Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Copyright (c) 2009, Microsoft Corporation.
  3 *
  4 * This program is free software; you can redistribute it and/or modify it
  5 * under the terms and conditions of the GNU General Public License,
  6 * version 2, as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope it will be useful, but WITHOUT
  9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 11 * more details.
 12 *
 13 * You should have received a copy of the GNU General Public License along with
 14 * this program; if not, see <http://www.gnu.org/licenses/>.
 15 *
 16 * Authors:
 17 *   Haiyang Zhang <haiyangz@microsoft.com>
 18 *   Hank Janssen  <hjanssen@microsoft.com>
 19 */
 20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 21
 22#include <linux/init.h>
 23#include <linux/atomic.h>
 
 24#include <linux/module.h>
 25#include <linux/highmem.h>
 26#include <linux/device.h>
 27#include <linux/io.h>
 28#include <linux/delay.h>
 29#include <linux/netdevice.h>
 30#include <linux/inetdevice.h>
 31#include <linux/etherdevice.h>
 
 32#include <linux/skbuff.h>
 33#include <linux/if_vlan.h>
 34#include <linux/in.h>
 35#include <linux/slab.h>
 
 
 
 
 36#include <net/arp.h>
 37#include <net/route.h>
 38#include <net/sock.h>
 39#include <net/pkt_sched.h>
 
 
 40
 41#include "hyperv_net.h"
 42
 43struct net_device_context {
 44	/* point back to our device context */
 45	struct hv_device *device_ctx;
 46	struct delayed_work dwork;
 47	struct work_struct work;
 48};
 49
 50#define RING_SIZE_MIN 64
 51static int ring_size = 128;
 52module_param(ring_size, int, S_IRUGO);
 53MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
 
 
 
 
 
 
 54
 55static void do_set_multicast(struct work_struct *w)
 
 
 
 
 
 
 56{
 57	struct net_device_context *ndevctx =
 58		container_of(w, struct net_device_context, work);
 59	struct netvsc_device *nvdev;
 60	struct rndis_device *rdev;
 61
 62	nvdev = hv_get_drvdata(ndevctx->device_ctx);
 63	if (nvdev == NULL || nvdev->ndev == NULL)
 64		return;
 65
 66	rdev = nvdev->extension;
 67	if (rdev == NULL)
 68		return;
 
 69
 70	if (nvdev->ndev->flags & IFF_PROMISC)
 71		rndis_filter_set_packet_filter(rdev,
 72			NDIS_PACKET_TYPE_PROMISCUOUS);
 73	else
 74		rndis_filter_set_packet_filter(rdev,
 75			NDIS_PACKET_TYPE_BROADCAST |
 76			NDIS_PACKET_TYPE_ALL_MULTICAST |
 77			NDIS_PACKET_TYPE_DIRECTED);
 78}
 79
 80static void netvsc_set_multicast_list(struct net_device *net)
 81{
 82	struct net_device_context *net_device_ctx = netdev_priv(net);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83
 84	schedule_work(&net_device_ctx->work);
 
 
 
 
 
 
 85}
 86
 87static int netvsc_open(struct net_device *net)
 88{
 89	struct net_device_context *net_device_ctx = netdev_priv(net);
 90	struct hv_device *device_obj = net_device_ctx->device_ctx;
 91	struct netvsc_device *nvdev;
 92	struct rndis_device *rdev;
 93	int ret = 0;
 94
 95	netif_carrier_off(net);
 96
 97	/* Open up the device */
 98	ret = rndis_filter_open(device_obj);
 99	if (ret != 0) {
100		netdev_err(net, "unable to open device (ret %d).\n", ret);
101		return ret;
102	}
103
104	netif_start_queue(net);
105
106	nvdev = hv_get_drvdata(device_obj);
107	rdev = nvdev->extension;
108	if (!rdev->link_state)
109		netif_carrier_on(net);
 
 
110
111	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112}
113
114static int netvsc_close(struct net_device *net)
115{
116	struct net_device_context *net_device_ctx = netdev_priv(net);
117	struct hv_device *device_obj = net_device_ctx->device_ctx;
 
 
118	int ret;
119
120	netif_tx_disable(net);
121
122	/* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
123	cancel_work_sync(&net_device_ctx->work);
124	ret = rndis_filter_close(device_obj);
125	if (ret != 0)
 
 
126		netdev_err(net, "unable to close device (ret %d).\n", ret);
 
 
 
 
 
 
 
 
 
127
128	return ret;
129}
130
131static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
132				int pkt_type)
133{
134	struct rndis_packet *rndis_pkt;
135	struct rndis_per_packet_info *ppi;
136
137	rndis_pkt = &msg->msg.pkt;
138	rndis_pkt->data_offset += ppi_size;
139
140	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
141		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
142
143	ppi->size = ppi_size;
144	ppi->type = pkt_type;
 
145	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
146
147	rndis_pkt->per_pkt_info_len += ppi_size;
148
149	return ppi;
150}
151
152static void netvsc_xmit_completion(void *context)
 
153{
154	struct hv_netvsc_packet *packet = (struct hv_netvsc_packet *)context;
155	struct sk_buff *skb = (struct sk_buff *)
156		(unsigned long)packet->completion.send.send_completion_tid;
 
 
 
157
158	kfree(packet);
 
 
 
159
160	if (skb)
161		dev_kfree_skb_any(skb);
162}
163
164static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
165			struct hv_page_buffer *pb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166{
167	int j = 0;
168
169	/* Deal with compund pages by ignoring unused part
170	 * of the page.
171	 */
172	page += (offset >> PAGE_SHIFT);
173	offset &= ~PAGE_MASK;
174
175	while (len > 0) {
176		unsigned long bytes;
177
178		bytes = PAGE_SIZE - offset;
179		if (bytes > len)
180			bytes = len;
181		pb[j].pfn = page_to_pfn(page);
182		pb[j].offset = offset;
183		pb[j].len = bytes;
184
185		offset += bytes;
186		len -= bytes;
187
188		if (offset == PAGE_SIZE && len) {
189			page++;
190			offset = 0;
191			j++;
192		}
193	}
194
195	return j + 1;
196}
197
198static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 
199			   struct hv_page_buffer *pb)
200{
201	u32 slots_used = 0;
202	char *data = skb->data;
203	int frags = skb_shinfo(skb)->nr_frags;
204	int i;
205
206	/* The packet is laid out thus:
207	 * 1. hdr
208	 * 2. skb linear data
209	 * 3. skb fragment data
210	 */
211	if (hdr != NULL)
212		slots_used += fill_pg_buf(virt_to_page(hdr),
213					offset_in_page(hdr),
214					len, &pb[slots_used]);
215
216	slots_used += fill_pg_buf(virt_to_page(data),
217				offset_in_page(data),
218				skb_headlen(skb), &pb[slots_used]);
 
 
 
 
219
220	for (i = 0; i < frags; i++) {
221		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
222
223		slots_used += fill_pg_buf(skb_frag_page(frag),
224					frag->page_offset,
225					skb_frag_size(frag), &pb[slots_used]);
 
226	}
227	return slots_used;
228}
229
230static int count_skb_frag_slots(struct sk_buff *skb)
231{
232	int i, frags = skb_shinfo(skb)->nr_frags;
233	int pages = 0;
234
235	for (i = 0; i < frags; i++) {
236		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
237		unsigned long size = skb_frag_size(frag);
238		unsigned long offset = frag->page_offset;
239
240		/* Skip unused frames from start of page */
241		offset &= ~PAGE_MASK;
242		pages += PFN_UP(offset + size);
243	}
244	return pages;
245}
246
247static int netvsc_get_slots(struct sk_buff *skb)
248{
249	char *data = skb->data;
250	unsigned int offset = offset_in_page(data);
251	unsigned int len = skb_headlen(skb);
252	int slots;
253	int frag_slots;
254
255	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
256	frag_slots = count_skb_frag_slots(skb);
257	return slots + frag_slots;
258}
259
260static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
261{
262	u32 ret_val = TRANSPORT_INFO_NOT_IP;
 
 
 
 
 
 
 
 
263
264	if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
265		(eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
266		goto not_ip;
 
267	}
268
269	*trans_off = skb_transport_offset(skb);
 
 
 
 
 
 
 
 
 
270
271	if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
272		struct iphdr *iphdr = ip_hdr(skb);
273
274		if (iphdr->protocol == IPPROTO_TCP)
275			ret_val = TRANSPORT_INFO_IPV4_TCP;
276		else if (iphdr->protocol == IPPROTO_UDP)
277			ret_val = TRANSPORT_INFO_IPV4_UDP;
 
 
 
 
 
278	} else {
279		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
280			ret_val = TRANSPORT_INFO_IPV6_TCP;
281		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
282			ret_val = TRANSPORT_INFO_IPV6_UDP;
283	}
284
285not_ip:
286	return ret_val;
287}
288
289static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
290{
291	struct net_device_context *net_device_ctx = netdev_priv(net);
292	struct hv_netvsc_packet *packet;
293	int ret;
294	unsigned int num_data_pgs;
295	struct rndis_message *rndis_msg;
296	struct rndis_packet *rndis_pkt;
297	u32 rndis_msg_size;
298	bool isvlan;
299	struct rndis_per_packet_info *ppi;
300	struct ndis_tcp_ip_checksum_info *csum_info;
301	struct ndis_tcp_lso_info *lso_info;
302	int  hdr_offset;
303	u32 net_trans_info;
304
 
 
 
 
 
 
 
 
 
305
306	/* We will atmost need two pages to describe the rndis
307	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
308	 * of pages in a single packet.
 
309	 */
 
310	num_data_pgs = netvsc_get_slots(skb) + 2;
311	if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
312		netdev_err(net, "Packet too big: %u\n", skb->len);
313		dev_kfree_skb(skb);
314		net->stats.tx_dropped++;
315		return NETDEV_TX_OK;
316	}
317
318	/* Allocate a netvsc packet based on # of frags. */
319	packet = kzalloc(sizeof(struct hv_netvsc_packet) +
320			 (num_data_pgs * sizeof(struct hv_page_buffer)) +
321			 sizeof(struct rndis_message) +
322			 NDIS_VLAN_PPI_SIZE +
323			 NDIS_CSUM_PPI_SIZE +
324			 NDIS_LSO_PPI_SIZE, GFP_ATOMIC);
325	if (!packet) {
326		/* out of memory, drop packet */
327		netdev_err(net, "unable to allocate hv_netvsc_packet\n");
328
329		dev_kfree_skb(skb);
330		net->stats.tx_dropped++;
331		return NETDEV_TX_OK;
 
 
 
 
 
332	}
333
334	packet->vlan_tci = skb->vlan_tci;
 
 
 
 
 
 
 
 
 
 
 
 
335
336	packet->is_data_pkt = true;
337	packet->total_data_buflen = skb->len;
338
339	packet->rndis_msg = (struct rndis_message *)((unsigned long)packet +
340				sizeof(struct hv_netvsc_packet) +
341				(num_data_pgs * sizeof(struct hv_page_buffer)));
342
343	/* Set the completion routine */
344	packet->completion.send.send_completion = netvsc_xmit_completion;
345	packet->completion.send.send_completion_ctx = packet;
346	packet->completion.send.send_completion_tid = (unsigned long)skb;
347
348	isvlan = packet->vlan_tci & VLAN_TAG_PRESENT;
349
350	/* Add the rndis header */
351	rndis_msg = packet->rndis_msg;
352	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
353	rndis_msg->msg_len = packet->total_data_buflen;
354	rndis_pkt = &rndis_msg->msg.pkt;
355	rndis_pkt->data_offset = sizeof(struct rndis_packet);
356	rndis_pkt->data_len = packet->total_data_buflen;
357	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
358
359	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 
 
 
 
360
361	if (isvlan) {
362		struct ndis_pkt_8021q_info *vlan;
363
364		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
365		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
366					IEEE_8021Q_INFO);
367		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
368						ppi->ppi_offset);
369		vlan->vlanid = packet->vlan_tci & VLAN_VID_MASK;
370		vlan->pri = (packet->vlan_tci & VLAN_PRIO_MASK) >>
371				VLAN_PRIO_SHIFT;
372	}
373
374	net_trans_info = get_net_transport_info(skb, &hdr_offset);
375	if (net_trans_info == TRANSPORT_INFO_NOT_IP)
376		goto do_send;
377
378	/*
379	 * Setup the sendside checksum offload only if this is not a
380	 * GSO packet.
381	 */
382	if (skb_is_gso(skb))
383		goto do_lso;
384
385	if ((skb->ip_summed == CHECKSUM_NONE) ||
386	    (skb->ip_summed == CHECKSUM_UNNECESSARY))
387		goto do_send;
388
389	rndis_msg_size += NDIS_CSUM_PPI_SIZE;
390	ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
391			    TCPIP_CHKSUM_PKTINFO);
392
393	csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
394			ppi->ppi_offset);
395
396	if (net_trans_info & (INFO_IPV4 << 16))
397		csum_info->transmit.is_ipv4 = 1;
398	else
399		csum_info->transmit.is_ipv6 = 1;
 
 
 
 
 
 
 
