Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Copyright (c) 2009, Microsoft Corporation.
  3 *
  4 * This program is free software; you can redistribute it and/or modify it
  5 * under the terms and conditions of the GNU General Public License,
  6 * version 2, as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope it will be useful, but WITHOUT
  9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 11 * more details.
 12 *
 13 * You should have received a copy of the GNU General Public License along with
 14 * this program; if not, see <http://www.gnu.org/licenses/>.
 15 *
 16 * Authors:
 17 *   Haiyang Zhang <haiyangz@microsoft.com>
 18 *   Hank Janssen  <hjanssen@microsoft.com>
 19 */
 20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 21
 22#include <linux/init.h>
 23#include <linux/atomic.h>
 24#include <linux/module.h>
 25#include <linux/highmem.h>
 26#include <linux/device.h>
 27#include <linux/io.h>
 28#include <linux/delay.h>
 29#include <linux/netdevice.h>
 30#include <linux/inetdevice.h>
 31#include <linux/etherdevice.h>
 32#include <linux/skbuff.h>
 33#include <linux/if_vlan.h>
 34#include <linux/in.h>
 35#include <linux/slab.h>
 
 
 
 
 36#include <net/arp.h>
 37#include <net/route.h>
 38#include <net/sock.h>
 39#include <net/pkt_sched.h>
 
 
 40
 41#include "hyperv_net.h"
 42
 43struct net_device_context {
 44	/* point back to our device context */
 45	struct hv_device *device_ctx;
 46	struct delayed_work dwork;
 47	struct work_struct work;
 48};
 
 49
 50#define RING_SIZE_MIN 64
 51static int ring_size = 128;
 52module_param(ring_size, int, S_IRUGO);
 53MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
 
 
 
 
 
 
 
 
 
 
 
 54
 55static void do_set_multicast(struct work_struct *w)
 56{
 57	struct net_device_context *ndevctx =
 58		container_of(w, struct net_device_context, work);
 59	struct netvsc_device *nvdev;
 60	struct rndis_device *rdev;
 61
 62	nvdev = hv_get_drvdata(ndevctx->device_ctx);
 63	if (nvdev == NULL || nvdev->ndev == NULL)
 64		return;
 65
 66	rdev = nvdev->extension;
 67	if (rdev == NULL)
 68		return;
 
 69
 70	if (nvdev->ndev->flags & IFF_PROMISC)
 71		rndis_filter_set_packet_filter(rdev,
 72			NDIS_PACKET_TYPE_PROMISCUOUS);
 73	else
 74		rndis_filter_set_packet_filter(rdev,
 75			NDIS_PACKET_TYPE_BROADCAST |
 76			NDIS_PACKET_TYPE_ALL_MULTICAST |
 77			NDIS_PACKET_TYPE_DIRECTED);
 78}
 79
 80static void netvsc_set_multicast_list(struct net_device *net)
 81{
 82	struct net_device_context *net_device_ctx = netdev_priv(net);
 
 
 83
 84	schedule_work(&net_device_ctx->work);
 
 
 
 
 
 
 
 
 
 
 85}
 86
 87static int netvsc_open(struct net_device *net)
 88{
 89	struct net_device_context *net_device_ctx = netdev_priv(net);
 90	struct hv_device *device_obj = net_device_ctx->device_ctx;
 91	struct netvsc_device *nvdev;
 92	struct rndis_device *rdev;
 93	int ret = 0;
 94
 95	netif_carrier_off(net);
 96
 97	/* Open up the device */
 98	ret = rndis_filter_open(device_obj);
 99	if (ret != 0) {
100		netdev_err(net, "unable to open device (ret %d).\n", ret);
101		return ret;
102	}
103
104	netif_start_queue(net);
105
106	nvdev = hv_get_drvdata(device_obj);
107	rdev = nvdev->extension;
108	if (!rdev->link_state)
109		netif_carrier_on(net);
110
111	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112}
113
114static int netvsc_close(struct net_device *net)
115{
116	struct net_device_context *net_device_ctx = netdev_priv(net);
117	struct hv_device *device_obj = net_device_ctx->device_ctx;
 
 
118	int ret;
119
120	netif_tx_disable(net);
121
122	/* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
123	cancel_work_sync(&net_device_ctx->work);
124	ret = rndis_filter_close(device_obj);
125	if (ret != 0)
 
 
126		netdev_err(net, "unable to close device (ret %d).\n", ret);
 
 
 
 
 
 
 
 
 
127
128	return ret;
129}
130
131static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
132				int pkt_type)
133{
134	struct rndis_packet *rndis_pkt;
135	struct rndis_per_packet_info *ppi;
136
137	rndis_pkt = &msg->msg.pkt;
138	rndis_pkt->data_offset += ppi_size;
139
140	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
141		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
142
143	ppi->size = ppi_size;
144	ppi->type = pkt_type;
145	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
146
147	rndis_pkt->per_pkt_info_len += ppi_size;
148
149	return ppi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150}
151
152static void netvsc_xmit_completion(void *context)
 
 
153{
154	struct hv_netvsc_packet *packet = (struct hv_netvsc_packet *)context;
155	struct sk_buff *skb = (struct sk_buff *)
156		(unsigned long)packet->completion.send.send_completion_tid;
157
158	kfree(packet);
 
 
 
159
160	if (skb)
161		dev_kfree_skb_any(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162}
163
164static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
165			struct hv_page_buffer *pb)
166{
167	int j = 0;
168
169	/* Deal with compund pages by ignoring unused part
170	 * of the page.
171	 */
172	page += (offset >> PAGE_SHIFT);
173	offset &= ~PAGE_MASK;
174
175	while (len > 0) {
176		unsigned long bytes;
177
178		bytes = PAGE_SIZE - offset;
179		if (bytes > len)
180			bytes = len;
181		pb[j].pfn = page_to_pfn(page);
182		pb[j].offset = offset;
183		pb[j].len = bytes;
184
185		offset += bytes;
186		len -= bytes;
187
188		if (offset == PAGE_SIZE && len) {
189			page++;
190			offset = 0;
191			j++;
192		}
193	}
194
195	return j + 1;
196}
197
198static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 
199			   struct hv_page_buffer *pb)
200{
201	u32 slots_used = 0;
202	char *data = skb->data;
203	int frags = skb_shinfo(skb)->nr_frags;
204	int i;
205
206	/* The packet is laid out thus:
207	 * 1. hdr
208	 * 2. skb linear data
209	 * 3. skb fragment data
210	 */
211	if (hdr != NULL)
212		slots_used += fill_pg_buf(virt_to_page(hdr),
213					offset_in_page(hdr),
214					len, &pb[slots_used]);
 
 
215
216	slots_used += fill_pg_buf(virt_to_page(data),
217				offset_in_page(data),
218				skb_headlen(skb), &pb[slots_used]);
219
220	for (i = 0; i < frags; i++) {
221		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
222
223		slots_used += fill_pg_buf(skb_frag_page(frag),
224					frag->page_offset,
225					skb_frag_size(frag), &pb[slots_used]);
226	}
227	return slots_used;
228}
229
230static int count_skb_frag_slots(struct sk_buff *skb)
231{
232	int i, frags = skb_shinfo(skb)->nr_frags;
233	int pages = 0;
234
235	for (i = 0; i < frags; i++) {
236		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
237		unsigned long size = skb_frag_size(frag);
238		unsigned long offset = frag->page_offset;
239
240		/* Skip unused frames from start of page */
241		offset &= ~PAGE_MASK;
242		pages += PFN_UP(offset + size);
243	}
244	return pages;
245}
246
247static int netvsc_get_slots(struct sk_buff *skb)
248{
249	char *data = skb->data;
250	unsigned int offset = offset_in_page(data);
251	unsigned int len = skb_headlen(skb);
252	int slots;
253	int frag_slots;
254
255	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
256	frag_slots = count_skb_frag_slots(skb);
257	return slots + frag_slots;
258}
259
260static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
261{
262	u32 ret_val = TRANSPORT_INFO_NOT_IP;
 
 
 
 
 
 
 
 
263
264	if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
265		(eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
266		goto not_ip;
 
267	}
268
269	*trans_off = skb_transport_offset(skb);
 
 
 
 
 
 
 
 
 
270
271	if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
272		struct iphdr *iphdr = ip_hdr(skb);
273
274		if (iphdr->protocol == IPPROTO_TCP)
275			ret_val = TRANSPORT_INFO_IPV4_TCP;
276		else if (iphdr->protocol == IPPROTO_UDP)
277			ret_val = TRANSPORT_INFO_IPV4_UDP;
 
 
 
 
 
278	} else {
279		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
280			ret_val = TRANSPORT_INFO_IPV6_TCP;
281		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
282			ret_val = TRANSPORT_INFO_IPV6_UDP;
283	}
284
285not_ip:
286	return ret_val;
287}
288
289static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
290{
291	struct net_device_context *net_device_ctx = netdev_priv(net);
292	struct hv_netvsc_packet *packet;
293	int ret;
294	unsigned int num_data_pgs;
295	struct rndis_message *rndis_msg;
296	struct rndis_packet *rndis_pkt;
297	u32 rndis_msg_size;
298	bool isvlan;
299	struct rndis_per_packet_info *ppi;
300	struct ndis_tcp_ip_checksum_info *csum_info;
301	struct ndis_tcp_lso_info *lso_info;
302	int  hdr_offset;
303	u32 net_trans_info;
304
 
 
 
 
 
 
 
305
306	/* We will atmost need two pages to describe the rndis
307	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
308	 * of pages in a single packet.
 
309	 */
 
310	num_data_pgs = netvsc_get_slots(skb) + 2;
311	if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
312		netdev_err(net, "Packet too big: %u\n", skb->len);
313		dev_kfree_skb(skb);
314		net->stats.tx_dropped++;
315		return NETDEV_TX_OK;
316	}
317
318	/* Allocate a netvsc packet based on # of frags. */
319	packet = kzalloc(sizeof(struct hv_netvsc_packet) +
320			 (num_data_pgs * sizeof(struct hv_page_buffer)) +
321			 sizeof(struct rndis_message) +
322			 NDIS_VLAN_PPI_SIZE +
323			 NDIS_CSUM_PPI_SIZE +
324			 NDIS_LSO_PPI_SIZE, GFP_ATOMIC);
325	if (!packet) {
326		/* out of memory, drop packet */
327		netdev_err(net, "unable to allocate hv_netvsc_packet\n");
328
329		dev_kfree_skb(skb);
330		net->stats.tx_dropped++;
331		return NETDEV_TX_OK;
 
 
 
 
 
332	}
333
334	packet->vlan_tci = skb->vlan_tci;
 
 
 
 
 
 
 
 
 
 
 
 
335
336	packet->is_data_pkt = true;
337	packet->total_data_buflen = skb->len;
338
339	packet->rndis_msg = (struct rndis_message *)((unsigned long)packet +
340				sizeof(struct hv_netvsc_packet) +
341				(num_data_pgs * sizeof(struct hv_page_buffer)));
342
343	/* Set the completion routine */
344	packet->completion.send.send_completion = netvsc_xmit_completion;
345	packet->completion.send.send_completion_ctx = packet;
346	packet->completion.send.send_completion_tid = (unsigned long)skb;
347
348	isvlan = packet->vlan_tci & VLAN_TAG_PRESENT;
349
350	/* Add the rndis header */
351	rndis_msg = packet->rndis_msg;
352	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
353	rndis_msg->msg_len = packet->total_data_buflen;
354	rndis_pkt = &rndis_msg->msg.pkt;
355	rndis_pkt->data_offset = sizeof(struct rndis_packet);
356	rndis_pkt->data_len = packet->total_data_buflen;
357	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
 
 
358
359	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
360
361	if (isvlan) {
362		struct ndis_pkt_8021q_info *vlan;
 
