Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Infrastructure for migratable timers
   4 *
   5 * Copyright(C) 2022 linutronix GmbH
   6 */
   7#include <linux/cpuhotplug.h>
   8#include <linux/slab.h>
   9#include <linux/smp.h>
  10#include <linux/spinlock.h>
  11#include <linux/timerqueue.h>
  12#include <trace/events/ipi.h>
  13
  14#include "timer_migration.h"
  15#include "tick-internal.h"
  16
  17#define CREATE_TRACE_POINTS
  18#include <trace/events/timer_migration.h>
  19
  20/*
  21 * The timer migration mechanism is built on a hierarchy of groups. The
  22 * lowest level group contains CPUs, the next level groups of CPU groups
  23 * and so forth. The CPU groups are kept per node so for the normal case
  24 * lock contention won't happen across nodes. Depending on the number of
  25 * CPUs per node even the next level might be kept as groups of CPU groups
  26 * per node and only the levels above cross the node topology.
  27 *
  28 * Example topology for a two node system with 24 CPUs each.
  29 *
  30 * LVL 2                           [GRP2:0]
  31 *                              GRP1:0 = GRP1:M
  32 *
  33 * LVL 1            [GRP1:0]                      [GRP1:1]
  34 *               GRP0:0 - GRP0:2               GRP0:3 - GRP0:5
  35 *
  36 * LVL 0  [GRP0:0]  [GRP0:1]  [GRP0:2]  [GRP0:3]  [GRP0:4]  [GRP0:5]
  37 * CPUS     0-7       8-15      16-23     24-31     32-39     40-47
  38 *
  39 * The groups hold a timer queue of events sorted by expiry time. These
  40 * queues are updated when CPUs go in idle. When they come out of idle
  41 * ignore flag of events is set.
  42 *
  43 * Each group has a designated migrator CPU/group as long as a CPU/group is
  44 * active in the group. This designated role is necessary to avoid that all
  45 * active CPUs in a group try to migrate expired timers from other CPUs,
  46 * which would result in massive lock bouncing.
  47 *
  48 * When a CPU is awake, it checks in it's own timer tick the group
  49 * hierarchy up to the point where it is assigned the migrator role or if
  50 * no CPU is active, it also checks the groups where no migrator is set
  51 * (TMIGR_NONE).
  52 *
  53 * If it finds expired timers in one of the group queues it pulls them over
  54 * from the idle CPU and runs the timer function. After that it updates the
  55 * group and the parent groups if required.
  56 *
  57 * CPUs which go idle arm their CPU local timer hardware for the next local
  58 * (pinned) timer event. If the next migratable timer expires after the
  59 * next local timer or the CPU has no migratable timer pending then the
  60 * CPU does not queue an event in the LVL0 group. If the next migratable
  61 * timer expires before the next local timer then the CPU queues that timer
  62 * in the LVL0 group. In both cases the CPU marks itself idle in the LVL0
  63 * group.
  64 *
  65 * When CPU comes out of idle and when a group has at least a single active
  66 * child, the ignore flag of the tmigr_event is set. This indicates, that
  67 * the event is ignored even if it is still enqueued in the parent groups
  68 * timer queue. It will be removed when touching the timer queue the next
  69 * time. This spares locking in active path as the lock protects (after
  70 * setup) only event information. For more information about locking,
  71 * please read the section "Locking rules".
  72 *
  73 * If the CPU is the migrator of the group then it delegates that role to
  74 * the next active CPU in the group or sets migrator to TMIGR_NONE when
  75 * there is no active CPU in the group. This delegation needs to be
  76 * propagated up the hierarchy so hand over from other leaves can happen at
  77 * all hierarchy levels w/o doing a search.
  78 *
  79 * When the last CPU in the system goes idle, then it drops all migrator
  80 * duties up to the top level of the hierarchy (LVL2 in the example). It
  81 * then has to make sure, that it arms it's own local hardware timer for
  82 * the earliest event in the system.
  83 *
  84 *
  85 * Lifetime rules:
  86 * ---------------
  87 *
  88 * The groups are built up at init time or when CPUs come online. They are
  89 * not destroyed when a group becomes empty due to offlining. The group
  90 * just won't participate in the hierarchy management anymore. Destroying
  91 * groups would result in interesting race conditions which would just make
  92 * the whole mechanism slow and complex.
  93 *
  94 *
  95 * Locking rules:
  96 * --------------
  97 *
  98 * For setting up new groups and handling events it's required to lock both
  99 * child and parent group. The lock ordering is always bottom up. This also
 100 * includes the per CPU locks in struct tmigr_cpu. For updating the migrator and
 101 * active CPU/group information atomic_try_cmpxchg() is used instead and only
 102 * the per CPU tmigr_cpu->lock is held.
 103 *
 104 * During the setup of groups tmigr_level_list is required. It is protected by
 105 * @tmigr_mutex.
 106 *
 107 * When @timer_base->lock as well as tmigr related locks are required, the lock
 108 * ordering is: first @timer_base->lock, afterwards tmigr related locks.
 109 *
 110 *
 111 * Protection of the tmigr group state information:
 112 * ------------------------------------------------
 113 *
 114 * The state information with the list of active children and migrator needs to
 115 * be protected by a sequence counter. It prevents a race when updates in child
 116 * groups are propagated in changed order. The state update is performed
 117 * lockless and group wise. The following scenario describes what happens
 118 * without updating the sequence counter:
 119 *
 120 * Therefore, let's take three groups and four CPUs (CPU2 and CPU3 as well
 121 * as GRP0:1 will not change during the scenario):
 122 *
 123 *    LVL 1            [GRP1:0]
 124 *                     migrator = GRP0:1
 125 *                     active   = GRP0:0, GRP0:1
 126 *                   /                \
 127 *    LVL 0  [GRP0:0]                  [GRP0:1]
 128 *           migrator = CPU0           migrator = CPU2
 129 *           active   = CPU0           active   = CPU2
 130 *              /         \                /         \
 131 *    CPUs     0           1              2           3
 132 *             active      idle           active      idle
 133 *
 134 *
 135 * 1. CPU0 goes idle. As the update is performed group wise, in the first step
 136 *    only GRP0:0 is updated. The update of GRP1:0 is pending as CPU0 has to
 137 *    walk the hierarchy.
 138 *
 139 *    LVL 1            [GRP1:0]
 140 *                     migrator = GRP0:1
 141 *                     active   = GRP0:0, GRP0:1
 142 *                   /                \
 143 *    LVL 0  [GRP0:0]                  [GRP0:1]
 144 *       --> migrator = TMIGR_NONE     migrator = CPU2
 145 *       --> active   =                active   = CPU2
 146 *              /         \                /         \
 147 *    CPUs     0           1              2           3
 148 *         --> idle        idle           active      idle
 149 *
 150 * 2. While CPU0 goes idle and continues to update the state, CPU1 comes out of
 151 *    idle. CPU1 updates GRP0:0. The update for GRP1:0 is pending as CPU1 also
 152 *    has to walk the hierarchy. Both CPUs (CPU0 and CPU1) now walk the
 153 *    hierarchy to perform the needed update from their point of view. The
 154 *    currently visible state looks the following:
 155 *
 156 *    LVL 1            [GRP1:0]
 157 *                     migrator = GRP0:1
 158 *                     active   = GRP0:0, GRP0:1
 159 *                   /                \
 160 *    LVL 0  [GRP0:0]                  [GRP0:1]
 161 *       --> migrator = CPU1           migrator = CPU2
 162 *       --> active   = CPU1           active   = CPU2
 163 *              /         \                /         \
 164 *    CPUs     0           1              2           3
 165 *             idle    --> active         active      idle
 166 *
 167 * 3. Here is the race condition: CPU1 managed to propagate its changes (from
 168 *    step 2) through the hierarchy to GRP1:0 before CPU0 (step 1) did. The
 169 *    active members of GRP1:0 remain unchanged after the update since it is
 170 *    still valid from CPU1 current point of view:
 171 *
 172 *    LVL 1            [GRP1:0]
 173 *                 --> migrator = GRP0:1
 174 *                 --> active   = GRP0:0, GRP0:1
 175 *                   /                \
 176 *    LVL 0  [GRP0:0]                  [GRP0:1]
 177 *           migrator = CPU1           migrator = CPU2
 178 *           active   = CPU1           active   = CPU2
 179 *              /         \                /         \
 180 *    CPUs     0           1              2           3
 181 *             idle        active         active      idle
 182 *
 183 * 4. Now CPU0 finally propagates its changes (from step 1) to GRP1:0.
