Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * linux/kernel/time/tick-broadcast.c
  3 *
  4 * This file contains functions which emulate a local clock-event
  5 * device via a broadcast event source.
  6 *
  7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 10 *
 11 * This code is licenced under the GPL version 2. For details see
 12 * kernel-base/COPYING.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/err.h>
 16#include <linux/hrtimer.h>
 17#include <linux/interrupt.h>
 18#include <linux/percpu.h>
 19#include <linux/profile.h>
 20#include <linux/sched.h>
 21#include <linux/smp.h>
 22#include <linux/module.h>
 23
 24#include "tick-internal.h"
 25
 26/*
 27 * Broadcast support for broken x86 hardware, where the local apic
 28 * timer stops in C3 state.
 29 */
 30
 31static struct tick_device tick_broadcast_device;
 32static cpumask_var_t tick_broadcast_mask;
 33static cpumask_var_t tick_broadcast_on;
 34static cpumask_var_t tmpmask;
 35static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
 36static int tick_broadcast_force;
 37
 38#ifdef CONFIG_TICK_ONESHOT
 39static void tick_broadcast_clear_oneshot(int cpu);
 
 40#else
 41static inline void tick_broadcast_clear_oneshot(int cpu) { }
 
 42#endif
 43
 44/*
 45 * Debugging: see timer_list.c
 46 */
 47struct tick_device *tick_get_broadcast_device(void)
 48{
 49	return &tick_broadcast_device;
 50}
 51
 52struct cpumask *tick_get_broadcast_mask(void)
 53{
 54	return tick_broadcast_mask;
 55}
 56
 57/*
 58 * Start the device in periodic mode
 59 */
 60static void tick_broadcast_start_periodic(struct clock_event_device *bc)
 61{
 62	if (bc)
 63		tick_setup_periodic(bc, 1);
 64}
 65
 66/*
 67 * Check, if the device can be utilized as broadcast device:
 68 */
 69static bool tick_check_broadcast_device(struct clock_event_device *curdev,
 70					struct clock_event_device *newdev)
 71{
 72	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
 73	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
 74	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
 75		return false;
 76
 77	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
 78	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
 79		return false;
 80
 81	return !curdev || newdev->rating > curdev->rating;
 82}
 83
 84/*
 85 * Conditionally install/replace broadcast device
 86 */
 87void tick_install_broadcast_device(struct clock_event_device *dev)
 88{
 89	struct clock_event_device *cur = tick_broadcast_device.evtdev;
 90
 91	if (!tick_check_broadcast_device(cur, dev))
 92		return;
 93
 94	if (!try_module_get(dev->owner))
 95		return;
 96
 97	clockevents_exchange_device(cur, dev);
 98	if (cur)
 99		cur->event_handler = clockevents_handle_noop;
100	tick_broadcast_device.evtdev = dev;
101	if (!cpumask_empty(tick_broadcast_mask))
102		tick_broadcast_start_periodic(dev);
103	/*
104	 * Inform all cpus about this. We might be in a situation
105	 * where we did not switch to oneshot mode because the per cpu
106	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
107	 * of a oneshot capable broadcast device. Without that
108	 * notification the systems stays stuck in periodic mode
109	 * forever.
110	 */
111	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
112		tick_clock_notify();
113}
114
115/*
116 * Check, if the device is the broadcast device
117 */
118int tick_is_broadcast_device(struct clock_event_device *dev)
119{
120	return (dev && tick_broadcast_device.evtdev == dev);
121}
122
123int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
124{
125	int ret = -ENODEV;
126
127	if (tick_is_broadcast_device(dev)) {
128		raw_spin_lock(&tick_broadcast_lock);
129		ret = __clockevents_update_freq(dev, freq);
130		raw_spin_unlock(&tick_broadcast_lock);
131	}
132	return ret;
133}
134
135
136static void err_broadcast(const struct cpumask *mask)
137{
138	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
139}
140
141static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
142{
143	if (!dev->broadcast)
144		dev->broadcast = tick_broadcast;
145	if (!dev->broadcast) {
146		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
147			     dev->name);
148		dev->broadcast = err_broadcast;
149	}
150}
151
152/*
153 * Check, if the device is disfunctional and a place holder, which
154 * needs to be handled by the broadcast device.
155 */
156int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
157{
158	struct clock_event_device *bc = tick_broadcast_device.evtdev;
159	unsigned long flags;
160	int ret;
161
162	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
163
164	/*
165	 * Devices might be registered with both periodic and oneshot
166	 * mode disabled. This signals, that the device needs to be
167	 * operated from the broadcast device and is a placeholder for
168	 * the cpu local device.
169	 */
170	if (!tick_device_is_functional(dev)) {
171		dev->event_handler = tick_handle_periodic;
172		tick_device_setup_broadcast_func(dev);
173		cpumask_set_cpu(cpu, tick_broadcast_mask);
174		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
175			tick_broadcast_start_periodic(bc);
176		else
177			tick_broadcast_setup_oneshot(bc);
178		ret = 1;
179	} else {
180		/*
181		 * Clear the broadcast bit for this cpu if the
182		 * device is not power state affected.
183		 */
184		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
185			cpumask_clear_cpu(cpu, tick_broadcast_mask);
186		else
187			tick_device_setup_broadcast_func(dev);
188
189		/*
190		 * Clear the broadcast bit if the CPU is not in
191		 * periodic broadcast on state.
192		 */
193		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
194			cpumask_clear_cpu(cpu, tick_broadcast_mask);
195
196		switch (tick_broadcast_device.mode) {
197		case TICKDEV_MODE_ONESHOT:
198			/*
199			 * If the system is in oneshot mode we can
200			 * unconditionally clear the oneshot mask bit,
201			 * because the CPU is running and therefore
202			 * not in an idle state which causes the power
203			 * state affected device to stop. Let the
204			 * caller initialize the device.
205			 */
206			tick_broadcast_clear_oneshot(cpu);
207			ret = 0;
208			break;
209
210		case TICKDEV_MODE_PERIODIC:
211			/*
212			 * If the system is in periodic mode, check
213			 * whether the broadcast device can be
214			 * switched off now.
215			 */
216			if (cpumask_empty(tick_broadcast_mask) && bc)
217				clockevents_shutdown(bc);
218			/*
219			 * If we kept the cpu in the broadcast mask,
220			 * tell the caller to leave the per cpu device
221			 * in shutdown state. The periodic interrupt
222			 * is delivered by the broadcast device.
 