363
364		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
365		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
366					IEEE_8021Q_INFO);
367		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
368						ppi->ppi_offset);
369		vlan->vlanid = packet->vlan_tci & VLAN_VID_MASK;
370		vlan->pri = (packet->vlan_tci & VLAN_PRIO_MASK) >>
371				VLAN_PRIO_SHIFT;
372	}
373
374	net_trans_info = get_net_transport_info(skb, &hdr_offset);
375	if (net_trans_info == TRANSPORT_INFO_NOT_IP)
376		goto do_send;
377
378	/*
379	 * Setup the sendside checksum offload only if this is not a
380	 * GSO packet.
381	 */
382	if (skb_is_gso(skb))
383		goto do_lso;
384
385	if ((skb->ip_summed == CHECKSUM_NONE) ||
386	    (skb->ip_summed == CHECKSUM_UNNECESSARY))
387		goto do_send;
388
389	rndis_msg_size += NDIS_CSUM_PPI_SIZE;
390	ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
391			    TCPIP_CHKSUM_PKTINFO);
392
393	csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
394			ppi->ppi_offset);
395
396	if (net_trans_info & (INFO_IPV4 << 16))
397		csum_info->transmit.is_ipv4 = 1;
398	else
399		csum_info->transmit.is_ipv6 = 1;
400
401	if (net_trans_info & INFO_TCP) {
402		csum_info->transmit.tcp_checksum = 1;
403		csum_info->transmit.tcp_header_offset = hdr_offset;
404	} else if (net_trans_info & INFO_UDP) {
405		/* UDP checksum offload is not supported on ws2008r2.
406		 * Furthermore, on ws2012 and ws2012r2, there are some
407		 * issues with udp checksum offload from Linux guests.
408		 * (these are host issues).
409		 * For now compute the checksum here.
410		 */
411		struct udphdr *uh;
412		u16 udp_len;
413
414		ret = skb_cow_head(skb, 0);
415		if (ret)
416			goto drop;
417
418		uh = udp_hdr(skb);
419		udp_len = ntohs(uh->len);
420		uh->check = 0;
421		uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
422					      ip_hdr(skb)->daddr,
423					      udp_len, IPPROTO_UDP,
424					      csum_partial(uh, udp_len, 0));
425		if (uh->check == 0)
426			uh->check = CSUM_MANGLED_0;
427
428		csum_info->transmit.udp_checksum = 0;
429	}
430	goto do_send;
431
432do_lso:
433	rndis_msg_size += NDIS_LSO_PPI_SIZE;
434	ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
435			    TCP_LARGESEND_PKTINFO);
436
437	lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
438			ppi->ppi_offset);
439
440	lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
441	if (net_trans_info & (INFO_IPV4 << 16)) {
442		lso_info->lso_v2_transmit.ip_version =
443			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
444		ip_hdr(skb)->tot_len = 0;
445		ip_hdr(skb)->check = 0;
446		tcp_hdr(skb)->check =
447		~csum_tcpudp_magic(ip_hdr(skb)->saddr,
448				   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
449	} else {
450		lso_info->lso_v2_transmit.ip_version =
451			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
452		ipv6_hdr(skb)->payload_len = 0;
453		tcp_hdr(skb)->check =
454		~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
455				&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456	}
457	lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
458	lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
459
460do_send:
461	/* Start filling in the page buffers with the rndis hdr */
462	rndis_msg->msg_len += rndis_msg_size;
 
463	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
464					skb, &packet->page_buf[0]);
465
466	ret = netvsc_send(net_device_ctx->device_ctx, packet);
 
467
468drop:
469	if (ret == 0) {
470		net->stats.tx_bytes += skb->len;
471		net->stats.tx_packets++;
472	} else {
473		kfree(packet);
474		if (ret != -EAGAIN) {
475			dev_kfree_skb_any(skb);
476			net->stats.tx_dropped++;
477		}
478	}
479
480	return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
 
 
 
 
 
 
 
 
 
 
 
481}
482
483/*
484 * netvsc_linkstatus_callback - Link up/down notification
485 */
486void netvsc_linkstatus_callback(struct hv_device *device_obj,
487				       unsigned int status)
488{
489	struct net_device *net;
490	struct net_device_context *ndev_ctx;
491	struct netvsc_device *net_device;
492	struct rndis_device *rdev;
493
494	net_device = hv_get_drvdata(device_obj);
495	rdev = net_device->extension;
 
 
 
 
 
 
 
496
497	rdev->link_state = status != 1;
 
 
 
 
498
499	net = net_device->ndev;
 
500
501	if (!net || net->reg_state != NETREG_REGISTERED)
 
502		return;
 
503
504	ndev_ctx = netdev_priv(net);
505	if (status == 1) {
506		schedule_delayed_work(&ndev_ctx->dwork, 0);
507		schedule_delayed_work(&ndev_ctx->dwork, msecs_to_jiffies(20));
508	} else {
509		schedule_delayed_work(&ndev_ctx->dwork, 0);
510	}
511}
512
513/*
514 * netvsc_recv_callback -  Callback when we receive a packet from the
515 * "wire" on the specified device.
516 */
517int netvsc_recv_callback(struct hv_device *device_obj,
518				struct hv_netvsc_packet *packet,
519				struct ndis_tcp_ip_checksum_info *csum_info)
520{
521	struct net_device *net;
522	struct sk_buff *skb;
523
524	net = ((struct netvsc_device *)hv_get_drvdata(device_obj))->ndev;
525	if (!net || net->reg_state != NETREG_REGISTERED) {
526		packet->status = NVSP_STAT_FAIL;
527		return 0;
528	}
529
530	/* Allocate a skb - TODO direct I/O to pages? */
531	skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
532	if (unlikely(!skb)) {
533		++net->stats.rx_dropped;
534		packet->status = NVSP_STAT_FAIL;
535		return 0;
536	}
537
538	/*
539	 * Copy to skb. This copy is needed here since the memory pointed by
540	 * hv_netvsc_packet cannot be deallocated
541	 */
542	memcpy(skb_put(skb, packet->total_data_buflen), packet->data,
543		packet->total_data_buflen);
544
545	skb->protocol = eth_type_trans(skb, net);
546	if (csum_info) {
547		/* We only look at the IP checksum here.
548		 * Should we be dropping the packet if checksum
549		 * failed? How do we deal with other checksums - TCP/UDP?
550		 */
551		if (csum_info->receive.ip_checksum_succeeded)
 
 
 
 
 
552			skb->ip_summed = CHECKSUM_UNNECESSARY;
553		else
554			skb->ip_summed = CHECKSUM_NONE;
555	}
556
557	if (packet->vlan_tci & VLAN_TAG_PRESENT)
 
 
558		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
559				       packet->vlan_tci);
 
560
561	net->stats.rx_packets++;
562	net->stats.rx_bytes += packet->total_data_buflen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
563
564	/*
565	 * Pass the skb back up. Network stack will deallocate the skb when it
566	 * is done.
567	 * TODO - use NAPI?
568	 */
569	netif_rx(skb);
 
 
 
 
 
 
 
 
 
570
571	return 0;
 
572}
573
574static void netvsc_get_drvinfo(struct net_device *net,
575			       struct ethtool_drvinfo *info)
576{
577	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
578	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
579}
580
581static int netvsc_change_mtu(struct net_device *ndev, int mtu)
 
582{
583	struct net_device_context *ndevctx = netdev_priv(ndev);
584	struct hv_device *hdev =  ndevctx->device_ctx;
585	struct netvsc_device *nvdev = hv_get_drvdata(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586	struct netvsc_device_info device_info;
587	int limit = ETH_DATA_LEN;
588
589	if (nvdev == NULL || nvdev->destroy)
 
 
 
 
 
590		return -ENODEV;
591
592	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
593		limit = NETVSC_MTU;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
594
595	if (mtu < 68 || mtu > limit)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
596		return -EINVAL;
597
598	nvdev->start_remove = true;
599	cancel_work_sync(&ndevctx->work);
600	netif_tx_disable(ndev);
601	rndis_filter_device_remove(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602
603	ndev->mtu = mtu;
604
605	ndevctx->device_ctx = hdev;
606	hv_set_drvdata(hdev, ndev);
607	device_info.ring_size = ring_size;
608	rndis_filter_device_add(hdev, &device_info);
609	netif_wake_queue(ndev);
610
611	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
612}
613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
614
615static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
616{
617	struct net_device_context *ndevctx = netdev_priv(ndev);
618	struct hv_device *hdev =  ndevctx->device_ctx;
 
619	struct sockaddr *addr = p;
620	char save_adr[ETH_ALEN];
621	unsigned char save_aatype;
622	int err;
623
624	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
625	save_aatype = ndev->addr_assign_type;
626
627	err = eth_mac_addr(ndev, p);
628	if (err != 0)
629		return err;
630
631	err = rndis_filter_set_device_mac(hdev, addr->sa_data);
632	if (err != 0) {
633		/* roll back to saved MAC */
634		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
635		ndev->addr_assign_type = save_aatype;
 
 
 
 
 
 
 
 
 
 
 
636	}
637
638	return err;
639}
640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641
642static const struct ethtool_ops ethtool_ops = {
643	.get_drvinfo	= netvsc_get_drvinfo,
644	.get_link	= ethtool_op_get_link,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645};
646
647static const struct net_device_ops device_ops = {
648	.ndo_open =			netvsc_open,
649	.ndo_stop =			netvsc_close,
650	.ndo_start_xmit =		netvsc_start_xmit,
651	.ndo_set_rx_mode =		netvsc_set_multicast_list,
 
652	.ndo_change_mtu =		netvsc_change_mtu,
653	.ndo_validate_addr =		eth_validate_addr,
654	.ndo_set_mac_address =		netvsc_set_mac_addr,
 
 
 
 
 
655};
656
657/*
658 * Send GARP packet to network peers after migrations.
659 * After Quick Migration, the network is not immediately operational in the
660 * current context when receiving RNDIS_STATUS_MEDIA_CONNECT event. So, add
661 * another netif_notify_peers() into a delayed work, otherwise GARP packet
662 * will not be sent after quick migration, and cause network disconnection.
663 * Also, we update the carrier status here.
664 */
665static void netvsc_link_change(struct work_struct *w)
666{
667	struct net_device_context *ndev_ctx;
668	struct net_device *net;
 
 
669	struct netvsc_device *net_device;
670	struct rndis_device *rdev;
671	bool notify;
 
 
 
 
 
 
 
 
672
673	rtnl_lock();
 
 
674
675	ndev_ctx = container_of(w, struct net_device_context, dwork.work);
676	net_device = hv_get_drvdata(ndev_ctx->device_ctx);
677	rdev = net_device->extension;
678	net = net_device->ndev;
679
680	if (rdev->link_state) {
681		netif_carrier_off(net);
682		notify = false;
683	} else {
684		netif_carrier_on(net);
685		notify = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686	}
687
688	rtnl_unlock();
689
690	if (notify)
691		netdev_notify_peers(net);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
692}
693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694
695static int netvsc_probe(struct hv_device *dev,
696			const struct hv_vmbus_device_id *dev_id)
697{
698	struct net_device *net = NULL;
699	struct net_device_context *net_device_ctx;
700	struct netvsc_device_info device_info;
701	int ret;
 
702
703	net = alloc_etherdev(sizeof(struct net_device_context));
 
704	if (!net)
705		return -ENOMEM;
706
707	netif_carrier_off(net);
708
 
 
709	net_device_ctx = netdev_priv(net);
710	net_device_ctx->device_ctx = dev;
 
 
 
 
 
711	hv_set_drvdata(dev, net);
 
712	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
713	INIT_WORK(&net_device_ctx->work, do_set_multicast);
 
 
 
 
 
 
 
 
714
715	net->netdev_ops = &device_ops;
 
 
716
717	net->hw_features = NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_IP_CSUM |
718				NETIF_F_TSO;
719	net->features = NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_SG | NETIF_F_RXCSUM |
720			NETIF_F_IP_CSUM | NETIF_F_TSO;
721
722	SET_ETHTOOL_OPS(net, &ethtool_ops);
723	SET_NETDEV_DEV(net, &dev->device);
 
 
 
