Loading...
1#ifndef _ASM_IA64_BITOPS_H
2#define _ASM_IA64_BITOPS_H
3
4/*
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
9 * O(1) scheduler patch
10 */
11
12#ifndef _LINUX_BITOPS_H
13#error only <linux/bitops.h> can be included directly
14#endif
15
16#include <linux/compiler.h>
17#include <linux/types.h>
18#include <asm/intrinsics.h>
19
20/**
21 * set_bit - Atomically set a bit in memory
22 * @nr: the bit to set
23 * @addr: the address to start counting from
24 *
25 * This function is atomic and may not be reordered. See __set_bit()
26 * if you do not require the atomic guarantees.
27 * Note that @nr may be almost arbitrarily large; this function is not
28 * restricted to acting on a single-word quantity.
29 *
30 * The address must be (at least) "long" aligned.
31 * Note that there are driver (e.g., eepro100) which use these operations to
32 * operate on hw-defined data-structures, so we can't easily change these
33 * operations to force a bigger alignment.
34 *
35 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
36 */
37static __inline__ void
38set_bit (int nr, volatile void *addr)
39{
40 __u32 bit, old, new;
41 volatile __u32 *m;
42 CMPXCHG_BUGCHECK_DECL
43
44 m = (volatile __u32 *) addr + (nr >> 5);
45 bit = 1 << (nr & 31);
46 do {
47 CMPXCHG_BUGCHECK(m);
48 old = *m;
49 new = old | bit;
50 } while (cmpxchg_acq(m, old, new) != old);
51}
52
53/**
54 * __set_bit - Set a bit in memory
55 * @nr: the bit to set
56 * @addr: the address to start counting from
57 *
58 * Unlike set_bit(), this function is non-atomic and may be reordered.
59 * If it's called on the same region of memory simultaneously, the effect
60 * may be that only one operation succeeds.
61 */
62static __inline__ void
63__set_bit (int nr, volatile void *addr)
64{
65 *((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
66}
67
68/*
69 * clear_bit() has "acquire" semantics.
70 */
71#define smp_mb__before_clear_bit() smp_mb()
72#define smp_mb__after_clear_bit() do { /* skip */; } while (0)
73
74/**
75 * clear_bit - Clears a bit in memory
76 * @nr: Bit to clear
77 * @addr: Address to start counting from
78 *
79 * clear_bit() is atomic and may not be reordered. However, it does
80 * not contain a memory barrier, so if it is used for locking purposes,
81 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
82 * in order to ensure changes are visible on other processors.
83 */
84static __inline__ void
85clear_bit (int nr, volatile void *addr)
86{
87 __u32 mask, old, new;
88 volatile __u32 *m;
89 CMPXCHG_BUGCHECK_DECL
90
91 m = (volatile __u32 *) addr + (nr >> 5);
92 mask = ~(1 << (nr & 31));
93 do {
94 CMPXCHG_BUGCHECK(m);
95 old = *m;
96 new = old & mask;
97 } while (cmpxchg_acq(m, old, new) != old);
98}
99
100/**
101 * clear_bit_unlock - Clears a bit in memory with release
102 * @nr: Bit to clear
103 * @addr: Address to start counting from
104 *
105 * clear_bit_unlock() is atomic and may not be reordered. It does
106 * contain a memory barrier suitable for unlock type operations.
107 */
108static __inline__ void
109clear_bit_unlock (int nr, volatile void *addr)
110{
111 __u32 mask, old, new;
112 volatile __u32 *m;
113 CMPXCHG_BUGCHECK_DECL
114
115 m = (volatile __u32 *) addr + (nr >> 5);
116 mask = ~(1 << (nr & 31));
117 do {
118 CMPXCHG_BUGCHECK(m);
119 old = *m;
120 new = old & mask;
121 } while (cmpxchg_rel(m, old, new) != old);
122}
123
124/**
125 * __clear_bit_unlock - Non-atomically clears a bit in memory with release
126 * @nr: Bit to clear
127 * @addr: Address to start counting from
128 *
129 * Similarly to clear_bit_unlock, the implementation uses a store
130 * with release semantics. See also arch_spin_unlock().
