Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
 
 
 
 
 
 
  17#include <linux/fs.h>
 
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
 
 
 
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
 
 
 
 
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
 
 
 
 
 
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
 
 
  96	 */
  97	return !t->ptrace;
 
 
 
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 
 
 
 
 
 
 
 
 
 
 
 
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 
 280		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 281	}
 282}
 283
 284/**
 285 * task_clear_jobctl_pending - clear jobctl pending bits
 286 * @task: target task
 287 * @mask: pending bits to clear
 288 *
 289 * Clear @mask from @task->jobctl.  @mask must be subset of
 290 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 291 * STOP bits are cleared together.
 292 *
 293 * If clearing of @mask leaves no stop or trap pending, this function calls
 294 * task_clear_jobctl_trapping().
 295 *
 296 * CONTEXT:
 297 * Must be called with @task->sighand->siglock held.
 298 */
 299void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 300{
 301	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 302
 303	if (mask & JOBCTL_STOP_PENDING)
 304		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 305
 306	task->jobctl &= ~mask;
 307
 308	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 309		task_clear_jobctl_trapping(task);
 310}
 311
 312/**
 313 * task_participate_group_stop - participate in a group stop
 314 * @task: task participating in a group stop
 315 *
 316 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 317 * Group stop states are cleared and the group stop count is consumed if
 318 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 319 * stop, the appropriate %SIGNAL_* flags are set.
 320 *
 321 * CONTEXT:
 322 * Must be called with @task->sighand->siglock held.
 323 *
 324 * RETURNS:
 325 * %true if group stop completion should be notified to the parent, %false
 326 * otherwise.
 327 */
 328static bool task_participate_group_stop(struct task_struct *task)
 329{
 330	struct signal_struct *sig = task->signal;
 331	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 332
 333	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 334
 335	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 336
 337	if (!consume)
 338		return false;
 339
 340	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 341		sig->group_stop_count--;
 342
 343	/*
 344	 * Tell the caller to notify completion iff we are entering into a
 345	 * fresh group stop.  Read comment in do_signal_stop() for details.
 346	 */
 347	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 348		sig->flags = SIGNAL_STOP_STOPPED;
 349		return true;
 350	}
 351	return false;
 352}
 353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354/*
 355 * allocate a new signal queue record
 356 * - this may be called without locks if and only if t == current, otherwise an
 357 *   appropriate lock must be held to stop the target task from exiting
 358 */
 359static struct sigqueue *
 360__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 
 361{
 362	struct sigqueue *q = NULL;
 363	struct user_struct *user;
 
 364
 365	/*
 366	 * Protect access to @t credentials. This can go away when all
 367	 * callers hold rcu read lock.
 
 
 
 
 368	 */
 369	rcu_read_lock();
 370	user = get_uid(__task_cred(t)->user);
 371	atomic_inc(&user->sigpending);
 372	rcu_read_unlock();
 
 
 373
 374	if (override_rlimit ||
 375	    atomic_read(&user->sigpending) <=
 376			task_rlimit(t, RLIMIT_SIGPENDING)) {
 377		q = kmem_cache_alloc(sigqueue_cachep, flags);
 378	} else {
 379		print_dropped_signal(sig);
 380	}
 381
 382	if (unlikely(q == NULL)) {
 383		atomic_dec(&user->sigpending);
 384		free_uid(user);
 385	} else {
 386		INIT_LIST_HEAD(&q->list);
 387		q->flags = 0;
 388		q->user = user;
 389	}
 390
 391	return q;
 392}
 393
 394static void __sigqueue_free(struct sigqueue *q)
 395{
 396	if (q->flags & SIGQUEUE_PREALLOC)
 397		return;
 398	atomic_dec(&q->user->sigpending);
 399	free_uid(q->user);
 
 
 400	kmem_cache_free(sigqueue_cachep, q);
 401}
 402
 403void flush_sigqueue(struct sigpending *queue)
 404{
 405	struct sigqueue *q;
 406
 407	sigemptyset(&queue->signal);
 408	while (!list_empty(&queue->list)) {
 409		q = list_entry(queue->list.next, struct sigqueue , list);
 410		list_del_init(&q->list);
 411		__sigqueue_free(q);
 412	}
 413}
 414
 415/*
 416 * Flush all pending signals for a task.
 417 */
 418void __flush_signals(struct task_struct *t)
 419{
 420	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 421	flush_sigqueue(&t->pending);
 422	flush_sigqueue(&t->signal->shared_pending);
 423}
 424
 425void flush_signals(struct task_struct *t)
 426{
 427	unsigned long flags;
 428
 429	spin_lock_irqsave(&t->sighand->siglock, flags);
 430	__flush_signals(t);
 
 
 431	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 432}
 
 433
 
 434static void __flush_itimer_signals(struct sigpending *pending)
 435{
 436	sigset_t signal, retain;
 437	struct sigqueue *q, *n;
 438
 439	signal = pending->signal;
 440	sigemptyset(&retain);
 441
 442	list_for_each_entry_safe(q, n, &pending->list, list) {
 443		int sig = q->info.si_signo;
 444
 445		if (likely(q->info.si_code != SI_TIMER)) {
 446			sigaddset(&retain, sig);
 447		} else {
 448			sigdelset(&signal, sig);
 449			list_del_init(&q->list);
 450			__sigqueue_free(q);
 451		}
 452	}
 453
 454	sigorsets(&pending->signal, &signal, &retain);
 455}
 456
 457void flush_itimer_signals(void)
 458{
 459	struct task_struct *tsk = current;
 460	unsigned long flags;
 461
 462	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 463	__flush_itimer_signals(&tsk->pending);
 464	__flush_itimer_signals(&tsk->signal->shared_pending);
 465	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 466}
 
 467
 468void ignore_signals(struct task_struct *t)
 469{
 470	int i;
 471
 472	for (i = 0; i < _NSIG; ++i)
 473		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 474
 475	flush_signals(t);
 476}
 477
 478/*
 479 * Flush all handlers for a task.
 480 */
 481
 482void
 483flush_signal_handlers(struct task_struct *t, int force_default)
 484{
 485	int i;
 486	struct k_sigaction *ka = &t->sighand->action[0];
 487	for (i = _NSIG ; i != 0 ; i--) {
 488		if (force_default || ka->sa.sa_handler != SIG_IGN)
 489			ka->sa.sa_handler = SIG_DFL;
 490		ka->sa.sa_flags = 0;
 491#ifdef __ARCH_HAS_SA_RESTORER
 492		ka->sa.sa_restorer = NULL;
 493#endif
 494		sigemptyset(&ka->sa.sa_mask);
 495		ka++;
 496	}
 497}
 498
 499int unhandled_signal(struct task_struct *tsk, int sig)
 500{
 501	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 502	if (is_global_init(tsk))
 503		return 1;
 
 504	if (handler != SIG_IGN && handler != SIG_DFL)
 505		return 0;
 
 506	/* if ptraced, let the tracer determine */
 507	return !tsk->ptrace;
 508}
 509
 510/*
 511 * Notify the system that a driver wants to block all signals for this
 512 * process, and wants to be notified if any signals at all were to be
 513 * sent/acted upon.  If the notifier routine returns non-zero, then the
 514 * signal will be acted upon after all.  If the notifier routine returns 0,
 515 * then then signal will be blocked.  Only one block per process is
 516 * allowed.  priv is a pointer to private data that the notifier routine
 517 * can use to determine if the signal should be blocked or not.
 518 */
 519void
 520block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 521{
 522	unsigned long flags;
 523
 524	spin_lock_irqsave(&current->sighand->siglock, flags);
 525	current->notifier_mask = mask;
 526	current->notifier_data = priv;
 527	current->notifier = notifier;
 528	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 529}
 530
 531/* Notify the system that blocking has ended. */
 532
 533void
 534unblock_all_signals(void)
 535{
 536	unsigned long flags;
 537
 538	spin_lock_irqsave(&current->sighand->siglock, flags);
 539	current->notifier = NULL;
 540	current->notifier_data = NULL;
 541	recalc_sigpending();
 542	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 543}
 544
 545static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 546{
 547	struct sigqueue *q, *first = NULL;
 548
 549	/*
 550	 * Collect the siginfo appropriate to this signal.  Check if
 551	 * there is another siginfo for the same signal.
 552	*/
 553	list_for_each_entry(q, &list->list, list) {
 554		if (q->info.si_signo == sig) {
 555			if (first)
 556				goto still_pending;
 557			first = q;
 558		}
 559	}
 560
 561	sigdelset(&list->signal, sig);
 562
 563	if (first) {
 564still_pending:
 565		list_del_init(&first->list);
 566		copy_siginfo(info, &first->info);
 
 
 
 
 
 
 567		__sigqueue_free(first);
 568	} else {
 569		/*
 570		 * Ok, it wasn't in the queue.  This must be
 571		 * a fast-pathed signal or we must have been
 572		 * out of queue space.  So zero out the info.
 573		 */
 
 574		info->si_signo = sig;
 575		info->si_errno = 0;
 576		info->si_code = SI_USER;
 577		info->si_pid = 0;
 578		info->si_uid = 0;
 579	}
 580}
 581
 582static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 583			siginfo_t *info)
 584{
 585	int sig = next_signal(pending, mask);
 586
 587	if (sig) {
 588		if (current->notifier) {
 589			if (sigismember(current->notifier_mask, sig)) {
 590				if (!(current->notifier)(current->notifier_data)) {
 591					clear_thread_flag(TIF_SIGPENDING);
 592					return 0;
 593				}
 594			}
 595		}
 596
 597		collect_signal(sig, pending, info);
 598	}
 599
 600	return sig;
 601}
 602
 603/*
 604 * Dequeue a signal and return the element to the caller, which is
 605 * expected to free it.
 606 *
 607 * All callers have to hold the siglock.
 608 */
 609int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 
 610{
 
 611	int signr;
 612
 613	/* We only dequeue private signals from ourselves, we don't let
 614	 * signalfd steal them
 615	 */
 616	signr = __dequeue_signal(&tsk->pending, mask, info);
 
 617	if (!signr) {
 
 618		signr = __dequeue_signal(&tsk->signal->shared_pending,
 619					 mask, info);
 
 620		/*
 621		 * itimer signal ?
 622		 *
 623		 * itimers are process shared and we restart periodic
 624		 * itimers in the signal delivery path to prevent DoS
 625		 * attacks in the high resolution timer case. This is
 626		 * compliant with the old way of self-restarting
 627		 * itimers, as the SIGALRM is a legacy signal and only
 628		 * queued once. Changing the restart behaviour to
 629		 * restart the timer in the signal dequeue path is
 630		 * reducing the timer noise on heavy loaded !highres
 631		 * systems too.
 632		 */
 633		if (unlikely(signr == SIGALRM)) {
 634			struct hrtimer *tmr = &tsk->signal->real_timer;
 635
 636			if (!hrtimer_is_queued(tmr) &&
 637			    tsk->signal->it_real_incr.tv64 != 0) {
 638				hrtimer_forward(tmr, tmr->base->get_time(),
 639						tsk->signal->it_real_incr);
 640				hrtimer_restart(tmr);
 641			}
 642		}
 
 643	}
 644
 645	recalc_sigpending();
 646	if (!signr)
 647		return 0;
 648
 649	if (unlikely(sig_kernel_stop(signr))) {
 650		/*
 651		 * Set a marker that we have dequeued a stop signal.  Our
 652		 * caller might release the siglock and then the pending
 653		 * stop signal it is about to process is no longer in the
 654		 * pending bitmasks, but must still be cleared by a SIGCONT
 655		 * (and overruled by a SIGKILL).  So those cases clear this
 656		 * shared flag after we've set it.  Note that this flag may
 657		 * remain set after the signal we return is ignored or
 658		 * handled.  That doesn't matter because its only purpose
 659		 * is to alert stop-signal processing code when another
 660		 * processor has come along and cleared the flag.
 661		 */
 662		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 663	}
 664	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 
 665		/*
 666		 * Release the siglock to ensure proper locking order
 667		 * of timer locks outside of siglocks.  Note, we leave
 668		 * irqs disabled here, since the posix-timers code is
 669		 * about to disable them again anyway.
 670		 */
 671		spin_unlock(&tsk->sighand->siglock);
 672		do_schedule_next_timer(info);
 673		spin_lock(&tsk->sighand->siglock);
 
 
 
 674	}
 
 675	return signr;
 676}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677
 678/*
 679 * Tell a process that it has a new active signal..
 680 *
 681 * NOTE! we rely on the previous spin_lock to
 682 * lock interrupts for us! We can only be called with
 683 * "siglock" held, and the local interrupt must
 684 * have been disabled when that got acquired!
 685 *
 686 * No need to set need_resched since signal event passing
 687 * goes through ->blocked
 688 */
 689void signal_wake_up_state(struct task_struct *t, unsigned int state)
 690{
 
 
 691	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 692	/*
 693	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 694	 * case. We don't check t->state here because there is a race with it
 695	 * executing another processor and just now entering stopped state.
 696	 * By using wake_up_state, we ensure the process will wake up and
 697	 * handle its death signal.
 698	 */
 699	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 700		kick_process(t);
 701}
 702
 703/*
 704 * Remove signals in mask from the pending set and queue.
 705 * Returns 1 if any signals were found.
 706 *
 707 * All callers must be holding the siglock.
 708 *
 709 * This version takes a sigset mask and looks at all signals,
 710 * not just those in the first mask word.
 711 */
 712static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 713{
 714	struct sigqueue *q, *n;
 715	sigset_t m;
 716
 717	sigandsets(&m, mask, &s->signal);
 718	if (sigisemptyset(&m))
 719		return 0;
 720
 721	sigandnsets(&s->signal, &s->signal, mask);
 722	list_for_each_entry_safe(q, n, &s->list, list) {
 723		if (sigismember(mask, q->info.si_signo)) {
 724			list_del_init(&q->list);
 725			__sigqueue_free(q);
 726		}
 727	}
 728	return 1;
 729}
 730/*
 731 * Remove signals in mask from the pending set and queue.
 732 * Returns 1 if any signals were found.
 733 *
 734 * All callers must be holding the siglock.
 735 */
 736static int rm_from_queue(unsigned long mask, struct sigpending *s)
 737{
 738	struct sigqueue *q, *n;
 739
 740	if (!sigtestsetmask(&s->signal, mask))
 741		return 0;
 742
 743	sigdelsetmask(&s->signal, mask);
 744	list_for_each_entry_safe(q, n, &s->list, list) {
 745		if (q->info.si_signo < SIGRTMIN &&
 746		    (mask & sigmask(q->info.si_signo))) {
 747			list_del_init(&q->list);
 748			__sigqueue_free(q);
 749		}
 750	}
 751	return 1;
 752}
 753
 754static inline int is_si_special(const struct siginfo *info)
 755{
 756	return info <= SEND_SIG_FORCED;
 757}
 758
 759static inline bool si_fromuser(const struct siginfo *info)
 760{
 761	return info == SEND_SIG_NOINFO ||
 762		(!is_si_special(info) && SI_FROMUSER(info));
 763}
 764
 765/*
 766 * called with RCU read lock from check_kill_permission()
 767 */
 768static int kill_ok_by_cred(struct task_struct *t)
 769{
 770	const struct cred *cred = current_cred();
 771	const struct cred *tcred = __task_cred(t);
 772
 773	if (uid_eq(cred->euid, tcred->suid) ||
 774	    uid_eq(cred->euid, tcred->uid)  ||
 775	    uid_eq(cred->uid,  tcred->suid) ||
 776	    uid_eq(cred->uid,  tcred->uid))
 777		return 1;
 778
 779	if (ns_capable(tcred->user_ns, CAP_KILL))
 780		return 1;
 781
 782	return 0;
 783}
 784
 785/*
 786 * Bad permissions for sending the signal
 787 * - the caller must hold the RCU read lock
 788 */
 789static int check_kill_permission(int sig, struct siginfo *info,
 790				 struct task_struct *t)
 791{
 792	struct pid *sid;
 793	int error;
 794
 795	if (!valid_signal(sig))
 796		return -EINVAL;
 797
 798	if (!si_fromuser(info))
 799		return 0;
 800
 801	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 802	if (error)
 803		return error;
 804
 805	if (!same_thread_group(current, t) &&
 806	    !kill_ok_by_cred(t)) {
 807		switch (sig) {
 808		case SIGCONT:
 809			sid = task_session(t);
 810			/*
 811			 * We don't return the error if sid == NULL. The
 812			 * task was unhashed, the caller must notice this.
 813			 */
 814			if (!sid || sid == task_session(current))
 815				break;
 
 816		default:
 817			return -EPERM;
 818		}
 819	}
 820
 821	return security_task_kill(t, info, sig, 0);
 822}
 823
 824/**
 825 * ptrace_trap_notify - schedule trap to notify ptracer
 826 * @t: tracee wanting to notify tracer
 827 *
 828 * This function schedules sticky ptrace trap which is cleared on the next
 829 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 830 * ptracer.
 831 *
 832 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 833 * ptracer is listening for events, tracee is woken up so that it can
 834 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 835 * eventually taken without returning to userland after the existing traps
 836 * are finished by PTRACE_CONT.
 837 *
 838 * CONTEXT:
 839 * Must be called with @task->sighand->siglock held.
 840 */
 841static void ptrace_trap_notify(struct task_struct *t)
 842{
 843	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 844	assert_spin_locked(&t->sighand->siglock);
 845
 846	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 847	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 848}
 849
 850/*
 851 * Handle magic process-wide effects of stop/continue signals. Unlike
 852 * the signal actions, these happen immediately at signal-generation
 853 * time regardless of blocking, ignoring, or handling.  This does the
 854 * actual continuing for SIGCONT, but not the actual stopping for stop
 855 * signals. The process stop is done as a signal action for SIG_DFL.
 856 *
 857 * Returns true if the signal should be actually delivered, otherwise
 858 * it should be dropped.
 859 */
 860static bool prepare_signal(int sig, struct task_struct *p, bool force)
 861{
 862	struct signal_struct *signal = p->signal;
 863	struct task_struct *t;
 
 864
 865	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 866		if (signal->flags & SIGNAL_GROUP_COREDUMP)
 867			return sig == SIGKILL;
 868		/*
 869		 * The process is in the middle of dying, nothing to do.
 870		 */
 
 871	} else if (sig_kernel_stop(sig)) {
 872		/*
 873		 * This is a stop signal.  Remove SIGCONT from all queues.
 874		 */
 875		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 876		t = p;
 877		do {
 878			rm_from_queue(sigmask(SIGCONT), &t->pending);
 879		} while_each_thread(p, t);
 880	} else if (sig == SIGCONT) {
 881		unsigned int why;
 882		/*
 883		 * Remove all stop signals from all queues, wake all threads.
 884		 */
 885		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 886		t = p;
 887		do {
 
 888			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 889			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 890			if (likely(!(t->ptrace & PT_SEIZED)))
 891				wake_up_state(t, __TASK_STOPPED);
 892			else
 893				ptrace_trap_notify(t);
 894		} while_each_thread(p, t);
 895
 896		/*
 897		 * Notify the parent with CLD_CONTINUED if we were stopped.
 898		 *
 899		 * If we were in the middle of a group stop, we pretend it
 900		 * was already finished, and then continued. Since SIGCHLD
 901		 * doesn't queue we report only CLD_STOPPED, as if the next
 902		 * CLD_CONTINUED was dropped.
 903		 */
 904		why = 0;
 905		if (signal->flags & SIGNAL_STOP_STOPPED)
 906			why |= SIGNAL_CLD_CONTINUED;
 907		else if (signal->group_stop_count)
 908			why |= SIGNAL_CLD_STOPPED;
 909
 910		if (why) {
 911			/*
 912			 * The first thread which returns from do_signal_stop()
 913			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 914			 * notify its parent. See get_signal_to_deliver().
 915			 */
 916			signal->flags = why | SIGNAL_STOP_CONTINUED;
 917			signal->group_stop_count = 0;
 918			signal->group_exit_code = 0;
 919		}
 920	}
 921
 922	return !sig_ignored(p, sig, force);
 923}
 924
 925/*
 926 * Test if P wants to take SIG.  After we've checked all threads with this,
 927 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 928 * blocking SIG were ruled out because they are not running and already
 929 * have pending signals.  Such threads will dequeue from the shared queue
 930 * as soon as they're available, so putting the signal on the shared queue
 931 * will be equivalent to sending it to one such thread.
 932 */
 933static inline int wants_signal(int sig, struct task_struct *p)
 934{
 935	if (sigismember(&p->blocked, sig))
 936		return 0;
 
 937	if (p->flags & PF_EXITING)
 938		return 0;
 
 939	if (sig == SIGKILL)
 940		return 1;
 
 941	if (task_is_stopped_or_traced(p))
 942		return 0;
 943	return task_curr(p) || !signal_pending(p);
 
 944}
 945
 946static void complete_signal(int sig, struct task_struct *p, int group)
 947{
 948	struct signal_struct *signal = p->signal;
 949	struct task_struct *t;
 950
 951	/*
 952	 * Now find a thread we can wake up to take the signal off the queue.
 953	 *
 954	 * If the main thread wants the signal, it gets first crack.
 955	 * Probably the least surprising to the average bear.
 956	 */
 957	if (wants_signal(sig, p))
 958		t = p;
 959	else if (!group || thread_group_empty(p))
 960		/*
 961		 * There is just one thread and it does not need to be woken.
 962		 * It will dequeue unblocked signals before it runs again.
 963		 */
 964		return;
 965	else {
 966		/*
 967		 * Otherwise try to find a suitable thread.
 968		 */
 969		t = signal->curr_target;
 970		while (!wants_signal(sig, t)) {
 971			t = next_thread(t);
 972			if (t == signal->curr_target)
 973				/*
 974				 * No thread needs to be woken.
 975				 * Any eligible threads will see
 976				 * the signal in the queue soon.
 977				 */
 978				return;
 979		}
 980		signal->curr_target = t;
 981	}
 982
 983	/*
 984	 * Found a killable thread.  If the signal will be fatal,
 985	 * then start taking the whole group down immediately.
 986	 */
 987	if (sig_fatal(p, sig) &&
 988	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 989	    !sigismember(&t->real_blocked, sig) &&
 990	    (sig == SIGKILL || !t->ptrace)) {
 991		/*
 992		 * This signal will be fatal to the whole group.
 993		 */
 994		if (!sig_kernel_coredump(sig)) {
 995			/*
 996			 * Start a group exit and wake everybody up.
 997			 * This way we don't have other threads
 998			 * running and doing things after a slower
 999			 * thread has the fatal signal pending.
1000			 */
1001			signal->flags = SIGNAL_GROUP_EXIT;
1002			signal->group_exit_code = sig;
1003			signal->group_stop_count = 0;
1004			t = p;
1005			do {
1006				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1007				sigaddset(&t->pending.signal, SIGKILL);
1008				signal_wake_up(t, 1);
1009			} while_each_thread(p, t);
1010			return;
1011		}
1012	}
1013
1014	/*
1015	 * The signal is already in the shared-pending queue.
1016	 * Tell the chosen thread to wake up and dequeue it.
1017	 */
1018	signal_wake_up(t, sig == SIGKILL);
1019	return;
1020}
1021
1022static inline int legacy_queue(struct sigpending *signals, int sig)
1023{
1024	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1025}
1026
1027#ifdef CONFIG_USER_NS
1028static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1029{
1030	if (current_user_ns() == task_cred_xxx(t, user_ns))
1031		return;
1032
1033	if (SI_FROMKERNEL(info))
1034		return;
1035
1036	rcu_read_lock();
1037	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1038					make_kuid(current_user_ns(), info->si_uid));
1039	rcu_read_unlock();
1040}
1041#else
1042static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1043{
1044	return;
1045}
1046#endif
1047
1048static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1049			int group, int from_ancestor_ns)
1050{
1051	struct sigpending *pending;
1052	struct sigqueue *q;
1053	int override_rlimit;
1054	int ret = 0, result;
1055
1056	assert_spin_locked(&t->sighand->siglock);
1057
1058	result = TRACE_SIGNAL_IGNORED;
1059	if (!prepare_signal(sig, t,
1060			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1061		goto ret;
1062
1063	pending = group ? &t->signal->shared_pending : &t->pending;
1064	/*
1065	 * Short-circuit ignored signals and support queuing
1066	 * exactly one non-rt signal, so that we can get more
1067	 * detailed information about the cause of the signal.
1068	 */
1069	result = TRACE_SIGNAL_ALREADY_PENDING;
1070	if (legacy_queue(pending, sig))
1071		goto ret;
1072
1073	result = TRACE_SIGNAL_DELIVERED;
1074	/*
1075	 * fast-pathed signals for kernel-internal things like SIGSTOP
1076	 * or SIGKILL.
1077	 */
1078	if (info == SEND_SIG_FORCED)
1079		goto out_set;
1080
1081	/*
1082	 * Real-time signals must be queued if sent by sigqueue, or
1083	 * some other real-time mechanism.  It is implementation
1084	 * defined whether kill() does so.  We attempt to do so, on
1085	 * the principle of least surprise, but since kill is not
1086	 * allowed to fail with EAGAIN when low on memory we just
1087	 * make sure at least one signal gets delivered and don't
1088	 * pass on the info struct.
1089	 */
1090	if (sig < SIGRTMIN)
1091		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1092	else
1093		override_rlimit = 0;
1094
1095	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1096		override_rlimit);
1097	if (q) {
1098		list_add_tail(&q->list, &pending->list);
1099		switch ((unsigned long) info) {
1100		case (unsigned long) SEND_SIG_NOINFO:
 
1101			q->info.si_signo = sig;
1102			q->info.si_errno = 0;
1103			q->info.si_code = SI_USER;
1104			q->info.si_pid = task_tgid_nr_ns(current,
1105							task_active_pid_ns(t));
1106			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 
 
 
 
1107			break;
1108		case (unsigned long) SEND_SIG_PRIV:
 
1109			q->info.si_signo = sig;
1110			q->info.si_errno = 0;
1111			q->info.si_code = SI_KERNEL;
1112			q->info.si_pid = 0;
1113			q->info.si_uid = 0;
1114			break;
1115		default:
1116			copy_siginfo(&q->info, info);
1117			if (from_ancestor_ns)
1118				q->info.si_pid = 0;
1119			break;
1120		}
1121
1122		userns_fixup_signal_uid(&q->info, t);
1123
1124	} else if (!is_si_special(info)) {
1125		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1126			/*
1127			 * Queue overflow, abort.  We may abort if the
1128			 * signal was rt and sent by user using something
1129			 * other than kill().
1130			 */
1131			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1132			ret = -EAGAIN;
1133			goto ret;
1134		} else {
1135			/*
1136			 * This is a silent loss of information.  We still
1137			 * send the signal, but the *info bits are lost.
1138			 */
1139			result = TRACE_SIGNAL_LOSE_INFO;
1140		}
1141	}
1142
1143out_set:
1144	signalfd_notify(t, sig);
1145	sigaddset(&pending->signal, sig);
1146	complete_signal(sig, t, group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147ret:
1148	trace_signal_generate(sig, info, t, group, result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149	return ret;
1150}
1151
1152static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1153			int group)
1154{
1155	int from_ancestor_ns = 0;
 
1156
1157#ifdef CONFIG_PID_NS
1158	from_ancestor_ns = si_fromuser(info) &&
1159			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1160#endif
 
 
 
 
 
1161
1162	return __send_signal(sig, info, t, group, from_ancestor_ns);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163}
1164
1165static void print_fatal_signal(int signr)
1166{
1167	struct pt_regs *regs = signal_pt_regs();
1168	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1169
1170#if defined(__i386__) && !defined(__arch_um__)
1171	printk(KERN_INFO "code at %08lx: ", regs->ip);
1172	{
1173		int i;
1174		for (i = 0; i < 16; i++) {
1175			unsigned char insn;
1176
1177			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1178				break;
1179			printk(KERN_CONT "%02x ", insn);
1180		}
1181	}
1182	printk(KERN_CONT "\n");
1183#endif
1184	preempt_disable();
1185	show_regs(regs);
1186	preempt_enable();
1187}
1188
1189static int __init setup_print_fatal_signals(char *str)
1190{
1191	get_option (&str, &print_fatal_signals);
1192
1193	return 1;
1194}
1195
1196__setup("print-fatal-signals=", setup_print_fatal_signals);
1197
1198int
1199__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1200{
1201	return send_signal(sig, info, p, 1);
1202}
1203
1204static int
1205specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1206{
1207	return send_signal(sig, info, t, 0);
1208}
1209
1210int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1211			bool group)
1212{
1213	unsigned long flags;
1214	int ret = -ESRCH;
1215
1216	if (lock_task_sighand(p, &flags)) {
1217		ret = send_signal(sig, info, p, group);
1218		unlock_task_sighand(p, &flags);
1219	}
1220
1221	return ret;
1222}
1223
 
 
 
 
 
 
1224/*
1225 * Force a signal that the process can't ignore: if necessary
1226 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1227 *
1228 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1229 * since we do not want to have a signal handler that was blocked
1230 * be invoked when user space had explicitly blocked it.
1231 *
1232 * We don't want to have recursive SIGSEGV's etc, for example,
1233 * that is why we also clear SIGNAL_UNKILLABLE.
1234 */
1235int
1236force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
 
1237{
1238	unsigned long int flags;
1239	int ret, blocked, ignored;
1240	struct k_sigaction *action;
 
1241
1242	spin_lock_irqsave(&t->sighand->siglock, flags);
1243	action = &t->sighand->action[sig-1];
1244	ignored = action->sa.sa_handler == SIG_IGN;
1245	blocked = sigismember(&t->blocked, sig);
1246	if (blocked || ignored) {
1247		action->sa.sa_handler = SIG_DFL;
 
 
1248		if (blocked) {
1249			sigdelset(&t->blocked, sig);
1250			recalc_sigpending_and_wake(t);
1251		}
1252	}
1253	if (action->sa.sa_handler == SIG_DFL)
 
 
 
 
 
1254		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1255	ret = specific_send_sig_info(sig, info, t);
1256	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1257
1258	return ret;
1259}
1260
 
 
 
 
 