 
400
401	if (net_trans_info & INFO_TCP) {
402		csum_info->transmit.tcp_checksum = 1;
403		csum_info->transmit.tcp_header_offset = hdr_offset;
404	} else if (net_trans_info & INFO_UDP) {
405		/* UDP checksum offload is not supported on ws2008r2.
406		 * Furthermore, on ws2012 and ws2012r2, there are some
407		 * issues with udp checksum offload from Linux guests.
408		 * (these are host issues).
409		 * For now compute the checksum here.
410		 */
411		struct udphdr *uh;
412		u16 udp_len;
413
414		ret = skb_cow_head(skb, 0);
415		if (ret)
416			goto drop;
417
418		uh = udp_hdr(skb);
419		udp_len = ntohs(uh->len);
420		uh->check = 0;
421		uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
422					      ip_hdr(skb)->daddr,
423					      udp_len, IPPROTO_UDP,
424					      csum_partial(uh, udp_len, 0));
425		if (uh->check == 0)
426			uh->check = CSUM_MANGLED_0;
427
428		csum_info->transmit.udp_checksum = 0;
429	}
430	goto do_send;
431
432do_lso:
433	rndis_msg_size += NDIS_LSO_PPI_SIZE;
434	ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
435			    TCP_LARGESEND_PKTINFO);
436
437	lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
438			ppi->ppi_offset);
439
440	lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
441	if (net_trans_info & (INFO_IPV4 << 16)) {
442		lso_info->lso_v2_transmit.ip_version =
443			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
444		ip_hdr(skb)->tot_len = 0;
445		ip_hdr(skb)->check = 0;
446		tcp_hdr(skb)->check =
447		~csum_tcpudp_magic(ip_hdr(skb)->saddr,
448				   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
449	} else {
450		lso_info->lso_v2_transmit.ip_version =
451			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
452		ipv6_hdr(skb)->payload_len = 0;
453		tcp_hdr(skb)->check =
454		~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
455				&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456	}
457	lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
458	lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
459
460do_send:
461	/* Start filling in the page buffers with the rndis hdr */
462	rndis_msg->msg_len += rndis_msg_size;
 
463	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
464					skb, &packet->page_buf[0]);
465
466	ret = netvsc_send(net_device_ctx->device_ctx, packet);
 
467
468drop:
469	if (ret == 0) {
470		net->stats.tx_bytes += skb->len;
471		net->stats.tx_packets++;
472	} else {
473		kfree(packet);
474		if (ret != -EAGAIN) {
475			dev_kfree_skb_any(skb);
476			net->stats.tx_dropped++;
477		}
478	}
479
480	return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481}
482
483/*
484 * netvsc_linkstatus_callback - Link up/down notification
485 */
486void netvsc_linkstatus_callback(struct hv_device *device_obj,
487				       unsigned int status)
488{
489	struct net_device *net;
490	struct net_device_context *ndev_ctx;
491	struct netvsc_device *net_device;
492	struct rndis_device *rdev;
 
 
 
 
 
 
 
 
493
494	net_device = hv_get_drvdata(device_obj);
495	rdev = net_device->extension;
496
497	rdev->link_state = status != 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498
499	net = net_device->ndev;
 
 
 
500
501	if (!net || net->reg_state != NETREG_REGISTERED)
 
 
 
502		return;
503
504	ndev_ctx = netdev_priv(net);
505	if (status == 1) {
506		schedule_delayed_work(&ndev_ctx->dwork, 0);
507		schedule_delayed_work(&ndev_ctx->dwork, msecs_to_jiffies(20));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508	} else {
509		schedule_delayed_work(&ndev_ctx->dwork, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511}
512
513/*
514 * netvsc_recv_callback -  Callback when we receive a packet from the
515 * "wire" on the specified device.
516 */
517int netvsc_recv_callback(struct hv_device *device_obj,
518				struct hv_netvsc_packet *packet,
519				struct ndis_tcp_ip_checksum_info *csum_info)
520{
521	struct net_device *net;
 
 
522	struct sk_buff *skb;
 
 
 
523
524	net = ((struct netvsc_device *)hv_get_drvdata(device_obj))->ndev;
525	if (!net || net->reg_state != NETREG_REGISTERED) {
526		packet->status = NVSP_STAT_FAIL;
527		return 0;
 
 
 
 
 
 
 
 
 
 
528	}
529
530	/* Allocate a skb - TODO direct I/O to pages? */
531	skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
 
532	if (unlikely(!skb)) {
533		++net->stats.rx_dropped;
534		packet->status = NVSP_STAT_FAIL;
535		return 0;
536	}
537
 
 
538	/*
539	 * Copy to skb. This copy is needed here since the memory pointed by
540	 * hv_netvsc_packet cannot be deallocated
 
541	 */
542	memcpy(skb_put(skb, packet->total_data_buflen), packet->data,
543		packet->total_data_buflen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
544
545	skb->protocol = eth_type_trans(skb, net);
546	if (csum_info) {
547		/* We only look at the IP checksum here.
548		 * Should we be dropping the packet if checksum
549		 * failed? How do we deal with other checksums - TCP/UDP?
550		 */
551		if (csum_info->receive.ip_checksum_succeeded)
552			skb->ip_summed = CHECKSUM_UNNECESSARY;
553		else
554			skb->ip_summed = CHECKSUM_NONE;
 
 
 
 
 
 
 
 
 
 
555	}
 
556
557	if (packet->vlan_tci & VLAN_TAG_PRESENT)
558		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
559				       packet->vlan_tci);
 
 
 
 
 
560
561	net->stats.rx_packets++;
562	net->stats.rx_bytes += packet->total_data_buflen;
563
564	/*
565	 * Pass the skb back up. Network stack will deallocate the skb when it
566	 * is done.
567	 * TODO - use NAPI?
568	 */
569	netif_rx(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570
571	return 0;
572}
573
574static void netvsc_get_drvinfo(struct net_device *net,
575			       struct ethtool_drvinfo *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
576{
577	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
578	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
579}
580
581static int netvsc_change_mtu(struct net_device *ndev, int mtu)
582{
583	struct net_device_context *ndevctx = netdev_priv(ndev);
584	struct hv_device *hdev =  ndevctx->device_ctx;
585	struct netvsc_device *nvdev = hv_get_drvdata(hdev);
586	struct netvsc_device_info device_info;
587	int limit = ETH_DATA_LEN;
 
588
589	if (nvdev == NULL || nvdev->destroy)
590		return -ENODEV;
591
592	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
593		limit = NETVSC_MTU;
594
595	if (mtu < 68 || mtu > limit)
596		return -EINVAL;
597
598	nvdev->start_remove = true;
599	cancel_work_sync(&ndevctx->work);
600	netif_tx_disable(ndev);
601	rndis_filter_device_remove(hdev);
 
 
 
 
 
 
602
603	ndev->mtu = mtu;
604
605	ndevctx->device_ctx = hdev;
606	hv_set_drvdata(hdev, ndev);
607	device_info.ring_size = ring_size;
608	rndis_filter_device_add(hdev, &device_info);
609	netif_wake_queue(ndev);
 
 
 
 
 
 
 
610
611	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612}
613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
614
615static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
616{
617	struct net_device_context *ndevctx = netdev_priv(ndev);
618	struct hv_device *hdev =  ndevctx->device_ctx;
 
619	struct sockaddr *addr = p;
620	char save_adr[ETH_ALEN];
621	unsigned char save_aatype;
622	int err;
623
624	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
625	save_aatype = ndev->addr_assign_type;
626
627	err = eth_mac_addr(ndev, p);
628	if (err != 0)
629		return err;
630
631	err = rndis_filter_set_device_mac(hdev, addr->sa_data);
632	if (err != 0) {
633		/* roll back to saved MAC */
634		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
635		ndev->addr_assign_type = save_aatype;
 
 
 
 
 
 
 
 
 
 
 
636	}
637
638	return err;
639}
640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641
642static const struct ethtool_ops ethtool_ops = {
643	.get_drvinfo	= netvsc_get_drvinfo,
 
 
 
 
644	.get_link	= ethtool_op_get_link,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645};
646
647static const struct net_device_ops device_ops = {
648	.ndo_open =			netvsc_open,
649	.ndo_stop =			netvsc_close,
650	.ndo_start_xmit =		netvsc_start_xmit,
651	.ndo_set_rx_mode =		netvsc_set_multicast_list,
 
 
 
652	.ndo_change_mtu =		netvsc_change_mtu,
653	.ndo_validate_addr =		eth_validate_addr,
654	.ndo_set_mac_address =		netvsc_set_mac_addr,
 
 
 
 
655};
656
657/*
658 * Send GARP packet to network peers after migrations.
659 * After Quick Migration, the network is not immediately operational in the
660 * current context when receiving RNDIS_STATUS_MEDIA_CONNECT event. So, add
661 * another netif_notify_peers() into a delayed work, otherwise GARP packet
662 * will not be sent after quick migration, and cause network disconnection.
663 * Also, we update the carrier status here.
664 */
665static void netvsc_link_change(struct work_struct *w)
666{
667	struct net_device_context *ndev_ctx;
668	struct net_device *net;
 
 
 
 
669	struct netvsc_device *net_device;
670	struct rndis_device *rdev;
671	bool notify;
672
673	rtnl_lock();
 
 
 
 
 
 
 
 
674
675	ndev_ctx = container_of(w, struct net_device_context, dwork.work);
676	net_device = hv_get_drvdata(ndev_ctx->device_ctx);
677	rdev = net_device->extension;
678	net = net_device->ndev;
679
680	if (rdev->link_state) {
681		netif_carrier_off(net);
682		notify = false;
683	} else {
684		netif_carrier_on(net);
685		notify = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686	}
687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688	rtnl_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689
690	if (notify)
691		netdev_notify_peers(net);
 
692}
693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694
695static int netvsc_probe(struct hv_device *dev,
696			const struct hv_vmbus_device_id *dev_id)
697{
698	struct net_device *net = NULL;
699	struct net_device_context *net_device_ctx;
700	struct netvsc_device_info device_info;
701	int ret;
 
702
703	net = alloc_etherdev(sizeof(struct net_device_context));
 
704	if (!net)
705		return -ENOMEM;
706
707	netif_carrier_off(net);
708
 
 
709	net_device_ctx = netdev_priv(net);
710	net_device_ctx->device_ctx = dev;
 
 
 
 
 
711	hv_set_drvdata(dev, net);
 
712	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
713	INIT_WORK(&net_device_ctx->work, do_set_multicast);
 
 
 
 
 
 
 
 
 
714
715	net->netdev_ops = &device_ops;
 
 
 
716
717	net->hw_features = NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_IP_CSUM |
718				NETIF_F_TSO;
719	net->features = NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_SG | NETIF_F_RXCSUM |
720			NETIF_F_IP_CSUM | NETIF_F_TSO;
721
722	SET_ETHTOOL_OPS(net, &ethtool_ops);
723	SET_NETDEV_DEV(net, &dev->device);
 
 
 
724
725	/* Notify the netvsc driver of the new device */
726	device_info.ring_size = ring_size;
727	ret = rndis_filter_device_add(dev, &device_info);
728	if (ret != 0) {
 
 
 
 
 
 
 
729		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
730		free_netdev(net);
731		hv_set_drvdata(dev, NULL);
732		return ret;
733	}
734	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
735
736	ret = register_netdev(net);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737	if (ret != 0) {
738		pr_err("Unable to register netdev.\n");
739		rndis_filter_device_remove(dev);
740		free_netdev(net);
741	} else {
742		schedule_delayed_work(&net_device_ctx->dwork, 0);
743	}
744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
745	return ret;
746}
747
748static int netvsc_remove(struct hv_device *dev)
749{
750	struct net_device *net;
751	struct net_device_context *ndev_ctx;
752	struct netvsc_device *net_device;
753
754	net_device = hv_get_drvdata(dev);
755	net = net_device->ndev;
756
 
757	if (net == NULL) {
758		dev_err(&dev->device, "No net device to remove\n");
759		return 0;
760	}
761
762	net_device->start_remove = true;
763
764	ndev_ctx = netdev_priv(net);
765	cancel_delayed_work_sync(&ndev_ctx->dwork);
766	cancel_work_sync(&ndev_ctx->work);
767
768	/* Stop outbound asap */
769	netif_tx_disable(net);
770
771	unregister_netdev(net);
 
 
 
 
 
772
773	/*
774	 * Call to the vsc driver to let it know that the device is being
775	 * removed
776	 */
777	rndis_filter_device_remove(dev);
 
 
 
 
 
 
 
 
778
 
 
 
 
 
779	free_netdev(net);
780	return 0;
781}
782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783static const struct hv_vmbus_device_id id_table[] = {
784	/* Network guid */
785	{ HV_NIC_GUID, },
786	{ },
787};
788
789MODULE_DEVICE_TABLE(vmbus, id_table);
790
791/* The one and only one */
792static struct  hv_driver netvsc_drv = {
793	.name = KBUILD_MODNAME,
794	.id_table = id_table,
795	.probe = netvsc_probe,
796	.remove = netvsc_remove,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797};
798
799static void __exit netvsc_drv_exit(void)
800{
 
801	vmbus_driver_unregister(&netvsc_drv);
802}
803
804static int __init netvsc_drv_init(void)
805{
 
 
806	if (ring_size < RING_SIZE_MIN) {
807		ring_size = RING_SIZE_MIN;
808		pr_info("Increased ring_size to %d (min allowed)\n",
809			ring_size);
810	}
811	return vmbus_driver_register(&netvsc_drv);
 
 
 
 
 
 
 
812}
813
814MODULE_LICENSE("GPL");
815MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
816
817module_init(netvsc_drv_init);
818module_exit(netvsc_drv_exit);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 */
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/atomic.h>
  13#include <linux/ethtool.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/device.h>
  17#include <linux/io.h>
  18#include <linux/delay.h>
  19#include <linux/netdevice.h>
  20#include <linux/inetdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/pci.h>
  23#include <linux/skbuff.h>
  24#include <linux/if_vlan.h>
  25#include <linux/in.h>
  26#include <linux/slab.h>
  27#include <linux/rtnetlink.h>
  28#include <linux/netpoll.h>
  29#include <linux/bpf.h>
  30
  31#include <net/arp.h>
  32#include <net/route.h>
  33#include <net/sock.h>
  34#include <net/pkt_sched.h>
  35#include <net/checksum.h>
  36#include <net/ip6_checksum.h>
  37
  38#include "hyperv_net.h"
  39
  40#define RING_SIZE_MIN	64
  41
  42#define LINKCHANGE_INT (2 * HZ)
  43#define VF_TAKEOVER_INT (HZ / 10)
 
 
  44
  45static unsigned int ring_size __ro_after_init = 128;
  46module_param(ring_size, uint, 0444);
 
  47MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  48unsigned int netvsc_ring_bytes __ro_after_init;
  49
  50static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  51				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  52				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  53				NETIF_MSG_TX_ERR;
  54
  55static int debug = -1;
  56module_param(debug, int, 0444);
  57MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  58
  59static LIST_HEAD(netvsc_dev_list);
  60
  61static void netvsc_change_rx_flags(struct net_device *net, int change)
  62{
  63	struct net_device_context *ndev_ctx = netdev_priv(net);
  64	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  65	int inc;
 