131 */
132static __inline__ void
133__clear_bit_unlock(int nr, void *addr)
134{
135 __u32 * const m = (__u32 *) addr + (nr >> 5);
136 __u32 const new = *m & ~(1 << (nr & 31));
137
138 ia64_st4_rel_nta(m, new);
139}
140
141/**
142 * __clear_bit - Clears a bit in memory (non-atomic version)
143 * @nr: the bit to clear
144 * @addr: the address to start counting from
145 *
146 * Unlike clear_bit(), this function is non-atomic and may be reordered.
147 * If it's called on the same region of memory simultaneously, the effect
148 * may be that only one operation succeeds.
149 */
150static __inline__ void
151__clear_bit (int nr, volatile void *addr)
152{
153 *((__u32 *) addr + (nr >> 5)) &= ~(1 << (nr & 31));
154}
155
156/**
157 * change_bit - Toggle a bit in memory
158 * @nr: Bit to toggle
159 * @addr: Address to start counting from
160 *
161 * change_bit() is atomic and may not be reordered.
162 * Note that @nr may be almost arbitrarily large; this function is not
163 * restricted to acting on a single-word quantity.
164 */
165static __inline__ void
166change_bit (int nr, volatile void *addr)
167{
168 __u32 bit, old, new;
169 volatile __u32 *m;
170 CMPXCHG_BUGCHECK_DECL
171
172 m = (volatile __u32 *) addr + (nr >> 5);
173 bit = (1 << (nr & 31));
174 do {
175 CMPXCHG_BUGCHECK(m);
176 old = *m;
177 new = old ^ bit;
178 } while (cmpxchg_acq(m, old, new) != old);
179}
180
181/**
182 * __change_bit - Toggle a bit in memory
183 * @nr: the bit to toggle
184 * @addr: the address to start counting from
185 *
186 * Unlike change_bit(), this function is non-atomic and may be reordered.
187 * If it's called on the same region of memory simultaneously, the effect
188 * may be that only one operation succeeds.
189 */
190static __inline__ void
191__change_bit (int nr, volatile void *addr)
192{
193 *((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
194}
195
196/**
197 * test_and_set_bit - Set a bit and return its old value
198 * @nr: Bit to set
199 * @addr: Address to count from
200 *
201 * This operation is atomic and cannot be reordered.
202 * It also implies the acquisition side of the memory barrier.
203 */
204static __inline__ int
205test_and_set_bit (int nr, volatile void *addr)
206{
207 __u32 bit, old, new;
208 volatile __u32 *m;
209 CMPXCHG_BUGCHECK_DECL
210
211 m = (volatile __u32 *) addr + (nr >> 5);
212 bit = 1 << (nr & 31);
213 do {
214 CMPXCHG_BUGCHECK(m);
215 old = *m;
216 new = old | bit;
217 } while (cmpxchg_acq(m, old, new) != old);
218 return (old & bit) != 0;
219}
220
221/**
222 * test_and_set_bit_lock - Set a bit and return its old value for lock
223 * @nr: Bit to set
224 * @addr: Address to count from
225 *
226 * This is the same as test_and_set_bit on ia64
227 */
228#define test_and_set_bit_lock test_and_set_bit
229
230/**
231 * __test_and_set_bit - Set a bit and return its old value
232 * @nr: Bit to set
233 * @addr: Address to count from
234 *
235 * This operation is non-atomic and can be reordered.
236 * If two examples of this operation race, one can appear to succeed
237 * but actually fail. You must protect multiple accesses with a lock.
238 */
239static __inline__ int
240__test_and_set_bit (int nr, volatile void *addr)
241{
242 __u32 *p = (__u32 *) addr + (nr >> 5);
243 __u32 m = 1 << (nr & 31);
244 int oldbitset = (*p & m) != 0;
245
246 *p |= m;
247 return oldbitset;
248}
249
250/**
251 * test_and_clear_bit - Clear a bit and return its old value
252 * @nr: Bit to clear
253 * @addr: Address to count from
254 *
255 * This operation is atomic and cannot be reordered.
