfn = low_pfn;
1265
1266	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1267}
1268
1269/*
1270 * order == -1 is expected when compacting via
1271 * /proc/sys/vm/compact_memory
1272 */
1273static inline bool is_via_compact_memory(int order)
1274{
1275	return order == -1;
1276}
1277
1278static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1279			    const int migratetype)
1280{
1281	unsigned int order;
1282	unsigned long watermark;
1283
1284	if (cc->contended || fatal_signal_pending(current))
1285		return COMPACT_CONTENDED;
1286
1287	/* Compaction run completes if the migrate and free scanner meet */
1288	if (compact_scanners_met(cc)) {
1289		/* Let the next compaction start anew. */
1290		reset_cached_positions(zone);
 
1291
1292		/*
1293		 * Mark that the PG_migrate_skip information should be cleared
1294		 * by kswapd when it goes to sleep. kcompactd does not set the
1295		 * flag itself as the decision to be clear should be directly
1296		 * based on an allocation request.
1297		 */
1298		if (cc->direct_compaction)
1299			zone->compact_blockskip_flush = true;
1300
1301		if (cc->whole_zone)
1302			return COMPACT_COMPLETE;
1303		else
1304			return COMPACT_PARTIAL_SKIPPED;
1305	}
1306
1307	if (is_via_compact_memory(cc->order))
 
 
 
 
1308		return COMPACT_CONTINUE;
1309
1310	/* Compaction run is not finished if the watermark is not met */
1311	watermark = zone->watermark[cc->alloc_flags & ALLOC_WMARK_MASK];
 
1312
1313	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1314							cc->alloc_flags))
1315		return COMPACT_CONTINUE;
1316
1317	/* Direct compactor: Is a suitable page free? */
1318	for (order = cc->order; order < MAX_ORDER; order++) {
1319		struct free_area *area = &zone->free_area[order];
1320		bool can_steal;
1321
1322		/* Job done if page is free of the right migratetype */
1323		if (!list_empty(&area->free_list[migratetype]))
1324			return COMPACT_SUCCESS;
1325
1326#ifdef CONFIG_CMA
1327		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1328		if (migratetype == MIGRATE_MOVABLE &&
1329			!list_empty(&area->free_list[MIGRATE_CMA]))
1330			return COMPACT_SUCCESS;
1331#endif
1332		/*
1333		 * Job done if allocation would steal freepages from
1334		 * other migratetype buddy lists.
1335		 */
1336		if (find_suitable_fallback(area, order, migratetype,
1337						true, &can_steal) != -1)
1338			return COMPACT_SUCCESS;
1339	}
1340
1341	return COMPACT_NO_SUITABLE_PAGE;
1342}
1343
1344static enum compact_result compact_finished(struct zone *zone,
1345			struct compact_control *cc,
1346			const int migratetype)
1347{
1348	int ret;
1349
1350	ret = __compact_finished(zone, cc, migratetype);
1351	trace_mm_compaction_finished(zone, cc->order, ret);
1352	if (ret == COMPACT_NO_SUITABLE_PAGE)
1353		ret = COMPACT_CONTINUE;
1354
1355	return ret;
1356}
1357
1358/*
1359 * compaction_suitable: Is this suitable to run compaction on this zone now?
1360 * Returns
1361 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1362 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1363 *   COMPACT_CONTINUE - If compaction should run now
1364 */
1365static enum compact_result __compaction_suitable(struct zone *zone, int order,
1366					unsigned int alloc_flags,
1367					int classzone_idx,
1368					unsigned long wmark_target)
1369{
 