 184 *
 185 *    LVL 1            [GRP1:0]
 186 *                 --> migrator = GRP0:1
 187 *                 --> active   = GRP0:1
 188 *                   /                \
 189 *    LVL 0  [GRP0:0]                  [GRP0:1]
 190 *           migrator = CPU1           migrator = CPU2
 191 *           active   = CPU1           active   = CPU2
 192 *              /         \                /         \
 193 *    CPUs     0           1              2           3
 194 *             idle        active         active      idle
 195 *
 196 *
 197 * The race of CPU0 vs. CPU1 led to an inconsistent state in GRP1:0. CPU1 is
 198 * active and is correctly listed as active in GRP0:0. However GRP1:0 does not
 199 * have GRP0:0 listed as active, which is wrong. The sequence counter has been
 200 * added to avoid inconsistent states during updates. The state is updated
 201 * atomically only if all members, including the sequence counter, match the
 202 * expected value (compare-and-exchange).
 203 *
 204 * Looking back at the previous example with the addition of the sequence
 205 * counter: The update as performed by CPU0 in step 4 will fail. CPU1 changed
 206 * the sequence number during the update in step 3 so the expected old value (as
 207 * seen by CPU0 before starting the walk) does not match.
 208 *
 209 * Prevent race between new event and last CPU going inactive
 210 * ----------------------------------------------------------
 211 *
 212 * When the last CPU is going idle and there is a concurrent update of a new
 213 * first global timer of an idle CPU, the group and child states have to be read
 214 * while holding the lock in tmigr_update_events(). The following scenario shows
 215 * what happens, when this is not done.
 216 *
 217 * 1. Only CPU2 is active:
 218 *
 219 *    LVL 1            [GRP1:0]
 220 *                     migrator = GRP0:1
 221 *                     active   = GRP0:1
 222 *                     next_expiry = KTIME_MAX
 223 *                   /                \
 224 *    LVL 0  [GRP0:0]                  [GRP0:1]
 225 *           migrator = TMIGR_NONE     migrator = CPU2
 226 *           active   =                active   = CPU2
 227 *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
 228 *              /         \                /         \
 229 *    CPUs     0           1              2           3
 230 *             idle        idle           active      idle
 231 *
 232 * 2. Now CPU 2 goes idle (and has no global timer, that has to be handled) and
 233 *    propagates that to GRP0:1:
 234 *
 235 *    LVL 1            [GRP1:0]
 236 *                     migrator = GRP0:1
 237 *                     active   = GRP0:1
 238 *                     next_expiry = KTIME_MAX
 239 *                   /                \
 240 *    LVL 0  [GRP0:0]                  [GRP0:1]
 241 *           migrator = TMIGR_NONE --> migrator = TMIGR_NONE
 242 *           active   =            --> active   =
 243 *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
 244 *              /         \                /         \
 245 *    CPUs     0           1              2           3
 246 *             idle        idle       --> idle        idle
 247 *
 248 * 3. Now the idle state is propagated up to GRP1:0. As this is now the last
 249 *    child going idle in top level group, the expiry of the next group event
 250 *    has to be handed back to make sure no event is lost. As there is no event
 251 *    enqueued, KTIME_MAX is handed back to CPU2.
 252 *
 253 *    LVL 1            [GRP1:0]
 254 *                 --> migrator = TMIGR_NONE
 255 *                 --> active   =
 256 *                     next_expiry = KTIME_MAX
 257 *                   /                \
 258 *    LVL 0  [GRP0:0]                  [GRP0:1]
 259 *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
 260 *           active   =                active   =
 261 *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
 262 *              /         \                /         \
 263 *    CPUs     0           1              2           3
 264 *             idle        idle       --> idle        idle
 265 *
 266 * 4. CPU 0 has a new timer queued from idle and it expires at TIMER0. CPU0
 267 *    propagates that to GRP0:0:
 268 *
 269 *    LVL 1            [GRP1:0]
 270 *                     migrator = TMIGR_NONE
 271 *                     active   =
 272 *                     next_expiry = KTIME_MAX
 273 *                   /                \
 274 *    LVL 0  [GRP0:0]                  [GRP0:1]
 275 *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
 276 *           active   =                active   =
 277 *       --> next_expiry = TIMER0      next_expiry  = KTIME_MAX
 278 *              /         \                /         \
 279 *    CPUs     0           1              2           3
 280 *             idle        idle           idle        idle
 281 *
 282 * 5. GRP0:0 is not active, so the new timer has to be propagated to
 283 *    GRP1:0. Therefore the GRP1:0 state has to be read. When the stalled value
 284 *    (from step 2) is read, the timer is enqueued into GRP1:0, but nothing is
 285 *    handed back to CPU0, as it seems that there is still an active child in
 286 *    top level group.
 287 *
 288 *    LVL 1            [GRP1:0]
 289 *                     migrator = TMIGR_NONE
 290 *                     active   =
 291 *                 --> next_expiry = TIMER0
 292 *                   /                \
 293 *    LVL 0  [GRP0:0]                  [GRP0:1]
 294 *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
 295 *           active   =                active   =
 296 *           next_expiry = TIMER0      next_expiry  = KTIME_MAX
 297 *              /         \                /         \
 298 *    CPUs     0           1              2           3
 299 *             idle        idle           idle        idle
 300 *
 301 * This is prevented by reading the state when holding the lock (when a new
 302 * timer has to be propagated from idle path)::
 303 *
 304 *   CPU2 (tmigr_inactive_up())          CPU0 (tmigr_new_timer_up())
 305 *   --------------------------          ---------------------------
 306 *   // step 3:
 307 *   cmpxchg(&GRP1:0->state);
 308 *   tmigr_update_events() {
 309 *       spin_lock(&GRP1:0->lock);
 310 *       // ... update events ...
 311 *       // hand back first expiry when GRP1:0 is idle
 312 *       spin_unlock(&GRP1:0->lock);
 313 *       // ^^^ release state modification
 314 *   }
 315 *                                       tmigr_update_events() {
 316 *                                           spin_lock(&GRP1:0->lock)
 317 *                                           // ^^^ acquire state modification
 318 *                                           group_state = atomic_read(&GRP1:0->state)
 319 *                                           // .... update events ...
 320 *                                           // hand back first expiry when GRP1:0 is idle
 321 *                                           spin_unlock(&GRP1:0->lock) <3>
 322 *                                           // ^^^ makes state visible for other
 323 *                                           // callers of tmigr_new_timer_up()
 324 *                                       }
 325 *
 326 * When CPU0 grabs the lock directly after cmpxchg, the first timer is reported
 327 * back to CPU0 and also later on to CPU2. So no timer is missed. A concurrent
 328 * update of the group state from active path is no problem, as the upcoming CPU
 329 * will take care of the group events.
 330 *
 331 * Required event and timerqueue update after a remote expiry:
 332 * -----------------------------------------------------------
 333 *
 334 * After expiring timers of a remote CPU, a walk through the hierarchy and
 335 * update of events and timerqueues is required. It is obviously needed if there
 336 * is a 'new' global timer but also if there is no new global timer but the
 337 * remote CPU is still idle.
 338 *
 339 * 1. CPU0 and CPU1 are idle and have both a global timer expiring at the same
 340 *    time. So both have an event enqueued in the timerqueue of GRP0:0. CPU3 is
 341 *    also idle and has no global timer pending. CPU2 is the only active CPU and
 342 *    thus also the migrator:
 343 *
 344 *    LVL 1            [GRP1:0]
 345 *                     migrator = GRP0:1
 346 *                     active   = GRP0:1
 347 *                 --> timerqueue = evt-GRP0:0
 348 *                   /                \
 349 *    LVL 0  [GRP0:0]                  [GRP0:1]
 350 *           migrator = TMIGR_NONE     migrator = CPU2
 351 *           active   =                active   = CPU2
 352 *           groupevt.ignore = false   groupevt.ignore = true
 353 *           groupevt.cpu = CPU0       groupevt.cpu =
 354 *           timerqueue = evt-CPU0,    timerqueue =
 355 *                        evt-CPU1
 356 *              /         \                /         \
 357 *    CPUs     0           1              2           3
 358 *             idle        idle           active      idle
 359 *
 360 * 2. CPU2 starts to expire remote timers. It starts with LVL0 group
 361 *    GRP0:1. There is no event queued in the timerqueue, so CPU2 continues with
 362 *    the parent of GRP0:1: GRP1:0. In GRP1:0 it dequeues the first event. It
 363 *    looks at tmigr_event::cpu struct member and expires the pending timer(s)
 364 *    of CPU0.