256 * It also implies the acquisition side of the memory barrier.
257 */
258static __inline__ int
259test_and_clear_bit (int nr, volatile void *addr)
260{
261 __u32 mask, old, new;
262 volatile __u32 *m;
263 CMPXCHG_BUGCHECK_DECL
264
265 m = (volatile __u32 *) addr + (nr >> 5);
266 mask = ~(1 << (nr & 31));
267 do {
268 CMPXCHG_BUGCHECK(m);
269 old = *m;
270 new = old & mask;
271 } while (cmpxchg_acq(m, old, new) != old);
272 return (old & ~mask) != 0;
273}
274
275/**
276 * __test_and_clear_bit - Clear a bit and return its old value
277 * @nr: Bit to clear
278 * @addr: Address to count from
279 *
280 * This operation is non-atomic and can be reordered.
281 * If two examples of this operation race, one can appear to succeed
282 * but actually fail. You must protect multiple accesses with a lock.
283 */
284static __inline__ int
285__test_and_clear_bit(int nr, volatile void * addr)
286{
287 __u32 *p = (__u32 *) addr + (nr >> 5);
288 __u32 m = 1 << (nr & 31);
289 int oldbitset = (*p & m) != 0;
290
291 *p &= ~m;
292 return oldbitset;
293}
294
295/**
296 * test_and_change_bit - Change a bit and return its old value
297 * @nr: Bit to change
298 * @addr: Address to count from
299 *
300 * This operation is atomic and cannot be reordered.
301 * It also implies the acquisition side of the memory barrier.
302 */
303static __inline__ int
304test_and_change_bit (int nr, volatile void *addr)
305{
306 __u32 bit, old, new;
307 volatile __u32 *m;
308 CMPXCHG_BUGCHECK_DECL
309
310 m = (volatile __u32 *) addr + (nr >> 5);
311 bit = (1 << (nr & 31));
312 do {
313 CMPXCHG_BUGCHECK(m);
314 old = *m;
315 new = old ^ bit;
316 } while (cmpxchg_acq(m, old, new) != old);
317 return (old & bit) != 0;
318}
319
320/**
321 * __test_and_change_bit - Change a bit and return its old value
322 * @nr: Bit to change
323 * @addr: Address to count from
324 *
325 * This operation is non-atomic and can be reordered.
326 */
327static __inline__ int
328__test_and_change_bit (int nr, void *addr)
329{
330 __u32 old, bit = (1 << (nr & 31));
331 __u32 *m = (__u32 *) addr + (nr >> 5);
332
333 old = *m;
334 *m = old ^ bit;
335 return (old & bit) != 0;
336}
337
338static __inline__ int
339test_bit (int nr, const volatile void *addr)
340{
341 return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
342}
343
344/**
345 * ffz - find the first zero bit in a long word
346 * @x: The long word to find the bit in
347 *
348 * Returns the bit-number (0..63) of the first (least significant) zero bit.
349 * Undefined if no zero exists, so code should check against ~0UL first...
350 */
351static inline unsigned long
352ffz (unsigned long x)
353{
354 unsigned long result;
355
356 result = ia64_popcnt(x & (~x - 1));
357 return result;
358}
359
360/**
361 * __ffs - find first bit in word.
362 * @x: The word to search
363 *
364 * Undefined if no bit exists, so code should check against 0 first.
365 */
366static __inline__ unsigned long
367__ffs (unsigned long x)
368{
369 unsigned long result;
370
371 result = ia64_popcnt((x-1) & ~x);
372 return result;
373}
374
375#ifdef __KERNEL__
376
377/*
378 * Return bit number of last (most-significant) bit set. Undefined
379 * for x==0. Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
380 */
381static inline unsigned long
382ia64_fls (unsigned long x)
383{
384 long double d = x;
385 long exp;
386
387 exp = ia64_getf_exp(d);
388 return exp - 0xffff;
389}
390
391/*
392 * Find the last (most significant) bit set. Returns 0 for x==0 and
393 * bits are numbered from 1..32 (e.g., fls(9) == 4).
