Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * linux/kernel/time/tick-broadcast.c
  3 *
  4 * This file contains functions which emulate a local clock-event
  5 * device via a broadcast event source.
  6 *
  7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 10 *
 11 * This code is licenced under the GPL version 2. For details see
 12 * kernel-base/COPYING.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/err.h>
 16#include <linux/hrtimer.h>
 17#include <linux/interrupt.h>
 18#include <linux/percpu.h>
 19#include <linux/profile.h>
 20#include <linux/sched.h>
 21#include <linux/smp.h>
 22#include <linux/module.h>
 23
 24#include "tick-internal.h"
 25
 26/*
 27 * Broadcast support for broken x86 hardware, where the local apic
 28 * timer stops in C3 state.
 29 */
 30
 31static struct tick_device tick_broadcast_device;
 32static cpumask_var_t tick_broadcast_mask;
 33static cpumask_var_t tick_broadcast_on;
 34static cpumask_var_t tmpmask;
 35static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
 36static int tick_broadcast_force;
 
 37
 38#ifdef CONFIG_TICK_ONESHOT
 
 
 
 39static void tick_broadcast_clear_oneshot(int cpu);
 
 
 
 
 40#else
 
 41static inline void tick_broadcast_clear_oneshot(int cpu) { }
 
 
 
 
 42#endif
 43
 44/*
 45 * Debugging: see timer_list.c
 46 */
 47struct tick_device *tick_get_broadcast_device(void)
 48{
 49	return &tick_broadcast_device;
 50}
 51
 52struct cpumask *tick_get_broadcast_mask(void)
 53{
 54	return tick_broadcast_mask;
 55}
 56
 
 
 
 
 
 
 
 57/*
 58 * Start the device in periodic mode
 59 */
 60static void tick_broadcast_start_periodic(struct clock_event_device *bc)
 61{
 62	if (bc)
 63		tick_setup_periodic(bc, 1);
 64}
 65
 66/*
 67 * Check, if the device can be utilized as broadcast device:
 68 */
 69static bool tick_check_broadcast_device(struct clock_event_device *curdev,
 70					struct clock_event_device *newdev)
 71{
 72	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
 73	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
 74	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
 75		return false;
 76
 77	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
 78	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
 79		return false;
 80
 81	return !curdev || newdev->rating > curdev->rating;
 82}
 83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 84/*
 85 * Conditionally install/replace broadcast device
 86 */
 87void tick_install_broadcast_device(struct clock_event_device *dev)
 88{
 89	struct clock_event_device *cur = tick_broadcast_device.evtdev;
 90
 
 
 
 91	if (!tick_check_broadcast_device(cur, dev))
 92		return;
 93
 94	if (!try_module_get(dev->owner))
 95		return;
 96
 97	clockevents_exchange_device(cur, dev);
 98	if (cur)
 99		cur->event_handler = clockevents_handle_noop;
100	tick_broadcast_device.evtdev = dev;
101	if (!cpumask_empty(tick_broadcast_mask))
102		tick_broadcast_start_periodic(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
103	/*
104	 * Inform all cpus about this. We might be in a situation
105	 * where we did not switch to oneshot mode because the per cpu
106	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
107	 * of a oneshot capable broadcast device. Without that
108	 * notification the systems stays stuck in periodic mode
109	 * forever.
110	 */
111	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
112		tick_clock_notify();
113}
114
115/*
116 * Check, if the device is the broadcast device
117 */
118int tick_is_broadcast_device(struct clock_event_device *dev)
119{
120	return (dev && tick_broadcast_device.evtdev == dev);
121}
122
123int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
124{
125	int ret = -ENODEV;
126
127	if (tick_is_broadcast_device(dev)) {
128		raw_spin_lock(&tick_broadcast_lock);
129		ret = __clockevents_update_freq(dev, freq);
130		raw_spin_unlock(&tick_broadcast_lock);
131	}
132	return ret;
133}
134
135
136static void err_broadcast(const struct cpumask *mask)
137{
138	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
139}
140
141static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
142{
143	if (!dev->broadcast)
144		dev->broadcast = tick_broadcast;
145	if (!dev->broadcast) {
146		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
147			     dev->name);
148		dev->broadcast = err_broadcast;
149	}
150}
151
152/*
153 * Check, if the device is disfunctional and a place holder, which
154 * needs to be handled by the broadcast device.
155 */
156int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
157{
158	struct clock_event_device *bc = tick_broadcast_device.evtdev;
159	unsigned long flags;
160	int ret;
161
162	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
163
164	/*
165	 * Devices might be registered with both periodic and oneshot
166	 * mode disabled. This signals, that the device needs to be
167	 * operated from the broadcast device and is a placeholder for
168	 * the cpu local device.
169	 */
170	if (!tick_device_is_functional(dev)) {
171		dev->event_handler = tick_handle_periodic;
172		tick_device_setup_broadcast_func(dev);
173		cpumask_set_cpu(cpu, tick_broadcast_mask);
174		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
175			tick_broadcast_start_periodic(bc);
176		else
177			tick_broadcast_setup_oneshot(bc);
178		ret = 1;
179	} else {
180		/*
181		 * Clear the broadcast bit for this cpu if the
182		 * device is not power state affected.
183		 */
184		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
185			cpumask_clear_cpu(cpu, tick_broadcast_mask);
186		else
187			tick_device_setup_broadcast_func(dev);
188
189		/*
190		 * Clear the broadcast bit if the CPU is not in
191		 * periodic broadcast on state.
192		 */
193		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
194			cpumask_clear_cpu(cpu, tick_broadcast_mask);
195
196		switch (tick_broadcast_device.mode) {
197		case TICKDEV_MODE_ONESHOT:
198			/*
199			 * If the system is in oneshot mode we can
200			 * unconditionally clear the oneshot mask bit,
201			 * because the CPU is running and therefore
202			 * not in an idle state which causes the power
203			 * state affected device to stop. Let the
204			 * caller initialize the device.
205			 */
206			tick_broadcast_clear_oneshot(cpu);
207			ret = 0;
208			break;
209
210		case TICKDEV_MODE_PERIODIC:
211			/*
212			 * If the system is in periodic mode, check
213			 * whether the broadcast device can be
214			 * switched off now.
215			 */
216			if (cpumask_empty(tick_broadcast_mask) && bc)
217				clockevents_shutdown(bc);
218			/*
219			 * If we kept the cpu in the broadcast mask,
220			 * tell the caller to leave the per cpu device
221			 * in shutdown state. The periodic interrupt
222			 * is delivered by the broadcast device.
 
 
223			 */
224			ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
 
225			break;
226		default:
227			/* Nothing to do */
228			ret = 0;
229			break;
230		}
231	}
232	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
233	return ret;
234}
235
236#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
237int tick_receive_broadcast(void)
238{
239	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
240	struct clock_event_device *evt = td->evtdev;
241
242	if (!evt)
243		return -ENODEV;
244
245	if (!evt->event_handler)
246		return -EINVAL;
247
248	evt->event_handler(evt);
249	return 0;
250}
251#endif
252
253/*
254 * Broadcast the event to the cpus, which are set in the mask (mangled).
255 */
256static void tick_do_broadcast(struct cpumask *mask)
257{
258	int cpu = smp_processor_id();
259	struct tick_device *td;
 
260
261	/*
262	 * Check, if the current cpu is in the mask
263	 */
264	if (cpumask_test_cpu(cpu, mask)) {
 
 
265		cpumask_clear_cpu(cpu, mask);
266		td = &per_cpu(tick_cpu_device, cpu);
267		td->evtdev->event_handler(td->evtdev);
 
 
 
 
 
 
 
 
 
 
 