1261/*
1262 * Nuke all other threads in the group.
1263 */
1264int zap_other_threads(struct task_struct *p)
1265{
1266	struct task_struct *t = p;
1267	int count = 0;
1268
1269	p->signal->group_stop_count = 0;
1270
1271	while_each_thread(p, t) {
1272		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1273		count++;
1274
1275		/* Don't bother with already dead threads */
1276		if (t->exit_state)
1277			continue;
1278		sigaddset(&t->pending.signal, SIGKILL);
1279		signal_wake_up(t, 1);
1280	}
1281
1282	return count;
1283}
1284
1285struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1286					   unsigned long *flags)
1287{
1288	struct sighand_struct *sighand;
1289
 
1290	for (;;) {
1291		local_irq_save(*flags);
1292		rcu_read_lock();
1293		sighand = rcu_dereference(tsk->sighand);
1294		if (unlikely(sighand == NULL)) {
1295			rcu_read_unlock();
1296			local_irq_restore(*flags);
1297			break;
1298		}
1299
1300		spin_lock(&sighand->siglock);
1301		if (likely(sighand == tsk->sighand)) {
1302			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
1303			break;
1304		}
1305		spin_unlock(&sighand->siglock);
1306		rcu_read_unlock();
1307		local_irq_restore(*flags);
1308	}
 
1309
1310	return sighand;
1311}
1312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313/*
1314 * send signal info to all the members of a group
1315 */
1316int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 
1317{
1318	int ret;
1319
1320	rcu_read_lock();
1321	ret = check_kill_permission(sig, info, p);
1322	rcu_read_unlock();
1323
1324	if (!ret && sig)
1325		ret = do_send_sig_info(sig, info, p, true);
1326
1327	return ret;
1328}
1329
1330/*
1331 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1332 * control characters do (^C, ^Z etc)
1333 * - the caller must hold at least a readlock on tasklist_lock
1334 */
1335int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1336{
1337	struct task_struct *p = NULL;
1338	int retval, success;
1339
1340	success = 0;
1341	retval = -ESRCH;
1342	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1343		int err = group_send_sig_info(sig, info, p);
1344		success |= !err;
1345		retval = err;
1346	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1347	return success ? 0 : retval;
1348}
1349
1350int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1351{
1352	int error = -ESRCH;
1353	struct task_struct *p;
1354
1355	rcu_read_lock();
1356retry:
1357	p = pid_task(pid, PIDTYPE_PID);
1358	if (p) {
1359		error = group_send_sig_info(sig, info, p);
1360		if (unlikely(error == -ESRCH))
1361			/*
1362			 * The task was unhashed in between, try again.
1363			 * If it is dead, pid_task() will return NULL,
1364			 * if we race with de_thread() it will find the
1365			 * new leader.
1366			 */
1367			goto retry;
1368	}
1369	rcu_read_unlock();
1370
1371	return error;
 
 
 
 
 
1372}
1373
1374int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1375{
1376	int error;
1377	rcu_read_lock();
1378	error = kill_pid_info(sig, info, find_vpid(pid));
1379	rcu_read_unlock();
1380	return error;
1381}
1382
1383static int kill_as_cred_perm(const struct cred *cred,
1384			     struct task_struct *target)
1385{
1386	const struct cred *pcred = __task_cred(target);
1387	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1388	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1389		return 0;
1390	return 1;
 
1391}
1392
1393/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1394int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1395			 const struct cred *cred, u32 secid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396{
1397	int ret = -EINVAL;
1398	struct task_struct *p;
1399	unsigned long flags;
 
1400
1401	if (!valid_signal(sig))
1402		return ret;
1403
 
 
 
 
 
 
1404	rcu_read_lock();
1405	p = pid_task(pid, PIDTYPE_PID);
1406	if (!p) {
1407		ret = -ESRCH;
1408		goto out_unlock;
1409	}
1410	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1411		ret = -EPERM;
1412		goto out_unlock;
1413	}
1414	ret = security_task_kill(p, info, sig, secid);
1415	if (ret)
1416		goto out_unlock;
1417
1418	if (sig) {
1419		if (lock_task_sighand(p, &flags)) {
1420			ret = __send_signal(sig, info, p, 1, 0);
1421			unlock_task_sighand(p, &flags);
1422		} else
1423			ret = -ESRCH;
1424	}
1425out_unlock:
1426	rcu_read_unlock();
1427	return ret;
1428}
1429EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1430
1431/*
1432 * kill_something_info() interprets pid in interesting ways just like kill(2).
1433 *
1434 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1435 * is probably wrong.  Should make it like BSD or SYSV.
1436 */
1437
1438static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1439{
1440	int ret;
1441
1442	if (pid > 0) {
1443		rcu_read_lock();
1444		ret = kill_pid_info(sig, info, find_vpid(pid));
1445		rcu_read_unlock();
1446		return ret;
1447	}
1448
1449	read_lock(&tasklist_lock);
1450	if (pid != -1) {
1451		ret = __kill_pgrp_info(sig, info,
1452				pid ? find_vpid(-pid) : task_pgrp(current));
1453	} else {
1454		int retval = 0, count = 0;
1455		struct task_struct * p;
1456
1457		for_each_process(p) {
1458			if (task_pid_vnr(p) > 1 &&
1459					!same_thread_group(p, current)) {
1460				int err = group_send_sig_info(sig, info, p);
 
1461				++count;
1462				if (err != -EPERM)
1463					retval = err;
1464			}
1465		}
1466		ret = count ? retval : -ESRCH;
1467	}
1468	read_unlock(&tasklist_lock);
1469
1470	return ret;
1471}
1472
1473/*
1474 * These are for backward compatibility with the rest of the kernel source.
1475 */
1476
1477int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1478{
1479	/*
1480	 * Make sure legacy kernel users don't send in bad values
1481	 * (normal paths check this in check_kill_permission).
1482	 */
1483	if (!valid_signal(sig))
1484		return -EINVAL;
1485
1486	return do_send_sig_info(sig, info, p, false);
1487}
 
1488
1489#define __si_special(priv) \
1490	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1491
1492int
1493send_sig(int sig, struct task_struct *p, int priv)
1494{
1495	return send_sig_info(sig, __si_special(priv), p);
1496}
 
1497
1498void
1499force_sig(int sig, struct task_struct *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500{
1501	force_sig_info(sig, SEND_SIG_PRIV, p);
 
 
 
 
 
 
 
 
1502}
1503
1504/*
1505 * When things go south during signal handling, we
1506 * will force a SIGSEGV. And if the signal that caused
1507 * the problem was already a SIGSEGV, we'll want to
1508 * make sure we don't even try to deliver the signal..
1509 */
1510int
1511force_sigsegv(int sig, struct task_struct *p)
1512{
1513	if (sig == SIGSEGV) {
1514		unsigned long flags;
1515		spin_lock_irqsave(&p->sighand->siglock, flags);
1516		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1517		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1518	}
1519	force_sig(SIGSEGV, p);
1520	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521}
1522
1523int kill_pgrp(struct pid *pid, int sig, int priv)
1524{
1525	int ret;
1526
1527	read_lock(&tasklist_lock);
1528	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1529	read_unlock(&tasklist_lock);
1530
1531	return ret;
1532}
1533EXPORT_SYMBOL(kill_pgrp);
1534
1535int kill_pid(struct pid *pid, int sig, int priv)
1536{
1537	return kill_pid_info(sig, __si_special(priv), pid);
1538}
1539EXPORT_SYMBOL(kill_pid);
1540
1541/*
1542 * These functions support sending signals using preallocated sigqueue
1543 * structures.  This is needed "because realtime applications cannot
1544 * afford to lose notifications of asynchronous events, like timer
1545 * expirations or I/O completions".  In the case of POSIX Timers
1546 * we allocate the sigqueue structure from the timer_create.  If this
1547 * allocation fails we are able to report the failure to the application
1548 * with an EAGAIN error.
1549 */
1550struct sigqueue *sigqueue_alloc(void)
1551{
1552	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1553
1554	if (q)
1555		q->flags |= SIGQUEUE_PREALLOC;
1556
1557	return q;
1558}
1559
1560void sigqueue_free(struct sigqueue *q)
1561{
1562	unsigned long flags;
1563	spinlock_t *lock = &current->sighand->siglock;
1564
1565	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1566	/*
1567	 * We must hold ->siglock while testing q->list
1568	 * to serialize with collect_signal() or with
1569	 * __exit_signal()->flush_sigqueue().
1570	 */
1571	spin_lock_irqsave(lock, flags);
1572	q->flags &= ~SIGQUEUE_PREALLOC;
1573	/*
1574	 * If it is queued it will be freed when dequeued,
1575	 * like the "regular" sigqueue.
1576	 */
1577	if (!list_empty(&q->list))
1578		q = NULL;
1579	spin_unlock_irqrestore(lock, flags);
1580
1581	if (q)
1582		__sigqueue_free(q);
1583}
1584
1585int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1586{
1587	int sig = q->info.si_signo;
1588	struct sigpending *pending;
 
1589	unsigned long flags;
1590	int ret, result;
1591
1592	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1593
1594	ret = -1;
1595	if (!likely(lock_task_sighand(t, &flags)))
 
 
1596		goto ret;
1597
1598	ret = 1; /* the signal is ignored */
1599	result = TRACE_SIGNAL_IGNORED;
1600	if (!prepare_signal(sig, t, false))
1601		goto out;
1602
1603	ret = 0;
1604	if (unlikely(!list_empty(&q->list))) {
1605		/*
1606		 * If an SI_TIMER entry is already queue just increment
1607		 * the overrun count.
1608		 */
1609		BUG_ON(q->info.si_code != SI_TIMER);
1610		q->info.si_overrun++;
1611		result = TRACE_SIGNAL_ALREADY_PENDING;
1612		goto out;
1613	}
1614	q->info.si_overrun = 0;
1615
1616	signalfd_notify(t, sig);
1617	pending = group ? &t->signal->shared_pending : &t->pending;
1618	list_add_tail(&q->list, &pending->list);
1619	sigaddset(&pending->signal, sig);
1620	complete_signal(sig, t, group);
1621	result = TRACE_SIGNAL_DELIVERED;
1622out:
1623	trace_signal_generate(sig, &q->info, t, group, result);
1624	unlock_task_sighand(t, &flags);
1625ret:
 
1626	return ret;
1627}
1628
 
 
 
 
 
 
 
 
 
1629/*
1630 * Let a parent know about the death of a child.
1631 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1632 *
1633 * Returns true if our parent ignored us and so we've switched to
1634 * self-reaping.
1635 */
1636bool do_notify_parent(struct task_struct *tsk, int sig)
1637{
1638	struct siginfo info;
1639	unsigned long flags;
1640	struct sighand_struct *psig;
1641	bool autoreap = false;
1642	cputime_t utime, stime;
1643
1644	BUG_ON(sig == -1);
1645
1646 	/* do_notify_parent_cldstop should have been called instead.  */
1647 	BUG_ON(task_is_stopped_or_traced(tsk));
1648
1649	BUG_ON(!tsk->ptrace &&
1650	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1651
 
 
 
1652	if (sig != SIGCHLD) {
1653		/*
1654		 * This is only possible if parent == real_parent.
1655		 * Check if it has changed security domain.
1656		 */
1657		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1658			sig = SIGCHLD;
1659	}
1660
 
1661	info.si_signo = sig;
1662	info.si_errno = 0;
1663	/*
1664	 * We are under tasklist_lock here so our parent is tied to
1665	 * us and cannot change.
1666	 *
1667	 * task_active_pid_ns will always return the same pid namespace
1668	 * until a task passes through release_task.
1669	 *
1670	 * write_lock() currently calls preempt_disable() which is the
1671	 * same as rcu_read_lock(), but according to Oleg, this is not
1672	 * correct to rely on this
1673	 */
1674	rcu_read_lock();
1675	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1676	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1677				       task_uid(tsk));
1678	rcu_read_unlock();
1679
1680	task_cputime(tsk, &utime, &stime);
1681	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1682	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1683
1684	info.si_status = tsk->exit_code & 0x7f;
1685	if (tsk->exit_code & 0x80)
1686		info.si_code = CLD_DUMPED;
1687	else if (tsk->exit_code & 0x7f)
1688		info.si_code = CLD_KILLED;
1689	else {
1690		info.si_code = CLD_EXITED;
1691		info.si_status = tsk->exit_code >> 8;
1692	}
1693
1694	psig = tsk->parent->sighand;
1695	spin_lock_irqsave(&psig->siglock, flags);
1696	if (!tsk->ptrace && sig == SIGCHLD &&
1697	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1698	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1699		/*
1700		 * We are exiting and our parent doesn't care.  POSIX.1
1701		 * defines special semantics for setting SIGCHLD to SIG_IGN
1702		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1703		 * automatically and not left for our parent's wait4 call.
1704		 * Rather than having the parent do it as a magic kind of
1705		 * signal handler, we just set this to tell do_exit that we
1706		 * can be cleaned up without becoming a zombie.  Note that
1707		 * we still call __wake_up_parent in this case, because a
1708		 * blocked sys_wait4 might now return -ECHILD.
1709		 *
1710		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1711		 * is implementation-defined: we do (if you don't want
1712		 * it, just use SIG_IGN instead).
1713		 */
1714		autoreap = true;
1715		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1716			sig = 0;
1717	}
 
 
 
 
1718	if (valid_signal(sig) && sig)
1719		__group_send_sig_info(sig, &info, tsk->parent);
1720	__wake_up_parent(tsk, tsk->parent);
1721	spin_unlock_irqrestore(&psig->siglock, flags);
1722
1723	return autoreap;
1724}
1725
1726/**
1727 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1728 * @tsk: task reporting the state change
1729 * @for_ptracer: the notification is for ptracer
1730 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1731 *
1732 * Notify @tsk's parent that the stopped/continued state has changed.  If
1733 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1734 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1735 *
1736 * CONTEXT:
1737 * Must be called with tasklist_lock at least read locked.
1738 */
1739static void do_notify_parent_cldstop(struct task_struct *tsk,
1740				     bool for_ptracer, int why)
1741{
1742	struct siginfo info;
1743	unsigned long flags;
1744	struct task_struct *parent;
1745	struct sighand_struct *sighand;
1746	cputime_t utime, stime;
1747
1748	if (for_ptracer) {
1749		parent = tsk->parent;
1750	} else {
1751		tsk = tsk->group_leader;
1752		parent = tsk->real_parent;
1753	}
1754
 
1755	info.si_signo = SIGCHLD;
1756	info.si_errno = 0;
1757	/*
1758	 * see comment in do_notify_parent() about the following 4 lines
1759	 */
1760	rcu_read_lock();
1761	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1762	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1763	rcu_read_unlock();
1764
1765	task_cputime(tsk, &utime, &stime);
1766	info.si_utime = cputime_to_clock_t(utime);
1767	info.si_stime = cputime_to_clock_t(stime);
1768
1769 	info.si_code = why;
1770 	switch (why) {
1771 	case CLD_CONTINUED:
1772 		info.si_status = SIGCONT;
1773 		break;
1774 	case CLD_STOPPED:
1775 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1776 		break;
1777 	case CLD_TRAPPED:
1778 		info.si_status = tsk->exit_code & 0x7f;
1779 		break;
1780 	default:
1781 		BUG();
1782 	}
1783
1784	sighand = parent->sighand;
1785	spin_lock_irqsave(&sighand->siglock, flags);
1786	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1787	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1788		__group_send_sig_info(SIGCHLD, &info, parent);
1789	/*
1790	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1791	 */
1792	__wake_up_parent(tsk, parent);
1793	spin_unlock_irqrestore(&sighand->siglock, flags);
1794}
1795
1796static inline int may_ptrace_stop(void)
1797{
1798	if (!likely(current->ptrace))
1799		return 0;
1800	/*
1801	 * Are we in the middle of do_coredump?
1802	 * If so and our tracer is also part of the coredump stopping
1803	 * is a deadlock situation, and pointless because our tracer
1804	 * is dead so don't allow us to stop.
1805	 * If SIGKILL was already sent before the caller unlocked
1806	 * ->siglock we must see ->core_state != NULL. Otherwise it
1807	 * is safe to enter schedule().
1808	 *
1809	 * This is almost outdated, a task with the pending SIGKILL can't
1810	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1811	 * after SIGKILL was already dequeued.
1812	 */
1813	if (unlikely(current->mm->core_state) &&
1814	    unlikely(current->mm == current->parent->mm))
1815		return 0;
1816
1817	return 1;
1818}
1819
1820/*
1821 * Return non-zero if there is a SIGKILL that should be waking us up.
1822 * Called with the siglock held.
1823 */
1824static int sigkill_pending(struct task_struct *tsk)
1825{
1826	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1827		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1828}
1829
1830/*
1831 * This must be called with current->sighand->siglock held.
1832 *
1833 * This should be the path for all ptrace stops.
1834 * We always set current->last_siginfo while stopped here.
1835 * That makes it a way to test a stopped process for
1836 * being ptrace-stopped vs being job-control-stopped.
1837 *
1838 * If we actually decide not to stop at all because the tracer
1839 * is gone, we keep current->exit_code unless clear_code.
 
1840 */
1841static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
 
1842	__releases(&current->sighand->siglock)
1843	__acquires(&current->sighand->siglock)
1844{
1845	bool gstop_done = false;
1846
1847	if (arch_ptrace_stop_needed(exit_code, info)) {
1848		/*
1849		 * The arch code has something special to do before a
1850		 * ptrace stop.  This is allowed to block, e.g. for faults
1851		 * on user stack pages.  We can't keep the siglock while
1852		 * calling arch_ptrace_stop, so we must release it now.
1853		 * To preserve proper semantics, we must do this before
1854		 * any signal bookkeeping like checking group_stop_count.
1855		 * Meanwhile, a SIGKILL could come in before we retake the
1856		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1857		 * So after regaining the lock, we must check for SIGKILL.
1858		 */
1859		spin_unlock_irq(&current->sighand->siglock);
1860		arch_ptrace_stop(exit_code, info);
1861		spin_lock_irq(&current->sighand->siglock);
1862		if (sigkill_pending(current))
1863			return;
1864	}
1865
1866	/*
 
 
 
 
 
 
 
 
 
 
 
 
1867	 * We're committing to trapping.  TRACED should be visible before
1868	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1869	 * Also, transition to TRACED and updates to ->jobctl should be
1870	 * atomic with respect to siglock and should be done after the arch
1871	 * hook as siglock is released and regrabbed across it.
 
 
 
 
 
 
 
 
 
 
 
1872	 */
1873	set_current_state(TASK_TRACED);
1874
 
1875	current->last_siginfo = info;
1876	current->exit_code = exit_code;
1877
1878	/*
1879	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1880	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1881	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1882	 * could be clear now.  We act as if SIGCONT is received after
1883	 * TASK_TRACED is entered - ignore it.
1884	 */
1885	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1886		gstop_done = task_participate_group_stop(current);
1887
1888	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1889	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1890	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1891		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1892
1893	/* entering a trap, clear TRAPPING */
1894	task_clear_jobctl_trapping(current);
1895
1896	spin_unlock_irq(&current->sighand->siglock);
1897	read_lock(&tasklist_lock);
1898	if (may_ptrace_stop()) {
1899		/*
1900		 * Notify parents of the stop.
1901		 *
1902		 * While ptraced, there are two parents - the ptracer and
1903		 * the real_parent of the group_leader.  The ptracer should
1904		 * know about every stop while the real parent is only
1905		 * interested in the completion of group stop.  The states
1906		 * for the two don't interact with each other.  Notify
1907		 * separately unless they're gonna be duplicates.
1908		 */
1909		do_notify_parent_cldstop(current, true, why);
1910		if (gstop_done && ptrace_reparented(current))
1911			do_notify_parent_cldstop(current, false, why);
1912
1913		/*
1914		 * Don't want to allow preemption here, because
1915		 * sys_ptrace() needs this task to be inactive.
1916		 *
1917		 * XXX: implement read_unlock_no_resched().
1918		 */
1919		preempt_disable();
1920		read_unlock(&tasklist_lock);
1921		preempt_enable_no_resched();
1922		freezable_schedule();
1923	} else {
1924		/*
1925		 * By the time we got the lock, our tracer went away.
1926		 * Don't drop the lock yet, another tracer may come.
1927		 *
1928		 * If @gstop_done, the ptracer went away between group stop
1929		 * completion and here.  During detach, it would have set
1930		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1931		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1932		 * the real parent of the group stop completion is enough.
1933		 */
1934		if (gstop_done)
1935			do_notify_parent_cldstop(current, false, why);
1936
1937		/* tasklist protects us from ptrace_freeze_traced() */
1938		__set_current_state(TASK_RUNNING);
1939		if (clear_code)
1940			current->exit_code = 0;
1941		read_unlock(&tasklist_lock);
1942	}
1943
1944	/*
1945	 * We are back.  Now reacquire the siglock before touching
1946	 * last_siginfo, so that we are sure to have synchronized with
1947	 * any signal-sending on another CPU that wants to examine it.
1948	 */
1949	spin_lock_irq(&current->sighand->siglock);
 
1950	current->last_siginfo = NULL;
 
 
1951
1952	/* LISTENING can be set only during STOP traps, clear it */
1953	current->jobctl &= ~JOBCTL_LISTENING;
1954
1955	/*
1956	 * Queued signals ignored us while we were stopped for tracing.
1957	 * So check for any that we should take before resuming user mode.
1958	 * This sets TIF_SIGPENDING, but never clears it.
1959	 */
1960	recalc_sigpending_tsk(current);
 
1961}
1962
1963static void ptrace_do_notify(int signr, int exit_code, int why)
1964{
1965	siginfo_t info;
1966
1967	memset(&info, 0, sizeof info);
1968	info.si_signo = signr;
1969	info.si_code = exit_code;
1970	info.si_pid = task_pid_vnr(current);
1971	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1972
1973	/* Let the debugger run.  */
1974	ptrace_stop(exit_code, why, 1, &info);
1975}
1976
1977void ptrace_notify(int exit_code)
1978{
 
 
1979	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1980	if (unlikely(current->task_works))
1981		task_work_run();
1982
1983	spin_lock_irq(&current->sighand->siglock);
1984	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1985	spin_unlock_irq(&current->sighand->siglock);
 
1986}
1987
1988/**
1989 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1990 * @signr: signr causing group stop if initiating
1991 *
1992 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1993 * and participate in it.  If already set, participate in the existing
1994 * group stop.  If participated in a group stop (and thus slept), %true is
1995 * returned with siglock released.
1996 *
1997 * If ptraced, this function doesn't handle stop itself.  Instead,
1998 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1999 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2000 * places afterwards.
2001 *
2002 * CONTEXT:
2003 * Must be called with @current->sighand->siglock held, which is released
2004 * on %true return.
2005 *
2006 * RETURNS:
2007 * %false if group stop is already cancelled or ptrace trap is scheduled.
2008 * %true if participated in group stop.
2009 */
2010static bool do_signal_stop(int signr)
2011	__releases(&current->sighand->siglock)
2012{
2013	struct signal_struct *sig = current->signal;
2014
2015	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2016		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2017		struct task_struct *t;
2018
2019		/* signr will be recorded in task->jobctl for retries */
2020		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2021
2022		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2023		    unlikely(signal_group_exit(sig)))
 
2024			return false;
2025		/*
2026		 * There is no group stop already in progress.  We must
2027		 * initiate one now.
2028		 *
2029		 * While ptraced, a task may be resumed while group stop is
2030		 * still in effect and then receive a stop signal and
2031		 * initiate another group stop.  This deviates from the
2032		 * usual behavior as two consecutive stop signals can't
2033		 * cause two group stops when !ptraced.  That is why we
2034		 * also check !task_is_stopped(t) below.
2035		 *
2036		 * The condition can be distinguished by testing whether
2037		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2038		 * group_exit_code in such case.
2039		 *
2040		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2041		 * an intervening stop signal is required to cause two
2042		 * continued events regardless of ptrace.
2043		 */
2044		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2045			sig->group_exit_code = signr;
2046
2047		sig->group_stop_count = 0;
2048
2049		if (task_set_jobctl_pending(current, signr | gstop))
2050			sig->group_stop_count++;
2051
2052		t = current;
2053		while_each_thread(current, t) {
2054			/*
2055			 * Setting state to TASK_STOPPED for a group
2056			 * stop is always done with the siglock held,
2057			 * so this check has no races.
2058			 */
2059			if (!task_is_stopped(t) &&
2060			    task_set_jobctl_pending(t, signr | gstop)) {
2061				sig->group_stop_count++;
2062				if (likely(!(t->ptrace & PT_SEIZED)))
2063					signal_wake_up(t, 0);
2064				else
2065					ptrace_trap_notify(t);
2066			}
2067		}
2068	}
2069
2070	if (likely(!current->ptrace)) {
2071		int notify = 0;
2072
2073		/*
2074		 * If there are no other threads in the group, or if there
2075		 * is a group stop in progress and we are the last to stop,
2076		 * report to the parent.
2077		 */
2078		if (task_participate_group_stop(current))
2079			notify = CLD_STOPPED;
2080
2081		__set_current_state(TASK_STOPPED);
 
2082		spin_unlock_irq(&current->sighand->siglock);
2083
2084		/*
2085		 * Notify the parent of the group stop completion.  Because
2086		 * we're not holding either the siglock or tasklist_lock
2087		 * here, ptracer may attach inbetween; however, this is for
2088		 * group stop and should always be delivered to the real
2089		 * parent of the group leader.  The new ptracer will get
2090		 * its notification when this task transitions into
2091		 * TASK_TRACED.
2092		 */
2093		if (notify) {
2094			read_lock(&tasklist_lock);
2095			do_notify_parent_cldstop(current, false, notify);
2096			read_unlock(&tasklist_lock);
2097		}
2098
2099		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2100		freezable_schedule();
 
2101		return true;
2102	} else {
2103		/*
2104		 * While ptraced, group stop is handled by STOP trap.
2105		 * Schedule it and let the caller deal with it.
2106		 */
2107		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2108		return false;
2109	}
2110}
2111
2112/**
2113 * do_jobctl_trap - take care of ptrace jobctl traps
2114 *
2115 * When PT_SEIZED, it's used for both group stop and explicit
2116 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2117 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2118 * the stop signal; otherwise, %SIGTRAP.
2119 *
2120 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2121 * number as exit_code and no siginfo.
2122 *
2123 * CONTEXT:
2124 * Must be called with @current->sighand->siglock held, which may be
2125 * released and re-acquired before returning with intervening sleep.
2126 */
2127static void do_jobctl_trap(void)
2128{
2129	struct signal_struct *signal = current->signal;
2130	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2131
2132	if (current->ptrace & PT_SEIZED) {
2133		if (!signal->group_stop_count &&
2134		    !(signal->flags & SIGNAL_STOP_STOPPED))
2135			signr = SIGTRAP;
2136		WARN_ON_ONCE(!signr);
2137		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2138				 CLD_STOPPED);
2139	} else {
2140		WARN_ON_ONCE(!signr);
2141		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2142		current->exit_code = 0;
2143	}
2144}
2145
2146static int ptrace_signal(int signr, siginfo_t *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147{
2148	ptrace_signal_deliver();
2149	/*
2150	 * We do not check sig_kernel_stop(signr) but set this marker
2151	 * unconditionally because we do not know whether debugger will
2152	 * change signr. This flag has no meaning unless we are going
2153	 * to stop after return from ptrace_stop(). In this case it will
2154	 * be checked in do_signal_stop(), we should only stop if it was
2155	 * not cleared by SIGCONT while we were sleeping. See also the
2156	 * comment in dequeue_signal().
2157	 */
2158	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2159	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2160
2161	/* We're back.  Did the debugger cancel the sig?  */
2162	signr = current->exit_code;
2163	if (signr == 0)
2164		return signr;
2165
2166	current->exit_code = 0;
2167
2168	/*
2169	 * Update the siginfo structure if the signal has
2170	 * changed.  If the debugger wanted something
2171	 * specific in the siginfo structure then it should
2172	 * have updated *info via PTRACE_SETSIGINFO.
2173	 */
2174	if (signr != info->si_signo) {
 
2175		info->si_signo = signr;
2176		info->si_errno = 0;
2177		info->si_code = SI_USER;
2178		rcu_read_lock();
2179		info->si_pid = task_pid_vnr(current->parent);
2180		info->si_uid = from_kuid_munged(current_user_ns(),
2181						task_uid(current->parent));
2182		rcu_read_unlock();
2183	}
2184
2185	/* If the (new) signal is now blocked, requeue it.  */
2186	if (sigismember(&current->blocked, signr)) {
2187		specific_send_sig_info(signr, info, current);
 
2188		signr = 0;
2189	}
2190
2191	return signr;
2192}
2193
2194int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2195			  struct pt_regs *regs, void *cookie)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2196{
2197	struct sighand_struct *sighand = current->sighand;
2198	struct signal_struct *signal = current->signal;
2199	int signr;
2200
2201	if (unlikely(current->task_works))
 
2202		task_work_run();
2203
 
 
 
2204	if (unlikely(uprobe_deny_signal()))
2205		return 0;
2206
2207	/*
2208	 * Do this once, we can't return to user-mode if freezing() == T.
2209	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2210	 * thus do not need another check after return.
2211	 */
2212	try_to_freeze();
2213
2214relock:
2215	spin_lock_irq(&sighand->siglock);
 
2216	/*
2217	 * Every stopped thread goes here after wakeup. Check to see if
2218	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2219	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2220	 */
2221	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2222		int why;
2223
2224		if (signal->flags & SIGNAL_CLD_CONTINUED)
2225			why = CLD_CONTINUED;
2226		else
2227			why = CLD_STOPPED;
2228
2229		signal->flags &= ~SIGNAL_CLD_MASK;
2230
2231		spin_unlock_irq(&sighand->siglock);
2232
2233		/*
2234		 * Notify the parent that we're continuing.  This event is
2235		 * always per-process and doesn't make whole lot of sense
2236		 * for ptracers, who shouldn't consume the state via
2237		 * wait(2) either, but, for backward compatibility, notify
2238		 * the ptracer of the group leader too unless it's gonna be
2239		 * a duplicate.
2240		 */
2241		read_lock(&tasklist_lock);
2242		do_notify_parent_cldstop(current, false, why);
2243
2244		if (ptrace_reparented(current->group_leader))
2245			do_notify_parent_cldstop(current->group_leader,
2246						true, why);
2247		read_unlock(&tasklist_lock);
2248
2249		goto relock;
2250	}
2251
2252	for (;;) {
2253		struct k_sigaction *ka;
 
