Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This contains encryption functions for per-file encryption.
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Michael Halcrow, 2014.
  9 *
 10 * Filename encryption additions
 11 *	Uday Savagaonkar, 2014
 12 * Encryption policy handling additions
 13 *	Ildar Muslukhov, 2014
 14 * Add fscrypt_pullback_bio_page()
 15 *	Jaegeuk Kim, 2015.
 16 *
 17 * This has not yet undergone a rigorous security audit.
 18 *
 19 * The usage of AES-XTS should conform to recommendations in NIST
 20 * Special Publication 800-38E and IEEE P1619/D16.
 21 */
 22
 23#include <linux/pagemap.h>
 24#include <linux/mempool.h>
 25#include <linux/module.h>
 26#include <linux/scatterlist.h>
 27#include <linux/ratelimit.h>
 28#include <crypto/skcipher.h>
 29#include "fscrypt_private.h"
 30
 31static unsigned int num_prealloc_crypto_pages = 32;
 32
 33module_param(num_prealloc_crypto_pages, uint, 0444);
 34MODULE_PARM_DESC(num_prealloc_crypto_pages,
 35		"Number of crypto pages to preallocate");
 36
 37static mempool_t *fscrypt_bounce_page_pool = NULL;
 38
 39static struct workqueue_struct *fscrypt_read_workqueue;
 40static DEFINE_MUTEX(fscrypt_init_mutex);
 41
 42struct kmem_cache *fscrypt_info_cachep;
 43
 44void fscrypt_enqueue_decrypt_work(struct work_struct *work)
 45{
 46	queue_work(fscrypt_read_workqueue, work);
 47}
 48EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
 49
 50struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
 51{
 52	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
 53}
 54
 55/**
 56 * fscrypt_free_bounce_page() - free a ciphertext bounce page
 57 * @bounce_page: the bounce page to free, or NULL
 58 *
 59 * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
 60 * or by fscrypt_alloc_bounce_page() directly.
 61 */
 62void fscrypt_free_bounce_page(struct page *bounce_page)
 63{
 64	if (!bounce_page)
 65		return;
 66	set_page_private(bounce_page, (unsigned long)NULL);
 67	ClearPagePrivate(bounce_page);
 68	mempool_free(bounce_page, fscrypt_bounce_page_pool);
 69}
 70EXPORT_SYMBOL(fscrypt_free_bounce_page);
 71
 72void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
 73			 const struct fscrypt_info *ci)
 74{
 75	u8 flags = fscrypt_policy_flags(&ci->ci_policy);
 76
 77	memset(iv, 0, ci->ci_mode->ivsize);
 78
 79	if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
 80		WARN_ON_ONCE(lblk_num > U32_MAX);
 81		WARN_ON_ONCE(ci->ci_inode->i_ino > U32_MAX);
 82		lblk_num |= (u64)ci->ci_inode->i_ino << 32;
 83	} else if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
 84		WARN_ON_ONCE(lblk_num > U32_MAX);
 85		lblk_num = (u32)(ci->ci_hashed_ino + lblk_num);
 86	} else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
 87		memcpy(iv->nonce, ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE);
 88	}
 89	iv->lblk_num = cpu_to_le64(lblk_num);
 90}
 91
 92/* Encrypt or decrypt a single filesystem block of file contents */
 93int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
 94			u64 lblk_num, struct page *src_page,
 95			struct page *dest_page, unsigned int len,
 96			unsigned int offs, gfp_t gfp_flags)
 97{
 98	union fscrypt_iv iv;
 99	struct skcipher_request *req = NULL;
100	DECLARE_CRYPTO_WAIT(wait);
101	struct scatterlist dst, src;
102	struct fscrypt_info *ci = inode->i_crypt_info;
103	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
104	int res = 0;
105
106	if (WARN_ON_ONCE(len <= 0))
107		return -EINVAL;
108	if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
109		return -EINVAL;
110
111	fscrypt_generate_iv(&iv, lblk_num, ci);
112
113	req = skcipher_request_alloc(tfm, gfp_flags);
114	if (!req)
115		return -ENOMEM;
116
117	skcipher_request_set_callback(
118		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
119		crypto_req_done, &wait);
120
121	sg_init_table(&dst, 1);
122	sg_set_page(&dst, dest_page, len, offs);
123	sg_init_table(&src, 1);
124	sg_set_page(&src, src_page, len, offs);
125	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
126	if (rw == FS_DECRYPT)
127		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
128	else
129		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
130	skcipher_request_free(req);
131	if (res) {
132		fscrypt_err(inode, "%scryption failed for block %llu: %d",
133			    (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
134		return res;
135	}
136	return 0;
137}
138
139/**
140 * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a
141 *					pagecache page
142 * @page:      The locked pagecache page containing the block(s) to encrypt
143 * @len:       Total size of the block(s) to encrypt.  Must be a nonzero
144 *		multiple of the filesystem's block size.
