Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 | // SPDX-License-Identifier: GPL-2.0-only /* * Infrastructure for migratable timers * * Copyright(C) 2022 linutronix GmbH */ #include <linux/cpuhotplug.h> #include <linux/slab.h> #include <linux/smp.h> #include <linux/spinlock.h> #include <linux/timerqueue.h> #include <trace/events/ipi.h> #include "timer_migration.h" #include "tick-internal.h" #define CREATE_TRACE_POINTS #include <trace/events/timer_migration.h> /* * The timer migration mechanism is built on a hierarchy of groups. The * lowest level group contains CPUs, the next level groups of CPU groups * and so forth. The CPU groups are kept per node so for the normal case * lock contention won't happen across nodes. Depending on the number of * CPUs per node even the next level might be kept as groups of CPU groups * per node and only the levels above cross the node topology. * * Example topology for a two node system with 24 CPUs each. * * LVL 2 [GRP2:0] * GRP1:0 = GRP1:M * * LVL 1 [GRP1:0] [GRP1:1] * GRP0:0 - GRP0:2 GRP0:3 - GRP0:5 * * LVL 0 [GRP0:0] [GRP0:1] [GRP0:2] [GRP0:3] [GRP0:4] [GRP0:5] * CPUS 0-7 8-15 16-23 24-31 32-39 40-47 * * The groups hold a timer queue of events sorted by expiry time. These * queues are updated when CPUs go in idle. When they come out of idle * ignore flag of events is set. * * Each group has a designated migrator CPU/group as long as a CPU/group is * active in the group. This designated role is necessary to avoid that all * active CPUs in a group try to migrate expired timers from other CPUs, * which would result in massive lock bouncing. * * When a CPU is awake, it checks in it's own timer tick the group * hierarchy up to the point where it is assigned the migrator role or if * no CPU is active, it also checks the groups where no migrator is set * (TMIGR_NONE). * * If it finds expired timers in one of the group queues it pulls them over * from the idle CPU and runs the timer function. After that it updates the * group and the parent groups if required. * * CPUs which go idle arm their CPU local timer hardware for the next local * (pinned) timer event. If the next migratable timer expires after the * next local timer or the CPU has no migratable timer pending then the * CPU does not queue an event in the LVL0 group. If the next migratable * timer expires before the next local timer then the CPU queues that timer * in the LVL0 group. In both cases the CPU marks itself idle in the LVL0 * group. * * When CPU comes out of idle and when a group has at least a single active * child, the ignore flag of the tmigr_event is set. This indicates, that * the event is ignored even if it is still enqueued in the parent groups * timer queue. It will be removed when touching the timer queue the next * time. This spares locking in active path as the lock protects (after * setup) only event information. For more information about locking, * please read the section "Locking rules". * * If the CPU is the migrator of the group then it delegates that role to * the next active CPU in the group or sets migrator to TMIGR_NONE when * there is no active CPU in the group. This delegation needs to be * propagated up the hierarchy so hand over from other leaves can happen at * all hierarchy levels w/o doing a search. * * When the last CPU in the system goes idle, then it drops all migrator * duties up to the top level of the hierarchy (LVL2 in the example). It * then has to make sure, that it arms it's own local hardware timer for * the earliest event in the system. * * * Lifetime rules: * --------------- * * The groups are built up at init time or when CPUs come online. They are * not destroyed when a group becomes empty due to offlining. The group * just won't participate in the hierarchy management anymore. Destroying * groups would result in interesting race conditions which would just make * the whole mechanism slow and complex. * * * Locking rules: * -------------- * * For setting up new groups and handling events it's required to lock both * child and parent group. The lock ordering is always bottom up. This also * includes the per CPU locks in struct tmigr_cpu. For updating the migrator and * active CPU/group information atomic_try_cmpxchg() is used instead and only * the per CPU tmigr_cpu->lock is held. * * During the setup of groups tmigr_level_list is required. It is protected by * @tmigr_mutex. * * When @timer_base->lock as well as tmigr related locks are required, the lock * ordering is: first @timer_base->lock, afterwards tmigr related locks. * * * Protection of the tmigr group state information: * ------------------------------------------------ * * The state information with the list of active children and migrator needs to * be protected by a sequence counter. It prevents a race when updates in child * groups are propagated in changed order. The state update is performed * lockless and group wise. The following scenario describes what happens * without updating the sequence counter: * * Therefore, let's take three groups and four CPUs (CPU2 and CPU3 as well * as GRP0:1 will not change during the scenario): * * LVL 1 [GRP1:0] * migrator = GRP0:1 * active = GRP0:0, GRP0:1 * / \ * LVL 0 [GRP0:0] [GRP0:1] * migrator = CPU0 migrator = CPU2 * active = CPU0 active = CPU2 * / \ / \ * CPUs 0 1 2 3 * active idle active idle * * * 1. CPU0 goes idle. As the update is performed group wise, in the first step * only GRP0:0 is updated. The update of GRP1:0 is pending as CPU0 has to * walk the hierarchy. * * LVL 1 [GRP1:0] * migrator = GRP0:1 * active = GRP0:0, GRP0:1 * / \ * LVL 0 [GRP0:0] [GRP0:1] * --> migrator = TMIGR_NONE migrator = CPU2 * --> active = active = CPU2 * / \ / \ * CPUs 0 1 2 3 * --> idle idle active idle * * 2. While CPU0 goes idle and continues to update the state, CPU1 comes out of * idle. CPU1 updates GRP0:0. The update for GRP1:0 is pending as CPU1 also * has to walk the hierarchy. Both CPUs (CPU0 and CPU1) now walk the * hierarchy to perform the needed