268	}
269
270	if (!cpumask_empty(mask)) {
271		/*
272		 * It might be necessary to actually check whether the devices
273		 * have different broadcast functions. For now, just use the
274		 * one of the first device. This works as long as we have this
275		 * misfeature only on x86 (lapic)
276		 */
277		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
278		td->evtdev->broadcast(mask);
279	}
 
280}
281
282/*
283 * Periodic broadcast:
284 * - invoke the broadcast handlers
285 */
286static void tick_do_periodic_broadcast(void)
287{
288	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
289	tick_do_broadcast(tmpmask);
290}
291
292/*
293 * Event handler for periodic broadcast ticks
294 */
295static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
296{
297	ktime_t next;
 
298
299	raw_spin_lock(&tick_broadcast_lock);
300
301	tick_do_periodic_broadcast();
 
 
 
 
302
303	/*
304	 * The device is in periodic mode. No reprogramming necessary:
305	 */
306	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
307		goto unlock;
308
309	/*
310	 * Setup the next period for devices, which do not have
311	 * periodic mode. We read dev->next_event first and add to it
312	 * when the event already expired. clockevents_program_event()
313	 * sets dev->next_event only when the event is really
314	 * programmed to the device.
315	 */
316	for (next = dev->next_event; ;) {
317		next = ktime_add(next, tick_period);
318
319		if (!clockevents_program_event(dev, next, false))
320			goto unlock;
321		tick_do_periodic_broadcast();
322	}
323unlock:
324	raw_spin_unlock(&tick_broadcast_lock);
 
 
 
 
 
 
 
 
325}
326
327/*
328 * Powerstate information: The system enters/leaves a state, where
329 * affected devices might stop
 
 
 
330 */
331static void tick_do_broadcast_on_off(unsigned long *reason)
332{
333	struct clock_event_device *bc, *dev;
334	struct tick_device *td;
335	unsigned long flags;
336	int cpu, bc_stopped;
 
337
 
338	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
339
340	cpu = smp_processor_id();
341	td = &per_cpu(tick_cpu_device, cpu);
342	dev = td->evtdev;
343	bc = tick_broadcast_device.evtdev;
344
345	/*
346	 * Is the device not affected by the powerstate ?
347	 */
348	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
349		goto out;
350
351	if (!tick_device_is_functional(dev))
352		goto out;
353
 
 
354	bc_stopped = cpumask_empty(tick_broadcast_mask);
355
356	switch (*reason) {
357	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
358	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
 
 
359		cpumask_set_cpu(cpu, tick_broadcast_on);
360		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
361			if (tick_broadcast_device.mode ==
362			    TICKDEV_MODE_PERIODIC)
 
 
 
 
 
 
 
 
363				clockevents_shutdown(dev);
364		}
365		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
366			tick_broadcast_force = 1;
367		break;
368	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
369		if (tick_broadcast_force)
 
370			break;
371		cpumask_clear_cpu(cpu, tick_broadcast_on);
372		if (!tick_device_is_functional(dev))
373			break;
374		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
375			if (tick_broadcast_device.mode ==
376			    TICKDEV_MODE_PERIODIC)
377				tick_setup_periodic(dev, 0);
378		}
379		break;
380	}
381
382	if (cpumask_empty(tick_broadcast_mask)) {
383		if (!bc_stopped)
384			clockevents_shutdown(bc);
385	} else if (bc_stopped) {
386		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
387			tick_broadcast_start_periodic(bc);
388		else
389			tick_broadcast_setup_oneshot(bc);
 
 
390	}
391out:
392	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
393}
394
395/*
396 * Powerstate information: The system enters/leaves a state, where
397 * affected devices might stop.
398 */
399void tick_broadcast_on_off(unsigned long reason, int *oncpu)
400{
401	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
402		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
403		       "offline CPU #%d\n", *oncpu);
404	else
405		tick_do_broadcast_on_off(&reason);
406}
407
408/*
409 * Set the periodic handler depending on broadcast on/off
410 */
411void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
412{
413	if (!broadcast)
414		dev->event_handler = tick_handle_periodic;
415	else
416		dev->event_handler = tick_handle_periodic_broadcast;
417}
418
419/*
420 * Remove a CPU from broadcasting
421 */
422void tick_shutdown_broadcast(unsigned int *cpup)
423{
424	struct clock_event_device *bc;
425	unsigned long flags;
426	unsigned int cpu = *cpup;
427
428	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
429
430	bc = tick_broadcast_device.evtdev;
431	cpumask_clear_cpu(cpu, tick_broadcast_mask);
432	cpumask_clear_cpu(cpu, tick_broadcast_on);
433
434	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
435		if (bc && cpumask_empty(tick_broadcast_mask))
436			clockevents_shutdown(bc);
437	}
 
438
439	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 
 
 
 
 
 
 
 
 
 
440}
441
 
 
442void tick_suspend_broadcast(void)
443{
444	struct clock_event_device *bc;
445	unsigned long flags;
446
447	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
448
449	bc = tick_broadcast_device.evtdev;
450	if (bc)
451		clockevents_shutdown(bc);
452
453	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
454}
455
456int tick_resume_broadcast(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457{
458	struct clock_event_device *bc;
459	unsigned long flags;
460	int broadcast = 0;
461
462	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
463
464	bc = tick_broadcast_device.evtdev;
465
466	if (bc) {
467		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
468
469		switch (tick_broadcast_device.mode) {
470		case TICKDEV_MODE_PERIODIC:
471			if (!cpumask_empty(tick_broadcast_mask))
472				tick_broadcast_start_periodic(bc);
473			broadcast = cpumask_test_cpu(smp_processor_id(),
474						     tick_broadcast_mask);
475			break;
476		case TICKDEV_MODE_ONESHOT:
477			if (!cpumask_empty(tick_broadcast_mask))
478				broadcast = tick_resume_broadcast_oneshot(bc);
479			break;
480		}
481	}
482	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
483
484	return broadcast;
485}
486
487
488#ifdef CONFIG_TICK_ONESHOT
489
490static cpumask_var_t tick_broadcast_oneshot_mask;
491static cpumask_var_t tick_broadcast_pending_mask;
492static cpumask_var_t tick_broadcast_force_mask;
493
494/*
495 * Exposed for debugging: see timer_list.c
496 */
497struct cpumask *tick_get_broadcast_oneshot_mask(void)
498{
499	return tick_broadcast_oneshot_mask;
500}
501
502/*
503 * Called before going idle with interrupts disabled. Checks whether a
504 * broadcast event from the other core is about to happen. We detected
505 * that in tick_broadcast_oneshot_control(). The callsite can use this
506 * to avoid a deep idle transition as we are about to get the
507 * broadcast IPI right away.
508 */
509int tick_check_broadcast_expired(void)
510{
511	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
512}
513
514/*
515 * Set broadcast interrupt affinity
516 */
517static void tick_broadcast_set_affinity(struct clock_event_device *bc,
518					const struct cpumask *cpumask)
519{
520	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
521		return;
522
523	if (cpumask_equal(bc->cpumask, cpumask))
524		return;
525
526	bc->cpumask = cpumask;
527	irq_set_affinity(bc->irq, bc->cpumask);
528}
529
530static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
531				    ktime_t expires, int force)
532{
533	int ret;
534
535	if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
536		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
537
538	ret = clockevents_program_event(bc, expires, force);
539	if (!ret)
540		tick_broadcast_set_affinity(bc, cpumask_of(cpu));
541	return ret;
542}
543
544int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
545{
546	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
547	return 0;
548}
549
550/*
551 * Called from irq_enter() when idle was interrupted to reenable the
552 * per cpu device.
553 */
554void tick_check_oneshot_broadcast_this_cpu(void)
555{
556	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
557		struct tick_device *td = &__get_cpu_var(tick_cpu_device);
558
559		/*
560		 * We might be in the middle of switching over from
561		 * periodic to oneshot. If the CPU has not yet
562		 * switched over, leave the device alone.
563		 */
564		if (td->mode == TICKDEV_MODE_ONESHOT) {
565			clockevents_set_mode(td->evtdev,
566					     CLOCK_EVT_MODE_ONESHOT);
567		}
568	}
569}
570
571/*
572 * Handle oneshot mode broadcasting
573 */
574static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
575{
576	struct tick_device *td;
577	ktime_t now, next_event;
578	int cpu, next_cpu = 0;
 