145 * @offs:      Byte offset within @page of the first block to encrypt.  Must be
146 *		a multiple of the filesystem's block size.
147 * @gfp_flags: Memory allocation flags.  See details below.
148 *
149 * A new bounce page is allocated, and the specified block(s) are encrypted into
150 * it.  In the bounce page, the ciphertext block(s) will be located at the same
151 * offsets at which the plaintext block(s) were located in the source page; any
152 * other parts of the bounce page will be left uninitialized.  However, normally
153 * blocksize == PAGE_SIZE and the whole page is encrypted at once.
154 *
155 * This is for use by the filesystem's ->writepages() method.
156 *
157 * The bounce page allocation is mempool-backed, so it will always succeed when
158 * @gfp_flags includes __GFP_DIRECT_RECLAIM, e.g. when it's GFP_NOFS.  However,
159 * only the first page of each bio can be allocated this way.  To prevent
160 * deadlocks, for any additional pages a mask like GFP_NOWAIT must be used.
161 *
162 * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
163 */
164struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
165					      unsigned int len,
166					      unsigned int offs,
167					      gfp_t gfp_flags)
168
169{
170	const struct inode *inode = page->mapping->host;
171	const unsigned int blockbits = inode->i_blkbits;
172	const unsigned int blocksize = 1 << blockbits;
173	struct page *ciphertext_page;
174	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
175		       (offs >> blockbits);
176	unsigned int i;
177	int err;
178
179	if (WARN_ON_ONCE(!PageLocked(page)))
180		return ERR_PTR(-EINVAL);
181
182	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
183		return ERR_PTR(-EINVAL);
184
185	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
186	if (!ciphertext_page)
187		return ERR_PTR(-ENOMEM);
188
189	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
190		err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
191					  page, ciphertext_page,
192					  blocksize, i, gfp_flags);
193		if (err) {
194			fscrypt_free_bounce_page(ciphertext_page);
195			return ERR_PTR(err);
196		}
197	}
198	SetPagePrivate(ciphertext_page);
199	set_page_private(ciphertext_page, (unsigned long)page);
200	return ciphertext_page;
201}
202EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
203
204/**
205 * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
206 * @inode:     The inode to which this block belongs
207 * @page:      The page containing the block to encrypt
208 * @len:       Size of block to encrypt.  Doesn't need to be a multiple of the
209 *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
210 * @offs:      Byte offset within @page at which the block to encrypt begins
211 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
212 *		number of the block within the file
213 * @gfp_flags: Memory allocation flags
214 *
215 * Encrypt a possibly-compressed filesystem block that is located in an
216 * arbitrary page, not necessarily in the original pagecache page.  The @inode
217 * and @lblk_num must be specified, as they can't be determined from @page.
218 *
219 * Return: 0 on success; -errno on failure
220 */
221int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
222				  unsigned int len, unsigned int offs,
223				  u64 lblk_num, gfp_t gfp_flags)
224{
225	return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
226				   len, offs, gfp_flags);
227}
228EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
229
230/**
231 * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a
232 *					pagecache page
233 * @page:      The locked pagecache page containing the block(s) to decrypt
234 * @len:       Total size of the block(s) to decrypt.  Must be a nonzero
235 *		multiple of the filesystem's block size.
236 * @offs:      Byte offset within @page of the first block to decrypt.  Must be
237 *		a multiple of the filesystem's block size.
238 *
239 * The specified block(s) are decrypted in-place within the pagecache page,
240 * which must still be locked and not uptodate.  Normally, blocksize ==
241 * PAGE_SIZE and the whole page is decrypted at once.
242 *
243 * This is for use by the filesystem's ->readpages() method.