update from their point of view. The * currently visible state looks the following: * * LVL 1 [GRP1:0] * migrator = GRP0:1 * active = GRP0:0, GRP0:1 * / \ * LVL 0 [GRP0:0] [GRP0:1] * --> migrator = CPU1 migrator = CPU2 * --> active = CPU1 active = CPU2 * / \ / \ * CPUs 0 1 2 3 * idle --> active active idle * * 3. Here is the race condition: CPU1 managed to propagate its changes (from * step 2) through the hierarchy to GRP1:0 before CPU0 (step 1) did. The * active members of GRP1:0 remain unchanged after the update since it is * still valid from CPU1 current point of view: * * LVL 1 [GRP1:0] * --> migrator = GRP0:1 * --> active = GRP0:0, GRP0:1 * / \ * LVL 0 [GRP0:0] [GRP0:1] * migrator = CPU1 migrator = CPU2 * active = CPU1 active = CPU2 * / \ / \ * CPUs 0 1 2 3 * idle active active idle * * 4. Now CPU0 finally propagates its changes (from step 1) to GRP1:0. * * LVL 1 [GRP1:0] * --> migrator = GRP0:1 * --> active = GRP0:1 * / \ * LVL 0 [GRP0:0] [GRP0:1] * migrator = CPU1 migrator = CPU2 * active = CPU1 active = CPU2 * / \ / \ * CPUs 0 1 2 3 * idle active active idle * * * The race of CPU0 vs. CPU1 led to an inconsistent state in GRP1:0. CPU1 is * active and is correctly listed as active in GRP0:0. However GRP1:0 does not * have GRP0:0 listed as active, which is wrong. The sequence counter has been * added to avoid inconsistent states during updates. The state is updated * atomically only if all members, including the sequence counter, match the * expected value (compare-and-exchange). * * Looking back at the previous example with the addition of the sequence * counter: The update as performed by CPU0 in step 4 will fail. CPU1 changed * the sequence number during the update in step 3 so the expected old value (as * seen by CPU0 before starting the walk) does not match. * * Prevent race between new event and last CPU going inactive * ---------------------------------------------------------- * * When the last CPU is going idle and there is a concurrent update of a new * first global timer of an idle CPU, the group and child states have to be read * while holding the lock in tmigr_update_events(). The following scenario shows * what happens, when this is not done. * * 1. Only CPU2 is active: * * LVL 1 [GRP1:0] * migrator = GRP0:1 * active = GRP0:1 * next_expiry = KTIME_MAX * / \ * LVL 0 [GRP0:0] [GRP0:1] * migrator = TMIGR_NONE migrator = CPU2 * active = active = CPU2 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX * / \ / \ * CPUs 0 1 2 3 * idle idle active idle * * 2. Now CPU 2 goes idle (and has no global timer, that has to be handled) and * propagates that to GRP0:1: * * LVL 1 [GRP1:0] * migrator = GRP0:1 * active = GRP0:1 * next_expiry = KTIME_MAX * / \ * LVL 0 [GRP0:0] [GRP0:1] * migrator = TMIGR_NONE --> migrator = TMIGR_NONE * active = --> active = * next_expiry = KTIME_MAX next_expiry = KTIME_MAX * / \ / \ * CPUs 0 1 2 3 * idle idle --> idle idle * * 3. Now the idle state is propagated up to GRP1:0. As this is now the last * child going idle in top level group, the expiry of the next group event * has to be handed back to make sure no event is lost. As there is no event * enqueued, KTIME_MAX is handed back to CPU2. * * LVL 1 [GRP1:0] * --> migrator = TMIGR_NONE * --> active = * next_expiry = KTIME_MAX * / \ * LVL 0 [GRP0:0] [GRP0:1] * migrator = TMIGR_NONE migrator = TMIGR_NONE * active = active = * next_expiry = KTIME_MAX next_expiry = KTIME_MAX * / \ / \ * CPUs 0 1 2 3 * idle idle --> idle idle * * 4. CPU 0 has a new timer queued from idle and it expires at TIMER0. CPU0 * propagates that to GRP0:0: * * LVL 1 [GRP1:0] * migrator = TMIGR_NONE * active = * next_expiry = KTIME_MAX * / \ * LVL 0 [GRP0:0] [GRP0:1] * migrator = TMIGR_NONE migrator = TMIGR_NONE * active = active = * --> next_expiry = TIMER0 next_expiry = KTIME_MAX * / \ / \ * CPUs 0 1 2 3 * idle idle idle idle * * 5. GRP0:0 is not active, so the new timer has to be propagated to * GRP1:0. Therefore the GRP1:0 state has to be read. When the stalled value * (from step 2) is read, the timer is enqueued into GRP1:0, but nothing is * handed back to CPU0, as it seems that there is still an active child in * top level group. * * LVL 1 [GRP1:0] * migrator = TMIGR_NONE * active = * --> next_expiry = TIMER0 * / \ * LVL 0 [GRP0:0] [GRP0:1] * migrator = TMIGR_NONE migrator = TMIGR_NONE * active = active = * next_expiry = TIMER0 next_expiry = KTIME_MAX * / \ / \ * CPUs 0 1 2 3 * idle idle idle idle * * This is prevented by reading the state when holding the lock (when a new * timer has to be propagated from idle path):: * * CPU2 (tmigr_inactive_up()) CPU0 (tmigr_new_timer_up()) * -------------------------- --------------------------- * // step 3: * cmpxchg(&GRP1:0->state); * tmigr_update_events() { * spin_lock(&GRP1:0->lock); * // ... update events ... * // hand back first expiry when GRP1:0 is idle * spin_unlock(&GRP1:0->lock); * // ^^^ release state modification * } * tmigr_update_events() { * spin_lock(&GRP1:0->lock) * // ^^^ acquire state modification * group_state = atomic_read(&GRP1:0->state) * // .... update events ... * // hand back first expiry when GRP1:0 is idle * spin_unlock(&GRP1:0->lock) <3> * // ^^^ makes state visible for other * // callers of tmigr_new_timer_up() * } * * When CPU0 grabs the lock directly after cmpxchg, the first timer is reported * back to CPU0 and also later on to CPU2. So no timer is missed. A concurrent * update of the group state from active path is no problem, as the upcoming CPU * will take care of the group events. * * Required event and timerqueue update after a remote expiry: * ----------------------------------------------------------- * * After expiring timers of a remote CPU, a walk through the hierarchy and * update of events and timerqueues is required. It is obviously needed if there * is a 'new' global timer but also if there is no new global timer but the * remote CPU is still idle. * * 1. CPU0 and CPU1 are idle and have both a global timer expiring at the same * time. So