579
580	raw_spin_lock(&tick_broadcast_lock);
581again:
582	dev->next_event.tv64 = KTIME_MAX;
583	next_event.tv64 = KTIME_MAX;
584	cpumask_clear(tmpmask);
585	now = ktime_get();
586	/* Find all expired events */
587	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
 
 
 
 
 
 
 
 
588		td = &per_cpu(tick_cpu_device, cpu);
589		if (td->evtdev->next_event.tv64 <= now.tv64) {
590			cpumask_set_cpu(cpu, tmpmask);
591			/*
592			 * Mark the remote cpu in the pending mask, so
593			 * it can avoid reprogramming the cpu local
594			 * timer in tick_broadcast_oneshot_control().
595			 */
596			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
597		} else if (td->evtdev->next_event.tv64 < next_event.tv64) {
598			next_event.tv64 = td->evtdev->next_event.tv64;
599			next_cpu = cpu;
600		}
601	}
602
603	/*
604	 * Remove the current cpu from the pending mask. The event is
605	 * delivered immediately in tick_do_broadcast() !
606	 */
607	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
608
609	/* Take care of enforced broadcast requests */
610	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
611	cpumask_clear(tick_broadcast_force_mask);
612
613	/*
614	 * Sanity check. Catch the case where we try to broadcast to
615	 * offline cpus.
616	 */
617	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
618		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
619
620	/*
621	 * Wakeup the cpus which have an expired event.
622	 */
623	tick_do_broadcast(tmpmask);
624
625	/*
626	 * Two reasons for reprogram:
627	 *
628	 * - The global event did not expire any CPU local
629	 * events. This happens in dyntick mode, as the maximum PIT
630	 * delta is quite small.
631	 *
632	 * - There are pending events on sleeping CPUs which were not
633	 * in the event mask
634	 */
635	if (next_event.tv64 != KTIME_MAX) {
636		/*
637		 * Rearm the broadcast device. If event expired,
638		 * repeat the above
639		 */
640		if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
641			goto again;
642	}
643	raw_spin_unlock(&tick_broadcast_lock);
 
 
 
 
 
644}
645
646static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
647{
648	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
649		return 0;
650	if (bc->next_event.tv64 == KTIME_MAX)
651		return 0;
652	return bc->bound_on == cpu ? -EBUSY : 0;
653}
654
655static void broadcast_shutdown_local(struct clock_event_device *bc,
656				     struct clock_event_device *dev)
657{
658	/*
659	 * For hrtimer based broadcasting we cannot shutdown the cpu
660	 * local device if our own event is the first one to expire or
661	 * if we own the broadcast timer.
662	 */
663	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
664		if (broadcast_needs_cpu(bc, smp_processor_id()))
665			return;
666		if (dev->next_event.tv64 < bc->next_event.tv64)
667			return;
668	}
669	clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
670}
671
672static void broadcast_move_bc(int deadcpu)
673{
674	struct clock_event_device *bc = tick_broadcast_device.evtdev;
675
676	if (!bc || !broadcast_needs_cpu(bc, deadcpu))
677		return;
678	/* This moves the broadcast assignment to this cpu */
679	clockevents_program_event(bc, bc->next_event, 1);
680}
681
682/*
683 * Powerstate information: The system enters/leaves a state, where
684 * affected devices might stop
685 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
686 */
687int tick_broadcast_oneshot_control(unsigned long reason)
688{
689	struct clock_event_device *bc, *dev;
690	struct tick_device *td;
691	unsigned long flags;
692	ktime_t now;
693	int cpu, ret = 0;
694
695	/*
696	 * Periodic mode does not care about the enter/exit of power
697	 * states
698	 */
699	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
700		return 0;
701
702	/*
703	 * We are called with preemtion disabled from the depth of the
704	 * idle code, so we can't be moved away.
705	 */
706	cpu = smp_processor_id();
707	td = &per_cpu(tick_cpu_device, cpu);
708	dev = td->evtdev;
709
710	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
711		return 0;
 
 
 
 
 
 
 
 
 
712
713	bc = tick_broadcast_device.evtdev;
 
 
 
 
 
 
 
 
 
714
715	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
716	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
717		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
718			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
 
 
719			broadcast_shutdown_local(bc, dev);
 
720			/*
721			 * We only reprogram the broadcast timer if we
722			 * did not mark ourself in the force mask and
723			 * if the cpu local event is earlier than the
724			 * broadcast event. If the current CPU is in
725			 * the force mask, then we are going to be
726			 * woken by the IPI right away.
 
 
727			 */
728			if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
729			    dev->next_event.tv64 < bc->next_event.tv64)
730				tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731		}
732		/*
733		 * If the current CPU owns the hrtimer broadcast
734		 * mechanism, it cannot go deep idle and we remove the
735		 * CPU from the broadcast mask. We don't have to go
736		 * through the EXIT path as the local timer is not
737		 * shutdown.
738		 */
739		ret = broadcast_needs_cpu(bc, cpu);
740		if (ret)
741			cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
742	} else {
743		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
744			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
745			/*
746			 * The cpu which was handling the broadcast
747			 * timer marked this cpu in the broadcast
748			 * pending mask and fired the broadcast
749			 * IPI. So we are going to handle the expired
750			 * event anyway via the broadcast IPI
751			 * handler. No need to reprogram the timer
752			 * with an already expired event.
753			 */
754			if (cpumask_test_and_clear_cpu(cpu,
755				       tick_broadcast_pending_mask))
756				goto out;
757
758			/*
759			 * Bail out if there is no next event.
760			 */
761			if (dev->next_event.tv64 == KTIME_MAX)
762				goto out;
763			/*
764			 * If the pending bit is not set, then we are
765			 * either the CPU handling the broadcast
766			 * interrupt or we got woken by something else.
767			 *
768			 * We are not longer in the broadcast mask, so
769			 * if the cpu local expiry time is already
770			 * reached, we would reprogram the cpu local
771			 * timer with an already expired event.
772			 *
773			 * This can lead to a ping-pong when we return
774			 * to idle and therefor rearm the broadcast
775			 * timer before the cpu local timer was able
776			 * to fire. This happens because the forced
777			 * reprogramming makes sure that the event
778			 * will happen in the future and depending on
779			 * the min_delta setting this might be far
780			 * enough out that the ping-pong starts.
781			 *
782			 * If the cpu local next_event has expired
783			 * then we know that the broadcast timer
784			 * next_event has expired as well and
785			 * broadcast is about to be handled. So we
786			 * avoid reprogramming and enforce that the
787			 * broadcast handler, which did not run yet,
788			 * will invoke the cpu local handler.
789			 *
790			 * We cannot call the handler directly from
791			 * here, because we might be in a NOHZ phase
792			 * and we did not go through the irq_enter()
793			 * nohz fixups.
794			 */
795			now = ktime_get();
796			if (dev->next_event.tv64 <= now.tv64) {
797				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
798				goto out;
799			}
800			/*
801			 * We got woken by something else. Reprogram
802			 * the cpu local timer device.
803			 */
804			tick_program_event(dev->next_event, 1);
805		}
806	}
807out:
808	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
809	return ret;
810}
811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
812/*
813 * Reset the one shot broadcast for a cpu
814 *
815 * Called with tick_broadcast_lock held
816 */
817static void tick_broadcast_clear_oneshot(int cpu)
818{
819	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
820	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
821}
822
823static void tick_broadcast_init_next_event(struct cpumask *mask,
824					   ktime_t expires)
825{
826	struct tick_device *td;
827	int cpu;
828
829	for_each_cpu(cpu, mask) {
830		td = &per_cpu(tick_cpu_device, cpu);
831		if (td->evtdev)
832			td->evtdev->next_event = expires;
833	}
834}
835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
836/**
837 * tick_broadcast_setup_oneshot - setup the broadcast device
838 */
839void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
840{
841	int cpu = smp_processor_id();
842
 