 
223			 */
224			ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
 
225			break;
226		default:
227			/* Nothing to do */
228			ret = 0;
229			break;
230		}
231	}
232	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
233	return ret;
234}
235
236#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
237int tick_receive_broadcast(void)
238{
239	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
240	struct clock_event_device *evt = td->evtdev;
241
242	if (!evt)
243		return -ENODEV;
244
245	if (!evt->event_handler)
246		return -EINVAL;
247
248	evt->event_handler(evt);
249	return 0;
250}
251#endif
252
253/*
254 * Broadcast the event to the cpus, which are set in the mask (mangled).
255 */
256static void tick_do_broadcast(struct cpumask *mask)
257{
258	int cpu = smp_processor_id();
259	struct tick_device *td;
 
260
261	/*
262	 * Check, if the current cpu is in the mask
263	 */
264	if (cpumask_test_cpu(cpu, mask)) {
 
 
265		cpumask_clear_cpu(cpu, mask);
266		td = &per_cpu(tick_cpu_device, cpu);
267		td->evtdev->event_handler(td->evtdev);
 
 
 
 
 
 
 
 
 
 
 
268	}
269
270	if (!cpumask_empty(mask)) {
271		/*
272		 * It might be necessary to actually check whether the devices
273		 * have different broadcast functions. For now, just use the
274		 * one of the first device. This works as long as we have this
275		 * misfeature only on x86 (lapic)
276		 */
277		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
278		td->evtdev->broadcast(mask);
279	}
 
280}
281
282/*
283 * Periodic broadcast:
284 * - invoke the broadcast handlers
285 */
286static void tick_do_periodic_broadcast(void)
287{
288	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
289	tick_do_broadcast(tmpmask);
290}
291
292/*
293 * Event handler for periodic broadcast ticks
294 */
295static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
296{
297	ktime_t next;
 
298
299	raw_spin_lock(&tick_broadcast_lock);
300
301	tick_do_periodic_broadcast();
 
 
 
 
302
303	/*
304	 * The device is in periodic mode. No reprogramming necessary:
305	 */
306	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
307		goto unlock;
308
309	/*
310	 * Setup the next period for devices, which do not have
311	 * periodic mode. We read dev->next_event first and add to it
312	 * when the event already expired. clockevents_program_event()
313	 * sets dev->next_event only when the event is really
314	 * programmed to the device.
315	 */
316	for (next = dev->next_event; ;) {
317		next = ktime_add(next, tick_period);
318
319		if (!clockevents_program_event(dev, next, false))
320			goto unlock;
321		tick_do_periodic_broadcast();
322	}
323unlock:
324	raw_spin_unlock(&tick_broadcast_lock);
 
 
 
 
 
 
 
 
325}
326
327/*
328 * Powerstate information: The system enters/leaves a state, where
329 * affected devices might stop
 
 
 
330 */
331static void tick_do_broadcast_on_off(unsigned long *reason)
332{
333	struct clock_event_device *bc, *dev;
334	struct tick_device *td;
335	unsigned long flags;
336	int cpu, bc_stopped;
 
337
 
338	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
339
340	cpu = smp_processor_id();
341	td = &per_cpu(tick_cpu_device, cpu);
342	dev = td->evtdev;
343	bc = tick_broadcast_device.evtdev;
344
345	/*
346	 * Is the device not affected by the powerstate ?
347	 */
348	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
349		goto out;
350
351	if (!tick_device_is_functional(dev))
352		goto out;
353
 
 
354	bc_stopped = cpumask_empty(tick_broadcast_mask);
355
356	switch (*reason) {
357	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
358	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
 
359		cpumask_set_cpu(cpu, tick_broadcast_on);
360		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
361			if (tick_broadcast_device.mode ==
362			    TICKDEV_MODE_PERIODIC)
 
 
 
 
 
 
 
 
363				clockevents_shutdown(dev);
364		}
365		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
366			tick_broadcast_force = 1;
367		break;
368	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
369		if (tick_broadcast_force)
 
370			break;
371		cpumask_clear_cpu(cpu, tick_broadcast_on);
372		if (!tick_device_is_functional(dev))
373			break;
374		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
375			if (tick_broadcast_device.mode ==
376			    TICKDEV_MODE_PERIODIC)
377				tick_setup_periodic(dev, 0);
378		}
379		break;
380	}
381
382	if (cpumask_empty(tick_broadcast_mask)) {
383		if (!bc_stopped)
384			clockevents_shutdown(bc);
385	} else if (bc_stopped) {
386		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
387			tick_broadcast_start_periodic(bc);
388		else
389			tick_broadcast_setup_oneshot(bc);
 
 
390	}
391out:
392	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
393}
394
395/*
396 * Powerstate information: The system enters/leaves a state, where
397 * affected devices might stop.
398 */
399void tick_broadcast_on_off(unsigned long reason, int *oncpu)
400{
401	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
402		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
403		       "offline CPU #%d\n", *oncpu);
404	else
405		tick_do_broadcast_on_off(&reason);
406}
407
408/*
409 * Set the periodic handler depending on broadcast on/off
410 */
411void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
412{
413	if (!broadcast)
414		dev->event_handler = tick_handle_periodic;
415	else
416		dev->event_handler = tick_handle_periodic_broadcast;
417}
418
 
419/*
420 * Remove a CPU from broadcasting
421 */
422void tick_shutdown_broadcast(unsigned int *cpup)
423{
424	struct clock_event_device *bc;
425	unsigned long flags;
426	unsigned int cpu = *cpup;
427
428	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
429
430	bc = tick_broadcast_device.evtdev;
431	cpumask_clear_cpu(cpu, tick_broadcast_mask);
432	cpumask_clear_cpu(cpu, tick_broadcast_on);
433
434	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
435		if (bc && cpumask_empty(tick_broadcast_mask))
436			clockevents_shutdown(bc);
437	}
438
439	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
440}
 
441
442void tick_suspend_broadcast(void)
443{
444	struct clock_event_device *bc;
445	unsigned long flags;
446
447	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
448
449	bc = tick_broadcast_device.evtdev;
450	if (bc)
451		clockevents_shutdown(bc);
452
453	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
454}
455
456int tick_resume_broadcast(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457{
458	struct clock_event_device *bc;
459	unsigned long flags;
460	int broadcast = 0;
461
462	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
463
464	bc = tick_broadcast_device.evtdev;
465
466	if (bc) {
467		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
468
469		switch (tick_broadcast_device.mode) {
470		case TICKDEV_MODE_PERIODIC:
471			if (!cpumask_empty(tick_broadcast_mask))
472				tick_broadcast_start_periodic(bc);
473			broadcast = cpumask_test_cpu(smp_processor_id(),
474						     tick_broadcast_mask);
475			break;
476		case TICKDEV_MODE_ONESHOT:
477			if (!cpumask_empty(tick_broadcast_mask))
478				broadcast = tick_resume_broadcast_oneshot(bc);
479			break;
480		}
481	}
482	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
483
484	return broadcast;
485}
486
487
488#ifdef CONFIG_TICK_ONESHOT
489
490static cpumask_var_t tick_broadcast_oneshot_mask;
491static cpumask_var_t tick_broadcast_pending_mask;
492static cpumask_var_t tick_broadcast_force_mask;
493
494/*
495 * Exposed for debugging: see timer_list.c
496 */
497struct cpumask *tick_get_broadcast_oneshot_mask(void)
498{
499	return tick_broadcast_oneshot_mask;
500}
501
502/*
503 * Called before going idle with interrupts disabled. Checks whether a
504 * broadcast event from the other core is about to happen. We detected
505 * that in tick_broadcast_oneshot_control(). The callsite can use this
506 * to avoid a deep idle transition as we are about to get the
507 * broadcast IPI right away.
508 */
509int tick_check_broadcast_expired(void)
510{
511	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
512}
513
514/*
515 * Set broadcast interrupt affinity
516 */
517static void tick_broadcast_set_affinity(struct clock_event_device *bc,
518					const struct cpumask *cpumask)
519{
520	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
521		return;
522
523	if (cpumask_equal(bc->cpumask, cpumask))
524		return;
525
526	bc->cpumask = cpumask;
527	irq_set_affinity(bc->irq, bc->cpumask);
528}
529
530static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
531				    ktime_t expires, int force)
532{
533	int ret;
 