  66
  67	if (!vf_netdev)
 
  68		return;
  69
  70	if (change & IFF_PROMISC) {
  71		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  72		dev_set_promiscuity(vf_netdev, inc);
  73	}
  74
  75	if (change & IFF_ALLMULTI) {
  76		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  77		dev_set_allmulti(vf_netdev, inc);
  78	}
 
 
 
 
  79}
  80
  81static void netvsc_set_rx_mode(struct net_device *net)
  82{
  83	struct net_device_context *ndev_ctx = netdev_priv(net);
  84	struct net_device *vf_netdev;
  85	struct netvsc_device *nvdev;
  86
  87	rcu_read_lock();
  88	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  89	if (vf_netdev) {
  90		dev_uc_sync(vf_netdev, net);
  91		dev_mc_sync(vf_netdev, net);
  92	}
  93
  94	nvdev = rcu_dereference(ndev_ctx->nvdev);
  95	if (nvdev)
  96		rndis_filter_update(nvdev);
  97	rcu_read_unlock();
  98}
  99
 100static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 101			     struct net_device *ndev)
 102{
 103	nvscdev->tx_disable = false;
 104	virt_wmb(); /* ensure queue wake up mechanism is on */
 105
 106	netif_tx_wake_all_queues(ndev);
 107}
 108
 109static int netvsc_open(struct net_device *net)
 110{
 111	struct net_device_context *ndev_ctx = netdev_priv(net);
 112	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 113	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 114	struct rndis_device *rdev;
 115	int ret = 0;
 116
 117	netif_carrier_off(net);
 118
 119	/* Open up the device */
 120	ret = rndis_filter_open(nvdev);
 121	if (ret != 0) {
 122		netdev_err(net, "unable to open device (ret %d).\n", ret);
 123		return ret;
 124	}
 125
 
 
 
 126	rdev = nvdev->extension;
 127	if (!rdev->link_state) {
 128		netif_carrier_on(net);
 129		netvsc_tx_enable(nvdev, net);
 130	}
 131
 132	if (vf_netdev) {
 133		/* Setting synthetic device up transparently sets
 134		 * slave as up. If open fails, then slave will be
 135		 * still be offline (and not used).
 136		 */
 137		ret = dev_open(vf_netdev, NULL);
 138		if (ret)
 139			netdev_warn(net,
 140				    "unable to open slave: %s: %d\n",
 141				    vf_netdev->name, ret);
 142	}
 143	return 0;
 144}
 145
 146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 147{
 148	unsigned int retry = 0;
 149	int i;
 150
 151	/* Ensure pending bytes in ring are read */
 152	for (;;) {
 153		u32 aread = 0;
 154
 155		for (i = 0; i < nvdev->num_chn; i++) {
 156			struct vmbus_channel *chn
 157				= nvdev->chan_table[i].channel;
 158
 159			if (!chn)
 160				continue;
 161
 162			/* make sure receive not running now */
 163			napi_synchronize(&nvdev->chan_table[i].napi);
 164
 165			aread = hv_get_bytes_to_read(&chn->inbound);
 166			if (aread)
 167				break;
 168
 169			aread = hv_get_bytes_to_read(&chn->outbound);
 170			if (aread)
 171				break;
 172		}
 173
 174		if (aread == 0)
 175			return 0;
 176
 177		if (++retry > RETRY_MAX)
 178			return -ETIMEDOUT;
 179
 180		usleep_range(RETRY_US_LO, RETRY_US_HI);
 181	}
 182}
 183
 184static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 185			      struct net_device *ndev)
 186{
 187	if (nvscdev) {
 188		nvscdev->tx_disable = true;
 189		virt_wmb(); /* ensure txq will not wake up after stop */
 190	}
 191
 192	netif_tx_disable(ndev);
 193}
 194
 195static int netvsc_close(struct net_device *net)
 196{
 197	struct net_device_context *net_device_ctx = netdev_priv(net);
 198	struct net_device *vf_netdev
 199		= rtnl_dereference(net_device_ctx->vf_netdev);
 200	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 201	int ret;
 202
 203	netvsc_tx_disable(nvdev, net);
 204
 205	/* No need to close rndis filter if it is removed already */
 206	if (!nvdev)
 207		return 0;
 208
 209	ret = rndis_filter_close(nvdev);
 210	if (ret != 0) {
 211		netdev_err(net, "unable to close device (ret %d).\n", ret);
 212		return ret;
 213	}
 214
 215	ret = netvsc_wait_until_empty(nvdev);
 216	if (ret)
 217		netdev_err(net, "Ring buffer not empty after closing rndis\n");
 218
 219	if (vf_netdev)
 220		dev_close(vf_netdev);
 221
 222	return ret;
 223}
 224
 225static inline void *init_ppi_data(struct rndis_message *msg,
 226				  u32 ppi_size, u32 pkt_type)
 227{
 228	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 229	struct rndis_per_packet_info *ppi;
 230
 
 231	rndis_pkt->data_offset += ppi_size;
 232	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 233		+ rndis_pkt->per_pkt_info_len;
 
 234
 235	ppi->size = ppi_size;
 236	ppi->type = pkt_type;
 237	ppi->internal = 0;
 238	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 239
 240	rndis_pkt->per_pkt_info_len += ppi_size;
 241
 242	return ppi + 1;
 243}
 244
 245static inline int netvsc_get_tx_queue(struct net_device *ndev,
 246				      struct sk_buff *skb, int old_idx)
 247{
 248	const struct net_device_context *ndc = netdev_priv(ndev);
 249	struct sock *sk = skb->sk;
 250	int q_idx;
 251
 252	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 253			      (VRSS_SEND_TAB_SIZE - 1)];
 254
 255	/* If queue index changed record the new value */
 256	if (q_idx != old_idx &&
 257	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 258		sk_tx_queue_set(sk, q_idx);
 259
 260	return q_idx;
 
 261}
 262
 263/*
 264 * Select queue for transmit.
 265 *
 266 * If a valid queue has already been assigned, then use that.
 267 * Otherwise compute tx queue based on hash and the send table.
 268 *
 269 * This is basically similar to default (netdev_pick_tx) with the added step
 270 * of using the host send_table when no other queue has been assigned.
 271 *
 272 * TODO support XPS - but get_xps_queue not exported
 273 */
 274static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 275{
 276	int q_idx = sk_tx_queue_get(skb->sk);
 277
 278	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 279		/* If forwarding a packet, we use the recorded queue when
 280		 * available for better cache locality.
 281		 */
 282		if (skb_rx_queue_recorded(skb))
 283			q_idx = skb_get_rx_queue(skb);
 284		else
 285			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 286	}
 287
 288	return q_idx;
 289}
 290
 291static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 292			       struct net_device *sb_dev)
 293{
 294	struct net_device_context *ndc = netdev_priv(ndev);
 295	struct net_device *vf_netdev;
 296	u16 txq;
 297
 298	rcu_read_lock();
 299	vf_netdev = rcu_dereference(ndc->vf_netdev);
 300	if (vf_netdev) {
 301		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 302
 303		if (vf_ops->ndo_select_queue)
 304			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 305		else
 306			txq = netdev_pick_tx(vf_netdev, skb, NULL);
 307
 308		/* Record the queue selected by VF so that it can be
 309		 * used for common case where VF has more queues than
 310		 * the synthetic device.
 311		 */
 312		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 313	} else {
 314		txq = netvsc_pick_tx(ndev, skb);
 315	}
 316	rcu_read_unlock();
 317
 318	while (txq >= ndev->real_num_tx_queues)
 319		txq -= ndev->real_num_tx_queues;
 320
 321	return txq;
 322}
 323
 324static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
 325		       struct hv_page_buffer *pb)
 326{
 327	int j = 0;
 328
 329	hvpfn += offset >> HV_HYP_PAGE_SHIFT;
 330	offset = offset & ~HV_HYP_PAGE_MASK;
 
 
 
 331
 332	while (len > 0) {
 333		unsigned long bytes;
 334
 335		bytes = HV_HYP_PAGE_SIZE - offset;
 336		if (bytes > len)
 337			bytes = len;
 338		pb[j].pfn = hvpfn;
 339		pb[j].offset = offset;
 340		pb[j].len = bytes;
 341
 342		offset += bytes;
 343		len -= bytes;
 344
 345		if (offset == HV_HYP_PAGE_SIZE && len) {
 346			hvpfn++;
 347			offset = 0;
 348			j++;
 349		}
 350	}
 351
 352	return j + 1;
 353}
 354
 355static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 356			   struct hv_netvsc_packet *packet,
 357			   struct hv_page_buffer *pb)
 358{
 359	u32 slots_used = 0;
 360	char *data = skb->data;
 361	int frags = skb_shinfo(skb)->nr_frags;
 362	int i;
 363
 364	/* The packet is laid out thus:
 365	 * 1. hdr: RNDIS header and PPI
 366	 * 2. skb linear data
 367	 * 3. skb fragment data
 368	 */
 369	slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
 370				  offset_in_hvpage(hdr),
 371				  len,
 372				  &pb[slots_used]);
 373
 374	packet->rmsg_size = len;
 375	packet->rmsg_pgcnt = slots_used;
 376
 377	slots_used += fill_pg_buf(virt_to_hvpfn(data),
 378				  offset_in_hvpage(data),
 379				  skb_headlen(skb),
 380				  &pb[slots_used]);
 381
 382	for (i = 0; i < frags; i++) {
 383		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 384
 385		slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
 386					  skb_frag_off(frag),
 387					  skb_frag_size(frag),
 388					  &pb[slots_used]);
 389	}
 390	return slots_used;
 391}
 392
 393static int count_skb_frag_slots(struct sk_buff *skb)
 394{
 395	int i, frags = skb_shinfo(skb)->nr_frags;
 396	int pages = 0;
 397
 398	for (i = 0; i < frags; i++) {
 399		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 400		unsigned long size = skb_frag_size(frag);
 401		unsigned long offset = skb_frag_off(frag);
 402
 403		/* Skip unused frames from start of page */
 404		offset &= ~HV_HYP_PAGE_MASK;
 405		pages += HVPFN_UP(offset + size);
 406	}
 407	return pages;
 408}
 409
 410static int netvsc_get_slots(struct sk_buff *skb)
 411{
 412	char *data = skb->data;
 413	unsigned int offset = offset_in_hvpage(data);
 414	unsigned int len = skb_headlen(skb);
 415	int slots;
 416	int frag_slots;
 417
 418	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
 419	frag_slots = count_skb_frag_slots(skb);
 420	return slots + frag_slots;
 421}
 422
 423static u32 net_checksum_info(struct sk_buff *skb)
 424{
 425	if (skb->protocol == htons(ETH_P_IP)) {
 426		struct iphdr *ip = ip_hdr(skb);
 427
 428		if (ip->protocol == IPPROTO_TCP)
 429			return TRANSPORT_INFO_IPV4_TCP;
 430		else if (ip->protocol == IPPROTO_UDP)
 431			return TRANSPORT_INFO_IPV4_UDP;
 432	} else {
 433		struct ipv6hdr *ip6 = ipv6_hdr(skb);
 434
 435		if (ip6->nexthdr == IPPROTO_TCP)
 436			return TRANSPORT_INFO_IPV6_TCP;
 437		else if (ip6->nexthdr == IPPROTO_UDP)
 438			return TRANSPORT_INFO_IPV6_UDP;
 439	}
 440
 441	return TRANSPORT_INFO_NOT_IP;
 442}
 443
 444/* Send skb on the slave VF device. */
 445static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 446			  struct sk_buff *skb)
 447{
 448	struct net_device_context *ndev_ctx = netdev_priv(net);
 449	unsigned int len = skb->len;
 450	int rc;
 451
 452	skb->dev = vf_netdev;
 453	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
 454
 455	rc = dev_queue_xmit(skb);
 456	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 457		struct netvsc_vf_pcpu_stats *pcpu_stats
 458			= this_cpu_ptr(ndev_ctx->vf_stats);
 459
 460		u64_stats_update_begin(&pcpu_stats->syncp);
 461		pcpu_stats->tx_packets++;
 462		pcpu_stats->tx_bytes += len;
 463		u64_stats_update_end(&pcpu_stats->syncp);
 464	} else {
 465		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 
 
 
 466	}
 467
 468	return rc;
 
 469}
 470
 471static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
 472{
 473	struct net_device_context *net_device_ctx = netdev_priv(net);
 474	struct hv_netvsc_packet *packet = NULL;
 475	int ret;
 476	unsigned int num_data_pgs;
 477	struct rndis_message *rndis_msg;
 478	struct net_device *vf_netdev;
 479	u32 rndis_msg_size;
 480	u32 hash;
 481	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 
 
 
 
 482
 483	/* If VF is present and up then redirect packets to it.
 484	 * Skip the VF if it is marked down or has no carrier.
 485	 * If netpoll is in uses, then VF can not be used either.
 486	 */
 487	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 488	if (vf_netdev && netif_running(vf_netdev) &&
 489	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
 490	    net_device_ctx->data_path_is_vf)
 491		return netvsc_vf_xmit(net, vf_netdev, skb);
 492
 493	/* We will atmost need two pages to describe the rndis
 494	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 495	 * of pages in a single packet. If skb is scattered around
 496	 * more pages we try linearizing it.
 497	 */
 498
 499	num_data_pgs = netvsc_get_slots(skb) + 2;
 
 
 
 
 
 
 500
 501	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 502		++net_device_ctx->eth_stats.tx_scattered;
 
 
 
 
 
 
 