 365 *
 366 *    LVL 1            [GRP1:0]
 367 *                     migrator = GRP0:1
 368 *                     active   = GRP0:1
 369 *                 --> timerqueue =
 370 *                   /                \
 371 *    LVL 0  [GRP0:0]                  [GRP0:1]
 372 *           migrator = TMIGR_NONE     migrator = CPU2
 373 *           active   =                active   = CPU2
 374 *           groupevt.ignore = false   groupevt.ignore = true
 375 *       --> groupevt.cpu = CPU0       groupevt.cpu =
 376 *           timerqueue = evt-CPU0,    timerqueue =
 377 *                        evt-CPU1
 378 *              /         \                /         \
 379 *    CPUs     0           1              2           3
 380 *             idle        idle           active      idle
 381 *
 382 * 3. Some work has to be done after expiring the timers of CPU0. If we stop
 383 *    here, then CPU1's pending global timer(s) will not expire in time and the
 384 *    timerqueue of GRP0:0 has still an event for CPU0 enqueued which has just
 385 *    been processed. So it is required to walk the hierarchy from CPU0's point
 386 *    of view and update it accordingly. CPU0's event will be removed from the
 387 *    timerqueue because it has no pending timer. If CPU0 would have a timer
 388 *    pending then it has to expire after CPU1's first timer because all timers
 389 *    from this period were just expired. Either way CPU1's event will be first
 390 *    in GRP0:0's timerqueue and therefore set in the CPU field of the group
 391 *    event which is then enqueued in GRP1:0's timerqueue as GRP0:0 is still not
 392 *    active:
 393 *
 394 *    LVL 1            [GRP1:0]
 395 *                     migrator = GRP0:1
 396 *                     active   = GRP0:1
 397 *                 --> timerqueue = evt-GRP0:0
 398 *                   /                \
 399 *    LVL 0  [GRP0:0]                  [GRP0:1]
 400 *           migrator = TMIGR_NONE     migrator = CPU2
 401 *           active   =                active   = CPU2
 402 *           groupevt.ignore = false   groupevt.ignore = true
 403 *       --> groupevt.cpu = CPU1       groupevt.cpu =
 404 *       --> timerqueue = evt-CPU1     timerqueue =
 405 *              /         \                /         \
 406 *    CPUs     0           1              2           3
 407 *             idle        idle           active      idle
 408 *
 409 * Now CPU2 (migrator) will continue step 2 at GRP1:0 and will expire the
 410 * timer(s) of CPU1.
 411 *
 412 * The hierarchy walk in step 3 can be skipped if the migrator notices that a
 413 * CPU of GRP0:0 is active again. The CPU will mark GRP0:0 active and take care
 414 * of the group as migrator and any needed updates within the hierarchy.
 415 */
 416
 417static DEFINE_MUTEX(tmigr_mutex);
 418static struct list_head *tmigr_level_list __read_mostly;
 419
 420static unsigned int tmigr_hierarchy_levels __read_mostly;
 421static unsigned int tmigr_crossnode_level __read_mostly;
 422
 423static DEFINE_PER_CPU(struct tmigr_cpu, tmigr_cpu);
 424
 425#define TMIGR_NONE	0xFF
 426#define BIT_CNT		8
 427
 428static inline bool tmigr_is_not_available(struct tmigr_cpu *tmc)
 429{
 430	return !(tmc->tmgroup && tmc->online);
 431}
 432
 433/*
 434 * Returns true, when @childmask corresponds to the group migrator or when the
 435 * group is not active - so no migrator is set.
 436 */
 437static bool tmigr_check_migrator(struct tmigr_group *group, u8 childmask)
 438{
 439	union tmigr_state s;
 440
 441	s.state = atomic_read(&group->migr_state);
 442
 443	if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE))
 444		return true;
 445
 446	return false;
 447}
 448
 449static bool tmigr_check_migrator_and_lonely(struct tmigr_group *group, u8 childmask)
 450{
 451	bool lonely, migrator = false;
 452	unsigned long active;
 453	union tmigr_state s;
 454
 455	s.state = atomic_read(&group->migr_state);
 456
 457	if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE))
 458		migrator = true;
 459
 460	active = s.active;
 461	lonely = bitmap_weight(&active, BIT_CNT) <= 1;
 462
 463	return (migrator && lonely);
 464}
 465
 466static bool tmigr_check_lonely(struct tmigr_group *group)
 467{
 468	unsigned long active;
 469	union tmigr_state s;
 470
 471	s.state = atomic_read(&group->migr_state);
 472
 473	active = s.active;
 474
 475	return bitmap_weight(&active, BIT_CNT) <= 1;
 476}
 477
 478/**
 479 * struct tmigr_walk - data required for walking the hierarchy
 480 * @nextexp:		Next CPU event expiry information which is handed into
 481 *			the timer migration code by the timer code
 482 *			(get_next_timer_interrupt())
 483 * @firstexp:		Contains the first event expiry information when
 484 *			hierarchy is completely idle.  When CPU itself was the
 485 *			last going idle, information makes sure, that CPU will
 486 *			be back in time. When using this value in the remote
 487 *			expiry case, firstexp is stored in the per CPU tmigr_cpu
 488 *			struct of CPU which expires remote timers. It is updated
 489 *			in top level group only. Be aware, there could occur a
 490 *			new top level of the hierarchy between the 'top level
 491 *			call' in tmigr_update_events() and the check for the
 492 *			parent group in walk_groups(). Then @firstexp might
 493 *			contain a value != KTIME_MAX even if it was not the
 494 *			final top level. This is not a problem, as the worst
 495 *			outcome is a CPU which might wake up a little early.
 496 * @evt:		Pointer to tmigr_event which needs to be queued (of idle
 497 *			child group)
 498 * @childmask:		groupmask of child group
 499 * @remote:		Is set, when the new timer path is executed in
 500 *			tmigr_handle_remote_cpu()
 501 * @basej:		timer base in jiffies
 502 * @now:		timer base monotonic
 503 * @check:		is set if there is the need to handle remote timers;
 504 *			required in tmigr_requires_handle_remote() only
 505 * @tmc_active:		this flag indicates, whether the CPU which triggers
 506 *			the hierarchy walk is !idle in the timer migration
 507 *			hierarchy. When the CPU is idle and the whole hierarchy is
 508 *			idle, only the first event of the top level has to be
 509 *			considered.
 510 */
 511struct tmigr_walk {
 512	u64			nextexp;
 513	u64			firstexp;
 514	struct tmigr_event	*evt;
 515	u8			childmask;
 516	bool			remote;
 517	unsigned long		basej;
 518	u64			now;
 519	bool			check;
 520	bool			tmc_active;
 521};
 522
 523typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, struct tmigr_walk *);
 524
 525static void __walk_groups(up_f up, struct tmigr_walk *data,
 526			  struct tmigr_cpu *tmc)
 527{
 528	struct tmigr_group *child = NULL, *group = tmc->tmgroup;
 529
 530	do {
 531		WARN_ON_ONCE(group->level >= tmigr_hierarchy_levels);
 532
 533		if (up(group, child, data))
 534			break;
 535
 536		child = group;
 537		/*
 538		 * Pairs with the store release on group connection
 539		 * to make sure group initialization is visible.
 540		 */
 541		group = READ_ONCE(group->parent);
 542		data->childmask = child->groupmask;
 543		WARN_ON_ONCE(!data->childmask);
 544	} while (group);
 545}
 546
 547static void walk_groups(up_f up, struct tmigr_walk *data, struct tmigr_cpu *tmc)
 548{
 549	lockdep_assert_held(&tmc->lock);
 550
 551	__walk_groups(up, data, tmc);
 552}
 553
 554/*
 555 * Returns the next event of the timerqueue @group->events
 556 *
 557 * Removes timers with ignore flag and update next_expiry of the group. Values
 558 * of the group event are updated in tmigr_update_events() only.
 559 */
 560static struct tmigr_event *tmigr_next_groupevt(struct tmigr_group *group)
 561{
 562	struct timerqueue_node *node = NULL;
 563	struct tmigr_event *evt = NULL;
 564
 565	lockdep_assert_held(&group->lock);
 566
 567	WRITE_ONCE(group->next_expiry, KTIME_MAX);
 568
 569	while ((node = timerqueue_getnext(&group->events))) {
 570		evt = container_of(node, struct tmigr_event, nextevt);
 571
 572		if (!READ_ONCE(evt->ignore)) {
 573			WRITE_ONCE(group->next_expiry, evt->nextevt.expires);
 574			return evt;
 575		}
 576
 577		/*
 578		 * Remove next timers with ignore flag, because the group lock
 579		 * is held anyway
 580		 */
 581		if (!timerqueue_del(&group->events, node))
 582			break;
 583	}
 584
 585	return NULL;
 586}
 587
 588/*
 589 * Return the next event (with the expiry equal or before @now)
 590 *
 591 * Event, which is returned, is also removed from the queue.
 592 */
 593static struct tmigr_event *tmigr_next_expired_groupevt(struct tmigr_group *group,
 594						       u64 now)
 595{
 596	struct tmigr_event *evt = tmigr_next_groupevt(group);
 597
 598	if (!evt || now < evt->nextevt.expires)
 599		return NULL;
 600
 601	/*
 602	 * The event is ready to expire. Remove it and update next group event.
