Linux Audio

Check our new training course

Loading...
v3.15
  1#ifndef _ASM_IA64_BITOPS_H
  2#define _ASM_IA64_BITOPS_H
  3
  4/*
  5 * Copyright (C) 1998-2003 Hewlett-Packard Co
  6 *	David Mosberger-Tang <davidm@hpl.hp.com>
  7 *
  8 * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
  9 * O(1) scheduler patch
 10 */
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 16#include <linux/compiler.h>
 17#include <linux/types.h>
 18#include <asm/intrinsics.h>
 
 19
 20/**
 21 * set_bit - Atomically set a bit in memory
 22 * @nr: the bit to set
 23 * @addr: the address to start counting from
 24 *
 25 * This function is atomic and may not be reordered.  See __set_bit()
 26 * if you do not require the atomic guarantees.
 27 * Note that @nr may be almost arbitrarily large; this function is not
 28 * restricted to acting on a single-word quantity.
 29 *
 30 * The address must be (at least) "long" aligned.
 31 * Note that there are driver (e.g., eepro100) which use these operations to
 32 * operate on hw-defined data-structures, so we can't easily change these
 33 * operations to force a bigger alignment.
 34 *
 35 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 36 */
 37static __inline__ void
 38set_bit (int nr, volatile void *addr)
 39{
 40	__u32 bit, old, new;
 41	volatile __u32 *m;
 42	CMPXCHG_BUGCHECK_DECL
 43
 44	m = (volatile __u32 *) addr + (nr >> 5);
 45	bit = 1 << (nr & 31);
 46	do {
 47		CMPXCHG_BUGCHECK(m);
 48		old = *m;
 49		new = old | bit;
 50	} while (cmpxchg_acq(m, old, new) != old);
 51}
 52
 53/**
 54 * __set_bit - Set a bit in memory
 55 * @nr: the bit to set
 56 * @addr: the address to start counting from
 57 *
 58 * Unlike set_bit(), this function is non-atomic and may be reordered.
 59 * If it's called on the same region of memory simultaneously, the effect
 60 * may be that only one operation succeeds.
 61 */
 62static __inline__ void
 63__set_bit (int nr, volatile void *addr)
 64{
 65	*((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
 66}
 67
 68/*
 69 * clear_bit() has "acquire" semantics.
 70 */
 71#define smp_mb__before_clear_bit()	smp_mb()
 72#define smp_mb__after_clear_bit()	do { /* skip */; } while (0)
 73
 74/**
 75 * clear_bit - Clears a bit in memory
 76 * @nr: Bit to clear
 77 * @addr: Address to start counting from
 78 *
 79 * clear_bit() is atomic and may not be reordered.  However, it does
 80 * not contain a memory barrier, so if it is used for locking purposes,
 81 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
 82 * in order to ensure changes are visible on other processors.
 83 */
 84static __inline__ void
 85clear_bit (int nr, volatile void *addr)
 86{
 87	__u32 mask, old, new;
 88	volatile __u32 *m;
 89	CMPXCHG_BUGCHECK_DECL
 90
 91	m = (volatile __u32 *) addr + (nr >> 5);
 92	mask = ~(1 << (nr & 31));
 93	do {
 94		CMPXCHG_BUGCHECK(m);
 95		old = *m;
 96		new = old & mask;
 97	} while (cmpxchg_acq(m, old, new) != old);
 98}
 99
100/**
101 * clear_bit_unlock - Clears a bit in memory with release
102 * @nr: Bit to clear
103 * @addr: Address to start counting from
104 *
105 * clear_bit_unlock() is atomic and may not be reordered.  It does
106 * contain a memory barrier suitable for unlock type operations.
107 */
108static __inline__ void
109clear_bit_unlock (int nr, volatile void *addr)
110{
111	__u32 mask, old, new;
112	volatile __u32 *m;
113	CMPXCHG_BUGCHECK_DECL
114
115	m = (volatile __u32 *) addr + (nr >> 5);
116	mask = ~(1 << (nr & 31));
117	do {
118		CMPXCHG_BUGCHECK(m);
119		old = *m;
120		new = old & mask;
121	} while (cmpxchg_rel(m, old, new) != old);
122}
123
124/**
125 * __clear_bit_unlock - Non-atomically clears a bit in memory with release
126 * @nr: Bit to clear
127 * @addr: Address to start counting from
128 *
129 * Similarly to clear_bit_unlock, the implementation uses a store
130 * with release semantics. See also arch_spin_unlock().