 
 503
 504		if (skb_linearize(skb))
 505			goto no_memory;
 506
 507		num_data_pgs = netvsc_get_slots(skb) + 2;
 508		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 509			++net_device_ctx->eth_stats.tx_too_big;
 510			goto drop;
 511		}
 512	}
 513
 514	/*
 515	 * Place the rndis header in the skb head room and
 516	 * the skb->cb will be used for hv_netvsc_packet
 517	 * structure.
 518	 */
 519	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 520	if (ret)
 521		goto no_memory;
 522
 523	/* Use the skb control buffer for building up the packet */
 524	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 525			sizeof_field(struct sk_buff, cb));
 526	packet = (struct hv_netvsc_packet *)skb->cb;
 527
 528	packet->q_idx = skb_get_queue_mapping(skb);
 
 529
 530	packet->total_data_buflen = skb->len;
 531	packet->total_bytes = skb->len;
 532	packet->total_packets = 1;
 
 
 
 
 
 533
 534	rndis_msg = (struct rndis_message *)skb->head;
 535
 536	/* Add the rndis header */
 
 537	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 538	rndis_msg->msg_len = packet->total_data_buflen;
 
 
 
 
 539
 540	rndis_msg->msg.pkt = (struct rndis_packet) {
 541		.data_offset = sizeof(struct rndis_packet),
 542		.data_len = packet->total_data_buflen,
 543		.per_pkt_info_offset = sizeof(struct rndis_packet),
 544	};
 545
 546	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 
 547
 548	hash = skb_get_hash_raw(skb);
 549	if (hash != 0 && net->real_num_tx_queues > 1) {
 550		u32 *hash_info;
 551
 552		rndis_msg_size += NDIS_HASH_PPI_SIZE;
 553		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 554					  NBL_HASH_VALUE);
 555		*hash_info = hash;
 556	}
 557
 558	/* When using AF_PACKET we need to drop VLAN header from
 559	 * the frame and update the SKB to allow the HOST OS
 560	 * to transmit the 802.1Q packet
 
 
 
 
 561	 */
 562	if (skb->protocol == htons(ETH_P_8021Q)) {
 563		u16 vlan_tci;
 
 
 
 
 
 
 
 
 564
 565		skb_reset_mac_header(skb);
 566		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
 567			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
 568				++net_device_ctx->eth_stats.vlan_error;
 569				goto drop;
 570			}
 571
 572			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
 573			/* Update the NDIS header pkt lengths */
 574			packet->total_data_buflen -= VLAN_HLEN;
 575			packet->total_bytes -= VLAN_HLEN;
 576			rndis_msg->msg_len = packet->total_data_buflen;
 577			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
 578		}
 579	}
 580
 581	if (skb_vlan_tag_present(skb)) {
 582		struct ndis_pkt_8021q_info *vlan;
 
 
 
 
 
 
 
 
 
 
 583
 584		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 585		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 586				     IEEE_8021Q_INFO);
 587
 588		vlan->value = 0;
 589		vlan->vlanid = skb_vlan_tag_get_id(skb);
 590		vlan->cfi = skb_vlan_tag_get_cfi(skb);
 591		vlan->pri = skb_vlan_tag_get_prio(skb);
 592	}
 593
 594	if (skb_is_gso(skb)) {
 595		struct ndis_tcp_lso_info *lso_info;
 596
 597		rndis_msg_size += NDIS_LSO_PPI_SIZE;
 598		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 599					 TCP_LARGESEND_PKTINFO);
 600
 601		lso_info->value = 0;
 602		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 603		if (skb->protocol == htons(ETH_P_IP)) {
 604			lso_info->lso_v2_transmit.ip_version =
 605				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 606			ip_hdr(skb)->tot_len = 0;
 607			ip_hdr(skb)->check = 0;
 608			tcp_hdr(skb)->check =
 609				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 610						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 611		} else {
 612			lso_info->lso_v2_transmit.ip_version =
 613				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 614			tcp_v6_gso_csum_prep(skb);
 615		}
 616		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 617		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 618	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 619		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 620			struct ndis_tcp_ip_checksum_info *csum_info;
 621
 622			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 623			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 624						  TCPIP_CHKSUM_PKTINFO);
 625
 626			csum_info->value = 0;
 627			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 628
 629			if (skb->protocol == htons(ETH_P_IP)) {
 630				csum_info->transmit.is_ipv4 = 1;
 631
 632				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 633					csum_info->transmit.tcp_checksum = 1;
 634				else
 635					csum_info->transmit.udp_checksum = 1;
 636			} else {
 637				csum_info->transmit.is_ipv6 = 1;
 638
 639				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 640					csum_info->transmit.tcp_checksum = 1;
 641				else
 642					csum_info->transmit.udp_checksum = 1;
 643			}
 644		} else {
 645			/* Can't do offload of this type of checksum */
 646			if (skb_checksum_help(skb))
 647				goto drop;
 648		}
 649	}
 
 
 650
 
 651	/* Start filling in the page buffers with the rndis hdr */
 652	rndis_msg->msg_len += rndis_msg_size;
 653	packet->total_data_buflen = rndis_msg->msg_len;
 654	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 655					       skb, packet, pb);
 656
 657	/* timestamp packet in software */
 658	skb_tx_timestamp(skb);
 659
 660	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
 661	if (likely(ret == 0))
 662		return NETDEV_TX_OK;
 663
 664	if (ret == -EAGAIN) {
 665		++net_device_ctx->eth_stats.tx_busy;
 666		return NETDEV_TX_BUSY;
 
 
 
 667	}
 668
 669	if (ret == -ENOSPC)
 670		++net_device_ctx->eth_stats.tx_no_space;
 671
 672drop:
 673	dev_kfree_skb_any(skb);
 674	net->stats.tx_dropped++;
 675
 676	return NETDEV_TX_OK;
 677
 678no_memory:
 679	++net_device_ctx->eth_stats.tx_no_memory;
 680	goto drop;
 681}
 682
 683static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
 684				     struct net_device *ndev)
 685{
 686	return netvsc_xmit(skb, ndev, false);
 687}
 688
 689/*
 690 * netvsc_linkstatus_callback - Link up/down notification
 691 */
 692void netvsc_linkstatus_callback(struct net_device *net,
 693				struct rndis_message *resp,
 694				void *data, u32 data_buflen)
 695{
 696	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 697	struct net_device_context *ndev_ctx = netdev_priv(net);
 698	struct netvsc_reconfig *event;
 699	unsigned long flags;
 700
 701	/* Ensure the packet is big enough to access its fields */
 702	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
 703		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
 704			   resp->msg_len);
 705		return;
 706	}
 707
 708	/* Copy the RNDIS indicate status into nvchan->recv_buf */
 709	memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
 710
 711	/* Update the physical link speed when changing to another vSwitch */
 712	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 713		u32 speed;
 714
 715		/* Validate status_buf_offset and status_buflen.
 716		 *
 717		 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
 718		 * for the status buffer field in resp->msg_len; perform the validation
 719		 * using data_buflen (>= resp->msg_len).
 720		 */
 721		if (indicate->status_buflen < sizeof(speed) ||
 722		    indicate->status_buf_offset < sizeof(*indicate) ||
 723		    data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
 724		    data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
 725				< indicate->status_buflen) {
 726			netdev_err(net, "invalid rndis_indicate_status packet\n");
 727			return;
 728		}
 729
 730		speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
 731		ndev_ctx->speed = speed;
 732		return;
 733	}
 734
 735	/* Handle these link change statuses below */
 736	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 737	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 738	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 739		return;
 740
 741	if (net->reg_state != NETREG_REGISTERED)
 742		return;
 743
 744	event = kzalloc(sizeof(*event), GFP_ATOMIC);
 745	if (!event)
 746		return;
 747	event->event = indicate->status;
 748
 749	spin_lock_irqsave(&ndev_ctx->lock, flags);
 750	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 751	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 752
 753	schedule_delayed_work(&ndev_ctx->dwork, 0);
 754}
 755
 756/* This function should only be called after skb_record_rx_queue() */
 757void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
 758{
 759	int rc;
 760
 761	skb->queue_mapping = skb_get_rx_queue(skb);
 762	__skb_push(skb, ETH_HLEN);
 763
 764	rc = netvsc_xmit(skb, ndev, true);
 765
 766	if (dev_xmit_complete(rc))
 767		return;
 768
 769	dev_kfree_skb_any(skb);
 770	ndev->stats.tx_dropped++;
 771}
 772
 773static void netvsc_comp_ipcsum(struct sk_buff *skb)
 774{
 775	struct iphdr *iph = (struct iphdr *)skb->data;
 776
 777	iph->check = 0;
 778	iph->check = ip_fast_csum(iph, iph->ihl);
 779}
 780
 781static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 782					     struct netvsc_channel *nvchan,
 783					     struct xdp_buff *xdp)
 784{
 785	struct napi_struct *napi = &nvchan->napi;
 786	const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
 787	const struct ndis_tcp_ip_checksum_info *csum_info =
 788						&nvchan->rsc.csum_info;
 789	const u32 *hash_info = &nvchan->rsc.hash_info;
 790	u8 ppi_flags = nvchan->rsc.ppi_flags;
 791	struct sk_buff *skb;
 792	void *xbuf = xdp->data_hard_start;
 793	int i;
 794
 795	if (xbuf) {
 796		unsigned int hdroom = xdp->data - xdp->data_hard_start;
 797		unsigned int xlen = xdp->data_end - xdp->data;
 798		unsigned int frag_size = xdp->frame_sz;
 799
 800		skb = build_skb(xbuf, frag_size);
 801
 802		if (!skb) {
 803			__free_page(virt_to_page(xbuf));
 804			return NULL;
 805		}
 806
 807		skb_reserve(skb, hdroom);
 808		skb_put(skb, xlen);
 809		skb->dev = napi->dev;
 810	} else {
 811		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 812
 813		if (!skb)
 814			return NULL;
 815
 816		/* Copy to skb. This copy is needed here since the memory
 817		 * pointed by hv_netvsc_packet cannot be deallocated.
 818		 */
 819		for (i = 0; i < nvchan->rsc.cnt; i++)
 820			skb_put_data(skb, nvchan->rsc.data[i],
 821				     nvchan->rsc.len[i]);
 822	}
 823
 824	skb->protocol = eth_type_trans(skb, net);
 825
 826	/* skb is already created with CHECKSUM_NONE */
 827	skb_checksum_none_assert(skb);
 828
 829	/* Incoming packets may have IP header checksum verified by the host.
 830	 * They may not have IP header checksum computed after coalescing.
 831	 * We compute it here if the flags are set, because on Linux, the IP
 832	 * checksum is always checked.
 833	 */
 834	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
 835	    csum_info->receive.ip_checksum_succeeded &&
 836	    skb->protocol == htons(ETH_P_IP)) {
 837		/* Check that there is enough space to hold the IP header. */
 838		if (skb_headlen(skb) < sizeof(struct iphdr)) {
 839			kfree_skb(skb);
 840			return NULL;
 841		}
 842		netvsc_comp_ipcsum(skb);
 843	}
 844
 845	/* Do L4 checksum offload if enabled and present. */
 846	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
 847		if (csum_info->receive.tcp_checksum_succeeded ||
 848		    csum_info->receive.udp_checksum_succeeded)
 849			skb->ip_summed = CHECKSUM_UNNECESSARY;
 850	}
 851
 852	if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
 853		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
 854
 855	if (ppi_flags & NVSC_RSC_VLAN) {
 856		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 857			(vlan->cfi ? VLAN_CFI_MASK : 0);
 858
 859		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 860				       vlan_tci);
 861	}
 862
 863	return skb;
 864}
 865
 866/*
 867 * netvsc_recv_callback -  Callback when we receive a packet from the
 868 * "wire" on the specified device.
 869 */
 870int netvsc_recv_callback(struct net_device *net,
 871			 struct netvsc_device *net_device,
 872			 struct netvsc_channel *nvchan)
 873{
 874	struct net_device_context *net_device_ctx = netdev_priv(net);
 875	struct vmbus_channel *channel = nvchan->channel;
 876	u16 q_idx = channel->offermsg.offer.sub_channel_index;
 877	struct sk_buff *skb;
 878	struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
 879	struct xdp_buff xdp;
 880	u32 act;
 881
 882	if (net->reg_state != NETREG_REGISTERED)
 883		return NVSP_STAT_FAIL;
 884
 885	act = netvsc_run_xdp(net, nvchan, &xdp);
 886
 887	if (act == XDP_REDIRECT)
 888		return NVSP_STAT_SUCCESS;
 889
 890	if (act != XDP_PASS && act != XDP_TX) {
 891		u64_stats_update_begin(&rx_stats->syncp);
 892		rx_stats->xdp_drop++;
 893		u64_stats_update_end(&rx_stats->syncp);
 894
 895		return NVSP_STAT_SUCCESS; /* consumed by XDP */
 896	}
 897
 898	/* Allocate a skb - TODO direct I/O to pages? */
 899	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
 900
 901	if (unlikely(!skb)) {
 902		++net_device_ctx->eth_stats.rx_no_memory;
 903		return NVSP_STAT_FAIL;
 
 904	}
 905
 906	skb_record_rx_queue(skb, q_idx);
 907
 908	/*
 909	 * Even if injecting the packet, record the statistics
 910	 * on the synthetic device because modifying the VF device
 911	 * statistics will not work correctly.
 912	 */
 913	u64_stats_update_begin(&rx_stats->syncp);
 914	if (act == XDP_TX)
 915		rx_stats->xdp_tx++;
 916
 917	rx_stats->packets++;
 918	rx_stats->bytes += nvchan->rsc.pktlen;
 919
 920	if (skb->pkt_type == PACKET_BROADCAST)
 921		++rx_stats->broadcast;
 922	else if (skb->pkt_type == PACKET_MULTICAST)
 923		++rx_stats->multicast;
 924	u64_stats_update_end(&rx_stats->syncp);
 925
 926	if (act == XDP_TX) {
 927		netvsc_xdp_xmit(skb, net);
 928		return NVSP_STAT_SUCCESS;
 929	}
 930
 931	napi_gro_receive(&nvchan->napi, skb);
 932	return NVSP_STAT_SUCCESS;
 933}
 934
 935static void netvsc_get_drvinfo(struct net_device *net,
 936			       struct ethtool_drvinfo *info)
 937{
 938	strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 939	strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
 940}
 941
 942static void netvsc_get_channels(struct net_device *net,
 943				struct ethtool_channels *channel)
 944{
 945	struct net_device_context *net_device_ctx = netdev_priv(net);
 946	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 947
 948	if (nvdev) {
 949		channel->max_combined	= nvdev->max_chn;
 950		channel->combined_count = nvdev->num_chn;
 951	}
 952}
 953
 954/* Alloc struct netvsc_device_info, and initialize it from either existing
 955 * struct netvsc_device, or from default values.
 956 */
 957static
 958struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
 959{
 960	struct netvsc_device_info *dev_info;
 961	struct bpf_prog *prog;
 962
 963	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
 