 
 
843	/* Set it up only once ! */
844	if (bc->event_handler != tick_handle_oneshot_broadcast) {
845		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
846
847		bc->event_handler = tick_handle_oneshot_broadcast;
848
849		/*
850		 * We must be careful here. There might be other CPUs
851		 * waiting for periodic broadcast. We need to set the
852		 * oneshot_mask bits for those and program the
853		 * broadcast device to fire.
854		 */
855		cpumask_copy(tmpmask, tick_broadcast_mask);
856		cpumask_clear_cpu(cpu, tmpmask);
857		cpumask_or(tick_broadcast_oneshot_mask,
858			   tick_broadcast_oneshot_mask, tmpmask);
859
860		if (was_periodic && !cpumask_empty(tmpmask)) {
861			clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
862			tick_broadcast_init_next_event(tmpmask,
863						       tick_next_period);
864			tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
 
865		} else
866			bc->next_event.tv64 = KTIME_MAX;
867	} else {
868		/*
869		 * The first cpu which switches to oneshot mode sets
870		 * the bit for all other cpus which are in the general
871		 * (periodic) broadcast mask. So the bit is set and
872		 * would prevent the first broadcast enter after this
873		 * to program the bc device.
874		 */
875		tick_broadcast_clear_oneshot(cpu);
876	}
877}
878
879/*
880 * Select oneshot operating mode for the broadcast device
881 */
882void tick_broadcast_switch_to_oneshot(void)
883{
884	struct clock_event_device *bc;
885	unsigned long flags;
886
887	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
888
889	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
890	bc = tick_broadcast_device.evtdev;
891	if (bc)
892		tick_broadcast_setup_oneshot(bc);
893
894	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
895}
896
897
898/*
899 * Remove a dead CPU from broadcasting
900 */
901void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
902{
 
903	unsigned long flags;
904	unsigned int cpu = *cpup;
905
906	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907
908	/*
909	 * Clear the broadcast masks for the dead cpu, but do not stop
910	 * the broadcast device!
911	 */
912	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
913	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
914	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
915
916	broadcast_move_bc(cpu);
917
918	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
919}
 
920
921/*
922 * Check, whether the broadcast device is in one shot mode
923 */
924int tick_broadcast_oneshot_active(void)
925{
926	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
927}
928
929/*
930 * Check whether the broadcast device supports oneshot.
931 */
932bool tick_broadcast_oneshot_available(void)
933{
934	struct clock_event_device *bc = tick_broadcast_device.evtdev;
935
936	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
937}
938
 
 
 
 
 
 
 
 
 
 
939#endif
940
941void __init tick_broadcast_init(void)
942{
943	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
944	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
945	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
946#ifdef CONFIG_TICK_ONESHOT
947	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
948	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
949	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
950#endif
951}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 * This file contains functions which emulate a local clock-event
   4 * device via a broadcast event source.
   5 *
   6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 
 
 
   9 */
  10#include <linux/cpu.h>
  11#include <linux/err.h>
  12#include <linux/hrtimer.h>
  13#include <linux/interrupt.h>
  14#include <linux/percpu.h>
  15#include <linux/profile.h>
  16#include <linux/sched.h>
  17#include <linux/smp.h>
  18#include <linux/module.h>
  19
  20#include "tick-internal.h"
  21
  22/*
  23 * Broadcast support for broken x86 hardware, where the local apic
  24 * timer stops in C3 state.
  25 */
  26
  27static struct tick_device tick_broadcast_device;
  28static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
  29static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
  30static cpumask_var_t tmpmask __cpumask_var_read_mostly;
  31static int tick_broadcast_forced;
  32
  33static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
  34
  35#ifdef CONFIG_TICK_ONESHOT
  36static DEFINE_PER_CPU(struct clock_event_device *, tick_oneshot_wakeup_device);
  37
  38static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
  39static void tick_broadcast_clear_oneshot(int cpu);
  40static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
  41# ifdef CONFIG_HOTPLUG_CPU
  42static void tick_broadcast_oneshot_offline(unsigned int cpu);
  43# endif
  44#else
  45static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
  46static inline void tick_broadcast_clear_oneshot(int cpu) { }
  47static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
  48# ifdef CONFIG_HOTPLUG_CPU
  49static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { }
  50# endif
  51#endif
  52
  53/*
  54 * Debugging: see timer_list.c
  55 */
  56struct tick_device *tick_get_broadcast_device(void)
  57{
  58	return &tick_broadcast_device;
  59}
  60
  61struct cpumask *tick_get_broadcast_mask(void)
  62{
  63	return tick_broadcast_mask;
  64}
  65
  66static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu);
  67
  68const struct clock_event_device *tick_get_wakeup_device(int cpu)
  69{
  70	return tick_get_oneshot_wakeup_device(cpu);
  71}
  72
  73/*
  74 * Start the device in periodic mode
  75 */
  76static void tick_broadcast_start_periodic(struct clock_event_device *bc)
  77{
  78	if (bc)
  79		tick_setup_periodic(bc, 1);
  80}
  81
  82/*
  83 * Check, if the device can be utilized as broadcast device:
  84 */
  85static bool tick_check_broadcast_device(struct clock_event_device *curdev,
  86					struct clock_event_device *newdev)
  87{
  88	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
  89	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
  90	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
  91		return false;
  92
  93	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
  94	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
  95		return false;
  96
  97	return !curdev || newdev->rating > curdev->rating;
  98}
  99
 100#ifdef CONFIG_TICK_ONESHOT
 101static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu)
 102{
 103	return per_cpu(tick_oneshot_wakeup_device, cpu);
 104}
 105
 106static void tick_oneshot_wakeup_handler(struct clock_event_device *wd)
 107{
 108	/*
 109	 * If we woke up early and the tick was reprogrammed in the
 110	 * meantime then this may be spurious but harmless.
 111	 */
 112	tick_receive_broadcast();
 113}
 114
 115static bool tick_set_oneshot_wakeup_device(struct clock_event_device *newdev,
 116					   int cpu)
 117{
 118	struct clock_event_device *curdev = tick_get_oneshot_wakeup_device(cpu);
 119
 120	if (!newdev)
 121		goto set_device;
 122
 123	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
 124	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
 125		 return false;
 126
 127	if (!(newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
 128	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
 129		return false;
 130
 131	if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
 132		return false;
 133
 134	if (curdev && newdev->rating <= curdev->rating)
 135		return false;
 136
 137	if (!try_module_get(newdev->owner))
 138		return false;
 139
 140	newdev->event_handler = tick_oneshot_wakeup_handler;
 141set_device:
 142	clockevents_exchange_device(curdev, newdev);
 143	per_cpu(tick_oneshot_wakeup_device, cpu) = newdev;
 144	return true;
 145}
 146#else
 147static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu)
 148{
 149	return NULL;
 150}
 151
 152static bool tick_set_oneshot_wakeup_device(struct clock_event_device *newdev,
 153					   int cpu)
 154{
 155	return false;
 156}
 157#endif
 158
 159/*
 160 * Conditionally install/replace broadcast device
 161 */
 162void tick_install_broadcast_device(struct clock_event_device *dev, int cpu)
 163{
 164	struct clock_event_device *cur = tick_broadcast_device.evtdev;
 165
 166	if (tick_set_oneshot_wakeup_device(dev, cpu))
 167		return;
 168
 169	if (!tick_check_broadcast_device(cur, dev))
 170		return;
 171
 172	if (!try_module_get(dev->owner))
 173		return;
 174
 175	clockevents_exchange_device(cur, dev);
 176	if (cur)
 177		cur->event_handler = clockevents_handle_noop;
 178	tick_broadcast_device.evtdev = dev;
 179	if (!cpumask_empty(tick_broadcast_mask))
 180		tick_broadcast_start_periodic(dev);
 181
 182	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 183		return;
 184
 185	/*
 186	 * If the system already runs in oneshot mode, switch the newly
 187	 * registered broadcast device to oneshot mode explicitly.
 188	 */
 189	if (tick_broadcast_oneshot_active()) {
 190		tick_broadcast_switch_to_oneshot();
 191		return;
 192	}
 193
 194	/*
 195	 * Inform all cpus about this. We might be in a situation
 196	 * where we did not switch to oneshot mode because the per cpu
 197	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
 198	 * of a oneshot capable broadcast device. Without that
 199	 * notification the systems stays stuck in periodic mode
 200	 * forever.
 201	 */
 202	tick_clock_notify();
 
