Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This contains encryption functions for per-file encryption.
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Michael Halcrow, 2014.
  9 *
 10 * Filename encryption additions
 11 *	Uday Savagaonkar, 2014
 12 * Encryption policy handling additions
 13 *	Ildar Muslukhov, 2014
 14 * Add fscrypt_pullback_bio_page()
 15 *	Jaegeuk Kim, 2015.
 16 *
 17 * This has not yet undergone a rigorous security audit.
 18 *
 19 * The usage of AES-XTS should conform to recommendations in NIST
 20 * Special Publication 800-38E and IEEE P1619/D16.
 21 */
 22
 23#include <linux/pagemap.h>
 24#include <linux/mempool.h>
 25#include <linux/module.h>
 26#include <linux/scatterlist.h>
 27#include <linux/ratelimit.h>
 28#include <crypto/skcipher.h>
 29#include "fscrypt_private.h"
 30
 31static unsigned int num_prealloc_crypto_pages = 32;
 32
 33module_param(num_prealloc_crypto_pages, uint, 0444);
 34MODULE_PARM_DESC(num_prealloc_crypto_pages,
 35		"Number of crypto pages to preallocate");
 36
 37static mempool_t *fscrypt_bounce_page_pool = NULL;
 38
 39static struct workqueue_struct *fscrypt_read_workqueue;
 40static DEFINE_MUTEX(fscrypt_init_mutex);
 41
 42struct kmem_cache *fscrypt_info_cachep;
 43
 44void fscrypt_enqueue_decrypt_work(struct work_struct *work)
 45{
 46	queue_work(fscrypt_read_workqueue, work);
 47}
 48EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
 49
 50struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
 51{
 52	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
 53}
 54
 55/**
 56 * fscrypt_free_bounce_page() - free a ciphertext bounce page
 57 * @bounce_page: the bounce page to free, or NULL
 58 *
 59 * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
 60 * or by fscrypt_alloc_bounce_page() directly.
 61 */
 62void fscrypt_free_bounce_page(struct page *bounce_page)
 63{
 64	if (!bounce_page)
 65		return;
 66	set_page_private(bounce_page, (unsigned long)NULL);
 67	ClearPagePrivate(bounce_page);
 68	mempool_free(bounce_page, fscrypt_bounce_page_pool);
 69}
 70EXPORT_SYMBOL(fscrypt_free_bounce_page);
 71
 72/*
 73 * Generate the IV for the given logical block number within the given file.
 74 * For filenames encryption, lblk_num == 0.
 75 *
 76 * Keep this in sync with fscrypt_limit_io_blocks().  fscrypt_limit_io_blocks()
 77 * needs to know about any IV generation methods where the low bits of IV don't
 78 * simply contain the lblk_num (e.g., IV_INO_LBLK_32).
 79 */
 80void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
 81			 const struct fscrypt_info *ci)
 82{
 83	u8 flags = fscrypt_policy_flags(&ci->ci_policy);
 84
 85	memset(iv, 0, ci->ci_mode->ivsize);
 86
 87	if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
 88		WARN_ON_ONCE(lblk_num > U32_MAX);
 89		WARN_ON_ONCE(ci->ci_inode->i_ino > U32_MAX);
 90		lblk_num |= (u64)ci->ci_inode->i_ino << 32;
 91	} else if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
 92		WARN_ON_ONCE(lblk_num > U32_MAX);
 93		lblk_num = (u32)(ci->ci_hashed_ino + lblk_num);
 94	} else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
 95		memcpy(iv->nonce, ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE);
 96	}
 97	iv->lblk_num = cpu_to_le64(lblk_num);
 98}
 99
100/* Encrypt or decrypt a single filesystem block of file contents */
101int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
102			u64 lblk_num, struct page *src_page,
103			struct page *dest_page, unsigned int len,
104			unsigned int offs, gfp_t gfp_flags)
105{
106	union fscrypt_iv iv;
107	struct skcipher_request *req = NULL;
108	DECLARE_CRYPTO_WAIT(wait);
109	struct scatterlist dst, src;
110	struct fscrypt_info *ci = inode->i_crypt_info;
111	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
112	int res = 0;
113
114	if (WARN_ON_ONCE(len <= 0))
115		return -EINVAL;
116	if (WARN_ON_ONCE(len % FSCRYPT_CONTENTS_ALIGNMENT != 0))
117		return -EINVAL;
118
119	fscrypt_generate_iv(&iv, lblk_num, ci);
120
121	req = skcipher_request_alloc(tfm, gfp_flags);
122	if (!req)
123		return -ENOMEM;
124
125	skcipher_request_set_callback(
126		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
127		crypto_req_done, &wait);
128
129	sg_init_table(&dst, 1);
130	sg_set_page(&dst, dest_page, len, offs);
131	sg_init_table(&src, 1);
132	sg_set_page(&src, src_page, len, offs);
133	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
134	if (rw == FS_DECRYPT)
135		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
136	else
137		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
138	skcipher_request_free(req);
139	if (res) {
140		fscrypt_err(inode, "%scryption failed for block %llu: %d",
141			    (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
142		return res;
143	}
144	return 0;
145}
146
147/**
148 * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a
149 *					pagecache page
150 * @page:      The locked pagecache page containing the block(s) to encrypt
151 * @len:       Total size of the block(s) to encrypt.  Must be a nonzero
152 *		multiple of the filesystem's block size.