both have an event enqueued in the timerqueue of GRP0:0. CPU3 is * also idle and has no global timer pending. CPU2 is the only active CPU and * thus also the migrator: * * LVL 1 [GRP1:0] * migrator = GRP0:1 * active = GRP0:1 * --> timerqueue = evt-GRP0:0 * / \ * LVL 0 [GRP0:0] [GRP0:1] * migrator = TMIGR_NONE migrator = CPU2 * active = active = CPU2 * groupevt.ignore = false groupevt.ignore = true * groupevt.cpu = CPU0 groupevt.cpu = * timerqueue = evt-CPU0, timerqueue = * evt-CPU1 * / \ / \ * CPUs 0 1 2 3 * idle idle active idle * * 2. CPU2 starts to expire remote timers. It starts with LVL0 group * GRP0:1. There is no event queued in the timerqueue, so CPU2 continues with * the parent of GRP0:1: GRP1:0. In GRP1:0 it dequeues the first event. It * looks at tmigr_event::cpu struct member and expires the pending timer(s) * of CPU0. * * LVL 1 [GRP1:0] * migrator = GRP0:1 * active = GRP0:1 * --> timerqueue = * / \ * LVL 0 [GRP0:0] [GRP0:1] * migrator = TMIGR_NONE migrator = CPU2 * active = active = CPU2 * groupevt.ignore = false groupevt.ignore = true * --> groupevt.cpu = CPU0 groupevt.cpu = * timerqueue = evt-CPU0, timerqueue = * evt-CPU1 * / \ / \ * CPUs 0 1 2 3 * idle idle active idle * * 3. Some work has to be done after expiring the timers of CPU0. If we stop * here, then CPU1's pending global timer(s) will not expire in time and the * timerqueue of GRP0:0 has still an event for CPU0 enqueued which has just * been processed. So it is required to walk the hierarchy from CPU0's point * of view and update it accordingly. CPU0's event will be removed from the * timerqueue because it has no pending timer. If CPU0 would have a timer * pending then it has to expire after CPU1's first timer because all timers * from this period were just expired. Either way CPU1's event will be first * in GRP0:0's timerqueue and therefore set in the CPU field of the group * event which is then enqueued in GRP1:0's timerqueue as GRP0:0 is still not * active: * * LVL 1 [GRP1:0] * migrator = GRP0:1 * active = GRP0:1 * --> timerqueue = evt-GRP0:0 * / \ * LVL 0 [GRP0:0] [GRP0:1] * migrator = TMIGR_NONE migrator = CPU2 * active = active = CPU2 * groupevt.ignore = false groupevt.ignore = true * --> groupevt.cpu = CPU1 groupevt.cpu = * --> timerqueue = evt-CPU1 timerqueue = * / \ / \ * CPUs 0 1 2 3 * idle idle active idle * * Now CPU2 (migrator) will continue step 2 at GRP1:0 and will expire the * timer(s) of CPU1. * * The hierarchy walk in step 3 can be skipped if the migrator notices that a * CPU of GRP0:0 is active again. The CPU will mark GRP0:0 active and take care * of the group as migrator and any needed updates within the hierarchy. */ static DEFINE_MUTEX(tmigr_mutex); static struct list_head *tmigr_level_list __read_mostly; static unsigned int tmigr_hierarchy_levels __read_mostly; static unsigned int tmigr_crossnode_level __read_mostly; static DEFINE_PER_CPU(struct tmigr_cpu, tmigr_cpu); #define TMIGR_NONE 0xFF #define BIT_CNT 8 static inline bool tmigr_is_not_available(struct tmigr_cpu *tmc) { return !(tmc->tmgroup && tmc->online); } /* * Returns true, when @childmask corresponds to the group migrator or when the * group is not active - so no migrator is set. */ static bool tmigr_check_migrator(struct tmigr_group *group, u8 childmask) { union tmigr_state s; s.state = atomic_read(&group->migr_state); if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE)) return true; return false; } static bool tmigr_check_migrator_and_lonely(struct tmigr_group *group, u8 childmask) { bool lonely, migrator = false; unsigned long active; union tmigr_state s; s.state = atomic_read(&group->migr_state); if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE)) migrator = true; active = s.active; lonely = bitmap_weight(&active, BIT_CNT) <= 1; return (migrator && lonely); } static bool tmigr_check_lonely(struct tmigr_group *group) { unsigned long active; union tmigr_state s; s.state = atomic_read(&group->migr_state); active = s.active; return bitmap_weight(&active, BIT_CNT) <= 1; } typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, void *); static void __walk_groups(up_f up, void *data, struct tmigr_cpu *tmc) { struct tmigr_group *child = NULL, *group = tmc->tmgroup; do { WARN_ON_ONCE(group->level >= tmigr_hierarchy_levels); if (up(group, child, data)) break; child = group; group = group->parent; } while (group); } static void walk_groups(up_f up, void *data, struct tmigr_cpu *tmc) { lockdep_assert_held(&tmc->lock); __walk_groups(up, data, tmc); } /** * struct tmigr_walk - data required for walking the hierarchy * @nextexp: Next CPU event expiry information which is handed into * the timer migration code by the timer code * (get_next_timer_interrupt()) * @firstexp: Contains the first event expiry information when last * active CPU of hierarchy is on the way to idle to make * sure CPU will be back in time. * @evt: Pointer to tmigr_event which needs to be queued (of idle * child group) * @childmask: childmask of child group * @remote: Is set, when the new timer path is executed in * tmigr_handle_remote_cpu() */ struct tmigr_walk { u64 nextexp; u64 firstexp; struct tmigr_event *evt; u8 childmask; bool remote; }; /** * struct tmigr_remote_data - data required for remote expiry hierarchy walk * @basej: timer base in jiffies * @now: timer base monotonic * @firstexp: returns expiry of the first timer in the idle timer * migration hierarchy to make sure the timer is handled in * time; it is stored in the per CPU tmigr_cpu struct of * CPU which expires remote timers * @childmask: childmask of child group * @check: is set if there is the need to handle remote timers; * required in tmigr_requires_handle_remote() only * @tmc_active: this flag indicates, whether the CPU which triggers * the hierarchy walk is !idle in the timer migration * hierarchy. When the CPU is idle and the whole hierarchy is * idle, only the first event of the top level has to be * considered. */ struct tmigr_remote_data { unsigned long basej; u64 now; u64 