 203}
 204
 205/*
 206 * Check, if the device is the broadcast device
 207 */
 208int tick_is_broadcast_device(struct clock_event_device *dev)
 209{
 210	return (dev && tick_broadcast_device.evtdev == dev);
 211}
 212
 213int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
 214{
 215	int ret = -ENODEV;
 216
 217	if (tick_is_broadcast_device(dev)) {
 218		raw_spin_lock(&tick_broadcast_lock);
 219		ret = __clockevents_update_freq(dev, freq);
 220		raw_spin_unlock(&tick_broadcast_lock);
 221	}
 222	return ret;
 223}
 224
 225
 226static void err_broadcast(const struct cpumask *mask)
 227{
 228	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
 229}
 230
 231static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
 232{
 233	if (!dev->broadcast)
 234		dev->broadcast = tick_broadcast;
 235	if (!dev->broadcast) {
 236		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
 237			     dev->name);
 238		dev->broadcast = err_broadcast;
 239	}
 240}
 241
 242/*
 243 * Check, if the device is dysfunctional and a placeholder, which
 244 * needs to be handled by the broadcast device.
 245 */
 246int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
 247{
 248	struct clock_event_device *bc = tick_broadcast_device.evtdev;
 249	unsigned long flags;
 250	int ret = 0;
 251
 252	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 253
 254	/*
 255	 * Devices might be registered with both periodic and oneshot
 256	 * mode disabled. This signals, that the device needs to be
 257	 * operated from the broadcast device and is a placeholder for
 258	 * the cpu local device.
 259	 */
 260	if (!tick_device_is_functional(dev)) {
 261		dev->event_handler = tick_handle_periodic;
 262		tick_device_setup_broadcast_func(dev);
 263		cpumask_set_cpu(cpu, tick_broadcast_mask);
 264		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 265			tick_broadcast_start_periodic(bc);
 266		else
 267			tick_broadcast_setup_oneshot(bc);
 268		ret = 1;
 269	} else {
 270		/*
 271		 * Clear the broadcast bit for this cpu if the
 272		 * device is not power state affected.
 273		 */
 274		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 275			cpumask_clear_cpu(cpu, tick_broadcast_mask);
 276		else
 277			tick_device_setup_broadcast_func(dev);
 278
 279		/*
 280		 * Clear the broadcast bit if the CPU is not in
 281		 * periodic broadcast on state.
 282		 */
 283		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
 284			cpumask_clear_cpu(cpu, tick_broadcast_mask);
 285
 286		switch (tick_broadcast_device.mode) {
 287		case TICKDEV_MODE_ONESHOT:
 288			/*
 289			 * If the system is in oneshot mode we can
 290			 * unconditionally clear the oneshot mask bit,
 291			 * because the CPU is running and therefore
 292			 * not in an idle state which causes the power
 293			 * state affected device to stop. Let the
 294			 * caller initialize the device.
 295			 */
 296			tick_broadcast_clear_oneshot(cpu);
 297			ret = 0;
 298			break;
 299
 300		case TICKDEV_MODE_PERIODIC:
 301			/*
 302			 * If the system is in periodic mode, check
 303			 * whether the broadcast device can be
 304			 * switched off now.
 305			 */
 306			if (cpumask_empty(tick_broadcast_mask) && bc)
 307				clockevents_shutdown(bc);
 308			/*
 309			 * If we kept the cpu in the broadcast mask,
 310			 * tell the caller to leave the per cpu device
 311			 * in shutdown state. The periodic interrupt
 312			 * is delivered by the broadcast device, if
 313			 * the broadcast device exists and is not
 314			 * hrtimer based.
 315			 */
 316			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 317				ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
 318			break;
 319		default:
 
 
 320			break;
 321		}
 322	}
 323	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 324	return ret;
 325}
 326
 
 327int tick_receive_broadcast(void)
 328{
 329	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 330	struct clock_event_device *evt = td->evtdev;
 331
 332	if (!evt)
 333		return -ENODEV;
 334
 335	if (!evt->event_handler)
 336		return -EINVAL;
 337
 338	evt->event_handler(evt);
 339	return 0;
 340}
 
 341
 342/*
 343 * Broadcast the event to the cpus, which are set in the mask (mangled).
 344 */
 345static bool tick_do_broadcast(struct cpumask *mask)
 346{
 347	int cpu = smp_processor_id();
 348	struct tick_device *td;
 349	bool local = false;
 350
 351	/*
 352	 * Check, if the current cpu is in the mask
 353	 */
 354	if (cpumask_test_cpu(cpu, mask)) {
 355		struct clock_event_device *bc = tick_broadcast_device.evtdev;
 356
 357		cpumask_clear_cpu(cpu, mask);
 358		/*
 359		 * We only run the local handler, if the broadcast
 360		 * device is not hrtimer based. Otherwise we run into
 361		 * a hrtimer recursion.
 362		 *
 363		 * local timer_interrupt()
 364		 *   local_handler()
 365		 *     expire_hrtimers()
 366		 *       bc_handler()
 367		 *         local_handler()
 368		 *	     expire_hrtimers()
 369		 */
 370		local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
 371	}
 372
 373	if (!cpumask_empty(mask)) {
 374		/*
 375		 * It might be necessary to actually check whether the devices
 376		 * have different broadcast functions. For now, just use the
 377		 * one of the first device. This works as long as we have this
 378		 * misfeature only on x86 (lapic)
 379		 */
 380		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
 381		td->evtdev->broadcast(mask);
 382	}
 383	return local;
 384}
 385
 386/*
 387 * Periodic broadcast:
 388 * - invoke the broadcast handlers
 389 */
 390static bool tick_do_periodic_broadcast(void)
 391{
 392	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
 393	return tick_do_broadcast(tmpmask);
 394}
 395
 396/*
 397 * Event handler for periodic broadcast ticks
 398 */
 399static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
 400{
 401	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 402	bool bc_local;
 403
 404	raw_spin_lock(&tick_broadcast_lock);
 405
 406	/* Handle spurious interrupts gracefully */
 407	if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
 408		raw_spin_unlock(&tick_broadcast_lock);
 409		return;
 410	}
 411
 412	bc_local = tick_do_periodic_broadcast();
 
 
 
 
 413
 414	if (clockevent_state_oneshot(dev)) {
 415		ktime_t next = ktime_add_ns(dev->next_event, TICK_NSEC);
 
 
 
 
 
 
 