 
 
 
 
 
 
 
 
 
 
 
 
2254
2255		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2256		    do_signal_stop(0))
2257			goto relock;
2258
2259		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2260			do_jobctl_trap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261			spin_unlock_irq(&sighand->siglock);
 
2262			goto relock;
2263		}
2264
2265		signr = dequeue_signal(current, &current->blocked, info);
 
 
 
 
 
 
 
 
 
 
2266
2267		if (!signr)
2268			break; /* will return 0 */
2269
2270		if (unlikely(current->ptrace) && signr != SIGKILL) {
2271			signr = ptrace_signal(signr, info);
 
2272			if (!signr)
2273				continue;
2274		}
2275
2276		ka = &sighand->action[signr-1];
2277
2278		/* Trace actually delivered signals. */
2279		trace_signal_deliver(signr, info, ka);
2280
2281		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2282			continue;
2283		if (ka->sa.sa_handler != SIG_DFL) {
2284			/* Run the handler.  */
2285			*return_ka = *ka;
2286
2287			if (ka->sa.sa_flags & SA_ONESHOT)
2288				ka->sa.sa_handler = SIG_DFL;
2289
2290			break; /* will return non-zero "signr" value */
2291		}
2292
2293		/*
2294		 * Now we are doing the default action for this signal.
2295		 */
2296		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2297			continue;
2298
2299		/*
2300		 * Global init gets no signals it doesn't want.
2301		 * Container-init gets no signals it doesn't want from same
2302		 * container.
2303		 *
2304		 * Note that if global/container-init sees a sig_kernel_only()
2305		 * signal here, the signal must have been generated internally
2306		 * or must have come from an ancestor namespace. In either
2307		 * case, the signal cannot be dropped.
2308		 */
2309		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2310				!sig_kernel_only(signr))
2311			continue;
2312
2313		if (sig_kernel_stop(signr)) {
2314			/*
2315			 * The default action is to stop all threads in
2316			 * the thread group.  The job control signals
2317			 * do nothing in an orphaned pgrp, but SIGSTOP
2318			 * always works.  Note that siglock needs to be
2319			 * dropped during the call to is_orphaned_pgrp()
2320			 * because of lock ordering with tasklist_lock.
2321			 * This allows an intervening SIGCONT to be posted.
2322			 * We need to check for that and bail out if necessary.
2323			 */
2324			if (signr != SIGSTOP) {
2325				spin_unlock_irq(&sighand->siglock);
2326
2327				/* signals can be posted during this window */
2328
2329				if (is_current_pgrp_orphaned())
2330					goto relock;
2331
2332				spin_lock_irq(&sighand->siglock);
2333			}
2334
2335			if (likely(do_signal_stop(info->si_signo))) {
2336				/* It released the siglock.  */
2337				goto relock;
2338			}
2339
2340			/*
2341			 * We didn't actually stop, due to a race
2342			 * with SIGCONT or something like that.
2343			 */
2344			continue;
2345		}
2346
 
2347		spin_unlock_irq(&sighand->siglock);
 
 
2348
2349		/*
2350		 * Anything else is fatal, maybe with a core dump.
2351		 */
2352		current->flags |= PF_SIGNALED;
2353
2354		if (sig_kernel_coredump(signr)) {
2355			if (print_fatal_signals)
2356				print_fatal_signal(info->si_signo);
2357			proc_coredump_connector(current);
2358			/*
2359			 * If it was able to dump core, this kills all
2360			 * other threads in the group and synchronizes with
2361			 * their demise.  If we lost the race with another
2362			 * thread getting here, it set group_exit_code
2363			 * first and our do_group_exit call below will use
2364			 * that value and ignore the one we pass it.
2365			 */
2366			do_coredump(info);
2367		}
2368
2369		/*
 
 
 
 
 
 
 
 
2370		 * Death signals, no core dump.
2371		 */
2372		do_group_exit(info->si_signo);
2373		/* NOTREACHED */
2374	}
2375	spin_unlock_irq(&sighand->siglock);
2376	return signr;
 
 
 
 
 
 
2377}
2378
2379/**
2380 * signal_delivered - 
2381 * @sig:		number of signal being delivered
2382 * @info:		siginfo_t of signal being delivered
2383 * @ka:			sigaction setting that chose the handler
2384 * @regs:		user register state
2385 * @stepping:		nonzero if debugger single-step or block-step in use
2386 *
2387 * This function should be called when a signal has successfully been
2388 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2389 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2390 * is set in @ka->sa.sa_flags.  Tracing is notified.
2391 */
2392void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2393			struct pt_regs *regs, int stepping)
2394{
2395	sigset_t blocked;
2396
2397	/* A signal was successfully delivered, and the
2398	   saved sigmask was stored on the signal frame,
2399	   and will be restored by sigreturn.  So we can
2400	   simply clear the restore sigmask flag.  */
2401	clear_restore_sigmask();
2402
2403	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2404	if (!(ka->sa.sa_flags & SA_NODEFER))
2405		sigaddset(&blocked, sig);
2406	set_current_blocked(&blocked);
2407	tracehook_signal_handler(sig, info, ka, regs, stepping);
 
 
 
2408}
2409
2410void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2411{
2412	if (failed)
2413		force_sigsegv(ksig->sig, current);
2414	else
2415		signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2416			signal_pt_regs(), stepping);
2417}
2418
2419/*
2420 * It could be that complete_signal() picked us to notify about the
2421 * group-wide signal. Other threads should be notified now to take
2422 * the shared signals in @which since we will not.
2423 */
2424static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2425{
2426	sigset_t retarget;
2427	struct task_struct *t;
2428
2429	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2430	if (sigisemptyset(&retarget))
2431		return;
2432
2433	t = tsk;
2434	while_each_thread(tsk, t) {
2435		if (t->flags & PF_EXITING)
2436			continue;
2437
2438		if (!has_pending_signals(&retarget, &t->blocked))
2439			continue;
2440		/* Remove the signals this thread can handle. */
2441		sigandsets(&retarget, &retarget, &t->blocked);
2442
2443		if (!signal_pending(t))
2444			signal_wake_up(t, 0);
2445
2446		if (sigisemptyset(&retarget))
2447			break;
2448	}
2449}
2450
2451void exit_signals(struct task_struct *tsk)
2452{
2453	int group_stop = 0;
2454	sigset_t unblocked;
2455
2456	/*
2457	 * @tsk is about to have PF_EXITING set - lock out users which
2458	 * expect stable threadgroup.
2459	 */
2460	threadgroup_change_begin(tsk);
2461
2462	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2463		tsk->flags |= PF_EXITING;
2464		threadgroup_change_end(tsk);
2465		return;
2466	}
2467
2468	spin_lock_irq(&tsk->sighand->siglock);
2469	/*
2470	 * From now this task is not visible for group-wide signals,
2471	 * see wants_signal(), do_signal_stop().
2472	 */
2473	tsk->flags |= PF_EXITING;
2474
2475	threadgroup_change_end(tsk);
2476
2477	if (!signal_pending(tsk))
2478		goto out;
2479
2480	unblocked = tsk->blocked;
2481	signotset(&unblocked);
2482	retarget_shared_pending(tsk, &unblocked);
2483
2484	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2485	    task_participate_group_stop(tsk))
2486		group_stop = CLD_STOPPED;
2487out:
2488	spin_unlock_irq(&tsk->sighand->siglock);
2489
2490	/*
2491	 * If group stop has completed, deliver the notification.  This
2492	 * should always go to the real parent of the group leader.
2493	 */
2494	if (unlikely(group_stop)) {
2495		read_lock(&tasklist_lock);
2496		do_notify_parent_cldstop(tsk, false, group_stop);
2497		read_unlock(&tasklist_lock);
2498	}
2499}
2500
2501EXPORT_SYMBOL(recalc_sigpending);
2502EXPORT_SYMBOL_GPL(dequeue_signal);
2503EXPORT_SYMBOL(flush_signals);
2504EXPORT_SYMBOL(force_sig);
2505EXPORT_SYMBOL(send_sig);
2506EXPORT_SYMBOL(send_sig_info);
2507EXPORT_SYMBOL(sigprocmask);
2508EXPORT_SYMBOL(block_all_signals);
2509EXPORT_SYMBOL(unblock_all_signals);
2510
2511
2512/*
2513 * System call entry points.
2514 */
2515
2516/**
2517 *  sys_restart_syscall - restart a system call
2518 */
2519SYSCALL_DEFINE0(restart_syscall)
2520{
2521	struct restart_block *restart = &current_thread_info()->restart_block;
2522	return restart->fn(restart);
2523}
2524
2525long do_no_restart_syscall(struct restart_block *param)
2526{
2527	return -EINTR;
2528}
2529
2530static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2531{
2532	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2533		sigset_t newblocked;
2534		/* A set of now blocked but previously unblocked signals. */
2535		sigandnsets(&newblocked, newset, &current->blocked);
2536		retarget_shared_pending(tsk, &newblocked);
2537	}
2538	tsk->blocked = *newset;
2539	recalc_sigpending();
2540}
2541
2542/**
2543 * set_current_blocked - change current->blocked mask
2544 * @newset: new mask
2545 *
2546 * It is wrong to change ->blocked directly, this helper should be used
2547 * to ensure the process can't miss a shared signal we are going to block.
2548 */
2549void set_current_blocked(sigset_t *newset)
2550{
2551	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2552	__set_current_blocked(newset);
2553}
2554
2555void __set_current_blocked(const sigset_t *newset)
2556{
2557	struct task_struct *tsk = current;
2558
 
 
 
 
 
 
 
2559	spin_lock_irq(&tsk->sighand->siglock);
2560	__set_task_blocked(tsk, newset);
2561	spin_unlock_irq(&tsk->sighand->siglock);
2562}
2563
2564/*
2565 * This is also useful for kernel threads that want to temporarily
2566 * (or permanently) block certain signals.
2567 *
2568 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2569 * interface happily blocks "unblockable" signals like SIGKILL
2570 * and friends.
2571 */
2572int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2573{
2574	struct task_struct *tsk = current;
2575	sigset_t newset;
2576
2577	/* Lockless, only current can change ->blocked, never from irq */
2578	if (oldset)
2579		*oldset = tsk->blocked;
2580
2581	switch (how) {
2582	case SIG_BLOCK:
2583		sigorsets(&newset, &tsk->blocked, set);
2584		break;
2585	case SIG_UNBLOCK:
2586		sigandnsets(&newset, &tsk->blocked, set);
2587		break;
2588	case SIG_SETMASK:
2589		newset = *set;
2590		break;
2591	default:
2592		return -EINVAL;
2593	}
2594
2595	__set_current_blocked(&newset);
2596	return 0;
2597}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598
2599/**
2600 *  sys_rt_sigprocmask - change the list of currently blocked signals
2601 *  @how: whether to add, remove, or set signals
2602 *  @nset: stores pending signals
2603 *  @oset: previous value of signal mask if non-null
2604 *  @sigsetsize: size of sigset_t type
2605 */
2606SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2607		sigset_t __user *, oset, size_t, sigsetsize)
2608{
2609	sigset_t old_set, new_set;
2610	int error;
2611
2612	/* XXX: Don't preclude handling different sized sigset_t's.  */
2613	if (sigsetsize != sizeof(sigset_t))
2614		return -EINVAL;
2615
2616	old_set = current->blocked;
2617
2618	if (nset) {
2619		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2620			return -EFAULT;
2621		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2622
2623		error = sigprocmask(how, &new_set, NULL);
2624		if (error)
2625			return error;
2626	}
2627
2628	if (oset) {
2629		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2630			return -EFAULT;
2631	}
2632
2633	return 0;
2634}
2635
2636#ifdef CONFIG_COMPAT
2637COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2638		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2639{
2640#ifdef __BIG_ENDIAN
2641	sigset_t old_set = current->blocked;
2642
2643	/* XXX: Don't preclude handling different sized sigset_t's.  */
2644	if (sigsetsize != sizeof(sigset_t))
2645		return -EINVAL;
2646
2647	if (nset) {
2648		compat_sigset_t new32;
2649		sigset_t new_set;
2650		int error;
2651		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2652			return -EFAULT;
2653
2654		sigset_from_compat(&new_set, &new32);
2655		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2656
2657		error = sigprocmask(how, &new_set, NULL);
2658		if (error)
2659			return error;
2660	}
2661	if (oset) {
2662		compat_sigset_t old32;
2663		sigset_to_compat(&old32, &old_set);
2664		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2665			return -EFAULT;
2666	}
2667	return 0;
2668#else
2669	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2670				  (sigset_t __user *)oset, sigsetsize);
2671#endif
2672}
2673#endif
2674
2675static int do_sigpending(void *set, unsigned long sigsetsize)
2676{
2677	if (sigsetsize > sizeof(sigset_t))
2678		return -EINVAL;
2679
2680	spin_lock_irq(&current->sighand->siglock);
2681	sigorsets(set, &current->pending.signal,
2682		  &current->signal->shared_pending.signal);
2683	spin_unlock_irq(&current->sighand->siglock);
2684
2685	/* Outside the lock because only this thread touches it.  */
2686	sigandsets(set, &current->blocked, set);
2687	return 0;
2688}
2689
2690/**
2691 *  sys_rt_sigpending - examine a pending signal that has been raised
2692 *			while blocked
2693 *  @uset: stores pending signals
2694 *  @sigsetsize: size of sigset_t type or larger
2695 */
2696SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2697{
2698	sigset_t set;
2699	int err = do_sigpending(&set, sigsetsize);
2700	if (!err && copy_to_user(uset, &set, sigsetsize))
2701		err = -EFAULT;
2702	return err;
 
 
 
 
 
 
2703}
2704
2705#ifdef CONFIG_COMPAT
2706COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2707		compat_size_t, sigsetsize)
2708{
2709#ifdef __BIG_ENDIAN
2710	sigset_t set;
2711	int err = do_sigpending(&set, sigsetsize);
2712	if (!err) {
2713		compat_sigset_t set32;
2714		sigset_to_compat(&set32, &set);
2715		/* we can get here only if sigsetsize <= sizeof(set) */
2716		if (copy_to_user(uset, &set32, sigsetsize))
2717			err = -EFAULT;
2718	}
2719	return err;
2720#else
2721	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
 
 
 
 
 
 
 
 
 
2722#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2723}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2724#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2725
2726#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
 
 
 
2727
2728int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2729{
2730	int err;
 
 
 
 
 
 
2731
2732	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2733		return -EFAULT;
2734	if (from->si_code < 0)
2735		return __copy_to_user(to, from, sizeof(siginfo_t))
2736			? -EFAULT : 0;
2737	/*
2738	 * If you change siginfo_t structure, please be sure
2739	 * this code is fixed accordingly.
2740	 * Please remember to update the signalfd_copyinfo() function
2741	 * inside fs/signalfd.c too, in case siginfo_t changes.
2742	 * It should never copy any pad contained in the structure
2743	 * to avoid security leaks, but must copy the generic
2744	 * 3 ints plus the relevant union member.
2745	 */
2746	err = __put_user(from->si_signo, &to->si_signo);
2747	err |= __put_user(from->si_errno, &to->si_errno);
2748	err |= __put_user((short)from->si_code, &to->si_code);
2749	switch (from->si_code & __SI_MASK) {
2750	case __SI_KILL:
2751		err |= __put_user(from->si_pid, &to->si_pid);
2752		err |= __put_user(from->si_uid, &to->si_uid);
2753		break;
2754	case __SI_TIMER:
2755		 err |= __put_user(from->si_tid, &to->si_tid);
2756		 err |= __put_user(from->si_overrun, &to->si_overrun);
2757		 err |= __put_user(from->si_ptr, &to->si_ptr);
2758		break;
2759	case __SI_POLL:
2760		err |= __put_user(from->si_band, &to->si_band);
2761		err |= __put_user(from->si_fd, &to->si_fd);
2762		break;
2763	case __SI_FAULT:
2764		err |= __put_user(from->si_addr, &to->si_addr);
2765#ifdef __ARCH_SI_TRAPNO
2766		err |= __put_user(from->si_trapno, &to->si_trapno);
2767#endif
2768#ifdef BUS_MCEERR_AO
2769		/*
2770		 * Other callers might not initialize the si_lsb field,
2771		 * so check explicitly for the right codes here.
2772		 */
2773		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2774			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2775#endif
2776		break;
2777	case __SI_CHLD:
2778		err |= __put_user(from->si_pid, &to->si_pid);
2779		err |= __put_user(from->si_uid, &to->si_uid);
2780		err |= __put_user(from->si_status, &to->si_status);
2781		err |= __put_user(from->si_utime, &to->si_utime);
2782		err |= __put_user(from->si_stime, &to->si_stime);
2783		break;
2784	case __SI_RT: /* This is not generated by the kernel as of now. */
2785	case __SI_MESGQ: /* But this is */
2786		err |= __put_user(from->si_pid, &to->si_pid);
2787		err |= __put_user(from->si_uid, &to->si_uid);
2788		err |= __put_user(from->si_ptr, &to->si_ptr);
2789		break;
2790#ifdef __ARCH_SIGSYS
2791	case __SI_SYS:
2792		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2793		err |= __put_user(from->si_syscall, &to->si_syscall);
2794		err |= __put_user(from->si_arch, &to->si_arch);
2795		break;
2796#endif
2797	default: /* this is just in case for now ... */
2798		err |= __put_user(from->si_pid, &to->si_pid);
2799		err |= __put_user(from->si_uid, &to->si_uid);
 
 
 
 
 
 
 
 
 
 
 
 
2800		break;
2801	}
2802	return err;
2803}
2804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2805#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2806
2807/**
2808 *  do_sigtimedwait - wait for queued signals specified in @which
2809 *  @which: queued signals to wait for
2810 *  @info: if non-null, the signal's siginfo is returned here
2811 *  @ts: upper bound on process time suspension
2812 */
2813int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2814			const struct timespec *ts)
2815{
 
2816	struct task_struct *tsk = current;
2817	long timeout = MAX_SCHEDULE_TIMEOUT;
2818	sigset_t mask = *which;
2819	int sig;
 
2820
2821	if (ts) {
2822		if (!timespec_valid(ts))
2823			return -EINVAL;
2824		timeout = timespec_to_jiffies(ts);
2825		/*
2826		 * We can be close to the next tick, add another one
2827		 * to ensure we will wait at least the time asked for.
2828		 */
2829		if (ts->tv_sec || ts->tv_nsec)
2830			timeout++;
2831	}
2832
2833	/*
2834	 * Invert the set of allowed signals to get those we want to block.
2835	 */
2836	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2837	signotset(&mask);
2838
2839	spin_lock_irq(&tsk->sighand->siglock);
2840	sig = dequeue_signal(tsk, &mask, info);
2841	if (!sig && timeout) {
2842		/*
2843		 * None ready, temporarily unblock those we're interested
2844		 * while we are sleeping in so that we'll be awakened when
2845		 * they arrive. Unblocking is always fine, we can avoid
2846		 * set_current_blocked().
2847		 */
2848		tsk->real_blocked = tsk->blocked;
2849		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2850		recalc_sigpending();
2851		spin_unlock_irq(&tsk->sighand->siglock);
2852
2853		timeout = freezable_schedule_timeout_interruptible(timeout);
2854
 
2855		spin_lock_irq(&tsk->sighand->siglock);
2856		__set_task_blocked(tsk, &tsk->real_blocked);
2857		siginitset(&tsk->real_blocked, 0);
2858		sig = dequeue_signal(tsk, &mask, info);
2859	}
2860	spin_unlock_irq(&tsk->sighand->siglock);
2861
2862	if (sig)
2863		return sig;
2864	return timeout ? -EINTR : -EAGAIN;
2865}
2866
2867/**
2868 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2869 *			in @uthese
2870 *  @uthese: queued signals to wait for
2871 *  @uinfo: if non-null, the signal's siginfo is returned here
2872 *  @uts: upper bound on process time suspension
2873 *  @sigsetsize: size of sigset_t type
2874 */
2875SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2876		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 
2877		size_t, sigsetsize)
2878{
2879	sigset_t these;
2880	struct timespec ts;
2881	siginfo_t info;
2882	int ret;
2883
2884	/* XXX: Don't preclude handling different sized sigset_t's.  */
2885	if (sigsetsize != sizeof(sigset_t))
2886		return -EINVAL;
2887
2888	if (copy_from_user(&these, uthese, sizeof(these)))
2889		return -EFAULT;
2890
2891	if (uts) {
2892		if (copy_from_user(&ts, uts, sizeof(ts)))
2893			return -EFAULT;
2894	}
2895
2896	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2897
2898	if (ret > 0 && uinfo) {
2899		if (copy_siginfo_to_user(uinfo, &info))
2900			ret = -EFAULT;
2901	}
2902
2903	return ret;
2904}
2905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2906/**
2907 *  sys_kill - send a signal to a process
2908 *  @pid: the PID of the process
2909 *  @sig: signal to be sent
2910 */
2911SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2912{
2913	struct siginfo info;
2914
2915	info.si_signo = sig;
2916	info.si_errno = 0;
2917	info.si_code = SI_USER;
2918	info.si_pid = task_tgid_vnr(current);
2919	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2920
2921	return kill_something_info(sig, &info, pid);
2922}
2923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2924static int
2925do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2926{
2927	struct task_struct *p;
2928	int error = -ESRCH;
2929
2930	rcu_read_lock();
2931	p = find_task_by_vpid(pid);
2932	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2933		error = check_kill_permission(sig, info, p);
2934		/*
2935		 * The null signal is a permissions and process existence
2936		 * probe.  No signal is actually delivered.
2937		 */
2938		if (!error && sig) {
2939			error = do_send_sig_info(sig, info, p, false);
2940			/*
2941			 * If lock_task_sighand() failed we pretend the task
2942			 * dies after receiving the signal. The window is tiny,
2943			 * and the signal is private anyway.
2944			 */
2945			if (unlikely(error == -ESRCH))
2946				error = 0;
2947		}
2948	}
2949	rcu_read_unlock();
2950
2951	return error;
2952}
2953
2954static int do_tkill(pid_t tgid, pid_t pid, int sig)
2955{
2956	struct siginfo info = {};
2957
 
2958	info.si_signo = sig;
2959	info.si_errno = 0;
2960	info.si_code = SI_TKILL;
2961	info.si_pid = task_tgid_vnr(current);
2962	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2963
2964	return do_send_specific(tgid, pid, sig, &info);
2965}
2966
2967/**
2968 *  sys_tgkill - send signal to one specific thread
2969 *  @tgid: the thread group ID of the thread
2970 *  @pid: the PID of the thread
2971 *  @sig: signal to be sent
2972 *
2973 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2974 *  exists but it's not belonging to the target process anymore. This
2975 *  method solves the problem of threads exiting and PIDs getting reused.
2976 */
2977SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2978{
2979	/* This is only valid for single tasks */
2980	if (pid <= 0 || tgid <= 0)
2981		return -EINVAL;
2982
2983	return do_tkill(tgid, pid, sig);
2984}
2985
2986/**
2987 *  sys_tkill - send signal to one specific task
2988 *  @pid: the PID of the task
2989 *  @sig: signal to be sent
2990 *
2991 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2992 */
2993SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2994{
2995	/* This is only valid for single tasks */
2996	if (pid <= 0)
2997		return -EINVAL;
2998
2999	return do_tkill(0, pid, sig);
3000}
3001
3002static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3003{
3004	/* Not even root can pretend to send signals from the kernel.
3005	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3006	 */
3007	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3008	    (task_pid_vnr(current) != pid)) {
3009		/* We used to allow any < 0 si_code */
3010		WARN_ON_ONCE(info->si_code < 0);
3011		return -EPERM;
3012	}
3013	info->si_signo = sig;
3014
3015	/* POSIX.1b doesn't mention process groups.  */
3016	return kill_proc_info(sig, info, pid);
3017}
3018
3019/**
3020 *  sys_rt_sigqueueinfo - send signal information to a signal
3021 *  @pid: the PID of the thread
3022 *  @sig: signal to be sent
3023 *  @uinfo: signal info to be sent
3024 */
3025SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3026		siginfo_t __user *, uinfo)
3027{
3028	siginfo_t info;
3029	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3030		return -EFAULT;
 
3031	return do_rt_sigqueueinfo(pid, sig, &info);
3032}
3033
3034#ifdef CONFIG_COMPAT
3035COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3036			compat_pid_t, pid,
3037			int, sig,
3038			struct compat_siginfo __user *, uinfo)
3039{
3040	siginfo_t info;
3041	int ret = copy_siginfo_from_user32(&info, uinfo);
3042	if (unlikely(ret))
3043		return ret;
3044	return do_rt_sigqueueinfo(pid, sig, &info);
3045}
3046#endif
3047
3048static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3049{
3050	/* This is only valid for single tasks */
3051	if (pid <= 0 || tgid <= 0)
3052		return -EINVAL;
3053
3054	/* Not even root can pretend to send signals from the kernel.
3055	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3056	 */
3057	if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3058	    (task_pid_vnr(current) != pid)) {
3059		/* We used to allow any < 0 si_code */
3060		WARN_ON_ONCE(info->si_code < 0);
3061		return -EPERM;
3062	}
3063	info->si_signo = sig;
3064
3065	return do_send_specific(tgid, pid, sig, info);
3066}
3067
3068SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3069		siginfo_t __user *, uinfo)
3070{
3071	siginfo_t info;
3072
3073	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3074		return -EFAULT;
3075
3076	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3077}
3078
3079#ifdef CONFIG_COMPAT
3080COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3081			compat_pid_t, tgid,
3082			compat_pid_t, pid,
3083			int, sig,
3084			struct compat_siginfo __user *, uinfo)
3085{
3086	siginfo_t info;
3087
3088	if (copy_siginfo_from_user32(&info, uinfo))
3089		return -EFAULT;
3090	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3091}
3092#endif
3093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3094int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3095{
3096	struct task_struct *t = current;
3097	struct k_sigaction *k;
3098	sigset_t mask;
3099
3100	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3101		return -EINVAL;
3102
3103	k = &t->sighand->action[sig-1];
3104
3105	spin_lock_irq(&current->sighand->siglock);
 
 
 
 
3106	if (oact)
3107		*oact = *k;
3108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3109	if (act) {
3110		sigdelsetmask(&act->sa.sa_mask,
3111			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3112		*k = *act;
3113		/*
3114		 * POSIX 3.3.1.3:
3115		 *  "Setting a signal action to SIG_IGN for a signal that is
3116		 *   pending shall cause the pending signal to be discarded,
3117		 *   whether or not it is blocked."
3118		 *
3119		 *  "Setting a signal action to SIG_DFL for a signal that is
3120		 *   pending and whose default action is to ignore the signal
3121		 *   (for example, SIGCHLD), shall cause the pending signal to
3122		 *   be discarded, whether or not it is blocked"
3123		 */
3124		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3125			sigemptyset(&mask);
3126			sigaddset(&mask, sig);
3127			rm_from_queue_full(&mask, &t->signal->shared_pending);
3128			do {
3129				rm_from_queue_full(&mask, &t->pending);
3130			} while_each_thread(current, t);
3131		}
3132	}
3133
3134	spin_unlock_irq(&current->sighand->siglock);
3135	return 0;
3136}
3137
3138static int 
3139do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
 
 
 
 
 
 
 
3140{
3141	stack_t oss;
3142	int error;
 
 
 
 
3143
3144	oss.ss_sp = (void __user *) current->sas_ss_sp;
3145	oss.ss_size = current->sas_ss_size;
3146	oss.ss_flags = sas_ss_flags(sp);
3147
3148	if (uss) {
3149		void __user *ss_sp;
3150		size_t ss_size;
3151		int ss_flags;
3152
3153		error = -EFAULT;
3154		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3155			goto out;
3156		error = __get_user(ss_sp, &uss->ss_sp) |
3157			__get_user(ss_flags, &uss->ss_flags) |
3158			__get_user(ss_size, &uss->ss_size);
3159		if (error)
3160			goto out;
 
 
 
 
 
3161
3162		error = -EPERM;
3163		if (on_sig_stack(sp))
3164			goto out;
 
 
 
 
3165
3166		error = -EINVAL;
3167		/*
3168		 * Note - this code used to test ss_flags incorrectly:
3169		 *  	  old code may have been written using ss_flags==0
3170		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3171		 *	  way that worked) - this fix preserves that older
3172		 *	  mechanism.
3173		 */
3174		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3175			goto out;
 
 
3176
3177		if (ss_flags == SS_DISABLE) {
 
3178			ss_size = 0;
3179			ss_sp = NULL;
3180		} else {
3181			error = -ENOMEM;
3182			if (ss_size < MINSIGSTKSZ)
3183				goto out;
 
3184		}
3185
3186		current->sas_ss_sp = (unsigned long) ss_sp;
3187		current->sas_ss_size = ss_size;
3188	}
3189
3190	error = 0;
3191	if (uoss) {
3192		error = -EFAULT;
3193		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3194			goto out;
3195		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3196			__put_user(oss.ss_size, &uoss->ss_size) |
3197			__put_user(oss.ss_flags, &uoss->ss_flags);
3198	}
3199
3200out:
3201	return error;
3202}
 
3203SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3204{
3205	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
 
 
 
 
 
 
 
 
 
3206}
3207
3208int restore_altstack(const stack_t __user *uss)
3209{
3210	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
 
 
 
 
3211	/* squash all but EFAULT for now */
3212	return err == -EFAULT ? err : 0;
3213}
3214
3215int __save_altstack(stack_t __user *uss, unsigned long sp)
3216{
3217	struct task_struct *t = current;
3218	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3219		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3220		__put_user(t->sas_ss_size, &uss->ss_size);
 
3221}
3222
3223#ifdef CONFIG_COMPAT
3224COMPAT_SYSCALL_DEFINE2(sigaltstack,
3225			const compat_stack_t __user *, uss_ptr,
3226			compat_stack_t __user *, uoss_ptr)
3227{
3228	stack_t uss, uoss;
3229	int ret;
3230	mm_segment_t seg;
3231
3232	if (uss_ptr) {
3233		compat_stack_t uss32;
3234
3235		memset(&uss, 0, sizeof(stack_t));
3236		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3237			return -EFAULT;
3238		uss.ss_sp = compat_ptr(uss32.ss_sp);
3239		uss.ss_flags = uss32.ss_flags;
3240		uss.ss_size = uss32.ss_size;
3241	}
3242	seg = get_fs();
3243	set_fs(KERNEL_DS);
3244	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3245			     (stack_t __force __user *) &uoss,
3246			     compat_user_stack_pointer());
3247	set_fs(seg);
3248	if (ret >= 0 && uoss_ptr)  {
3249		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3250		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3251		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3252		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
 