724
725	/* Notify the netvsc driver of the new device */
726	device_info.ring_size = ring_size;
727	ret = rndis_filter_device_add(dev, &device_info);
728	if (ret != 0) {
 
 
 
 
 
 
 
729		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
730		free_netdev(net);
731		hv_set_drvdata(dev, NULL);
732		return ret;
733	}
 
734	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736	ret = register_netdev(net);
737	if (ret != 0) {
738		pr_err("Unable to register netdev.\n");
739		rndis_filter_device_remove(dev);
740		free_netdev(net);
741	} else {
742		schedule_delayed_work(&net_device_ctx->dwork, 0);
743	}
744
745	return ret;
 
 
 
 
 
 
 
 
 
 
746}
747
748static int netvsc_remove(struct hv_device *dev)
749{
750	struct net_device *net;
751	struct net_device_context *ndev_ctx;
752	struct netvsc_device *net_device;
753
754	net_device = hv_get_drvdata(dev);
755	net = net_device->ndev;
756
 
757	if (net == NULL) {
758		dev_err(&dev->device, "No net device to remove\n");
759		return 0;
760	}
761
762	net_device->start_remove = true;
763
764	ndev_ctx = netdev_priv(net);
 
765	cancel_delayed_work_sync(&ndev_ctx->dwork);
766	cancel_work_sync(&ndev_ctx->work);
767
768	/* Stop outbound asap */
769	netif_tx_disable(net);
770
771	unregister_netdev(net);
 
772
773	/*
774	 * Call to the vsc driver to let it know that the device is being
775	 * removed
776	 */
777	rndis_filter_device_remove(dev);
 
 
 
 
 
 
 
 
778
 
 
 
 
 
 
779	free_netdev(net);
780	return 0;
781}
782
783static const struct hv_vmbus_device_id id_table[] = {
784	/* Network guid */
785	{ HV_NIC_GUID, },
786	{ },
787};
788
789MODULE_DEVICE_TABLE(vmbus, id_table);
790
791/* The one and only one */
792static struct  hv_driver netvsc_drv = {
793	.name = KBUILD_MODNAME,
794	.id_table = id_table,
795	.probe = netvsc_probe,
796	.remove = netvsc_remove,
797};
798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
799static void __exit netvsc_drv_exit(void)
800{
 
801	vmbus_driver_unregister(&netvsc_drv);
802}
803
804static int __init netvsc_drv_init(void)
805{
 
 
806	if (ring_size < RING_SIZE_MIN) {
807		ring_size = RING_SIZE_MIN;
808		pr_info("Increased ring_size to %d (min allowed)\n",
809			ring_size);
810	}
811	return vmbus_driver_register(&netvsc_drv);
 
 
 
 
 
 
 
 
812}
813
814MODULE_LICENSE("GPL");
815MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
816
817module_init(netvsc_drv_init);
818module_exit(netvsc_drv_exit);
v4.17
   1/*
   2 * Copyright (c) 2009, Microsoft Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * Authors:
  17 *   Haiyang Zhang <haiyangz@microsoft.com>
  18 *   Hank Janssen  <hjanssen@microsoft.com>
  19 */
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/init.h>
  23#include <linux/atomic.h>
  24#include <linux/module.h>
  25#include <linux/highmem.h>
  26#include <linux/device.h>
  27#include <linux/io.h>
  28#include <linux/delay.h>
  29#include <linux/netdevice.h>
  30#include <linux/inetdevice.h>
  31#include <linux/etherdevice.h>
  32#include <linux/skbuff.h>
  33#include <linux/if_vlan.h>
  34#include <linux/in.h>
  35#include <linux/slab.h>
  36#include <linux/rtnetlink.h>
  37#include <linux/netpoll.h>
  38#include <linux/reciprocal_div.h>
  39
  40#include <net/arp.h>
  41#include <net/route.h>
  42#include <net/sock.h>
  43#include <net/pkt_sched.h>
  44#include <net/checksum.h>
  45#include <net/ip6_checksum.h>
  46
  47#include "hyperv_net.h"
  48
  49#define RING_SIZE_MIN	64
  50#define RETRY_US_LO	5000
  51#define RETRY_US_HI	10000
  52#define RETRY_MAX	2000	/* >10 sec */
  53
  54#define LINKCHANGE_INT (2 * HZ)
  55#define VF_TAKEOVER_INT (HZ / 10)
  56
  57static unsigned int ring_size __ro_after_init = 128;
  58module_param(ring_size, uint, 0444);
 
  59MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  60unsigned int netvsc_ring_bytes __ro_after_init;
  61struct reciprocal_value netvsc_ring_reciprocal __ro_after_init;
  62
  63static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  64				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  65				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  66				NETIF_MSG_TX_ERR;
  67
  68static int debug = -1;
  69module_param(debug, int, 0444);
  70MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  71
  72static void netvsc_change_rx_flags(struct net_device *net, int change)
  73{
  74	struct net_device_context *ndev_ctx = netdev_priv(net);
  75	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  76	int inc;
 
  77
  78	if (!vf_netdev)
 
  79		return;
  80
  81	if (change & IFF_PROMISC) {
  82		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  83		dev_set_promiscuity(vf_netdev, inc);
  84	}
  85
  86	if (change & IFF_ALLMULTI) {
  87		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  88		dev_set_allmulti(vf_netdev, inc);
  89	}
 
 
 
 
  90}
  91
  92static void netvsc_set_rx_mode(struct net_device *net)
  93{
  94	struct net_device_context *ndev_ctx = netdev_priv(net);
  95	struct net_device *vf_netdev;
  96	struct netvsc_device *nvdev;
  97
  98	rcu_read_lock();
  99	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
 100	if (vf_netdev) {
 101		dev_uc_sync(vf_netdev, net);
 102		dev_mc_sync(vf_netdev, net);
 103	}
 104
 105	nvdev = rcu_dereference(ndev_ctx->nvdev);
 106	if (nvdev)
 107		rndis_filter_update(nvdev);
 108	rcu_read_unlock();
 109}
 110
 111static int netvsc_open(struct net_device *net)
 112{
 113	struct net_device_context *ndev_ctx = netdev_priv(net);
 114	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 115	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 116	struct rndis_device *rdev;
 117	int ret = 0;
 118
 119	netif_carrier_off(net);
 120
 121	/* Open up the device */
 122	ret = rndis_filter_open(nvdev);
 123	if (ret != 0) {
 124		netdev_err(net, "unable to open device (ret %d).\n", ret);
 125		return ret;
 126	}
 127
 
 
 
 128	rdev = nvdev->extension;
 129	if (!rdev->link_state)
 130		netif_carrier_on(net);
 131
 132	if (vf_netdev) {
 133		/* Setting synthetic device up transparently sets
 134		 * slave as up. If open fails, then slave will be
 135		 * still be offline (and not used).
 136		 */
 137		ret = dev_open(vf_netdev);
 138		if (ret)
 139			netdev_warn(net,
 140				    "unable to open slave: %s: %d\n",
 141				    vf_netdev->name, ret);
 142	}
 143	return 0;
 144}
 145
 146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 147{
 148	unsigned int retry = 0;
 149	int i;
 150
 151	/* Ensure pending bytes in ring are read */
 152	for (;;) {
 153		u32 aread = 0;
 154
 155		for (i = 0; i < nvdev->num_chn; i++) {
 156			struct vmbus_channel *chn
 157				= nvdev->chan_table[i].channel;
 158
 159			if (!chn)
 160				continue;
 161
 162			/* make sure receive not running now */
 163			napi_synchronize(&nvdev->chan_table[i].napi);
 164
 165			aread = hv_get_bytes_to_read(&chn->inbound);
 166			if (aread)
 167				break;
 168
 169			aread = hv_get_bytes_to_read(&chn->outbound);
 170			if (aread)
 171				break;
 172		}
 173
 174		if (aread == 0)
 175			return 0;
 176
 177		if (++retry > RETRY_MAX)
 178			return -ETIMEDOUT;
 179
 180		usleep_range(RETRY_US_LO, RETRY_US_HI);
 181	}
 182}
 183
 184static int netvsc_close(struct net_device *net)
 185{
 186	struct net_device_context *net_device_ctx = netdev_priv(net);
 187	struct net_device *vf_netdev
 188		= rtnl_dereference(net_device_ctx->vf_netdev);
 189	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 190	int ret;
 191
 192	netif_tx_disable(net);
 193
 194	/* No need to close rndis filter if it is removed already */
 195	if (!nvdev)
 196		return 0;
 197
 198	ret = rndis_filter_close(nvdev);
 199	if (ret != 0) {
 200		netdev_err(net, "unable to close device (ret %d).\n", ret);
 201		return ret;
 202	}
 203
 204	ret = netvsc_wait_until_empty(nvdev);
 205	if (ret)
 206		netdev_err(net, "Ring buffer not empty after closing rndis\n");
 207
 208	if (vf_netdev)
 209		dev_close(vf_netdev);
 210
 211	return ret;
 212}
 213
 214static inline void *init_ppi_data(struct rndis_message *msg,
 215				  u32 ppi_size, u32 pkt_type)
 216{
 217	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 218	struct rndis_per_packet_info *ppi;
 219
 
 220	rndis_pkt->data_offset += ppi_size;
 221	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 222		+ rndis_pkt->per_pkt_info_len;
 