 603	 */
 604	timerqueue_del(&group->events, &evt->nextevt);
 605	tmigr_next_groupevt(group);
 606
 607	return evt;
 608}
 609
 610static u64 tmigr_next_groupevt_expires(struct tmigr_group *group)
 611{
 612	struct tmigr_event *evt;
 613
 614	evt = tmigr_next_groupevt(group);
 615
 616	if (!evt)
 617		return KTIME_MAX;
 618	else
 619		return evt->nextevt.expires;
 620}
 621
 622static bool tmigr_active_up(struct tmigr_group *group,
 623			    struct tmigr_group *child,
 624			    struct tmigr_walk *data)
 625{
 626	union tmigr_state curstate, newstate;
 627	bool walk_done;
 628	u8 childmask;
 629
 630	childmask = data->childmask;
 631	/*
 632	 * No memory barrier is required here in contrast to
 633	 * tmigr_inactive_up(), as the group state change does not depend on the
 634	 * child state.
 635	 */
 636	curstate.state = atomic_read(&group->migr_state);
 637
 638	do {
 639		newstate = curstate;
 640		walk_done = true;
 641
 642		if (newstate.migrator == TMIGR_NONE) {
 643			newstate.migrator = childmask;
 644
 645			/* Changes need to be propagated */
 646			walk_done = false;
 647		}
 648
 649		newstate.active |= childmask;
 650		newstate.seq++;
 651
 652	} while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state));
 653
 654	trace_tmigr_group_set_cpu_active(group, newstate, childmask);
 655
 656	/*
 657	 * The group is active (again). The group event might be still queued
 658	 * into the parent group's timerqueue but can now be handled by the
 659	 * migrator of this group. Therefore the ignore flag for the group event
 660	 * is updated to reflect this.
 661	 *
 662	 * The update of the ignore flag in the active path is done lockless. In
 663	 * worst case the migrator of the parent group observes the change too
 664	 * late and expires remotely all events belonging to this group. The
 665	 * lock is held while updating the ignore flag in idle path. So this
 666	 * state change will not be lost.
 667	 */
 668	WRITE_ONCE(group->groupevt.ignore, true);
 669
 670	return walk_done;
 671}
 672
 673static void __tmigr_cpu_activate(struct tmigr_cpu *tmc)
 674{
 675	struct tmigr_walk data;
 676
 677	data.childmask = tmc->groupmask;
 678
 679	trace_tmigr_cpu_active(tmc);
 680
 681	tmc->cpuevt.ignore = true;
 682	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
 683
 684	walk_groups(&tmigr_active_up, &data, tmc);
 685}
 686
 687/**
 688 * tmigr_cpu_activate() - set this CPU active in timer migration hierarchy
 689 *
 690 * Call site timer_clear_idle() is called with interrupts disabled.
 691 */
 692void tmigr_cpu_activate(void)
 693{
 694	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
 695
 696	if (tmigr_is_not_available(tmc))
 697		return;
 698
 699	if (WARN_ON_ONCE(!tmc->idle))
 700		return;
 701
 702	raw_spin_lock(&tmc->lock);
 703	tmc->idle = false;
 704	__tmigr_cpu_activate(tmc);
 705	raw_spin_unlock(&tmc->lock);
 706}
 707
 708/*
 709 * Returns true, if there is nothing to be propagated to the next level
 710 *
 711 * @data->firstexp is set to expiry of first gobal event of the (top level of
 712 * the) hierarchy, but only when hierarchy is completely idle.
 713 *
 714 * The child and group states need to be read under the lock, to prevent a race
 715 * against a concurrent tmigr_inactive_up() run when the last CPU goes idle. See
 716 * also section "Prevent race between new event and last CPU going inactive" in
 717 * the documentation at the top.
 718 *
 719 * This is the only place where the group event expiry value is set.
 720 */
 721static
 722bool tmigr_update_events(struct tmigr_group *group, struct tmigr_group *child,
 723			 struct tmigr_walk *data)
 724{
 725	struct tmigr_event *evt, *first_childevt;
 726	union tmigr_state childstate, groupstate;
 727	bool remote = data->remote;
 728	bool walk_done = false;
 729	bool ignore;
 730	u64 nextexp;
 731
 732	if (child) {
 733		raw_spin_lock(&child->lock);
 734		raw_spin_lock_nested(&group->lock, SINGLE_DEPTH_NESTING);
 735
 736		childstate.state = atomic_read(&child->migr_state);
 737		groupstate.state = atomic_read(&group->migr_state);
 738
 739		if (childstate.active) {
 740			walk_done = true;
 741			goto unlock;
 742		}
 743
 744		first_childevt = tmigr_next_groupevt(child);
 745		nextexp = child->next_expiry;
 746		evt = &child->groupevt;
 747
 748		/*
 749		 * This can race with concurrent idle exit (activate).
 750		 * If the current writer wins, a useless remote expiration may
 751		 * be scheduled. If the activate wins, the event is properly
 752		 * ignored.
 753		 */
 754		ignore = (nextexp == KTIME_MAX) ? true : false;
 755		WRITE_ONCE(evt->ignore, ignore);
 756	} else {
 757		nextexp = data->nextexp;
 758
 759		first_childevt = evt = data->evt;
 760		ignore = evt->ignore;
 761
 762		/*
 763		 * Walking the hierarchy is required in any case when a
 764		 * remote expiry was done before. This ensures to not lose
 765		 * already queued events in non active groups (see section
 766		 * "Required event and timerqueue update after a remote
 767		 * expiry" in the documentation at the top).
 768		 *
 769		 * The two call sites which are executed without a remote expiry
 770		 * before, are not prevented from propagating changes through
 771		 * the hierarchy by the return:
 772		 *  - When entering this path by tmigr_new_timer(), @evt->ignore
 773		 *    is never set.
 774		 *  - tmigr_inactive_up() takes care of the propagation by
 775		 *    itself and ignores the return value. But an immediate
 776		 *    return is possible if there is a parent, sparing group
 777		 *    locking at this level, because the upper walking call to
 778		 *    the parent will take care about removing this event from
 779		 *    within the group and update next_expiry accordingly.
 780		 *
 781		 * However if there is no parent, ie: the hierarchy has only a
 782		 * single level so @group is the top level group, make sure the
 783		 * first event information of the group is updated properly and
 784		 * also handled properly, so skip this fast return path.
 785		 */
 786		if (ignore && !remote && group->parent)
 787			return true;
 788
 789		raw_spin_lock(&group->lock);
 790
 791		childstate.state = 0;
 792		groupstate.state = atomic_read(&group->migr_state);
 793	}
 794
 795	/*
 796	 * If the child event is already queued in the group, remove it from the
 797	 * queue when the expiry time changed only or when it could be ignored.
 798	 */
 799	if (timerqueue_node_queued(&evt->nextevt)) {
 800		if ((evt->nextevt.expires == nextexp) && !ignore) {
 801			/* Make sure not to miss a new CPU event with the same expiry */
 802			evt->cpu = first_childevt->cpu;
 803			goto check_toplvl;
 804		}
 805
 806		if (!timerqueue_del(&group->events, &evt->nextevt))
 807			WRITE_ONCE(group->next_expiry, KTIME_MAX);
 808	}
 809
 810	if (ignore) {
 811		/*
 812		 * When the next child event could be ignored (nextexp is
 813		 * KTIME_MAX) and there was no remote timer handling before or
 814		 * the group is already active, there is no need to walk the
 815		 * hierarchy even if there is a parent group.
 816		 *
 817		 * The other way round: even if the event could be ignored, but
 818		 * if a remote timer handling was executed before and the group
 819		 * is not active, walking the hierarchy is required to not miss
 820		 * an enqueued timer in the non active group. The enqueued timer
 821		 * of the group needs to be propagated to a higher level to
 822		 * ensure it is handled.
 823		 */
 824		if (!remote || groupstate.active)
 825			walk_done = true;
 826	} else {
 827		evt->nextevt.expires = nextexp;
 828		evt->cpu = first_childevt->cpu;
 829
 830		if (timerqueue_add(&group->events, &evt->nextevt))
 831			WRITE_ONCE(group->next_expiry, nextexp);
 832	}
 833
 834check_toplvl:
 835	if (!group->parent && (groupstate.migrator == TMIGR_NONE)) {
 836		walk_done = true;
 837
 838		/*
 839		 * Nothing to do when update was done during remote timer
 840		 * handling. First timer in top level group which needs to be
 841		 * handled when top level group is not active, is calculated
 842		 * directly in tmigr_handle_remote_up().
 843		 */
 844		if (remote)
 845			goto unlock;
 846
 847		/*
 848		 * The top level group is idle and it has to be ensured the
 849		 * global timers are handled in time. (This could be optimized
 850		 * by keeping track of the last global scheduled event and only
 851		 * arming it on the CPU if the new event is earlier. Not sure if
 852		 * its worth the complexity.)