1370	unsigned long watermark;
1371
1372	if (is_via_compact_memory(order))
1373		return COMPACT_CONTINUE;
1374
1375	watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1376	/*
1377	 * If watermarks for high-order allocation are already met, there
1378	 * should be no need for compaction at all.
1379	 */
1380	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1381								alloc_flags))
1382		return COMPACT_SUCCESS;
1383
1384	/*
1385	 * Watermarks for order-0 must be met for compaction to be able to
1386	 * isolate free pages for migration targets. This means that the
1387	 * watermark and alloc_flags have to match, or be more pessimistic than
1388	 * the check in __isolate_free_page(). We don't use the direct
1389	 * compactor's alloc_flags, as they are not relevant for freepage
1390	 * isolation. We however do use the direct compactor's classzone_idx to
1391	 * skip over zones where lowmem reserves would prevent allocation even
1392	 * if compaction succeeds.
1393	 * For costly orders, we require low watermark instead of min for
1394	 * compaction to proceed to increase its chances.
1395	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1396	 * suitable migration targets
1397	 */
1398	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1399				low_wmark_pages(zone) : min_wmark_pages(zone);
1400	watermark += compact_gap(order);
1401	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1402						ALLOC_CMA, wmark_target))
1403		return COMPACT_SKIPPED;
1404
1405	return COMPACT_CONTINUE;
1406}
1407
1408enum compact_result compaction_suitable(struct zone *zone, int order,
1409					unsigned int alloc_flags,
1410					int classzone_idx)
1411{
1412	enum compact_result ret;
1413	int fragindex;
1414
1415	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1416				    zone_page_state(zone, NR_FREE_PAGES));
1417	/*
1418	 * fragmentation index determines if allocation failures are due to
1419	 * low memory or external fragmentation
1420	 *
1421	 * index of -1000 would imply allocations might succeed depending on
1422	 * watermarks, but we already failed the high-order watermark check
1423	 * index towards 0 implies failure is due to lack of memory
1424	 * index towards 1000 implies failure is due to fragmentation
1425	 *
1426	 * Only compact if a failure would be due to fragmentation. Also
1427	 * ignore fragindex for non-costly orders where the alternative to
1428	 * a successful reclaim/compaction is OOM. Fragindex and the
1429	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1430	 * excessive compaction for costly orders, but it should not be at the
1431	 * expense of system stability.
1432	 */
1433	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1434		fragindex = fragmentation_index(zone, order);
1435		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1436			ret = COMPACT_NOT_SUITABLE_ZONE;
1437	}
1438
1439	trace_mm_compaction_suitable(zone, order, ret);
1440	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1441		ret = COMPACT_SKIPPED;
1442
1443	return ret;
1444}
1445
1446bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1447		int alloc_flags)
1448{
1449	struct zone *zone;
1450	struct zoneref *z;
1451
1452	/*
1453	 * Make sure at least one zone would pass __compaction_suitable if we continue
1454	 * retrying the reclaim.
1455	 */
1456	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1457					ac->nodemask) {
1458		unsigned long available;
1459		enum compact_result compact_result;
1460
1461		/*
1462		 * Do not consider all the reclaimable memory because we do not
1463		 * want to trash just for a single high order allocation which
1464		 * is even not guaranteed to appear even if __compaction_suitable
1465		 * is happy about the watermark check.
1466		 */
1467		available = zone_reclaimable_pages(zone) / order;
1468		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1469		compact_result = __compaction_suitable(zone, order, alloc_flags,
1470				ac_classzone_idx(ac), available);
1471		if (compact_result != COMPACT_SKIPPED)
1472			return true;
1473	}
1474
1475	return false;
1476}
1477
1478static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1479{
1480	enum compact_result ret;
1481	unsigned long start_pfn = zone->zone_start_pfn;
1482	unsigned long end_pfn = zone_end_pfn(zone);
1483	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1484	const bool sync = cc->mode != MIGRATE_ASYNC;
1485
1486	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1487							cc->classzone_idx);
1488	/* Compaction is likely to fail */
1489	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
 
1490		return ret;
1491
1492	/* huh, compaction_suitable is returning something unexpected */
1493	VM_BUG_ON(ret != COMPACT_CONTINUE);
 
1494
1495	/*
1496	 * Clear pageblock skip if there were failures recently and compaction
1497	 * is about to be retried after being deferred.
 
1498	 */
1499	if (compaction_restarting(zone, cc->order))
1500		__reset_isolation_suitable(zone);
1501
1502	/*
1503	 * Setup to move all movable pages to the end of the zone. Used cached
1504	 * information on where the scanners should start (unless we explicitly
1505	 * want to compact the whole zone), but check that it is initialised
1506	 * by ensuring the values are within zone boundaries.
1507	 */
1508	if (cc->whole_zone) {
 
 
 
 
 