 416
 417		clockevents_program_event(dev, next, true);
 
 
 418	}
 
 419	raw_spin_unlock(&tick_broadcast_lock);
 420
 421	/*
 422	 * We run the handler of the local cpu after dropping
 423	 * tick_broadcast_lock because the handler might deadlock when
 424	 * trying to switch to oneshot mode.
 425	 */
 426	if (bc_local)
 427		td->evtdev->event_handler(td->evtdev);
 428}
 429
 430/**
 431 * tick_broadcast_control - Enable/disable or force broadcast mode
 432 * @mode:	The selected broadcast mode
 433 *
 434 * Called when the system enters a state where affected tick devices
 435 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
 436 */
 437void tick_broadcast_control(enum tick_broadcast_mode mode)
 438{
 439	struct clock_event_device *bc, *dev;
 440	struct tick_device *td;
 
 441	int cpu, bc_stopped;
 442	unsigned long flags;
 443
 444	/* Protects also the local clockevent device. */
 445	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 446	td = this_cpu_ptr(&tick_cpu_device);
 
 
 447	dev = td->evtdev;
 
 448
 449	/*
 450	 * Is the device not affected by the powerstate ?
 451	 */
 452	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
 453		goto out;
 454
 455	if (!tick_device_is_functional(dev))
 456		goto out;
 457
 458	cpu = smp_processor_id();
 459	bc = tick_broadcast_device.evtdev;
 460	bc_stopped = cpumask_empty(tick_broadcast_mask);
 461
 462	switch (mode) {
 463	case TICK_BROADCAST_FORCE:
 464		tick_broadcast_forced = 1;
 465		fallthrough;
 466	case TICK_BROADCAST_ON:
 467		cpumask_set_cpu(cpu, tick_broadcast_on);
 468		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
 469			/*
 470			 * Only shutdown the cpu local device, if:
 471			 *
 472			 * - the broadcast device exists
 473			 * - the broadcast device is not a hrtimer based one
 474			 * - the broadcast device is in periodic mode to
 475			 *   avoid a hiccup during switch to oneshot mode
 476			 */
 477			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
 478			    tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 479				clockevents_shutdown(dev);
 480		}
 
 
 481		break;
 482
 483	case TICK_BROADCAST_OFF:
 484		if (tick_broadcast_forced)
 485			break;
 486		cpumask_clear_cpu(cpu, tick_broadcast_on);
 
 
 487		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
 488			if (tick_broadcast_device.mode ==
 489			    TICKDEV_MODE_PERIODIC)
 490				tick_setup_periodic(dev, 0);
 491		}
 492		break;
 493	}
 494
 495	if (bc) {
 496		if (cpumask_empty(tick_broadcast_mask)) {
 497			if (!bc_stopped)
 498				clockevents_shutdown(bc);
 499		} else if (bc_stopped) {
 500			if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 501				tick_broadcast_start_periodic(bc);
 502			else
 503				tick_broadcast_setup_oneshot(bc);
 504		}
 505	}
 506out:
 507	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 508}
 509EXPORT_SYMBOL_GPL(tick_broadcast_control);
 
 
 
 
 
 
 
 
 
 
 
 
 510
 511/*
 512 * Set the periodic handler depending on broadcast on/off
 513 */
 514void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
 515{
 516	if (!broadcast)
 517		dev->event_handler = tick_handle_periodic;
 518	else
 519		dev->event_handler = tick_handle_periodic_broadcast;
 520}
 521
 522#ifdef CONFIG_HOTPLUG_CPU
 523static void tick_shutdown_broadcast(void)
 
 
 524{
 525	struct clock_event_device *bc = tick_broadcast_device.evtdev;
 
 
 
 
 
 
 
 
 526
 527	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 528		if (bc && cpumask_empty(tick_broadcast_mask))
 529			clockevents_shutdown(bc);
 530	}
 531}
 532
 533/*
 534 * Remove a CPU from broadcasting
 535 */
 536void tick_broadcast_offline(unsigned int cpu)
 537{
 538	raw_spin_lock(&tick_broadcast_lock);
 539	cpumask_clear_cpu(cpu, tick_broadcast_mask);
 540	cpumask_clear_cpu(cpu, tick_broadcast_on);
 541	tick_broadcast_oneshot_offline(cpu);
 542	tick_shutdown_broadcast();
 543	raw_spin_unlock(&tick_broadcast_lock);
 544}
 545
 546#endif
 547
 548void tick_suspend_broadcast(void)
 549{
 550	struct clock_event_device *bc;
 551	unsigned long flags;
 552
 553	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 554
 555	bc = tick_broadcast_device.evtdev;
 556	if (bc)
 557		clockevents_shutdown(bc);
 558
 559	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 560}
 561
 562/*
 563 * This is called from tick_resume_local() on a resuming CPU. That's
 564 * called from the core resume function, tick_unfreeze() and the magic XEN
 565 * resume hackery.
 566 *
 567 * In none of these cases the broadcast device mode can change and the
 568 * bit of the resuming CPU in the broadcast mask is safe as well.
 569 */
 570bool tick_resume_check_broadcast(void)
 571{
 572	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
 573		return false;
 574	else
 575		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
 576}
 577
 578void tick_resume_broadcast(void)
 579{
 580	struct clock_event_device *bc;
 581	unsigned long flags;
 
 582
 583	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 584
 585	bc = tick_broadcast_device.evtdev;
 586
 587	if (bc) {
 588		clockevents_tick_resume(bc);
 589
 590		switch (tick_broadcast_device.mode) {
 591		case TICKDEV_MODE_PERIODIC:
 592			if (!cpumask_empty(tick_broadcast_mask))
 593				tick_broadcast_start_periodic(bc);
 
 
 594			break;
 595		case TICKDEV_MODE_ONESHOT:
 596			if (!cpumask_empty(tick_broadcast_mask))
 597				tick_resume_broadcast_oneshot(bc);
 598			break;
 599		}
 600	}
 601	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 
 
 602}
 603
 
 604#ifdef CONFIG_TICK_ONESHOT
 605
 606static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
 607static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
 608static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
 609
 610/*
 611 * Exposed for debugging: see timer_list.c
 612 */
 613struct cpumask *tick_get_broadcast_oneshot_mask(void)
 614{
 615	return tick_broadcast_oneshot_mask;
 616}
 617
 618/*
 619 * Called before going idle with interrupts disabled. Checks whether a
 620 * broadcast event from the other core is about to happen. We detected
 621 * that in tick_broadcast_oneshot_control(). The callsite can use this
 622 * to avoid a deep idle transition as we are about to get the
 623 * broadcast IPI right away.
 624 */
 625int tick_check_broadcast_expired(void)
 626{
 627	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
 628}
 629
 630/*
 631 * Set broadcast interrupt affinity
 632 */
 633static void tick_broadcast_set_affinity(struct clock_event_device *bc,
 634					const struct cpumask *cpumask)
 635{
 636	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
 637		return;
 638
 639	if (cpumask_equal(bc->cpumask, cpumask))
 640		return;
 641
 642	bc->cpumask = cpumask;
 643	irq_set_affinity(bc->irq, bc->cpumask);
 644}
 645
 646static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
 647				     ktime_t expires)
 648{
 649	if (!clockevent_state_oneshot(bc))
 650		clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 
 
 651
 652	clockevents_program_event(bc, expires, 1);
 653	tick_broadcast_set_affinity(bc, cpumask_of(cpu));
 