firstexp; u8 childmask; bool check; bool tmc_active; }; /* * Returns the next event of the timerqueue @group->events * * Removes timers with ignore flag and update next_expiry of the group. Values * of the group event are updated in tmigr_update_events() only. */ static struct tmigr_event *tmigr_next_groupevt(struct tmigr_group *group) { struct timerqueue_node *node = NULL; struct tmigr_event *evt = NULL; lockdep_assert_held(&group->lock); WRITE_ONCE(group->next_expiry, KTIME_MAX); while ((node = timerqueue_getnext(&group->events))) { evt = container_of(node, struct tmigr_event, nextevt); if (!evt->ignore) { WRITE_ONCE(group->next_expiry, evt->nextevt.expires); return evt; } /* * Remove next timers with ignore flag, because the group lock * is held anyway */ if (!timerqueue_del(&group->events, node)) break; } return NULL; } /* * Return the next event (with the expiry equal or before @now) * * Event, which is returned, is also removed from the queue. */ static struct tmigr_event *tmigr_next_expired_groupevt(struct tmigr_group *group, u64 now) { struct tmigr_event *evt = tmigr_next_groupevt(group); if (!evt || now < evt->nextevt.expires) return NULL; /* * The event is ready to expire. Remove it and update next group event. */ timerqueue_del(&group->events, &evt->nextevt); tmigr_next_groupevt(group); return evt; } static u64 tmigr_next_groupevt_expires(struct tmigr_group *group) { struct tmigr_event *evt; evt = tmigr_next_groupevt(group); if (!evt) return KTIME_MAX; else return evt->nextevt.expires; } static bool tmigr_active_up(struct tmigr_group *group, struct tmigr_group *child, void *ptr) { union tmigr_state curstate, newstate; struct tmigr_walk *data = ptr; bool walk_done; u8 childmask; childmask = data->childmask; /* * No memory barrier is required here in contrast to * tmigr_inactive_up(), as the group state change does not depend on the * child state. */ curstate.state = atomic_read(&group->migr_state); do { newstate = curstate; walk_done = true; if (newstate.migrator == TMIGR_NONE) { newstate.migrator = childmask; /* Changes need to be propagated */ walk_done = false; } newstate.active |= childmask; newstate.seq++; } while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)); if ((walk_done == false) && group->parent) data->childmask = group->childmask; /* * The group is active (again). The group event might be still queued * into the parent group's timerqueue but can now be handled by the * migrator of this group. Therefore the ignore flag for the group event * is updated to reflect this. * * The update of the ignore flag in the active path is done lockless. In * worst case the migrator of the parent group observes the change too * late and expires remotely all events belonging to this group. The * lock is held while updating the ignore flag in idle path. So this * state change will not be lost. */ group->groupevt.ignore = true; trace_tmigr_group_set_cpu_active(group, newstate, childmask); return walk_done; } static void __tmigr_cpu_activate(struct tmigr_cpu *tmc) { struct tmigr_walk data; data.childmask = tmc->childmask; trace_tmigr_cpu_active(tmc); tmc->cpuevt.ignore = true; WRITE_ONCE(tmc->wakeup, KTIME_MAX); walk_groups(&tmigr_active_up, &data, tmc); } /** * tmigr_cpu_activate() - set this CPU active in timer migration hierarchy * * Call site timer_clear_idle() is called with interrupts disabled. */ void tmigr_cpu_activate(void) { struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); if (tmigr_is_not_available(tmc)) return; if (WARN_ON_ONCE(!tmc->idle)) return; raw_spin_lock(&tmc->lock); tmc->idle = false; __tmigr_cpu_activate(tmc); raw_spin_unlock(&tmc->lock); } /* * Returns true, if there is nothing to be propagated to the next level * * @data->firstexp is set to expiry of first gobal event of the (top level of * the) hierarchy, but only when hierarchy is completely idle. * * The child and group states need to be read under the lock, to prevent a race * against a concurrent tmigr_inactive_up() run when the last CPU goes idle. See * also section "Prevent race between new event and last CPU going inactive" in * the documentation at the top. * * This is the only place where the group event expiry value is set. */ static bool tmigr_update_events(struct tmigr_group *group, struct tmigr_group *child, struct tmigr_walk *data) { struct tmigr_event *evt, *first_childevt; union tmigr_state childstate, groupstate; bool remote = data->remote; bool walk_done = false; u64 nextexp; if (child) { raw_spin_lock(&child->lock); raw_spin_lock_nested(&group->lock, SINGLE_DEPTH_NESTING); childstate.state = atomic_read(&child->migr_state); groupstate.state = atomic_read(&group->migr_state); if (childstate.active) { walk_done = true; goto unlock; } first_childevt = tmigr_next_groupevt(child); nextexp = child->next_expiry; evt = &child->groupevt; evt->ignore = (nextexp == KTIME_MAX) ? true : false; } else { nextexp = data->nextexp; first_childevt = evt = data->evt; /* * Walking the hierarchy is required in any case when a * remote expiry was done before. This ensures to not lose * already queued events in non active groups (see section * "Required event and timerqueue update after a remote * expiry" in the documentation at the top). * * The two call sites which are executed without a remote expiry * before, are not prevented from propagating changes through * the hierarchy by the return: * - When entering this path by tmigr_new_timer(), @evt->ignore * is never set. * - tmigr_inactive_up() takes care of the propagation by * itself and ignores the return value. But an immediate * return is possible if there is a parent, sparing group * locking at this level, because the upper walking call to * the parent will take care about removing this event from * within the group and update next_expiry accordingly. * * However if there is no parent, ie: the hierarchy has only a * single level so @group is the top level group, make sure the * first event information of the group is updated properly and * also