394 */
395static inline int
396fls (int t)
397{
398 unsigned long x = t & 0xffffffffu;
399
400 if (!x)
401 return 0;
402 x |= x >> 1;
403 x |= x >> 2;
404 x |= x >> 4;
405 x |= x >> 8;
406 x |= x >> 16;
407 return ia64_popcnt(x);
408}
409
410/*
411 * Find the last (most significant) bit set. Undefined for x==0.
412 * Bits are numbered from 0..63 (e.g., __fls(9) == 3).
413 */
414static inline unsigned long
415__fls (unsigned long x)
416{
417 x |= x >> 1;
418 x |= x >> 2;
419 x |= x >> 4;
420 x |= x >> 8;
421 x |= x >> 16;
422 x |= x >> 32;
423 return ia64_popcnt(x) - 1;
424}
425
426#include <asm-generic/bitops/fls64.h>
427
428#include <asm-generic/bitops/builtin-ffs.h>
429
430/*
431 * hweightN: returns the hamming weight (i.e. the number
432 * of bits set) of a N-bit word
433 */
434static __inline__ unsigned long __arch_hweight64(unsigned long x)
435{
436 unsigned long result;
437 result = ia64_popcnt(x);
438 return result;
439}
440
441#define __arch_hweight32(x) ((unsigned int) __arch_hweight64((x) & 0xfffffffful))
442#define __arch_hweight16(x) ((unsigned int) __arch_hweight64((x) & 0xfffful))
443#define __arch_hweight8(x) ((unsigned int) __arch_hweight64((x) & 0xfful))
444
445#include <asm-generic/bitops/const_hweight.h>
446
447#endif /* __KERNEL__ */
448
449#include <asm-generic/bitops/find.h>
450
451#ifdef __KERNEL__
452
453#include <asm-generic/bitops/le.h>
454
455#include <asm-generic/bitops/ext2-atomic-setbit.h>
456
457#include <asm-generic/bitops/sched.h>
458
459#endif /* __KERNEL__ */
460
461#endif /* _ASM_IA64_BITOPS_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_IA64_BITOPS_H
3#define _ASM_IA64_BITOPS_H
4
5/*
6 * Copyright (C) 1998-2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
10 * O(1) scheduler patch
11 */
12
13#ifndef _LINUX_BITOPS_H
14#error only <linux/bitops.h> can be included directly
15#endif
16
17#include <linux/compiler.h>
18#include <linux/types.h>
19#include <asm/intrinsics.h>
20#include <asm/barrier.h>
21
22/**
23 * set_bit - Atomically set a bit in memory
24 * @nr: the bit to set
25 * @addr: the address to start counting from
26 *
27 * This function is atomic and may not be reordered. See __set_bit()
28 * if you do not require the atomic guarantees.
29 * Note that @nr may be almost arbitrarily large; this function is not
30 * restricted to acting on a single-word quantity.
31 *
32 * The address must be (at least) "long" aligned.
33 * Note that there are driver (e.g., eepro100) which use these operations to
34 * operate on hw-defined data-structures, so we can't easily change these
35 * operations to force a bigger alignment.
36 *
37 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
38 */
39static __inline__ void
40set_bit (int nr, volatile void *addr)
41{
42 __u32 bit, old, new;
43 volatile __u32 *m;
44 CMPXCHG_BUGCHECK_DECL
45
46 m = (volatile __u32 *) addr + (nr >> 5);
47 bit = 1 << (nr & 31);
48 do {
49 CMPXCHG_BUGCHECK(m);
50 old = *m;
51 new = old | bit;
52 } while (cmpxchg_acq(m, old, new) != old);
53}
54
55/**
56 * arch___set_bit - Set a bit in memory
57 * @nr: the bit to set
58 * @addr: the address to start counting from
59 *
60 * Unlike set_bit(), this function is non-atomic and may be reordered.
61 * If it's called on the same region of memory simultaneously, the effect
62 * may be that only one operation succeeds.