534
535	if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
536		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
537
538	ret = clockevents_program_event(bc, expires, force);
539	if (!ret)
540		tick_broadcast_set_affinity(bc, cpumask_of(cpu));
541	return ret;
542}
543
544int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
545{
546	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
547	return 0;
548}
549
550/*
551 * Called from irq_enter() when idle was interrupted to reenable the
552 * per cpu device.
553 */
554void tick_check_oneshot_broadcast_this_cpu(void)
555{
556	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
557		struct tick_device *td = &__get_cpu_var(tick_cpu_device);
558
559		/*
560		 * We might be in the middle of switching over from
561		 * periodic to oneshot. If the CPU has not yet
562		 * switched over, leave the device alone.
563		 */
564		if (td->mode == TICKDEV_MODE_ONESHOT) {
565			clockevents_set_mode(td->evtdev,
566					     CLOCK_EVT_MODE_ONESHOT);
567		}
568	}
569}
570
571/*
572 * Handle oneshot mode broadcasting
573 */
574static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
575{
576	struct tick_device *td;
577	ktime_t now, next_event;
578	int cpu, next_cpu = 0;
 
579
580	raw_spin_lock(&tick_broadcast_lock);
581again:
582	dev->next_event.tv64 = KTIME_MAX;
583	next_event.tv64 = KTIME_MAX;
584	cpumask_clear(tmpmask);
585	now = ktime_get();
586	/* Find all expired events */
587	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
588		td = &per_cpu(tick_cpu_device, cpu);
589		if (td->evtdev->next_event.tv64 <= now.tv64) {
590			cpumask_set_cpu(cpu, tmpmask);
591			/*
592			 * Mark the remote cpu in the pending mask, so
593			 * it can avoid reprogramming the cpu local
594			 * timer in tick_broadcast_oneshot_control().
595			 */
596			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
597		} else if (td->evtdev->next_event.tv64 < next_event.tv64) {
598			next_event.tv64 = td->evtdev->next_event.tv64;
599			next_cpu = cpu;
600		}
601	}
602
603	/*
604	 * Remove the current cpu from the pending mask. The event is
605	 * delivered immediately in tick_do_broadcast() !
606	 */
607	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
608
609	/* Take care of enforced broadcast requests */
610	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
611	cpumask_clear(tick_broadcast_force_mask);
612
613	/*
614	 * Sanity check. Catch the case where we try to broadcast to
615	 * offline cpus.
616	 */
617	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
618		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
619
620	/*
621	 * Wakeup the cpus which have an expired event.
622	 */
623	tick_do_broadcast(tmpmask);
624
625	/*
626	 * Two reasons for reprogram:
627	 *
628	 * - The global event did not expire any CPU local
629	 * events. This happens in dyntick mode, as the maximum PIT
630	 * delta is quite small.
631	 *
632	 * - There are pending events on sleeping CPUs which were not
633	 * in the event mask
634	 */
635	if (next_event.tv64 != KTIME_MAX) {
636		/*
637		 * Rearm the broadcast device. If event expired,
638		 * repeat the above
639		 */
640		if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
641			goto again;
642	}
643	raw_spin_unlock(&tick_broadcast_lock);
 
 
 
 
 
644}
645
646static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
647{
648	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
649		return 0;
650	if (bc->next_event.tv64 == KTIME_MAX)
651		return 0;
652	return bc->bound_on == cpu ? -EBUSY : 0;
653}
654
655static void broadcast_shutdown_local(struct clock_event_device *bc,
656				     struct clock_event_device *dev)
657{
658	/*
659	 * For hrtimer based broadcasting we cannot shutdown the cpu
660	 * local device if our own event is the first one to expire or
661	 * if we own the broadcast timer.
662	 */
663	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
664		if (broadcast_needs_cpu(bc, smp_processor_id()))
665			return;
666		if (dev->next_event.tv64 < bc->next_event.tv64)
667			return;
668	}
669	clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
670}
671
672static void broadcast_move_bc(int deadcpu)
673{
674	struct clock_event_device *bc = tick_broadcast_device.evtdev;
675
676	if (!bc || !broadcast_needs_cpu(bc, deadcpu))
677		return;
678	/* This moves the broadcast assignment to this cpu */
679	clockevents_program_event(bc, bc->next_event, 1);
680}
681
682/*
683 * Powerstate information: The system enters/leaves a state, where
684 * affected devices might stop
685 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
686 */
687int tick_broadcast_oneshot_control(unsigned long reason)
688{
689	struct clock_event_device *bc, *dev;
690	struct tick_device *td;
691	unsigned long flags;
692	ktime_t now;
693	int cpu, ret = 0;
 
694
695	/*
696	 * Periodic mode does not care about the enter/exit of power
697	 * states
698	 */
699	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
700		return 0;
701
702	/*
703	 * We are called with preemtion disabled from the depth of the
704	 * idle code, so we can't be moved away.
705	 */
706	cpu = smp_processor_id();
707	td = &per_cpu(tick_cpu_device, cpu);
708	dev = td->evtdev;
709
710	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
711		return 0;
 
 
 
 
 
 
 
 
 
712
713	bc = tick_broadcast_device.evtdev;
 
 
 
 
 
 
 
 
 
714
715	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
716	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
717		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
718			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
 
 
719			broadcast_shutdown_local(bc, dev);
 
720			/*
721			 * We only reprogram the broadcast timer if we
722			 * did not mark ourself in the force mask and
723			 * if the cpu local event is earlier than the
724			 * broadcast event. If the current CPU is in
725			 * the force mask, then we are going to be
726			 * woken by the IPI right away.
 