 964
 965	if (!dev_info)
 966		return NULL;
 967
 968	if (nvdev) {
 969		ASSERT_RTNL();
 970
 971		dev_info->num_chn = nvdev->num_chn;
 972		dev_info->send_sections = nvdev->send_section_cnt;
 973		dev_info->send_section_size = nvdev->send_section_size;
 974		dev_info->recv_sections = nvdev->recv_section_cnt;
 975		dev_info->recv_section_size = nvdev->recv_section_size;
 976
 977		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
 978		       NETVSC_HASH_KEYLEN);
 979
 980		prog = netvsc_xdp_get(nvdev);
 981		if (prog) {
 982			bpf_prog_inc(prog);
 983			dev_info->bprog = prog;
 984		}
 985	} else {
 986		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
 987		dev_info->send_sections = NETVSC_DEFAULT_TX;
 988		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
 989		dev_info->recv_sections = NETVSC_DEFAULT_RX;
 990		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
 991	}
 992
 993	return dev_info;
 994}
 995
 996/* Free struct netvsc_device_info */
 997static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
 998{
 999	if (dev_info->bprog) {
1000		ASSERT_RTNL();
1001		bpf_prog_put(dev_info->bprog);
1002	}
1003
1004	kfree(dev_info);
1005}
1006
1007static int netvsc_detach(struct net_device *ndev,
1008			 struct netvsc_device *nvdev)
1009{
1010	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1011	struct hv_device *hdev = ndev_ctx->device_ctx;
1012	int ret;
1013
1014	/* Don't try continuing to try and setup sub channels */
1015	if (cancel_work_sync(&nvdev->subchan_work))
1016		nvdev->num_chn = 1;
1017
1018	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1019
1020	/* If device was up (receiving) then shutdown */
1021	if (netif_running(ndev)) {
1022		netvsc_tx_disable(nvdev, ndev);
1023
1024		ret = rndis_filter_close(nvdev);
1025		if (ret) {
1026			netdev_err(ndev,
1027				   "unable to close device (ret %d).\n", ret);
1028			return ret;
1029		}
1030
1031		ret = netvsc_wait_until_empty(nvdev);
1032		if (ret) {
1033			netdev_err(ndev,
1034				   "Ring buffer not empty after closing rndis\n");
1035			return ret;
1036		}
1037	}
1038
1039	netif_device_detach(ndev);
1040
1041	rndis_filter_device_remove(hdev, nvdev);
1042
1043	return 0;
1044}
1045
1046static int netvsc_attach(struct net_device *ndev,
1047			 struct netvsc_device_info *dev_info)
1048{
1049	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1050	struct hv_device *hdev = ndev_ctx->device_ctx;
1051	struct netvsc_device *nvdev;
1052	struct rndis_device *rdev;
1053	struct bpf_prog *prog;
1054	int ret = 0;
1055
1056	nvdev = rndis_filter_device_add(hdev, dev_info);
1057	if (IS_ERR(nvdev))
1058		return PTR_ERR(nvdev);
1059
1060	if (nvdev->num_chn > 1) {
1061		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1062
1063		/* if unavailable, just proceed with one queue */
1064		if (ret) {
1065			nvdev->max_chn = 1;
1066			nvdev->num_chn = 1;
1067		}
1068	}
1069
1070	prog = dev_info->bprog;
1071	if (prog) {
1072		bpf_prog_inc(prog);
1073		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1074		if (ret) {
1075			bpf_prog_put(prog);
1076			goto err1;
1077		}
1078	}
1079
1080	/* In any case device is now ready */
1081	nvdev->tx_disable = false;
1082	netif_device_attach(ndev);
1083
1084	/* Note: enable and attach happen when sub-channels setup */
1085	netif_carrier_off(ndev);
1086
1087	if (netif_running(ndev)) {
1088		ret = rndis_filter_open(nvdev);
1089		if (ret)
1090			goto err2;
1091
1092		rdev = nvdev->extension;
1093		if (!rdev->link_state)
1094			netif_carrier_on(ndev);
1095	}
1096
1097	return 0;
1098
1099err2:
1100	netif_device_detach(ndev);
1101
1102err1:
1103	rndis_filter_device_remove(hdev, nvdev);
1104
1105	return ret;
1106}
1107
1108static int netvsc_set_channels(struct net_device *net,
1109			       struct ethtool_channels *channels)
1110{
1111	struct net_device_context *net_device_ctx = netdev_priv(net);
1112	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1113	unsigned int orig, count = channels->combined_count;
1114	struct netvsc_device_info *device_info;
1115	int ret;
1116
1117	/* We do not support separate count for rx, tx, or other */
1118	if (count == 0 ||
1119	    channels->rx_count || channels->tx_count || channels->other_count)
1120		return -EINVAL;
1121
1122	if (!nvdev || nvdev->destroy)
1123		return -ENODEV;
1124
1125	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1126		return -EINVAL;
1127
1128	if (count > nvdev->max_chn)
1129		return -EINVAL;
1130
1131	orig = nvdev->num_chn;
1132
1133	device_info = netvsc_devinfo_get(nvdev);
1134
1135	if (!device_info)
1136		return -ENOMEM;
1137
1138	device_info->num_chn = count;
1139
1140	ret = netvsc_detach(net, nvdev);
1141	if (ret)
1142		goto out;
1143
1144	ret = netvsc_attach(net, device_info);
1145	if (ret) {
1146		device_info->num_chn = orig;
1147		if (netvsc_attach(net, device_info))
1148			netdev_err(net, "restoring channel setting failed\n");
1149	}
1150
1151out:
1152	netvsc_devinfo_put(device_info);
1153	return ret;
1154}
1155
1156static void netvsc_init_settings(struct net_device *dev)
1157{
1158	struct net_device_context *ndc = netdev_priv(dev);
1159
1160	ndc->l4_hash = HV_DEFAULT_L4HASH;
1161
1162	ndc->speed = SPEED_UNKNOWN;
1163	ndc->duplex = DUPLEX_FULL;
1164
1165	dev->features = NETIF_F_LRO;
1166}
1167
1168static int netvsc_get_link_ksettings(struct net_device *dev,
1169				     struct ethtool_link_ksettings *cmd)
1170{
1171	struct net_device_context *ndc = netdev_priv(dev);
1172	struct net_device *vf_netdev;
1173
1174	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1175
1176	if (vf_netdev)
1177		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1178
1179	cmd->base.speed = ndc->speed;
1180	cmd->base.duplex = ndc->duplex;
1181	cmd->base.port = PORT_OTHER;
1182
1183	return 0;
1184}
1185
1186static int netvsc_set_link_ksettings(struct net_device *dev,
1187				     const struct ethtool_link_ksettings *cmd)
1188{
1189	struct net_device_context *ndc = netdev_priv(dev);
1190	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1191
1192	if (vf_netdev) {
1193		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1194			return -EOPNOTSUPP;
1195
1196		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1197								  cmd);
1198	}
1199
1200	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1201						  &ndc->speed, &ndc->duplex);
1202}
1203
1204static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1205{
1206	struct net_device_context *ndevctx = netdev_priv(ndev);
1207	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1208	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1209	int orig_mtu = ndev->mtu;
1210	struct netvsc_device_info *device_info;
1211	int ret = 0;
1212
1213	if (!nvdev || nvdev->destroy)
1214		return -ENODEV;
1215
1216	device_info = netvsc_devinfo_get(nvdev);
 
1217
1218	if (!device_info)
1219		return -ENOMEM;
1220
1221	/* Change MTU of underlying VF netdev first. */
1222	if (vf_netdev) {
1223		ret = dev_set_mtu(vf_netdev, mtu);
1224		if (ret)
1225			goto out;
1226	}
1227
1228	ret = netvsc_detach(ndev, nvdev);
1229	if (ret)
1230		goto rollback_vf;
1231
1232	ndev->mtu = mtu;
1233
1234	ret = netvsc_attach(ndev, device_info);
1235	if (!ret)
1236		goto out;
1237
1238	/* Attempt rollback to original MTU */
1239	ndev->mtu = orig_mtu;
1240
1241	if (netvsc_attach(ndev, device_info))
1242		netdev_err(ndev, "restoring mtu failed\n");
1243rollback_vf:
1244	if (vf_netdev)
1245		dev_set_mtu(vf_netdev, orig_mtu);
1246
1247out:
1248	netvsc_devinfo_put(device_info);
1249	return ret;
1250}
1251
1252static void netvsc_get_vf_stats(struct net_device *net,
1253				struct netvsc_vf_pcpu_stats *tot)
1254{
1255	struct net_device_context *ndev_ctx = netdev_priv(net);
1256	int i;
1257
1258	memset(tot, 0, sizeof(*tot));
1259
1260	for_each_possible_cpu(i) {
1261		const struct netvsc_vf_pcpu_stats *stats
1262			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1263		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1264		unsigned int start;
1265
1266		do {
1267			start = u64_stats_fetch_begin(&stats->syncp);
1268			rx_packets = stats->rx_packets;
1269			tx_packets = stats->tx_packets;
1270			rx_bytes = stats->rx_bytes;
1271			tx_bytes = stats->tx_bytes;
1272		} while (u64_stats_fetch_retry(&stats->syncp, start));
1273
1274		tot->rx_packets += rx_packets;
1275		tot->tx_packets += tx_packets;
1276		tot->rx_bytes   += rx_bytes;
1277		tot->tx_bytes   += tx_bytes;
1278		tot->tx_dropped += stats->tx_dropped;
1279	}
1280}
1281
1282static void netvsc_get_pcpu_stats(struct net_device *net,
1283				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1284{
1285	struct net_device_context *ndev_ctx = netdev_priv(net);
1286	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1287	int i;
1288
1289	/* fetch percpu stats of vf */
1290	for_each_possible_cpu(i) {
1291		const struct netvsc_vf_pcpu_stats *stats =
1292			per_cpu_ptr(ndev_ctx->vf_stats, i);
1293		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1294		unsigned int start;
1295
1296		do {
1297			start = u64_stats_fetch_begin(&stats->syncp);
1298			this_tot->vf_rx_packets = stats->rx_packets;
1299			this_tot->vf_tx_packets = stats->tx_packets;
1300			this_tot->vf_rx_bytes = stats->rx_bytes;
1301			this_tot->vf_tx_bytes = stats->tx_bytes;
1302		} while (u64_stats_fetch_retry(&stats->syncp, start));
1303		this_tot->rx_packets = this_tot->vf_rx_packets;
1304		this_tot->tx_packets = this_tot->vf_tx_packets;
1305		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1306		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1307	}
1308
1309	/* fetch percpu stats of netvsc */
1310	for (i = 0; i < nvdev->num_chn; i++) {
1311		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1312		const struct netvsc_stats_tx *tx_stats;
1313		const struct netvsc_stats_rx *rx_stats;
1314		struct netvsc_ethtool_pcpu_stats *this_tot =
1315			&pcpu_tot[nvchan->channel->target_cpu];
1316		u64 packets, bytes;
1317		unsigned int start;
1318
1319		tx_stats = &nvchan->tx_stats;
1320		do {
1321			start = u64_stats_fetch_begin(&tx_stats->syncp);
1322			packets = tx_stats->packets;
1323			bytes = tx_stats->bytes;
1324		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1325
1326		this_tot->tx_bytes	+= bytes;
1327		this_tot->tx_packets	+= packets;
1328
1329		rx_stats = &nvchan->rx_stats;
1330		do {
1331			start = u64_stats_fetch_begin(&rx_stats->syncp);
1332			packets = rx_stats->packets;
1333			bytes = rx_stats->bytes;
1334		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1335
1336		this_tot->rx_bytes	+= bytes;
1337		this_tot->rx_packets	+= packets;
1338	}
1339}
1340
1341static void netvsc_get_stats64(struct net_device *net,
1342			       struct rtnl_link_stats64 *t)
1343{
1344	struct net_device_context *ndev_ctx = netdev_priv(net);
1345	struct netvsc_device *nvdev;
1346	struct netvsc_vf_pcpu_stats vf_tot;
1347	int i;
1348
1349	rcu_read_lock();
1350
1351	nvdev = rcu_dereference(ndev_ctx->nvdev);
1352	if (!nvdev)
1353		goto out;
1354
1355	netdev_stats_to_stats64(t, &net->stats);
1356
1357	netvsc_get_vf_stats(net, &vf_tot);
1358	t->rx_packets += vf_tot.rx_packets;
1359	t->tx_packets += vf_tot.tx_packets;
1360	t->rx_bytes   += vf_tot.rx_bytes;
1361	t->tx_bytes   += vf_tot.tx_bytes;
1362	t->tx_dropped += vf_tot.tx_dropped;
1363
1364	for (i = 0; i < nvdev->num_chn; i++) {
1365		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1366		const struct netvsc_stats_tx *tx_stats;
1367		const struct netvsc_stats_rx *rx_stats;
1368		u64 packets, bytes, multicast;
1369		unsigned int start;
1370
1371		tx_stats = &nvchan->tx_stats;
1372		do {
1373			start = u64_stats_fetch_begin(&tx_stats->syncp);
1374			packets = tx_stats->packets;
1375			bytes = tx_stats->bytes;
1376		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1377
1378		t->tx_bytes	+= bytes;
1379		t->tx_packets	+= packets;
1380
1381		rx_stats = &nvchan->rx_stats;
1382		do {
1383			start = u64_stats_fetch_begin(&rx_stats->syncp);
1384			packets = rx_stats->packets;
1385			bytes = rx_stats->bytes;
1386			multicast = rx_stats->multicast + rx_stats->broadcast;
1387		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1388
1389		t->rx_bytes	+= bytes;
1390		t->rx_packets	+= packets;
1391		t->multicast	+= multicast;
1392	}
1393out:
1394	rcu_read_unlock();
1395}
1396
1397static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1398{
1399	struct net_device_context *ndc = netdev_priv(ndev);
1400	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1401	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1402	struct sockaddr *addr = p;
 