handled properly, so skip this fast return path. */ if (evt->ignore && !remote && group->parent) return true; raw_spin_lock(&group->lock); childstate.state = 0; groupstate.state = atomic_read(&group->migr_state); } /* * If the child event is already queued in the group, remove it from the * queue when the expiry time changed only or when it could be ignored. */ if (timerqueue_node_queued(&evt->nextevt)) { if ((evt->nextevt.expires == nextexp) && !evt->ignore) { /* Make sure not to miss a new CPU event with the same expiry */ evt->cpu = first_childevt->cpu; goto check_toplvl; } if (!timerqueue_del(&group->events, &evt->nextevt)) WRITE_ONCE(group->next_expiry, KTIME_MAX); } if (evt->ignore) { /* * When the next child event could be ignored (nextexp is * KTIME_MAX) and there was no remote timer handling before or * the group is already active, there is no need to walk the * hierarchy even if there is a parent group. * * The other way round: even if the event could be ignored, but * if a remote timer handling was executed before and the group * is not active, walking the hierarchy is required to not miss * an enqueued timer in the non active group. The enqueued timer * of the group needs to be propagated to a higher level to * ensure it is handled. */ if (!remote || groupstate.active) walk_done = true; } else { evt->nextevt.expires = nextexp; evt->cpu = first_childevt->cpu; if (timerqueue_add(&group->events, &evt->nextevt)) WRITE_ONCE(group->next_expiry, nextexp); } check_toplvl: if (!group->parent && (groupstate.migrator == TMIGR_NONE)) { walk_done = true; /* * Nothing to do when update was done during remote timer * handling. First timer in top level group which needs to be * handled when top level group is not active, is calculated * directly in tmigr_handle_remote_up(). */ if (remote) goto unlock; /* * The top level group is idle and it has to be ensured the * global timers are handled in time. (This could be optimized * by keeping track of the last global scheduled event and only * arming it on the CPU if the new event is earlier. Not sure if * its worth the complexity.) */ data->firstexp = tmigr_next_groupevt_expires(group); } trace_tmigr_update_events(child, group, childstate, groupstate, nextexp); unlock: raw_spin_unlock(&group->lock); if (child) raw_spin_unlock(&child->lock); return walk_done; } static bool tmigr_new_timer_up(struct tmigr_group *group, struct tmigr_group *child, void *ptr) { struct tmigr_walk *data = ptr; return tmigr_update_events(group, child, data); } /* * Returns the expiry of the next timer that needs to be handled. KTIME_MAX is * returned, if an active CPU will handle all the timer migration hierarchy * timers. */ static u64 tmigr_new_timer(struct tmigr_cpu *tmc, u64 nextexp) { struct tmigr_walk data = { .nextexp = nextexp, .firstexp = KTIME_MAX, .evt = &tmc->cpuevt }; lockdep_assert_held(&tmc->lock); if (tmc->remote) return KTIME_MAX; trace_tmigr_cpu_new_timer(tmc); tmc->cpuevt.ignore = false; data.remote = false; walk_groups(&tmigr_new_timer_up, &data, tmc); /* If there is a new first global event, make sure it is handled */ return data.firstexp; } static void tmigr_handle_remote_cpu(unsigned int cpu, u64 now, unsigned long jif) { struct timer_events tevt; struct tmigr_walk data; struct tmigr_cpu *tmc; tmc = per_cpu_ptr(&tmigr_cpu, cpu); raw_spin_lock_irq(&tmc->lock); /* * If the remote CPU is offline then the timers have been migrated to * another CPU. * * If tmigr_cpu::remote is set, at the moment another CPU already * expires the timers of the remote CPU. * * If tmigr_event::ignore is set, then the CPU returns from idle and * takes care of its timers. * * If the next event expires in the future, then the event has been * updated and there are no timers to expire right now. The CPU which * updated the event takes care when hierarchy is completely * idle. Otherwise the migrator does it as the event is enqueued. */ if (!tmc->online || tmc->remote || tmc->cpuevt.ignore || now < tmc->cpuevt.nextevt.expires) { raw_spin_unlock_irq(&tmc->lock); return; } trace_tmigr_handle_remote_cpu(tmc); tmc->remote = true; WRITE_ONCE(tmc->wakeup, KTIME_MAX); /* Drop the lock to allow the remote CPU to exit idle */ raw_spin_unlock_irq(&tmc->lock); if (cpu != smp_processor_id()) timer_expire_remote(cpu); /* * Lock ordering needs to be preserved - timer_base locks before tmigr * related locks (see section "Locking rules" in the documentation at * the top). During fetching the next timer interrupt, also tmc->lock * needs to be held. Otherwise there is a possible race window against * the CPU itself when it comes out of idle, updates the first timer in * the hierarchy and goes back to idle. * * timer base locks are dropped as fast as possible: After checking * whether the remote CPU went offline in the meantime and after * fetching the next remote timer interrupt. Dropping the locks as fast * as possible keeps the locking region small and prevents holding * several (unnecessary) locks during walking the hierarchy for updating * the timerqueue and group events. */ local_irq_disable(); timer_lock_remote_bases(cpu); raw_spin_lock(&tmc->lock); /* * When the CPU went offline in the meantime, no hierarchy walk has to * be done for updating the queued events, because the walk was * already done during marking the CPU offline in the hierarchy. * * When the CPU is no longer idle, the CPU takes care of the timers and * also of the timers in the hierarchy. * * (See also section "Required event and timerqueue update after a * remote expiry" in the documentation at the top) */ if (!tmc->online || !tmc->idle) { timer_unlock_remote_bases(cpu); goto unlock; } /* next event of CPU */ fetch_next_timer_interrupt_remote(jif, now, &tevt, cpu); timer_unlock_remote_bases(cpu); data.nextexp = tevt.global; data.firstexp = KTIME_MAX; data.evt = &tmc->cpuevt; data.remote = true; /* * The update is done even when there is no 'new' global timer pending * on the remote CPU (see section "Required event and