 
727			 */
728			if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
729			    dev->next_event.tv64 < bc->next_event.tv64)
730				tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731		}
732		/*
733		 * If the current CPU owns the hrtimer broadcast
734		 * mechanism, it cannot go deep idle and we remove the
735		 * CPU from the broadcast mask. We don't have to go
736		 * through the EXIT path as the local timer is not
737		 * shutdown.
738		 */
739		ret = broadcast_needs_cpu(bc, cpu);
740		if (ret)
741			cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
742	} else {
743		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
744			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
745			/*
746			 * The cpu which was handling the broadcast
747			 * timer marked this cpu in the broadcast
748			 * pending mask and fired the broadcast
749			 * IPI. So we are going to handle the expired
750			 * event anyway via the broadcast IPI
751			 * handler. No need to reprogram the timer
752			 * with an already expired event.
753			 */
754			if (cpumask_test_and_clear_cpu(cpu,
755				       tick_broadcast_pending_mask))
756				goto out;
757
758			/*
759			 * Bail out if there is no next event.
760			 */
761			if (dev->next_event.tv64 == KTIME_MAX)
762				goto out;
763			/*
764			 * If the pending bit is not set, then we are
765			 * either the CPU handling the broadcast
766			 * interrupt or we got woken by something else.
767			 *
768			 * We are not longer in the broadcast mask, so
769			 * if the cpu local expiry time is already
770			 * reached, we would reprogram the cpu local
771			 * timer with an already expired event.
772			 *
773			 * This can lead to a ping-pong when we return
774			 * to idle and therefor rearm the broadcast
775			 * timer before the cpu local timer was able
776			 * to fire. This happens because the forced
777			 * reprogramming makes sure that the event
778			 * will happen in the future and depending on
779			 * the min_delta setting this might be far
780			 * enough out that the ping-pong starts.
781			 *
782			 * If the cpu local next_event has expired
783			 * then we know that the broadcast timer
784			 * next_event has expired as well and
785			 * broadcast is about to be handled. So we
786			 * avoid reprogramming and enforce that the
787			 * broadcast handler, which did not run yet,
788			 * will invoke the cpu local handler.
789			 *
790			 * We cannot call the handler directly from
791			 * here, because we might be in a NOHZ phase
792			 * and we did not go through the irq_enter()
793			 * nohz fixups.
794			 */
795			now = ktime_get();
796			if (dev->next_event.tv64 <= now.tv64) {
797				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
798				goto out;
799			}
800			/*
801			 * We got woken by something else. Reprogram
802			 * the cpu local timer device.
803			 */
804			tick_program_event(dev->next_event, 1);
805		}
806	}
807out:
808	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
809	return ret;
810}
811
812/*
813 * Reset the one shot broadcast for a cpu
814 *
815 * Called with tick_broadcast_lock held
816 */
817static void tick_broadcast_clear_oneshot(int cpu)
818{
819	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
820	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
821}
822
823static void tick_broadcast_init_next_event(struct cpumask *mask,
824					   ktime_t expires)
825{
826	struct tick_device *td;
827	int cpu;
828
829	for_each_cpu(cpu, mask) {
830		td = &per_cpu(tick_cpu_device, cpu);
831		if (td->evtdev)
832			td->evtdev->next_event = expires;
833	}
834}
835
836/**
837 * tick_broadcast_setup_oneshot - setup the broadcast device
838 */
839void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
840{
841	int cpu = smp_processor_id();
842
 
 
 
843	/* Set it up only once ! */
844	if (bc->event_handler != tick_handle_oneshot_broadcast) {
845		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
846
847		bc->event_handler = tick_handle_oneshot_broadcast;
848
849		/*
850		 * We must be careful here. There might be other CPUs
851		 * waiting for periodic broadcast. We need to set the
852		 * oneshot_mask bits for those and program the
853		 * broadcast device to fire.
854		 */
855		cpumask_copy(tmpmask, tick_broadcast_mask);
856		cpumask_clear_cpu(cpu, tmpmask);
857		cpumask_or(tick_broadcast_oneshot_mask,
858			   tick_broadcast_oneshot_mask, tmpmask);
859
860		if (was_periodic && !cpumask_empty(tmpmask)) {
861			clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
862			tick_broadcast_init_next_event(tmpmask,
863						       tick_next_period);
864			tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
865		} else
866			bc->next_event.tv64 = KTIME_MAX;
867	} else {
868		/*
869		 * The first cpu which switches to oneshot mode sets
870		 * the bit for all other cpus which are in the general
871		 * (periodic) broadcast mask. So the bit is set and
872		 * would prevent the first broadcast enter after this
873		 * to program the bc device.
874		 */
875		tick_broadcast_clear_oneshot(cpu);
876	}
877}
878
879/*
880 * Select oneshot operating mode for the broadcast device
881 */
882void tick_broadcast_switch_to_oneshot(void)
883{
884	struct clock_event_device *bc;
885	unsigned long flags;
886
887	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
888
889	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
890	bc = tick_broadcast_device.evtdev;
891	if (bc)
892		tick_broadcast_setup_oneshot(bc);
893
894	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
895}
896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897
898/*
899 * Remove a dead CPU from broadcasting
900 */
901void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
902{
903	unsigned long flags;
904	unsigned int cpu = *cpup;
905
906	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
907
908	/*
909	 * Clear the broadcast masks for the dead cpu, but do not stop
910	 * the broadcast device!
911	 */
912	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
913	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
914	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
915
916	broadcast_move_bc(cpu);
917
918	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
919}
 
920
921/*
922 * Check, whether the broadcast device is in one shot mode
923 */
924int tick_broadcast_oneshot_active(void)
925{
926	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
927}
928
929/*
930 * Check whether the broadcast device supports oneshot.
931 */
932bool tick_broadcast_oneshot_available(void)
933{
934	struct clock_event_device *bc = tick_broadcast_device.evtdev;
935
936	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
937}
938
 
 
 
 
 
 
 
 
 