 
1403	int err;
1404
1405	err = eth_prepare_mac_addr_change(ndev, p);
1406	if (err)
 
 
 
1407		return err;
1408
1409	if (!nvdev)
1410		return -ENODEV;
1411
1412	if (vf_netdev) {
1413		err = dev_set_mac_address(vf_netdev, addr, NULL);
1414		if (err)
1415			return err;
1416	}
1417
1418	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1419	if (!err) {
1420		eth_commit_mac_addr_change(ndev, p);
1421	} else if (vf_netdev) {
1422		/* rollback change on VF */
1423		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1424		dev_set_mac_address(vf_netdev, addr, NULL);
1425	}
1426
1427	return err;
1428}
1429
1430static const struct {
1431	char name[ETH_GSTRING_LEN];
1432	u16 offset;
1433} netvsc_stats[] = {
1434	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1435	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1436	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1437	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1438	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1439	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1440	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1441	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1442	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1443	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1444	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1445}, pcpu_stats[] = {
1446	{ "cpu%u_rx_packets",
1447		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1448	{ "cpu%u_rx_bytes",
1449		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1450	{ "cpu%u_tx_packets",
1451		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1452	{ "cpu%u_tx_bytes",
1453		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1454	{ "cpu%u_vf_rx_packets",
1455		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1456	{ "cpu%u_vf_rx_bytes",
1457		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1458	{ "cpu%u_vf_tx_packets",
1459		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1460	{ "cpu%u_vf_tx_bytes",
1461		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1462}, vf_stats[] = {
1463	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1464	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1465	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1466	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1467	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1468};
1469
1470#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1471#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1472
1473/* statistics per queue (rx/tx packets/bytes) */
1474#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1475
1476/* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1477#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1478
1479static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1480{
1481	struct net_device_context *ndc = netdev_priv(dev);
1482	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1483
1484	if (!nvdev)
1485		return -ENODEV;
1486
1487	switch (string_set) {
1488	case ETH_SS_STATS:
1489		return NETVSC_GLOBAL_STATS_LEN
1490			+ NETVSC_VF_STATS_LEN
1491			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1492			+ NETVSC_PCPU_STATS_LEN;
1493	default:
1494		return -EINVAL;
1495	}
1496}
1497
1498static void netvsc_get_ethtool_stats(struct net_device *dev,
1499				     struct ethtool_stats *stats, u64 *data)
1500{
1501	struct net_device_context *ndc = netdev_priv(dev);
1502	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1503	const void *nds = &ndc->eth_stats;
1504	const struct netvsc_stats_tx *tx_stats;
1505	const struct netvsc_stats_rx *rx_stats;
1506	struct netvsc_vf_pcpu_stats sum;
1507	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1508	unsigned int start;
1509	u64 packets, bytes;
1510	u64 xdp_drop;
1511	u64 xdp_redirect;
1512	u64 xdp_tx;
1513	u64 xdp_xmit;
1514	int i, j, cpu;
1515
1516	if (!nvdev)
1517		return;
1518
1519	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1520		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1521
1522	netvsc_get_vf_stats(dev, &sum);
1523	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1524		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1525
1526	for (j = 0; j < nvdev->num_chn; j++) {
1527		tx_stats = &nvdev->chan_table[j].tx_stats;
1528
1529		do {
1530			start = u64_stats_fetch_begin(&tx_stats->syncp);
1531			packets = tx_stats->packets;
1532			bytes = tx_stats->bytes;
1533			xdp_xmit = tx_stats->xdp_xmit;
1534		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1535		data[i++] = packets;
1536		data[i++] = bytes;
1537		data[i++] = xdp_xmit;
1538
1539		rx_stats = &nvdev->chan_table[j].rx_stats;
1540		do {
1541			start = u64_stats_fetch_begin(&rx_stats->syncp);
1542			packets = rx_stats->packets;
1543			bytes = rx_stats->bytes;
1544			xdp_drop = rx_stats->xdp_drop;
1545			xdp_redirect = rx_stats->xdp_redirect;
1546			xdp_tx = rx_stats->xdp_tx;
1547		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1548		data[i++] = packets;
1549		data[i++] = bytes;
1550		data[i++] = xdp_drop;
1551		data[i++] = xdp_redirect;
1552		data[i++] = xdp_tx;
1553	}
1554
1555	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1556				  sizeof(struct netvsc_ethtool_pcpu_stats),
1557				  GFP_KERNEL);
1558	if (!pcpu_sum)
1559		return;
1560
1561	netvsc_get_pcpu_stats(dev, pcpu_sum);
1562	for_each_present_cpu(cpu) {
1563		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1564
1565		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1566			data[i++] = *(u64 *)((void *)this_sum
1567					     + pcpu_stats[j].offset);
1568	}
1569	kvfree(pcpu_sum);
1570}
1571
1572static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1573{
1574	struct net_device_context *ndc = netdev_priv(dev);
1575	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1576	u8 *p = data;
1577	int i, cpu;
1578
1579	if (!nvdev)
1580		return;
1581
1582	switch (stringset) {
1583	case ETH_SS_STATS:
1584		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1585			ethtool_sprintf(&p, netvsc_stats[i].name);
1586
1587		for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1588			ethtool_sprintf(&p, vf_stats[i].name);
1589
1590		for (i = 0; i < nvdev->num_chn; i++) {
1591			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1592			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1593			ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1594			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1595			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1596			ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1597			ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1598			ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1599		}
1600
1601		for_each_present_cpu(cpu) {
1602			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1603				ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1604		}
1605
1606		break;
1607	}
1608}
1609
1610static int
1611netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1612			 struct ethtool_rxnfc *info)
1613{
1614	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1615
1616	info->data = RXH_IP_SRC | RXH_IP_DST;
1617
1618	switch (info->flow_type) {
1619	case TCP_V4_FLOW:
1620		if (ndc->l4_hash & HV_TCP4_L4HASH)
1621			info->data |= l4_flag;
1622
1623		break;
1624
1625	case TCP_V6_FLOW:
1626		if (ndc->l4_hash & HV_TCP6_L4HASH)
1627			info->data |= l4_flag;
1628
1629		break;
1630
1631	case UDP_V4_FLOW:
1632		if (ndc->l4_hash & HV_UDP4_L4HASH)
1633			info->data |= l4_flag;
1634
1635		break;
1636
1637	case UDP_V6_FLOW:
1638		if (ndc->l4_hash & HV_UDP6_L4HASH)
1639			info->data |= l4_flag;
1640
1641		break;
1642
1643	case IPV4_FLOW:
1644	case IPV6_FLOW:
1645		break;
1646	default:
1647		info->data = 0;
1648		break;
1649	}
1650
1651	return 0;
1652}
1653
1654static int
1655netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1656		 u32 *rules)
1657{
1658	struct net_device_context *ndc = netdev_priv(dev);
1659	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1660
1661	if (!nvdev)
1662		return -ENODEV;
1663
1664	switch (info->cmd) {
1665	case ETHTOOL_GRXRINGS:
1666		info->data = nvdev->num_chn;
1667		return 0;
1668
1669	case ETHTOOL_GRXFH:
1670		return netvsc_get_rss_hash_opts(ndc, info);
1671	}
1672	return -EOPNOTSUPP;
1673}
1674
1675static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1676				    struct ethtool_rxnfc *info)
1677{
1678	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1679			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1680		switch (info->flow_type) {
1681		case TCP_V4_FLOW:
1682			ndc->l4_hash |= HV_TCP4_L4HASH;
1683			break;
1684
1685		case TCP_V6_FLOW:
1686			ndc->l4_hash |= HV_TCP6_L4HASH;
1687			break;
1688
1689		case UDP_V4_FLOW:
1690			ndc->l4_hash |= HV_UDP4_L4HASH;
1691			break;
1692
1693		case UDP_V6_FLOW:
1694			ndc->l4_hash |= HV_UDP6_L4HASH;
1695			break;
1696
1697		default:
1698			return -EOPNOTSUPP;
1699		}
1700
1701		return 0;
1702	}
1703
1704	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1705		switch (info->flow_type) {
1706		case TCP_V4_FLOW:
1707			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1708			break;
1709
1710		case TCP_V6_FLOW:
1711			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1712			break;
1713
1714		case UDP_V4_FLOW:
1715			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1716			break;
1717
1718		case UDP_V6_FLOW:
1719			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1720			break;
1721
1722		default:
1723			return -EOPNOTSUPP;
1724		}
1725
1726		return 0;
1727	}
1728
1729	return -EOPNOTSUPP;
1730}
1731
1732static int
1733netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1734{
1735	struct net_device_context *ndc = netdev_priv(ndev);
1736
1737	if (info->cmd == ETHTOOL_SRXFH)
1738		return netvsc_set_rss_hash_opts(ndc, info);
1739
1740	return -EOPNOTSUPP;
1741}
1742
1743static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1744{
1745	return NETVSC_HASH_KEYLEN;
1746}
1747
1748static u32 netvsc_rss_indir_size(struct net_device *dev)
1749{
1750	return ITAB_NUM;
1751}
1752
1753static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1754			   u8 *hfunc)
1755{
1756	struct net_device_context *ndc = netdev_priv(dev);
1757	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1758	struct rndis_device *rndis_dev;
1759	int i;
1760
1761	if (!ndev)
1762		return -ENODEV;
1763
1764	if (hfunc)
1765		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1766
1767	rndis_dev = ndev->extension;
1768	if (indir) {
1769		for (i = 0; i < ITAB_NUM; i++)
1770			indir[i] = ndc->rx_table[i];
1771	}
1772
1773	if (key)
1774		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1775
1776	return 0;
1777}
1778
1779static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1780			   const u8 *key, const u8 hfunc)
1781{
1782	struct net_device_context *ndc = netdev_priv(dev);
1783	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1784	struct rndis_device *rndis_dev;
1785	int i;
1786
1787	if (!ndev)
1788		return -ENODEV;
1789
1790	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1791		return -EOPNOTSUPP;
1792
1793	rndis_dev = ndev->extension;
1794	if (indir) {
1795		for (i = 0; i < ITAB_NUM; i++)
1796			if (indir[i] >= ndev->num_chn)
1797				return -EINVAL;
1798
1799		for (i = 0; i < ITAB_NUM; i++)
1800			ndc->rx_table[i] = indir[i];
1801	}
1802
1803	if (!key) {
1804		if (!indir)
1805			return 0;
1806
1807		key = rndis_dev->rss_key;
1808	}
1809
1810	return rndis_filter_set_rss_param(rndis_dev, key);
1811}
1812
1813/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1814 * It does have pre-allocated receive area which is divided into sections.
1815 */
1816static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1817				   struct ethtool_ringparam *ring)
1818{
1819	u32 max_buf_size;
1820
1821	ring->rx_pending = nvdev->recv_section_cnt;
1822	ring->tx_pending = nvdev->send_section_cnt;
1823
1824	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1825		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1826	else
1827		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1828
1829	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1830	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1831		/ nvdev->send_section_size;
1832}
1833
1834static void netvsc_get_ringparam(struct net_device *ndev,
1835				 struct ethtool_ringparam *ring,
1836				 struct kernel_ethtool_ringparam *kernel_ring,
1837				 struct netlink_ext_ack *extack)
1838{
1839	struct net_device_context *ndevctx = netdev_priv(ndev);
1840	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1841
1842	if (!nvdev)
1843		return;
1844
1845	__netvsc_get_ringparam(nvdev, ring);
1846}
1847
1848static int netvsc_set_ringparam(struct net_device *ndev,
1849				struct ethtool_ringparam *ring,
1850				struct kernel_ethtool_ringparam *kernel_ring,
1851				struct netlink_ext_ack *extack)
1852{
1853	struct net_device_context *ndevctx = netdev_priv(ndev);
1854	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1855	struct netvsc_device_info *device_info;
1856	struct ethtool_ringparam orig;
1857	u32 new_tx, new_rx;
1858	int ret = 0;
1859
1860	if (!nvdev || nvdev->destroy)
1861		return -ENODEV;
1862
1863	memset(&orig, 0, sizeof(orig));
1864	__netvsc_get_ringparam(nvdev, &orig);
1865
1866	new_tx = clamp_t(u32, ring->tx_pending,
1867			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1868	new_rx = clamp_t(u32, ring->rx_pending,
1869			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1870
1871	if (new_tx == orig.tx_pending &&
1872	    new_rx == orig.rx_pending)
1873		return 0;	 /* no change */
1874
1875	device_info = netvsc_devinfo_get(nvdev);
1876
1877	if (!device_info)
1878		return -ENOMEM;
1879
1880	device_info->send_sections = new_tx;
1881	device_info->recv_sections = new_rx;
1882
1883	ret = netvsc_detach(ndev, nvdev);
1884	if (ret)
1885		goto out;
1886
1887	ret = netvsc_attach(ndev, device_info);
1888	if (ret) {
1889		device_info->send_sections = orig.tx_pending;
1890		device_info->recv_sections = orig.rx_pending;
1891
1892		if (netvsc_attach(ndev, device_info))
1893			netdev_err(ndev, "restoring ringparam failed");
1894	}
1895
1896out:
1897	netvsc_devinfo_put(device_info);
1898	return ret;
1899}
1900
1901static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1902					     netdev_features_t features)
1903{
1904	struct net_device_context *ndevctx = netdev_priv(ndev);
1905	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1906
1907	if (!nvdev || nvdev->destroy)
1908		return features;
1909
1910	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1911		features ^= NETIF_F_LRO;
1912		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1913	}
1914
1915	return features;
1916}
1917
1918static int netvsc_set_features(struct net_device *ndev,
1919			       netdev_features_t features)
1920{
1921	netdev_features_t change = features ^ ndev->features;
1922	struct net_device_context *ndevctx = netdev_priv(ndev);
1923	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1924	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1925	struct ndis_offload_params offloads;
1926	int ret = 0;
1927
1928	if (!nvdev || nvdev->destroy)
1929		return -ENODEV;
1930
1931	if (!(change & NETIF_F_LRO))
1932		goto syncvf;
1933
1934	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1935
1936	if (features & NETIF_F_LRO) {
1937		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1938		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1939	} else {
1940		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1941		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1942	}
1943
1944	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1945
1946	if (ret) {
1947		features ^= NETIF_F_LRO;
1948		ndev->features = features;
1949	}
1950
1951syncvf:
1952	if (!vf_netdev)
1953		return ret;
1954
1955	vf_netdev->wanted_features = features;
1956	netdev_update_features(vf_netdev);
1957
1958	return ret;
1959}
1960
1961static int netvsc_get_regs_len(struct net_device *netdev)
1962{
1963	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1964}
1965
1966static void netvsc_get_regs(struct net_device *netdev,
1967			    struct ethtool_regs *regs, void *p)
1968{
1969	struct net_device_context *ndc = netdev_priv(netdev);
1970	u32 *regs_buff = p;
1971
1972	/* increase the version, if buffer format is changed. */
1973	regs->version = 1;
1974
1975	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1976}
1977
1978static u32 netvsc_get_msglevel(struct net_device *ndev)
1979{
1980	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1981
1982	return ndev_ctx->msg_enable;
1983}
1984
1985static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1986{
1987	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1988
1989	ndev_ctx->msg_enable = val;
1990}
1991
1992static const struct ethtool_ops ethtool_ops = {
1993	.get_drvinfo	= netvsc_get_drvinfo,
1994	.get_regs_len	= netvsc_get_regs_len,
1995	.get_regs	= netvsc_get_regs,
1996	.get_msglevel	= netvsc_get_msglevel,
1997	.set_msglevel	= netvsc_set_msglevel,
1998	.get_link	= ethtool_op_get_link,
1999	.get_ethtool_stats = netvsc_get_ethtool_stats,
2000	.get_sset_count = netvsc_get_sset_count,
2001	.get_strings	= netvsc_get_strings,
2002	.get_channels   = netvsc_get_channels,
2003	.set_channels   = netvsc_set_channels,
2004	.get_ts_info	= ethtool_op_get_ts_info,
2005	.get_rxnfc	= netvsc_get_rxnfc,
2006	.set_rxnfc	= netvsc_set_rxnfc,
2007	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
2008	.get_rxfh_indir_size = netvsc_rss_indir_size,
2009	.get_rxfh	= netvsc_get_rxfh,
2010	.set_rxfh	= netvsc_set_rxfh,
2011	.get_link_ksettings = netvsc_get_link_ksettings,
2012	.set_link_ksettings = netvsc_set_link_ksettings,
2013	.get_ringparam	= netvsc_get_ringparam,
2014	.set_ringparam	= netvsc_set_ringparam,
2015};
2016
2017static const struct net_device_ops device_ops = {
2018	.ndo_open =			netvsc_open,
2019	.ndo_stop =			netvsc_close,
2020	.ndo_start_xmit =		netvsc_start_xmit,
2021	.ndo_change_rx_flags =		netvsc_change_rx_flags,
2022	.ndo_set_rx_mode =		netvsc_set_rx_mode,
2023	.ndo_fix_features =		netvsc_fix_features,
2024	.ndo_set_features =		netvsc_set_features,
2025	.ndo_change_mtu =		netvsc_change_mtu,
2026	.ndo_validate_addr =		eth_validate_addr,
2027	.ndo_set_mac_address =		netvsc_set_mac_addr,
2028	.ndo_select_queue =		netvsc_select_queue,
2029	.ndo_get_stats64 =		netvsc_get_stats64,
2030	.ndo_bpf =			netvsc_bpf,
2031	.ndo_xdp_xmit =			netvsc_ndoxdp_xmit,
2032};
2033
2034/*
2035 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2036 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2037 * present send GARP packet to network peers with netif_notify_peers().
 