 
 654}
 655
 656static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
 657{
 658	clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 
 659}
 660
 661/*
 662 * Called from irq_enter() when idle was interrupted to reenable the
 663 * per cpu device.
 664 */
 665void tick_check_oneshot_broadcast_this_cpu(void)
 666{
 667	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
 668		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 669
 670		/*
 671		 * We might be in the middle of switching over from
 672		 * periodic to oneshot. If the CPU has not yet
 673		 * switched over, leave the device alone.
 674		 */
 675		if (td->mode == TICKDEV_MODE_ONESHOT) {
 676			clockevents_switch_state(td->evtdev,
 677					      CLOCK_EVT_STATE_ONESHOT);
 678		}
 679	}
 680}
 681
 682/*
 683 * Handle oneshot mode broadcasting
 684 */
 685static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
 686{
 687	struct tick_device *td;
 688	ktime_t now, next_event;
 689	int cpu, next_cpu = 0;
 690	bool bc_local;
 691
 692	raw_spin_lock(&tick_broadcast_lock);
 693	dev->next_event = KTIME_MAX;
 694	next_event = KTIME_MAX;
 
 695	cpumask_clear(tmpmask);
 696	now = ktime_get();
 697	/* Find all expired events */
 698	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
 699		/*
 700		 * Required for !SMP because for_each_cpu() reports
 701		 * unconditionally CPU0 as set on UP kernels.
 702		 */
 703		if (!IS_ENABLED(CONFIG_SMP) &&
 704		    cpumask_empty(tick_broadcast_oneshot_mask))
 705			break;
 706
 707		td = &per_cpu(tick_cpu_device, cpu);
 708		if (td->evtdev->next_event <= now) {
 709			cpumask_set_cpu(cpu, tmpmask);
 710			/*
 711			 * Mark the remote cpu in the pending mask, so
 712			 * it can avoid reprogramming the cpu local
 713			 * timer in tick_broadcast_oneshot_control().
 714			 */
 715			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
 716		} else if (td->evtdev->next_event < next_event) {
 717			next_event = td->evtdev->next_event;
 718			next_cpu = cpu;
 719		}
 720	}
 721
 722	/*
 723	 * Remove the current cpu from the pending mask. The event is
 724	 * delivered immediately in tick_do_broadcast() !
 725	 */
 726	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
 727
 728	/* Take care of enforced broadcast requests */
 729	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
 730	cpumask_clear(tick_broadcast_force_mask);
 731
 732	/*
 733	 * Sanity check. Catch the case where we try to broadcast to
 734	 * offline cpus.
 735	 */
 736	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
 737		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
 738
 739	/*
 740	 * Wakeup the cpus which have an expired event.
 741	 */
 742	bc_local = tick_do_broadcast(tmpmask);
 743
 744	/*
 745	 * Two reasons for reprogram:
 746	 *
 747	 * - The global event did not expire any CPU local
 748	 * events. This happens in dyntick mode, as the maximum PIT
 749	 * delta is quite small.
 750	 *
 751	 * - There are pending events on sleeping CPUs which were not
 752	 * in the event mask
 753	 */
 754	if (next_event != KTIME_MAX)
 755		tick_broadcast_set_event(dev, next_cpu, next_event);
 756
 
 
 
 
 
 757	raw_spin_unlock(&tick_broadcast_lock);
 758
 759	if (bc_local) {
 760		td = this_cpu_ptr(&tick_cpu_device);
 761		td->evtdev->event_handler(td->evtdev);
 762	}
 763}
 764
 765static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
 766{
 767	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 768		return 0;
 769	if (bc->next_event == KTIME_MAX)
 770		return 0;
 771	return bc->bound_on == cpu ? -EBUSY : 0;
 772}
 773
 774static void broadcast_shutdown_local(struct clock_event_device *bc,
 775				     struct clock_event_device *dev)
 776{
 777	/*
 778	 * For hrtimer based broadcasting we cannot shutdown the cpu
 779	 * local device if our own event is the first one to expire or
 780	 * if we own the broadcast timer.
 781	 */
 782	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
 783		if (broadcast_needs_cpu(bc, smp_processor_id()))
 784			return;
 785		if (dev->next_event < bc->next_event)
 786			return;
 787	}
 788	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
 
 
 
 
 
 
 
 
 
 
 789}
 790
 791static int ___tick_broadcast_oneshot_control(enum tick_broadcast_state state,
 792					     struct tick_device *td,
 793					     int cpu)
 
 
 
 794{
 795	struct clock_event_device *bc, *dev = td->evtdev;
 796	int ret = 0;
 
 797	ktime_t now;
 
 
 
 
 
 
 
 
 798
 799	raw_spin_lock(&tick_broadcast_lock);
 800	bc = tick_broadcast_device.evtdev;
 
 
 
 
 
 801
 802	if (state == TICK_BROADCAST_ENTER) {
 803		/*
 804		 * If the current CPU owns the hrtimer broadcast
 805		 * mechanism, it cannot go deep idle and we do not add
 806		 * the CPU to the broadcast mask. We don't have to go
 807		 * through the EXIT path as the local timer is not
 808		 * shutdown.
 809		 */
 810		ret = broadcast_needs_cpu(bc, cpu);
 811		if (ret)
 812			goto out;
 813
 814		/*
 815		 * If the broadcast device is in periodic mode, we
 816		 * return.
 817		 */
 818		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 819			/* If it is a hrtimer based broadcast, return busy */
 820			if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
 821				ret = -EBUSY;
 822			goto out;
 823		}
 824
 
 
 825		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
 826			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
 827
 828			/* Conditionally shut down the local timer. */
 829			broadcast_shutdown_local(bc, dev);
 830
 831			/*
 832			 * We only reprogram the broadcast timer if we
 833			 * did not mark ourself in the force mask and
 834			 * if the cpu local event is earlier than the
 835			 * broadcast event. If the current CPU is in
 836			 * the force mask, then we are going to be
 837			 * woken by the IPI right away; we return
 838			 * busy, so the CPU does not try to go deep
 839			 * idle.
 840			 */
 841			if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
 842				ret = -EBUSY;
 843			} else if (dev->next_event < bc->next_event) {
 844				tick_broadcast_set_event(bc, cpu, dev->next_event);
 845				/*
 846				 * In case of hrtimer broadcasts the
 847				 * programming might have moved the
 848				 * timer to this cpu. If yes, remove
 849				 * us from the broadcast mask and
 850				 * return busy.
 851				 */
 852				ret = broadcast_needs_cpu(bc, cpu);
 853				if (ret) {
 854					cpumask_clear_cpu(cpu,
 855						tick_broadcast_oneshot_mask);
 856				}
 857			}
 858		}
 
 
 
 
 
 
 
 
 