 
1509		cc->migrate_pfn = start_pfn;
1510		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1511	} else {
1512		cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1513		cc->free_pfn = zone->compact_cached_free_pfn;
1514		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1515			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1516			zone->compact_cached_free_pfn = cc->free_pfn;
1517		}
1518		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1519			cc->migrate_pfn = start_pfn;
1520			zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1521			zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1522		}
1523
1524		if (cc->migrate_pfn == start_pfn)
1525			cc->whole_zone = true;
1526	}
1527
1528	cc->last_migrated_pfn = 0;
1529
1530	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1531				cc->free_pfn, end_pfn, sync);
1532
1533	migrate_prep_local();
1534
1535	while ((ret = compact_finished(zone, cc, migratetype)) ==
1536						COMPACT_CONTINUE) {
1537		int err;
1538
1539		switch (isolate_migratepages(zone, cc)) {
1540		case ISOLATE_ABORT:
1541			ret = COMPACT_CONTENDED;
1542			putback_movable_pages(&cc->migratepages);
1543			cc->nr_migratepages = 0;
1544			goto out;
1545		case ISOLATE_NONE:
1546			/*
1547			 * We haven't isolated and migrated anything, but
1548			 * there might still be unflushed migrations from
1549			 * previous cc->order aligned block.
1550			 */
1551			goto check_drain;
1552		case ISOLATE_SUCCESS:
1553			;
1554		}
1555
 
1556		err = migrate_pages(&cc->migratepages, compaction_alloc,
1557				compaction_free, (unsigned long)cc, cc->mode,
 
1558				MR_COMPACTION);
 
 
1559
1560		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1561							&cc->migratepages);
1562
1563		/* All pages were either migrated or will be released */
1564		cc->nr_migratepages = 0;
1565		if (err) {
1566			putback_movable_pages(&cc->migratepages);
 
1567			/*
1568			 * migrate_pages() may return -ENOMEM when scanners meet
1569			 * and we want compact_finished() to detect it
1570			 */
1571			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1572				ret = COMPACT_CONTENDED;
1573				goto out;
1574			}
1575			/*
1576			 * We failed to migrate at least one page in the current
1577			 * order-aligned block, so skip the rest of it.
1578			 */
1579			if (cc->direct_compaction &&
1580						(cc->mode == MIGRATE_ASYNC)) {
1581				cc->migrate_pfn = block_end_pfn(
1582						cc->migrate_pfn - 1, cc->order);
1583				/* Draining pcplists is useless in this case */
1584				cc->last_migrated_pfn = 0;
1585
1586			}
1587		}
1588
1589check_drain:
1590		/*
1591		 * Has the migration scanner moved away from the previous
1592		 * cc->order aligned block where we migrated from? If yes,
1593		 * flush the pages that were freed, so that they can merge and
1594		 * compact_finished() can detect immediately if allocation
1595		 * would succeed.
1596		 */
1597		if (cc->order > 0 && cc->last_migrated_pfn) {
1598			int cpu;
1599			unsigned long current_block_start =
1600				block_start_pfn(cc->migrate_pfn, cc->order);
1601
1602			if (cc->last_migrated_pfn < current_block_start) {
1603				cpu = get_cpu();
1604				lru_add_drain_cpu(cpu);
1605				drain_local_pages(zone);
1606				put_cpu();
1607				/* No more flushing until we migrate again */
1608				cc->last_migrated_pfn = 0;
1609			}
1610		}
1611
1612	}
1613
1614out:
1615	/*
1616	 * Release free pages and update where the free scanner should restart,
1617	 * so we don't leave any returned pages behind in the next attempt.
1618	 */
1619	if (cc->nr_freepages > 0) {
1620		unsigned long free_pfn = release_freepages(&cc->freepages);
1621
1622		cc->nr_freepages = 0;
1623		VM_BUG_ON(free_pfn == 0);
1624		/* The cached pfn is always the first in a pageblock */
1625		free_pfn = pageblock_start_pfn(free_pfn);
1626		/*
1627		 * Only go back, not forward. The cached pfn might have been
1628		 * already reset to zone end in compact_finished()
1629		 */
1630		if (free_pfn > zone->compact_cached_free_pfn)
1631			zone->compact_cached_free_pfn = free_pfn;
1632	}
1633
1634	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1635				cc->free_pfn, end_pfn, sync, ret);
1636
1637	return ret;
1638}
1639
1640static enum compact_result compact_zone_order(struct zone *zone, int order,
1641		gfp_t gfp_mask, enum compact_priority prio,
1642		unsigned int alloc_flags, int classzone_idx)
1643{
1644	enum compact_result ret;
1645	struct compact_control cc = {
1646		.nr_freepages = 0,
1647		.nr_migratepages = 0,
1648		.order = order,
1649		.gfp_mask = gfp_mask,
1650		.zone = zone,
1651		.mode = (prio == COMPACT_PRIO_ASYNC) ?
1652					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
1653		.alloc_flags = alloc_flags,
1654		.classzone_idx = classzone_idx,
1655		.direct_compaction = true,
1656		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
1657		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1658		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1659	};
1660	INIT_LIST_HEAD(&cc.freepages);
1661	INIT_LIST_HEAD(&cc.migratepages);
1662
1663	ret = compact_zone(zone, &cc);
1664
1665	VM_BUG_ON(!list_empty(&cc.freepages));
1666	VM_BUG_ON(!list_empty(&cc.migratepages));
1667
 