 853		 */
 854		data->firstexp = tmigr_next_groupevt_expires(group);
 855	}
 856
 857	trace_tmigr_update_events(child, group, childstate, groupstate,
 858				  nextexp);
 859
 860unlock:
 861	raw_spin_unlock(&group->lock);
 862
 863	if (child)
 864		raw_spin_unlock(&child->lock);
 865
 866	return walk_done;
 867}
 868
 869static bool tmigr_new_timer_up(struct tmigr_group *group,
 870			       struct tmigr_group *child,
 871			       struct tmigr_walk *data)
 872{
 873	return tmigr_update_events(group, child, data);
 874}
 875
 876/*
 877 * Returns the expiry of the next timer that needs to be handled. KTIME_MAX is
 878 * returned, if an active CPU will handle all the timer migration hierarchy
 879 * timers.
 880 */
 881static u64 tmigr_new_timer(struct tmigr_cpu *tmc, u64 nextexp)
 882{
 883	struct tmigr_walk data = { .nextexp = nextexp,
 884				   .firstexp = KTIME_MAX,
 885				   .evt = &tmc->cpuevt };
 886
 887	lockdep_assert_held(&tmc->lock);
 888
 889	if (tmc->remote)
 890		return KTIME_MAX;
 891
 892	trace_tmigr_cpu_new_timer(tmc);
 893
 894	tmc->cpuevt.ignore = false;
 895	data.remote = false;
 896
 897	walk_groups(&tmigr_new_timer_up, &data, tmc);
 898
 899	/* If there is a new first global event, make sure it is handled */
 900	return data.firstexp;
 901}
 902
 903static void tmigr_handle_remote_cpu(unsigned int cpu, u64 now,
 904				    unsigned long jif)
 905{
 906	struct timer_events tevt;
 907	struct tmigr_walk data;
 908	struct tmigr_cpu *tmc;
 909
 910	tmc = per_cpu_ptr(&tmigr_cpu, cpu);
 911
 912	raw_spin_lock_irq(&tmc->lock);
 913
 914	/*
 915	 * If the remote CPU is offline then the timers have been migrated to
 916	 * another CPU.
 917	 *
 918	 * If tmigr_cpu::remote is set, at the moment another CPU already
 919	 * expires the timers of the remote CPU.
 920	 *
 921	 * If tmigr_event::ignore is set, then the CPU returns from idle and
 922	 * takes care of its timers.
 923	 *
 924	 * If the next event expires in the future, then the event has been
 925	 * updated and there are no timers to expire right now. The CPU which
 926	 * updated the event takes care when hierarchy is completely
 927	 * idle. Otherwise the migrator does it as the event is enqueued.
 928	 */
 929	if (!tmc->online || tmc->remote || tmc->cpuevt.ignore ||
 930	    now < tmc->cpuevt.nextevt.expires) {
 931		raw_spin_unlock_irq(&tmc->lock);
 932		return;
 933	}
 934
 935	trace_tmigr_handle_remote_cpu(tmc);
 936
 937	tmc->remote = true;
 938	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
 939
 940	/* Drop the lock to allow the remote CPU to exit idle */
 941	raw_spin_unlock_irq(&tmc->lock);
 942
 943	if (cpu != smp_processor_id())
 944		timer_expire_remote(cpu);
 945
 946	/*
 947	 * Lock ordering needs to be preserved - timer_base locks before tmigr
 948	 * related locks (see section "Locking rules" in the documentation at
 949	 * the top). During fetching the next timer interrupt, also tmc->lock
 950	 * needs to be held. Otherwise there is a possible race window against
 951	 * the CPU itself when it comes out of idle, updates the first timer in
 952	 * the hierarchy and goes back to idle.
 953	 *
 954	 * timer base locks are dropped as fast as possible: After checking
 955	 * whether the remote CPU went offline in the meantime and after
 956	 * fetching the next remote timer interrupt. Dropping the locks as fast
 957	 * as possible keeps the locking region small and prevents holding
 958	 * several (unnecessary) locks during walking the hierarchy for updating
 959	 * the timerqueue and group events.
 960	 */
 961	local_irq_disable();
 962	timer_lock_remote_bases(cpu);
 963	raw_spin_lock(&tmc->lock);
 964
 965	/*
 966	 * When the CPU went offline in the meantime, no hierarchy walk has to
 967	 * be done for updating the queued events, because the walk was
 968	 * already done during marking the CPU offline in the hierarchy.
 969	 *
 970	 * When the CPU is no longer idle, the CPU takes care of the timers and
 971	 * also of the timers in the hierarchy.
 972	 *
 973	 * (See also section "Required event and timerqueue update after a
 974	 * remote expiry" in the documentation at the top)
 975	 */
 976	if (!tmc->online || !tmc->idle) {
 977		timer_unlock_remote_bases(cpu);
 978		goto unlock;
 979	}
 980
 981	/* next	event of CPU */
 982	fetch_next_timer_interrupt_remote(jif, now, &tevt, cpu);
 983	timer_unlock_remote_bases(cpu);
 984
 985	data.nextexp = tevt.global;
 986	data.firstexp = KTIME_MAX;
 987	data.evt = &tmc->cpuevt;
 988	data.remote = true;
 989
 990	/*
 991	 * The update is done even when there is no 'new' global timer pending
 992	 * on the remote CPU (see section "Required event and timerqueue update
 993	 * after a remote expiry" in the documentation at the top)
 994	 */
 995	walk_groups(&tmigr_new_timer_up, &data, tmc);
 996
 997unlock:
 998	tmc->remote = false;
 999	raw_spin_unlock_irq(&tmc->lock);
1000}
1001
1002static bool tmigr_handle_remote_up(struct tmigr_group *group,
1003				   struct tmigr_group *child,
1004				   struct tmigr_walk *data)
1005{
1006	struct tmigr_event *evt;
1007	unsigned long jif;
1008	u8 childmask;
1009	u64 now;
1010
1011	jif = data->basej;
1012	now = data->now;
1013
1014	childmask = data->childmask;
1015
1016	trace_tmigr_handle_remote(group);
1017again:
1018	/*
1019	 * Handle the group only if @childmask is the migrator or if the
1020	 * group has no migrator. Otherwise the group is active and is
1021	 * handled by its own migrator.
1022	 */
1023	if (!tmigr_check_migrator(group, childmask))
1024		return true;
1025
1026	raw_spin_lock_irq(&group->lock);
1027
1028	evt = tmigr_next_expired_groupevt(group, now);
1029
1030	if (evt) {
1031		unsigned int remote_cpu = evt->cpu;
1032
1033		raw_spin_unlock_irq(&group->lock);
1034
1035		tmigr_handle_remote_cpu(remote_cpu, now, jif);
1036
1037		/* check if there is another event, that needs to be handled */
1038		goto again;
1039	}
1040
1041	/*
1042	 * Keep track of the expiry of the first event that needs to be handled
1043	 * (group->next_expiry was updated by tmigr_next_expired_groupevt(),
1044	 * next was set by tmigr_handle_remote_cpu()).
1045	 */
1046	data->firstexp = group->next_expiry;
1047
1048	raw_spin_unlock_irq(&group->lock);
1049
1050	return false;
1051}
1052
1053/**
1054 * tmigr_handle_remote() - Handle global timers of remote idle CPUs
1055 *
1056 * Called from the timer soft interrupt with interrupts enabled.
1057 */
1058void tmigr_handle_remote(void)
1059{
1060	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1061	struct tmigr_walk data;
1062
1063	if (tmigr_is_not_available(tmc))
1064		return;
1065
1066	data.childmask = tmc->groupmask;
1067	data.firstexp = KTIME_MAX;
1068
1069	/*
1070	 * NOTE: This is a doubled check because the migrator test will be done
1071	 * in tmigr_handle_remote_up() anyway. Keep this check to speed up the
1072	 * return when nothing has to be done.
1073	 */
1074	if (!tmigr_check_migrator(tmc->tmgroup, tmc->groupmask)) {
1075		/*
1076		 * If this CPU was an idle migrator, make sure to clear its wakeup
1077		 * value so it won't chase timers that have already expired elsewhere.
1078		 * This avoids endless requeue from tmigr_new_timer().
1079		 */
1080		if (READ_ONCE(tmc->wakeup) == KTIME_MAX)
1081			return;
1082	}
1083
1084	data.now = get_jiffies_update(&data.basej);
1085
1086	/*
1087	 * Update @tmc->wakeup only at the end and do not reset @tmc->wakeup to
1088	 * KTIME_MAX. Even if tmc->lock is not held during the whole remote
1089	 * handling, tmc->wakeup is fine to be stale as it is called in
1090	 * interrupt context and tick_nohz_next_event() is executed in interrupt
1091	 * exit path only after processing the last pending interrupt.
1092	 */
1093
1094	__walk_groups(&tmigr_handle_remote_up, &data, tmc);
1095
1096	raw_spin_lock_irq(&tmc->lock);
1097	WRITE_ONCE(tmc->wakeup, data.firstexp);
1098	raw_spin_unlock_irq(&tmc->lock);
1099}
1100
1101static bool tmigr_requires_handle_remote_up(struct tmigr_group *group,
1102					    struct tmigr_group *child,
1103					    struct tmigr_walk *data)
1104{
1105	u8 childmask;
1106
1107	childmask = data->childmask;
1108
1109	/*
1110	 * Handle the group only if the child is the migrator or if the group
1111	 * has no migrator. Otherwise the group is active and is handled by its
1112	 * own migrator.