 
 
2038 */
2039static void netvsc_link_change(struct work_struct *w)
2040{
2041	struct net_device_context *ndev_ctx =
2042		container_of(w, struct net_device_context, dwork.work);
2043	struct hv_device *device_obj = ndev_ctx->device_ctx;
2044	struct net_device *net = hv_get_drvdata(device_obj);
2045	unsigned long flags, next_reconfig, delay;
2046	struct netvsc_reconfig *event = NULL;
2047	struct netvsc_device *net_device;
2048	struct rndis_device *rdev;
2049	bool reschedule = false;
2050
2051	/* if changes are happening, comeback later */
2052	if (!rtnl_trylock()) {
2053		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2054		return;
2055	}
2056
2057	net_device = rtnl_dereference(ndev_ctx->nvdev);
2058	if (!net_device)
2059		goto out_unlock;
2060
 
 
2061	rdev = net_device->extension;
 
2062
2063	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2064	if (time_is_after_jiffies(next_reconfig)) {
2065		/* link_watch only sends one notification with current state
2066		 * per second, avoid doing reconfig more frequently. Handle
2067		 * wrap around.
2068		 */
2069		delay = next_reconfig - jiffies;
2070		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2071		schedule_delayed_work(&ndev_ctx->dwork, delay);
2072		goto out_unlock;
2073	}
2074	ndev_ctx->last_reconfig = jiffies;
2075
2076	spin_lock_irqsave(&ndev_ctx->lock, flags);
2077	if (!list_empty(&ndev_ctx->reconfig_events)) {
2078		event = list_first_entry(&ndev_ctx->reconfig_events,
2079					 struct netvsc_reconfig, list);
2080		list_del(&event->list);
2081		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2082	}
2083	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2084
2085	if (!event)
2086		goto out_unlock;
2087
2088	switch (event->event) {
2089		/* Only the following events are possible due to the check in
2090		 * netvsc_linkstatus_callback()
2091		 */
2092	case RNDIS_STATUS_MEDIA_CONNECT:
2093		if (rdev->link_state) {
2094			rdev->link_state = false;
2095			netif_carrier_on(net);
2096			netvsc_tx_enable(net_device, net);
2097		} else {
2098			__netdev_notify_peers(net);
2099		}
2100		kfree(event);
2101		break;
2102	case RNDIS_STATUS_MEDIA_DISCONNECT:
2103		if (!rdev->link_state) {
2104			rdev->link_state = true;
2105			netif_carrier_off(net);
2106			netvsc_tx_disable(net_device, net);
2107		}
2108		kfree(event);
2109		break;
2110	case RNDIS_STATUS_NETWORK_CHANGE:
2111		/* Only makes sense if carrier is present */
2112		if (!rdev->link_state) {
2113			rdev->link_state = true;
2114			netif_carrier_off(net);
2115			netvsc_tx_disable(net_device, net);
2116			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2117			spin_lock_irqsave(&ndev_ctx->lock, flags);
2118			list_add(&event->list, &ndev_ctx->reconfig_events);
2119			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2120			reschedule = true;
2121		}
2122		break;
2123	}
2124
2125	rtnl_unlock();
2126
2127	/* link_watch only sends one notification with current state per
2128	 * second, handle next reconfig event in 2 seconds.
2129	 */
2130	if (reschedule)
2131		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2132
2133	return;
2134
2135out_unlock:
2136	rtnl_unlock();
2137}
2138
2139static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2140{
2141	struct net_device_context *net_device_ctx;
2142	struct net_device *dev;
2143
2144	dev = netdev_master_upper_dev_get(vf_netdev);
2145	if (!dev || dev->netdev_ops != &device_ops)
2146		return NULL;	/* not a netvsc device */
2147
2148	net_device_ctx = netdev_priv(dev);
2149	if (!rtnl_dereference(net_device_ctx->nvdev))
2150		return NULL;	/* device is removed */
2151
2152	return dev;
2153}
2154
2155/* Called when VF is injecting data into network stack.
2156 * Change the associated network device from VF to netvsc.
2157 * note: already called with rcu_read_lock
2158 */
2159static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2160{
2161	struct sk_buff *skb = *pskb;
2162	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2163	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2164	struct netvsc_vf_pcpu_stats *pcpu_stats
2165		 = this_cpu_ptr(ndev_ctx->vf_stats);
2166
2167	skb = skb_share_check(skb, GFP_ATOMIC);
2168	if (unlikely(!skb))
2169		return RX_HANDLER_CONSUMED;
2170
2171	*pskb = skb;
2172
2173	skb->dev = ndev;
2174
2175	u64_stats_update_begin(&pcpu_stats->syncp);
2176	pcpu_stats->rx_packets++;
2177	pcpu_stats->rx_bytes += skb->len;
2178	u64_stats_update_end(&pcpu_stats->syncp);
2179
2180	return RX_HANDLER_ANOTHER;
2181}
2182
2183static int netvsc_vf_join(struct net_device *vf_netdev,
2184			  struct net_device *ndev)
2185{
2186	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2187	int ret;
2188
2189	ret = netdev_rx_handler_register(vf_netdev,
2190					 netvsc_vf_handle_frame, ndev);
2191	if (ret != 0) {
2192		netdev_err(vf_netdev,
2193			   "can not register netvsc VF receive handler (err = %d)\n",
2194			   ret);
2195		goto rx_handler_failed;
2196	}
2197
2198	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2199					   NULL, NULL, NULL);
2200	if (ret != 0) {
2201		netdev_err(vf_netdev,
2202			   "can not set master device %s (err = %d)\n",
2203			   ndev->name, ret);
2204		goto upper_link_failed;
2205	}
2206
2207	/* set slave flag before open to prevent IPv6 addrconf */
2208	vf_netdev->flags |= IFF_SLAVE;
2209
2210	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2211
2212	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2213
2214	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2215	return 0;
2216
2217upper_link_failed:
2218	netdev_rx_handler_unregister(vf_netdev);
2219rx_handler_failed:
2220	return ret;
2221}
2222
2223static void __netvsc_vf_setup(struct net_device *ndev,
2224			      struct net_device *vf_netdev)
2225{
2226	int ret;
2227
2228	/* Align MTU of VF with master */
2229	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2230	if (ret)
2231		netdev_warn(vf_netdev,
2232			    "unable to change mtu to %u\n", ndev->mtu);
2233
2234	/* set multicast etc flags on VF */
2235	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2236
2237	/* sync address list from ndev to VF */
2238	netif_addr_lock_bh(ndev);
2239	dev_uc_sync(vf_netdev, ndev);
2240	dev_mc_sync(vf_netdev, ndev);
2241	netif_addr_unlock_bh(ndev);
2242
2243	if (netif_running(ndev)) {
2244		ret = dev_open(vf_netdev, NULL);
2245		if (ret)
2246			netdev_warn(vf_netdev,
2247				    "unable to open: %d\n", ret);
2248	}
2249}
2250
2251/* Setup VF as slave of the synthetic device.
2252 * Runs in workqueue to avoid recursion in netlink callbacks.
2253 */
2254static void netvsc_vf_setup(struct work_struct *w)
2255{
2256	struct net_device_context *ndev_ctx
2257		= container_of(w, struct net_device_context, vf_takeover.work);
2258	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2259	struct net_device *vf_netdev;
2260
2261	if (!rtnl_trylock()) {
2262		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2263		return;
2264	}
2265
2266	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2267	if (vf_netdev)
2268		__netvsc_vf_setup(ndev, vf_netdev);
2269
2270	rtnl_unlock();
2271}
2272
2273/* Find netvsc by VF serial number.
2274 * The PCI hyperv controller records the serial number as the slot kobj name.
2275 */
2276static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2277{
2278	struct device *parent = vf_netdev->dev.parent;
2279	struct net_device_context *ndev_ctx;
2280	struct net_device *ndev;
2281	struct pci_dev *pdev;
2282	u32 serial;
2283
2284	if (!parent || !dev_is_pci(parent))
2285		return NULL; /* not a PCI device */
2286
2287	pdev = to_pci_dev(parent);
2288	if (!pdev->slot) {
2289		netdev_notice(vf_netdev, "no PCI slot information\n");
2290		return NULL;
2291	}
2292
2293	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2294		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2295			      pci_slot_name(pdev->slot));
2296		return NULL;
2297	}
2298
2299	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2300		if (!ndev_ctx->vf_alloc)
2301			continue;
2302
2303		if (ndev_ctx->vf_serial != serial)
2304			continue;
2305
2306		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2307		if (ndev->addr_len != vf_netdev->addr_len ||
2308		    memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2309			   ndev->addr_len) != 0)
2310			continue;
2311
2312		return ndev;
2313
2314	}
2315
2316	/* Fallback path to check synthetic vf with
2317	 * help of mac addr
2318	 */
2319	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2320		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2321		if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr)) {
2322			netdev_notice(vf_netdev,
2323				      "falling back to mac addr based matching\n");
2324			return ndev;
2325		}
2326	}
2327
2328	netdev_notice(vf_netdev,
2329		      "no netdev found for vf serial:%u\n", serial);
2330	return NULL;
2331}
2332
2333static int netvsc_register_vf(struct net_device *vf_netdev)
2334{
2335	struct net_device_context *net_device_ctx;
2336	struct netvsc_device *netvsc_dev;
2337	struct bpf_prog *prog;
2338	struct net_device *ndev;
2339	int ret;
2340
2341	if (vf_netdev->addr_len != ETH_ALEN)
2342		return NOTIFY_DONE;
2343
2344	ndev = get_netvsc_byslot(vf_netdev);
2345	if (!ndev)
2346		return NOTIFY_DONE;
2347
2348	net_device_ctx = netdev_priv(ndev);
2349	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2350	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2351		return NOTIFY_DONE;
2352
2353	/* if synthetic interface is a different namespace,
2354	 * then move the VF to that namespace; join will be
2355	 * done again in that context.
2356	 */
2357	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2358		ret = dev_change_net_namespace(vf_netdev,
2359					       dev_net(ndev), "eth%d");
2360		if (ret)
2361			netdev_err(vf_netdev,
2362				   "could not move to same namespace as %s: %d\n",
2363				   ndev->name, ret);
2364		else
2365			netdev_info(vf_netdev,
2366				    "VF moved to namespace with: %s\n",
2367				    ndev->name);
2368		return NOTIFY_DONE;
2369	}
2370
2371	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2372
2373	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2374		return NOTIFY_DONE;
2375
2376	dev_hold(vf_netdev);
2377	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2378
2379	if (ndev->needed_headroom < vf_netdev->needed_headroom)
2380		ndev->needed_headroom = vf_netdev->needed_headroom;
2381
2382	vf_netdev->wanted_features = ndev->features;
2383	netdev_update_features(vf_netdev);
2384
2385	prog = netvsc_xdp_get(netvsc_dev);
2386	netvsc_vf_setxdp(vf_netdev, prog);
2387
2388	return NOTIFY_OK;
2389}
2390
2391/* Change the data path when VF UP/DOWN/CHANGE are detected.
2392 *
2393 * Typically a UP or DOWN event is followed by a CHANGE event, so
2394 * net_device_ctx->data_path_is_vf is used to cache the current data path
2395 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2396 * message.
2397 *
2398 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2399 * interface, there is only the CHANGE event and no UP or DOWN event.
2400 */
2401static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2402{
2403	struct net_device_context *net_device_ctx;
2404	struct netvsc_device *netvsc_dev;
2405	struct net_device *ndev;
2406	bool vf_is_up = false;
2407	int ret;
2408
2409	if (event != NETDEV_GOING_DOWN)
2410		vf_is_up = netif_running(vf_netdev);
2411
2412	ndev = get_netvsc_byref(vf_netdev);
2413	if (!ndev)
2414		return NOTIFY_DONE;
2415
2416	net_device_ctx = netdev_priv(ndev);
2417	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2418	if (!netvsc_dev)
2419		return NOTIFY_DONE;
2420
2421	if (net_device_ctx->data_path_is_vf == vf_is_up)
2422		return NOTIFY_OK;
2423
2424	if (vf_is_up && !net_device_ctx->vf_alloc) {
2425		netdev_info(ndev, "Waiting for the VF association from host\n");
2426		wait_for_completion(&net_device_ctx->vf_add);
2427	}
2428
2429	ret = netvsc_switch_datapath(ndev, vf_is_up);
2430
2431	if (ret) {
2432		netdev_err(ndev,
2433			   "Data path failed to switch %s VF: %s, err: %d\n",
2434			   vf_is_up ? "to" : "from", vf_netdev->name, ret);
2435		return NOTIFY_DONE;
2436	} else {
2437		netdev_info(ndev, "Data path switched %s VF: %s\n",
2438			    vf_is_up ? "to" : "from", vf_netdev->name);
2439	}
2440
2441	return NOTIFY_OK;
2442}
2443
2444static int netvsc_unregister_vf(struct net_device *vf_netdev)
2445{
2446	struct net_device *ndev;
2447	struct net_device_context *net_device_ctx;
2448
2449	ndev = get_netvsc_byref(vf_netdev);
2450	if (!ndev)
2451		return NOTIFY_DONE;
2452
2453	net_device_ctx = netdev_priv(ndev);
2454	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2455
2456	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2457
2458	netvsc_vf_setxdp(vf_netdev, NULL);
2459
2460	reinit_completion(&net_device_ctx->vf_add);
2461	netdev_rx_handler_unregister(vf_netdev);
2462	netdev_upper_dev_unlink(vf_netdev, ndev);
2463	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2464	dev_put(vf_netdev);
2465
2466	ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2467
2468	return NOTIFY_OK;
2469}
2470
2471static int netvsc_probe(struct hv_device *dev,
2472			const struct hv_vmbus_device_id *dev_id)
2473{
2474	struct net_device *net = NULL;
2475	struct net_device_context *net_device_ctx;
2476	struct netvsc_device_info *device_info = NULL;
2477	struct netvsc_device *nvdev;
2478	int ret = -ENOMEM;
2479
2480	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2481				VRSS_CHANNEL_MAX);
2482	if (!net)
2483		goto no_net;
2484
2485	netif_carrier_off(net);
2486
2487	netvsc_init_settings(net);
2488
2489	net_device_ctx = netdev_priv(net);
2490	net_device_ctx->device_ctx = dev;
2491	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2492	if (netif_msg_probe(net_device_ctx))
2493		netdev_dbg(net, "netvsc msg_enable: %d\n",
2494			   net_device_ctx->msg_enable);
2495
2496	hv_set_drvdata(dev, net);
2497
2498	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2499
2500	init_completion(&net_device_ctx->vf_add);
2501	spin_lock_init(&net_device_ctx->lock);
2502	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2503	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2504
2505	net_device_ctx->vf_stats
2506		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2507	if (!net_device_ctx->vf_stats)
2508		goto no_stats;
2509
2510	net->netdev_ops = &device_ops;
2511	net->ethtool_ops = &ethtool_ops;
2512	SET_NETDEV_DEV(net, &dev->device);
2513	dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2514
2515	/* We always need headroom for rndis header */
2516	net->needed_headroom = RNDIS_AND_PPI_SIZE;
 