 
939#endif
940
941void __init tick_broadcast_init(void)
942{
943	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
944	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
945	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
946#ifdef CONFIG_TICK_ONESHOT
947	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
948	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
949	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
950#endif
951}
v4.10.11
   1/*
   2 * linux/kernel/time/tick-broadcast.c
   3 *
   4 * This file contains functions which emulate a local clock-event
   5 * device via a broadcast event source.
   6 *
   7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  10 *
  11 * This code is licenced under the GPL version 2. For details see
  12 * kernel-base/COPYING.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/percpu.h>
  19#include <linux/profile.h>
  20#include <linux/sched.h>
  21#include <linux/smp.h>
  22#include <linux/module.h>
  23
  24#include "tick-internal.h"
  25
  26/*
  27 * Broadcast support for broken x86 hardware, where the local apic
  28 * timer stops in C3 state.
  29 */
  30
  31static struct tick_device tick_broadcast_device;
  32static cpumask_var_t tick_broadcast_mask;
  33static cpumask_var_t tick_broadcast_on;
  34static cpumask_var_t tmpmask;
  35static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
  36static int tick_broadcast_forced;
  37
  38#ifdef CONFIG_TICK_ONESHOT
  39static void tick_broadcast_clear_oneshot(int cpu);
  40static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
  41#else
  42static inline void tick_broadcast_clear_oneshot(int cpu) { }
  43static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
  44#endif
  45
  46/*
  47 * Debugging: see timer_list.c
  48 */
  49struct tick_device *tick_get_broadcast_device(void)
  50{
  51	return &tick_broadcast_device;
  52}
  53
  54struct cpumask *tick_get_broadcast_mask(void)
  55{
  56	return tick_broadcast_mask;
  57}
  58
  59/*
  60 * Start the device in periodic mode
  61 */
  62static void tick_broadcast_start_periodic(struct clock_event_device *bc)
  63{
  64	if (bc)
  65		tick_setup_periodic(bc, 1);
  66}
  67
  68/*
  69 * Check, if the device can be utilized as broadcast device:
  70 */
  71static bool tick_check_broadcast_device(struct clock_event_device *curdev,
  72					struct clock_event_device *newdev)
  73{
  74	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
  75	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
  76	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
  77		return false;
  78
  79	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
  80	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
  81		return false;
  82
  83	return !curdev || newdev->rating > curdev->rating;
  84}
  85
  86/*
  87 * Conditionally install/replace broadcast device
  88 */
  89void tick_install_broadcast_device(struct clock_event_device *dev)
  90{
  91	struct clock_event_device *cur = tick_broadcast_device.evtdev;
  92
  93	if (!tick_check_broadcast_device(cur, dev))
  94		return;
  95
  96	if (!try_module_get(dev->owner))
  97		return;
  98
  99	clockevents_exchange_device(cur, dev);
 100	if (cur)
 101		cur->event_handler = clockevents_handle_noop;
 102	tick_broadcast_device.evtdev = dev;
 103	if (!cpumask_empty(tick_broadcast_mask))
 104		tick_broadcast_start_periodic(dev);
 105	/*
 106	 * Inform all cpus about this. We might be in a situation
 107	 * where we did not switch to oneshot mode because the per cpu
 108	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
 109	 * of a oneshot capable broadcast device. Without that
 110	 * notification the systems stays stuck in periodic mode
 111	 * forever.
 112	 */
 113	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
 114		tick_clock_notify();
 115}
 116
 117/*
 118 * Check, if the device is the broadcast device
 119 */
 120int tick_is_broadcast_device(struct clock_event_device *dev)
 121{
 122	return (dev && tick_broadcast_device.evtdev == dev);
 123}
 124
 125int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
 126{
 127	int ret = -ENODEV;
 128
 129	if (tick_is_broadcast_device(dev)) {
 130		raw_spin_lock(&tick_broadcast_lock);
 131		ret = __clockevents_update_freq(dev, freq);
 132		raw_spin_unlock(&tick_broadcast_lock);
 133	}
 134	return ret;
 135}
 136
 137
 138static void err_broadcast(const struct cpumask *mask)
 139{
 140	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
 141}
 142
 143static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
 144{
 145	if (!dev->broadcast)
 146		dev->broadcast = tick_broadcast;
 147	if (!dev->broadcast) {
 148		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
 149			     dev->name);
 150		dev->broadcast = err_broadcast;
 151	}
 152}
 153
 154/*
 155 * Check, if the device is disfunctional and a place holder, which
 156 * needs to be handled by the broadcast device.
 157 */
 158int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
 159{
 160	struct clock_event_device *bc = tick_broadcast_device.evtdev;
 161	unsigned long flags;
 162	int ret = 0;
 163
 164	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 165
 166	/*
 167	 * Devices might be registered with both periodic and oneshot
 168	 * mode disabled. This signals, that the device needs to be
 169	 * operated from the broadcast device and is a placeholder for
 170	 * the cpu local device.
 171	 */
 172	if (!tick_device_is_functional(dev)) {
 173		dev->event_handler = tick_handle_periodic;
 174		tick_device_setup_broadcast_func(dev);
 175		cpumask_set_cpu(cpu, tick_broadcast_mask);
 176		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 177			tick_broadcast_start_periodic(bc);
 178		else
 179			tick_broadcast_setup_oneshot(bc);
 180		ret = 1;
 181	} else {
 182		/*
 183		 * Clear the broadcast bit for this cpu if the
 184		 * device is not power state affected.
 185		 */
 186		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 187			cpumask_clear_cpu(cpu, tick_broadcast_mask);
 188		else
 189			tick_device_setup_broadcast_func(dev);
 190
 191		/*
 192		 * Clear the broadcast bit if the CPU is not in
 193		 * periodic broadcast on state.
 194		 */
 195		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
 196			cpumask_clear_cpu(cpu, tick_broadcast_mask);
 197
 198		switch (tick_broadcast_device.mode) {
 199		case TICKDEV_MODE_ONESHOT:
 200			/*
 201			 * If the system is in oneshot mode we can
 202			 * unconditionally clear the oneshot mask bit,
 203			 * because the CPU is running and therefore
 204			 * not in an idle state which causes the power
 205			 * state affected device to stop. Let the
 206			 * caller initialize the device.
 207			 */
 208			tick_broadcast_clear_oneshot(cpu);
 209			ret = 0;
 210			break;
 211
 212		case TICKDEV_MODE_PERIODIC:
 213			/*
 214			 * If the system is in periodic mode, check
 215			 * whether the broadcast device can be
 216			 * switched off now.
 217			 */
 218			if (cpumask_empty(tick_broadcast_mask) && bc)
 219				clockevents_shutdown(bc);
 220			/*
 221			 * If we kept the cpu in the broadcast mask,
 222			 * tell the caller to leave the per cpu device
 223			 * in shutdown state. The periodic interrupt
 224			 * is delivered by the broadcast device, if
 225			 * the broadcast device exists and is not
 226			 * hrtimer based.
 227			 */
 228			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 229				ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
 230			break;
 231		default:
 
 
 232			break;
 233		}
 234	}
 235	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 236	return ret;
 237}
 238
 239#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 240int tick_receive_broadcast(void)
 241{
 242	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 243	struct clock_event_device *evt = td->evtdev;
 244
 245	if (!evt)
 246		return -ENODEV;
 247
 248	if (!evt->event_handler)
 249		return -EINVAL;
 250
 251	evt->event_handler(evt);
 252	return 0;
 253}
 254#endif
 255
 256/*
 257 * Broadcast the event to the cpus, which are set in the mask (mangled).
 258 */
 259static bool tick_do_broadcast(struct cpumask *mask)
 260{
 261	int cpu = smp_processor_id();
 262	struct tick_device *td;
 263	bool local = false;
 264
 265	/*
 266	 * Check, if the current cpu is in the mask
 267	 */
 268	if (cpumask_test_cpu(cpu, mask)) {
 269		struct clock_event_device *bc = tick_broadcast_device.evtdev;
 270
 271		cpumask_clear_cpu(cpu, mask);
 272		/*
 273		 * We only run the local handler, if the broadcast
 274		 * device is not hrtimer based. Otherwise we run into
 275		 * a hrtimer recursion.
 276		 *
 277		 * local timer_interrupt()
 278		 *   local_handler()
 279		 *     expire_hrtimers()
 280		 *       bc_handler()
 281		 *         local_handler()
 282		 *	     expire_hrtimers()
 283		 */
 284		local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
 285	}
 286
 287	if (!cpumask_empty(mask)) {
 288		/*
 289		 * It might be necessary to actually check whether the devices
 290		 * have different broadcast functions. For now, just use the
 291		 * one of the first device. This works as long as we have this
 292		 * misfeature only on x86 (lapic)
 293		 */
 294		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
 295		td->evtdev->broadcast(mask);
 296	}
 297	return local;
 298}
 299
 300/*
 301 * Periodic broadcast:
 302 * - invoke the broadcast handlers
 303 */
 304static bool tick_do_periodic_broadcast(void)
 305{
 306	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
 307	return tick_do_broadcast(tmpmask);
 308}
 309
 310/*
 311 * Event handler for periodic broadcast ticks
 312 */
 313static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
 314{
 315	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 316	bool bc_local;
 317
 318	raw_spin_lock(&tick_broadcast_lock);
 319
 320	/* Handle spurious interrupts gracefully */
 321	if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
 322		raw_spin_unlock(&tick_broadcast_lock);
 323		return;
 324	}
 325
 326	bc_local = tick_do_periodic_broadcast();
 