63 */
64static __always_inline void
65arch___set_bit(unsigned long nr, volatile unsigned long *addr)
66{
67 *((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
68}
69
70/**
71 * clear_bit - Clears a bit in memory
72 * @nr: Bit to clear
73 * @addr: Address to start counting from
74 *
75 * clear_bit() is atomic and may not be reordered. However, it does
76 * not contain a memory barrier, so if it is used for locking purposes,
77 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
78 * in order to ensure changes are visible on other processors.
79 */
80static __inline__ void
81clear_bit (int nr, volatile void *addr)
82{
83 __u32 mask, old, new;
84 volatile __u32 *m;
85 CMPXCHG_BUGCHECK_DECL
86
87 m = (volatile __u32 *) addr + (nr >> 5);
88 mask = ~(1 << (nr & 31));
89 do {
90 CMPXCHG_BUGCHECK(m);
91 old = *m;
92 new = old & mask;
93 } while (cmpxchg_acq(m, old, new) != old);
94}
95
96/**
97 * clear_bit_unlock - Clears a bit in memory with release
98 * @nr: Bit to clear
99 * @addr: Address to start counting from
100 *
101 * clear_bit_unlock() is atomic and may not be reordered. It does
102 * contain a memory barrier suitable for unlock type operations.
103 */
104static __inline__ void
105clear_bit_unlock (int nr, volatile void *addr)
106{
107 __u32 mask, old, new;
108 volatile __u32 *m;
109 CMPXCHG_BUGCHECK_DECL
110
111 m = (volatile __u32 *) addr + (nr >> 5);
112 mask = ~(1 << (nr & 31));
113 do {
114 CMPXCHG_BUGCHECK(m);
115 old = *m;
116 new = old & mask;
117 } while (cmpxchg_rel(m, old, new) != old);
118}
119
120/**
121 * __clear_bit_unlock - Non-atomically clears a bit in memory with release
122 * @nr: Bit to clear
123 * @addr: Address to start counting from
124 *
125 * Similarly to clear_bit_unlock, the implementation uses a store
126 * with release semantics. See also arch_spin_unlock().
127 */
128static __inline__ void
129__clear_bit_unlock(int nr, void *addr)
130{
131 __u32 * const m = (__u32 *) addr + (nr >> 5);
132 __u32 const new = *m & ~(1 << (nr & 31));
133
134 ia64_st4_rel_nta(m, new);
135}
136
137/**
138 * arch___clear_bit - Clears a bit in memory (non-atomic version)
139 * @nr: the bit to clear
140 * @addr: the address to start counting from
141 *
142 * Unlike clear_bit(), this function is non-atomic and may be reordered.
143 * If it's called on the same region of memory simultaneously, the effect
144 * may be that only one operation succeeds.
145 */
146static __always_inline void
147arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
148{
149 *((__u32 *) addr + (nr >> 5)) &= ~(1 << (nr & 31));
150}
151
152/**
153 * change_bit - Toggle a bit in memory
154 * @nr: Bit to toggle
155 * @addr: Address to start counting from
156 *
157 * change_bit() is atomic and may not be reordered.
158 * Note that @nr may be almost arbitrarily large; this function is not
159 * restricted to acting on a single-word quantity.
160 */
161static __inline__ void
162change_bit (int nr, volatile void *addr)
163{
164 __u32 bit, old, new;
165 volatile __u32 *m;
166 CMPXCHG_BUGCHECK_DECL
167
168 m = (volatile __u32 *) addr + (nr >> 5);
169 bit = (1 << (nr & 31));
170 do {
171 CMPXCHG_BUGCHECK(m);
172 old = *m;
173 new = old ^ bit;
174 } while (cmpxchg_acq(m, old, new) != old);
175}
176
177/**
178 * arch___change_bit - Toggle a bit in memory
179 * @nr: the bit to toggle
180 * @addr: the address to start counting from
181 *
182 * Unlike change_bit(), this function is non-atomic and may be reordered.
183 * If it's called on the same region of memory simultaneously, the effect
184 * may be that only one operation succeeds.