1668	return ret;
1669}
1670
1671int sysctl_extfrag_threshold = 500;
1672
1673/**
1674 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 
 
1675 * @gfp_mask: The GFP mask of the current allocation
1676 * @order: The order of the current allocation
1677 * @alloc_flags: The allocation flags of the current allocation
1678 * @ac: The context of current allocation
1679 * @mode: The migration mode for async, sync light, or sync migration
1680 *
1681 * This is the main entry point for direct page compaction.
1682 */
1683enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1684		unsigned int alloc_flags, const struct alloc_context *ac,
1685		enum compact_priority prio)
1686{
 
 
1687	int may_perform_io = gfp_mask & __GFP_IO;
1688	struct zoneref *z;
1689	struct zone *zone;
1690	enum compact_result rc = COMPACT_SKIPPED;
 
1691
1692	/*
1693	 * Check if the GFP flags allow compaction - GFP_NOIO is really
1694	 * tricky context because the migration might require IO
1695	 */
1696	if (!may_perform_io)
1697		return COMPACT_SKIPPED;
1698
1699	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1700
 
 
 
 
1701	/* Compact each zone in the list */
1702	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1703								ac->nodemask) {
1704		enum compact_result status;
1705
1706		if (prio > MIN_COMPACT_PRIORITY
1707					&& compaction_deferred(zone, order)) {
1708			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1709			continue;
1710		}
1711
1712		status = compact_zone_order(zone, order, gfp_mask, prio,
1713					alloc_flags, ac_classzone_idx(ac));
1714		rc = max(status, rc);
1715
1716		/* The allocation should succeed, stop compacting */
1717		if (status == COMPACT_SUCCESS) {
1718			/*
1719			 * We think the allocation will succeed in this zone,
1720			 * but it is not certain, hence the false. The caller
1721			 * will repeat this with true if allocation indeed
1722			 * succeeds in this zone.
1723			 */
1724			compaction_defer_reset(zone, order, false);
1725
1726			break;
1727		}
1728
1729		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1730					status == COMPACT_PARTIAL_SKIPPED))
1731			/*
1732			 * We think that allocation won't succeed in this zone
1733			 * so we defer compaction there. If it ends up
1734			 * succeeding after all, it will be reset.
1735			 */
1736			defer_compaction(zone, order);
1737
1738		/*
1739		 * We might have stopped compacting due to need_resched() in
1740		 * async compaction, or due to a fatal signal detected. In that
1741		 * case do not try further zones
1742		 */
1743		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1744					|| fatal_signal_pending(current))
1745			break;
1746	}
1747
1748	return rc;
1749}
1750
1751
1752/* Compact all zones within a node */
1753static void compact_node(int nid)
1754{
1755	pg_data_t *pgdat = NODE_DATA(nid);
1756	int zoneid;
1757	struct zone *zone;
1758	struct compact_control cc = {
1759		.order = -1,
1760		.mode = MIGRATE_SYNC,
1761		.ignore_skip_hint = true,
1762		.whole_zone = true,
1763		.gfp_mask = GFP_KERNEL,
1764	};
1765
1766
1767	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1768
1769		zone = &pgdat->node_zones[zoneid];
1770		if (!populated_zone(zone))
1771			continue;
1772
1773		cc.nr_freepages = 0;
1774		cc.nr_migratepages = 0;
1775		cc.zone = zone;
1776		INIT_LIST_HEAD(&cc.freepages);
1777		INIT_LIST_HEAD(&cc.migratepages);
1778
1779		compact_zone(zone, &cc);
 