131 */
132static __inline__ void
133__clear_bit_unlock(int nr, void *addr)
134{
135	__u32 * const m = (__u32 *) addr + (nr >> 5);
136	__u32 const new = *m & ~(1 << (nr & 31));
137
138	ia64_st4_rel_nta(m, new);
139}
140
141/**
142 * __clear_bit - Clears a bit in memory (non-atomic version)
143 * @nr: the bit to clear
144 * @addr: the address to start counting from
145 *
146 * Unlike clear_bit(), this function is non-atomic and may be reordered.
147 * If it's called on the same region of memory simultaneously, the effect
148 * may be that only one operation succeeds.
149 */
150static __inline__ void
151__clear_bit (int nr, volatile void *addr)
152{
153	*((__u32 *) addr + (nr >> 5)) &= ~(1 << (nr & 31));
154}
155
156/**
157 * change_bit - Toggle a bit in memory
158 * @nr: Bit to toggle
159 * @addr: Address to start counting from
160 *
161 * change_bit() is atomic and may not be reordered.
162 * Note that @nr may be almost arbitrarily large; this function is not
163 * restricted to acting on a single-word quantity.
164 */
165static __inline__ void
166change_bit (int nr, volatile void *addr)
167{
168	__u32 bit, old, new;
169	volatile __u32 *m;
170	CMPXCHG_BUGCHECK_DECL
171
172	m = (volatile __u32 *) addr + (nr >> 5);
173	bit = (1 << (nr & 31));
174	do {
175		CMPXCHG_BUGCHECK(m);
176		old = *m;
177		new = old ^ bit;
178	} while (cmpxchg_acq(m, old, new) != old);
179}
180
181/**
182 * __change_bit - Toggle a bit in memory
183 * @nr: the bit to toggle
184 * @addr: the address to start counting from
185 *
186 * Unlike change_bit(), this function is non-atomic and may be reordered.
187 * If it's called on the same region of memory simultaneously, the effect
188 * may be that only one operation succeeds.
189 */
190static __inline__ void
191__change_bit (int nr, volatile void *addr)
192{
193	*((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
194}
195
196/**
197 * test_and_set_bit - Set a bit and return its old value
198 * @nr: Bit to set
199 * @addr: Address to count from
200 *
201 * This operation is atomic and cannot be reordered.  
202 * It also implies the acquisition side of the memory barrier.
203 */
204static __inline__ int
205test_and_set_bit (int nr, volatile void *addr)
206{
207	__u32 bit, old, new;
208	volatile __u32 *m;
209	CMPXCHG_BUGCHECK_DECL
210
211	m = (volatile __u32 *) addr + (nr >> 5);
212	bit = 1 << (nr & 31);
213	do {
214		CMPXCHG_BUGCHECK(m);
215		old = *m;
216		new = old | bit;
217	} while (cmpxchg_acq(m, old, new) != old);
218	return (old & bit) != 0;
219}
220
221/**
222 * test_and_set_bit_lock - Set a bit and return its old value for lock
223 * @nr: Bit to set
224 * @addr: Address to count from
225 *
226 * This is the same as test_and_set_bit on ia64
227 */
228#define test_and_set_bit_lock test_and_set_bit
229
230/**
231 * __test_and_set_bit - Set a bit and return its old value
232 * @nr: Bit to set
233 * @addr: Address to count from
234 *
235 * This operation is non-atomic and can be reordered.  
236 * If two examples of this operation race, one can appear to succeed
237 * but actually fail.  You must protect multiple accesses with a lock.
238 */
239static __inline__ int
240__test_and_set_bit (int nr, volatile void *addr)
241{
242	__u32 *p = (__u32 *) addr + (nr >> 5);
243	__u32 m = 1 << (nr & 31);
244	int oldbitset = (*p & m) != 0;
245
246	*p |= m;
247	return oldbitset;
248}
249
250/**
251 * test_and_clear_bit - Clear a bit and return its old value
252 * @nr: Bit to clear
253 * @addr: Address to count from
254 *
255 * This operation is atomic and cannot be reordered.  