1113	 */
1114	if (!tmigr_check_migrator(group, childmask))
1115		return true;
1116
1117	/*
1118	 * When there is a parent group and the CPU which triggered the
1119	 * hierarchy walk is not active, proceed the walk to reach the top level
1120	 * group before reading the next_expiry value.
1121	 */
1122	if (group->parent && !data->tmc_active)
1123		return false;
1124
1125	/*
1126	 * The lock is required on 32bit architectures to read the variable
1127	 * consistently with a concurrent writer. On 64bit the lock is not
1128	 * required because the read operation is not split and so it is always
1129	 * consistent.
1130	 */
1131	if (IS_ENABLED(CONFIG_64BIT)) {
1132		data->firstexp = READ_ONCE(group->next_expiry);
1133		if (data->now >= data->firstexp) {
1134			data->check = true;
1135			return true;
1136		}
1137	} else {
1138		raw_spin_lock(&group->lock);
1139		data->firstexp = group->next_expiry;
1140		if (data->now >= group->next_expiry) {
1141			data->check = true;
1142			raw_spin_unlock(&group->lock);
1143			return true;
1144		}
1145		raw_spin_unlock(&group->lock);
1146	}
1147
1148	return false;
1149}
1150
1151/**
1152 * tmigr_requires_handle_remote() - Check the need of remote timer handling
1153 *
1154 * Must be called with interrupts disabled.
1155 */
1156bool tmigr_requires_handle_remote(void)
1157{
1158	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1159	struct tmigr_walk data;
1160	unsigned long jif;
1161	bool ret = false;
1162
1163	if (tmigr_is_not_available(tmc))
1164		return ret;
1165
1166	data.now = get_jiffies_update(&jif);
1167	data.childmask = tmc->groupmask;
1168	data.firstexp = KTIME_MAX;
1169	data.tmc_active = !tmc->idle;
1170	data.check = false;
1171
1172	/*
1173	 * If the CPU is active, walk the hierarchy to check whether a remote
1174	 * expiry is required.
1175	 *
1176	 * Check is done lockless as interrupts are disabled and @tmc->idle is
1177	 * set only by the local CPU.
1178	 */
1179	if (!tmc->idle) {
1180		__walk_groups(&tmigr_requires_handle_remote_up, &data, tmc);
1181
1182		return data.check;
1183	}
1184
1185	/*
1186	 * When the CPU is idle, compare @tmc->wakeup with @data.now. The lock
1187	 * is required on 32bit architectures to read the variable consistently
1188	 * with a concurrent writer. On 64bit the lock is not required because
1189	 * the read operation is not split and so it is always consistent.
1190	 */
1191	if (IS_ENABLED(CONFIG_64BIT)) {
1192		if (data.now >= READ_ONCE(tmc->wakeup))
1193			return true;
1194	} else {
1195		raw_spin_lock(&tmc->lock);
1196		if (data.now >= tmc->wakeup)
1197			ret = true;
1198		raw_spin_unlock(&tmc->lock);
1199	}
1200
1201	return ret;
1202}
1203
1204/**
1205 * tmigr_cpu_new_timer() - enqueue next global timer into hierarchy (idle tmc)
1206 * @nextexp:	Next expiry of global timer (or KTIME_MAX if not)
1207 *
1208 * The CPU is already deactivated in the timer migration
1209 * hierarchy. tick_nohz_get_sleep_length() calls tick_nohz_next_event()
1210 * and thereby the timer idle path is executed once more. @tmc->wakeup
1211 * holds the first timer, when the timer migration hierarchy is
1212 * completely idle.
1213 *
1214 * Returns the first timer that needs to be handled by this CPU or KTIME_MAX if
1215 * nothing needs to be done.
1216 */
1217u64 tmigr_cpu_new_timer(u64 nextexp)
1218{
1219	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1220	u64 ret;
1221
1222	if (tmigr_is_not_available(tmc))
1223		return nextexp;
1224
1225	raw_spin_lock(&tmc->lock);
1226
1227	ret = READ_ONCE(tmc->wakeup);
1228	if (nextexp != KTIME_MAX) {
1229		if (nextexp != tmc->cpuevt.nextevt.expires ||
1230		    tmc->cpuevt.ignore) {
1231			ret = tmigr_new_timer(tmc, nextexp);
1232			/*
1233			 * Make sure the reevaluation of timers in idle path
1234			 * will not miss an event.
1235			 */
1236			WRITE_ONCE(tmc->wakeup, ret);
1237		}
1238	}
1239	trace_tmigr_cpu_new_timer_idle(tmc, nextexp);
1240	raw_spin_unlock(&tmc->lock);
1241	return ret;
1242}
1243
1244static bool tmigr_inactive_up(struct tmigr_group *group,
1245			      struct tmigr_group *child,
1246			      struct tmigr_walk *data)
1247{
1248	union tmigr_state curstate, newstate, childstate;
1249	bool walk_done;
1250	u8 childmask;
1251
1252	childmask = data->childmask;
1253	childstate.state = 0;
1254
1255	/*
1256	 * The memory barrier is paired with the cmpxchg() in tmigr_active_up()
1257	 * to make sure the updates of child and group states are ordered. The
1258	 * ordering is mandatory, as the group state change depends on the child
1259	 * state.
1260	 */
1261	curstate.state = atomic_read_acquire(&group->migr_state);
1262
1263	for (;;) {
1264		if (child)
1265			childstate.state = atomic_read(&child->migr_state);
1266
1267		newstate = curstate;
1268		walk_done = true;
1269
1270		/* Reset active bit when the child is no longer active */
1271		if (!childstate.active)
1272			newstate.active &= ~childmask;
1273
1274		if (newstate.migrator == childmask) {
1275			/*
1276			 * Find a new migrator for the group, because the child
1277			 * group is idle!
1278			 */
1279			if (!childstate.active) {
1280				unsigned long new_migr_bit, active = newstate.active;
1281
1282				new_migr_bit = find_first_bit(&active, BIT_CNT);
1283
1284				if (new_migr_bit != BIT_CNT) {
1285					newstate.migrator = BIT(new_migr_bit);
1286				} else {
1287					newstate.migrator = TMIGR_NONE;
1288
1289					/* Changes need to be propagated */
1290					walk_done = false;
1291				}
1292			}
1293		}
1294
1295		newstate.seq++;
1296
1297		WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active));
1298
1299		if (atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)) {
1300			trace_tmigr_group_set_cpu_inactive(group, newstate, childmask);
1301			break;
1302		}
1303
1304		/*
1305		 * The memory barrier is paired with the cmpxchg() in
1306		 * tmigr_active_up() to make sure the updates of child and group
1307		 * states are ordered. It is required only when the above
1308		 * try_cmpxchg() fails.
1309		 */
1310		smp_mb__after_atomic();
1311	}
1312
1313	data->remote = false;
1314
1315	/* Event Handling */
1316	tmigr_update_events(group, child, data);
1317
1318	return walk_done;
1319}
1320
1321static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp)
1322{
1323	struct tmigr_walk data = { .nextexp = nextexp,
1324				   .firstexp = KTIME_MAX,
1325				   .evt = &tmc->cpuevt,
1326				   .childmask = tmc->groupmask };
1327
1328	/*
1329	 * If nextexp is KTIME_MAX, the CPU event will be ignored because the
1330	 * local timer expires before the global timer, no global timer is set
1331	 * or CPU goes offline.
1332	 */
1333	if (nextexp != KTIME_MAX)
1334		tmc->cpuevt.ignore = false;
1335
1336	walk_groups(&tmigr_inactive_up, &data, tmc);
1337	return data.firstexp;
1338}
1339
1340/**
1341 * tmigr_cpu_deactivate() - Put current CPU into inactive state
1342 * @nextexp:	The next global timer expiry of the current CPU
1343 *
1344 * Must be called with interrupts disabled.
1345 *
1346 * Return: the next event expiry of the current CPU or the next event expiry
1347 * from the hierarchy if this CPU is the top level migrator or the hierarchy is
1348 * completely idle.
1349 */
1350u64 tmigr_cpu_deactivate(u64 nextexp)
1351{
1352	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1353	u64 ret;
1354
1355	if (tmigr_is_not_available(tmc))
1356		return nextexp;
1357
1358	raw_spin_lock(&tmc->lock);
1359
1360	ret = __tmigr_cpu_deactivate(tmc, nextexp);
1361
1362	tmc->idle = true;
1363
1364	/*
1365	 * Make sure the reevaluation of timers in idle path will not miss an
1366	 * event.