 223
 224	ppi->size = ppi_size;
 225	ppi->type = pkt_type;
 226	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 227
 228	rndis_pkt->per_pkt_info_len += ppi_size;
 229
 230	return ppi + 1;
 231}
 232
 233/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
 234 * packets. We can use ethtool to change UDP hash level when necessary.
 235 */
 236static inline u32 netvsc_get_hash(
 237	struct sk_buff *skb,
 238	const struct net_device_context *ndc)
 239{
 240	struct flow_keys flow;
 241	u32 hash, pkt_proto = 0;
 242	static u32 hashrnd __read_mostly;
 243
 244	net_get_random_once(&hashrnd, sizeof(hashrnd));
 245
 246	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
 247		return 0;
 248
 249	switch (flow.basic.ip_proto) {
 250	case IPPROTO_TCP:
 251		if (flow.basic.n_proto == htons(ETH_P_IP))
 252			pkt_proto = HV_TCP4_L4HASH;
 253		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 254			pkt_proto = HV_TCP6_L4HASH;
 255
 256		break;
 257
 258	case IPPROTO_UDP:
 259		if (flow.basic.n_proto == htons(ETH_P_IP))
 260			pkt_proto = HV_UDP4_L4HASH;
 261		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 262			pkt_proto = HV_UDP6_L4HASH;
 263
 264		break;
 265	}
 266
 267	if (pkt_proto & ndc->l4_hash) {
 268		return skb_get_hash(skb);
 269	} else {
 270		if (flow.basic.n_proto == htons(ETH_P_IP))
 271			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
 272		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 273			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
 274		else
 275			hash = 0;
 276
 277		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
 278	}
 279
 280	return hash;
 281}
 282
 283static inline int netvsc_get_tx_queue(struct net_device *ndev,
 284				      struct sk_buff *skb, int old_idx)
 285{
 286	const struct net_device_context *ndc = netdev_priv(ndev);
 287	struct sock *sk = skb->sk;
 288	int q_idx;
 289
 290	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 291			      (VRSS_SEND_TAB_SIZE - 1)];
 292
 293	/* If queue index changed record the new value */
 294	if (q_idx != old_idx &&
 295	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 296		sk_tx_queue_set(sk, q_idx);
 297
 298	return q_idx;
 299}
 300
 301/*
 302 * Select queue for transmit.
 303 *
 304 * If a valid queue has already been assigned, then use that.
 305 * Otherwise compute tx queue based on hash and the send table.
 306 *
 307 * This is basically similar to default (__netdev_pick_tx) with the added step
 308 * of using the host send_table when no other queue has been assigned.
 309 *
 310 * TODO support XPS - but get_xps_queue not exported
 311 */
 312static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 313{
 314	int q_idx = sk_tx_queue_get(skb->sk);
 315
 316	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 317		/* If forwarding a packet, we use the recorded queue when
 318		 * available for better cache locality.
 319		 */
 320		if (skb_rx_queue_recorded(skb))
 321			q_idx = skb_get_rx_queue(skb);
 322		else
 323			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 324	}
 325
 326	return q_idx;
 327}
 328
 329static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 330			       void *accel_priv,
 331			       select_queue_fallback_t fallback)
 332{
 333	struct net_device_context *ndc = netdev_priv(ndev);
 334	struct net_device *vf_netdev;
 335	u16 txq;
 336
 337	rcu_read_lock();
 338	vf_netdev = rcu_dereference(ndc->vf_netdev);
 339	if (vf_netdev) {
 340		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 341
 342		if (vf_ops->ndo_select_queue)
 343			txq = vf_ops->ndo_select_queue(vf_netdev, skb,
 344						       accel_priv, fallback);
 345		else
 346			txq = fallback(vf_netdev, skb);
 347
 348		/* Record the queue selected by VF so that it can be
 349		 * used for common case where VF has more queues than
 350		 * the synthetic device.
 351		 */
 352		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 353	} else {
 354		txq = netvsc_pick_tx(ndev, skb);
 355	}
 356	rcu_read_unlock();
 357
 358	while (unlikely(txq >= ndev->real_num_tx_queues))
 359		txq -= ndev->real_num_tx_queues;
 360
 361	return txq;
 362}
 363
 364static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
 365		       struct hv_page_buffer *pb)
 366{
 367	int j = 0;
 368
 369	/* Deal with compund pages by ignoring unused part
 370	 * of the page.
 371	 */
 372	page += (offset >> PAGE_SHIFT);
 373	offset &= ~PAGE_MASK;
 374
 375	while (len > 0) {
 376		unsigned long bytes;
 377
 378		bytes = PAGE_SIZE - offset;
 379		if (bytes > len)
 380			bytes = len;
 381		pb[j].pfn = page_to_pfn(page);
 382		pb[j].offset = offset;
 383		pb[j].len = bytes;
 384
 385		offset += bytes;
 386		len -= bytes;
 387
 388		if (offset == PAGE_SIZE && len) {
 389			page++;
 390			offset = 0;
 391			j++;
 392		}
 393	}
 394
 395	return j + 1;
 396}
 397
 398static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 399			   struct hv_netvsc_packet *packet,
 400			   struct hv_page_buffer *pb)
 401{
 402	u32 slots_used = 0;
 403	char *data = skb->data;
 404	int frags = skb_shinfo(skb)->nr_frags;
 405	int i;
 406
 407	/* The packet is laid out thus:
 408	 * 1. hdr: RNDIS header and PPI
 409	 * 2. skb linear data
 410	 * 3. skb fragment data
 411	 */
 412	slots_used += fill_pg_buf(virt_to_page(hdr),
 413				  offset_in_page(hdr),
 414				  len, &pb[slots_used]);
 415
 416	packet->rmsg_size = len;
 417	packet->rmsg_pgcnt = slots_used;
 418
 419	slots_used += fill_pg_buf(virt_to_page(data),
 420				offset_in_page(data),
 421				skb_headlen(skb), &pb[slots_used]);
 422
 423	for (i = 0; i < frags; i++) {
 424		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 425
 426		slots_used += fill_pg_buf(skb_frag_page(frag),
 427					frag->page_offset,
 428					skb_frag_size(frag), &pb[slots_used]);
 429	}
 430	return slots_used;
 431}
 432
 433static int count_skb_frag_slots(struct sk_buff *skb)
 434{
 435	int i, frags = skb_shinfo(skb)->nr_frags;
 436	int pages = 0;
 437
 438	for (i = 0; i < frags; i++) {
 439		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 440		unsigned long size = skb_frag_size(frag);
 441		unsigned long offset = frag->page_offset;
 442
 443		/* Skip unused frames from start of page */
 444		offset &= ~PAGE_MASK;
 445		pages += PFN_UP(offset + size);
 446	}
 447	return pages;
 448}
 449
 450static int netvsc_get_slots(struct sk_buff *skb)
 451{
 452	char *data = skb->data;
 453	unsigned int offset = offset_in_page(data);
 454	unsigned int len = skb_headlen(skb);
 455	int slots;
 456	int frag_slots;
 457
 458	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
 459	frag_slots = count_skb_frag_slots(skb);
 460	return slots + frag_slots;
 461}
 462
 463static u32 net_checksum_info(struct sk_buff *skb)
 464{
 465	if (skb->protocol == htons(ETH_P_IP)) {
 466		struct iphdr *ip = ip_hdr(skb);
 467
 468		if (ip->protocol == IPPROTO_TCP)
 469			return TRANSPORT_INFO_IPV4_TCP;
 470		else if (ip->protocol == IPPROTO_UDP)
 471			return TRANSPORT_INFO_IPV4_UDP;
 472	} else {
 473		struct ipv6hdr *ip6 = ipv6_hdr(skb);
 474
 475		if (ip6->nexthdr == IPPROTO_TCP)
 476			return TRANSPORT_INFO_IPV6_TCP;
 477		else if (ip6->nexthdr == IPPROTO_UDP)
 478			return TRANSPORT_INFO_IPV6_UDP;
 479	}
 480
 481	return TRANSPORT_INFO_NOT_IP;
 482}
 483
 484/* Send skb on the slave VF device. */
 485static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 486			  struct sk_buff *skb)
 487{
 488	struct net_device_context *ndev_ctx = netdev_priv(net);
 489	unsigned int len = skb->len;
 490	int rc;
 491
 492	skb->dev = vf_netdev;
 493	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
 494
 495	rc = dev_queue_xmit(skb);
 496	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 497		struct netvsc_vf_pcpu_stats *pcpu_stats
 498			= this_cpu_ptr(ndev_ctx->vf_stats);
 499
 500		u64_stats_update_begin(&pcpu_stats->syncp);
 501		pcpu_stats->tx_packets++;
 502		pcpu_stats->tx_bytes += len;
 503		u64_stats_update_end(&pcpu_stats->syncp);
 504	} else {
 505		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 
 
 
 506	}
 507
 508	return rc;
 
 509}
 510
 511static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
 512{
 513	struct net_device_context *net_device_ctx = netdev_priv(net);
 514	struct hv_netvsc_packet *packet = NULL;
 515	int ret;
 516	unsigned int num_data_pgs;
 517	struct rndis_message *rndis_msg;
 518	struct net_device *vf_netdev;
 519	u32 rndis_msg_size;
 520	u32 hash;
 521	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 
 
 
 
 522
 523	/* if VF is present and up then redirect packets
 524	 * already called with rcu_read_lock_bh
 525	 */
 526	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 527	if (vf_netdev && netif_running(vf_netdev) &&
 528	    !netpoll_tx_running(net))
 529		return netvsc_vf_xmit(net, vf_netdev, skb);
 530
 531	/* We will atmost need two pages to describe the rndis
 532	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 533	 * of pages in a single packet. If skb is scattered around
 534	 * more pages we try linearizing it.
 535	 */
 536
 537	num_data_pgs = netvsc_get_slots(skb) + 2;
 
 
 
 
 
 
 538
 539	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 540		++net_device_ctx->eth_stats.tx_scattered;
 
 
 
 
 
 
 
 
 541
 542		if (skb_linearize(skb))
 543			goto no_memory;
 544
 545		num_data_pgs = netvsc_get_slots(skb) + 2;
 546		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 547			++net_device_ctx->eth_stats.tx_too_big;
 548			goto drop;
 549		}
 550	}
 551
 552	/*
 553	 * Place the rndis header in the skb head room and
 554	 * the skb->cb will be used for hv_netvsc_packet
 555	 * structure.
 556	 */
 557	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 558	if (ret)
 559		goto no_memory;
 560
 561	/* Use the skb control buffer for building up the packet */
 562	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 563			FIELD_SIZEOF(struct sk_buff, cb));
 564	packet = (struct hv_netvsc_packet *)skb->cb;
 565
 566	packet->q_idx = skb_get_queue_mapping(skb);
 
 567
 568	packet->total_data_buflen = skb->len;
 569	packet->total_bytes = skb->len;
 570	packet->total_packets = 1;
 
 
 
 
 
 571
 572	rndis_msg = (struct rndis_message *)skb->head;
 573
 574	/* Add the rndis header */
 
 575	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 576	rndis_msg->msg_len = packet->total_data_buflen;
 577
 578	rndis_msg->msg.pkt = (struct rndis_packet) {
 579		.data_offset = sizeof(struct rndis_packet),
 580		.data_len = packet->total_data_buflen,
 581		.per_pkt_info_offset = sizeof(struct rndis_packet),
 582	};
 583
 584	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 585
 586	hash = skb_get_hash_raw(skb);
 587	if (hash != 0 && net->real_num_tx_queues > 1) {
 588		u32 *hash_info;
 589
 590		rndis_msg_size += NDIS_HASH_PPI_SIZE;
 591		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 592					  NBL_HASH_VALUE);
 593		*hash_info = hash;
 
 
 
 
 594	}
 595
 596	if (skb_vlan_tag_present(skb)) {
 597		struct ndis_pkt_8021q_info *vlan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598
 599		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 600		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 601				     IEEE_8021Q_INFO);
 
 602
 603		vlan->value = 0;
 604		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
 605		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
 606				VLAN_PRIO_SHIFT;
 607	}
 
 
 
 
 
 
 
 608
 609	if (skb_is_gso(skb)) {
 610		struct ndis_tcp_lso_info *lso_info;
 
 611
 612		rndis_msg_size += NDIS_LSO_PPI_SIZE;
 613		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 614					 TCP_LARGESEND_PKTINFO);
 615
 616		lso_info->value = 0;
 617		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 618		if (skb->protocol == htons(ETH_P_IP)) {
 619			lso_info->lso_v2_transmit.ip_version =
 620				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 621			ip_hdr(skb)->tot_len = 0;
 622			ip_hdr(skb)->check = 0;
 623			tcp_hdr(skb)->check =
 624				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 625						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 626		} else {
 627			lso_info->lso_v2_transmit.ip_version =
 628				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 629			ipv6_hdr(skb)->payload_len = 0;
 630			tcp_hdr(skb)->check =
 631				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
 632						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 633		}
 634		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 635		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 636	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 637		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 638			struct ndis_tcp_ip_checksum_info *csum_info;
 639
 640			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 641			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 642						  TCPIP_CHKSUM_PKTINFO);
 643
 644			csum_info->value = 0;
 645			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 646
 647			if (skb->protocol == htons(ETH_P_IP)) {
 648				csum_info->transmit.is_ipv4 = 1;
 649
 650				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 651					csum_info->transmit.tcp_checksum = 1;
 652				else
 653					csum_info->transmit.udp_checksum = 1;
 654			} else {
 655				csum_info->transmit.is_ipv6 = 1;
 656
 657				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 658					csum_info->transmit.tcp_checksum = 1;
 659				else
 660					csum_info->transmit.udp_checksum = 1;
 661			}
 662		} else {
 663			/* Can't do offload of this type of checksum */
 664			if (skb_checksum_help(skb))
 665				goto drop;
 666		}
 667	}
 
 
 668
 
 669	/* Start filling in the page buffers with the rndis hdr */
 670	rndis_msg->msg_len += rndis_msg_size;
 671	packet->total_data_buflen = rndis_msg->msg_len;
 672	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 673					       skb, packet, pb);
 674
 675	/* timestamp packet in software */
 676	skb_tx_timestamp(skb);
 677
 678	ret = netvsc_send(net, packet, rndis_msg, pb, skb);
 679	if (likely(ret == 0))
 680		return NETDEV_TX_OK;
 681
 682	if (ret == -EAGAIN) {
 683		++net_device_ctx->eth_stats.tx_busy;
 684		return NETDEV_TX_BUSY;
 
 
 