256 * It also implies the acquisition side of the memory barrier.
257 */
258static __inline__ int
259test_and_clear_bit (int nr, volatile void *addr)
260{
261	__u32 mask, old, new;
262	volatile __u32 *m;
263	CMPXCHG_BUGCHECK_DECL
264
265	m = (volatile __u32 *) addr + (nr >> 5);
266	mask = ~(1 << (nr & 31));
267	do {
268		CMPXCHG_BUGCHECK(m);
269		old = *m;
270		new = old & mask;
271	} while (cmpxchg_acq(m, old, new) != old);
272	return (old & ~mask) != 0;
273}
274
275/**
276 * __test_and_clear_bit - Clear a bit and return its old value
277 * @nr: Bit to clear
278 * @addr: Address to count from
279 *
280 * This operation is non-atomic and can be reordered.  
281 * If two examples of this operation race, one can appear to succeed
282 * but actually fail.  You must protect multiple accesses with a lock.
283 */
284static __inline__ int
285__test_and_clear_bit(int nr, volatile void * addr)
286{
287	__u32 *p = (__u32 *) addr + (nr >> 5);
288	__u32 m = 1 << (nr & 31);
289	int oldbitset = (*p & m) != 0;
290
291	*p &= ~m;
292	return oldbitset;
293}
294
295/**
296 * test_and_change_bit - Change a bit and return its old value
297 * @nr: Bit to change
298 * @addr: Address to count from
299 *
300 * This operation is atomic and cannot be reordered.  
301 * It also implies the acquisition side of the memory barrier.
302 */
303static __inline__ int
304test_and_change_bit (int nr, volatile void *addr)
305{
306	__u32 bit, old, new;
307	volatile __u32 *m;
308	CMPXCHG_BUGCHECK_DECL
309
310	m = (volatile __u32 *) addr + (nr >> 5);
311	bit = (1 << (nr & 31));
312	do {
313		CMPXCHG_BUGCHECK(m);
314		old = *m;
315		new = old ^ bit;
316	} while (cmpxchg_acq(m, old, new) != old);
317	return (old & bit) != 0;
318}
319
320/**
321 * __test_and_change_bit - Change a bit and return its old value
322 * @nr: Bit to change
323 * @addr: Address to count from
324 *
325 * This operation is non-atomic and can be reordered.
326 */
327static __inline__ int
328__test_and_change_bit (int nr, void *addr)
329{
330	__u32 old, bit = (1 << (nr & 31));
331	__u32 *m = (__u32 *) addr + (nr >> 5);
332
333	old = *m;
334	*m = old ^ bit;
335	return (old & bit) != 0;
336}
337
338static __inline__ int
339test_bit (int nr, const volatile void *addr)
340{
341	return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
342}
343
344/**
345 * ffz - find the first zero bit in a long word
346 * @x: The long word to find the bit in
347 *
348 * Returns the bit-number (0..63) of the first (least significant) zero bit.
349 * Undefined if no zero exists, so code should check against ~0UL first...
350 */
351static inline unsigned long
352ffz (unsigned long x)
353{
354	unsigned long result;
355
356	result = ia64_popcnt(x & (~x - 1));
357	return result;
358}
359
360/**
361 * __ffs - find first bit in word.
362 * @x: The word to search
363 *
364 * Undefined if no bit exists, so code should check against 0 first.
365 */
366static __inline__ unsigned long
367__ffs (unsigned long x)
368{
369	unsigned long result;
370
371	result = ia64_popcnt((x-1) & ~x);
372	return result;
373}
374
375#ifdef __KERNEL__
376
377/*
378 * Return bit number of last (most-significant) bit set.  Undefined
379 * for x==0.  Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
380 */
381static inline unsigned long
382ia64_fls (unsigned long x)
383{
384	long double d = x;
385	long exp;
386
387	exp = ia64_getf_exp(d);
388	return exp - 0xffff;
389}
390
391/*
392 * Find the last (most significant) bit set.  Returns 0 for x==0 and
393 * bits are numbered from 1..32 (e.g., fls(9) == 4).