 
3253			ret = -EFAULT;
3254	}
3255	return ret;
3256}
3257
 
 
 
 
 
 
 
3258int compat_restore_altstack(const compat_stack_t __user *uss)
3259{
3260	int err = compat_sys_sigaltstack(uss, NULL);
3261	/* squash all but -EFAULT for now */
3262	return err == -EFAULT ? err : 0;
3263}
3264
3265int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3266{
 
3267	struct task_struct *t = current;
3268	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3269		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
 
3270		__put_user(t->sas_ss_size, &uss->ss_size);
 
3271}
3272#endif
3273
3274#ifdef __ARCH_WANT_SYS_SIGPENDING
3275
3276/**
3277 *  sys_sigpending - examine pending signals
3278 *  @set: where mask of pending signal is returned
3279 */
3280SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3281{
3282	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
 
 
 
 
3283}
 
3284
3285#endif
3286
3287#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3288/**
3289 *  sys_sigprocmask - examine and change blocked signals
3290 *  @how: whether to add, remove, or set signals
3291 *  @nset: signals to add or remove (if non-null)
3292 *  @oset: previous value of signal mask if non-null
3293 *
3294 * Some platforms have their own version with special arguments;
3295 * others support only sys_rt_sigprocmask.
3296 */
3297
3298SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3299		old_sigset_t __user *, oset)
3300{
3301	old_sigset_t old_set, new_set;
3302	sigset_t new_blocked;
3303
3304	old_set = current->blocked.sig[0];
3305
3306	if (nset) {
3307		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3308			return -EFAULT;
3309
3310		new_blocked = current->blocked;
3311
3312		switch (how) {
3313		case SIG_BLOCK:
3314			sigaddsetmask(&new_blocked, new_set);
3315			break;
3316		case SIG_UNBLOCK:
3317			sigdelsetmask(&new_blocked, new_set);
3318			break;
3319		case SIG_SETMASK:
3320			new_blocked.sig[0] = new_set;
3321			break;
3322		default:
3323			return -EINVAL;
3324		}
3325
3326		set_current_blocked(&new_blocked);
3327	}
3328
3329	if (oset) {
3330		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3331			return -EFAULT;
3332	}
3333
3334	return 0;
3335}
3336#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3337
3338#ifndef CONFIG_ODD_RT_SIGACTION
3339/**
3340 *  sys_rt_sigaction - alter an action taken by a process
3341 *  @sig: signal to be sent
3342 *  @act: new sigaction
3343 *  @oact: used to save the previous sigaction
3344 *  @sigsetsize: size of sigset_t type
3345 */
3346SYSCALL_DEFINE4(rt_sigaction, int, sig,
3347		const struct sigaction __user *, act,
3348		struct sigaction __user *, oact,
3349		size_t, sigsetsize)
3350{
3351	struct k_sigaction new_sa, old_sa;
3352	int ret = -EINVAL;
3353
3354	/* XXX: Don't preclude handling different sized sigset_t's.  */
3355	if (sigsetsize != sizeof(sigset_t))
3356		goto out;
3357
3358	if (act) {
3359		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3360			return -EFAULT;
3361	}
3362
3363	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
 
 
3364
3365	if (!ret && oact) {
3366		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3367			return -EFAULT;
3368	}
3369out:
3370	return ret;
3371}
3372#ifdef CONFIG_COMPAT
3373COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3374		const struct compat_sigaction __user *, act,
3375		struct compat_sigaction __user *, oact,
3376		compat_size_t, sigsetsize)
3377{
3378	struct k_sigaction new_ka, old_ka;
3379	compat_sigset_t mask;
3380#ifdef __ARCH_HAS_SA_RESTORER
3381	compat_uptr_t restorer;
3382#endif
3383	int ret;
3384
3385	/* XXX: Don't preclude handling different sized sigset_t's.  */
3386	if (sigsetsize != sizeof(compat_sigset_t))
3387		return -EINVAL;
3388
3389	if (act) {
3390		compat_uptr_t handler;
3391		ret = get_user(handler, &act->sa_handler);
3392		new_ka.sa.sa_handler = compat_ptr(handler);
3393#ifdef __ARCH_HAS_SA_RESTORER
3394		ret |= get_user(restorer, &act->sa_restorer);
3395		new_ka.sa.sa_restorer = compat_ptr(restorer);
3396#endif
3397		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3398		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3399		if (ret)
3400			return -EFAULT;
3401		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3402	}
3403
3404	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3405	if (!ret && oact) {
3406		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3407		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3408			       &oact->sa_handler);
3409		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
 
3410		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3411#ifdef __ARCH_HAS_SA_RESTORER
3412		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3413				&oact->sa_restorer);
3414#endif
3415	}
3416	return ret;
3417}
3418#endif
3419#endif /* !CONFIG_ODD_RT_SIGACTION */
3420
3421#ifdef CONFIG_OLD_SIGACTION
3422SYSCALL_DEFINE3(sigaction, int, sig,
3423		const struct old_sigaction __user *, act,
3424	        struct old_sigaction __user *, oact)
3425{
3426	struct k_sigaction new_ka, old_ka;
3427	int ret;
3428
3429	if (act) {
3430		old_sigset_t mask;
3431		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3432		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3433		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3434		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3435		    __get_user(mask, &act->sa_mask))
3436			return -EFAULT;
3437#ifdef __ARCH_HAS_KA_RESTORER
3438		new_ka.ka_restorer = NULL;
3439#endif
3440		siginitset(&new_ka.sa.sa_mask, mask);
3441	}
3442
3443	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3444
3445	if (!ret && oact) {
3446		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3447		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3448		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3449		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3450		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3451			return -EFAULT;
3452	}
3453
3454	return ret;
3455}
3456#endif
3457#ifdef CONFIG_COMPAT_OLD_SIGACTION
3458COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3459		const struct compat_old_sigaction __user *, act,
3460	        struct compat_old_sigaction __user *, oact)
3461{
3462	struct k_sigaction new_ka, old_ka;
3463	int ret;
3464	compat_old_sigset_t mask;
3465	compat_uptr_t handler, restorer;
3466
3467	if (act) {
3468		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3469		    __get_user(handler, &act->sa_handler) ||
3470		    __get_user(restorer, &act->sa_restorer) ||
3471		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3472		    __get_user(mask, &act->sa_mask))
3473			return -EFAULT;
3474
3475#ifdef __ARCH_HAS_KA_RESTORER
3476		new_ka.ka_restorer = NULL;
3477#endif
3478		new_ka.sa.sa_handler = compat_ptr(handler);
3479		new_ka.sa.sa_restorer = compat_ptr(restorer);
3480		siginitset(&new_ka.sa.sa_mask, mask);
3481	}
3482
3483	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3484
3485	if (!ret && oact) {
3486		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3487		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3488			       &oact->sa_handler) ||
3489		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3490			       &oact->sa_restorer) ||
3491		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3492		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3493			return -EFAULT;
3494	}
3495	return ret;
3496}
3497#endif
3498
3499#ifdef __ARCH_WANT_SYS_SGETMASK
3500
3501/*
3502 * For backwards compatibility.  Functionality superseded by sigprocmask.
3503 */
3504SYSCALL_DEFINE0(sgetmask)
3505{
3506	/* SMP safe */
3507	return current->blocked.sig[0];
3508}
3509
3510SYSCALL_DEFINE1(ssetmask, int, newmask)
3511{
3512	int old = current->blocked.sig[0];
3513	sigset_t newset;
3514
3515	siginitset(&newset, newmask);
3516	set_current_blocked(&newset);
3517
3518	return old;
3519}
3520#endif /* __ARCH_WANT_SGETMASK */
3521
3522#ifdef __ARCH_WANT_SYS_SIGNAL
3523/*
3524 * For backwards compatibility.  Functionality superseded by sigaction.
3525 */
3526SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3527{
3528	struct k_sigaction new_sa, old_sa;
3529	int ret;
3530
3531	new_sa.sa.sa_handler = handler;
3532	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3533	sigemptyset(&new_sa.sa.sa_mask);
3534
3535	ret = do_sigaction(sig, &new_sa, &old_sa);
3536
3537	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3538}
3539#endif /* __ARCH_WANT_SYS_SIGNAL */
3540
3541#ifdef __ARCH_WANT_SYS_PAUSE
3542
3543SYSCALL_DEFINE0(pause)
3544{
3545	while (!signal_pending(current)) {
3546		current->state = TASK_INTERRUPTIBLE;
3547		schedule();
3548	}
3549	return -ERESTARTNOHAND;
3550}
3551
3552#endif
3553
3554int sigsuspend(sigset_t *set)
3555{
3556	current->saved_sigmask = current->blocked;
3557	set_current_blocked(set);
3558
3559	current->state = TASK_INTERRUPTIBLE;
3560	schedule();
 
 
3561	set_restore_sigmask();
3562	return -ERESTARTNOHAND;
3563}
3564
3565/**
3566 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3567 *	@unewset value until a signal is received
3568 *  @unewset: new signal mask value
3569 *  @sigsetsize: size of sigset_t type
3570 */
3571SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3572{
3573	sigset_t newset;
3574
3575	/* XXX: Don't preclude handling different sized sigset_t's.  */
3576	if (sigsetsize != sizeof(sigset_t))
3577		return -EINVAL;
3578
3579	if (copy_from_user(&newset, unewset, sizeof(newset)))
3580		return -EFAULT;
3581	return sigsuspend(&newset);
3582}
3583 
3584#ifdef CONFIG_COMPAT
3585COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3586{
3587#ifdef __BIG_ENDIAN
3588	sigset_t newset;
3589	compat_sigset_t newset32;
3590
3591	/* XXX: Don't preclude handling different sized sigset_t's.  */
3592	if (sigsetsize != sizeof(sigset_t))
3593		return -EINVAL;
3594
3595	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3596		return -EFAULT;
3597	sigset_from_compat(&newset, &newset32);
3598	return sigsuspend(&newset);
3599#else
3600	/* on little-endian bitmaps don't care about granularity */
3601	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3602#endif
3603}
3604#endif
3605
3606#ifdef CONFIG_OLD_SIGSUSPEND
3607SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3608{
3609	sigset_t blocked;
3610	siginitset(&blocked, mask);
3611	return sigsuspend(&blocked);
3612}
3613#endif
3614#ifdef CONFIG_OLD_SIGSUSPEND3
3615SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3616{
3617	sigset_t blocked;
3618	siginitset(&blocked, mask);
3619	return sigsuspend(&blocked);
3620}
3621#endif
3622
3623__weak const char *arch_vma_name(struct vm_area_struct *vma)
3624{
3625	return NULL;
3626}
3627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3628void __init signals_init(void)
3629{
3630	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
 
 
3631}
3632
3633#ifdef CONFIG_KGDB_KDB
3634#include <linux/kdb.h>
3635/*
3636 * kdb_send_sig_info - Allows kdb to send signals without exposing
3637 * signal internals.  This function checks if the required locks are
3638 * available before calling the main signal code, to avoid kdb
3639 * deadlocks.
3640 */
3641void
3642kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3643{
3644	static struct task_struct *kdb_prev_t;
3645	int sig, new_t;
3646	if (!spin_trylock(&t->sighand->siglock)) {
3647		kdb_printf("Can't do kill command now.\n"
3648			   "The sigmask lock is held somewhere else in "
3649			   "kernel, try again later\n");
3650		return;
3651	}
3652	spin_unlock(&t->sighand->siglock);
3653	new_t = kdb_prev_t != t;
3654	kdb_prev_t = t;
3655	if (t->state != TASK_RUNNING && new_t) {
 
3656		kdb_printf("Process is not RUNNING, sending a signal from "
3657			   "kdb risks deadlock\n"
3658			   "on the run queue locks. "
3659			   "The signal has _not_ been sent.\n"
3660			   "Reissue the kill command if you want to risk "
3661			   "the deadlock.\n");
3662		return;
3663	}
3664	sig = info->si_signo;
3665	if (send_sig_info(sig, info, t))
 
3666		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3667			   sig, t->pid);
3668	else
3669		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3670}
3671#endif	/* CONFIG_KGDB_KDB */
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/task_work.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/cgroup.h>
  47#include <linux/audit.h>
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/signal.h>
  51
  52#include <asm/param.h>
  53#include <linux/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/siginfo.h>
  56#include <asm/cacheflush.h>
  57#include <asm/syscall.h>	/* for syscall_get_* */
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 
 
 
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current))
 185		clear_thread_flag(TIF_SIGPENDING);
 186
 187}
 188EXPORT_SYMBOL(recalc_sigpending);
 189
 190void calculate_sigpending(void)
 191{
 192	/* Have any signals or users of TIF_SIGPENDING been delayed
 193	 * until after fork?
 194	 */
 195	spin_lock_irq(&current->sighand->siglock);
 196	set_tsk_thread_flag(current, TIF_SIGPENDING);
 197	recalc_sigpending();
 198	spin_unlock_irq(&current->sighand->siglock);
 199}
 200
 201/* Given the mask, find the first available signal that should be serviced. */
 202
 203#define SYNCHRONOUS_MASK \
 204	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 205	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 206
 207int next_signal(struct sigpending *pending, sigset_t *mask)
 208{
 209	unsigned long i, *s, *m, x;
 210	int sig = 0;
 211
 212	s = pending->signal.sig;
 213	m = mask->sig;
 214
 215	/*
 216	 * Handle the first word specially: it contains the
 217	 * synchronous signals that need to be dequeued first.
 218	 */
 219	x = *s &~ *m;
 220	if (x) {
 221		if (x & SYNCHRONOUS_MASK)
 222			x &= SYNCHRONOUS_MASK;
 223		sig = ffz(~x) + 1;
 224		return sig;
 225	}
 226
 227	switch (_NSIG_WORDS) {
 228	default:
 229		for (i = 1; i < _NSIG_WORDS; ++i) {
 230			x = *++s &~ *++m;
 231			if (!x)
 232				continue;
 233			sig = ffz(~x) + i*_NSIG_BPW + 1;
 234			break;
 235		}
 236		break;
 237
 238	case 2:
 239		x = s[1] &~ m[1];
 240		if (!x)
 241			break;
 242		sig = ffz(~x) + _NSIG_BPW + 1;
 243		break;
 244
 245	case 1:
 246		/* Nothing to do */
 247		break;
 248	}
 249
 250	return sig;
 251}
 252
 253static inline void print_dropped_signal(int sig)
 254{
 255	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 256
 257	if (!print_fatal_signals)
 258		return;
 259
 260	if (!__ratelimit(&ratelimit_state))
 261		return;
 262
 263	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 264				current->comm, current->pid, sig);
 265}
 266
 267/**
 268 * task_set_jobctl_pending - set jobctl pending bits
 269 * @task: target task
 270 * @mask: pending bits to set
 271 *
 272 * Clear @mask from @task->jobctl.  @mask must be subset of
 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 274 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 275 * cleared.  If @task is already being killed or exiting, this function
 276 * becomes noop.
 277 *
 278 * CONTEXT:
 279 * Must be called with @task->sighand->siglock held.
 280 *
 281 * RETURNS:
 282 * %true if @mask is set, %false if made noop because @task was dying.
 283 */
 284bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 285{
 286	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 287			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 288	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 289
 290	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 291		return false;
 292
 293	if (mask & JOBCTL_STOP_SIGMASK)
 294		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 295
 296	task->jobctl |= mask;
 297	return true;
 298}
 299
 300/**
 301 * task_clear_jobctl_trapping - clear jobctl trapping bit
 302 * @task: target task
 303 *
 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 305 * Clear it and wake up the ptracer.  Note that we don't need any further
 306 * locking.  @task->siglock guarantees that @task->parent points to the
 307 * ptracer.
 308 *
 309 * CONTEXT:
 310 * Must be called with @task->sighand->siglock held.
 311 */
 312void task_clear_jobctl_trapping(struct task_struct *task)
 313{
 314	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 315		task->jobctl &= ~JOBCTL_TRAPPING;
 316		smp_mb();	/* advised by wake_up_bit() */
 317		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 318	}
 319}
 320
 321/**
 322 * task_clear_jobctl_pending - clear jobctl pending bits
 323 * @task: target task
 324 * @mask: pending bits to clear
 325 *
 326 * Clear @mask from @task->jobctl.  @mask must be subset of
 327 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 328 * STOP bits are cleared together.
 329 *
 330 * If clearing of @mask leaves no stop or trap pending, this function calls
 331 * task_clear_jobctl_trapping().
 332 *
 333 * CONTEXT:
 334 * Must be called with @task->sighand->siglock held.
 335 */
 336void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 337{
 338	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 339
 340	if (mask & JOBCTL_STOP_PENDING)
 341		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 342
 343	task->jobctl &= ~mask;
 344
 345	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 346		task_clear_jobctl_trapping(task);
 347}
 348
 349/**
 350 * task_participate_group_stop - participate in a group stop
 351 * @task: task participating in a group stop
 352 *
 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 354 * Group stop states are cleared and the group stop count is consumed if
 355 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 356 * stop, the appropriate `SIGNAL_*` flags are set.
 357 *
 358 * CONTEXT:
 359 * Must be called with @task->sighand->siglock held.
 360 *
 361 * RETURNS:
 362 * %true if group stop completion should be notified to the parent, %false
 363 * otherwise.
 364 */
 365static bool task_participate_group_stop(struct task_struct *task)
 366{
 367	struct signal_struct *sig = task->signal;
 368	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 369
 370	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 371
 372	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 373
 374	if (!consume)
 375		return false;
 376
 377	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 378		sig->group_stop_count--;
 379
 380	/*
 381	 * Tell the caller to notify completion iff we are entering into a
 382	 * fresh group stop.  Read comment in do_signal_stop() for details.
 383	 */
 384	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 385		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 386		return true;
 387	}
 388	return false;
 389}
 390
 391void task_join_group_stop(struct task_struct *task)
 392{
 393	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 394	struct signal_struct *sig = current->signal;
 395
 396	if (sig->group_stop_count) {
 397		sig->group_stop_count++;
 398		mask |= JOBCTL_STOP_CONSUME;
 399	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 400		return;
 401
 402	/* Have the new thread join an on-going signal group stop */
 403	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 413		 int override_rlimit, const unsigned int sigqueue_flags)
 414{
 415	struct sigqueue *q = NULL;
 416	struct ucounts *ucounts = NULL;
 417	long sigpending;
 418
 419	/*
 420	 * Protect access to @t credentials. This can go away when all
 421	 * callers hold rcu read lock.
 422	 *
 423	 * NOTE! A pending signal will hold on to the user refcount,
 424	 * and we get/put the refcount only when the sigpending count
 425	 * changes from/to zero.
 426	 */
 427	rcu_read_lock();
 428	ucounts = task_ucounts(t);
 429	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 430	rcu_read_unlock();
 431	if (!sigpending)
 432		return NULL;
 433
 434	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 435		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 
 
 436	} else {
 437		print_dropped_signal(sig);
 438	}
 439
 440	if (unlikely(q == NULL)) {
 441		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 442	} else {
 443		INIT_LIST_HEAD(&q->list);
 444		q->flags = sigqueue_flags;
 445		q->ucounts = ucounts;
 446	}
 
 447	return q;
 448}
 449
 450static void __sigqueue_free(struct sigqueue *q)
 451{
 452	if (q->flags & SIGQUEUE_PREALLOC)
 453		return;
 454	if (q->ucounts) {
 455		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 456		q->ucounts = NULL;
 457	}
 458	kmem_cache_free(sigqueue_cachep, q);
 459}
 460
 461void flush_sigqueue(struct sigpending *queue)
 462{
 463	struct sigqueue *q;
 464
 465	sigemptyset(&queue->signal);
 466	while (!list_empty(&queue->list)) {
 467		q = list_entry(queue->list.next, struct sigqueue , list);
 468		list_del_init(&q->list);
 469		__sigqueue_free(q);
 470	}
 471}
 472
 473/*
 474 * Flush all pending signals for this kthread.
 475 */
 
 
 
 
 
 
 
 476void flush_signals(struct task_struct *t)
 477{
 478	unsigned long flags;
 479
 480	spin_lock_irqsave(&t->sighand->siglock, flags);
 481	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 482	flush_sigqueue(&t->pending);
 483	flush_sigqueue(&t->signal->shared_pending);
 484	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 485}
 486EXPORT_SYMBOL(flush_signals);
 487
 488#ifdef CONFIG_POSIX_TIMERS
 489static void __flush_itimer_signals(struct sigpending *pending)
 490{
 491	sigset_t signal, retain;
 492	struct sigqueue *q, *n;
 493
 494	signal = pending->signal;
 495	sigemptyset(&retain);
 496
 497	list_for_each_entry_safe(q, n, &pending->list, list) {
 498		int sig = q->info.si_signo;
 499
 500		if (likely(q->info.si_code != SI_TIMER)) {
 501			sigaddset(&retain, sig);
 502		} else {
 503			sigdelset(&signal, sig);
 504			list_del_init(&q->list);
 505			__sigqueue_free(q);
 506		}
 507	}
 508
 509	sigorsets(&pending->signal, &signal, &retain);
 510}
 511
 512void flush_itimer_signals(void)
 513{
 514	struct task_struct *tsk = current;
 515	unsigned long flags;
 516
 517	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 518	__flush_itimer_signals(&tsk->pending);
 519	__flush_itimer_signals(&tsk->signal->shared_pending);
 520	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 521}
 522#endif
 523
 524void ignore_signals(struct task_struct *t)
 525{
 526	int i;
 527
 528	for (i = 0; i < _NSIG; ++i)
 529		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 530
 531	flush_signals(t);
 532}
 533
 534/*
 535 * Flush all handlers for a task.
 536 */
 537
 538void
 539flush_signal_handlers(struct task_struct *t, int force_default)
 540{
 541	int i;
 542	struct k_sigaction *ka = &t->sighand->action[0];
 543	for (i = _NSIG ; i != 0 ; i--) {
 544		if (force_default || ka->sa.sa_handler != SIG_IGN)
 545			ka->sa.sa_handler = SIG_DFL;
 546		ka->sa.sa_flags = 0;
 547#ifdef __ARCH_HAS_SA_RESTORER
 548		ka->sa.sa_restorer = NULL;
 549#endif
 550		sigemptyset(&ka->sa.sa_mask);
 551		ka++;
 552	}
 553}
 554
 555bool unhandled_signal(struct task_struct *tsk, int sig)
 556{
 557	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 558	if (is_global_init(tsk))
 559		return true;
 560
 561	if (handler != SIG_IGN && handler != SIG_DFL)
 562		return false;
 563
 564	/* if ptraced, let the tracer determine */
 565	return !tsk->ptrace;
 566}
 567
 568static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 569			   bool *resched_timer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570{
 571	struct sigqueue *q, *first = NULL;
 572
 573	/*
 574	 * Collect the siginfo appropriate to this signal.  Check if
 575	 * there is another siginfo for the same signal.
 576	*/
 577	list_for_each_entry(q, &list->list, list) {
 578		if (q->info.si_signo == sig) {
 579			if (first)
 580				goto still_pending;
 581			first = q;
 582		}
 583	}
 584
 585	sigdelset(&list->signal, sig);
 586
 587	if (first) {
 588still_pending:
 589		list_del_init(&first->list);
 590		copy_siginfo(info, &first->info);
 591
 592		*resched_timer =
 593			(first->flags & SIGQUEUE_PREALLOC) &&
 594			(info->si_code == SI_TIMER) &&
 595			(info->si_sys_private);
 596
 597		__sigqueue_free(first);
 598	} else {
 599		/*
 600		 * Ok, it wasn't in the queue.  This must be
 601		 * a fast-pathed signal or we must have been
 602		 * out of queue space.  So zero out the info.
 603		 */
 604		clear_siginfo(info);
 605		info->si_signo = sig;
 606		info->si_errno = 0;
 607		info->si_code = SI_USER;
 608		info->si_pid = 0;
 609		info->si_uid = 0;
 610	}
 611}
 612
 613static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 614			kernel_siginfo_t *info, bool *resched_timer)
 615{
 616	int sig = next_signal(pending, mask);
 617
 618	if (sig)
 619		collect_signal(sig, pending, info, resched_timer);
 
 
 
 
 
 
 
 
 
 
 
 620	return sig;
 621}
 622
 623/*
 624 * Dequeue a signal and return the element to the caller, which is
 625 * expected to free it.
 626 *
 627 * All callers have to hold the siglock.
 628 */
 629int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
 630		   kernel_siginfo_t *info, enum pid_type *type)
 631{
 632	bool resched_timer = false;
 633	int signr;
 634
 635	/* We only dequeue private signals from ourselves, we don't let
 636	 * signalfd steal them
 637	 */
 638	*type = PIDTYPE_PID;
 639	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 640	if (!signr) {
 641		*type = PIDTYPE_TGID;
 642		signr = __dequeue_signal(&tsk->signal->shared_pending,
 643					 mask, info, &resched_timer);
 644#ifdef CONFIG_POSIX_TIMERS
 645		/*
 646		 * itimer signal ?
 647		 *
 648		 * itimers are process shared and we restart periodic
 649		 * itimers in the signal delivery path to prevent DoS
 650		 * attacks in the high resolution timer case. This is
 651		 * compliant with the old way of self-restarting
 652		 * itimers, as the SIGALRM is a legacy signal and only
 653		 * queued once. Changing the restart behaviour to
 654		 * restart the timer in the signal dequeue path is
 655		 * reducing the timer noise on heavy loaded !highres
 656		 * systems too.
 657		 */
 658		if (unlikely(signr == SIGALRM)) {
 659			struct hrtimer *tmr = &tsk->signal->real_timer;
 660
 661			if (!hrtimer_is_queued(tmr) &&
 662			    tsk->signal->it_real_incr != 0) {
 663				hrtimer_forward(tmr, tmr->base->get_time(),
 664						tsk->signal->it_real_incr);
 665				hrtimer_restart(tmr);
 666			}
 667		}
 668#endif
 669	}
 670
 671	recalc_sigpending();
 672	if (!signr)
 673		return 0;
 674
 675	if (unlikely(sig_kernel_stop(signr))) {
 676		/*
 677		 * Set a marker that we have dequeued a stop signal.  Our
 678		 * caller might release the siglock and then the pending
 679		 * stop signal it is about to process is no longer in the
 680		 * pending bitmasks, but must still be cleared by a SIGCONT
 681		 * (and overruled by a SIGKILL).  So those cases clear this
 682		 * shared flag after we've set it.  Note that this flag may
 683		 * remain set after the signal we return is ignored or
 684		 * handled.  That doesn't matter because its only purpose
 685		 * is to alert stop-signal processing code when another
 686		 * processor has come along and cleared the flag.
 687		 */
 688		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 689	}
 690#ifdef CONFIG_POSIX_TIMERS
 691	if (resched_timer) {
 692		/*
 693		 * Release the siglock to ensure proper locking order
 694		 * of timer locks outside of siglocks.  Note, we leave
 695		 * irqs disabled here, since the posix-timers code is
 696		 * about to disable them again anyway.
 697		 */
 698		spin_unlock(&tsk->sighand->siglock);
 699		posixtimer_rearm(info);
 700		spin_lock(&tsk->sighand->siglock);
 701
 702		/* Don't expose the si_sys_private value to userspace */
 703		info->si_sys_private = 0;
 704	}
 705#endif
 706	return signr;
 707}
 708EXPORT_SYMBOL_GPL(dequeue_signal);
 709
 710static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 711{
 712	struct task_struct *tsk = current;
 713	struct sigpending *pending = &tsk->pending;
 714	struct sigqueue *q, *sync = NULL;
 715
 716	/*
 717	 * Might a synchronous signal be in the queue?
 718	 */
 719	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 720		return 0;
 721
 722	/*
 723	 * Return the first synchronous signal in the queue.
 724	 */
 725	list_for_each_entry(q, &pending->list, list) {
 726		/* Synchronous signals have a positive si_code */
 727		if ((q->info.si_code > SI_USER) &&
 728		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 729			sync = q;
 730			goto next;
 731		}
 732	}
 733	return 0;
 734next:
 735	/*
 736	 * Check if there is another siginfo for the same signal.
 737	 */
 738	list_for_each_entry_continue(q, &pending->list, list) {
 739		if (q->info.si_signo == sync->info.si_signo)
 740			goto still_pending;
 741	}
 742
 743	sigdelset(&pending->signal, sync->info.si_signo);
 744	recalc_sigpending();
 745still_pending:
 746	list_del_init(&sync->list);
 747	copy_siginfo(info, &sync->info);
 748	__sigqueue_free(sync);
 749	return info->si_signo;
 750}
 751
 752/*
 753 * Tell a process that it has a new active signal..
 754 *
 755 * NOTE! we rely on the previous spin_lock to
 756 * lock interrupts for us! We can only be called with
 757 * "siglock" held, and the local interrupt must
 758 * have been disabled when that got acquired!
 759 *
 760 * No need to set need_resched since signal event passing
 761 * goes through ->blocked
 762 */
 763void signal_wake_up_state(struct task_struct *t, unsigned int state)
 764{
 765	lockdep_assert_held(&t->sighand->siglock);
 766
 767	set_tsk_thread_flag(t, TIF_SIGPENDING);
 768
 769	/*
 770	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 771	 * case. We don't check t->state here because there is a race with it
 772	 * executing another processor and just now entering stopped state.
 773	 * By using wake_up_state, we ensure the process will wake up and
 774	 * handle its death signal.
 775	 */
 776	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 777		kick_process(t);
 778}
 779
 780/*
 781 * Remove signals in mask from the pending set and queue.
 782 * Returns 1 if any signals were found.
 783 *
 784 * All callers must be holding the siglock.
 