 685	}
 686
 687	if (ret == -ENOSPC)
 688		++net_device_ctx->eth_stats.tx_no_space;
 689
 690drop:
 691	dev_kfree_skb_any(skb);
 692	net->stats.tx_dropped++;
 693
 694	return NETDEV_TX_OK;
 695
 696no_memory:
 697	++net_device_ctx->eth_stats.tx_no_memory;
 698	goto drop;
 699}
 700
 701/*
 702 * netvsc_linkstatus_callback - Link up/down notification
 703 */
 704void netvsc_linkstatus_callback(struct net_device *net,
 705				struct rndis_message *resp)
 706{
 707	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 708	struct net_device_context *ndev_ctx = netdev_priv(net);
 709	struct netvsc_reconfig *event;
 710	unsigned long flags;
 711
 712	/* Update the physical link speed when changing to another vSwitch */
 713	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 714		u32 speed;
 715
 716		speed = *(u32 *)((void *)indicate
 717				 + indicate->status_buf_offset) / 10000;
 718		ndev_ctx->speed = speed;
 719		return;
 720	}
 721
 722	/* Handle these link change statuses below */
 723	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 724	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 725	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 726		return;
 727
 728	if (net->reg_state != NETREG_REGISTERED)
 729		return;
 730
 731	event = kzalloc(sizeof(*event), GFP_ATOMIC);
 732	if (!event)
 733		return;
 734	event->event = indicate->status;
 735
 736	spin_lock_irqsave(&ndev_ctx->lock, flags);
 737	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 738	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 739
 740	schedule_delayed_work(&ndev_ctx->dwork, 0);
 
 
 741}
 742
 743static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 744					     struct napi_struct *napi,
 745					     const struct ndis_tcp_ip_checksum_info *csum_info,
 746					     const struct ndis_pkt_8021q_info *vlan,
 747					     void *data, u32 buflen)
 
 
 748{
 
 749	struct sk_buff *skb;
 750
 751	skb = napi_alloc_skb(napi, buflen);
 752	if (!skb)
 753		return skb;
 
 
 
 
 
 
 
 
 
 
 754
 755	/*
 756	 * Copy to skb. This copy is needed here since the memory pointed by
 757	 * hv_netvsc_packet cannot be deallocated
 758	 */
 759	skb_put_data(skb, data, buflen);
 
 760
 761	skb->protocol = eth_type_trans(skb, net);
 762
 763	/* skb is already created with CHECKSUM_NONE */
 764	skb_checksum_none_assert(skb);
 765
 766	/*
 767	 * In Linux, the IP checksum is always checked.
 768	 * Do L4 checksum offload if enabled and present.
 769	 */
 770	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
 771		if (csum_info->receive.tcp_checksum_succeeded ||
 772		    csum_info->receive.udp_checksum_succeeded)
 773			skb->ip_summed = CHECKSUM_UNNECESSARY;
 
 
 774	}
 775
 776	if (vlan) {
 777		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
 778
 779		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 780				       vlan_tci);
 781	}
 782
 783	return skb;
 784}
 785
 786/*
 787 * netvsc_recv_callback -  Callback when we receive a packet from the
 788 * "wire" on the specified device.
 789 */
 790int netvsc_recv_callback(struct net_device *net,
 791			 struct netvsc_device *net_device,
 792			 struct vmbus_channel *channel,
 793			 void  *data, u32 len,
 794			 const struct ndis_tcp_ip_checksum_info *csum_info,
 795			 const struct ndis_pkt_8021q_info *vlan)
 796{
 797	struct net_device_context *net_device_ctx = netdev_priv(net);
 798	u16 q_idx = channel->offermsg.offer.sub_channel_index;
 799	struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
 800	struct sk_buff *skb;
 801	struct netvsc_stats *rx_stats;
 802
 803	if (net->reg_state != NETREG_REGISTERED)
 804		return NVSP_STAT_FAIL;
 805
 806	/* Allocate a skb - TODO direct I/O to pages? */
 807	skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
 808				    csum_info, vlan, data, len);
 809	if (unlikely(!skb)) {
 810		++net_device_ctx->eth_stats.rx_no_memory;
 811		rcu_read_unlock();
 812		return NVSP_STAT_FAIL;
 813	}
 814
 815	skb_record_rx_queue(skb, q_idx);
 816
 817	/*
 818	 * Even if injecting the packet, record the statistics
 819	 * on the synthetic device because modifying the VF device
 820	 * statistics will not work correctly.
 821	 */
 822	rx_stats = &nvchan->rx_stats;
 823	u64_stats_update_begin(&rx_stats->syncp);
 824	rx_stats->packets++;
 825	rx_stats->bytes += len;
 826
 827	if (skb->pkt_type == PACKET_BROADCAST)
 828		++rx_stats->broadcast;
 829	else if (skb->pkt_type == PACKET_MULTICAST)
 830		++rx_stats->multicast;
 831	u64_stats_update_end(&rx_stats->syncp);
 832
 833	napi_gro_receive(&nvchan->napi, skb);
 834	return NVSP_STAT_SUCCESS;
 835}
 836
 837static void netvsc_get_drvinfo(struct net_device *net,
 838			       struct ethtool_drvinfo *info)
 839{
 840	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 841	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
 842}
 843
 844static void netvsc_get_channels(struct net_device *net,
 845				struct ethtool_channels *channel)
 846{
 847	struct net_device_context *net_device_ctx = netdev_priv(net);
 848	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 849
 850	if (nvdev) {
 851		channel->max_combined	= nvdev->max_chn;
 852		channel->combined_count = nvdev->num_chn;
 853	}
 854}
 855
 856static int netvsc_detach(struct net_device *ndev,
 857			 struct netvsc_device *nvdev)
 858{
 859	struct net_device_context *ndev_ctx = netdev_priv(ndev);
 860	struct hv_device *hdev = ndev_ctx->device_ctx;
 861	int ret;
 862
 863	/* Don't try continuing to try and setup sub channels */
 864	if (cancel_work_sync(&nvdev->subchan_work))
 865		nvdev->num_chn = 1;
 866
 867	/* If device was up (receiving) then shutdown */
 868	if (netif_running(ndev)) {
 869		netif_tx_disable(ndev);
 870
 871		ret = rndis_filter_close(nvdev);
 872		if (ret) {
 873			netdev_err(ndev,
 874				   "unable to close device (ret %d).\n", ret);
 875			return ret;
 876		}
 877
 878		ret = netvsc_wait_until_empty(nvdev);
 879		if (ret) {
 880			netdev_err(ndev,
 881				   "Ring buffer not empty after closing rndis\n");
 882			return ret;
 883		}
 884	}
 885
 886	netif_device_detach(ndev);
 887
 888	rndis_filter_device_remove(hdev, nvdev);
 889
 890	return 0;
 891}
 892
 893static int netvsc_attach(struct net_device *ndev,
 894			 struct netvsc_device_info *dev_info)
 895{
 896	struct net_device_context *ndev_ctx = netdev_priv(ndev);
 897	struct hv_device *hdev = ndev_ctx->device_ctx;
 898	struct netvsc_device *nvdev;
 899	struct rndis_device *rdev;
 900	int ret;
 901
 902	nvdev = rndis_filter_device_add(hdev, dev_info);
 903	if (IS_ERR(nvdev))
 904		return PTR_ERR(nvdev);
 905
 906	/* Note: enable and attach happen when sub-channels setup */
 907
 908	netif_carrier_off(ndev);
 909
 910	if (netif_running(ndev)) {
 911		ret = rndis_filter_open(nvdev);
 912		if (ret)
 913			return ret;
 914
 915		rdev = nvdev->extension;
 916		if (!rdev->link_state)
 917			netif_carrier_on(ndev);
 918	}
 919
 920	return 0;
 921}
 922
 923static int netvsc_set_channels(struct net_device *net,
 924			       struct ethtool_channels *channels)
 925{
 926	struct net_device_context *net_device_ctx = netdev_priv(net);
 927	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 928	unsigned int orig, count = channels->combined_count;
 929	struct netvsc_device_info device_info;
 930	int ret;
 931
 932	/* We do not support separate count for rx, tx, or other */
 933	if (count == 0 ||
 934	    channels->rx_count || channels->tx_count || channels->other_count)
 935		return -EINVAL;
 936
 937	if (!nvdev || nvdev->destroy)
 938		return -ENODEV;
 939
 940	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
 941		return -EINVAL;
 942
 943	if (count > nvdev->max_chn)
 944		return -EINVAL;
 945
 946	orig = nvdev->num_chn;
 947
 948	memset(&device_info, 0, sizeof(device_info));
 949	device_info.num_chn = count;
 950	device_info.send_sections = nvdev->send_section_cnt;
 951	device_info.send_section_size = nvdev->send_section_size;
 952	device_info.recv_sections = nvdev->recv_section_cnt;
 953	device_info.recv_section_size = nvdev->recv_section_size;
 954
 955	ret = netvsc_detach(net, nvdev);
 956	if (ret)
 957		return ret;
 958
 959	ret = netvsc_attach(net, &device_info);
 960	if (ret) {
 961		device_info.num_chn = orig;
 962		if (netvsc_attach(net, &device_info))
 963			netdev_err(net, "restoring channel setting failed\n");
 964	}
 965
 966	return ret;
 967}
 968
 969static bool
 970netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
 971{
 972	struct ethtool_link_ksettings diff1 = *cmd;
 973	struct ethtool_link_ksettings diff2 = {};
 974
 975	diff1.base.speed = 0;
 976	diff1.base.duplex = 0;
 977	/* advertising and cmd are usually set */
 978	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
 979	diff1.base.cmd = 0;
 980	/* We set port to PORT_OTHER */
 981	diff2.base.port = PORT_OTHER;
 982
 983	return !memcmp(&diff1, &diff2, sizeof(diff1));
 984}
 985
 986static void netvsc_init_settings(struct net_device *dev)
 987{
 988	struct net_device_context *ndc = netdev_priv(dev);
 989
 990	ndc->l4_hash = HV_DEFAULT_L4HASH;
 991
 992	ndc->speed = SPEED_UNKNOWN;
 993	ndc->duplex = DUPLEX_FULL;
 994}
 995
 996static int netvsc_get_link_ksettings(struct net_device *dev,
 997				     struct ethtool_link_ksettings *cmd)
 998{
 999	struct net_device_context *ndc = netdev_priv(dev);
1000
1001	cmd->base.speed = ndc->speed;
1002	cmd->base.duplex = ndc->duplex;
1003	cmd->base.port = PORT_OTHER;
1004
1005	return 0;
1006}
1007
1008static int netvsc_set_link_ksettings(struct net_device *dev,
1009				     const struct ethtool_link_ksettings *cmd)
1010{
1011	struct net_device_context *ndc = netdev_priv(dev);
1012	u32 speed;
1013
1014	speed = cmd->base.speed;
1015	if (!ethtool_validate_speed(speed) ||
1016	    !ethtool_validate_duplex(cmd->base.duplex) ||
1017	    !netvsc_validate_ethtool_ss_cmd(cmd))
1018		return -EINVAL;
1019
1020	ndc->speed = speed;
1021	ndc->duplex = cmd->base.duplex;
1022
1023	return 0;
1024}
1025
1026static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1027{
1028	struct net_device_context *ndevctx = netdev_priv(ndev);
1029	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1030	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1031	int orig_mtu = ndev->mtu;
1032	struct netvsc_device_info device_info;
1033	int ret = 0;
1034
1035	if (!nvdev || nvdev->destroy)
1036		return -ENODEV;
1037
1038	/* Change MTU of underlying VF netdev first. */
1039	if (vf_netdev) {
1040		ret = dev_set_mtu(vf_netdev, mtu);
1041		if (ret)
1042			return ret;
1043	}
1044
1045	memset(&device_info, 0, sizeof(device_info));
1046	device_info.num_chn = nvdev->num_chn;
1047	device_info.send_sections = nvdev->send_section_cnt;
1048	device_info.send_section_size = nvdev->send_section_size;
1049	device_info.recv_sections = nvdev->recv_section_cnt;
1050	device_info.recv_section_size = nvdev->recv_section_size;
1051
1052	ret = netvsc_detach(ndev, nvdev);
1053	if (ret)
1054		goto rollback_vf;
1055
1056	ndev->mtu = mtu;
1057
1058	ret = netvsc_attach(ndev, &device_info);
1059	if (ret)
1060		goto rollback;
 