153 * @offs:      Byte offset within @page of the first block to encrypt.  Must be
154 *		a multiple of the filesystem's block size.
155 * @gfp_flags: Memory allocation flags.  See details below.
156 *
157 * A new bounce page is allocated, and the specified block(s) are encrypted into
158 * it.  In the bounce page, the ciphertext block(s) will be located at the same
159 * offsets at which the plaintext block(s) were located in the source page; any
160 * other parts of the bounce page will be left uninitialized.  However, normally
161 * blocksize == PAGE_SIZE and the whole page is encrypted at once.
162 *
163 * This is for use by the filesystem's ->writepages() method.
164 *
165 * The bounce page allocation is mempool-backed, so it will always succeed when
166 * @gfp_flags includes __GFP_DIRECT_RECLAIM, e.g. when it's GFP_NOFS.  However,
167 * only the first page of each bio can be allocated this way.  To prevent
168 * deadlocks, for any additional pages a mask like GFP_NOWAIT must be used.
169 *
170 * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
171 */
172struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
173					      unsigned int len,
174					      unsigned int offs,
175					      gfp_t gfp_flags)
176
177{
178	const struct inode *inode = page->mapping->host;
179	const unsigned int blockbits = inode->i_blkbits;
180	const unsigned int blocksize = 1 << blockbits;
181	struct page *ciphertext_page;
182	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
183		       (offs >> blockbits);
184	unsigned int i;
185	int err;
186
187	if (WARN_ON_ONCE(!PageLocked(page)))
188		return ERR_PTR(-EINVAL);
189
190	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
191		return ERR_PTR(-EINVAL);
192
193	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
194	if (!ciphertext_page)
195		return ERR_PTR(-ENOMEM);
196
197	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
198		err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
199					  page, ciphertext_page,
200					  blocksize, i, gfp_flags);
201		if (err) {
202			fscrypt_free_bounce_page(ciphertext_page);
203			return ERR_PTR(err);
204		}
205	}
206	SetPagePrivate(ciphertext_page);
207	set_page_private(ciphertext_page, (unsigned long)page);
208	return ciphertext_page;
209}
210EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
211
212/**
213 * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
214 * @inode:     The inode to which this block belongs
215 * @page:      The page containing the block to encrypt
216 * @len:       Size of block to encrypt.  This must be a multiple of
217 *		FSCRYPT_CONTENTS_ALIGNMENT.
218 * @offs:      Byte offset within @page at which the block to encrypt begins
219 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
220 *		number of the block within the file
221 * @gfp_flags: Memory allocation flags
222 *
223 * Encrypt a possibly-compressed filesystem block that is located in an
224 * arbitrary page, not necessarily in the original pagecache page.  The @inode
225 * and @lblk_num must be specified, as they can't be determined from @page.
226 *
227 * Return: 0 on success; -errno on failure
228 */
229int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
230				  unsigned int len, unsigned int offs,
231				  u64 lblk_num, gfp_t gfp_flags)
232{
233	return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
234				   len, offs, gfp_flags);
235}
236EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
237
238/**
239 * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a
240 *					pagecache page
241 * @page:      The locked pagecache page containing the block(s) to decrypt
242 * @len:       Total size of the block(s) to decrypt.  Must be a nonzero
243 *		multiple of the filesystem's block size.
244 * @offs:      Byte offset within @page of the first block to decrypt.  Must be
245 *		a multiple of the filesystem's block size.
246 *
247 * The specified block(s) are decrypted in-place within the pagecache page,
248 * which must still be locked and not uptodate.  Normally, blocksize ==
249 * PAGE_SIZE and the whole page is decrypted at once.
250 *
251 * This is for use by the filesystem's ->readahead() method.