1367	 */
1368	WRITE_ONCE(tmc->wakeup, ret);
1369
1370	trace_tmigr_cpu_idle(tmc, nextexp);
1371	raw_spin_unlock(&tmc->lock);
1372	return ret;
1373}
1374
1375/**
1376 * tmigr_quick_check() - Quick forecast of next tmigr event when CPU wants to
1377 *			 go idle
1378 * @nextevt:	The next global timer expiry of the current CPU
1379 *
1380 * Return:
1381 * * KTIME_MAX		- when it is probable that nothing has to be done (not
1382 *			  the only one in the level 0 group; and if it is the
1383 *			  only one in level 0 group, but there are more than a
1384 *			  single group active on the way to top level)
1385 * * nextevt		- when CPU is offline and has to handle timer on its own
1386 *			  or when on the way to top in every group only a single
1387 *			  child is active but @nextevt is before the lowest
1388 *			  next_expiry encountered while walking up to top level.
1389 * * next_expiry	- value of lowest expiry encountered while walking groups
1390 *			  if only a single child is active on each and @nextevt
1391 *			  is after this lowest expiry.
1392 */
1393u64 tmigr_quick_check(u64 nextevt)
1394{
1395	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1396	struct tmigr_group *group = tmc->tmgroup;
1397
1398	if (tmigr_is_not_available(tmc))
1399		return nextevt;
1400
1401	if (WARN_ON_ONCE(tmc->idle))
1402		return nextevt;
1403
1404	if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->groupmask))
1405		return KTIME_MAX;
1406
1407	do {
1408		if (!tmigr_check_lonely(group)) {
1409			return KTIME_MAX;
1410		} else {
1411			/*
1412			 * Since current CPU is active, events may not be sorted
1413			 * from bottom to the top because the CPU's event is ignored
1414			 * up to the top and its sibling's events not propagated upwards.
1415			 * Thus keep track of the lowest observed expiry.
1416			 */
1417			nextevt = min_t(u64, nextevt, READ_ONCE(group->next_expiry));
1418			if (!group->parent)
1419				return nextevt;
1420		}
1421		group = group->parent;
1422	} while (group);
1423
1424	return KTIME_MAX;
1425}
1426
1427/*
1428 * tmigr_trigger_active() - trigger a CPU to become active again
1429 *
1430 * This function is executed on a CPU which is part of cpu_online_mask, when the
1431 * last active CPU in the hierarchy is offlining. With this, it is ensured that
1432 * the other CPU is active and takes over the migrator duty.
1433 */
1434static long tmigr_trigger_active(void *unused)
1435{
1436	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1437
1438	WARN_ON_ONCE(!tmc->online || tmc->idle);
1439
1440	return 0;
1441}
1442
1443static int tmigr_cpu_offline(unsigned int cpu)
1444{
1445	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1446	int migrator;
1447	u64 firstexp;
1448
1449	raw_spin_lock_irq(&tmc->lock);
1450	tmc->online = false;
1451	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
1452
1453	/*
1454	 * CPU has to handle the local events on his own, when on the way to
1455	 * offline; Therefore nextevt value is set to KTIME_MAX
1456	 */
1457	firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX);
1458	trace_tmigr_cpu_offline(tmc);
1459	raw_spin_unlock_irq(&tmc->lock);
1460
1461	if (firstexp != KTIME_MAX) {
1462		migrator = cpumask_any_but(cpu_online_mask, cpu);
1463		work_on_cpu(migrator, tmigr_trigger_active, NULL);
1464	}
1465
1466	return 0;
1467}
1468
1469static int tmigr_cpu_online(unsigned int cpu)
1470{
1471	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1472
1473	/* Check whether CPU data was successfully initialized */
1474	if (WARN_ON_ONCE(!tmc->tmgroup))
1475		return -EINVAL;
1476
1477	raw_spin_lock_irq(&tmc->lock);
1478	trace_tmigr_cpu_online(tmc);
1479	tmc->idle = timer_base_is_idle();
1480	if (!tmc->idle)
1481		__tmigr_cpu_activate(tmc);
1482	tmc->online = true;
1483	raw_spin_unlock_irq(&tmc->lock);
1484	return 0;
1485}
1486
1487static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl,
1488			     int node)
1489{
1490	union tmigr_state s;
1491
1492	raw_spin_lock_init(&group->lock);
1493
1494	group->level = lvl;
1495	group->numa_node = lvl < tmigr_crossnode_level ? node : NUMA_NO_NODE;
1496
1497	group->num_children = 0;
1498
1499	s.migrator = TMIGR_NONE;
1500	s.active = 0;
1501	s.seq = 0;
1502	atomic_set(&group->migr_state, s.state);
1503
1504	/*
1505	 * If this is a new top-level, prepare its groupmask in advance.
1506	 * This avoids accidents where yet another new top-level is
1507	 * created in the future and made visible before the current groupmask.
1508	 */
1509	if (list_empty(&tmigr_level_list[lvl])) {
1510		group->groupmask = BIT(0);
1511		/*
1512		 * The previous top level has prepared its groupmask already,
1513		 * simply account it as the first child.
1514		 */
1515		if (lvl > 0)
1516			group->num_children = 1;
1517	}
1518
1519	timerqueue_init_head(&group->events);
1520	timerqueue_init(&group->groupevt.nextevt);
1521	group->groupevt.nextevt.expires = KTIME_MAX;
1522	WRITE_ONCE(group->next_expiry, KTIME_MAX);
1523	group->groupevt.ignore = true;
1524}
1525
1526static struct tmigr_group *tmigr_get_group(unsigned int cpu, int node,
1527					   unsigned int lvl)
1528{
1529	struct tmigr_group *tmp, *group = NULL;
1530
1531	lockdep_assert_held(&tmigr_mutex);
1532
1533	/* Try to attach to an existing group first */
1534	list_for_each_entry(tmp, &tmigr_level_list[lvl], list) {
1535		/*
1536		 * If @lvl is below the cross NUMA node level, check whether
1537		 * this group belongs to the same NUMA node.
1538		 */
1539		if (lvl < tmigr_crossnode_level && tmp->numa_node != node)
1540			continue;
1541
1542		/* Capacity left? */
1543		if (tmp->num_children >= TMIGR_CHILDREN_PER_GROUP)
1544			continue;
1545
1546		/*
1547		 * TODO: A possible further improvement: Make sure that all CPU
1548		 * siblings end up in the same group of the lowest level of the
1549		 * hierarchy. Rely on the topology sibling mask would be a
1550		 * reasonable solution.
1551		 */
1552
1553		group = tmp;
1554		break;
1555	}
1556
1557	if (group)
1558		return group;
1559
1560	/* Allocate and	set up a new group */
1561	group = kzalloc_node(sizeof(*group), GFP_KERNEL, node);
1562	if (!group)
1563		return ERR_PTR(-ENOMEM);
1564
1565	tmigr_init_group(group, lvl, node);
1566
1567	/* Setup successful. Add it to the hierarchy */
1568	list_add(&group->list, &tmigr_level_list[lvl]);
1569	trace_tmigr_group_set(group);
1570	return group;
1571}
1572
1573static void tmigr_connect_child_parent(struct tmigr_group *child,
1574				       struct tmigr_group *parent,
1575				       bool activate)
1576{
1577	struct tmigr_walk data;
1578
1579	raw_spin_lock_irq(&child->lock);
1580	raw_spin_lock_nested(&parent->lock, SINGLE_DEPTH_NESTING);
1581
1582	if (activate) {
1583		/*
1584		 * @child is the old top and @parent the new one. In this
1585		 * case groupmask is pre-initialized and @child already
1586		 * accounted, along with its new sibling corresponding to the
1587		 * CPU going up.
1588		 */
1589		WARN_ON_ONCE(child->groupmask != BIT(0) || parent->num_children != 2);
1590	} else {
1591		/* Adding @child for the CPU going up to @parent. */
1592		child->groupmask = BIT(parent->num_children++);
1593	}
1594
1595	/*
1596	 * Make sure parent initialization is visible before publishing it to a
1597	 * racing CPU entering/exiting idle. This RELEASE barrier enforces an
1598	 * address dependency that pairs with the READ_ONCE() in __walk_groups().
1599	 */
1600	smp_store_release(&child->parent, parent);
1601
1602	raw_spin_unlock(&parent->lock);
1603	raw_spin_unlock_irq(&child->lock);
1604
1605	trace_tmigr_connect_child_parent(child);
1606
1607	if (!activate)
1608		return;
1609
1610	/*
1611	 * To prevent inconsistent states, active children need to be active in
1612	 * the new parent as well. Inactive children are already marked inactive
1613	 * in the parent group:
1614	 *
1615	 * * When new groups were created by tmigr_setup_groups() starting from
1616	 *   the lowest level (and not higher then one level below the current
1617	 *   top level), then they are not active. They will be set active when
1618	 *   the new online CPU comes active.
1619	 *
1620	 * * But if a new group above the current top level is required, it is
1621	 *   mandatory to propagate the active state of the already existing
1622	 *   child to the new parent. So tmigr_connect_child_parent() is
1623	 *   executed with the formerly top level group (child) and the newly
1624	 *   created group (parent).