 
1061
1062	return 0;
1063
1064rollback:
1065	/* Attempt rollback to original MTU */
1066	ndev->mtu = orig_mtu;
1067
1068	if (netvsc_attach(ndev, &device_info))
1069		netdev_err(ndev, "restoring mtu failed\n");
1070rollback_vf:
1071	if (vf_netdev)
1072		dev_set_mtu(vf_netdev, orig_mtu);
1073
1074	return ret;
1075}
1076
1077static void netvsc_get_vf_stats(struct net_device *net,
1078				struct netvsc_vf_pcpu_stats *tot)
1079{
1080	struct net_device_context *ndev_ctx = netdev_priv(net);
1081	int i;
1082
1083	memset(tot, 0, sizeof(*tot));
1084
1085	for_each_possible_cpu(i) {
1086		const struct netvsc_vf_pcpu_stats *stats
1087			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1088		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1089		unsigned int start;
1090
1091		do {
1092			start = u64_stats_fetch_begin_irq(&stats->syncp);
1093			rx_packets = stats->rx_packets;
1094			tx_packets = stats->tx_packets;
1095			rx_bytes = stats->rx_bytes;
1096			tx_bytes = stats->tx_bytes;
1097		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1098
1099		tot->rx_packets += rx_packets;
1100		tot->tx_packets += tx_packets;
1101		tot->rx_bytes   += rx_bytes;
1102		tot->tx_bytes   += tx_bytes;
1103		tot->tx_dropped += stats->tx_dropped;
1104	}
1105}
1106
1107static void netvsc_get_stats64(struct net_device *net,
1108			       struct rtnl_link_stats64 *t)
1109{
1110	struct net_device_context *ndev_ctx = netdev_priv(net);
1111	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1112	struct netvsc_vf_pcpu_stats vf_tot;
1113	int i;
1114
1115	if (!nvdev)
1116		return;
1117
1118	netdev_stats_to_stats64(t, &net->stats);
1119
1120	netvsc_get_vf_stats(net, &vf_tot);
1121	t->rx_packets += vf_tot.rx_packets;
1122	t->tx_packets += vf_tot.tx_packets;
1123	t->rx_bytes   += vf_tot.rx_bytes;
1124	t->tx_bytes   += vf_tot.tx_bytes;
1125	t->tx_dropped += vf_tot.tx_dropped;
1126
1127	for (i = 0; i < nvdev->num_chn; i++) {
1128		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1129		const struct netvsc_stats *stats;
1130		u64 packets, bytes, multicast;
1131		unsigned int start;
1132
1133		stats = &nvchan->tx_stats;
1134		do {
1135			start = u64_stats_fetch_begin_irq(&stats->syncp);
1136			packets = stats->packets;
1137			bytes = stats->bytes;
1138		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1139
1140		t->tx_bytes	+= bytes;
1141		t->tx_packets	+= packets;
1142
1143		stats = &nvchan->rx_stats;
1144		do {
1145			start = u64_stats_fetch_begin_irq(&stats->syncp);
1146			packets = stats->packets;
1147			bytes = stats->bytes;
1148			multicast = stats->multicast + stats->broadcast;
1149		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1150
1151		t->rx_bytes	+= bytes;
1152		t->rx_packets	+= packets;
1153		t->multicast	+= multicast;
1154	}
1155}
1156
1157static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1158{
1159	struct net_device_context *ndc = netdev_priv(ndev);
1160	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1161	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1162	struct sockaddr *addr = p;
 
 
1163	int err;
1164
1165	err = eth_prepare_mac_addr_change(ndev, p);
1166	if (err)
 
 
 
1167		return err;
1168
1169	if (!nvdev)
1170		return -ENODEV;
1171
1172	if (vf_netdev) {
1173		err = dev_set_mac_address(vf_netdev, addr);
1174		if (err)
1175			return err;
1176	}
1177
1178	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1179	if (!err) {
1180		eth_commit_mac_addr_change(ndev, p);
1181	} else if (vf_netdev) {
1182		/* rollback change on VF */
1183		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1184		dev_set_mac_address(vf_netdev, addr);
1185	}
1186
1187	return err;
1188}
1189
1190static const struct {
1191	char name[ETH_GSTRING_LEN];
1192	u16 offset;
1193} netvsc_stats[] = {
1194	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1195	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1196	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1197	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1198	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1199	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1200	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1201	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1202	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1203	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1204}, vf_stats[] = {
1205	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1206	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1207	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1208	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1209	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1210};
1211
1212#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1213#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1214
1215/* 4 statistics per queue (rx/tx packets/bytes) */
1216#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1217
1218static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1219{
1220	struct net_device_context *ndc = netdev_priv(dev);
1221	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1222
1223	if (!nvdev)
1224		return -ENODEV;
1225
1226	switch (string_set) {
1227	case ETH_SS_STATS:
1228		return NETVSC_GLOBAL_STATS_LEN
1229			+ NETVSC_VF_STATS_LEN
1230			+ NETVSC_QUEUE_STATS_LEN(nvdev);
1231	default:
1232		return -EINVAL;
1233	}
1234}
1235
1236static void netvsc_get_ethtool_stats(struct net_device *dev,
1237				     struct ethtool_stats *stats, u64 *data)
1238{
1239	struct net_device_context *ndc = netdev_priv(dev);
1240	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1241	const void *nds = &ndc->eth_stats;
1242	const struct netvsc_stats *qstats;
1243	struct netvsc_vf_pcpu_stats sum;
1244	unsigned int start;
1245	u64 packets, bytes;
1246	int i, j;
1247
1248	if (!nvdev)
1249		return;
1250
1251	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1252		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1253
1254	netvsc_get_vf_stats(dev, &sum);
1255	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1256		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1257
1258	for (j = 0; j < nvdev->num_chn; j++) {
1259		qstats = &nvdev->chan_table[j].tx_stats;
1260
1261		do {
1262			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1263			packets = qstats->packets;
1264			bytes = qstats->bytes;
1265		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1266		data[i++] = packets;
1267		data[i++] = bytes;
1268
1269		qstats = &nvdev->chan_table[j].rx_stats;
1270		do {
1271			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1272			packets = qstats->packets;
1273			bytes = qstats->bytes;
1274		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1275		data[i++] = packets;
1276		data[i++] = bytes;
1277	}
1278}
1279
1280static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1281{
1282	struct net_device_context *ndc = netdev_priv(dev);
1283	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1284	u8 *p = data;
1285	int i;
1286
1287	if (!nvdev)
1288		return;
1289
1290	switch (stringset) {
1291	case ETH_SS_STATS:
1292		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1293			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1294			p += ETH_GSTRING_LEN;
1295		}
1296
1297		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1298			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1299			p += ETH_GSTRING_LEN;
1300		}
1301
1302		for (i = 0; i < nvdev->num_chn; i++) {
1303			sprintf(p, "tx_queue_%u_packets", i);
1304			p += ETH_GSTRING_LEN;
1305			sprintf(p, "tx_queue_%u_bytes", i);
1306			p += ETH_GSTRING_LEN;
1307			sprintf(p, "rx_queue_%u_packets", i);
1308			p += ETH_GSTRING_LEN;
1309			sprintf(p, "rx_queue_%u_bytes", i);
1310			p += ETH_GSTRING_LEN;
1311		}
1312
1313		break;
1314	}
1315}
1316
1317static int
1318netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1319			 struct ethtool_rxnfc *info)
1320{
1321	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1322
1323	info->data = RXH_IP_SRC | RXH_IP_DST;
1324
1325	switch (info->flow_type) {
1326	case TCP_V4_FLOW:
1327		if (ndc->l4_hash & HV_TCP4_L4HASH)
1328			info->data |= l4_flag;
1329
1330		break;
1331
1332	case TCP_V6_FLOW:
1333		if (ndc->l4_hash & HV_TCP6_L4HASH)
1334			info->data |= l4_flag;
1335
1336		break;
1337
1338	case UDP_V4_FLOW:
1339		if (ndc->l4_hash & HV_UDP4_L4HASH)
1340			info->data |= l4_flag;
1341
1342		break;
1343
1344	case UDP_V6_FLOW:
1345		if (ndc->l4_hash & HV_UDP6_L4HASH)
1346			info->data |= l4_flag;
1347
1348		break;
1349
1350	case IPV4_FLOW:
1351	case IPV6_FLOW:
1352		break;
1353	default:
1354		info->data = 0;
1355		break;
1356	}
1357
1358	return 0;
1359}
1360
1361static int
1362netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1363		 u32 *rules)
1364{
1365	struct net_device_context *ndc = netdev_priv(dev);
1366	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1367
1368	if (!nvdev)
1369		return -ENODEV;
1370
1371	switch (info->cmd) {
1372	case ETHTOOL_GRXRINGS:
1373		info->data = nvdev->num_chn;
1374		return 0;
1375
1376	case ETHTOOL_GRXFH:
1377		return netvsc_get_rss_hash_opts(ndc, info);
1378	}
1379	return -EOPNOTSUPP;
1380}
1381
1382static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1383				    struct ethtool_rxnfc *info)
1384{
1385	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1386			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1387		switch (info->flow_type) {
1388		case TCP_V4_FLOW:
1389			ndc->l4_hash |= HV_TCP4_L4HASH;
1390			break;
1391
1392		case TCP_V6_FLOW:
1393			ndc->l4_hash |= HV_TCP6_L4HASH;
1394			break;
1395
1396		case UDP_V4_FLOW:
1397			ndc->l4_hash |= HV_UDP4_L4HASH;
1398			break;
1399
1400		case UDP_V6_FLOW:
1401			ndc->l4_hash |= HV_UDP6_L4HASH;
1402			break;
1403
1404		default:
1405			return -EOPNOTSUPP;
1406		}
1407
1408		return 0;
1409	}
1410
1411	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1412		switch (info->flow_type) {
1413		case TCP_V4_FLOW:
1414			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1415			break;
1416
1417		case TCP_V6_FLOW:
1418			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1419			break;
1420
1421		case UDP_V4_FLOW:
1422			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1423			break;
1424
1425		case UDP_V6_FLOW:
1426			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1427			break;
1428
1429		default:
1430			return -EOPNOTSUPP;
1431		}
1432
1433		return 0;
1434	}
1435
1436	return -EOPNOTSUPP;
1437}
1438
1439static int
1440netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1441{
1442	struct net_device_context *ndc = netdev_priv(ndev);
1443
1444	if (info->cmd == ETHTOOL_SRXFH)
1445		return netvsc_set_rss_hash_opts(ndc, info);
1446
1447	return -EOPNOTSUPP;
1448}
1449
1450#ifdef CONFIG_NET_POLL_CONTROLLER
1451static void netvsc_poll_controller(struct net_device *dev)
1452{
1453	struct net_device_context *ndc = netdev_priv(dev);
1454	struct netvsc_device *ndev;
1455	int i;
1456
1457	rcu_read_lock();
1458	ndev = rcu_dereference(ndc->nvdev);
1459	if (ndev) {
1460		for (i = 0; i < ndev->num_chn; i++) {
1461			struct netvsc_channel *nvchan = &ndev->chan_table[i];
1462
1463			napi_schedule(&nvchan->napi);
1464		}
1465	}
1466	rcu_read_unlock();
1467}
1468#endif
1469
1470static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1471{
1472	return NETVSC_HASH_KEYLEN;
1473}
1474
1475static u32 netvsc_rss_indir_size(struct net_device *dev)
1476{
1477	return ITAB_NUM;
1478}
1479
1480static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1481			   u8 *hfunc)
1482{
1483	struct net_device_context *ndc = netdev_priv(dev);
1484	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1485	struct rndis_device *rndis_dev;
1486	int i;
1487
1488	if (!ndev)
1489		return -ENODEV;
1490
1491	if (hfunc)
1492		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1493
1494	rndis_dev = ndev->extension;
1495	if (indir) {
1496		for (i = 0; i < ITAB_NUM; i++)
1497			indir[i] = rndis_dev->rx_table[i];
1498	}
1499
1500	if (key)
1501		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1502
1503	return 0;
1504}
1505
1506static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1507			   const u8 *key, const u8 hfunc)
1508{
1509	struct net_device_context *ndc = netdev_priv(dev);
1510	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1511	struct rndis_device *rndis_dev;
1512	int i;
1513
1514	if (!ndev)
1515		return -ENODEV;
1516
1517	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1518		return -EOPNOTSUPP;
1519
1520	rndis_dev = ndev->extension;
1521	if (indir) {
1522		for (i = 0; i < ITAB_NUM; i++)
1523			if (indir[i] >= ndev->num_chn)
1524				return -EINVAL;
1525
1526		for (i = 0; i < ITAB_NUM; i++)
1527			rndis_dev->rx_table[i] = indir[i];
1528	}
1529
1530	if (!key) {
1531		if (!indir)
1532			return 0;
1533
1534		key = rndis_dev->rss_key;
1535	}
1536
1537	return rndis_filter_set_rss_param(rndis_dev, key);
1538}
1539
1540/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1541 * It does have pre-allocated receive area which is divided into sections.
1542 */
1543static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1544				   struct ethtool_ringparam *ring)
1545{
1546	u32 max_buf_size;
1547
1548	ring->rx_pending = nvdev->recv_section_cnt;
1549	ring->tx_pending = nvdev->send_section_cnt;
1550
1551	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1552		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1553	else
1554		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1555
1556	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1557	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1558		/ nvdev->send_section_size;
1559}
1560
1561static void netvsc_get_ringparam(struct net_device *ndev,
1562				 struct ethtool_ringparam *ring)
1563{
1564	struct net_device_context *ndevctx = netdev_priv(ndev);
1565	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1566
1567	if (!nvdev)
1568		return;
1569
1570	__netvsc_get_ringparam(nvdev, ring);
1571}
1572
1573static int netvsc_set_ringparam(struct net_device *ndev,
1574				struct ethtool_ringparam *ring)
1575{
1576	struct net_device_context *ndevctx = netdev_priv(ndev);
1577	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1578	struct netvsc_device_info device_info;
1579	struct ethtool_ringparam orig;
1580	u32 new_tx, new_rx;
1581	int ret = 0;
1582
1583	if (!nvdev || nvdev->destroy)
1584		return -ENODEV;
1585
1586	memset(&orig, 0, sizeof(orig));
1587	__netvsc_get_ringparam(nvdev, &orig);
1588
1589	new_tx = clamp_t(u32, ring->tx_pending,
1590			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1591	new_rx = clamp_t(u32, ring->rx_pending,
1592			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1593
1594	if (new_tx == orig.tx_pending &&
1595	    new_rx == orig.rx_pending)
1596		return 0;	 /* no change */
1597
1598	memset(&device_info, 0, sizeof(device_info));
1599	device_info.num_chn = nvdev->num_chn;
1600	device_info.send_sections = new_tx;
1601	device_info.send_section_size = nvdev->send_section_size;
1602	device_info.recv_sections = new_rx;
1603	device_info.recv_section_size = nvdev->recv_section_size;
1604
1605	ret = netvsc_detach(ndev, nvdev);
1606	if (ret)
1607		return ret;
1608
1609	ret = netvsc_attach(ndev, &device_info);
1610	if (ret) {
1611		device_info.send_sections = orig.tx_pending;
1612		device_info.recv_sections = orig.rx_pending;
1613
1614		if (netvsc_attach(ndev, &device_info))
1615			netdev_err(ndev, "restoring ringparam failed");
1616	}
1617
1618	return ret;
1619}
1620
1621static const struct ethtool_ops ethtool_ops = {
1622	.get_drvinfo	= netvsc_get_drvinfo,
1623	.get_link	= ethtool_op_get_link,
1624	.get_ethtool_stats = netvsc_get_ethtool_stats,
1625	.get_sset_count = netvsc_get_sset_count,
1626	.get_strings	= netvsc_get_strings,
1627	.get_channels   = netvsc_get_channels,
1628	.set_channels   = netvsc_set_channels,
1629	.get_ts_info	= ethtool_op_get_ts_info,
1630	.get_rxnfc	= netvsc_get_rxnfc,
1631	.set_rxnfc	= netvsc_set_rxnfc,
1632	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1633	.get_rxfh_indir_size = netvsc_rss_indir_size,
1634	.get_rxfh	= netvsc_get_rxfh,
1635	.set_rxfh	= netvsc_set_rxfh,
1636	.get_link_ksettings = netvsc_get_link_ksettings,
1637	.set_link_ksettings = netvsc_set_link_ksettings,
1638	.get_ringparam	= netvsc_get_ringparam,
1639	.set_ringparam	= netvsc_set_ringparam,
1640};
1641
1642static const struct net_device_ops device_ops = {
1643	.ndo_open =			netvsc_open,
1644	.ndo_stop =			netvsc_close,
1645	.ndo_start_xmit =		netvsc_start_xmit,
1646	.ndo_change_rx_flags =		netvsc_change_rx_flags,
1647	.ndo_set_rx_mode =		netvsc_set_rx_mode,
1648	.ndo_change_mtu =		netvsc_change_mtu,
1649	.ndo_validate_addr =		eth_validate_addr,
1650	.ndo_set_mac_address =		netvsc_set_mac_addr,
1651	.ndo_select_queue =		netvsc_select_queue,
1652	.ndo_get_stats64 =		netvsc_get_stats64,
1653#ifdef CONFIG_NET_POLL_CONTROLLER
1654	.ndo_poll_controller =		netvsc_poll_controller,
1655#endif
1656};
1657
1658/*
1659 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1660 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1661 * present send GARP packet to network peers with netif_notify_peers().
 