 
 
 
 327
 328	if (clockevent_state_oneshot(dev)) {
 329		ktime_t next = ktime_add(dev->next_event, tick_period);
 
 
 
 
 
 
 
 330
 331		clockevents_program_event(dev, next, true);
 
 
 332	}
 
 333	raw_spin_unlock(&tick_broadcast_lock);
 334
 335	/*
 336	 * We run the handler of the local cpu after dropping
 337	 * tick_broadcast_lock because the handler might deadlock when
 338	 * trying to switch to oneshot mode.
 339	 */
 340	if (bc_local)
 341		td->evtdev->event_handler(td->evtdev);
 342}
 343
 344/**
 345 * tick_broadcast_control - Enable/disable or force broadcast mode
 346 * @mode:	The selected broadcast mode
 347 *
 348 * Called when the system enters a state where affected tick devices
 349 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
 350 */
 351void tick_broadcast_control(enum tick_broadcast_mode mode)
 352{
 353	struct clock_event_device *bc, *dev;
 354	struct tick_device *td;
 
 355	int cpu, bc_stopped;
 356	unsigned long flags;
 357
 358	/* Protects also the local clockevent device. */
 359	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 360	td = this_cpu_ptr(&tick_cpu_device);
 
 
 361	dev = td->evtdev;
 
 362
 363	/*
 364	 * Is the device not affected by the powerstate ?
 365	 */
 366	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
 367		goto out;
 368
 369	if (!tick_device_is_functional(dev))
 370		goto out;
 371
 372	cpu = smp_processor_id();
 373	bc = tick_broadcast_device.evtdev;
 374	bc_stopped = cpumask_empty(tick_broadcast_mask);
 375
 376	switch (mode) {
 377	case TICK_BROADCAST_FORCE:
 378		tick_broadcast_forced = 1;
 379	case TICK_BROADCAST_ON:
 380		cpumask_set_cpu(cpu, tick_broadcast_on);
 381		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
 382			/*
 383			 * Only shutdown the cpu local device, if:
 384			 *
 385			 * - the broadcast device exists
 386			 * - the broadcast device is not a hrtimer based one
 387			 * - the broadcast device is in periodic mode to
 388			 *   avoid a hickup during switch to oneshot mode
 389			 */
 390			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
 391			    tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 392				clockevents_shutdown(dev);
 393		}
 
 
 394		break;
 395
 396	case TICK_BROADCAST_OFF:
 397		if (tick_broadcast_forced)
 398			break;
 399		cpumask_clear_cpu(cpu, tick_broadcast_on);
 400		if (!tick_device_is_functional(dev))
 401			break;
 402		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
 403			if (tick_broadcast_device.mode ==
 404			    TICKDEV_MODE_PERIODIC)
 405				tick_setup_periodic(dev, 0);
 406		}
 407		break;
 408	}
 409
 410	if (bc) {
 411		if (cpumask_empty(tick_broadcast_mask)) {
 412			if (!bc_stopped)
 413				clockevents_shutdown(bc);
 414		} else if (bc_stopped) {
 415			if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 416				tick_broadcast_start_periodic(bc);
 417			else
 418				tick_broadcast_setup_oneshot(bc);
 419		}
 420	}
 421out:
 422	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 423}
 424EXPORT_SYMBOL_GPL(tick_broadcast_control);
 
 
 
 
 
 
 
 
 
 
 
 
 425
 426/*
 427 * Set the periodic handler depending on broadcast on/off
 428 */
 429void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
 430{
 431	if (!broadcast)
 432		dev->event_handler = tick_handle_periodic;
 433	else
 434		dev->event_handler = tick_handle_periodic_broadcast;
 435}
 436
 437#ifdef CONFIG_HOTPLUG_CPU
 438/*
 439 * Remove a CPU from broadcasting
 440 */
 441void tick_shutdown_broadcast(unsigned int cpu)
 442{
 443	struct clock_event_device *bc;
 444	unsigned long flags;
 
 445
 446	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 447
 448	bc = tick_broadcast_device.evtdev;
 449	cpumask_clear_cpu(cpu, tick_broadcast_mask);
 450	cpumask_clear_cpu(cpu, tick_broadcast_on);
 451
 452	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 453		if (bc && cpumask_empty(tick_broadcast_mask))
 454			clockevents_shutdown(bc);
 455	}
 456
 457	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 458}
 459#endif
 460
 461void tick_suspend_broadcast(void)
 462{
 463	struct clock_event_device *bc;
 464	unsigned long flags;
 465
 466	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 467
 468	bc = tick_broadcast_device.evtdev;
 469	if (bc)
 470		clockevents_shutdown(bc);
 471
 472	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 473}
 474
 475/*
 476 * This is called from tick_resume_local() on a resuming CPU. That's
 477 * called from the core resume function, tick_unfreeze() and the magic XEN
 478 * resume hackery.
 479 *
 480 * In none of these cases the broadcast device mode can change and the
 481 * bit of the resuming CPU in the broadcast mask is safe as well.
 482 */
 483bool tick_resume_check_broadcast(void)
 484{
 485	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
 486		return false;
 487	else
 488		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
 489}
 490
 491void tick_resume_broadcast(void)
 492{
 493	struct clock_event_device *bc;
 494	unsigned long flags;
 
 495
 496	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 497
 498	bc = tick_broadcast_device.evtdev;
 499
 500	if (bc) {
 501		clockevents_tick_resume(bc);
 502
 503		switch (tick_broadcast_device.mode) {
 504		case TICKDEV_MODE_PERIODIC:
 505			if (!cpumask_empty(tick_broadcast_mask))
 506				tick_broadcast_start_periodic(bc);
 
 
 507			break;
 508		case TICKDEV_MODE_ONESHOT:
 509			if (!cpumask_empty(tick_broadcast_mask))
 510				tick_resume_broadcast_oneshot(bc);
 511			break;
 512		}
 513	}
 514	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 
 