 
2517
2518	/* Initialize the number of queues to be 1, we may change it if more
2519	 * channels are offered later.
2520	 */
2521	netif_set_real_num_tx_queues(net, 1);
2522	netif_set_real_num_rx_queues(net, 1);
2523
2524	/* Notify the netvsc driver of the new device */
2525	device_info = netvsc_devinfo_get(NULL);
2526
2527	if (!device_info) {
2528		ret = -ENOMEM;
2529		goto devinfo_failed;
2530	}
2531
2532	nvdev = rndis_filter_device_add(dev, device_info);
2533	if (IS_ERR(nvdev)) {
2534		ret = PTR_ERR(nvdev);
2535		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2536		goto rndis_failed;
 
 
2537	}
 
2538
2539	eth_hw_addr_set(net, device_info->mac_adr);
2540
2541	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2542	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2543	 * all subchannels to show up, but that may not happen because
2544	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2545	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2546	 * the device lock, so all the subchannels can't be processed --
2547	 * finally netvsc_subchan_work() hangs forever.
2548	 */
2549	rtnl_lock();
2550
2551	if (nvdev->num_chn > 1)
2552		schedule_work(&nvdev->subchan_work);
2553
2554	/* hw_features computed in rndis_netdev_set_hwcaps() */
2555	net->features = net->hw_features |
2556		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2557		NETIF_F_HW_VLAN_CTAG_RX;
2558	net->vlan_features = net->features;
2559
2560	netdev_lockdep_set_classes(net);
2561
2562	/* MTU range: 68 - 1500 or 65521 */
2563	net->min_mtu = NETVSC_MTU_MIN;
2564	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2565		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2566	else
2567		net->max_mtu = ETH_DATA_LEN;
2568
2569	nvdev->tx_disable = false;
2570
2571	ret = register_netdevice(net);
2572	if (ret != 0) {
2573		pr_err("Unable to register netdev.\n");
2574		goto register_failed;
 
 
 
2575	}
2576
2577	list_add(&net_device_ctx->list, &netvsc_dev_list);
2578	rtnl_unlock();
2579
2580	netvsc_devinfo_put(device_info);
2581	return 0;
2582
2583register_failed:
2584	rtnl_unlock();
2585	rndis_filter_device_remove(dev, nvdev);
2586rndis_failed:
2587	netvsc_devinfo_put(device_info);
2588devinfo_failed:
2589	free_percpu(net_device_ctx->vf_stats);
2590no_stats:
2591	hv_set_drvdata(dev, NULL);
2592	free_netdev(net);
2593no_net:
2594	return ret;
2595}
2596
2597static int netvsc_remove(struct hv_device *dev)
2598{
 
2599	struct net_device_context *ndev_ctx;
2600	struct net_device *vf_netdev, *net;
2601	struct netvsc_device *nvdev;
 
 
2602
2603	net = hv_get_drvdata(dev);
2604	if (net == NULL) {
2605		dev_err(&dev->device, "No net device to remove\n");
2606		return 0;
2607	}
2608
 
 
2609	ndev_ctx = netdev_priv(net);
 
 
2610
2611	cancel_delayed_work_sync(&ndev_ctx->dwork);
 
2612
2613	rtnl_lock();
2614	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2615	if (nvdev) {
2616		cancel_work_sync(&nvdev->subchan_work);
2617		netvsc_xdp_set(net, NULL, NULL, nvdev);
2618	}
2619
2620	/*
2621	 * Call to the vsc driver to let it know that the device is being
2622	 * removed. Also blocks mtu and channel changes.
2623	 */
2624	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2625	if (vf_netdev)
2626		netvsc_unregister_vf(vf_netdev);
2627
2628	if (nvdev)
2629		rndis_filter_device_remove(dev, nvdev);
2630
2631	unregister_netdevice(net);
2632	list_del(&ndev_ctx->list);
2633
2634	rtnl_unlock();
2635
2636	hv_set_drvdata(dev, NULL);
2637
2638	free_percpu(ndev_ctx->vf_stats);
2639	free_netdev(net);
2640	return 0;
2641}
2642
2643static int netvsc_suspend(struct hv_device *dev)
2644{
2645	struct net_device_context *ndev_ctx;
2646	struct netvsc_device *nvdev;
2647	struct net_device *net;
2648	int ret;
2649
2650	net = hv_get_drvdata(dev);
2651
2652	ndev_ctx = netdev_priv(net);
2653	cancel_delayed_work_sync(&ndev_ctx->dwork);
2654
2655	rtnl_lock();
2656
2657	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2658	if (nvdev == NULL) {
2659		ret = -ENODEV;
2660		goto out;
2661	}
2662
2663	/* Save the current config info */
2664	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2665	if (!ndev_ctx->saved_netvsc_dev_info) {
2666		ret = -ENOMEM;
2667		goto out;
2668	}
2669	ret = netvsc_detach(net, nvdev);
2670out:
2671	rtnl_unlock();
2672
2673	return ret;
2674}
2675
2676static int netvsc_resume(struct hv_device *dev)
2677{
2678	struct net_device *net = hv_get_drvdata(dev);
2679	struct net_device_context *net_device_ctx;
2680	struct netvsc_device_info *device_info;
2681	int ret;
2682
2683	rtnl_lock();
2684
2685	net_device_ctx = netdev_priv(net);
2686
2687	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2688	 * channel. Later netvsc_netdev_event() will switch the data path to
2689	 * the VF upon the UP or CHANGE event.
2690	 */
2691	net_device_ctx->data_path_is_vf = false;
2692	device_info = net_device_ctx->saved_netvsc_dev_info;
2693
2694	ret = netvsc_attach(net, device_info);
2695
2696	netvsc_devinfo_put(device_info);
2697	net_device_ctx->saved_netvsc_dev_info = NULL;
2698
2699	rtnl_unlock();
2700
2701	return ret;
2702}
2703static const struct hv_vmbus_device_id id_table[] = {
2704	/* Network guid */
2705	{ HV_NIC_GUID, },
2706	{ },
2707};
2708
2709MODULE_DEVICE_TABLE(vmbus, id_table);
2710
2711/* The one and only one */
2712static struct  hv_driver netvsc_drv = {
2713	.name = KBUILD_MODNAME,
2714	.id_table = id_table,
2715	.probe = netvsc_probe,
2716	.remove = netvsc_remove,
2717	.suspend = netvsc_suspend,
2718	.resume = netvsc_resume,
2719	.driver = {
2720		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2721	},
2722};
2723
2724/*
2725 * On Hyper-V, every VF interface is matched with a corresponding
2726 * synthetic interface. The synthetic interface is presented first
2727 * to the guest. When the corresponding VF instance is registered,
2728 * we will take care of switching the data path.
2729 */
2730static int netvsc_netdev_event(struct notifier_block *this,
2731			       unsigned long event, void *ptr)
2732{
2733	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2734
2735	/* Skip our own events */
2736	if (event_dev->netdev_ops == &device_ops)
2737		return NOTIFY_DONE;
2738
2739	/* Avoid non-Ethernet type devices */
2740	if (event_dev->type != ARPHRD_ETHER)
2741		return NOTIFY_DONE;
2742
2743	/* Avoid Vlan dev with same MAC registering as VF */
2744	if (is_vlan_dev(event_dev))
2745		return NOTIFY_DONE;
2746
2747	/* Avoid Bonding master dev with same MAC registering as VF */
2748	if (netif_is_bond_master(event_dev))
2749		return NOTIFY_DONE;
2750
2751	switch (event) {
2752	case NETDEV_REGISTER:
2753		return netvsc_register_vf(event_dev);
2754	case NETDEV_UNREGISTER:
2755		return netvsc_unregister_vf(event_dev);
2756	case NETDEV_UP:
2757	case NETDEV_DOWN:
2758	case NETDEV_CHANGE:
2759	case NETDEV_GOING_DOWN:
2760		return netvsc_vf_changed(event_dev, event);
2761	default:
2762		return NOTIFY_DONE;
2763	}
2764}
2765
2766static struct notifier_block netvsc_netdev_notifier = {
2767	.notifier_call = netvsc_netdev_event,
2768};
2769
2770static void __exit netvsc_drv_exit(void)
2771{
2772	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2773	vmbus_driver_unregister(&netvsc_drv);
2774}
2775
2776static int __init netvsc_drv_init(void)
2777{
2778	int ret;
2779
2780	if (ring_size < RING_SIZE_MIN) {
2781		ring_size = RING_SIZE_MIN;
2782		pr_info("Increased ring_size to %u (min allowed)\n",
2783			ring_size);
2784	}
2785	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2786
2787	ret = vmbus_driver_register(&netvsc_drv);
2788	if (ret)
2789		return ret;
2790
2791	register_netdevice_notifier(&netvsc_netdev_notifier);
2792	return 0;
2793}
2794
2795MODULE_LICENSE("GPL");
2796MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2797
2798module_init(netvsc_drv_init);
2799module_exit(netvsc_drv_exit);