1780
1781		VM_BUG_ON(!list_empty(&cc.freepages));
1782		VM_BUG_ON(!list_empty(&cc.migratepages));
 
 
 
 
 
 
 
 
 
1783	}
1784}
1785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1786/* Compact all nodes in the system */
1787static void compact_nodes(void)
1788{
1789	int nid;
1790
1791	/* Flush pending updates to the LRU lists */
1792	lru_add_drain_all();
1793
1794	for_each_online_node(nid)
1795		compact_node(nid);
1796}
1797
1798/* The written value is actually unused, all memory is compacted */
1799int sysctl_compact_memory;
1800
1801/*
1802 * This is the entry point for compacting all nodes via
1803 * /proc/sys/vm/compact_memory
1804 */
1805int sysctl_compaction_handler(struct ctl_table *table, int write,
1806			void __user *buffer, size_t *length, loff_t *ppos)
1807{
1808	if (write)
1809		compact_nodes();
1810
1811	return 0;
1812}
1813
1814int sysctl_extfrag_handler(struct ctl_table *table, int write,
1815			void __user *buffer, size_t *length, loff_t *ppos)
1816{
1817	proc_dointvec_minmax(table, write, buffer, length, ppos);
1818
1819	return 0;
1820}
1821
1822#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1823static ssize_t sysfs_compact_node(struct device *dev,
1824			struct device_attribute *attr,
1825			const char *buf, size_t count)
1826{
1827	int nid = dev->id;
1828
1829	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1830		/* Flush pending updates to the LRU lists */
1831		lru_add_drain_all();
1832
1833		compact_node(nid);
1834	}
1835
1836	return count;
1837}
1838static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1839
1840int compaction_register_node(struct node *node)
1841{
1842	return device_create_file(&node->dev, &dev_attr_compact);
1843}
1844
1845void compaction_unregister_node(struct node *node)
1846{
1847	return device_remove_file(&node->dev, &dev_attr_compact);
1848}
1849#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1850
1851static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1852{
1853	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1854}
1855
1856static bool kcompactd_node_suitable(pg_data_t *pgdat)
1857{
1858	int zoneid;
1859	struct zone *zone;
1860	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1861
1862	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1863		zone = &pgdat->node_zones[zoneid];
1864
1865		if (!populated_zone(zone))
1866			continue;
1867
1868		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1869					classzone_idx) == COMPACT_CONTINUE)
1870			return true;
1871	}
1872
1873	return false;
1874}
1875
1876static void kcompactd_do_work(pg_data_t *pgdat)
1877{
1878	/*
1879	 * With no special task, compact all zones so that a page of requested
1880	 * order is allocatable.
1881	 */
1882	int zoneid;
1883	struct zone *zone;
1884	struct compact_control cc = {
1885		.order = pgdat->kcompactd_max_order,
1886		.classzone_idx = pgdat->kcompactd_classzone_idx,
1887		.mode = MIGRATE_SYNC_LIGHT,
1888		.ignore_skip_hint = true,
1889		.gfp_mask = GFP_KERNEL,
1890
1891	};
1892	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1893							cc.classzone_idx);
1894	count_vm_event(KCOMPACTD_WAKE);
1895
1896	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1897		int status;
1898
1899		zone = &pgdat->node_zones[zoneid];
1900		if (!populated_zone(zone))
1901			continue;
1902
1903		if (compaction_deferred(zone, cc.order))
1904			continue;
1905
1906		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1907							COMPACT_CONTINUE)
1908			continue;
1909
1910		cc.nr_freepages = 0;
1911		cc.nr_migratepages = 0;
1912		cc.zone = zone;
1913		INIT_LIST_HEAD(&cc.freepages);
1914		INIT_LIST_HEAD(&cc.migratepages);
1915
1916		if (kthread_should_stop())
1917			return;
1918		status = compact_zone(zone, &cc);
1919
1920		if (status == COMPACT_SUCCESS) {
1921			compaction_defer_reset(zone, cc.order, false);
1922		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1923			/*
1924			 * We use sync migration mode here, so we defer like
1925			 * sync direct compaction does.
1926			 */