 
 
 785 */
 786static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 787{
 788	struct sigqueue *q, *n;
 789	sigset_t m;
 790
 791	sigandsets(&m, mask, &s->signal);
 792	if (sigisemptyset(&m))
 793		return;
 794
 795	sigandnsets(&s->signal, &s->signal, mask);
 796	list_for_each_entry_safe(q, n, &s->list, list) {
 797		if (sigismember(mask, q->info.si_signo)) {
 798			list_del_init(&q->list);
 799			__sigqueue_free(q);
 800		}
 801	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802}
 803
 804static inline int is_si_special(const struct kernel_siginfo *info)
 805{
 806	return info <= SEND_SIG_PRIV;
 807}
 808
 809static inline bool si_fromuser(const struct kernel_siginfo *info)
 810{
 811	return info == SEND_SIG_NOINFO ||
 812		(!is_si_special(info) && SI_FROMUSER(info));
 813}
 814
 815/*
 816 * called with RCU read lock from check_kill_permission()
 817 */
 818static bool kill_ok_by_cred(struct task_struct *t)
 819{
 820	const struct cred *cred = current_cred();
 821	const struct cred *tcred = __task_cred(t);
 822
 823	return uid_eq(cred->euid, tcred->suid) ||
 824	       uid_eq(cred->euid, tcred->uid) ||
 825	       uid_eq(cred->uid, tcred->suid) ||
 826	       uid_eq(cred->uid, tcred->uid) ||
 827	       ns_capable(tcred->user_ns, CAP_KILL);
 
 
 
 
 
 828}
 829
 830/*
 831 * Bad permissions for sending the signal
 832 * - the caller must hold the RCU read lock
 833 */
 834static int check_kill_permission(int sig, struct kernel_siginfo *info,
 835				 struct task_struct *t)
 836{
 837	struct pid *sid;
 838	int error;
 839
 840	if (!valid_signal(sig))
 841		return -EINVAL;
 842
 843	if (!si_fromuser(info))
 844		return 0;
 845
 846	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 847	if (error)
 848		return error;
 849
 850	if (!same_thread_group(current, t) &&
 851	    !kill_ok_by_cred(t)) {
 852		switch (sig) {
 853		case SIGCONT:
 854			sid = task_session(t);
 855			/*
 856			 * We don't return the error if sid == NULL. The
 857			 * task was unhashed, the caller must notice this.
 858			 */
 859			if (!sid || sid == task_session(current))
 860				break;
 861			fallthrough;
 862		default:
 863			return -EPERM;
 864		}
 865	}
 866
 867	return security_task_kill(t, info, sig, NULL);
 868}
 869
 870/**
 871 * ptrace_trap_notify - schedule trap to notify ptracer
 872 * @t: tracee wanting to notify tracer
 873 *
 874 * This function schedules sticky ptrace trap which is cleared on the next
 875 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 876 * ptracer.
 877 *
 878 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 879 * ptracer is listening for events, tracee is woken up so that it can
 880 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 881 * eventually taken without returning to userland after the existing traps
 882 * are finished by PTRACE_CONT.
 883 *
 884 * CONTEXT:
 885 * Must be called with @task->sighand->siglock held.
 886 */
 887static void ptrace_trap_notify(struct task_struct *t)
 888{
 889	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 890	lockdep_assert_held(&t->sighand->siglock);
 891
 892	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 893	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 894}
 895
 896/*
 897 * Handle magic process-wide effects of stop/continue signals. Unlike
 898 * the signal actions, these happen immediately at signal-generation
 899 * time regardless of blocking, ignoring, or handling.  This does the
 900 * actual continuing for SIGCONT, but not the actual stopping for stop
 901 * signals. The process stop is done as a signal action for SIG_DFL.
 902 *
 903 * Returns true if the signal should be actually delivered, otherwise
 904 * it should be dropped.
 905 */
 906static bool prepare_signal(int sig, struct task_struct *p, bool force)
 907{
 908	struct signal_struct *signal = p->signal;
 909	struct task_struct *t;
 910	sigset_t flush;
 911
 912	if (signal->flags & SIGNAL_GROUP_EXIT) {
 913		if (signal->core_state)
 914			return sig == SIGKILL;
 915		/*
 916		 * The process is in the middle of dying, drop the signal.
 917		 */
 918		return false;
 919	} else if (sig_kernel_stop(sig)) {
 920		/*
 921		 * This is a stop signal.  Remove SIGCONT from all queues.
 922		 */
 923		siginitset(&flush, sigmask(SIGCONT));
 924		flush_sigqueue_mask(&flush, &signal->shared_pending);
 925		for_each_thread(p, t)
 926			flush_sigqueue_mask(&flush, &t->pending);
 
 927	} else if (sig == SIGCONT) {
 928		unsigned int why;
 929		/*
 930		 * Remove all stop signals from all queues, wake all threads.
 931		 */
 932		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 933		flush_sigqueue_mask(&flush, &signal->shared_pending);
 934		for_each_thread(p, t) {
 935			flush_sigqueue_mask(&flush, &t->pending);
 936			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 937			if (likely(!(t->ptrace & PT_SEIZED))) {
 938				t->jobctl &= ~JOBCTL_STOPPED;
 939				wake_up_state(t, __TASK_STOPPED);
 940			} else
 941				ptrace_trap_notify(t);
 942		}
 943
 944		/*
 945		 * Notify the parent with CLD_CONTINUED if we were stopped.
 946		 *
 947		 * If we were in the middle of a group stop, we pretend it
 948		 * was already finished, and then continued. Since SIGCHLD
 949		 * doesn't queue we report only CLD_STOPPED, as if the next
 950		 * CLD_CONTINUED was dropped.
 951		 */
 952		why = 0;
 953		if (signal->flags & SIGNAL_STOP_STOPPED)
 954			why |= SIGNAL_CLD_CONTINUED;
 955		else if (signal->group_stop_count)
 956			why |= SIGNAL_CLD_STOPPED;
 957
 958		if (why) {
 959			/*
 960			 * The first thread which returns from do_signal_stop()
 961			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 962			 * notify its parent. See get_signal().
 963			 */
 964			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 965			signal->group_stop_count = 0;
 966			signal->group_exit_code = 0;
 967		}
 968	}
 969
 970	return !sig_ignored(p, sig, force);
 971}
 972
 973/*
 974 * Test if P wants to take SIG.  After we've checked all threads with this,
 975 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 976 * blocking SIG were ruled out because they are not running and already
 977 * have pending signals.  Such threads will dequeue from the shared queue
 978 * as soon as they're available, so putting the signal on the shared queue
 979 * will be equivalent to sending it to one such thread.
 980 */
 981static inline bool wants_signal(int sig, struct task_struct *p)
 982{
 983	if (sigismember(&p->blocked, sig))
 984		return false;
 985
 986	if (p->flags & PF_EXITING)
 987		return false;
 988
 989	if (sig == SIGKILL)
 990		return true;
 991
 992	if (task_is_stopped_or_traced(p))
 993		return false;
 994
 995	return task_curr(p) || !task_sigpending(p);
 996}
 997
 998static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 999{
1000	struct signal_struct *signal = p->signal;
1001	struct task_struct *t;
1002
1003	/*
1004	 * Now find a thread we can wake up to take the signal off the queue.
1005	 *
1006	 * If the main thread wants the signal, it gets first crack.
1007	 * Probably the least surprising to the average bear.
1008	 */
1009	if (wants_signal(sig, p))
1010		t = p;
1011	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1012		/*
1013		 * There is just one thread and it does not need to be woken.
1014		 * It will dequeue unblocked signals before it runs again.
1015		 */
1016		return;
1017	else {
1018		/*
1019		 * Otherwise try to find a suitable thread.
1020		 */
1021		t = signal->curr_target;
1022		while (!wants_signal(sig, t)) {
1023			t = next_thread(t);
1024			if (t == signal->curr_target)
1025				/*
1026				 * No thread needs to be woken.
1027				 * Any eligible threads will see
1028				 * the signal in the queue soon.
1029				 */
1030				return;
1031		}
1032		signal->curr_target = t;
1033	}
1034
1035	/*
1036	 * Found a killable thread.  If the signal will be fatal,
1037	 * then start taking the whole group down immediately.
1038	 */
1039	if (sig_fatal(p, sig) &&
1040	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1041	    !sigismember(&t->real_blocked, sig) &&
1042	    (sig == SIGKILL || !p->ptrace)) {
1043		/*
1044		 * This signal will be fatal to the whole group.
1045		 */
1046		if (!sig_kernel_coredump(sig)) {
1047			/*
1048			 * Start a group exit and wake everybody up.
1049			 * This way we don't have other threads
1050			 * running and doing things after a slower
1051			 * thread has the fatal signal pending.
1052			 */
1053			signal->flags = SIGNAL_GROUP_EXIT;
1054			signal->group_exit_code = sig;
1055			signal->group_stop_count = 0;
1056			t = p;
1057			do {
1058				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1059				sigaddset(&t->pending.signal, SIGKILL);
1060				signal_wake_up(t, 1);
1061			} while_each_thread(p, t);
1062			return;
1063		}
1064	}
1065
1066	/*
1067	 * The signal is already in the shared-pending queue.
1068	 * Tell the chosen thread to wake up and dequeue it.
1069	 */
1070	signal_wake_up(t, sig == SIGKILL);
1071	return;
1072}
1073
1074static inline bool legacy_queue(struct sigpending *signals, int sig)
1075{
1076	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1077}
1078
1079static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1080				struct task_struct *t, enum pid_type type, bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1081{
1082	struct sigpending *pending;
1083	struct sigqueue *q;
1084	int override_rlimit;
1085	int ret = 0, result;
1086
1087	lockdep_assert_held(&t->sighand->siglock);
1088
1089	result = TRACE_SIGNAL_IGNORED;
1090	if (!prepare_signal(sig, t, force))
 
1091		goto ret;
1092
1093	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1094	/*
1095	 * Short-circuit ignored signals and support queuing
1096	 * exactly one non-rt signal, so that we can get more
1097	 * detailed information about the cause of the signal.
1098	 */
1099	result = TRACE_SIGNAL_ALREADY_PENDING;
1100	if (legacy_queue(pending, sig))
1101		goto ret;
1102
1103	result = TRACE_SIGNAL_DELIVERED;
1104	/*
1105	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 
1106	 */
1107	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1108		goto out_set;
1109
1110	/*
1111	 * Real-time signals must be queued if sent by sigqueue, or
1112	 * some other real-time mechanism.  It is implementation
1113	 * defined whether kill() does so.  We attempt to do so, on
1114	 * the principle of least surprise, but since kill is not
1115	 * allowed to fail with EAGAIN when low on memory we just
1116	 * make sure at least one signal gets delivered and don't
1117	 * pass on the info struct.
1118	 */
1119	if (sig < SIGRTMIN)
1120		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1121	else
1122		override_rlimit = 0;
1123
1124	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1125
1126	if (q) {
1127		list_add_tail(&q->list, &pending->list);
1128		switch ((unsigned long) info) {
1129		case (unsigned long) SEND_SIG_NOINFO:
1130			clear_siginfo(&q->info);
1131			q->info.si_signo = sig;
1132			q->info.si_errno = 0;
1133			q->info.si_code = SI_USER;
1134			q->info.si_pid = task_tgid_nr_ns(current,
1135							task_active_pid_ns(t));
1136			rcu_read_lock();
1137			q->info.si_uid =
1138				from_kuid_munged(task_cred_xxx(t, user_ns),
1139						 current_uid());
1140			rcu_read_unlock();
1141			break;
1142		case (unsigned long) SEND_SIG_PRIV:
1143			clear_siginfo(&q->info);
1144			q->info.si_signo = sig;
1145			q->info.si_errno = 0;
1146			q->info.si_code = SI_KERNEL;
1147			q->info.si_pid = 0;
1148			q->info.si_uid = 0;
1149			break;
1150		default:
1151			copy_siginfo(&q->info, info);
 
 
1152			break;
1153		}
1154	} else if (!is_si_special(info) &&
1155		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1156		/*
1157		 * Queue overflow, abort.  We may abort if the
1158		 * signal was rt and sent by user using something
1159		 * other than kill().
1160		 */
1161		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1162		ret = -EAGAIN;
1163		goto ret;
1164	} else {
1165		/*
1166		 * This is a silent loss of information.  We still
1167		 * send the signal, but the *info bits are lost.
1168		 */
1169		result = TRACE_SIGNAL_LOSE_INFO;
 
 
 
 
1170	}
1171
1172out_set:
1173	signalfd_notify(t, sig);
1174	sigaddset(&pending->signal, sig);
1175
1176	/* Let multiprocess signals appear after on-going forks */
1177	if (type > PIDTYPE_TGID) {
1178		struct multiprocess_signals *delayed;
1179		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1180			sigset_t *signal = &delayed->signal;
1181			/* Can't queue both a stop and a continue signal */
1182			if (sig == SIGCONT)
1183				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1184			else if (sig_kernel_stop(sig))
1185				sigdelset(signal, SIGCONT);
1186			sigaddset(signal, sig);
1187		}
1188	}
1189
1190	complete_signal(sig, t, type);
1191ret:
1192	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1193	return ret;
1194}
1195
1196static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1197{
1198	bool ret = false;
1199	switch (siginfo_layout(info->si_signo, info->si_code)) {
1200	case SIL_KILL:
1201	case SIL_CHLD:
1202	case SIL_RT:
1203		ret = true;
1204		break;
1205	case SIL_TIMER:
1206	case SIL_POLL:
1207	case SIL_FAULT:
1208	case SIL_FAULT_TRAPNO:
1209	case SIL_FAULT_MCEERR:
1210	case SIL_FAULT_BNDERR:
1211	case SIL_FAULT_PKUERR:
1212	case SIL_FAULT_PERF_EVENT:
1213	case SIL_SYS:
1214		ret = false;
1215		break;
1216	}
1217	return ret;
1218}
1219
1220int send_signal_locked(int sig, struct kernel_siginfo *info,
1221		       struct task_struct *t, enum pid_type type)
1222{
1223	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1224	bool force = false;
1225
1226	if (info == SEND_SIG_NOINFO) {
1227		/* Force if sent from an ancestor pid namespace */
1228		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1229	} else if (info == SEND_SIG_PRIV) {
1230		/* Don't ignore kernel generated signals */
1231		force = true;
1232	} else if (has_si_pid_and_uid(info)) {
1233		/* SIGKILL and SIGSTOP is special or has ids */
1234		struct user_namespace *t_user_ns;
1235
1236		rcu_read_lock();
1237		t_user_ns = task_cred_xxx(t, user_ns);
1238		if (current_user_ns() != t_user_ns) {
1239			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1240			info->si_uid = from_kuid_munged(t_user_ns, uid);
1241		}
1242		rcu_read_unlock();
1243
1244		/* A kernel generated signal? */
1245		force = (info->si_code == SI_KERNEL);
1246
1247		/* From an ancestor pid namespace? */
1248		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1249			info->si_pid = 0;
1250			force = true;
1251		}
1252	}
1253	return __send_signal_locked(sig, info, t, type, force);
1254}
1255
1256static void print_fatal_signal(int signr)
1257{
1258	struct pt_regs *regs = task_pt_regs(current);
1259	pr_info("potentially unexpected fatal signal %d.\n", signr);
1260
1261#if defined(__i386__) && !defined(__arch_um__)
1262	pr_info("code at %08lx: ", regs->ip);
1263	{
1264		int i;
1265		for (i = 0; i < 16; i++) {
1266			unsigned char insn;
1267
1268			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1269				break;
1270			pr_cont("%02x ", insn);
1271		}
1272	}
1273	pr_cont("\n");
1274#endif
1275	preempt_disable();
1276	show_regs(regs);
1277	preempt_enable();
1278}
1279
1280static int __init setup_print_fatal_signals(char *str)
1281{
1282	get_option (&str, &print_fatal_signals);
1283
1284	return 1;
1285}
1286
1287__setup("print-fatal-signals=", setup_print_fatal_signals);
1288
1289int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1290			enum pid_type type)
 
 
 
 
 
 
 
 
 
 
 
 
1291{
1292	unsigned long flags;
1293	int ret = -ESRCH;
1294
1295	if (lock_task_sighand(p, &flags)) {
1296		ret = send_signal_locked(sig, info, p, type);
1297		unlock_task_sighand(p, &flags);
1298	}
1299
1300	return ret;
1301}
1302
1303enum sig_handler {
1304	HANDLER_CURRENT, /* If reachable use the current handler */
1305	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1306	HANDLER_EXIT,	 /* Only visible as the process exit code */
1307};
1308
1309/*
1310 * Force a signal that the process can't ignore: if necessary
1311 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1312 *
1313 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1314 * since we do not want to have a signal handler that was blocked
1315 * be invoked when user space had explicitly blocked it.
1316 *
1317 * We don't want to have recursive SIGSEGV's etc, for example,
1318 * that is why we also clear SIGNAL_UNKILLABLE.
1319 */
1320static int
1321force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1322	enum sig_handler handler)
1323{
1324	unsigned long int flags;
1325	int ret, blocked, ignored;
1326	struct k_sigaction *action;
1327	int sig = info->si_signo;
1328
1329	spin_lock_irqsave(&t->sighand->siglock, flags);
1330	action = &t->sighand->action[sig-1];
1331	ignored = action->sa.sa_handler == SIG_IGN;
1332	blocked = sigismember(&t->blocked, sig);
1333	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1334		action->sa.sa_handler = SIG_DFL;
1335		if (handler == HANDLER_EXIT)
1336			action->sa.sa_flags |= SA_IMMUTABLE;
1337		if (blocked) {
1338			sigdelset(&t->blocked, sig);
1339			recalc_sigpending_and_wake(t);
1340		}
1341	}
1342	/*
1343	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1344	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1345	 */
1346	if (action->sa.sa_handler == SIG_DFL &&
1347	    (!t->ptrace || (handler == HANDLER_EXIT)))
1348		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1350	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1351
1352	return ret;
1353}
1354
1355int force_sig_info(struct kernel_siginfo *info)
1356{
1357	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1358}
1359
1360/*
1361 * Nuke all other threads in the group.
1362 */
1363int zap_other_threads(struct task_struct *p)
1364{
1365	struct task_struct *t = p;
1366	int count = 0;
1367
1368	p->signal->group_stop_count = 0;
1369
1370	while_each_thread(p, t) {
1371		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1372		count++;
1373
1374		/* Don't bother with already dead threads */
1375		if (t->exit_state)
1376			continue;
1377		sigaddset(&t->pending.signal, SIGKILL);
1378		signal_wake_up(t, 1);
1379	}
1380
1381	return count;
1382}
1383
1384struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385					   unsigned long *flags)
1386{
1387	struct sighand_struct *sighand;
1388
1389	rcu_read_lock();
1390	for (;;) {
 
 
1391		sighand = rcu_dereference(tsk->sighand);
1392		if (unlikely(sighand == NULL))
 
 
1393			break;
 
1394
1395		/*
1396		 * This sighand can be already freed and even reused, but
1397		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398		 * initializes ->siglock: this slab can't go away, it has
1399		 * the same object type, ->siglock can't be reinitialized.
1400		 *
1401		 * We need to ensure that tsk->sighand is still the same
1402		 * after we take the lock, we can race with de_thread() or
1403		 * __exit_signal(). In the latter case the next iteration
1404		 * must see ->sighand == NULL.
1405		 */
1406		spin_lock_irqsave(&sighand->siglock, *flags);
1407		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1408			break;
1409		spin_unlock_irqrestore(&sighand->siglock, *flags);
 
 
 
1410	}
1411	rcu_read_unlock();
1412
1413	return sighand;
1414}
1415
1416#ifdef CONFIG_LOCKDEP
1417void lockdep_assert_task_sighand_held(struct task_struct *task)
1418{
1419	struct sighand_struct *sighand;
1420
1421	rcu_read_lock();
1422	sighand = rcu_dereference(task->sighand);
1423	if (sighand)
1424		lockdep_assert_held(&sighand->siglock);
1425	else
1426		WARN_ON_ONCE(1);
1427	rcu_read_unlock();
1428}
1429#endif
1430
1431/*
1432 * send signal info to all the members of a group
1433 */
1434int group_send_sig_info(int sig, struct kernel_siginfo *info,
1435			struct task_struct *p, enum pid_type type)
1436{
1437	int ret;
1438
1439	rcu_read_lock();
1440	ret = check_kill_permission(sig, info, p);
1441	rcu_read_unlock();
1442
1443	if (!ret && sig)
1444		ret = do_send_sig_info(sig, info, p, type);
1445
1446	return ret;
1447}
1448
1449/*
1450 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1451 * control characters do (^C, ^Z etc)
1452 * - the caller must hold at least a readlock on tasklist_lock
1453 */
1454int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1455{
1456	struct task_struct *p = NULL;
1457	int retval, success;
1458
1459	success = 0;
1460	retval = -ESRCH;
1461	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1462		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1463		success |= !err;
1464		retval = err;
1465	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1466	return success ? 0 : retval;
1467}
1468
1469int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1470{
1471	int error = -ESRCH;
1472	struct task_struct *p;
1473
1474	for (;;) {
1475		rcu_read_lock();
1476		p = pid_task(pid, PIDTYPE_PID);
1477		if (p)
1478			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1479		rcu_read_unlock();
1480		if (likely(!p || error != -ESRCH))
1481			return error;
 
 
 
 
 
 
 
1482
1483		/*
1484		 * The task was unhashed in between, try again.  If it
1485		 * is dead, pid_task() will return NULL, if we race with
1486		 * de_thread() it will find the new leader.
1487		 */
1488	}
1489}
1490
1491static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1492{
1493	int error;
1494	rcu_read_lock();
1495	error = kill_pid_info(sig, info, find_vpid(pid));
1496	rcu_read_unlock();
1497	return error;
1498}
1499
1500static inline bool kill_as_cred_perm(const struct cred *cred,
1501				     struct task_struct *target)
1502{
1503	const struct cred *pcred = __task_cred(target);
1504
1505	return uid_eq(cred->euid, pcred->suid) ||
1506	       uid_eq(cred->euid, pcred->uid) ||
1507	       uid_eq(cred->uid, pcred->suid) ||
1508	       uid_eq(cred->uid, pcred->uid);
1509}
1510
1511/*
1512 * The usb asyncio usage of siginfo is wrong.  The glibc support
1513 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1514 * AKA after the generic fields:
1515 *	kernel_pid_t	si_pid;
1516 *	kernel_uid32_t	si_uid;
1517 *	sigval_t	si_value;
1518 *
1519 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1520 * after the generic fields is:
1521 *	void __user 	*si_addr;
1522 *
1523 * This is a practical problem when there is a 64bit big endian kernel
1524 * and a 32bit userspace.  As the 32bit address will encoded in the low
1525 * 32bits of the pointer.  Those low 32bits will be stored at higher
1526 * address than appear in a 32 bit pointer.  So userspace will not
1527 * see the address it was expecting for it's completions.
1528 *
1529 * There is nothing in the encoding that can allow
1530 * copy_siginfo_to_user32 to detect this confusion of formats, so
1531 * handle this by requiring the caller of kill_pid_usb_asyncio to
1532 * notice when this situration takes place and to store the 32bit
1533 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1534 * parameter.
1535 */
1536int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1537			 struct pid *pid, const struct cred *cred)
1538{
1539	struct kernel_siginfo info;
1540	struct task_struct *p;
1541	unsigned long flags;
1542	int ret = -EINVAL;
1543
1544	if (!valid_signal(sig))
1545		return ret;
1546
1547	clear_siginfo(&info);
1548	info.si_signo = sig;
1549	info.si_errno = errno;
1550	info.si_code = SI_ASYNCIO;
1551	*((sigval_t *)&info.si_pid) = addr;
1552
1553	rcu_read_lock();
1554	p = pid_task(pid, PIDTYPE_PID);
1555	if (!p) {
1556		ret = -ESRCH;
1557		goto out_unlock;
1558	}
1559	if (!kill_as_cred_perm(cred, p)) {
1560		ret = -EPERM;
1561		goto out_unlock;
1562	}
1563	ret = security_task_kill(p, &info, sig, cred);
1564	if (ret)
1565		goto out_unlock;
1566
1567	if (sig) {
1568		if (lock_task_sighand(p, &flags)) {
1569			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1570			unlock_task_sighand(p, &flags);
1571		} else
1572			ret = -ESRCH;
1573	}
1574out_unlock:
1575	rcu_read_unlock();
1576	return ret;
1577}
1578EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1579
1580/*
1581 * kill_something_info() interprets pid in interesting ways just like kill(2).
1582 *
1583 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1584 * is probably wrong.  Should make it like BSD or SYSV.
1585 */
1586
1587static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1588{
1589	int ret;
1590
1591	if (pid > 0)
1592		return kill_proc_info(sig, info, pid);
1593
1594	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1595	if (pid == INT_MIN)
1596		return -ESRCH;
1597
1598	read_lock(&tasklist_lock);
1599	if (pid != -1) {
1600		ret = __kill_pgrp_info(sig, info,
1601				pid ? find_vpid(-pid) : task_pgrp(current));
1602	} else {
1603		int retval = 0, count = 0;
1604		struct task_struct * p;
1605
1606		for_each_process(p) {
1607			if (task_pid_vnr(p) > 1 &&
1608					!same_thread_group(p, current)) {
1609				int err = group_send_sig_info(sig, info, p,
1610							      PIDTYPE_MAX);
1611				++count;
1612				if (err != -EPERM)
1613					retval = err;
1614			}
1615		}
1616		ret = count ? retval : -ESRCH;
1617	}
1618	read_unlock(&tasklist_lock);
1619
1620	return ret;
1621}
1622
1623/*
1624 * These are for backward compatibility with the rest of the kernel source.
1625 */
1626
1627int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1628{
1629	/*
1630	 * Make sure legacy kernel users don't send in bad values
1631	 * (normal paths check this in check_kill_permission).
1632	 */
1633	if (!valid_signal(sig))
1634		return -EINVAL;
1635
1636	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1637}
1638EXPORT_SYMBOL(send_sig_info);
1639
1640#define __si_special(priv) \
1641	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1642
1643int
1644send_sig(int sig, struct task_struct *p, int priv)
1645{
1646	return send_sig_info(sig, __si_special(priv), p);
1647}
1648EXPORT_SYMBOL(send_sig);
1649
1650void force_sig(int sig)
1651{
1652	struct kernel_siginfo info;
1653
1654	clear_siginfo(&info);
1655	info.si_signo = sig;
1656	info.si_errno = 0;
1657	info.si_code = SI_KERNEL;
1658	info.si_pid = 0;
1659	info.si_uid = 0;
1660	force_sig_info(&info);
1661}
1662EXPORT_SYMBOL(force_sig);
1663
1664void force_fatal_sig(int sig)
1665{
1666	struct kernel_siginfo info;
1667
1668	clear_siginfo(&info);
1669	info.si_signo = sig;
1670	info.si_errno = 0;
1671	info.si_code = SI_KERNEL;
1672	info.si_pid = 0;
1673	info.si_uid = 0;
1674	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1675}
1676
1677void force_exit_sig(int sig)
1678{
1679	struct kernel_siginfo info;
1680
1681	clear_siginfo(&info);
1682	info.si_signo = sig;
1683	info.si_errno = 0;
1684	info.si_code = SI_KERNEL;
1685	info.si_pid = 0;
1686	info.si_uid = 0;
1687	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1688}
1689
1690/*
1691 * When things go south during signal handling, we
1692 * will force a SIGSEGV. And if the signal that caused
1693 * the problem was already a SIGSEGV, we'll want to
1694 * make sure we don't even try to deliver the signal..
1695 */
1696void force_sigsegv(int sig)
 