394 */
395static inline int
396fls (int t)
397{
398	unsigned long x = t & 0xffffffffu;
399
400	if (!x)
401		return 0;
402	x |= x >> 1;
403	x |= x >> 2;
404	x |= x >> 4;
405	x |= x >> 8;
406	x |= x >> 16;
407	return ia64_popcnt(x);
408}
409
410/*
411 * Find the last (most significant) bit set.  Undefined for x==0.
412 * Bits are numbered from 0..63 (e.g., __fls(9) == 3).
413 */
414static inline unsigned long
415__fls (unsigned long x)
416{
417	x |= x >> 1;
418	x |= x >> 2;
419	x |= x >> 4;
420	x |= x >> 8;
421	x |= x >> 16;
422	x |= x >> 32;
423	return ia64_popcnt(x) - 1;
424}
425
426#include <asm-generic/bitops/fls64.h>
427
428#include <asm-generic/bitops/builtin-ffs.h>
429
430/*
431 * hweightN: returns the hamming weight (i.e. the number
432 * of bits set) of a N-bit word
433 */
434static __inline__ unsigned long __arch_hweight64(unsigned long x)
435{
436	unsigned long result;
437	result = ia64_popcnt(x);
438	return result;
439}
440
441#define __arch_hweight32(x) ((unsigned int) __arch_hweight64((x) & 0xfffffffful))
442#define __arch_hweight16(x) ((unsigned int) __arch_hweight64((x) & 0xfffful))
443#define __arch_hweight8(x)  ((unsigned int) __arch_hweight64((x) & 0xfful))
444
445#include <asm-generic/bitops/const_hweight.h>
446
447#endif /* __KERNEL__ */
448
449#include <asm-generic/bitops/find.h>
450
451#ifdef __KERNEL__
452
453#include <asm-generic/bitops/le.h>
454
455#include <asm-generic/bitops/ext2-atomic-setbit.h>
456
457#include <asm-generic/bitops/sched.h>
458
459#endif /* __KERNEL__ */
460
461#endif /* _ASM_IA64_BITOPS_H */
v4.6
  1#ifndef _ASM_IA64_BITOPS_H
  2#define _ASM_IA64_BITOPS_H
  3
  4/*
  5 * Copyright (C) 1998-2003 Hewlett-Packard Co
  6 *	David Mosberger-Tang <davidm@hpl.hp.com>
  7 *
  8 * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
  9 * O(1) scheduler patch
 10 */
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 16#include <linux/compiler.h>
 17#include <linux/types.h>
 18#include <asm/intrinsics.h>
 19#include <asm/barrier.h>
 20
 21/**
 22 * set_bit - Atomically set a bit in memory
 23 * @nr: the bit to set
 24 * @addr: the address to start counting from
 25 *
 26 * This function is atomic and may not be reordered.  See __set_bit()
 27 * if you do not require the atomic guarantees.
 28 * Note that @nr may be almost arbitrarily large; this function is not
 29 * restricted to acting on a single-word quantity.
 30 *
 31 * The address must be (at least) "long" aligned.
 32 * Note that there are driver (e.g., eepro100) which use these operations to
 33 * operate on hw-defined data-structures, so we can't easily change these
 34 * operations to force a bigger alignment.
 35 *
 36 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 37 */
 38static __inline__ void
 39set_bit (int nr, volatile void *addr)
 40{
 41	__u32 bit, old, new;
 42	volatile __u32 *m;
 43	CMPXCHG_BUGCHECK_DECL
 44
 45	m = (volatile __u32 *) addr + (nr >> 5);
 46	bit = 1 << (nr & 31);
 47	do {
 48		CMPXCHG_BUGCHECK(m);
 49		old = *m;
 50		new = old | bit;
 51	} while (cmpxchg_acq(m, old, new) != old);
 52}
 53
 54/**
 55 * __set_bit - Set a bit in memory
 56 * @nr: the bit to set
 57 * @addr: the address to start counting from
 58 *
 59 * Unlike set_bit(), this function is non-atomic and may be reordered.