1927			defer_compaction(zone, cc.order);
1928		}
1929
1930		VM_BUG_ON(!list_empty(&cc.freepages));
1931		VM_BUG_ON(!list_empty(&cc.migratepages));
1932	}
1933
1934	/*
1935	 * Regardless of success, we are done until woken up next. But remember
1936	 * the requested order/classzone_idx in case it was higher/tighter than
1937	 * our current ones
1938	 */
1939	if (pgdat->kcompactd_max_order <= cc.order)
1940		pgdat->kcompactd_max_order = 0;
1941	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1942		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1943}
1944
1945void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1946{
1947	if (!order)
1948		return;
1949
1950	if (pgdat->kcompactd_max_order < order)
1951		pgdat->kcompactd_max_order = order;
1952
1953	if (pgdat->kcompactd_classzone_idx > classzone_idx)
1954		pgdat->kcompactd_classzone_idx = classzone_idx;
1955
1956	if (!waitqueue_active(&pgdat->kcompactd_wait))
1957		return;
1958
1959	if (!kcompactd_node_suitable(pgdat))
1960		return;
1961
1962	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1963							classzone_idx);
1964	wake_up_interruptible(&pgdat->kcompactd_wait);
1965}
1966
1967/*
1968 * The background compaction daemon, started as a kernel thread
1969 * from the init process.
1970 */
1971static int kcompactd(void *p)
1972{
1973	pg_data_t *pgdat = (pg_data_t*)p;
1974	struct task_struct *tsk = current;
1975
1976	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1977
1978	if (!cpumask_empty(cpumask))
1979		set_cpus_allowed_ptr(tsk, cpumask);
1980
1981	set_freezable();
1982
1983	pgdat->kcompactd_max_order = 0;
1984	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1985
1986	while (!kthread_should_stop()) {
1987		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1988		wait_event_freezable(pgdat->kcompactd_wait,
1989				kcompactd_work_requested(pgdat));
1990
1991		kcompactd_do_work(pgdat);
1992	}
1993
1994	return 0;
1995}
1996
1997/*
1998 * This kcompactd start function will be called by init and node-hot-add.
1999 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2000 */
2001int kcompactd_run(int nid)
2002{
2003	pg_data_t *pgdat = NODE_DATA(nid);
2004	int ret = 0;
2005
2006	if (pgdat->kcompactd)
2007		return 0;
2008
2009	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2010	if (IS_ERR(pgdat->kcompactd)) {
2011		pr_err("Failed to start kcompactd on node %d\n", nid);
2012		ret = PTR_ERR(pgdat->kcompactd);
2013		pgdat->kcompactd = NULL;
2014	}
2015	return ret;
2016}
2017
2018/*
2019 * Called by memory hotplug when all memory in a node is offlined. Caller must
2020 * hold mem_hotplug_begin/end().
2021 */
2022void kcompactd_stop(int nid)
2023{
2024	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2025
2026	if (kcompactd) {
2027		kthread_stop(kcompactd);
2028		NODE_DATA(nid)->kcompactd = NULL;
2029	}
2030}
2031
2032/*
2033 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2034 * not required for correctness. So if the last cpu in a node goes
2035 * away, we get changed to run anywhere: as the first one comes back,
2036 * restore their cpu bindings.
2037 */
2038static int kcompactd_cpu_online(unsigned int cpu)
2039{
2040	int nid;
2041
2042	for_each_node_state(nid, N_MEMORY) {
2043		pg_data_t *pgdat = NODE_DATA(nid);
2044		const struct cpumask *mask;
2045
2046		mask = cpumask_of_node(pgdat->node_id);
2047
2048		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2049			/* One of our CPUs online: restore mask */
2050			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2051	}
2052	return 0;
2053}
2054
2055static int __init kcompactd_init(void)
2056{
2057	int nid;
2058	int ret;
2059
2060	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2061					"mm/compaction:online",
2062					kcompactd_cpu_online, NULL);
2063	if (ret < 0) {
2064		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2065		return ret;
2066	}
2067
2068	for_each_node_state(nid, N_MEMORY)
2069		kcompactd_run(nid);
2070	return 0;
2071}
2072subsys_initcall(kcompactd_init)
2073
2074#endif /* CONFIG_COMPACTION */