 515}
 516
 
 517#ifdef CONFIG_TICK_ONESHOT
 518
 519static cpumask_var_t tick_broadcast_oneshot_mask;
 520static cpumask_var_t tick_broadcast_pending_mask;
 521static cpumask_var_t tick_broadcast_force_mask;
 522
 523/*
 524 * Exposed for debugging: see timer_list.c
 525 */
 526struct cpumask *tick_get_broadcast_oneshot_mask(void)
 527{
 528	return tick_broadcast_oneshot_mask;
 529}
 530
 531/*
 532 * Called before going idle with interrupts disabled. Checks whether a
 533 * broadcast event from the other core is about to happen. We detected
 534 * that in tick_broadcast_oneshot_control(). The callsite can use this
 535 * to avoid a deep idle transition as we are about to get the
 536 * broadcast IPI right away.
 537 */
 538int tick_check_broadcast_expired(void)
 539{
 540	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
 541}
 542
 543/*
 544 * Set broadcast interrupt affinity
 545 */
 546static void tick_broadcast_set_affinity(struct clock_event_device *bc,
 547					const struct cpumask *cpumask)
 548{
 549	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
 550		return;
 551
 552	if (cpumask_equal(bc->cpumask, cpumask))
 553		return;
 554
 555	bc->cpumask = cpumask;
 556	irq_set_affinity(bc->irq, bc->cpumask);
 557}
 558
 559static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
 560				     ktime_t expires)
 561{
 562	if (!clockevent_state_oneshot(bc))
 563		clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 564
 565	clockevents_program_event(bc, expires, 1);
 566	tick_broadcast_set_affinity(bc, cpumask_of(cpu));
 
 
 
 
 
 567}
 568
 569static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
 570{
 571	clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 
 572}
 573
 574/*
 575 * Called from irq_enter() when idle was interrupted to reenable the
 576 * per cpu device.
 577 */
 578void tick_check_oneshot_broadcast_this_cpu(void)
 579{
 580	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
 581		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 582
 583		/*
 584		 * We might be in the middle of switching over from
 585		 * periodic to oneshot. If the CPU has not yet
 586		 * switched over, leave the device alone.
 587		 */
 588		if (td->mode == TICKDEV_MODE_ONESHOT) {
 589			clockevents_switch_state(td->evtdev,
 590					      CLOCK_EVT_STATE_ONESHOT);
 591		}
 592	}
 593}
 594
 595/*
 596 * Handle oneshot mode broadcasting
 597 */
 598static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
 599{
 600	struct tick_device *td;
 601	ktime_t now, next_event;
 602	int cpu, next_cpu = 0;
 603	bool bc_local;
 604
 605	raw_spin_lock(&tick_broadcast_lock);
 606	dev->next_event = KTIME_MAX;
 607	next_event = KTIME_MAX;
 
 608	cpumask_clear(tmpmask);
 609	now = ktime_get();
 610	/* Find all expired events */
 611	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
 612		td = &per_cpu(tick_cpu_device, cpu);
 613		if (td->evtdev->next_event <= now) {
 614			cpumask_set_cpu(cpu, tmpmask);
 615			/*
 616			 * Mark the remote cpu in the pending mask, so
 617			 * it can avoid reprogramming the cpu local
 618			 * timer in tick_broadcast_oneshot_control().
 619			 */
 620			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
 621		} else if (td->evtdev->next_event < next_event) {
 622			next_event = td->evtdev->next_event;
 623			next_cpu = cpu;
 624		}
 625	}
 626
 627	/*
 628	 * Remove the current cpu from the pending mask. The event is
 629	 * delivered immediately in tick_do_broadcast() !
 630	 */
 631	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
 632
 633	/* Take care of enforced broadcast requests */
 634	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
 635	cpumask_clear(tick_broadcast_force_mask);
 636
 637	/*
 638	 * Sanity check. Catch the case where we try to broadcast to
 639	 * offline cpus.
 640	 */
 641	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
 642		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
 643
 644	/*
 645	 * Wakeup the cpus which have an expired event.
 646	 */
 647	bc_local = tick_do_broadcast(tmpmask);
 648
 649	/*
 650	 * Two reasons for reprogram:
 651	 *
 652	 * - The global event did not expire any CPU local
 653	 * events. This happens in dyntick mode, as the maximum PIT
 654	 * delta is quite small.
 655	 *
 656	 * - There are pending events on sleeping CPUs which were not
 657	 * in the event mask
 658	 */
 659	if (next_event != KTIME_MAX)
 660		tick_broadcast_set_event(dev, next_cpu, next_event);
 661
 
 
 
 
 
 662	raw_spin_unlock(&tick_broadcast_lock);
 663
 664	if (bc_local) {
 665		td = this_cpu_ptr(&tick_cpu_device);
 666		td->evtdev->event_handler(td->evtdev);
 667	}
 668}
 669
 670static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
 671{
 672	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 673		return 0;
 674	if (bc->next_event == KTIME_MAX)
 675		return 0;
 676	return bc->bound_on == cpu ? -EBUSY : 0;
 677}
 678
 679static void broadcast_shutdown_local(struct clock_event_device *bc,
 680				     struct clock_event_device *dev)
 681{
 682	/*
 683	 * For hrtimer based broadcasting we cannot shutdown the cpu
 684	 * local device if our own event is the first one to expire or
 685	 * if we own the broadcast timer.
 686	 */
 687	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
 688		if (broadcast_needs_cpu(bc, smp_processor_id()))
 689			return;
 690		if (dev->next_event < bc->next_event)
 691			return;
 692	}
 693	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
 694}
 695
 696int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 697{
 698	struct clock_event_device *bc, *dev;
 
 
 
 699	int cpu, ret = 0;
 700	ktime_t now;
 701
 702	/*
 703	 * If there is no broadcast device, tell the caller not to go
 704	 * into deep idle.
 705	 */
 706	if (!tick_broadcast_device.evtdev)
 707		return -EBUSY;
 708
 709	dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
 710
 711	raw_spin_lock(&tick_broadcast_lock);
 712	bc = tick_broadcast_device.evtdev;
 713	cpu = smp_processor_id();
 
 
 714
 715	if (state == TICK_BROADCAST_ENTER) {
 716		/*
 717		 * If the current CPU owns the hrtimer broadcast
 718		 * mechanism, it cannot go deep idle and we do not add
 719		 * the CPU to the broadcast mask. We don't have to go
 720		 * through the EXIT path as the local timer is not
 721		 * shutdown.
 722		 */
 723		ret = broadcast_needs_cpu(bc, cpu);
 724		if (ret)
 725			goto out;
 726
 727		/*
 728		 * If the broadcast device is in periodic mode, we
 729		 * return.
 730		 */
 731		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 732			/* If it is a hrtimer based broadcast, return busy */
 733			if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
 734				ret = -EBUSY;
 735			goto out;
 736		}
 737
 
 
 738		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
 739			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
 740
 741			/* Conditionally shut down the local timer. */
 742			broadcast_shutdown_local(bc, dev);
 743
 744			/*
 745			 * We only reprogram the broadcast timer if we
 746			 * did not mark ourself in the force mask and
 747			 * if the cpu local event is earlier than the
 748			 * broadcast event. If the current CPU is in
 749			 * the force mask, then we are going to be
 750			 * woken by the IPI right away; we return
 751			 * busy, so the CPU does not try to go deep
 752			 * idle.
 753			 */
 754			if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
 755				ret = -EBUSY;
 756			} else if (dev->next_event < bc->next_event) {
 757				tick_broadcast_set_event(bc, cpu, dev->next_event);
 758				/*
 759				 * In case of hrtimer broadcasts the
 760				 * programming might have moved the
 761				 * timer to this cpu. If yes, remove
 762				 * us from the broadcast mask and
 763				 * return busy.
 764				 */
 765				ret = broadcast_needs_cpu(bc, cpu);
 766				if (ret) {
 767					cpumask_clear_cpu(cpu,
 768						tick_broadcast_oneshot_mask);
 769				}
 770			}
 771		}
 