1625	 *
1626	 * * It is ensured that the child is active, as this setup path is
1627	 *   executed in hotplug prepare callback. This is exectued by an
1628	 *   already connected and !idle CPU. Even if all other CPUs go idle,
1629	 *   the CPU executing the setup will be responsible up to current top
1630	 *   level group. And the next time it goes inactive, it will release
1631	 *   the new childmask and parent to subsequent walkers through this
1632	 *   @child. Therefore propagate active state unconditionally.
1633	 */
1634	data.childmask = child->groupmask;
1635
1636	/*
1637	 * There is only one new level per time (which is protected by
1638	 * tmigr_mutex). When connecting the child and the parent and set the
1639	 * child active when the parent is inactive, the parent needs to be the
1640	 * uppermost level. Otherwise there went something wrong!
1641	 */
1642	WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent);
1643}
1644
1645static int tmigr_setup_groups(unsigned int cpu, unsigned int node)
1646{
1647	struct tmigr_group *group, *child, **stack;
1648	int top = 0, err = 0, i = 0;
1649	struct list_head *lvllist;
1650
1651	stack = kcalloc(tmigr_hierarchy_levels, sizeof(*stack), GFP_KERNEL);
1652	if (!stack)
1653		return -ENOMEM;
1654
1655	do {
1656		group = tmigr_get_group(cpu, node, i);
1657		if (IS_ERR(group)) {
1658			err = PTR_ERR(group);
1659			break;
1660		}
1661
1662		top = i;
1663		stack[i++] = group;
1664
1665		/*
1666		 * When booting only less CPUs of a system than CPUs are
1667		 * available, not all calculated hierarchy levels are required.
1668		 *
1669		 * The loop is aborted as soon as the highest level, which might
1670		 * be different from tmigr_hierarchy_levels, contains only a
1671		 * single group.
1672		 */
1673		if (group->parent || i == tmigr_hierarchy_levels ||
1674		    (list_empty(&tmigr_level_list[i]) &&
1675		     list_is_singular(&tmigr_level_list[i - 1])))
1676			break;
1677
1678	} while (i < tmigr_hierarchy_levels);
1679
1680	/* Assert single root */
1681	WARN_ON_ONCE(!err && !group->parent && !list_is_singular(&tmigr_level_list[top]));
1682
1683	while (i > 0) {
1684		group = stack[--i];
1685
1686		if (err < 0) {
1687			list_del(&group->list);
1688			kfree(group);
1689			continue;
1690		}
1691
1692		WARN_ON_ONCE(i != group->level);
1693
1694		/*
1695		 * Update tmc -> group / child -> group connection
1696		 */
1697		if (i == 0) {
1698			struct tmigr_cpu *tmc = per_cpu_ptr(&tmigr_cpu, cpu);
1699
1700			raw_spin_lock_irq(&group->lock);
1701
1702			tmc->tmgroup = group;
1703			tmc->groupmask = BIT(group->num_children++);
1704
1705			raw_spin_unlock_irq(&group->lock);
1706
1707			trace_tmigr_connect_cpu_parent(tmc);
1708
1709			/* There are no children that need to be connected */
1710			continue;
1711		} else {
1712			child = stack[i - 1];
1713			/* Will be activated at online time */
1714			tmigr_connect_child_parent(child, group, false);
1715		}
1716
1717		/* check if uppermost level was newly created */
1718		if (top != i)
1719			continue;
1720
1721		WARN_ON_ONCE(top == 0);
1722
1723		lvllist = &tmigr_level_list[top];
1724
1725		/*
1726		 * Newly created root level should have accounted the upcoming
1727		 * CPU's child group and pre-accounted the old root.
1728		 */
1729		if (group->num_children == 2 && list_is_singular(lvllist)) {
1730			/*
1731			 * The target CPU must never do the prepare work, except
1732			 * on early boot when the boot CPU is the target. Otherwise
1733			 * it may spuriously activate the old top level group inside
1734			 * the new one (nevertheless whether old top level group is
1735			 * active or not) and/or release an uninitialized childmask.
1736			 */
1737			WARN_ON_ONCE(cpu == raw_smp_processor_id());
1738
1739			lvllist = &tmigr_level_list[top - 1];
1740			list_for_each_entry(child, lvllist, list) {
1741				if (child->parent)
1742					continue;
1743
1744				tmigr_connect_child_parent(child, group, true);
1745			}
1746		}
1747	}
1748
1749	kfree(stack);
1750
1751	return err;
1752}
1753
1754static int tmigr_add_cpu(unsigned int cpu)
1755{
1756	int node = cpu_to_node(cpu);
1757	int ret;
1758
1759	mutex_lock(&tmigr_mutex);
1760	ret = tmigr_setup_groups(cpu, node);
1761	mutex_unlock(&tmigr_mutex);
1762
1763	return ret;
1764}
1765
1766static int tmigr_cpu_prepare(unsigned int cpu)
1767{
1768	struct tmigr_cpu *tmc = per_cpu_ptr(&tmigr_cpu, cpu);
1769	int ret = 0;
1770
1771	/* Not first online attempt? */
1772	if (tmc->tmgroup)
1773		return ret;
1774
1775	raw_spin_lock_init(&tmc->lock);
1776	timerqueue_init(&tmc->cpuevt.nextevt);
1777	tmc->cpuevt.nextevt.expires = KTIME_MAX;
1778	tmc->cpuevt.ignore = true;
1779	tmc->cpuevt.cpu = cpu;
1780	tmc->remote = false;
1781	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
1782
1783	ret = tmigr_add_cpu(cpu);
1784	if (ret < 0)
1785		return ret;
1786
1787	if (tmc->groupmask == 0)
1788		return -EINVAL;
1789
1790	return ret;
1791}
1792
1793static int __init tmigr_init(void)
1794{
1795	unsigned int cpulvl, nodelvl, cpus_per_node, i;
1796	unsigned int nnodes = num_possible_nodes();
1797	unsigned int ncpus = num_possible_cpus();
1798	int ret = -ENOMEM;
1799
1800	BUILD_BUG_ON_NOT_POWER_OF_2(TMIGR_CHILDREN_PER_GROUP);
1801
1802	/* Nothing to do if running on UP */
1803	if (ncpus == 1)
1804		return 0;
1805
1806	/*
1807	 * Calculate the required hierarchy levels. Unfortunately there is no
1808	 * reliable information available, unless all possible CPUs have been
1809	 * brought up and all NUMA nodes are populated.
1810	 *
1811	 * Estimate the number of levels with the number of possible nodes and
1812	 * the number of possible CPUs. Assume CPUs are spread evenly across
1813	 * nodes. We cannot rely on cpumask_of_node() because it only works for
1814	 * online CPUs.
1815	 */
1816	cpus_per_node = DIV_ROUND_UP(ncpus, nnodes);
1817
1818	/* Calc the hierarchy levels required to hold the CPUs of a node */
1819	cpulvl = DIV_ROUND_UP(order_base_2(cpus_per_node),
1820			      ilog2(TMIGR_CHILDREN_PER_GROUP));
1821
1822	/* Calculate the extra levels to connect all nodes */
1823	nodelvl = DIV_ROUND_UP(order_base_2(nnodes),
1824			       ilog2(TMIGR_CHILDREN_PER_GROUP));
1825
1826	tmigr_hierarchy_levels = cpulvl + nodelvl;
1827
1828	/*
1829	 * If a NUMA node spawns more than one CPU level group then the next
1830	 * level(s) of the hierarchy contains groups which handle all CPU groups
1831	 * of the same NUMA node. The level above goes across NUMA nodes. Store
1832	 * this information for the setup code to decide in which level node
1833	 * matching is no longer required.
1834	 */
1835	tmigr_crossnode_level = cpulvl;
1836
1837	tmigr_level_list = kcalloc(tmigr_hierarchy_levels, sizeof(struct list_head), GFP_KERNEL);
1838	if (!tmigr_level_list)
1839		goto err;
1840
1841	for (i = 0; i < tmigr_hierarchy_levels; i++)
1842		INIT_LIST_HEAD(&tmigr_level_list[i]);
1843
1844	pr_info("Timer migration: %d hierarchy levels; %d children per group;"
1845		" %d crossnode level\n",
1846		tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP,
1847		tmigr_crossnode_level);
1848
1849	ret = cpuhp_setup_state(CPUHP_TMIGR_PREPARE, "tmigr:prepare",
1850				tmigr_cpu_prepare, NULL);
1851	if (ret)
1852		goto err;
1853
1854	ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online",
1855				tmigr_cpu_online, tmigr_cpu_offline);
1856	if (ret)
1857		goto err;
1858
1859	return 0;
1860
1861err:
1862	pr_err("Timer migration setup failed\n");
1863	return ret;
1864}
1865early_initcall(tmigr_init);