 
 859	} else {
 860		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
 861			clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
 862			/*
 863			 * The cpu which was handling the broadcast
 864			 * timer marked this cpu in the broadcast
 865			 * pending mask and fired the broadcast
 866			 * IPI. So we are going to handle the expired
 867			 * event anyway via the broadcast IPI
 868			 * handler. No need to reprogram the timer
 869			 * with an already expired event.
 870			 */
 871			if (cpumask_test_and_clear_cpu(cpu,
 872				       tick_broadcast_pending_mask))
 873				goto out;
 874
 875			/*
 876			 * Bail out if there is no next event.
 877			 */
 878			if (dev->next_event == KTIME_MAX)
 879				goto out;
 880			/*
 881			 * If the pending bit is not set, then we are
 882			 * either the CPU handling the broadcast
 883			 * interrupt or we got woken by something else.
 884			 *
 885			 * We are no longer in the broadcast mask, so
 886			 * if the cpu local expiry time is already
 887			 * reached, we would reprogram the cpu local
 888			 * timer with an already expired event.
 889			 *
 890			 * This can lead to a ping-pong when we return
 891			 * to idle and therefore rearm the broadcast
 892			 * timer before the cpu local timer was able
 893			 * to fire. This happens because the forced
 894			 * reprogramming makes sure that the event
 895			 * will happen in the future and depending on
 896			 * the min_delta setting this might be far
 897			 * enough out that the ping-pong starts.
 898			 *
 899			 * If the cpu local next_event has expired
 900			 * then we know that the broadcast timer
 901			 * next_event has expired as well and
 902			 * broadcast is about to be handled. So we
 903			 * avoid reprogramming and enforce that the
 904			 * broadcast handler, which did not run yet,
 905			 * will invoke the cpu local handler.
 906			 *
 907			 * We cannot call the handler directly from
 908			 * here, because we might be in a NOHZ phase
 909			 * and we did not go through the irq_enter()
 910			 * nohz fixups.
 911			 */
 912			now = ktime_get();
 913			if (dev->next_event <= now) {
 914				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
 915				goto out;
 916			}
 917			/*
 918			 * We got woken by something else. Reprogram
 919			 * the cpu local timer device.
 920			 */
 921			tick_program_event(dev->next_event, 1);
 922		}
 923	}
 924out:
 925	raw_spin_unlock(&tick_broadcast_lock);
 926	return ret;
 927}
 928
 929static int tick_oneshot_wakeup_control(enum tick_broadcast_state state,
 930				       struct tick_device *td,
 931				       int cpu)
 932{
 933	struct clock_event_device *dev, *wd;
 934
 935	dev = td->evtdev;
 936	if (td->mode != TICKDEV_MODE_ONESHOT)
 937		return -EINVAL;
 938
 939	wd = tick_get_oneshot_wakeup_device(cpu);
 940	if (!wd)
 941		return -ENODEV;
 942
 943	switch (state) {
 944	case TICK_BROADCAST_ENTER:
 945		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT_STOPPED);
 946		clockevents_switch_state(wd, CLOCK_EVT_STATE_ONESHOT);
 947		clockevents_program_event(wd, dev->next_event, 1);
 948		break;
 949	case TICK_BROADCAST_EXIT:
 950		/* We may have transitioned to oneshot mode while idle */
 951		if (clockevent_get_state(wd) != CLOCK_EVT_STATE_ONESHOT)
 952			return -ENODEV;
 953	}
 954
 955	return 0;
 956}
 957
 958int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 959{
 960	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 961	int cpu = smp_processor_id();
 962
 963	if (!tick_oneshot_wakeup_control(state, td, cpu))
 964		return 0;
 965
 966	if (tick_broadcast_device.evtdev)
 967		return ___tick_broadcast_oneshot_control(state, td, cpu);
 968
 969	/*
 970	 * If there is no broadcast or wakeup device, tell the caller not
 971	 * to go into deep idle.
 972	 */
 973	return -EBUSY;
 974}
 975
 976/*
 977 * Reset the one shot broadcast for a cpu
 978 *
 979 * Called with tick_broadcast_lock held
 980 */
 981static void tick_broadcast_clear_oneshot(int cpu)
 982{
 983	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
 984	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
 985}
 986
 987static void tick_broadcast_init_next_event(struct cpumask *mask,
 988					   ktime_t expires)
 989{
 990	struct tick_device *td;
 991	int cpu;
 992
 993	for_each_cpu(cpu, mask) {
 994		td = &per_cpu(tick_cpu_device, cpu);
 995		if (td->evtdev)
 996			td->evtdev->next_event = expires;
 997	}
 998}
 999
1000static inline ktime_t tick_get_next_period(void)
1001{
1002	ktime_t next;
1003
1004	/*
1005	 * Protect against concurrent updates (store /load tearing on
1006	 * 32bit). It does not matter if the time is already in the
1007	 * past. The broadcast device which is about to be programmed will
1008	 * fire in any case.
1009	 */
1010	raw_spin_lock(&jiffies_lock);
1011	next = tick_next_period;
1012	raw_spin_unlock(&jiffies_lock);
1013	return next;
1014}
1015
1016/**
1017 * tick_broadcast_setup_oneshot - setup the broadcast device
1018 */
1019static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
1020{
1021	int cpu = smp_processor_id();
1022
1023	if (!bc)
1024		return;
1025
1026	/* Set it up only once ! */
1027	if (bc->event_handler != tick_handle_oneshot_broadcast) {
1028		int was_periodic = clockevent_state_periodic(bc);
1029
1030		bc->event_handler = tick_handle_oneshot_broadcast;
1031
1032		/*
1033		 * We must be careful here. There might be other CPUs
1034		 * waiting for periodic broadcast. We need to set the
1035		 * oneshot_mask bits for those and program the
1036		 * broadcast device to fire.
1037		 */
1038		cpumask_copy(tmpmask, tick_broadcast_mask);
1039		cpumask_clear_cpu(cpu, tmpmask);
1040		cpumask_or(tick_broadcast_oneshot_mask,
1041			   tick_broadcast_oneshot_mask, tmpmask);
1042
1043		if (was_periodic && !cpumask_empty(tmpmask)) {
1044			ktime_t nextevt = tick_get_next_period();
1045
1046			clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
1047			tick_broadcast_init_next_event(tmpmask, nextevt);
1048			tick_broadcast_set_event(bc, cpu, nextevt);
1049		} else
1050			bc->next_event = KTIME_MAX;
1051	} else {
1052		/*
1053		 * The first cpu which switches to oneshot mode sets
1054		 * the bit for all other cpus which are in the general
1055		 * (periodic) broadcast mask. So the bit is set and
1056		 * would prevent the first broadcast enter after this
1057		 * to program the bc device.
1058		 */
1059		tick_broadcast_clear_oneshot(cpu);
1060	}
1061}
1062
1063/*
1064 * Select oneshot operating mode for the broadcast device
1065 */
1066void tick_broadcast_switch_to_oneshot(void)
1067{
1068	struct clock_event_device *bc;
1069	unsigned long flags;
1070
1071	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
1072
1073	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
1074	bc = tick_broadcast_device.evtdev;
1075	if (bc)
1076		tick_broadcast_setup_oneshot(bc);
1077
1078	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
1079}
1080
1081#ifdef CONFIG_HOTPLUG_CPU
1082void hotplug_cpu__broadcast_tick_pull(int deadcpu)
 
 
 
1083{
1084	struct clock_event_device *bc;
1085	unsigned long flags;
 
1086
1087	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
1088	bc = tick_broadcast_device.evtdev;
1089
1090	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
1091		/* This moves the broadcast assignment to this CPU: */
1092		clockevents_program_event(bc, bc->next_event, 1);
1093	}
1094	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
1095}
1096
1097/*
1098 * Remove a dying CPU from broadcasting
1099 */
1100static void tick_broadcast_oneshot_offline(unsigned int cpu)
1101{
1102	if (tick_get_oneshot_wakeup_device(cpu))
1103		tick_set_oneshot_wakeup_device(NULL, cpu);
1104
1105	/*
1106	 * Clear the broadcast masks for the dead cpu, but do not stop
1107	 * the broadcast device!
1108	 */
1109	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
1110	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
1111	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
 
 
 
 
1112}
1113#endif
1114
1115/*
1116 * Check, whether the broadcast device is in one shot mode
1117 */
1118int tick_broadcast_oneshot_active(void)
1119{
1120	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
1121}
1122
1123/*
1124 * Check whether the broadcast device supports oneshot.
1125 */
1126bool tick_broadcast_oneshot_available(void)
1127{
1128	struct clock_event_device *bc = tick_broadcast_device.evtdev;
1129
1130	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
1131}
1132
1133#else
1134int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
1135{
1136	struct clock_event_device *bc = tick_broadcast_device.evtdev;
1137
1138	if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1139		return -EBUSY;
1140
1141	return 0;
1142}
1143#endif
1144
1145void __init tick_broadcast_init(void)
1146{
1147	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1148	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1149	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1150#ifdef CONFIG_TICK_ONESHOT
1151	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1152	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1153	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1154#endif
1155}