185 */
186static __always_inline void
187arch___change_bit(unsigned long nr, volatile unsigned long *addr)
188{
189 *((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
190}
191
192/**
193 * test_and_set_bit - Set a bit and return its old value
194 * @nr: Bit to set
195 * @addr: Address to count from
196 *
197 * This operation is atomic and cannot be reordered.
198 * It also implies the acquisition side of the memory barrier.
199 */
200static __inline__ int
201test_and_set_bit (int nr, volatile void *addr)
202{
203 __u32 bit, old, new;
204 volatile __u32 *m;
205 CMPXCHG_BUGCHECK_DECL
206
207 m = (volatile __u32 *) addr + (nr >> 5);
208 bit = 1 << (nr & 31);
209 do {
210 CMPXCHG_BUGCHECK(m);
211 old = *m;
212 new = old | bit;
213 } while (cmpxchg_acq(m, old, new) != old);
214 return (old & bit) != 0;
215}
216
217/**
218 * test_and_set_bit_lock - Set a bit and return its old value for lock
219 * @nr: Bit to set
220 * @addr: Address to count from
221 *
222 * This is the same as test_and_set_bit on ia64
223 */
224#define test_and_set_bit_lock test_and_set_bit
225
226/**
227 * arch___test_and_set_bit - Set a bit and return its old value
228 * @nr: Bit to set
229 * @addr: Address to count from
230 *
231 * This operation is non-atomic and can be reordered.
232 * If two examples of this operation race, one can appear to succeed
233 * but actually fail. You must protect multiple accesses with a lock.
234 */
235static __always_inline bool
236arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
237{
238 __u32 *p = (__u32 *) addr + (nr >> 5);
239 __u32 m = 1 << (nr & 31);
240 int oldbitset = (*p & m) != 0;
241
242 *p |= m;
243 return oldbitset;
244}
245
246/**
247 * test_and_clear_bit - Clear a bit and return its old value
248 * @nr: Bit to clear
249 * @addr: Address to count from
250 *
251 * This operation is atomic and cannot be reordered.
252 * It also implies the acquisition side of the memory barrier.
253 */
254static __inline__ int
255test_and_clear_bit (int nr, volatile void *addr)
256{
257 __u32 mask, old, new;
258 volatile __u32 *m;
259 CMPXCHG_BUGCHECK_DECL
260
261 m = (volatile __u32 *) addr + (nr >> 5);
262 mask = ~(1 << (nr & 31));
263 do {
264 CMPXCHG_BUGCHECK(m);
265 old = *m;
266 new = old & mask;
267 } while (cmpxchg_acq(m, old, new) != old);
268 return (old & ~mask) != 0;
269}
270
271/**
272 * arch___test_and_clear_bit - Clear a bit and return its old value
273 * @nr: Bit to clear
274 * @addr: Address to count from
275 *
276 * This operation is non-atomic and can be reordered.
277 * If two examples of this operation race, one can appear to succeed
278 * but actually fail. You must protect multiple accesses with a lock.
279 */
280static __always_inline bool
281arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
282{
283 __u32 *p = (__u32 *) addr + (nr >> 5);
284 __u32 m = 1 << (nr & 31);
285 int oldbitset = (*p & m) != 0;
286
287 *p &= ~m;
288 return oldbitset;
289}
290
291/**
292 * test_and_change_bit - Change a bit and return its old value
293 * @nr: Bit to change
294 * @addr: Address to count from
295 *
296 * This operation is atomic and cannot be reordered.
297 * It also implies the acquisition side of the memory barrier.
298 */
299static __inline__ int
300test_and_change_bit (int nr, volatile void *addr)
301{
302 __u32 bit, old, new;
303 volatile __u32 *m;
304 CMPXCHG_BUGCHECK_DECL
305
306 m = (volatile __u32 *) addr + (nr >> 5);
307 bit = (1 << (nr & 31));
308 do {
309 CMPXCHG_BUGCHECK(m);
310 old = *m;
311 new = old ^ bit;
312 } while (cmpxchg_acq(m, old, new) != old);
313 return (old & bit) != 0;
314}
315
316/**
317 * arch___test_and_change_bit - Change a bit and return its old value
318 * @nr: Bit to change
319 * @addr: Address to count from
320 *
321 * This operation is non-atomic and can be reordered.