1697{
1698	if (sig == SIGSEGV)
1699		force_fatal_sig(SIGSEGV);
1700	else
1701		force_sig(SIGSEGV);
1702}
1703
1704int force_sig_fault_to_task(int sig, int code, void __user *addr
1705	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1706	, struct task_struct *t)
1707{
1708	struct kernel_siginfo info;
1709
1710	clear_siginfo(&info);
1711	info.si_signo = sig;
1712	info.si_errno = 0;
1713	info.si_code  = code;
1714	info.si_addr  = addr;
1715#ifdef __ia64__
1716	info.si_imm = imm;
1717	info.si_flags = flags;
1718	info.si_isr = isr;
1719#endif
1720	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1721}
1722
1723int force_sig_fault(int sig, int code, void __user *addr
1724	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1725{
1726	return force_sig_fault_to_task(sig, code, addr
1727				       ___ARCH_SI_IA64(imm, flags, isr), current);
1728}
1729
1730int send_sig_fault(int sig, int code, void __user *addr
1731	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1732	, struct task_struct *t)
1733{
1734	struct kernel_siginfo info;
1735
1736	clear_siginfo(&info);
1737	info.si_signo = sig;
1738	info.si_errno = 0;
1739	info.si_code  = code;
1740	info.si_addr  = addr;
1741#ifdef __ia64__
1742	info.si_imm = imm;
1743	info.si_flags = flags;
1744	info.si_isr = isr;
1745#endif
1746	return send_sig_info(info.si_signo, &info, t);
1747}
1748
1749int force_sig_mceerr(int code, void __user *addr, short lsb)
1750{
1751	struct kernel_siginfo info;
1752
1753	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1754	clear_siginfo(&info);
1755	info.si_signo = SIGBUS;
1756	info.si_errno = 0;
1757	info.si_code = code;
1758	info.si_addr = addr;
1759	info.si_addr_lsb = lsb;
1760	return force_sig_info(&info);
1761}
1762
1763int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1764{
1765	struct kernel_siginfo info;
1766
1767	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1768	clear_siginfo(&info);
1769	info.si_signo = SIGBUS;
1770	info.si_errno = 0;
1771	info.si_code = code;
1772	info.si_addr = addr;
1773	info.si_addr_lsb = lsb;
1774	return send_sig_info(info.si_signo, &info, t);
1775}
1776EXPORT_SYMBOL(send_sig_mceerr);
1777
1778int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1779{
1780	struct kernel_siginfo info;
1781
1782	clear_siginfo(&info);
1783	info.si_signo = SIGSEGV;
1784	info.si_errno = 0;
1785	info.si_code  = SEGV_BNDERR;
1786	info.si_addr  = addr;
1787	info.si_lower = lower;
1788	info.si_upper = upper;
1789	return force_sig_info(&info);
1790}
1791
1792#ifdef SEGV_PKUERR
1793int force_sig_pkuerr(void __user *addr, u32 pkey)
1794{
1795	struct kernel_siginfo info;
1796
1797	clear_siginfo(&info);
1798	info.si_signo = SIGSEGV;
1799	info.si_errno = 0;
1800	info.si_code  = SEGV_PKUERR;
1801	info.si_addr  = addr;
1802	info.si_pkey  = pkey;
1803	return force_sig_info(&info);
1804}
1805#endif
1806
1807int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1808{
1809	struct kernel_siginfo info;
1810
1811	clear_siginfo(&info);
1812	info.si_signo     = SIGTRAP;
1813	info.si_errno     = 0;
1814	info.si_code      = TRAP_PERF;
1815	info.si_addr      = addr;
1816	info.si_perf_data = sig_data;
1817	info.si_perf_type = type;
1818
1819	/*
1820	 * Signals generated by perf events should not terminate the whole
1821	 * process if SIGTRAP is blocked, however, delivering the signal
1822	 * asynchronously is better than not delivering at all. But tell user
1823	 * space if the signal was asynchronous, so it can clearly be
1824	 * distinguished from normal synchronous ones.
1825	 */
1826	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1827				     TRAP_PERF_FLAG_ASYNC :
1828				     0;
1829
1830	return send_sig_info(info.si_signo, &info, current);
1831}
1832
1833/**
1834 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1835 * @syscall: syscall number to send to userland
1836 * @reason: filter-supplied reason code to send to userland (via si_errno)
1837 * @force_coredump: true to trigger a coredump
1838 *
1839 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1840 */
1841int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1842{
1843	struct kernel_siginfo info;
1844
1845	clear_siginfo(&info);
1846	info.si_signo = SIGSYS;
1847	info.si_code = SYS_SECCOMP;
1848	info.si_call_addr = (void __user *)KSTK_EIP(current);
1849	info.si_errno = reason;
1850	info.si_arch = syscall_get_arch(current);
1851	info.si_syscall = syscall;
1852	return force_sig_info_to_task(&info, current,
1853		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1854}
1855
1856/* For the crazy architectures that include trap information in
1857 * the errno field, instead of an actual errno value.
1858 */
1859int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1860{
1861	struct kernel_siginfo info;
1862
1863	clear_siginfo(&info);
1864	info.si_signo = SIGTRAP;
1865	info.si_errno = errno;
1866	info.si_code  = TRAP_HWBKPT;
1867	info.si_addr  = addr;
1868	return force_sig_info(&info);
1869}
1870
1871/* For the rare architectures that include trap information using
1872 * si_trapno.
1873 */
1874int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1875{
1876	struct kernel_siginfo info;
1877
1878	clear_siginfo(&info);
1879	info.si_signo = sig;
1880	info.si_errno = 0;
1881	info.si_code  = code;
1882	info.si_addr  = addr;
1883	info.si_trapno = trapno;
1884	return force_sig_info(&info);
1885}
1886
1887/* For the rare architectures that include trap information using
1888 * si_trapno.
1889 */
1890int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1891			  struct task_struct *t)
1892{
1893	struct kernel_siginfo info;
1894
1895	clear_siginfo(&info);
1896	info.si_signo = sig;
1897	info.si_errno = 0;
1898	info.si_code  = code;
1899	info.si_addr  = addr;
1900	info.si_trapno = trapno;
1901	return send_sig_info(info.si_signo, &info, t);
1902}
1903
1904int kill_pgrp(struct pid *pid, int sig, int priv)
1905{
1906	int ret;
1907
1908	read_lock(&tasklist_lock);
1909	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1910	read_unlock(&tasklist_lock);
1911
1912	return ret;
1913}
1914EXPORT_SYMBOL(kill_pgrp);
1915
1916int kill_pid(struct pid *pid, int sig, int priv)
1917{
1918	return kill_pid_info(sig, __si_special(priv), pid);
1919}
1920EXPORT_SYMBOL(kill_pid);
1921
1922/*
1923 * These functions support sending signals using preallocated sigqueue
1924 * structures.  This is needed "because realtime applications cannot
1925 * afford to lose notifications of asynchronous events, like timer
1926 * expirations or I/O completions".  In the case of POSIX Timers
1927 * we allocate the sigqueue structure from the timer_create.  If this
1928 * allocation fails we are able to report the failure to the application
1929 * with an EAGAIN error.
1930 */
1931struct sigqueue *sigqueue_alloc(void)
1932{
1933	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
 
 
 
 
 
1934}
1935
1936void sigqueue_free(struct sigqueue *q)
1937{
1938	unsigned long flags;
1939	spinlock_t *lock = &current->sighand->siglock;
1940
1941	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1942	/*
1943	 * We must hold ->siglock while testing q->list
1944	 * to serialize with collect_signal() or with
1945	 * __exit_signal()->flush_sigqueue().
1946	 */
1947	spin_lock_irqsave(lock, flags);
1948	q->flags &= ~SIGQUEUE_PREALLOC;
1949	/*
1950	 * If it is queued it will be freed when dequeued,
1951	 * like the "regular" sigqueue.
1952	 */
1953	if (!list_empty(&q->list))
1954		q = NULL;
1955	spin_unlock_irqrestore(lock, flags);
1956
1957	if (q)
1958		__sigqueue_free(q);
1959}
1960
1961int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1962{
1963	int sig = q->info.si_signo;
1964	struct sigpending *pending;
1965	struct task_struct *t;
1966	unsigned long flags;
1967	int ret, result;
1968
1969	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1970
1971	ret = -1;
1972	rcu_read_lock();
1973	t = pid_task(pid, type);
1974	if (!t || !likely(lock_task_sighand(t, &flags)))
1975		goto ret;
1976
1977	ret = 1; /* the signal is ignored */
1978	result = TRACE_SIGNAL_IGNORED;
1979	if (!prepare_signal(sig, t, false))
1980		goto out;
1981
1982	ret = 0;
1983	if (unlikely(!list_empty(&q->list))) {
1984		/*
1985		 * If an SI_TIMER entry is already queue just increment
1986		 * the overrun count.
1987		 */
1988		BUG_ON(q->info.si_code != SI_TIMER);
1989		q->info.si_overrun++;
1990		result = TRACE_SIGNAL_ALREADY_PENDING;
1991		goto out;
1992	}
1993	q->info.si_overrun = 0;
1994
1995	signalfd_notify(t, sig);
1996	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1997	list_add_tail(&q->list, &pending->list);
1998	sigaddset(&pending->signal, sig);
1999	complete_signal(sig, t, type);
2000	result = TRACE_SIGNAL_DELIVERED;
2001out:
2002	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2003	unlock_task_sighand(t, &flags);
2004ret:
2005	rcu_read_unlock();
2006	return ret;
2007}
2008
2009static void do_notify_pidfd(struct task_struct *task)
2010{
2011	struct pid *pid;
2012
2013	WARN_ON(task->exit_state == 0);
2014	pid = task_pid(task);
2015	wake_up_all(&pid->wait_pidfd);
2016}
2017
2018/*
2019 * Let a parent know about the death of a child.
2020 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2021 *
2022 * Returns true if our parent ignored us and so we've switched to
2023 * self-reaping.
2024 */
2025bool do_notify_parent(struct task_struct *tsk, int sig)
2026{
2027	struct kernel_siginfo info;
2028	unsigned long flags;
2029	struct sighand_struct *psig;
2030	bool autoreap = false;
2031	u64 utime, stime;
2032
2033	WARN_ON_ONCE(sig == -1);
2034
2035	/* do_notify_parent_cldstop should have been called instead.  */
2036	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2037
2038	WARN_ON_ONCE(!tsk->ptrace &&
2039	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2040
2041	/* Wake up all pidfd waiters */
2042	do_notify_pidfd(tsk);
2043
2044	if (sig != SIGCHLD) {
2045		/*
2046		 * This is only possible if parent == real_parent.
2047		 * Check if it has changed security domain.
2048		 */
2049		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2050			sig = SIGCHLD;
2051	}
2052
2053	clear_siginfo(&info);
2054	info.si_signo = sig;
2055	info.si_errno = 0;
2056	/*
2057	 * We are under tasklist_lock here so our parent is tied to
2058	 * us and cannot change.
2059	 *
2060	 * task_active_pid_ns will always return the same pid namespace
2061	 * until a task passes through release_task.
2062	 *
2063	 * write_lock() currently calls preempt_disable() which is the
2064	 * same as rcu_read_lock(), but according to Oleg, this is not
2065	 * correct to rely on this
2066	 */
2067	rcu_read_lock();
2068	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2069	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2070				       task_uid(tsk));
2071	rcu_read_unlock();
2072
2073	task_cputime(tsk, &utime, &stime);
2074	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2075	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2076
2077	info.si_status = tsk->exit_code & 0x7f;
2078	if (tsk->exit_code & 0x80)
2079		info.si_code = CLD_DUMPED;
2080	else if (tsk->exit_code & 0x7f)
2081		info.si_code = CLD_KILLED;
2082	else {
2083		info.si_code = CLD_EXITED;
2084		info.si_status = tsk->exit_code >> 8;
2085	}
2086
2087	psig = tsk->parent->sighand;
2088	spin_lock_irqsave(&psig->siglock, flags);
2089	if (!tsk->ptrace && sig == SIGCHLD &&
2090	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2091	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2092		/*
2093		 * We are exiting and our parent doesn't care.  POSIX.1
2094		 * defines special semantics for setting SIGCHLD to SIG_IGN
2095		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2096		 * automatically and not left for our parent's wait4 call.
2097		 * Rather than having the parent do it as a magic kind of
2098		 * signal handler, we just set this to tell do_exit that we
2099		 * can be cleaned up without becoming a zombie.  Note that
2100		 * we still call __wake_up_parent in this case, because a
2101		 * blocked sys_wait4 might now return -ECHILD.
2102		 *
2103		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2104		 * is implementation-defined: we do (if you don't want
2105		 * it, just use SIG_IGN instead).
2106		 */
2107		autoreap = true;
2108		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2109			sig = 0;
2110	}
2111	/*
2112	 * Send with __send_signal as si_pid and si_uid are in the
2113	 * parent's namespaces.
2114	 */
2115	if (valid_signal(sig) && sig)
2116		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2117	__wake_up_parent(tsk, tsk->parent);
2118	spin_unlock_irqrestore(&psig->siglock, flags);
2119
2120	return autoreap;
2121}
2122
2123/**
2124 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2125 * @tsk: task reporting the state change
2126 * @for_ptracer: the notification is for ptracer
2127 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2128 *
2129 * Notify @tsk's parent that the stopped/continued state has changed.  If
2130 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2131 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2132 *
2133 * CONTEXT:
2134 * Must be called with tasklist_lock at least read locked.
2135 */
2136static void do_notify_parent_cldstop(struct task_struct *tsk,
2137				     bool for_ptracer, int why)
2138{
2139	struct kernel_siginfo info;
2140	unsigned long flags;
2141	struct task_struct *parent;
2142	struct sighand_struct *sighand;
2143	u64 utime, stime;
2144
2145	if (for_ptracer) {
2146		parent = tsk->parent;
2147	} else {
2148		tsk = tsk->group_leader;
2149		parent = tsk->real_parent;
2150	}
2151
2152	clear_siginfo(&info);
2153	info.si_signo = SIGCHLD;
2154	info.si_errno = 0;
2155	/*
2156	 * see comment in do_notify_parent() about the following 4 lines
2157	 */
2158	rcu_read_lock();
2159	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2160	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2161	rcu_read_unlock();
2162
2163	task_cputime(tsk, &utime, &stime);
2164	info.si_utime = nsec_to_clock_t(utime);
2165	info.si_stime = nsec_to_clock_t(stime);
2166
2167 	info.si_code = why;
2168 	switch (why) {
2169 	case CLD_CONTINUED:
2170 		info.si_status = SIGCONT;
2171 		break;
2172 	case CLD_STOPPED:
2173 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2174 		break;
2175 	case CLD_TRAPPED:
2176 		info.si_status = tsk->exit_code & 0x7f;
2177 		break;
2178 	default:
2179 		BUG();
2180 	}
2181
2182	sighand = parent->sighand;
2183	spin_lock_irqsave(&sighand->siglock, flags);
2184	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2185	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2186		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2187	/*
2188	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2189	 */
2190	__wake_up_parent(tsk, parent);
2191	spin_unlock_irqrestore(&sighand->siglock, flags);
2192}
2193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2194/*
2195 * This must be called with current->sighand->siglock held.
2196 *
2197 * This should be the path for all ptrace stops.
2198 * We always set current->last_siginfo while stopped here.
2199 * That makes it a way to test a stopped process for
2200 * being ptrace-stopped vs being job-control-stopped.
2201 *
2202 * Returns the signal the ptracer requested the code resume
2203 * with.  If the code did not stop because the tracer is gone,
2204 * the stop signal remains unchanged unless clear_code.
2205 */
2206static int ptrace_stop(int exit_code, int why, unsigned long message,
2207		       kernel_siginfo_t *info)
2208	__releases(&current->sighand->siglock)
2209	__acquires(&current->sighand->siglock)
2210{
2211	bool gstop_done = false;
2212
2213	if (arch_ptrace_stop_needed()) {
2214		/*
2215		 * The arch code has something special to do before a
2216		 * ptrace stop.  This is allowed to block, e.g. for faults
2217		 * on user stack pages.  We can't keep the siglock while
2218		 * calling arch_ptrace_stop, so we must release it now.
2219		 * To preserve proper semantics, we must do this before
2220		 * any signal bookkeeping like checking group_stop_count.
 
 
 
2221		 */
2222		spin_unlock_irq(&current->sighand->siglock);
2223		arch_ptrace_stop();
2224		spin_lock_irq(&current->sighand->siglock);
 
 
2225	}
2226
2227	/*
2228	 * After this point ptrace_signal_wake_up or signal_wake_up
2229	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2230	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2231	 * signals here to prevent ptrace_stop sleeping in schedule.
2232	 */
2233	if (!current->ptrace || __fatal_signal_pending(current))
2234		return exit_code;
2235
2236	set_special_state(TASK_TRACED);
2237	current->jobctl |= JOBCTL_TRACED;
2238
2239	/*
2240	 * We're committing to trapping.  TRACED should be visible before
2241	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2242	 * Also, transition to TRACED and updates to ->jobctl should be
2243	 * atomic with respect to siglock and should be done after the arch
2244	 * hook as siglock is released and regrabbed across it.
2245	 *
2246	 *     TRACER				    TRACEE
2247	 *
2248	 *     ptrace_attach()
2249	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2250	 *     do_wait()
2251	 *       set_current_state()                smp_wmb();
2252	 *       ptrace_do_wait()
2253	 *         wait_task_stopped()
2254	 *           task_stopped_code()
2255	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2256	 */
2257	smp_wmb();
2258
2259	current->ptrace_message = message;
2260	current->last_siginfo = info;
2261	current->exit_code = exit_code;
2262
2263	/*
2264	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2265	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2266	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2267	 * could be clear now.  We act as if SIGCONT is received after
2268	 * TASK_TRACED is entered - ignore it.
2269	 */
2270	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2271		gstop_done = task_participate_group_stop(current);
2272
2273	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2274	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2275	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2276		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2277
2278	/* entering a trap, clear TRAPPING */
2279	task_clear_jobctl_trapping(current);
2280
2281	spin_unlock_irq(&current->sighand->siglock);
2282	read_lock(&tasklist_lock);
2283	/*
2284	 * Notify parents of the stop.
2285	 *
2286	 * While ptraced, there are two parents - the ptracer and
2287	 * the real_parent of the group_leader.  The ptracer should
2288	 * know about every stop while the real parent is only
2289	 * interested in the completion of group stop.  The states
2290	 * for the two don't interact with each other.  Notify
2291	 * separately unless they're gonna be duplicates.
2292	 */
2293	if (current->ptrace)
2294		do_notify_parent_cldstop(current, true, why);
2295	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2296		do_notify_parent_cldstop(current, false, why);
2297
2298	/*
2299	 * Don't want to allow preemption here, because
2300	 * sys_ptrace() needs this task to be inactive.
2301	 *
2302	 * XXX: implement read_unlock_no_resched().
2303	 */
2304	preempt_disable();
2305	read_unlock(&tasklist_lock);
2306	cgroup_enter_frozen();
2307	preempt_enable_no_resched();
2308	schedule();
2309	cgroup_leave_frozen(true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2310
2311	/*
2312	 * We are back.  Now reacquire the siglock before touching
2313	 * last_siginfo, so that we are sure to have synchronized with
2314	 * any signal-sending on another CPU that wants to examine it.
2315	 */
2316	spin_lock_irq(&current->sighand->siglock);
2317	exit_code = current->exit_code;
2318	current->last_siginfo = NULL;
2319	current->ptrace_message = 0;
2320	current->exit_code = 0;
2321
2322	/* LISTENING can be set only during STOP traps, clear it */
2323	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2324
2325	/*
2326	 * Queued signals ignored us while we were stopped for tracing.
2327	 * So check for any that we should take before resuming user mode.
2328	 * This sets TIF_SIGPENDING, but never clears it.
2329	 */
2330	recalc_sigpending_tsk(current);
2331	return exit_code;
2332}
2333
2334static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2335{
2336	kernel_siginfo_t info;
2337
2338	clear_siginfo(&info);
2339	info.si_signo = signr;
2340	info.si_code = exit_code;
2341	info.si_pid = task_pid_vnr(current);
2342	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2343
2344	/* Let the debugger run.  */
2345	return ptrace_stop(exit_code, why, message, &info);
2346}
2347
2348int ptrace_notify(int exit_code, unsigned long message)
2349{
2350	int signr;
2351
2352	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2353	if (unlikely(task_work_pending(current)))
2354		task_work_run();
2355
2356	spin_lock_irq(&current->sighand->siglock);
2357	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2358	spin_unlock_irq(&current->sighand->siglock);
2359	return signr;
2360}
2361
2362/**
2363 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2364 * @signr: signr causing group stop if initiating
2365 *
2366 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2367 * and participate in it.  If already set, participate in the existing
2368 * group stop.  If participated in a group stop (and thus slept), %true is
2369 * returned with siglock released.
2370 *
2371 * If ptraced, this function doesn't handle stop itself.  Instead,
2372 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2373 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2374 * places afterwards.
2375 *
2376 * CONTEXT:
2377 * Must be called with @current->sighand->siglock held, which is released
2378 * on %true return.
2379 *
2380 * RETURNS:
2381 * %false if group stop is already cancelled or ptrace trap is scheduled.
2382 * %true if participated in group stop.
2383 */
2384static bool do_signal_stop(int signr)
2385	__releases(&current->sighand->siglock)
2386{
2387	struct signal_struct *sig = current->signal;
2388
2389	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2390		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2391		struct task_struct *t;
2392
2393		/* signr will be recorded in task->jobctl for retries */
2394		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2395
2396		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2397		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2398		    unlikely(sig->group_exec_task))
2399			return false;
2400		/*
2401		 * There is no group stop already in progress.  We must
2402		 * initiate one now.
2403		 *
2404		 * While ptraced, a task may be resumed while group stop is
2405		 * still in effect and then receive a stop signal and
2406		 * initiate another group stop.  This deviates from the
2407		 * usual behavior as two consecutive stop signals can't
2408		 * cause two group stops when !ptraced.  That is why we
2409		 * also check !task_is_stopped(t) below.
2410		 *
2411		 * The condition can be distinguished by testing whether
2412		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2413		 * group_exit_code in such case.
2414		 *
2415		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2416		 * an intervening stop signal is required to cause two
2417		 * continued events regardless of ptrace.
2418		 */
2419		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2420			sig->group_exit_code = signr;
2421
2422		sig->group_stop_count = 0;
2423
2424		if (task_set_jobctl_pending(current, signr | gstop))
2425			sig->group_stop_count++;
2426
2427		t = current;
2428		while_each_thread(current, t) {
2429			/*
2430			 * Setting state to TASK_STOPPED for a group
2431			 * stop is always done with the siglock held,
2432			 * so this check has no races.
2433			 */
2434			if (!task_is_stopped(t) &&
2435			    task_set_jobctl_pending(t, signr | gstop)) {
2436				sig->group_stop_count++;
2437				if (likely(!(t->ptrace & PT_SEIZED)))
2438					signal_wake_up(t, 0);
2439				else
2440					ptrace_trap_notify(t);
2441			}
2442		}
2443	}
2444
2445	if (likely(!current->ptrace)) {
2446		int notify = 0;
2447
2448		/*
2449		 * If there are no other threads in the group, or if there
2450		 * is a group stop in progress and we are the last to stop,
2451		 * report to the parent.
2452		 */
2453		if (task_participate_group_stop(current))
2454			notify = CLD_STOPPED;
2455
2456		current->jobctl |= JOBCTL_STOPPED;
2457		set_special_state(TASK_STOPPED);
2458		spin_unlock_irq(&current->sighand->siglock);
2459
2460		/*
2461		 * Notify the parent of the group stop completion.  Because
2462		 * we're not holding either the siglock or tasklist_lock
2463		 * here, ptracer may attach inbetween; however, this is for
2464		 * group stop and should always be delivered to the real
2465		 * parent of the group leader.  The new ptracer will get
2466		 * its notification when this task transitions into
2467		 * TASK_TRACED.
2468		 */
2469		if (notify) {
2470			read_lock(&tasklist_lock);
2471			do_notify_parent_cldstop(current, false, notify);
2472			read_unlock(&tasklist_lock);
2473		}
2474
2475		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2476		cgroup_enter_frozen();
2477		schedule();
2478		return true;
2479	} else {
2480		/*
2481		 * While ptraced, group stop is handled by STOP trap.
2482		 * Schedule it and let the caller deal with it.
2483		 */
2484		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2485		return false;
2486	}
2487}
2488
2489/**
2490 * do_jobctl_trap - take care of ptrace jobctl traps
2491 *
2492 * When PT_SEIZED, it's used for both group stop and explicit
2493 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2494 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2495 * the stop signal; otherwise, %SIGTRAP.
2496 *
2497 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2498 * number as exit_code and no siginfo.
2499 *
2500 * CONTEXT:
2501 * Must be called with @current->sighand->siglock held, which may be
2502 * released and re-acquired before returning with intervening sleep.
2503 */
2504static void do_jobctl_trap(void)
2505{
2506	struct signal_struct *signal = current->signal;
2507	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2508
2509	if (current->ptrace & PT_SEIZED) {
2510		if (!signal->group_stop_count &&
2511		    !(signal->flags & SIGNAL_STOP_STOPPED))
2512			signr = SIGTRAP;
2513		WARN_ON_ONCE(!signr);
2514		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2515				 CLD_STOPPED, 0);
2516	} else {
2517		WARN_ON_ONCE(!signr);
2518		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
 
2519	}
2520}
2521
2522/**
2523 * do_freezer_trap - handle the freezer jobctl trap
2524 *
2525 * Puts the task into frozen state, if only the task is not about to quit.
2526 * In this case it drops JOBCTL_TRAP_FREEZE.
2527 *
2528 * CONTEXT:
2529 * Must be called with @current->sighand->siglock held,
2530 * which is always released before returning.
2531 */
2532static void do_freezer_trap(void)
2533	__releases(&current->sighand->siglock)
2534{
2535	/*
2536	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2537	 * let's make another loop to give it a chance to be handled.
2538	 * In any case, we'll return back.
2539	 */
2540	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2541	     JOBCTL_TRAP_FREEZE) {
2542		spin_unlock_irq(&current->sighand->siglock);
2543		return;
2544	}
2545
2546	/*
2547	 * Now we're sure that there is no pending fatal signal and no
2548	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2549	 * immediately (if there is a non-fatal signal pending), and
2550	 * put the task into sleep.
2551	 */
2552	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2553	clear_thread_flag(TIF_SIGPENDING);
2554	spin_unlock_irq(&current->sighand->siglock);
2555	cgroup_enter_frozen();
2556	schedule();
2557}
2558
2559static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2560{
 
2561	/*
2562	 * We do not check sig_kernel_stop(signr) but set this marker
2563	 * unconditionally because we do not know whether debugger will
2564	 * change signr. This flag has no meaning unless we are going
2565	 * to stop after return from ptrace_stop(). In this case it will
2566	 * be checked in do_signal_stop(), we should only stop if it was
2567	 * not cleared by SIGCONT while we were sleeping. See also the
2568	 * comment in dequeue_signal().
2569	 */
2570	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2571	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2572
2573	/* We're back.  Did the debugger cancel the sig?  */
 
2574	if (signr == 0)
2575		return signr;
2576
 
 
2577	/*
2578	 * Update the siginfo structure if the signal has
2579	 * changed.  If the debugger wanted something
2580	 * specific in the siginfo structure then it should
2581	 * have updated *info via PTRACE_SETSIGINFO.
2582	 */
2583	if (signr != info->si_signo) {
2584		clear_siginfo(info);
2585		info->si_signo = signr;
2586		info->si_errno = 0;
2587		info->si_code = SI_USER;
2588		rcu_read_lock();
2589		info->si_pid = task_pid_vnr(current->parent);
2590		info->si_uid = from_kuid_munged(current_user_ns(),
2591						task_uid(current->parent));
2592		rcu_read_unlock();
2593	}
2594
2595	/* If the (new) signal is now blocked, requeue it.  */
2596	if (sigismember(&current->blocked, signr) ||
2597	    fatal_signal_pending(current)) {
2598		send_signal_locked(signr, info, current, type);
2599		signr = 0;
2600	}
2601
2602	return signr;
2603}
2604
2605static void hide_si_addr_tag_bits(struct ksignal *ksig)
2606{
2607	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2608	case SIL_FAULT:
2609	case SIL_FAULT_TRAPNO:
2610	case SIL_FAULT_MCEERR:
2611	case SIL_FAULT_BNDERR:
2612	case SIL_FAULT_PKUERR:
2613	case SIL_FAULT_PERF_EVENT:
2614		ksig->info.si_addr = arch_untagged_si_addr(
2615			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2616		break;
2617	case SIL_KILL:
2618	case SIL_TIMER:
2619	case SIL_POLL:
2620	case SIL_CHLD:
2621	case SIL_RT:
2622	case SIL_SYS:
2623		break;
2624	}
2625}
2626
2627bool get_signal(struct ksignal *ksig)
2628{
2629	struct sighand_struct *sighand = current->sighand;
2630	struct signal_struct *signal = current->signal;
2631	int signr;
2632
2633	clear_notify_signal();
2634	if (unlikely(task_work_pending(current)))
2635		task_work_run();
2636
2637	if (!task_sigpending(current))
2638		return false;
2639
2640	if (unlikely(uprobe_deny_signal()))
2641		return false;
2642
2643	/*
2644	 * Do this once, we can't return to user-mode if freezing() == T.
2645	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2646	 * thus do not need another check after return.
2647	 */
2648	try_to_freeze();
2649
2650relock:
2651	spin_lock_irq(&sighand->siglock);
2652
2653	/*
2654	 * Every stopped thread goes here after wakeup. Check to see if
2655	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2656	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2657	 */
2658	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2659		int why;
2660
2661		if (signal->flags & SIGNAL_CLD_CONTINUED)
2662			why = CLD_CONTINUED;
2663		else
2664			why = CLD_STOPPED;
2665
2666		signal->flags &= ~SIGNAL_CLD_MASK;
2667
2668		spin_unlock_irq(&sighand->siglock);
2669
2670		/*
2671		 * Notify the parent that we're continuing.  This event is
2672		 * always per-process and doesn't make whole lot of sense
2673		 * for ptracers, who shouldn't consume the state via
2674		 * wait(2) either, but, for backward compatibility, notify
2675		 * the ptracer of the group leader too unless it's gonna be
2676		 * a duplicate.
2677		 */
2678		read_lock(&tasklist_lock);
2679		do_notify_parent_cldstop(current, false, why);
2680
2681		if (ptrace_reparented(current->group_leader))
2682			do_notify_parent_cldstop(current->group_leader,
2683						true, why);
2684		read_unlock(&tasklist_lock);
2685
2686		goto relock;
2687	}
2688
2689	for (;;) {
2690		struct k_sigaction *ka;
2691		enum pid_type type;
2692
2693		/* Has this task already been marked for death? */
2694		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2695		     signal->group_exec_task) {
2696			clear_siginfo(&ksig->info);
2697			ksig->info.si_signo = signr = SIGKILL;
2698			sigdelset(&current->pending.signal, SIGKILL);
2699			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2700				&sighand->action[SIGKILL - 1]);
2701			recalc_sigpending();
2702			goto fatal;
2703		}
2704
2705		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2706		    do_signal_stop(0))
2707			goto relock;
2708
2709		if (unlikely(current->jobctl &
2710			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2711			if (current->jobctl & JOBCTL_TRAP_MASK) {
2712				do_jobctl_trap();
2713				spin_unlock_irq(&sighand->siglock);
2714			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2715				do_freezer_trap();
2716
2717			goto relock;
2718		}
2719
2720		/*
2721		 * If the task is leaving the frozen state, let's update
2722		 * cgroup counters and reset the frozen bit.
2723		 */
2724		if (unlikely(cgroup_task_frozen(current))) {
2725			spin_unlock_irq(&sighand->siglock);
2726			cgroup_leave_frozen(false);
2727			goto relock;
2728		}
2729
2730		/*
2731		 * Signals generated by the execution of an instruction
2732		 * need to be delivered before any other pending signals
2733		 * so that the instruction pointer in the signal stack
2734		 * frame points to the faulting instruction.
2735		 */
2736		type = PIDTYPE_PID;
2737		signr = dequeue_synchronous_signal(&ksig->info);
2738		if (!signr)
2739			signr = dequeue_signal(current, &current->blocked,
2740					       &ksig->info, &type);
2741
2742		if (!signr)
2743			break; /* will return 0 */
2744
2745		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2746		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2747			signr = ptrace_signal(signr, &ksig->info, type);
2748			if (!signr)
2749				continue;
2750		}
2751
2752		ka = &sighand->action[signr-1];
2753
2754		/* Trace actually delivered signals. */
2755		trace_signal_deliver(signr, &ksig->info, ka);
2756
2757		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2758			continue;
2759		if (ka->sa.sa_handler != SIG_DFL) {
2760			/* Run the handler.  */
2761			ksig->ka = *ka;
2762
2763			if (ka->sa.sa_flags & SA_ONESHOT)
2764				ka->sa.sa_handler = SIG_DFL;
2765
2766			break; /* will return non-zero "signr" value */
2767		}
2768
2769		/*
2770		 * Now we are doing the default action for this signal.
2771		 */
2772		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2773			continue;
2774
2775		/*
2776		 * Global init gets no signals it doesn't want.
2777		 * Container-init gets no signals it doesn't want from same
2778		 * container.
2779		 *
2780		 * Note that if global/container-init sees a sig_kernel_only()
2781		 * signal here, the signal must have been generated internally
2782		 * or must have come from an ancestor namespace. In either
2783		 * case, the signal cannot be dropped.
2784		 */
2785		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2786				!sig_kernel_only(signr))
2787			continue;
2788
2789		if (sig_kernel_stop(signr)) {
2790			/*
2791			 * The default action is to stop all threads in
2792			 * the thread group.  The job control signals
2793			 * do nothing in an orphaned pgrp, but SIGSTOP
2794			 * always works.  Note that siglock needs to be
2795			 * dropped during the call to is_orphaned_pgrp()
2796			 * because of lock ordering with tasklist_lock.
2797			 * This allows an intervening SIGCONT to be posted.
2798			 * We need to check for that and bail out if necessary.
2799			 */
2800			if (signr != SIGSTOP) {
2801				spin_unlock_irq(&sighand->siglock);
2802
2803				/* signals can be posted during this window */
2804
2805				if (is_current_pgrp_orphaned())
2806					goto relock;
2807
2808				spin_lock_irq(&sighand->siglock);
2809			}
2810
2811			if (likely(do_signal_stop(ksig->info.si_signo))) {
2812				/* It released the siglock.  */
2813				goto relock;
2814			}
2815
2816			/*
2817			 * We didn't actually stop, due to a race
2818			 * with SIGCONT or something like that.
2819			 */
2820			continue;
2821		}
2822
2823	fatal:
2824		spin_unlock_irq(&sighand->siglock);
2825		if (unlikely(cgroup_task_frozen(current)))
2826			cgroup_leave_frozen(true);
2827
2828		/*
2829		 * Anything else is fatal, maybe with a core dump.
2830		 */
2831		current->flags |= PF_SIGNALED;
2832
2833		if (sig_kernel_coredump(signr)) {
2834			if (print_fatal_signals)
2835				print_fatal_signal(ksig->info.si_signo);
2836			proc_coredump_connector(current);
2837			/*
2838			 * If it was able to dump core, this kills all
2839			 * other threads in the group and synchronizes with
2840			 * their demise.  If we lost the race with another
2841			 * thread getting here, it set group_exit_code
2842			 * first and our do_group_exit call below will use
2843			 * that value and ignore the one we pass it.
2844			 */
2845			do_coredump(&ksig->info);
2846		}
2847
2848		/*
2849		 * PF_IO_WORKER threads will catch and exit on fatal signals
2850		 * themselves. They have cleanup that must be performed, so
2851		 * we cannot call do_exit() on their behalf.
2852		 */
2853		if (current->flags & PF_IO_WORKER)
2854			goto out;
2855
2856		/*
2857		 * Death signals, no core dump.
2858		 */
2859		do_group_exit(ksig->info.si_signo);
2860		/* NOTREACHED */
2861	}
2862	spin_unlock_irq(&sighand->siglock);
2863out:
2864	ksig->sig = signr;
2865
2866	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2867		hide_si_addr_tag_bits(ksig);
2868
2869	return ksig->sig > 0;
2870}
2871
2872/**
2873 * signal_delivered - called after signal delivery to update blocked signals
2874 * @ksig:		kernel signal struct
 