 
 
 
 
 
 
 
 
 
 772	} else {
 773		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
 774			clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
 775			/*
 776			 * The cpu which was handling the broadcast
 777			 * timer marked this cpu in the broadcast
 778			 * pending mask and fired the broadcast
 779			 * IPI. So we are going to handle the expired
 780			 * event anyway via the broadcast IPI
 781			 * handler. No need to reprogram the timer
 782			 * with an already expired event.
 783			 */
 784			if (cpumask_test_and_clear_cpu(cpu,
 785				       tick_broadcast_pending_mask))
 786				goto out;
 787
 788			/*
 789			 * Bail out if there is no next event.
 790			 */
 791			if (dev->next_event == KTIME_MAX)
 792				goto out;
 793			/*
 794			 * If the pending bit is not set, then we are
 795			 * either the CPU handling the broadcast
 796			 * interrupt or we got woken by something else.
 797			 *
 798			 * We are not longer in the broadcast mask, so
 799			 * if the cpu local expiry time is already
 800			 * reached, we would reprogram the cpu local
 801			 * timer with an already expired event.
 802			 *
 803			 * This can lead to a ping-pong when we return
 804			 * to idle and therefor rearm the broadcast
 805			 * timer before the cpu local timer was able
 806			 * to fire. This happens because the forced
 807			 * reprogramming makes sure that the event
 808			 * will happen in the future and depending on
 809			 * the min_delta setting this might be far
 810			 * enough out that the ping-pong starts.
 811			 *
 812			 * If the cpu local next_event has expired
 813			 * then we know that the broadcast timer
 814			 * next_event has expired as well and
 815			 * broadcast is about to be handled. So we
 816			 * avoid reprogramming and enforce that the
 817			 * broadcast handler, which did not run yet,
 818			 * will invoke the cpu local handler.
 819			 *
 820			 * We cannot call the handler directly from
 821			 * here, because we might be in a NOHZ phase
 822			 * and we did not go through the irq_enter()
 823			 * nohz fixups.
 824			 */
 825			now = ktime_get();
 826			if (dev->next_event <= now) {
 827				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
 828				goto out;
 829			}
 830			/*
 831			 * We got woken by something else. Reprogram
 832			 * the cpu local timer device.
 833			 */
 834			tick_program_event(dev->next_event, 1);
 835		}
 836	}
 837out:
 838	raw_spin_unlock(&tick_broadcast_lock);
 839	return ret;
 840}
 841
 842/*
 843 * Reset the one shot broadcast for a cpu
 844 *
 845 * Called with tick_broadcast_lock held
 846 */
 847static void tick_broadcast_clear_oneshot(int cpu)
 848{
 849	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
 850	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
 851}
 852
 853static void tick_broadcast_init_next_event(struct cpumask *mask,
 854					   ktime_t expires)
 855{
 856	struct tick_device *td;
 857	int cpu;
 858
 859	for_each_cpu(cpu, mask) {
 860		td = &per_cpu(tick_cpu_device, cpu);
 861		if (td->evtdev)
 862			td->evtdev->next_event = expires;
 863	}
 864}
 865
 866/**
 867 * tick_broadcast_setup_oneshot - setup the broadcast device
 868 */
 869void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
 870{
 871	int cpu = smp_processor_id();
 872
 873	if (!bc)
 874		return;
 875
 876	/* Set it up only once ! */
 877	if (bc->event_handler != tick_handle_oneshot_broadcast) {
 878		int was_periodic = clockevent_state_periodic(bc);
 879
 880		bc->event_handler = tick_handle_oneshot_broadcast;
 881
 882		/*
 883		 * We must be careful here. There might be other CPUs
 884		 * waiting for periodic broadcast. We need to set the
 885		 * oneshot_mask bits for those and program the
 886		 * broadcast device to fire.
 887		 */
 888		cpumask_copy(tmpmask, tick_broadcast_mask);
 889		cpumask_clear_cpu(cpu, tmpmask);
 890		cpumask_or(tick_broadcast_oneshot_mask,
 891			   tick_broadcast_oneshot_mask, tmpmask);
 892
 893		if (was_periodic && !cpumask_empty(tmpmask)) {
 894			clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 895			tick_broadcast_init_next_event(tmpmask,
 896						       tick_next_period);
 897			tick_broadcast_set_event(bc, cpu, tick_next_period);
 898		} else
 899			bc->next_event = KTIME_MAX;
 900	} else {
 901		/*
 902		 * The first cpu which switches to oneshot mode sets
 903		 * the bit for all other cpus which are in the general
 904		 * (periodic) broadcast mask. So the bit is set and
 905		 * would prevent the first broadcast enter after this
 906		 * to program the bc device.
 907		 */
 908		tick_broadcast_clear_oneshot(cpu);
 909	}
 910}
 911
 912/*
 913 * Select oneshot operating mode for the broadcast device
 914 */
 915void tick_broadcast_switch_to_oneshot(void)
 916{
 917	struct clock_event_device *bc;
 918	unsigned long flags;
 919
 920	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 921
 922	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
 923	bc = tick_broadcast_device.evtdev;
 924	if (bc)
 925		tick_broadcast_setup_oneshot(bc);
 926
 927	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 928}
 929
 930#ifdef CONFIG_HOTPLUG_CPU
 931void hotplug_cpu__broadcast_tick_pull(int deadcpu)
 932{
 933	struct clock_event_device *bc;
 934	unsigned long flags;
 935
 936	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 937	bc = tick_broadcast_device.evtdev;
 938
 939	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
 940		/* This moves the broadcast assignment to this CPU: */
 941		clockevents_program_event(bc, bc->next_event, 1);
 942	}
 943	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 944}
 945
 946/*
 947 * Remove a dead CPU from broadcasting
 948 */
 949void tick_shutdown_broadcast_oneshot(unsigned int cpu)
 950{
 951	unsigned long flags;
 
 952
 953	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 954
 955	/*
 956	 * Clear the broadcast masks for the dead cpu, but do not stop
 957	 * the broadcast device!
 958	 */
 959	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
 960	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
 961	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
 962
 
 
 963	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 964}
 965#endif
 966
 967/*
 968 * Check, whether the broadcast device is in one shot mode
 969 */
 970int tick_broadcast_oneshot_active(void)
 971{
 972	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
 973}
 974
 975/*
 976 * Check whether the broadcast device supports oneshot.
 977 */
 978bool tick_broadcast_oneshot_available(void)
 979{
 980	struct clock_event_device *bc = tick_broadcast_device.evtdev;
 981
 982	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
 983}
 984
 985#else
 986int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 987{
 988	struct clock_event_device *bc = tick_broadcast_device.evtdev;
 989
 990	if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
 991		return -EBUSY;
 992
 993	return 0;
 994}
 995#endif
 996
 997void __init tick_broadcast_init(void)
 998{
 999	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1000	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1001	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1002#ifdef CONFIG_TICK_ONESHOT
1003	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1004	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1005	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1006#endif
1007}