252 *
253 * Return: 0 on success; -errno on failure
254 */
255int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
256				     unsigned int offs)
257{
258	const struct inode *inode = page->mapping->host;
259	const unsigned int blockbits = inode->i_blkbits;
260	const unsigned int blocksize = 1 << blockbits;
261	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
262		       (offs >> blockbits);
263	unsigned int i;
264	int err;
265
266	if (WARN_ON_ONCE(!PageLocked(page)))
267		return -EINVAL;
268
269	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
270		return -EINVAL;
271
272	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
273		err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
274					  page, blocksize, i, GFP_NOFS);
275		if (err)
276			return err;
277	}
278	return 0;
279}
280EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
281
282/**
283 * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
284 * @inode:     The inode to which this block belongs
285 * @page:      The page containing the block to decrypt
286 * @len:       Size of block to decrypt.  This must be a multiple of
287 *		FSCRYPT_CONTENTS_ALIGNMENT.
288 * @offs:      Byte offset within @page at which the block to decrypt begins
289 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
290 *		number of the block within the file
291 *
292 * Decrypt a possibly-compressed filesystem block that is located in an
293 * arbitrary page, not necessarily in the original pagecache page.  The @inode
294 * and @lblk_num must be specified, as they can't be determined from @page.
295 *
296 * Return: 0 on success; -errno on failure
297 */
298int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
299				  unsigned int len, unsigned int offs,
300				  u64 lblk_num)
301{
302	return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
303				   len, offs, GFP_NOFS);
304}
305EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
306
307/**
308 * fscrypt_initialize() - allocate major buffers for fs encryption.
309 * @cop_flags:  fscrypt operations flags
310 *
311 * We only call this when we start accessing encrypted files, since it
312 * results in memory getting allocated that wouldn't otherwise be used.
313 *
314 * Return: 0 on success; -errno on failure
315 */
316int fscrypt_initialize(unsigned int cop_flags)
317{
318	int err = 0;
319
320	/* No need to allocate a bounce page pool if this FS won't use it. */
321	if (cop_flags & FS_CFLG_OWN_PAGES)
322		return 0;
323
324	mutex_lock(&fscrypt_init_mutex);
325	if (fscrypt_bounce_page_pool)
326		goto out_unlock;
327
328	err = -ENOMEM;
329	fscrypt_bounce_page_pool =
330		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
331	if (!fscrypt_bounce_page_pool)
332		goto out_unlock;
333
334	err = 0;
335out_unlock:
336	mutex_unlock(&fscrypt_init_mutex);
337	return err;
338}
339
340void fscrypt_msg(const struct inode *inode, const char *level,
341		 const char *fmt, ...)
342{
343	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
344				      DEFAULT_RATELIMIT_BURST);
345	struct va_format vaf;
346	va_list args;
347
348	if (!__ratelimit(&rs))
349		return;
350
351	va_start(args, fmt);
352	vaf.fmt = fmt;
353	vaf.va = &args;
354	if (inode && inode->i_ino)
355		printk("%sfscrypt (%s, inode %lu): %pV\n",
356		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
357	else if (inode)
358		printk("%sfscrypt (%s): %pV\n", level, inode->i_sb->s_id, &vaf);
359	else
360		printk("%sfscrypt: %pV\n", level, &vaf);
361	va_end(args);
362}
363
364/**
365 * fscrypt_init() - Set up for fs encryption.
366 *
367 * Return: 0 on success; -errno on failure
368 */
369static int __init fscrypt_init(void)
370{
371	int err = -ENOMEM;
372
373	/*
374	 * Use an unbound workqueue to allow bios to be decrypted in parallel
375	 * even when they happen to complete on the same CPU.  This sacrifices
376	 * locality, but it's worthwhile since decryption is CPU-intensive.
377	 *
378	 * Also use a high-priority workqueue to prioritize decryption work,
379	 * which blocks reads from completing, over regular application tasks.
380	 */
381	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
382						 WQ_UNBOUND | WQ_HIGHPRI,
383						 num_online_cpus());
384	if (!fscrypt_read_workqueue)
385		goto fail;
386
387	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
388	if (!fscrypt_info_cachep)
389		goto fail_free_queue;
390
391	err = fscrypt_init_keyring();
392	if (err)
393		goto fail_free_info;
394
395	return 0;
396
397fail_free_info:
398	kmem_cache_destroy(fscrypt_info_cachep);
399fail_free_queue:
400	destroy_workqueue(fscrypt_read_workqueue);
401fail:
402	return err;
403}
404late_initcall(fscrypt_init)