timerqueue update * after a remote expiry" in the documentation at the top) */ walk_groups(&tmigr_new_timer_up, &data, tmc); unlock: tmc->remote = false; raw_spin_unlock_irq(&tmc->lock); } static bool tmigr_handle_remote_up(struct tmigr_group *group, struct tmigr_group *child, void *ptr) { struct tmigr_remote_data *data = ptr; struct tmigr_event *evt; unsigned long jif; u8 childmask; u64 now; jif = data->basej; now = data->now; childmask = data->childmask; trace_tmigr_handle_remote(group); again: /* * Handle the group only if @childmask is the migrator or if the * group has no migrator. Otherwise the group is active and is * handled by its own migrator. */ if (!tmigr_check_migrator(group, childmask)) return true; raw_spin_lock_irq(&group->lock); evt = tmigr_next_expired_groupevt(group, now); if (evt) { unsigned int remote_cpu = evt->cpu; raw_spin_unlock_irq(&group->lock); tmigr_handle_remote_cpu(remote_cpu, now, jif); /* check if there is another event, that needs to be handled */ goto again; } /* * Update of childmask for the next level and keep track of the expiry * of the first event that needs to be handled (group->next_expiry was * updated by tmigr_next_expired_groupevt(), next was set by * tmigr_handle_remote_cpu()). */ data->childmask = group->childmask; data->firstexp = group->next_expiry; raw_spin_unlock_irq(&group->lock); return false; } /** * tmigr_handle_remote() - Handle global timers of remote idle CPUs * * Called from the timer soft interrupt with interrupts enabled. */ void tmigr_handle_remote(void) { struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); struct tmigr_remote_data data; if (tmigr_is_not_available(tmc)) return; data.childmask = tmc->childmask; data.firstexp = KTIME_MAX; /* * NOTE: This is a doubled check because the migrator test will be done * in tmigr_handle_remote_up() anyway. Keep this check to speed up the * return when nothing has to be done. */ if (!tmigr_check_migrator(tmc->tmgroup, tmc->childmask)) { /* * If this CPU was an idle migrator, make sure to clear its wakeup * value so it won't chase timers that have already expired elsewhere. * This avoids endless requeue from tmigr_new_timer(). */ if (READ_ONCE(tmc->wakeup) == KTIME_MAX) return; } data.now = get_jiffies_update(&data.basej); /* * Update @tmc->wakeup only at the end and do not reset @tmc->wakeup to * KTIME_MAX. Even if tmc->lock is not held during the whole remote * handling, tmc->wakeup is fine to be stale as it is called in * interrupt context and tick_nohz_next_event() is executed in interrupt * exit path only after processing the last pending interrupt. */ __walk_groups(&tmigr_handle_remote_up, &data, tmc); raw_spin_lock_irq(&tmc->lock); WRITE_ONCE(tmc->wakeup, data.firstexp); raw_spin_unlock_irq(&tmc->lock); } static bool tmigr_requires_handle_remote_up(struct tmigr_group *group, struct tmigr_group *child, void *ptr) { struct tmigr_remote_data *data = ptr; u8 childmask; childmask = data->childmask; /* * Handle the group only if the child is the migrator or if the group * has no migrator. Otherwise the group is active and is handled by its * own migrator. */ if (!tmigr_check_migrator(group, childmask)) return true; /* * When there is a parent group and the CPU which triggered the * hierarchy walk is not active, proceed the walk to reach the top level * group before reading the next_expiry value. */ if (group->parent && !data->tmc_active) goto out; /* * The lock is required on 32bit architectures to read the variable * consistently with a concurrent writer. On 64bit the lock is not * required because the read operation is not split and so it is always * consistent. */ if (IS_ENABLED(CONFIG_64BIT)) { data->firstexp = READ_ONCE(group->next_expiry); if (data->now >= data->firstexp) { data->check = true; return true; } } else { raw_spin_lock(&group->lock); data->firstexp = group->next_expiry; if (data->now >= group->next_expiry) { data->check = true; raw_spin_unlock(&group->lock); return true; } raw_spin_unlock(&group->lock); } out: /* Update of childmask for the next level */ data->childmask = group->childmask; return false; } /** * tmigr_requires_handle_remote() - Check the need of remote timer handling * * Must be called with interrupts disabled. */ bool tmigr_requires_handle_remote(void) { struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); struct tmigr_remote_data data; unsigned long jif; bool ret = false; if (tmigr_is_not_available(tmc)) return ret; data.now = get_jiffies_update(&jif); data.childmask = tmc->childmask; data.firstexp = KTIME_MAX; data.tmc_active = !tmc->idle; data.check = false; /* * If the CPU is active, walk the hierarchy to check whether a remote * expiry is required. * * Check is done lockless as interrupts are disabled and @tmc->idle is * set only by the local CPU. */ if (!tmc->idle) { __walk_groups(&tmigr_requires_handle_remote_up, &data, tmc); return data.check; } /* * When the CPU is idle, compare @tmc->wakeup with @data.now. The lock * is required on 32bit architectures to read the variable consistently * with a concurrent writer. On 64bit the lock is not required because * the read operation is not split and so it is always consistent. */ if (IS_ENABLED(CONFIG_64BIT)) { if (data.now >= READ_ONCE(tmc->wakeup)) return true; } else { raw_spin_lock(&tmc->lock); if (data.now >= tmc->wakeup) ret = true; raw_spin_unlock(&tmc->lock); } return ret; } /** * tmigr_cpu_new_timer() - enqueue next global timer into hierarchy (idle tmc) * @nextexp: Next expiry of global timer (or KTIME_MAX if not) * * The CPU is already deactivated in the timer migration * hierarchy. tick_nohz_get_sleep_length() calls tick_nohz_next_event() * and thereby the timer idle path is executed once more. @tmc->wakeup * holds the first timer, when the timer migration hierarchy is * completely idle. * * Returns the first timer that needs to be handled by this CPU or KTIME_MAX if * nothing needs to be done. */ u64 tmigr_cpu_new_timer(u64 nextexp) { struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); u64 