 
 
2875 * @stepping:		nonzero if debugger single-step or block-step in use
2876 *
2877 * This function should be called when a signal has successfully been
2878 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2879 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2880 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2881 */
2882static void signal_delivered(struct ksignal *ksig, int stepping)
 
2883{
2884	sigset_t blocked;
2885
2886	/* A signal was successfully delivered, and the
2887	   saved sigmask was stored on the signal frame,
2888	   and will be restored by sigreturn.  So we can
2889	   simply clear the restore sigmask flag.  */
2890	clear_restore_sigmask();
2891
2892	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2893	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2894		sigaddset(&blocked, ksig->sig);
2895	set_current_blocked(&blocked);
2896	if (current->sas_ss_flags & SS_AUTODISARM)
2897		sas_ss_reset(current);
2898	if (stepping)
2899		ptrace_notify(SIGTRAP, 0);
2900}
2901
2902void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2903{
2904	if (failed)
2905		force_sigsegv(ksig->sig);
2906	else
2907		signal_delivered(ksig, stepping);
 
2908}
2909
2910/*
2911 * It could be that complete_signal() picked us to notify about the
2912 * group-wide signal. Other threads should be notified now to take
2913 * the shared signals in @which since we will not.
2914 */
2915static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2916{
2917	sigset_t retarget;
2918	struct task_struct *t;
2919
2920	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2921	if (sigisemptyset(&retarget))
2922		return;
2923
2924	t = tsk;
2925	while_each_thread(tsk, t) {
2926		if (t->flags & PF_EXITING)
2927			continue;
2928
2929		if (!has_pending_signals(&retarget, &t->blocked))
2930			continue;
2931		/* Remove the signals this thread can handle. */
2932		sigandsets(&retarget, &retarget, &t->blocked);
2933
2934		if (!task_sigpending(t))
2935			signal_wake_up(t, 0);
2936
2937		if (sigisemptyset(&retarget))
2938			break;
2939	}
2940}
2941
2942void exit_signals(struct task_struct *tsk)
2943{
2944	int group_stop = 0;
2945	sigset_t unblocked;
2946
2947	/*
2948	 * @tsk is about to have PF_EXITING set - lock out users which
2949	 * expect stable threadgroup.
2950	 */
2951	cgroup_threadgroup_change_begin(tsk);
2952
2953	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2954		tsk->flags |= PF_EXITING;
2955		cgroup_threadgroup_change_end(tsk);
2956		return;
2957	}
2958
2959	spin_lock_irq(&tsk->sighand->siglock);
2960	/*
2961	 * From now this task is not visible for group-wide signals,
2962	 * see wants_signal(), do_signal_stop().
2963	 */
2964	tsk->flags |= PF_EXITING;
2965
2966	cgroup_threadgroup_change_end(tsk);
2967
2968	if (!task_sigpending(tsk))
2969		goto out;
2970
2971	unblocked = tsk->blocked;
2972	signotset(&unblocked);
2973	retarget_shared_pending(tsk, &unblocked);
2974
2975	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2976	    task_participate_group_stop(tsk))
2977		group_stop = CLD_STOPPED;
2978out:
2979	spin_unlock_irq(&tsk->sighand->siglock);
2980
2981	/*
2982	 * If group stop has completed, deliver the notification.  This
2983	 * should always go to the real parent of the group leader.
2984	 */
2985	if (unlikely(group_stop)) {
2986		read_lock(&tasklist_lock);
2987		do_notify_parent_cldstop(tsk, false, group_stop);
2988		read_unlock(&tasklist_lock);
2989	}
2990}
2991
 
 
 
 
 
 
 
 
 
 
 
2992/*
2993 * System call entry points.
2994 */
2995
2996/**
2997 *  sys_restart_syscall - restart a system call
2998 */
2999SYSCALL_DEFINE0(restart_syscall)
3000{
3001	struct restart_block *restart = &current->restart_block;
3002	return restart->fn(restart);
3003}
3004
3005long do_no_restart_syscall(struct restart_block *param)
3006{
3007	return -EINTR;
3008}
3009
3010static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3011{
3012	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3013		sigset_t newblocked;
3014		/* A set of now blocked but previously unblocked signals. */
3015		sigandnsets(&newblocked, newset, &current->blocked);
3016		retarget_shared_pending(tsk, &newblocked);
3017	}
3018	tsk->blocked = *newset;
3019	recalc_sigpending();
3020}
3021
3022/**
3023 * set_current_blocked - change current->blocked mask
3024 * @newset: new mask
3025 *
3026 * It is wrong to change ->blocked directly, this helper should be used
3027 * to ensure the process can't miss a shared signal we are going to block.
3028 */
3029void set_current_blocked(sigset_t *newset)
3030{
3031	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3032	__set_current_blocked(newset);
3033}
3034
3035void __set_current_blocked(const sigset_t *newset)
3036{
3037	struct task_struct *tsk = current;
3038
3039	/*
3040	 * In case the signal mask hasn't changed, there is nothing we need
3041	 * to do. The current->blocked shouldn't be modified by other task.
3042	 */
3043	if (sigequalsets(&tsk->blocked, newset))
3044		return;
3045
3046	spin_lock_irq(&tsk->sighand->siglock);
3047	__set_task_blocked(tsk, newset);
3048	spin_unlock_irq(&tsk->sighand->siglock);
3049}
3050
3051/*
3052 * This is also useful for kernel threads that want to temporarily
3053 * (or permanently) block certain signals.
3054 *
3055 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3056 * interface happily blocks "unblockable" signals like SIGKILL
3057 * and friends.
3058 */
3059int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3060{
3061	struct task_struct *tsk = current;
3062	sigset_t newset;
3063
3064	/* Lockless, only current can change ->blocked, never from irq */
3065	if (oldset)
3066		*oldset = tsk->blocked;
3067
3068	switch (how) {
3069	case SIG_BLOCK:
3070		sigorsets(&newset, &tsk->blocked, set);
3071		break;
3072	case SIG_UNBLOCK:
3073		sigandnsets(&newset, &tsk->blocked, set);
3074		break;
3075	case SIG_SETMASK:
3076		newset = *set;
3077		break;
3078	default:
3079		return -EINVAL;
3080	}
3081
3082	__set_current_blocked(&newset);
3083	return 0;
3084}
3085EXPORT_SYMBOL(sigprocmask);
3086
3087/*
3088 * The api helps set app-provided sigmasks.
3089 *
3090 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3091 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3092 *
3093 * Note that it does set_restore_sigmask() in advance, so it must be always
3094 * paired with restore_saved_sigmask_unless() before return from syscall.
3095 */
3096int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3097{
3098	sigset_t kmask;
3099
3100	if (!umask)
3101		return 0;
3102	if (sigsetsize != sizeof(sigset_t))
3103		return -EINVAL;
3104	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3105		return -EFAULT;
3106
3107	set_restore_sigmask();
3108	current->saved_sigmask = current->blocked;
3109	set_current_blocked(&kmask);
3110
3111	return 0;
3112}
3113
3114#ifdef CONFIG_COMPAT
3115int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3116			    size_t sigsetsize)
3117{
3118	sigset_t kmask;
3119
3120	if (!umask)
3121		return 0;
3122	if (sigsetsize != sizeof(compat_sigset_t))
3123		return -EINVAL;
3124	if (get_compat_sigset(&kmask, umask))
3125		return -EFAULT;
3126
3127	set_restore_sigmask();
3128	current->saved_sigmask = current->blocked;
3129	set_current_blocked(&kmask);
3130
3131	return 0;
3132}
3133#endif
3134
3135/**
3136 *  sys_rt_sigprocmask - change the list of currently blocked signals
3137 *  @how: whether to add, remove, or set signals
3138 *  @nset: stores pending signals
3139 *  @oset: previous value of signal mask if non-null
3140 *  @sigsetsize: size of sigset_t type
3141 */
3142SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3143		sigset_t __user *, oset, size_t, sigsetsize)
3144{
3145	sigset_t old_set, new_set;
3146	int error;
3147
3148	/* XXX: Don't preclude handling different sized sigset_t's.  */
3149	if (sigsetsize != sizeof(sigset_t))
3150		return -EINVAL;
3151
3152	old_set = current->blocked;
3153
3154	if (nset) {
3155		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3156			return -EFAULT;
3157		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3158
3159		error = sigprocmask(how, &new_set, NULL);
3160		if (error)
3161			return error;
3162	}
3163
3164	if (oset) {
3165		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3166			return -EFAULT;
3167	}
3168
3169	return 0;
3170}
3171
3172#ifdef CONFIG_COMPAT
3173COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3174		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3175{
 
3176	sigset_t old_set = current->blocked;
3177
3178	/* XXX: Don't preclude handling different sized sigset_t's.  */
3179	if (sigsetsize != sizeof(sigset_t))
3180		return -EINVAL;
3181
3182	if (nset) {
 
3183		sigset_t new_set;
3184		int error;
3185		if (get_compat_sigset(&new_set, nset))
3186			return -EFAULT;
 
 
3187		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3188
3189		error = sigprocmask(how, &new_set, NULL);
3190		if (error)
3191			return error;
3192	}
3193	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
 
 
 
 
 
 
 
 
 
 
3194}
3195#endif
3196
3197static void do_sigpending(sigset_t *set)
3198{
 
 
 
3199	spin_lock_irq(&current->sighand->siglock);
3200	sigorsets(set, &current->pending.signal,
3201		  &current->signal->shared_pending.signal);
3202	spin_unlock_irq(&current->sighand->siglock);
3203
3204	/* Outside the lock because only this thread touches it.  */
3205	sigandsets(set, &current->blocked, set);
 
3206}
3207
3208/**
3209 *  sys_rt_sigpending - examine a pending signal that has been raised
3210 *			while blocked
3211 *  @uset: stores pending signals
3212 *  @sigsetsize: size of sigset_t type or larger
3213 */
3214SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3215{
3216	sigset_t set;
3217
3218	if (sigsetsize > sizeof(*uset))
3219		return -EINVAL;
3220
3221	do_sigpending(&set);
3222
3223	if (copy_to_user(uset, &set, sigsetsize))
3224		return -EFAULT;
3225
3226	return 0;
3227}
3228
3229#ifdef CONFIG_COMPAT
3230COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3231		compat_size_t, sigsetsize)
3232{
 
3233	sigset_t set;
3234
3235	if (sigsetsize > sizeof(*uset))
3236		return -EINVAL;
3237
3238	do_sigpending(&set);
3239
3240	return put_compat_sigset(uset, &set, sigsetsize);
3241}
3242#endif
3243
3244static const struct {
3245	unsigned char limit, layout;
3246} sig_sicodes[] = {
3247	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3248	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3249	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3250	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3251	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3252#if defined(SIGEMT)
3253	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3254#endif
3255	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3256	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3257	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3258};
3259
3260static bool known_siginfo_layout(unsigned sig, int si_code)
3261{
3262	if (si_code == SI_KERNEL)
3263		return true;
3264	else if ((si_code > SI_USER)) {
3265		if (sig_specific_sicodes(sig)) {
3266			if (si_code <= sig_sicodes[sig].limit)
3267				return true;
3268		}
3269		else if (si_code <= NSIGPOLL)
3270			return true;
3271	}
3272	else if (si_code >= SI_DETHREAD)
3273		return true;
3274	else if (si_code == SI_ASYNCNL)
3275		return true;
3276	return false;
3277}
3278
3279enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3280{
3281	enum siginfo_layout layout = SIL_KILL;
3282	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3283		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3284		    (si_code <= sig_sicodes[sig].limit)) {
3285			layout = sig_sicodes[sig].layout;
3286			/* Handle the exceptions */
3287			if ((sig == SIGBUS) &&
3288			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3289				layout = SIL_FAULT_MCEERR;
3290			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3291				layout = SIL_FAULT_BNDERR;
3292#ifdef SEGV_PKUERR
3293			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3294				layout = SIL_FAULT_PKUERR;
3295#endif
3296			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3297				layout = SIL_FAULT_PERF_EVENT;
3298			else if (IS_ENABLED(CONFIG_SPARC) &&
3299				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3300				layout = SIL_FAULT_TRAPNO;
3301			else if (IS_ENABLED(CONFIG_ALPHA) &&
3302				 ((sig == SIGFPE) ||
3303				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3304				layout = SIL_FAULT_TRAPNO;
3305		}
3306		else if (si_code <= NSIGPOLL)
3307			layout = SIL_POLL;
3308	} else {
3309		if (si_code == SI_TIMER)
3310			layout = SIL_TIMER;
3311		else if (si_code == SI_SIGIO)
3312			layout = SIL_POLL;
3313		else if (si_code < 0)
3314			layout = SIL_RT;
3315	}
3316	return layout;
3317}
3318
3319static inline char __user *si_expansion(const siginfo_t __user *info)
3320{
3321	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3322}
3323
3324int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3325{
3326	char __user *expansion = si_expansion(to);
3327	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3328		return -EFAULT;
3329	if (clear_user(expansion, SI_EXPANSION_SIZE))
3330		return -EFAULT;
3331	return 0;
3332}
3333
3334static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3335				       const siginfo_t __user *from)
3336{
3337	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3338		char __user *expansion = si_expansion(from);
3339		char buf[SI_EXPANSION_SIZE];
3340		int i;
3341		/*
3342		 * An unknown si_code might need more than
3343		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3344		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3345		 * will return this data to userspace exactly.
3346		 */
3347		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3348			return -EFAULT;
3349		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3350			if (buf[i] != 0)
3351				return -E2BIG;
3352		}
3353	}
3354	return 0;
3355}
3356
3357static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3358				    const siginfo_t __user *from)
3359{
3360	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3361		return -EFAULT;
3362	to->si_signo = signo;
3363	return post_copy_siginfo_from_user(to, from);
3364}
3365
3366int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3367{
3368	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3369		return -EFAULT;
3370	return post_copy_siginfo_from_user(to, from);
3371}
3372
3373#ifdef CONFIG_COMPAT
3374/**
3375 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3376 * @to: compat siginfo destination
3377 * @from: kernel siginfo source
3378 *
3379 * Note: This function does not work properly for the SIGCHLD on x32, but
3380 * fortunately it doesn't have to.  The only valid callers for this function are
3381 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3382 * The latter does not care because SIGCHLD will never cause a coredump.
3383 */
3384void copy_siginfo_to_external32(struct compat_siginfo *to,
3385		const struct kernel_siginfo *from)
3386{
3387	memset(to, 0, sizeof(*to));
3388
3389	to->si_signo = from->si_signo;
3390	to->si_errno = from->si_errno;
3391	to->si_code  = from->si_code;
3392	switch(siginfo_layout(from->si_signo, from->si_code)) {
3393	case SIL_KILL:
3394		to->si_pid = from->si_pid;
3395		to->si_uid = from->si_uid;
3396		break;
3397	case SIL_TIMER:
3398		to->si_tid     = from->si_tid;
3399		to->si_overrun = from->si_overrun;
3400		to->si_int     = from->si_int;
3401		break;
3402	case SIL_POLL:
3403		to->si_band = from->si_band;
3404		to->si_fd   = from->si_fd;
3405		break;
3406	case SIL_FAULT:
3407		to->si_addr = ptr_to_compat(from->si_addr);
3408		break;
3409	case SIL_FAULT_TRAPNO:
3410		to->si_addr = ptr_to_compat(from->si_addr);
3411		to->si_trapno = from->si_trapno;
3412		break;
3413	case SIL_FAULT_MCEERR:
3414		to->si_addr = ptr_to_compat(from->si_addr);
3415		to->si_addr_lsb = from->si_addr_lsb;
3416		break;
3417	case SIL_FAULT_BNDERR:
3418		to->si_addr = ptr_to_compat(from->si_addr);
3419		to->si_lower = ptr_to_compat(from->si_lower);
3420		to->si_upper = ptr_to_compat(from->si_upper);
3421		break;
3422	case SIL_FAULT_PKUERR:
3423		to->si_addr = ptr_to_compat(from->si_addr);
3424		to->si_pkey = from->si_pkey;
3425		break;
3426	case SIL_FAULT_PERF_EVENT:
3427		to->si_addr = ptr_to_compat(from->si_addr);
3428		to->si_perf_data = from->si_perf_data;
3429		to->si_perf_type = from->si_perf_type;
3430		to->si_perf_flags = from->si_perf_flags;
3431		break;
3432	case SIL_CHLD:
3433		to->si_pid = from->si_pid;
3434		to->si_uid = from->si_uid;
3435		to->si_status = from->si_status;
3436		to->si_utime = from->si_utime;
3437		to->si_stime = from->si_stime;
3438		break;
3439	case SIL_RT:
3440		to->si_pid = from->si_pid;
3441		to->si_uid = from->si_uid;
3442		to->si_int = from->si_int;
3443		break;
3444	case SIL_SYS:
3445		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3446		to->si_syscall   = from->si_syscall;
3447		to->si_arch      = from->si_arch;
3448		break;
3449	}
 
3450}
3451
3452int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3453			   const struct kernel_siginfo *from)
3454{
3455	struct compat_siginfo new;
3456
3457	copy_siginfo_to_external32(&new, from);
3458	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3459		return -EFAULT;
3460	return 0;
3461}
3462
3463static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3464					 const struct compat_siginfo *from)
3465{
3466	clear_siginfo(to);
3467	to->si_signo = from->si_signo;
3468	to->si_errno = from->si_errno;
3469	to->si_code  = from->si_code;
3470	switch(siginfo_layout(from->si_signo, from->si_code)) {
3471	case SIL_KILL:
3472		to->si_pid = from->si_pid;
3473		to->si_uid = from->si_uid;
3474		break;
3475	case SIL_TIMER:
3476		to->si_tid     = from->si_tid;
3477		to->si_overrun = from->si_overrun;
3478		to->si_int     = from->si_int;
3479		break;
3480	case SIL_POLL:
3481		to->si_band = from->si_band;
3482		to->si_fd   = from->si_fd;
3483		break;
3484	case SIL_FAULT:
3485		to->si_addr = compat_ptr(from->si_addr);
3486		break;
3487	case SIL_FAULT_TRAPNO:
3488		to->si_addr = compat_ptr(from->si_addr);
3489		to->si_trapno = from->si_trapno;
3490		break;
3491	case SIL_FAULT_MCEERR:
3492		to->si_addr = compat_ptr(from->si_addr);
3493		to->si_addr_lsb = from->si_addr_lsb;
3494		break;
3495	case SIL_FAULT_BNDERR:
3496		to->si_addr = compat_ptr(from->si_addr);
3497		to->si_lower = compat_ptr(from->si_lower);
3498		to->si_upper = compat_ptr(from->si_upper);
3499		break;
3500	case SIL_FAULT_PKUERR:
3501		to->si_addr = compat_ptr(from->si_addr);
3502		to->si_pkey = from->si_pkey;
3503		break;
3504	case SIL_FAULT_PERF_EVENT:
3505		to->si_addr = compat_ptr(from->si_addr);
3506		to->si_perf_data = from->si_perf_data;
3507		to->si_perf_type = from->si_perf_type;
3508		to->si_perf_flags = from->si_perf_flags;
3509		break;
3510	case SIL_CHLD:
3511		to->si_pid    = from->si_pid;
3512		to->si_uid    = from->si_uid;
3513		to->si_status = from->si_status;
3514#ifdef CONFIG_X86_X32_ABI
3515		if (in_x32_syscall()) {
3516			to->si_utime = from->_sifields._sigchld_x32._utime;
3517			to->si_stime = from->_sifields._sigchld_x32._stime;
3518		} else
3519#endif
3520		{
3521			to->si_utime = from->si_utime;
3522			to->si_stime = from->si_stime;
3523		}
3524		break;
3525	case SIL_RT:
3526		to->si_pid = from->si_pid;
3527		to->si_uid = from->si_uid;
3528		to->si_int = from->si_int;
3529		break;
3530	case SIL_SYS:
3531		to->si_call_addr = compat_ptr(from->si_call_addr);
3532		to->si_syscall   = from->si_syscall;
3533		to->si_arch      = from->si_arch;
3534		break;
3535	}
3536	return 0;
3537}
3538
3539static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3540				      const struct compat_siginfo __user *ufrom)
3541{
3542	struct compat_siginfo from;
3543
3544	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3545		return -EFAULT;
3546
3547	from.si_signo = signo;
3548	return post_copy_siginfo_from_user32(to, &from);
3549}
3550
3551int copy_siginfo_from_user32(struct kernel_siginfo *to,
3552			     const struct compat_siginfo __user *ufrom)
3553{
3554	struct compat_siginfo from;
3555
3556	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3557		return -EFAULT;
3558
3559	return post_copy_siginfo_from_user32(to, &from);
3560}
3561#endif /* CONFIG_COMPAT */
3562
3563/**
3564 *  do_sigtimedwait - wait for queued signals specified in @which
3565 *  @which: queued signals to wait for
3566 *  @info: if non-null, the signal's siginfo is returned here
3567 *  @ts: upper bound on process time suspension
3568 */
3569static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3570		    const struct timespec64 *ts)
3571{
3572	ktime_t *to = NULL, timeout = KTIME_MAX;
3573	struct task_struct *tsk = current;
 
3574	sigset_t mask = *which;
3575	enum pid_type type;
3576	int sig, ret = 0;
3577
3578	if (ts) {
3579		if (!timespec64_valid(ts))
3580			return -EINVAL;
3581		timeout = timespec64_to_ktime(*ts);
3582		to = &timeout;
 
 
 
 
 
3583	}
3584
3585	/*
3586	 * Invert the set of allowed signals to get those we want to block.
3587	 */
3588	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3589	signotset(&mask);
3590
3591	spin_lock_irq(&tsk->sighand->siglock);
3592	sig = dequeue_signal(tsk, &mask, info, &type);
3593	if (!sig && timeout) {
3594		/*
3595		 * None ready, temporarily unblock those we're interested
3596		 * while we are sleeping in so that we'll be awakened when
3597		 * they arrive. Unblocking is always fine, we can avoid
3598		 * set_current_blocked().
3599		 */
3600		tsk->real_blocked = tsk->blocked;
3601		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3602		recalc_sigpending();
3603		spin_unlock_irq(&tsk->sighand->siglock);
3604
3605		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3606		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3607					       HRTIMER_MODE_REL);
3608		spin_lock_irq(&tsk->sighand->siglock);
3609		__set_task_blocked(tsk, &tsk->real_blocked);
3610		sigemptyset(&tsk->real_blocked);
3611		sig = dequeue_signal(tsk, &mask, info, &type);
3612	}
3613	spin_unlock_irq(&tsk->sighand->siglock);
3614
3615	if (sig)
3616		return sig;
3617	return ret ? -EINTR : -EAGAIN;
3618}
3619
3620/**
3621 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3622 *			in @uthese
3623 *  @uthese: queued signals to wait for
3624 *  @uinfo: if non-null, the signal's siginfo is returned here
3625 *  @uts: upper bound on process time suspension
3626 *  @sigsetsize: size of sigset_t type
3627 */
3628SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3629		siginfo_t __user *, uinfo,
3630		const struct __kernel_timespec __user *, uts,
3631		size_t, sigsetsize)
3632{
3633	sigset_t these;
3634	struct timespec64 ts;
3635	kernel_siginfo_t info;
3636	int ret;
3637
3638	/* XXX: Don't preclude handling different sized sigset_t's.  */
3639	if (sigsetsize != sizeof(sigset_t))
3640		return -EINVAL;
3641
3642	if (copy_from_user(&these, uthese, sizeof(these)))
3643		return -EFAULT;
3644
3645	if (uts) {
3646		if (get_timespec64(&ts, uts))
3647			return -EFAULT;
3648	}
3649
3650	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3651
3652	if (ret > 0 && uinfo) {
3653		if (copy_siginfo_to_user(uinfo, &info))
3654			ret = -EFAULT;
3655	}
3656
3657	return ret;
3658}
3659
3660#ifdef CONFIG_COMPAT_32BIT_TIME
3661SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3662		siginfo_t __user *, uinfo,
3663		const struct old_timespec32 __user *, uts,
3664		size_t, sigsetsize)
3665{
3666	sigset_t these;
3667	struct timespec64 ts;
3668	kernel_siginfo_t info;
3669	int ret;
3670
3671	if (sigsetsize != sizeof(sigset_t))
3672		return -EINVAL;
3673
3674	if (copy_from_user(&these, uthese, sizeof(these)))
3675		return -EFAULT;
3676
3677	if (uts) {
3678		if (get_old_timespec32(&ts, uts))
3679			return -EFAULT;
3680	}
3681
3682	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3683
3684	if (ret > 0 && uinfo) {
3685		if (copy_siginfo_to_user(uinfo, &info))
3686			ret = -EFAULT;
3687	}
3688
3689	return ret;
3690}
3691#endif
3692
3693#ifdef CONFIG_COMPAT
3694COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3695		struct compat_siginfo __user *, uinfo,
3696		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3697{
3698	sigset_t s;
3699	struct timespec64 t;
3700	kernel_siginfo_t info;
3701	long ret;
3702
3703	if (sigsetsize != sizeof(sigset_t))
3704		return -EINVAL;
3705
3706	if (get_compat_sigset(&s, uthese))
3707		return -EFAULT;
3708
3709	if (uts) {
3710		if (get_timespec64(&t, uts))
3711			return -EFAULT;
3712	}
3713
3714	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3715
3716	if (ret > 0 && uinfo) {
3717		if (copy_siginfo_to_user32(uinfo, &info))
3718			ret = -EFAULT;
3719	}
3720
3721	return ret;
3722}
3723
3724#ifdef CONFIG_COMPAT_32BIT_TIME
3725COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3726		struct compat_siginfo __user *, uinfo,
3727		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3728{
3729	sigset_t s;
3730	struct timespec64 t;
3731	kernel_siginfo_t info;
3732	long ret;
3733
3734	if (sigsetsize != sizeof(sigset_t))
3735		return -EINVAL;
3736
3737	if (get_compat_sigset(&s, uthese))
3738		return -EFAULT;
3739
3740	if (uts) {
3741		if (get_old_timespec32(&t, uts))
3742			return -EFAULT;
3743	}
3744
3745	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3746
3747	if (ret > 0 && uinfo) {
3748		if (copy_siginfo_to_user32(uinfo, &info))
3749			ret = -EFAULT;
3750	}
3751
3752	return ret;
3753}
3754#endif
3755#endif
3756
3757static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3758{
3759	clear_siginfo(info);
3760	info->si_signo = sig;
3761	info->si_errno = 0;
3762	info->si_code = SI_USER;
3763	info->si_pid = task_tgid_vnr(current);
3764	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3765}
3766
3767/**
3768 *  sys_kill - send a signal to a process
3769 *  @pid: the PID of the process
3770 *  @sig: signal to be sent
3771 */
3772SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3773{
3774	struct kernel_siginfo info;
3775
3776	prepare_kill_siginfo(sig, &info);
 