 
 
1662 */
1663static void netvsc_link_change(struct work_struct *w)
1664{
1665	struct net_device_context *ndev_ctx =
1666		container_of(w, struct net_device_context, dwork.work);
1667	struct hv_device *device_obj = ndev_ctx->device_ctx;
1668	struct net_device *net = hv_get_drvdata(device_obj);
1669	struct netvsc_device *net_device;
1670	struct rndis_device *rdev;
1671	struct netvsc_reconfig *event = NULL;
1672	bool notify = false, reschedule = false;
1673	unsigned long flags, next_reconfig, delay;
1674
1675	/* if changes are happening, comeback later */
1676	if (!rtnl_trylock()) {
1677		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1678		return;
1679	}
1680
1681	net_device = rtnl_dereference(ndev_ctx->nvdev);
1682	if (!net_device)
1683		goto out_unlock;
1684
 
 
1685	rdev = net_device->extension;
 
1686
1687	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1688	if (time_is_after_jiffies(next_reconfig)) {
1689		/* link_watch only sends one notification with current state
1690		 * per second, avoid doing reconfig more frequently. Handle
1691		 * wrap around.
1692		 */
1693		delay = next_reconfig - jiffies;
1694		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1695		schedule_delayed_work(&ndev_ctx->dwork, delay);
1696		goto out_unlock;
1697	}
1698	ndev_ctx->last_reconfig = jiffies;
1699
1700	spin_lock_irqsave(&ndev_ctx->lock, flags);
1701	if (!list_empty(&ndev_ctx->reconfig_events)) {
1702		event = list_first_entry(&ndev_ctx->reconfig_events,
1703					 struct netvsc_reconfig, list);
1704		list_del(&event->list);
1705		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1706	}
1707	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1708
1709	if (!event)
1710		goto out_unlock;
1711
1712	switch (event->event) {
1713		/* Only the following events are possible due to the check in
1714		 * netvsc_linkstatus_callback()
1715		 */
1716	case RNDIS_STATUS_MEDIA_CONNECT:
1717		if (rdev->link_state) {
1718			rdev->link_state = false;
1719			netif_carrier_on(net);
1720			netif_tx_wake_all_queues(net);
1721		} else {
1722			notify = true;
1723		}
1724		kfree(event);
1725		break;
1726	case RNDIS_STATUS_MEDIA_DISCONNECT:
1727		if (!rdev->link_state) {
1728			rdev->link_state = true;
1729			netif_carrier_off(net);
1730			netif_tx_stop_all_queues(net);
1731		}
1732		kfree(event);
1733		break;
1734	case RNDIS_STATUS_NETWORK_CHANGE:
1735		/* Only makes sense if carrier is present */
1736		if (!rdev->link_state) {
1737			rdev->link_state = true;
1738			netif_carrier_off(net);
1739			netif_tx_stop_all_queues(net);
1740			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1741			spin_lock_irqsave(&ndev_ctx->lock, flags);
1742			list_add(&event->list, &ndev_ctx->reconfig_events);
1743			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1744			reschedule = true;
1745		}
1746		break;
1747	}
1748
1749	rtnl_unlock();
1750
1751	if (notify)
1752		netdev_notify_peers(net);
1753
1754	/* link_watch only sends one notification with current state per
1755	 * second, handle next reconfig event in 2 seconds.
1756	 */
1757	if (reschedule)
1758		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1759
1760	return;
1761
1762out_unlock:
1763	rtnl_unlock();
1764}
1765
1766static struct net_device *get_netvsc_bymac(const u8 *mac)
1767{
1768	struct net_device *dev;
1769
1770	ASSERT_RTNL();
1771
1772	for_each_netdev(&init_net, dev) {
1773		if (dev->netdev_ops != &device_ops)
1774			continue;	/* not a netvsc device */
1775
1776		if (ether_addr_equal(mac, dev->perm_addr))
1777			return dev;
1778	}
1779
1780	return NULL;
1781}
1782
1783static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1784{
1785	struct net_device *dev;
1786
1787	ASSERT_RTNL();
1788
1789	for_each_netdev(&init_net, dev) {
1790		struct net_device_context *net_device_ctx;
1791
1792		if (dev->netdev_ops != &device_ops)
1793			continue;	/* not a netvsc device */
1794
1795		net_device_ctx = netdev_priv(dev);
1796		if (!rtnl_dereference(net_device_ctx->nvdev))
1797			continue;	/* device is removed */
1798
1799		if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1800			return dev;	/* a match */
1801	}
1802
1803	return NULL;
1804}
1805
1806/* Called when VF is injecting data into network stack.
1807 * Change the associated network device from VF to netvsc.
1808 * note: already called with rcu_read_lock
1809 */
1810static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1811{
1812	struct sk_buff *skb = *pskb;
1813	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1814	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1815	struct netvsc_vf_pcpu_stats *pcpu_stats
1816		 = this_cpu_ptr(ndev_ctx->vf_stats);
1817
1818	skb->dev = ndev;
1819
1820	u64_stats_update_begin(&pcpu_stats->syncp);
1821	pcpu_stats->rx_packets++;
1822	pcpu_stats->rx_bytes += skb->len;
1823	u64_stats_update_end(&pcpu_stats->syncp);
1824
1825	return RX_HANDLER_ANOTHER;
1826}
1827
1828static int netvsc_vf_join(struct net_device *vf_netdev,
1829			  struct net_device *ndev)
1830{
1831	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1832	int ret;
1833
1834	ret = netdev_rx_handler_register(vf_netdev,
1835					 netvsc_vf_handle_frame, ndev);
1836	if (ret != 0) {
1837		netdev_err(vf_netdev,
1838			   "can not register netvsc VF receive handler (err = %d)\n",
1839			   ret);
1840		goto rx_handler_failed;
1841	}
1842
1843	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1844					   NULL, NULL, NULL);
1845	if (ret != 0) {
1846		netdev_err(vf_netdev,
1847			   "can not set master device %s (err = %d)\n",
1848			   ndev->name, ret);
1849		goto upper_link_failed;
1850	}
1851
1852	/* set slave flag before open to prevent IPv6 addrconf */
1853	vf_netdev->flags |= IFF_SLAVE;
1854
1855	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1856
1857	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1858
1859	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1860	return 0;
1861
1862upper_link_failed:
1863	netdev_rx_handler_unregister(vf_netdev);
1864rx_handler_failed:
1865	return ret;
1866}
1867
1868static void __netvsc_vf_setup(struct net_device *ndev,
1869			      struct net_device *vf_netdev)
1870{
1871	int ret;
1872
1873	/* Align MTU of VF with master */
1874	ret = dev_set_mtu(vf_netdev, ndev->mtu);
1875	if (ret)
1876		netdev_warn(vf_netdev,
1877			    "unable to change mtu to %u\n", ndev->mtu);
1878
1879	/* set multicast etc flags on VF */
1880	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1881
1882	/* sync address list from ndev to VF */
1883	netif_addr_lock_bh(ndev);
1884	dev_uc_sync(vf_netdev, ndev);
1885	dev_mc_sync(vf_netdev, ndev);
1886	netif_addr_unlock_bh(ndev);
1887
1888	if (netif_running(ndev)) {
1889		ret = dev_open(vf_netdev);
1890		if (ret)
1891			netdev_warn(vf_netdev,
1892				    "unable to open: %d\n", ret);
1893	}
1894}
1895
1896/* Setup VF as slave of the synthetic device.
1897 * Runs in workqueue to avoid recursion in netlink callbacks.
1898 */
1899static void netvsc_vf_setup(struct work_struct *w)
1900{
1901	struct net_device_context *ndev_ctx
1902		= container_of(w, struct net_device_context, vf_takeover.work);
1903	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1904	struct net_device *vf_netdev;
1905
1906	if (!rtnl_trylock()) {
1907		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1908		return;
1909	}
1910
1911	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1912	if (vf_netdev)
1913		__netvsc_vf_setup(ndev, vf_netdev);
1914
1915	rtnl_unlock();
1916}
1917
1918static int netvsc_register_vf(struct net_device *vf_netdev)
1919{
1920	struct net_device *ndev;
1921	struct net_device_context *net_device_ctx;
1922	struct netvsc_device *netvsc_dev;
1923
1924	if (vf_netdev->addr_len != ETH_ALEN)
1925		return NOTIFY_DONE;
1926
1927	/*
1928	 * We will use the MAC address to locate the synthetic interface to
1929	 * associate with the VF interface. If we don't find a matching
1930	 * synthetic interface, move on.
1931	 */
1932	ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1933	if (!ndev)
1934		return NOTIFY_DONE;
1935
1936	net_device_ctx = netdev_priv(ndev);
1937	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1938	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1939		return NOTIFY_DONE;
1940
1941	if (netvsc_vf_join(vf_netdev, ndev) != 0)
1942		return NOTIFY_DONE;
1943
1944	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1945
1946	dev_hold(vf_netdev);