 60 * If it's called on the same region of memory simultaneously, the effect
 61 * may be that only one operation succeeds.
 62 */
 63static __inline__ void
 64__set_bit (int nr, volatile void *addr)
 65{
 66	*((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
 67}
 68
 
 
 
 
 
 
 69/**
 70 * clear_bit - Clears a bit in memory
 71 * @nr: Bit to clear
 72 * @addr: Address to start counting from
 73 *
 74 * clear_bit() is atomic and may not be reordered.  However, it does
 75 * not contain a memory barrier, so if it is used for locking purposes,
 76 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
 77 * in order to ensure changes are visible on other processors.
 78 */
 79static __inline__ void
 80clear_bit (int nr, volatile void *addr)
 81{
 82	__u32 mask, old, new;
 83	volatile __u32 *m;
 84	CMPXCHG_BUGCHECK_DECL
 85
 86	m = (volatile __u32 *) addr + (nr >> 5);
 87	mask = ~(1 << (nr & 31));
 88	do {
 89		CMPXCHG_BUGCHECK(m);
 90		old = *m;
 91		new = old & mask;
 92	} while (cmpxchg_acq(m, old, new) != old);
 93}
 94
 95/**
 96 * clear_bit_unlock - Clears a bit in memory with release
 97 * @nr: Bit to clear
 98 * @addr: Address to start counting from
 99 *
100 * clear_bit_unlock() is atomic and may not be reordered.  It does
101 * contain a memory barrier suitable for unlock type operations.
102 */
103static __inline__ void
104clear_bit_unlock (int nr, volatile void *addr)
105{
106	__u32 mask, old, new;
107	volatile __u32 *m;
108	CMPXCHG_BUGCHECK_DECL
109
110	m = (volatile __u32 *) addr + (nr >> 5);
111	mask = ~(1 << (nr & 31));
112	do {
113		CMPXCHG_BUGCHECK(m);
114		old = *m;
115		new = old & mask;
116	} while (cmpxchg_rel(m, old, new) != old);
117}
118
119/**
120 * __clear_bit_unlock - Non-atomically clears a bit in memory with release
121 * @nr: Bit to clear
122 * @addr: Address to start counting from
123 *
124 * Similarly to clear_bit_unlock, the implementation uses a store
125 * with release semantics. See also arch_spin_unlock().
126 */
127static __inline__ void
128__clear_bit_unlock(int nr, void *addr)
129{
130	__u32 * const m = (__u32 *) addr + (nr >> 5);
131	__u32 const new = *m & ~(1 << (nr & 31));
132
133	ia64_st4_rel_nta(m, new);
134}
135
136/**
137 * __clear_bit - Clears a bit in memory (non-atomic version)
138 * @nr: the bit to clear
139 * @addr: the address to start counting from
140 *
141 * Unlike clear_bit(), this function is non-atomic and may be reordered.
142 * If it's called on the same region of memory simultaneously, the effect
143 * may be that only one operation succeeds.
144 */
145static __inline__ void
146__clear_bit (int nr, volatile void *addr)
147{
148	*((__u32 *) addr + (nr >> 5)) &= ~(1 << (nr & 31));
149}
150
151/**
152 * change_bit - Toggle a bit in memory
153 * @nr: Bit to toggle
154 * @addr: Address to start counting from
155 *
156 * change_bit() is atomic and may not be reordered.
157 * Note that @nr may be almost arbitrarily large; this function is not
158 * restricted to acting on a single-word quantity.
159 */
160static __inline__ void
161change_bit (int nr, volatile void *addr)
162{
163	__u32 bit, old, new;
164	volatile __u32 *m;
165	CMPXCHG_BUGCHECK_DECL
166
167	m = (volatile __u32 *) addr + (nr >> 5);
168	bit = (1 << (nr & 31));
169	do {
170		CMPXCHG_BUGCHECK(m);
171		old = *m;
172		new = old ^ bit;
173	} while (cmpxchg_acq(m, old, new) != old);
174}
175
176/**
177 * __change_bit - Toggle a bit in memory
178 * @nr: the bit to toggle
179 * @addr: the address to start counting from
180 *
181 * Unlike change_bit(), this function is non-atomic and may be reordered.