244 *
245 * Return: 0 on success; -errno on failure
246 */
247int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
248				     unsigned int offs)
249{
250	const struct inode *inode = page->mapping->host;
251	const unsigned int blockbits = inode->i_blkbits;
252	const unsigned int blocksize = 1 << blockbits;
253	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
254		       (offs >> blockbits);
255	unsigned int i;
256	int err;
257
258	if (WARN_ON_ONCE(!PageLocked(page)))
259		return -EINVAL;
260
261	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
262		return -EINVAL;
263
264	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
265		err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
266					  page, blocksize, i, GFP_NOFS);
267		if (err)
268			return err;
269	}
270	return 0;
271}
272EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
273
274/**
275 * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
276 * @inode:     The inode to which this block belongs
277 * @page:      The page containing the block to decrypt
278 * @len:       Size of block to decrypt.  Doesn't need to be a multiple of the
279 *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
280 * @offs:      Byte offset within @page at which the block to decrypt begins
281 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
282 *		number of the block within the file
283 *
284 * Decrypt a possibly-compressed filesystem block that is located in an
285 * arbitrary page, not necessarily in the original pagecache page.  The @inode
286 * and @lblk_num must be specified, as they can't be determined from @page.
287 *
288 * Return: 0 on success; -errno on failure
289 */
290int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
291				  unsigned int len, unsigned int offs,
292				  u64 lblk_num)
293{
294	return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
295				   len, offs, GFP_NOFS);
296}
297EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
298
299/**
300 * fscrypt_initialize() - allocate major buffers for fs encryption.
301 * @cop_flags:  fscrypt operations flags
302 *
303 * We only call this when we start accessing encrypted files, since it
304 * results in memory getting allocated that wouldn't otherwise be used.
305 *
306 * Return: 0 on success; -errno on failure
307 */
308int fscrypt_initialize(unsigned int cop_flags)
309{
310	int err = 0;
311
312	/* No need to allocate a bounce page pool if this FS won't use it. */
313	if (cop_flags & FS_CFLG_OWN_PAGES)
314		return 0;
315
316	mutex_lock(&fscrypt_init_mutex);
317	if (fscrypt_bounce_page_pool)
318		goto out_unlock;
319
320	err = -ENOMEM;
321	fscrypt_bounce_page_pool =
322		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
323	if (!fscrypt_bounce_page_pool)
324		goto out_unlock;
325
326	err = 0;
327out_unlock:
328	mutex_unlock(&fscrypt_init_mutex);
329	return err;
330}
331
332void fscrypt_msg(const struct inode *inode, const char *level,
333		 const char *fmt, ...)
334{
335	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
336				      DEFAULT_RATELIMIT_BURST);
337	struct va_format vaf;
338	va_list args;
339
340	if (!__ratelimit(&rs))
341		return;
342
343	va_start(args, fmt);
344	vaf.fmt = fmt;
345	vaf.va = &args;
346	if (inode)
347		printk("%sfscrypt (%s, inode %lu): %pV\n",
348		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
349	else
350		printk("%sfscrypt: %pV\n", level, &vaf);
351	va_end(args);
352}
353
354/**
355 * fscrypt_init() - Set up for fs encryption.
356 *
357 * Return: 0 on success; -errno on failure
358 */
359static int __init fscrypt_init(void)
360{
361	int err = -ENOMEM;
362
363	/*
364	 * Use an unbound workqueue to allow bios to be decrypted in parallel
365	 * even when they happen to complete on the same CPU.  This sacrifices
366	 * locality, but it's worthwhile since decryption is CPU-intensive.
367	 *
368	 * Also use a high-priority workqueue to prioritize decryption work,
369	 * which blocks reads from completing, over regular application tasks.
370	 */
371	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
372						 WQ_UNBOUND | WQ_HIGHPRI,
373						 num_online_cpus());
374	if (!fscrypt_read_workqueue)
375		goto fail;
376
377	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
378	if (!fscrypt_info_cachep)
379		goto fail_free_queue;
380
381	err = fscrypt_init_keyring();
382	if (err)
383		goto fail_free_info;
384
385	return 0;
386
387fail_free_info:
388	kmem_cache_destroy(fscrypt_info_cachep);
389fail_free_queue:
390	destroy_workqueue(fscrypt_read_workqueue);
391fail:
392	return err;
393}
394late_initcall(fscrypt_init)