1947	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1948	return NOTIFY_OK;
1949}
1950
1951/* VF up/down change detected, schedule to change data path */
1952static int netvsc_vf_changed(struct net_device *vf_netdev)
1953{
1954	struct net_device_context *net_device_ctx;
1955	struct netvsc_device *netvsc_dev;
1956	struct net_device *ndev;
1957	bool vf_is_up = netif_running(vf_netdev);
1958
1959	ndev = get_netvsc_byref(vf_netdev);
1960	if (!ndev)
1961		return NOTIFY_DONE;
1962
1963	net_device_ctx = netdev_priv(ndev);
1964	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1965	if (!netvsc_dev)
1966		return NOTIFY_DONE;
1967
1968	netvsc_switch_datapath(ndev, vf_is_up);
1969	netdev_info(ndev, "Data path switched %s VF: %s\n",
1970		    vf_is_up ? "to" : "from", vf_netdev->name);
1971
1972	return NOTIFY_OK;
1973}
1974
1975static int netvsc_unregister_vf(struct net_device *vf_netdev)
1976{
1977	struct net_device *ndev;
1978	struct net_device_context *net_device_ctx;
1979
1980	ndev = get_netvsc_byref(vf_netdev);
1981	if (!ndev)
1982		return NOTIFY_DONE;
1983
1984	net_device_ctx = netdev_priv(ndev);
1985	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
1986
1987	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1988
1989	netdev_rx_handler_unregister(vf_netdev);
1990	netdev_upper_dev_unlink(vf_netdev, ndev);
1991	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1992	dev_put(vf_netdev);
1993
1994	return NOTIFY_OK;
1995}
1996
1997static int netvsc_probe(struct hv_device *dev,
1998			const struct hv_vmbus_device_id *dev_id)
1999{
2000	struct net_device *net = NULL;
2001	struct net_device_context *net_device_ctx;
2002	struct netvsc_device_info device_info;
2003	struct netvsc_device *nvdev;
2004	int ret = -ENOMEM;
2005
2006	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2007				VRSS_CHANNEL_MAX);
2008	if (!net)
2009		goto no_net;
2010
2011	netif_carrier_off(net);
2012
2013	netvsc_init_settings(net);
2014
2015	net_device_ctx = netdev_priv(net);
2016	net_device_ctx->device_ctx = dev;
2017	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2018	if (netif_msg_probe(net_device_ctx))
2019		netdev_dbg(net, "netvsc msg_enable: %d\n",
2020			   net_device_ctx->msg_enable);
2021
2022	hv_set_drvdata(dev, net);
2023
2024	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2025
2026	spin_lock_init(&net_device_ctx->lock);
2027	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2028	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2029
2030	net_device_ctx->vf_stats
2031		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2032	if (!net_device_ctx->vf_stats)
2033		goto no_stats;
2034
2035	net->netdev_ops = &device_ops;
2036	net->ethtool_ops = &ethtool_ops;
2037	SET_NETDEV_DEV(net, &dev->device);
2038
2039	/* We always need headroom for rndis header */
2040	net->needed_headroom = RNDIS_AND_PPI_SIZE;
 
 
2041
2042	/* Initialize the number of queues to be 1, we may change it if more
2043	 * channels are offered later.
2044	 */
2045	netif_set_real_num_tx_queues(net, 1);
2046	netif_set_real_num_rx_queues(net, 1);
2047
2048	/* Notify the netvsc driver of the new device */
2049	memset(&device_info, 0, sizeof(device_info));
2050	device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2051	device_info.send_sections = NETVSC_DEFAULT_TX;
2052	device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2053	device_info.recv_sections = NETVSC_DEFAULT_RX;
2054	device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2055
2056	nvdev = rndis_filter_device_add(dev, &device_info);
2057	if (IS_ERR(nvdev)) {
2058		ret = PTR_ERR(nvdev);
2059		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2060		goto rndis_failed;
 
 
2061	}
2062
2063	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2064
2065	/* hw_features computed in rndis_netdev_set_hwcaps() */
2066	net->features = net->hw_features |
2067		NETIF_F_HIGHDMA | NETIF_F_SG |
2068		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2069	net->vlan_features = net->features;
2070
2071	netdev_lockdep_set_classes(net);
2072
2073	/* MTU range: 68 - 1500 or 65521 */
2074	net->min_mtu = NETVSC_MTU_MIN;
2075	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2076		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2077	else
2078		net->max_mtu = ETH_DATA_LEN;
2079
2080	ret = register_netdev(net);
2081	if (ret != 0) {
2082		pr_err("Unable to register netdev.\n");
2083		goto register_failed;
 
 
 
2084	}
2085
2086	return ret;
2087
2088register_failed:
2089	rndis_filter_device_remove(dev, nvdev);
2090rndis_failed:
2091	free_percpu(net_device_ctx->vf_stats);
2092no_stats:
2093	hv_set_drvdata(dev, NULL);
2094	free_netdev(net);
2095no_net:
2096	return ret;
2097}
2098
2099static int netvsc_remove(struct hv_device *dev)
2100{
 
2101	struct net_device_context *ndev_ctx;
2102	struct net_device *vf_netdev, *net;
2103	struct netvsc_device *nvdev;
 
 
2104
2105	net = hv_get_drvdata(dev);
2106	if (net == NULL) {
2107		dev_err(&dev->device, "No net device to remove\n");
2108		return 0;
2109	}
2110
 
 
2111	ndev_ctx = netdev_priv(net);
2112
2113	cancel_delayed_work_sync(&ndev_ctx->dwork);
 
2114
2115	rcu_read_lock();
2116	nvdev = rcu_dereference(ndev_ctx->nvdev);
2117
2118	if  (nvdev)
2119		cancel_work_sync(&nvdev->subchan_work);
2120
2121	/*
2122	 * Call to the vsc driver to let it know that the device is being
2123	 * removed. Also blocks mtu and channel changes.
2124	 */
2125	rtnl_lock();
2126	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2127	if (vf_netdev)
2128		netvsc_unregister_vf(vf_netdev);
2129
2130	if (nvdev)
2131		rndis_filter_device_remove(dev, nvdev);
2132
2133	unregister_netdevice(net);
2134
2135	rtnl_unlock();
2136	rcu_read_unlock();
2137
2138	hv_set_drvdata(dev, NULL);
2139
2140	free_percpu(ndev_ctx->vf_stats);
2141	free_netdev(net);
2142	return 0;
2143}
2144
2145static const struct hv_vmbus_device_id id_table[] = {
2146	/* Network guid */
2147	{ HV_NIC_GUID, },
2148	{ },
2149};
2150
2151MODULE_DEVICE_TABLE(vmbus, id_table);
2152
2153/* The one and only one */
2154static struct  hv_driver netvsc_drv = {
2155	.name = KBUILD_MODNAME,
2156	.id_table = id_table,
2157	.probe = netvsc_probe,
2158	.remove = netvsc_remove,
2159};
2160
2161/*
2162 * On Hyper-V, every VF interface is matched with a corresponding
2163 * synthetic interface. The synthetic interface is presented first
2164 * to the guest. When the corresponding VF instance is registered,
2165 * we will take care of switching the data path.
2166 */
2167static int netvsc_netdev_event(struct notifier_block *this,
2168			       unsigned long event, void *ptr)
2169{
2170	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2171
2172	/* Skip our own events */
2173	if (event_dev->netdev_ops == &device_ops)
2174		return NOTIFY_DONE;
2175
2176	/* Avoid non-Ethernet type devices */
2177	if (event_dev->type != ARPHRD_ETHER)
2178		return NOTIFY_DONE;
2179
2180	/* Avoid Vlan dev with same MAC registering as VF */
2181	if (is_vlan_dev(event_dev))
2182		return NOTIFY_DONE;
2183
2184	/* Avoid Bonding master dev with same MAC registering as VF */
2185	if ((event_dev->priv_flags & IFF_BONDING) &&
2186	    (event_dev->flags & IFF_MASTER))
2187		return NOTIFY_DONE;
2188
2189	switch (event) {
2190	case NETDEV_REGISTER:
2191		return netvsc_register_vf(event_dev);
2192	case NETDEV_UNREGISTER:
2193		return netvsc_unregister_vf(event_dev);
2194	case NETDEV_UP:
2195	case NETDEV_DOWN:
2196		return netvsc_vf_changed(event_dev);
2197	default:
2198		return NOTIFY_DONE;
2199	}
2200}
2201
2202static struct notifier_block netvsc_netdev_notifier = {
2203	.notifier_call = netvsc_netdev_event,
2204};
2205
2206static void __exit netvsc_drv_exit(void)
2207{
2208	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2209	vmbus_driver_unregister(&netvsc_drv);
2210}
2211
2212static int __init netvsc_drv_init(void)
2213{
2214	int ret;
2215
2216	if (ring_size < RING_SIZE_MIN) {
2217		ring_size = RING_SIZE_MIN;
2218		pr_info("Increased ring_size to %u (min allowed)\n",
2219			ring_size);
2220	}
2221	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2222	netvsc_ring_reciprocal = reciprocal_value(netvsc_ring_bytes);
2223
2224	ret = vmbus_driver_register(&netvsc_drv);
2225	if (ret)
2226		return ret;
2227
2228	register_netdevice_notifier(&netvsc_netdev_notifier);
2229	return 0;
2230}
2231
2232MODULE_LICENSE("GPL");
2233MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2234
2235module_init(netvsc_drv_init);
2236module_exit(netvsc_drv_exit);