 
 
 
3777
3778	return kill_something_info(sig, &info, pid);
3779}
3780
3781/*
3782 * Verify that the signaler and signalee either are in the same pid namespace
3783 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3784 * namespace.
3785 */
3786static bool access_pidfd_pidns(struct pid *pid)
3787{
3788	struct pid_namespace *active = task_active_pid_ns(current);
3789	struct pid_namespace *p = ns_of_pid(pid);
3790
3791	for (;;) {
3792		if (!p)
3793			return false;
3794		if (p == active)
3795			break;
3796		p = p->parent;
3797	}
3798
3799	return true;
3800}
3801
3802static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3803		siginfo_t __user *info)
3804{
3805#ifdef CONFIG_COMPAT
3806	/*
3807	 * Avoid hooking up compat syscalls and instead handle necessary
3808	 * conversions here. Note, this is a stop-gap measure and should not be
3809	 * considered a generic solution.
3810	 */
3811	if (in_compat_syscall())
3812		return copy_siginfo_from_user32(
3813			kinfo, (struct compat_siginfo __user *)info);
3814#endif
3815	return copy_siginfo_from_user(kinfo, info);
3816}
3817
3818static struct pid *pidfd_to_pid(const struct file *file)
3819{
3820	struct pid *pid;
3821
3822	pid = pidfd_pid(file);
3823	if (!IS_ERR(pid))
3824		return pid;
3825
3826	return tgid_pidfd_to_pid(file);
3827}
3828
3829/**
3830 * sys_pidfd_send_signal - Signal a process through a pidfd
3831 * @pidfd:  file descriptor of the process
3832 * @sig:    signal to send
3833 * @info:   signal info
3834 * @flags:  future flags
3835 *
3836 * The syscall currently only signals via PIDTYPE_PID which covers
3837 * kill(<positive-pid>, <signal>. It does not signal threads or process
3838 * groups.
3839 * In order to extend the syscall to threads and process groups the @flags
3840 * argument should be used. In essence, the @flags argument will determine
3841 * what is signaled and not the file descriptor itself. Put in other words,
3842 * grouping is a property of the flags argument not a property of the file
3843 * descriptor.
3844 *
3845 * Return: 0 on success, negative errno on failure
3846 */
3847SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3848		siginfo_t __user *, info, unsigned int, flags)
3849{
3850	int ret;
3851	struct fd f;
3852	struct pid *pid;
3853	kernel_siginfo_t kinfo;
3854
3855	/* Enforce flags be set to 0 until we add an extension. */
3856	if (flags)
3857		return -EINVAL;
3858
3859	f = fdget(pidfd);
3860	if (!f.file)
3861		return -EBADF;
3862
3863	/* Is this a pidfd? */
3864	pid = pidfd_to_pid(f.file);
3865	if (IS_ERR(pid)) {
3866		ret = PTR_ERR(pid);
3867		goto err;
3868	}
3869
3870	ret = -EINVAL;
3871	if (!access_pidfd_pidns(pid))
3872		goto err;
3873
3874	if (info) {
3875		ret = copy_siginfo_from_user_any(&kinfo, info);
3876		if (unlikely(ret))
3877			goto err;
3878
3879		ret = -EINVAL;
3880		if (unlikely(sig != kinfo.si_signo))
3881			goto err;
3882
3883		/* Only allow sending arbitrary signals to yourself. */
3884		ret = -EPERM;
3885		if ((task_pid(current) != pid) &&
3886		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3887			goto err;
3888	} else {
3889		prepare_kill_siginfo(sig, &kinfo);
3890	}
3891
3892	ret = kill_pid_info(sig, &kinfo, pid);
3893
3894err:
3895	fdput(f);
3896	return ret;
3897}
3898
3899static int
3900do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3901{
3902	struct task_struct *p;
3903	int error = -ESRCH;
3904
3905	rcu_read_lock();
3906	p = find_task_by_vpid(pid);
3907	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3908		error = check_kill_permission(sig, info, p);
3909		/*
3910		 * The null signal is a permissions and process existence
3911		 * probe.  No signal is actually delivered.
3912		 */
3913		if (!error && sig) {
3914			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3915			/*
3916			 * If lock_task_sighand() failed we pretend the task
3917			 * dies after receiving the signal. The window is tiny,
3918			 * and the signal is private anyway.
3919			 */
3920			if (unlikely(error == -ESRCH))
3921				error = 0;
3922		}
3923	}
3924	rcu_read_unlock();
3925
3926	return error;
3927}
3928
3929static int do_tkill(pid_t tgid, pid_t pid, int sig)
3930{
3931	struct kernel_siginfo info;
3932
3933	clear_siginfo(&info);
3934	info.si_signo = sig;
3935	info.si_errno = 0;
3936	info.si_code = SI_TKILL;
3937	info.si_pid = task_tgid_vnr(current);
3938	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3939
3940	return do_send_specific(tgid, pid, sig, &info);
3941}
3942
3943/**
3944 *  sys_tgkill - send signal to one specific thread
3945 *  @tgid: the thread group ID of the thread
3946 *  @pid: the PID of the thread
3947 *  @sig: signal to be sent
3948 *
3949 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3950 *  exists but it's not belonging to the target process anymore. This
3951 *  method solves the problem of threads exiting and PIDs getting reused.
3952 */
3953SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3954{
3955	/* This is only valid for single tasks */
3956	if (pid <= 0 || tgid <= 0)
3957		return -EINVAL;
3958
3959	return do_tkill(tgid, pid, sig);
3960}
3961
3962/**
3963 *  sys_tkill - send signal to one specific task
3964 *  @pid: the PID of the task
3965 *  @sig: signal to be sent
3966 *
3967 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3968 */
3969SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3970{
3971	/* This is only valid for single tasks */
3972	if (pid <= 0)
3973		return -EINVAL;
3974
3975	return do_tkill(0, pid, sig);
3976}
3977
3978static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3979{
3980	/* Not even root can pretend to send signals from the kernel.
3981	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3982	 */
3983	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3984	    (task_pid_vnr(current) != pid))
 
 
3985		return -EPERM;
 
 
3986
3987	/* POSIX.1b doesn't mention process groups.  */
3988	return kill_proc_info(sig, info, pid);
3989}
3990
3991/**
3992 *  sys_rt_sigqueueinfo - send signal information to a signal
3993 *  @pid: the PID of the thread
3994 *  @sig: signal to be sent
3995 *  @uinfo: signal info to be sent
3996 */
3997SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3998		siginfo_t __user *, uinfo)
3999{
4000	kernel_siginfo_t info;
4001	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4002	if (unlikely(ret))
4003		return ret;
4004	return do_rt_sigqueueinfo(pid, sig, &info);
4005}
4006
4007#ifdef CONFIG_COMPAT
4008COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4009			compat_pid_t, pid,
4010			int, sig,
4011			struct compat_siginfo __user *, uinfo)
4012{
4013	kernel_siginfo_t info;
4014	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4015	if (unlikely(ret))
4016		return ret;
4017	return do_rt_sigqueueinfo(pid, sig, &info);
4018}
4019#endif
4020
4021static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4022{
4023	/* This is only valid for single tasks */
4024	if (pid <= 0 || tgid <= 0)
4025		return -EINVAL;
4026
4027	/* Not even root can pretend to send signals from the kernel.
4028	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4029	 */
4030	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4031	    (task_pid_vnr(current) != pid))
 
 
4032		return -EPERM;
 
 
4033
4034	return do_send_specific(tgid, pid, sig, info);
4035}
4036
4037SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4038		siginfo_t __user *, uinfo)
4039{
4040	kernel_siginfo_t info;
4041	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4042	if (unlikely(ret))
4043		return ret;
 
4044	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4045}
4046
4047#ifdef CONFIG_COMPAT
4048COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4049			compat_pid_t, tgid,
4050			compat_pid_t, pid,
4051			int, sig,
4052			struct compat_siginfo __user *, uinfo)
4053{
4054	kernel_siginfo_t info;
4055	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4056	if (unlikely(ret))
4057		return ret;
4058	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4059}
4060#endif
4061
4062/*
4063 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4064 */
4065void kernel_sigaction(int sig, __sighandler_t action)
4066{
4067	spin_lock_irq(&current->sighand->siglock);
4068	current->sighand->action[sig - 1].sa.sa_handler = action;
4069	if (action == SIG_IGN) {
4070		sigset_t mask;
4071
4072		sigemptyset(&mask);
4073		sigaddset(&mask, sig);
4074
4075		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4076		flush_sigqueue_mask(&mask, &current->pending);
4077		recalc_sigpending();
4078	}
4079	spin_unlock_irq(&current->sighand->siglock);
4080}
4081EXPORT_SYMBOL(kernel_sigaction);
4082
4083void __weak sigaction_compat_abi(struct k_sigaction *act,
4084		struct k_sigaction *oact)
4085{
4086}
4087
4088int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4089{
4090	struct task_struct *p = current, *t;
4091	struct k_sigaction *k;
4092	sigset_t mask;
4093
4094	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4095		return -EINVAL;
4096
4097	k = &p->sighand->action[sig-1];
4098
4099	spin_lock_irq(&p->sighand->siglock);
4100	if (k->sa.sa_flags & SA_IMMUTABLE) {
4101		spin_unlock_irq(&p->sighand->siglock);
4102		return -EINVAL;
4103	}
4104	if (oact)
4105		*oact = *k;
4106
4107	/*
4108	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4109	 * e.g. by having an architecture use the bit in their uapi.
4110	 */
4111	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4112
4113	/*
4114	 * Clear unknown flag bits in order to allow userspace to detect missing
4115	 * support for flag bits and to allow the kernel to use non-uapi bits
4116	 * internally.
4117	 */
4118	if (act)
4119		act->sa.sa_flags &= UAPI_SA_FLAGS;
4120	if (oact)
4121		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4122
4123	sigaction_compat_abi(act, oact);
4124
4125	if (act) {
4126		sigdelsetmask(&act->sa.sa_mask,
4127			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4128		*k = *act;
4129		/*
4130		 * POSIX 3.3.1.3:
4131		 *  "Setting a signal action to SIG_IGN for a signal that is
4132		 *   pending shall cause the pending signal to be discarded,
4133		 *   whether or not it is blocked."
4134		 *
4135		 *  "Setting a signal action to SIG_DFL for a signal that is
4136		 *   pending and whose default action is to ignore the signal
4137		 *   (for example, SIGCHLD), shall cause the pending signal to
4138		 *   be discarded, whether or not it is blocked"
4139		 */
4140		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4141			sigemptyset(&mask);
4142			sigaddset(&mask, sig);
4143			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4144			for_each_thread(p, t)
4145				flush_sigqueue_mask(&mask, &t->pending);
 
4146		}
4147	}
4148
4149	spin_unlock_irq(&p->sighand->siglock);
4150	return 0;
4151}
4152
4153#ifdef CONFIG_DYNAMIC_SIGFRAME
4154static inline void sigaltstack_lock(void)
4155	__acquires(&current->sighand->siglock)
4156{
4157	spin_lock_irq(&current->sighand->siglock);
4158}
4159
4160static inline void sigaltstack_unlock(void)
4161	__releases(&current->sighand->siglock)
4162{
4163	spin_unlock_irq(&current->sighand->siglock);
4164}
4165#else
4166static inline void sigaltstack_lock(void) { }
4167static inline void sigaltstack_unlock(void) { }
4168#endif
4169
4170static int
4171do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4172		size_t min_ss_size)
4173{
4174	struct task_struct *t = current;
4175	int ret = 0;
 
 
4176
4177	if (oss) {
4178		memset(oss, 0, sizeof(stack_t));
4179		oss->ss_sp = (void __user *) t->sas_ss_sp;
4180		oss->ss_size = t->sas_ss_size;
4181		oss->ss_flags = sas_ss_flags(sp) |
4182			(current->sas_ss_flags & SS_FLAG_BITS);
4183	}
4184
4185	if (ss) {
4186		void __user *ss_sp = ss->ss_sp;
4187		size_t ss_size = ss->ss_size;
4188		unsigned ss_flags = ss->ss_flags;
4189		int ss_mode;
4190
4191		if (unlikely(on_sig_stack(sp)))
4192			return -EPERM;
4193
4194		ss_mode = ss_flags & ~SS_FLAG_BITS;
4195		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4196				ss_mode != 0))
4197			return -EINVAL;
4198
 
4199		/*
4200		 * Return before taking any locks if no actual
4201		 * sigaltstack changes were requested.
 
 
 
4202		 */
4203		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4204		    t->sas_ss_size == ss_size &&
4205		    t->sas_ss_flags == ss_flags)
4206			return 0;
4207
4208		sigaltstack_lock();
4209		if (ss_mode == SS_DISABLE) {
4210			ss_size = 0;
4211			ss_sp = NULL;
4212		} else {
4213			if (unlikely(ss_size < min_ss_size))
4214				ret = -ENOMEM;
4215			if (!sigaltstack_size_valid(ss_size))
4216				ret = -ENOMEM;
4217		}
4218		if (!ret) {
4219			t->sas_ss_sp = (unsigned long) ss_sp;
4220			t->sas_ss_size = ss_size;
4221			t->sas_ss_flags = ss_flags;
4222		}
4223		sigaltstack_unlock();
 
 
 
 
 
 
 
4224	}
4225	return ret;
 
 
4226}
4227
4228SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4229{
4230	stack_t new, old;
4231	int err;
4232	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4233		return -EFAULT;
4234	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4235			      current_user_stack_pointer(),
4236			      MINSIGSTKSZ);
4237	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4238		err = -EFAULT;
4239	return err;
4240}
4241
4242int restore_altstack(const stack_t __user *uss)
4243{
4244	stack_t new;
4245	if (copy_from_user(&new, uss, sizeof(stack_t)))
4246		return -EFAULT;
4247	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4248			     MINSIGSTKSZ);
4249	/* squash all but EFAULT for now */
4250	return 0;
4251}
4252
4253int __save_altstack(stack_t __user *uss, unsigned long sp)
4254{
4255	struct task_struct *t = current;
4256	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4257		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4258		__put_user(t->sas_ss_size, &uss->ss_size);
4259	return err;
4260}
4261
4262#ifdef CONFIG_COMPAT
4263static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4264				 compat_stack_t __user *uoss_ptr)
 
4265{
4266	stack_t uss, uoss;
4267	int ret;
 
4268
4269	if (uss_ptr) {
4270		compat_stack_t uss32;
 
 
4271		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4272			return -EFAULT;
4273		uss.ss_sp = compat_ptr(uss32.ss_sp);
4274		uss.ss_flags = uss32.ss_flags;
4275		uss.ss_size = uss32.ss_size;
4276	}
4277	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4278			     compat_user_stack_pointer(),
4279			     COMPAT_MINSIGSTKSZ);
 
 
 
4280	if (ret >= 0 && uoss_ptr)  {
4281		compat_stack_t old;
4282		memset(&old, 0, sizeof(old));
4283		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4284		old.ss_flags = uoss.ss_flags;
4285		old.ss_size = uoss.ss_size;
4286		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4287			ret = -EFAULT;
4288	}
4289	return ret;
4290}
4291
4292COMPAT_SYSCALL_DEFINE2(sigaltstack,
4293			const compat_stack_t __user *, uss_ptr,
4294			compat_stack_t __user *, uoss_ptr)
4295{
4296	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4297}
4298
4299int compat_restore_altstack(const compat_stack_t __user *uss)
4300{
4301	int err = do_compat_sigaltstack(uss, NULL);
4302	/* squash all but -EFAULT for now */
4303	return err == -EFAULT ? err : 0;
4304}
4305
4306int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4307{
4308	int err;
4309	struct task_struct *t = current;
4310	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4311			 &uss->ss_sp) |
4312		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4313		__put_user(t->sas_ss_size, &uss->ss_size);
4314	return err;
4315}
4316#endif
4317
4318#ifdef __ARCH_WANT_SYS_SIGPENDING
4319
4320/**
4321 *  sys_sigpending - examine pending signals
4322 *  @uset: where mask of pending signal is returned
4323 */
4324SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4325{
4326	sigset_t set;
4327
4328	if (sizeof(old_sigset_t) > sizeof(*uset))
4329		return -EINVAL;
4330
4331	do_sigpending(&set);
4332
4333	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4334		return -EFAULT;
4335
4336	return 0;
4337}
4338
4339#ifdef CONFIG_COMPAT
4340COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4341{
4342	sigset_t set;
4343
4344	do_sigpending(&set);
4345
4346	return put_user(set.sig[0], set32);
4347}
4348#endif
4349
4350#endif
4351
4352#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4353/**
4354 *  sys_sigprocmask - examine and change blocked signals
4355 *  @how: whether to add, remove, or set signals
4356 *  @nset: signals to add or remove (if non-null)
4357 *  @oset: previous value of signal mask if non-null
4358 *
4359 * Some platforms have their own version with special arguments;
4360 * others support only sys_rt_sigprocmask.
4361 */
4362
4363SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4364		old_sigset_t __user *, oset)
4365{
4366	old_sigset_t old_set, new_set;
4367	sigset_t new_blocked;
4368
4369	old_set = current->blocked.sig[0];
4370
4371	if (nset) {
4372		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4373			return -EFAULT;
4374
4375		new_blocked = current->blocked;
4376
4377		switch (how) {
4378		case SIG_BLOCK:
4379			sigaddsetmask(&new_blocked, new_set);
4380			break;
4381		case SIG_UNBLOCK:
4382			sigdelsetmask(&new_blocked, new_set);
4383			break;
4384		case SIG_SETMASK:
4385			new_blocked.sig[0] = new_set;
4386			break;
4387		default:
4388			return -EINVAL;
4389		}
4390
4391		set_current_blocked(&new_blocked);
4392	}
4393
4394	if (oset) {
4395		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4396			return -EFAULT;
4397	}
4398
4399	return 0;
4400}
4401#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4402
4403#ifndef CONFIG_ODD_RT_SIGACTION
4404/**
4405 *  sys_rt_sigaction - alter an action taken by a process
4406 *  @sig: signal to be sent
4407 *  @act: new sigaction
4408 *  @oact: used to save the previous sigaction
4409 *  @sigsetsize: size of sigset_t type
4410 */
4411SYSCALL_DEFINE4(rt_sigaction, int, sig,
4412		const struct sigaction __user *, act,
4413		struct sigaction __user *, oact,
4414		size_t, sigsetsize)
4415{
4416	struct k_sigaction new_sa, old_sa;
4417	int ret;
4418
4419	/* XXX: Don't preclude handling different sized sigset_t's.  */
4420	if (sigsetsize != sizeof(sigset_t))
4421		return -EINVAL;
4422
4423	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4424		return -EFAULT;
 
 
4425
4426	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4427	if (ret)
4428		return ret;
4429
4430	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4431		return -EFAULT;
4432
4433	return 0;
 
 
4434}
4435#ifdef CONFIG_COMPAT
4436COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4437		const struct compat_sigaction __user *, act,
4438		struct compat_sigaction __user *, oact,
4439		compat_size_t, sigsetsize)
4440{
4441	struct k_sigaction new_ka, old_ka;
 
4442#ifdef __ARCH_HAS_SA_RESTORER
4443	compat_uptr_t restorer;
4444#endif
4445	int ret;
4446
4447	/* XXX: Don't preclude handling different sized sigset_t's.  */
4448	if (sigsetsize != sizeof(compat_sigset_t))
4449		return -EINVAL;
4450
4451	if (act) {
4452		compat_uptr_t handler;
4453		ret = get_user(handler, &act->sa_handler);
4454		new_ka.sa.sa_handler = compat_ptr(handler);
4455#ifdef __ARCH_HAS_SA_RESTORER
4456		ret |= get_user(restorer, &act->sa_restorer);
4457		new_ka.sa.sa_restorer = compat_ptr(restorer);
4458#endif
4459		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4460		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4461		if (ret)
4462			return -EFAULT;
 
4463	}
4464
4465	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4466	if (!ret && oact) {
 
4467		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4468			       &oact->sa_handler);
4469		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4470					 sizeof(oact->sa_mask));
4471		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4472#ifdef __ARCH_HAS_SA_RESTORER
4473		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4474				&oact->sa_restorer);
4475#endif
4476	}
4477	return ret;
4478}
4479#endif
4480#endif /* !CONFIG_ODD_RT_SIGACTION */
4481
4482#ifdef CONFIG_OLD_SIGACTION
4483SYSCALL_DEFINE3(sigaction, int, sig,
4484		const struct old_sigaction __user *, act,
4485	        struct old_sigaction __user *, oact)
4486{
4487	struct k_sigaction new_ka, old_ka;
4488	int ret;
4489
4490	if (act) {
4491		old_sigset_t mask;
4492		if (!access_ok(act, sizeof(*act)) ||
4493		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4494		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4495		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4496		    __get_user(mask, &act->sa_mask))
4497			return -EFAULT;
4498#ifdef __ARCH_HAS_KA_RESTORER
4499		new_ka.ka_restorer = NULL;
4500#endif
4501		siginitset(&new_ka.sa.sa_mask, mask);
4502	}
4503
4504	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4505
4506	if (!ret && oact) {
4507		if (!access_ok(oact, sizeof(*oact)) ||
4508		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4509		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4510		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4511		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4512			return -EFAULT;
4513	}
4514
4515	return ret;
4516}
4517#endif
4518#ifdef CONFIG_COMPAT_OLD_SIGACTION
4519COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4520		const struct compat_old_sigaction __user *, act,
4521	        struct compat_old_sigaction __user *, oact)
4522{
4523	struct k_sigaction new_ka, old_ka;
4524	int ret;
4525	compat_old_sigset_t mask;
4526	compat_uptr_t handler, restorer;
4527
4528	if (act) {
4529		if (!access_ok(act, sizeof(*act)) ||
4530		    __get_user(handler, &act->sa_handler) ||
4531		    __get_user(restorer, &act->sa_restorer) ||
4532		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4533		    __get_user(mask, &act->sa_mask))
4534			return -EFAULT;
4535
4536#ifdef __ARCH_HAS_KA_RESTORER
4537		new_ka.ka_restorer = NULL;
4538#endif
4539		new_ka.sa.sa_handler = compat_ptr(handler);
4540		new_ka.sa.sa_restorer = compat_ptr(restorer);
4541		siginitset(&new_ka.sa.sa_mask, mask);
4542	}
4543
4544	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4545
4546	if (!ret && oact) {
4547		if (!access_ok(oact, sizeof(*oact)) ||
4548		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4549			       &oact->sa_handler) ||
4550		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4551			       &oact->sa_restorer) ||
4552		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4553		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4554			return -EFAULT;
4555	}
4556	return ret;
4557}
4558#endif
4559
4560#ifdef CONFIG_SGETMASK_SYSCALL
4561
4562/*
4563 * For backwards compatibility.  Functionality superseded by sigprocmask.
4564 */
4565SYSCALL_DEFINE0(sgetmask)
4566{
4567	/* SMP safe */
4568	return current->blocked.sig[0];
4569}
4570
4571SYSCALL_DEFINE1(ssetmask, int, newmask)
4572{
4573	int old = current->blocked.sig[0];
4574	sigset_t newset;
4575
4576	siginitset(&newset, newmask);
4577	set_current_blocked(&newset);
4578
4579	return old;
4580}
4581#endif /* CONFIG_SGETMASK_SYSCALL */
4582
4583#ifdef __ARCH_WANT_SYS_SIGNAL
4584/*
4585 * For backwards compatibility.  Functionality superseded by sigaction.
4586 */
4587SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4588{
4589	struct k_sigaction new_sa, old_sa;
4590	int ret;
4591
4592	new_sa.sa.sa_handler = handler;
4593	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4594	sigemptyset(&new_sa.sa.sa_mask);
4595
4596	ret = do_sigaction(sig, &new_sa, &old_sa);
4597
4598	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4599}
4600#endif /* __ARCH_WANT_SYS_SIGNAL */
4601
4602#ifdef __ARCH_WANT_SYS_PAUSE
4603
4604SYSCALL_DEFINE0(pause)
4605{
4606	while (!signal_pending(current)) {
4607		__set_current_state(TASK_INTERRUPTIBLE);
4608		schedule();
4609	}
4610	return -ERESTARTNOHAND;
4611}
4612
4613#endif
4614
4615static int sigsuspend(sigset_t *set)
4616{
4617	current->saved_sigmask = current->blocked;
4618	set_current_blocked(set);
4619
4620	while (!signal_pending(current)) {
4621		__set_current_state(TASK_INTERRUPTIBLE);
4622		schedule();
4623	}
4624	set_restore_sigmask();
4625	return -ERESTARTNOHAND;
4626}
4627
4628/**
4629 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4630 *	@unewset value until a signal is received
4631 *  @unewset: new signal mask value
4632 *  @sigsetsize: size of sigset_t type
4633 */
4634SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4635{
4636	sigset_t newset;
4637
4638	/* XXX: Don't preclude handling different sized sigset_t's.  */
4639	if (sigsetsize != sizeof(sigset_t))
4640		return -EINVAL;
4641
4642	if (copy_from_user(&newset, unewset, sizeof(newset)))
4643		return -EFAULT;
4644	return sigsuspend(&newset);
4645}
4646 
4647#ifdef CONFIG_COMPAT
4648COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4649{
 
4650	sigset_t newset;
 
4651
4652	/* XXX: Don't preclude handling different sized sigset_t's.  */
4653	if (sigsetsize != sizeof(sigset_t))
4654		return -EINVAL;
4655
4656	if (get_compat_sigset(&newset, unewset))
4657		return -EFAULT;
 
4658	return sigsuspend(&newset);
 
 
 
 
4659}
4660#endif
4661
4662#ifdef CONFIG_OLD_SIGSUSPEND
4663SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4664{
4665	sigset_t blocked;
4666	siginitset(&blocked, mask);
4667	return sigsuspend(&blocked);
4668}
4669#endif
4670#ifdef CONFIG_OLD_SIGSUSPEND3
4671SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4672{
4673	sigset_t blocked;
4674	siginitset(&blocked, mask);
4675	return sigsuspend(&blocked);
4676}
4677#endif
4678
4679__weak const char *arch_vma_name(struct vm_area_struct *vma)
4680{
4681	return NULL;
4682}
4683
4684static inline void siginfo_buildtime_checks(void)
4685{
4686	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4687
4688	/* Verify the offsets in the two siginfos match */
4689#define CHECK_OFFSET(field) \
4690	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4691
4692	/* kill */
4693	CHECK_OFFSET(si_pid);
4694	CHECK_OFFSET(si_uid);
4695
4696	/* timer */
4697	CHECK_OFFSET(si_tid);
4698	CHECK_OFFSET(si_overrun);
4699	CHECK_OFFSET(si_value);
4700
4701	/* rt */
4702	CHECK_OFFSET(si_pid);
4703	CHECK_OFFSET(si_uid);
4704	CHECK_OFFSET(si_value);
4705
4706	/* sigchld */
4707	CHECK_OFFSET(si_pid);
4708	CHECK_OFFSET(si_uid);
4709	CHECK_OFFSET(si_status);
4710	CHECK_OFFSET(si_utime);
4711	CHECK_OFFSET(si_stime);
4712
4713	/* sigfault */
4714	CHECK_OFFSET(si_addr);
4715	CHECK_OFFSET(si_trapno);
4716	CHECK_OFFSET(si_addr_lsb);
4717	CHECK_OFFSET(si_lower);
4718	CHECK_OFFSET(si_upper);
4719	CHECK_OFFSET(si_pkey);
4720	CHECK_OFFSET(si_perf_data);
4721	CHECK_OFFSET(si_perf_type);
4722	CHECK_OFFSET(si_perf_flags);
4723
4724	/* sigpoll */
4725	CHECK_OFFSET(si_band);
4726	CHECK_OFFSET(si_fd);
4727
4728	/* sigsys */
4729	CHECK_OFFSET(si_call_addr);
4730	CHECK_OFFSET(si_syscall);
4731	CHECK_OFFSET(si_arch);
4732#undef CHECK_OFFSET
4733
4734	/* usb asyncio */
4735	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4736		     offsetof(struct siginfo, si_addr));
4737	if (sizeof(int) == sizeof(void __user *)) {
4738		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4739			     sizeof(void __user *));
4740	} else {
4741		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4742			      sizeof_field(struct siginfo, si_uid)) !=
4743			     sizeof(void __user *));
4744		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4745			     offsetof(struct siginfo, si_uid));
4746	}
4747#ifdef CONFIG_COMPAT
4748	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4749		     offsetof(struct compat_siginfo, si_addr));
4750	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4751		     sizeof(compat_uptr_t));
4752	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4753		     sizeof_field(struct siginfo, si_pid));
4754#endif
4755}
4756
4757void __init signals_init(void)
4758{
4759	siginfo_buildtime_checks();
4760
4761	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4762}
4763
4764#ifdef CONFIG_KGDB_KDB
4765#include <linux/kdb.h>
4766/*
4767 * kdb_send_sig - Allows kdb to send signals without exposing
4768 * signal internals.  This function checks if the required locks are
4769 * available before calling the main signal code, to avoid kdb
4770 * deadlocks.
4771 */
4772void kdb_send_sig(struct task_struct *t, int sig)
 
4773{
4774	static struct task_struct *kdb_prev_t;
4775	int new_t, ret;
4776	if (!spin_trylock(&t->sighand->siglock)) {
4777		kdb_printf("Can't do kill command now.\n"
4778			   "The sigmask lock is held somewhere else in "
4779			   "kernel, try again later\n");
4780		return;
4781	}
 
4782	new_t = kdb_prev_t != t;
4783	kdb_prev_t = t;
4784	if (!task_is_running(t) && new_t) {
4785		spin_unlock(&t->sighand->siglock);
4786		kdb_printf("Process is not RUNNING, sending a signal from "
4787			   "kdb risks deadlock\n"
4788			   "on the run queue locks. "
4789			   "The signal has _not_ been sent.\n"
4790			   "Reissue the kill command if you want to risk "
4791			   "the deadlock.\n");
4792		return;
4793	}
4794	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4795	spin_unlock(&t->sighand->siglock);
4796	if (ret)
4797		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4798			   sig, t->pid);
4799	else
4800		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4801}
4802#endif	/* CONFIG_KGDB_KDB */