322 */
323static __always_inline bool
324arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
325{
326 __u32 old, bit = (1 << (nr & 31));
327 __u32 *m = (__u32 *) addr + (nr >> 5);
328
329 old = *m;
330 *m = old ^ bit;
331 return (old & bit) != 0;
332}
333
334#define arch_test_bit generic_test_bit
335#define arch_test_bit_acquire generic_test_bit_acquire
336
337/**
338 * ffz - find the first zero bit in a long word
339 * @x: The long word to find the bit in
340 *
341 * Returns the bit-number (0..63) of the first (least significant) zero bit.
342 * Undefined if no zero exists, so code should check against ~0UL first...
343 */
344static inline unsigned long
345ffz (unsigned long x)
346{
347 unsigned long result;
348
349 result = ia64_popcnt(x & (~x - 1));
350 return result;
351}
352
353/**
354 * __ffs - find first bit in word.
355 * @x: The word to search
356 *
357 * Undefined if no bit exists, so code should check against 0 first.
358 */
359static __inline__ unsigned long
360__ffs (unsigned long x)
361{
362 unsigned long result;
363
364 result = ia64_popcnt((x-1) & ~x);
365 return result;
366}
367
368#ifdef __KERNEL__
369
370/*
371 * Return bit number of last (most-significant) bit set. Undefined
372 * for x==0. Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
373 */
374static inline unsigned long
375ia64_fls (unsigned long x)
376{
377 long double d = x;
378 long exp;
379
380 exp = ia64_getf_exp(d);
381 return exp - 0xffff;
382}
383
384/*
385 * Find the last (most significant) bit set. Returns 0 for x==0 and
386 * bits are numbered from 1..32 (e.g., fls(9) == 4).
387 */
388static inline int fls(unsigned int t)
389{
390 unsigned long x = t & 0xffffffffu;
391
392 if (!x)
393 return 0;
394 x |= x >> 1;
395 x |= x >> 2;
396 x |= x >> 4;
397 x |= x >> 8;
398 x |= x >> 16;
399 return ia64_popcnt(x);
400}
401
402/*
403 * Find the last (most significant) bit set. Undefined for x==0.
404 * Bits are numbered from 0..63 (e.g., __fls(9) == 3).
405 */
406static inline unsigned long
407__fls (unsigned long x)
408{
409 x |= x >> 1;
410 x |= x >> 2;
411 x |= x >> 4;
412 x |= x >> 8;
413 x |= x >> 16;
414 x |= x >> 32;
415 return ia64_popcnt(x) - 1;
416}
417
418#include <asm-generic/bitops/fls64.h>
419
420#include <asm-generic/bitops/builtin-ffs.h>
421
422/*
423 * hweightN: returns the hamming weight (i.e. the number
424 * of bits set) of a N-bit word
425 */
426static __inline__ unsigned long __arch_hweight64(unsigned long x)
427{
428 unsigned long result;
429 result = ia64_popcnt(x);
430 return result;
431}
432
433#define __arch_hweight32(x) ((unsigned int) __arch_hweight64((x) & 0xfffffffful))
434#define __arch_hweight16(x) ((unsigned int) __arch_hweight64((x) & 0xfffful))
435#define __arch_hweight8(x) ((unsigned int) __arch_hweight64((x) & 0xfful))
436
437#include <asm-generic/bitops/const_hweight.h>
438
439#endif /* __KERNEL__ */
440
441#ifdef __KERNEL__
442
443#include <asm-generic/bitops/non-instrumented-non-atomic.h>
444
445#include <asm-generic/bitops/le.h>
446
447#include <asm-generic/bitops/ext2-atomic-setbit.h>
448
449#include <asm-generic/bitops/sched.h>
450
451#endif /* __KERNEL__ */
452
453#endif /* _ASM_IA64_BITOPS_H */