182 * If it's called on the same region of memory simultaneously, the effect
183 * may be that only one operation succeeds.
184 */
185static __inline__ void
186__change_bit (int nr, volatile void *addr)
187{
188	*((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
189}
190
191/**
192 * test_and_set_bit - Set a bit and return its old value
193 * @nr: Bit to set
194 * @addr: Address to count from
195 *
196 * This operation is atomic and cannot be reordered.  
197 * It also implies the acquisition side of the memory barrier.
198 */
199static __inline__ int
200test_and_set_bit (int nr, volatile void *addr)
201{
202	__u32 bit, old, new;
203	volatile __u32 *m;
204	CMPXCHG_BUGCHECK_DECL
205
206	m = (volatile __u32 *) addr + (nr >> 5);
207	bit = 1 << (nr & 31);
208	do {
209		CMPXCHG_BUGCHECK(m);
210		old = *m;
211		new = old | bit;
212	} while (cmpxchg_acq(m, old, new) != old);
213	return (old & bit) != 0;
214}
215
216/**
217 * test_and_set_bit_lock - Set a bit and return its old value for lock
218 * @nr: Bit to set
219 * @addr: Address to count from
220 *
221 * This is the same as test_and_set_bit on ia64
222 */
223#define test_and_set_bit_lock test_and_set_bit
224
225/**
226 * __test_and_set_bit - Set a bit and return its old value
227 * @nr: Bit to set
228 * @addr: Address to count from
229 *
230 * This operation is non-atomic and can be reordered.  
231 * If two examples of this operation race, one can appear to succeed
232 * but actually fail.  You must protect multiple accesses with a lock.
233 */
234static __inline__ int
235__test_and_set_bit (int nr, volatile void *addr)
236{
237	__u32 *p = (__u32 *) addr + (nr >> 5);
238	__u32 m = 1 << (nr & 31);
239	int oldbitset = (*p & m) != 0;
240
241	*p |= m;
242	return oldbitset;
243}
244
245/**
246 * test_and_clear_bit - Clear a bit and return its old value
247 * @nr: Bit to clear
248 * @addr: Address to count from
249 *
250 * This operation is atomic and cannot be reordered.  
251 * It also implies the acquisition side of the memory barrier.
252 */
253static __inline__ int
254test_and_clear_bit (int nr, volatile void *addr)
255{
256	__u32 mask, old, new;
257	volatile __u32 *m;
258	CMPXCHG_BUGCHECK_DECL
259
260	m = (volatile __u32 *) addr + (nr >> 5);
261	mask = ~(1 << (nr & 31));
262	do {
263		CMPXCHG_BUGCHECK(m);
264		old = *m;
265		new = old & mask;
266	} while (cmpxchg_acq(m, old, new) != old);
267	return (old & ~mask) != 0;
268}
269
270/**
271 * __test_and_clear_bit - Clear a bit and return its old value
272 * @nr: Bit to clear
273 * @addr: Address to count from
274 *
275 * This operation is non-atomic and can be reordered.  
276 * If two examples of this operation race, one can appear to succeed
277 * but actually fail.  You must protect multiple accesses with a lock.
278 */
279static __inline__ int
280__test_and_clear_bit(int nr, volatile void * addr)
281{
282	__u32 *p = (__u32 *) addr + (nr >> 5);
283	__u32 m = 1 << (nr & 31);
284	int oldbitset = (*p & m) != 0;
285
286	*p &= ~m;
287	return oldbitset;
288}
289
290/**
291 * test_and_change_bit - Change a bit and return its old value
292 * @nr: Bit to change
293 * @addr: Address to count from
294 *
295 * This operation is atomic and cannot be reordered.  
296 * It also implies the acquisition side of the memory barrier.
297 */
298static __inline__ int
299test_and_change_bit (int nr, volatile void *addr)
300{
301	__u32 bit, old, new;
302	volatile __u32 *m;
303	CMPXCHG_BUGCHECK_DECL
304
305	m = (volatile __u32 *) addr + (nr >> 5);
306	bit = (1 << (nr & 31));
307	do {
308		CMPXCHG_BUGCHECK(m);
309		old = *m;
310		new = old ^ bit;
311	} while (cmpxchg_acq(m, old, new) != old);
312	return (old & bit) != 0;
313}
314
315/**
316 * __test_and_change_bit - Change a bit and return its old value
317 * @nr: Bit to change
318 * @addr: Address to count from
319 *
320 * This operation is non-atomic and can be reordered.
321 */
322static __inline__ int
323__test_and_change_bit (int nr, void *addr)
324{
325	__u32 old, bit = (1 << (nr & 31));
326	__u32 *m = (__u32 *) addr + (nr >> 5);
327
328	old = *m;
329	*m = old ^ bit;
330	return (old & bit) != 0;
331}
332
333static __inline__ int
334test_bit (int nr, const volatile void *addr)
335{
336	return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
337}
338
339/**
340 * ffz - find the first zero bit in a long word
341 * @x: The long word to find the bit in
342 *
343 * Returns the bit-number (0..63) of the first (least significant) zero bit.
344 * Undefined if no zero exists, so code should check against ~0UL first...
345 */
346static inline unsigned long
347ffz (unsigned long x)
348{
349	unsigned long result;
350
351	result = ia64_popcnt(x & (~x - 1));
352	return result;
353}
354
355/**
356 * __ffs - find first bit in word.
357 * @x: The word to search
358 *
359 * Undefined if no bit exists, so code should check against 0 first.
360 */
361static __inline__ unsigned long
362__ffs (unsigned long x)
363{
364	unsigned long result;
365
366	result = ia64_popcnt((x-1) & ~x);
367	return result;
368}
369
370#ifdef __KERNEL__
371
372/*
373 * Return bit number of last (most-significant) bit set.  Undefined
374 * for x==0.  Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
375 */
376static inline unsigned long
377ia64_fls (unsigned long x)
378{
379	long double d = x;
380	long exp;
381
382	exp = ia64_getf_exp(d);
383	return exp - 0xffff;
384}
385
386/*
387 * Find the last (most significant) bit set.  Returns 0 for x==0 and
388 * bits are numbered from 1..32 (e.g., fls(9) == 4).
389 */
390static inline int
391fls (int t)
392{
393	unsigned long x = t & 0xffffffffu;
394
395	if (!x)
396		return 0;
397	x |= x >> 1;
398	x |= x >> 2;
399	x |= x >> 4;
400	x |= x >> 8;
401	x |= x >> 16;
402	return ia64_popcnt(x);
403}
404
405/*
406 * Find the last (most significant) bit set.  Undefined for x==0.
407 * Bits are numbered from 0..63 (e.g., __fls(9) == 3).
408 */
409static inline unsigned long
410__fls (unsigned long x)
411{
412	x |= x >> 1;
413	x |= x >> 2;
414	x |= x >> 4;
415	x |= x >> 8;
416	x |= x >> 16;
417	x |= x >> 32;
418	return ia64_popcnt(x) - 1;
419}
420
421#include <asm-generic/bitops/fls64.h>
422
423#include <asm-generic/bitops/builtin-ffs.h>
424
425/*
426 * hweightN: returns the hamming weight (i.e. the number
427 * of bits set) of a N-bit word
428 */
429static __inline__ unsigned long __arch_hweight64(unsigned long x)
430{
431	unsigned long result;
432	result = ia64_popcnt(x);
433	return result;
434}
435
436#define __arch_hweight32(x) ((unsigned int) __arch_hweight64((x) & 0xfffffffful))
437#define __arch_hweight16(x) ((unsigned int) __arch_hweight64((x) & 0xfffful))
438#define __arch_hweight8(x)  ((unsigned int) __arch_hweight64((x) & 0xfful))
439
440#include <asm-generic/bitops/const_hweight.h>
441
442#endif /* __KERNEL__ */
443
444#include <asm-generic/bitops/find.h>
445
446#ifdef __KERNEL__
447
448#include <asm-generic/bitops/le.h>
449
450#include <asm-generic/bitops/ext2-atomic-setbit.h>
451
452#include <asm-generic/bitops/sched.h>
453
454#endif /* __KERNEL__ */
455
456#endif /* _ASM_IA64_BITOPS_H */