ret; if (tmigr_is_not_available(tmc)) return nextexp; raw_spin_lock(&tmc->lock); ret = READ_ONCE(tmc->wakeup); if (nextexp != KTIME_MAX) { if (nextexp != tmc->cpuevt.nextevt.expires || tmc->cpuevt.ignore) { ret = tmigr_new_timer(tmc, nextexp); } } /* * Make sure the reevaluation of timers in idle path will not miss an * event. */ WRITE_ONCE(tmc->wakeup, ret); trace_tmigr_cpu_new_timer_idle(tmc, nextexp); raw_spin_unlock(&tmc->lock); return ret; } static bool tmigr_inactive_up(struct tmigr_group *group, struct tmigr_group *child, void *ptr) { union tmigr_state curstate, newstate, childstate; struct tmigr_walk *data = ptr; bool walk_done; u8 childmask; childmask = data->childmask; childstate.state = 0; /* * The memory barrier is paired with the cmpxchg() in tmigr_active_up() * to make sure the updates of child and group states are ordered. The * ordering is mandatory, as the group state change depends on the child * state. */ curstate.state = atomic_read_acquire(&group->migr_state); for (;;) { if (child) childstate.state = atomic_read(&child->migr_state); newstate = curstate; walk_done = true; /* Reset active bit when the child is no longer active */ if (!childstate.active) newstate.active &= ~childmask; if (newstate.migrator == childmask) { /* * Find a new migrator for the group, because the child * group is idle! */ if (!childstate.active) { unsigned long new_migr_bit, active = newstate.active; new_migr_bit = find_first_bit(&active, BIT_CNT); if (new_migr_bit != BIT_CNT) { newstate.migrator = BIT(new_migr_bit); } else { newstate.migrator = TMIGR_NONE; /* Changes need to be propagated */ walk_done = false; } } } newstate.seq++; WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active)); if (atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)) break; /* * The memory barrier is paired with the cmpxchg() in * tmigr_active_up() to make sure the updates of child and group * states are ordered. It is required only when the above * try_cmpxchg() fails. */ smp_mb__after_atomic(); } data->remote = false; /* Event Handling */ tmigr_update_events(group, child, data); if (group->parent && (walk_done == false)) data->childmask = group->childmask; /* * data->firstexp was set by tmigr_update_events() and contains the * expiry of the first global event which needs to be handled. It * differs from KTIME_MAX if: * - group is the top level group and * - group is idle (which means CPU was the last active CPU in the * hierarchy) and * - there is a pending event in the hierarchy */ WARN_ON_ONCE(data->firstexp != KTIME_MAX && group->parent); trace_tmigr_group_set_cpu_inactive(group, newstate, childmask); return walk_done; } static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp) { struct tmigr_walk data = { .nextexp = nextexp, .firstexp = KTIME_MAX, .evt = &tmc->cpuevt, .childmask = tmc->childmask }; /* * If nextexp is KTIME_MAX, the CPU event will be ignored because the * local timer expires before the global timer, no global timer is set * or CPU goes offline. */ if (nextexp != KTIME_MAX) tmc->cpuevt.ignore = false; walk_groups(&tmigr_inactive_up, &data, tmc); return data.firstexp; } /** * tmigr_cpu_deactivate() - Put current CPU into inactive state * @nextexp: The next global timer expiry of the current CPU * * Must be called with interrupts disabled. * * Return: the next event expiry of the current CPU or the next event expiry * from the hierarchy if this CPU is the top level migrator or the hierarchy is * completely idle. */ u64 tmigr_cpu_deactivate(u64 nextexp) { struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); u64 ret; if (tmigr_is_not_available(tmc)) return nextexp; raw_spin_lock(&tmc->lock); ret = __tmigr_cpu_deactivate(tmc, nextexp); tmc->idle = true; /* * Make sure the reevaluation of timers in idle path will not miss an * event. */ WRITE_ONCE(tmc->wakeup, ret); trace_tmigr_cpu_idle(tmc, nextexp); raw_spin_unlock(&tmc->lock); return ret; } /** * tmigr_quick_check() - Quick forecast of next tmigr event when CPU wants to * go idle * @nextevt: The next global timer expiry of the current CPU * * Return: * * KTIME_MAX - when it is probable that nothing has to be done (not * the only one in the level 0 group; and if it is the * only one in level 0 group, but there are more than a * single group active on the way to top level) * * nextevt - when CPU is offline and has to handle timer on his own * or when on the way to top in every group only a single * child is active but @nextevt is before the lowest * next_expiry encountered while walking up to top level. * * next_expiry - value of lowest expiry encountered while walking groups * if only a single child is active on each and @nextevt * is after this lowest expiry. */ u64 tmigr_quick_check(u64 nextevt) { struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); struct tmigr_group *group = tmc->tmgroup; if (tmigr_is_not_available(tmc)) return nextevt; if (WARN_ON_ONCE(tmc->idle)) return nextevt; if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->childmask)) return KTIME_MAX; do { if (!tmigr_check_lonely(group)) { return KTIME_MAX; } else { /* * Since current CPU is active, events may not be sorted * from bottom to the top because the CPU's event is ignored * up to the top and its sibling's events not propagated upwards. * Thus keep track of the lowest observed expiry. */ nextevt = min_t(u64, nextevt, READ_ONCE(group->next_expiry)); if (!group->parent) return nextevt; } group = group->parent; } while (group); return KTIME_MAX; } static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl, int node) { union tmigr_state s; raw_spin_lock_init(&group->lock); group->level = lvl; group->numa_node = lvl < tmigr_crossnode_level ? node : NUMA_NO_NODE; group->num_children = 0; s.migrator = TMIGR_NONE; s.active = 0; s.seq = 0; atomic_set(&group->migr_state, s.state); timerqueue_init_head(&group->events); timerqueue_init(&group->groupevt.nextevt); group->groupevt.nextevt.expires = KTIME_MAX; WRITE_ONCE(group->next_expiry, KTIME_MAX); group->groupevt.ignore = true; } static struct tmigr_group *tmigr_get_group(unsigned int cpu, int node, unsigned int lvl) { struct tmigr_group *tmp, *group = NULL; lockdep_assert_held(&tmigr_mutex); /* Try to attach to an existing group first */ list_for_each_entry(tmp, &tmigr_level_list[lvl], list) { /* * If @lvl is below the cross NUMA node level, check whether * this group belongs to the same NUMA node. */ if (lvl < tmigr_crossnode_level && tmp->numa_node != node) continue; /* Capacity left? */ if (tmp->num_children >= TMIGR_CHILDREN_PER_GROUP) continue; /* * TODO: A possible further improvement: Make sure that all CPU * siblings end up in the same group of the lowest level of the * hierarchy. Rely on the topology sibling mask would be a * reasonable solution. */ group = tmp; break; } if (group) return group; /* Allocate and set up a new group */ group = kzalloc_node(sizeof(*group), GFP_KERNEL, node); if (!group) return ERR_PTR(-ENOMEM); tmigr_init_group(group, lvl, node); /* Setup successful. Add it to the hierarchy */ list_add(&group->list, &tmigr_level_list[lvl]); trace_tmigr_group_set(group); return group; } static void tmigr_connect_child_parent(struct tmigr_group *child, struct tmigr_group *parent) { union tmigr_state childstate; raw_spin_lock_irq(&child->lock); raw_spin_lock_nested(&parent->lock, SINGLE_DEPTH_NESTING); child->parent = parent; child->childmask = BIT(parent->num_children++); raw_spin_unlock(&parent->lock); raw_spin_unlock_irq(&child->lock); trace_tmigr_connect_child_parent(child); /* * To prevent inconsistent states, active children need to be active in * the new parent as well. Inactive children are already marked inactive * in the parent group: * * * When new groups were created by tmigr_setup_groups() starting from * the lowest level (and not higher then one level below the current * top level), then they are not active. They will be set active when * the new online CPU comes active. * * * But if a new group above the current top level is required, it is * mandatory to propagate the active state of the already existing * child to the new parent. So tmigr_connect_child_parent() is * executed with the formerly top level group (child) and the newly * created group (parent). */ childstate.state = atomic_read(&child->migr_state); if (childstate.migrator != TMIGR_NONE) { struct tmigr_walk data; data.childmask = child->childmask; /* * There is only one new level per time. When connecting the * child and the parent and set the child active when the parent * is inactive, the parent needs to be the uppermost * level. Otherwise there went something wrong! */ WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent); } } static int tmigr_setup_groups(unsigned int cpu, unsigned int node) { struct tmigr_group *group, *child, **stack; int top = 0, err = 0, i = 0; struct list_head *lvllist; stack = kcalloc(tmigr_hierarchy_levels, sizeof(*stack), GFP_KERNEL); if (!stack) return -ENOMEM; do { group = tmigr_get_group(cpu, node, i); if (IS_ERR(group)) { err = PTR_ERR(group); break; } top = i; stack[i++] = group; /* * When booting only less CPUs of a system than CPUs are * available, not all calculated hierarchy levels are required. * * The loop is aborted as soon as the highest level, which might * be different from tmigr_hierarchy_levels, contains only a * single group. */ if (group->parent || i == tmigr_hierarchy_levels || (list_empty(&tmigr_level_list[i]) && list_is_singular(&tmigr_level_list[i - 1]))) break; } while (i < tmigr_hierarchy_levels); while (i > 0) { group = stack[--i]; if (err < 0) { list_del(&group->list); kfree(group); continue; } WARN_ON_ONCE(i != group->level); /* * Update tmc -> group / child -> group connection */ if (i == 0) { struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); raw_spin_lock_irq(&group->lock); tmc->tmgroup = group; tmc->childmask = BIT(group->num_children++); raw_spin_unlock_irq(&group->lock); trace_tmigr_connect_cpu_parent(tmc); /* There are no children that need to be connected */ continue; } else { child = stack[i - 1]; tmigr_connect_child_parent(child, group); } /* check if uppermost level was newly created */ if (top != i) continue; WARN_ON_ONCE(top == 0); lvllist = &tmigr_level_list[top]; if (group->num_children == 1 && list_is_singular(lvllist)) { lvllist = &tmigr_level_list[top - 1]; list_for_each_entry(child, lvllist, list) { if (child->parent) continue; tmigr_connect_child_parent(child, group); } } } kfree(stack); return err; } static int tmigr_add_cpu(unsigned int cpu) { int node = cpu_to_node(cpu); int ret; mutex_lock(&tmigr_mutex); ret = tmigr_setup_groups(cpu, node); mutex_unlock(&tmigr_mutex); return ret; } static int tmigr_cpu_online(unsigned int cpu) { struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); int ret; /* First online attempt? Initialize CPU data */ if (!tmc->tmgroup) { raw_spin_lock_init(&tmc->lock); ret = tmigr_add_cpu(cpu); if (ret < 0) return ret; if (tmc->childmask == 0) return -EINVAL; timerqueue_init(&tmc->cpuevt.nextevt); tmc->cpuevt.nextevt.expires = KTIME_MAX; tmc->cpuevt.ignore = true; tmc->cpuevt.cpu = cpu; tmc->remote = false; WRITE_ONCE(tmc->wakeup, KTIME_MAX); } raw_spin_lock_irq(&tmc->lock); trace_tmigr_cpu_online(tmc); tmc->idle = timer_base_is_idle(); if (!tmc->idle) __tmigr_cpu_activate(tmc); tmc->online = true; raw_spin_unlock_irq(&tmc->lock); return 0; } /* * tmigr_trigger_active() - trigger a CPU to become active again * * This function is executed on a CPU which is part of cpu_online_mask, when the * last active CPU in the hierarchy is offlining. With this, it is ensured that * the other CPU is active and takes over the migrator duty. */ static long tmigr_trigger_active(void *unused) { struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); WARN_ON_ONCE(!tmc->online || tmc->idle); return 0; } static int tmigr_cpu_offline(unsigned int cpu) { struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); int migrator; u64 firstexp; raw_spin_lock_irq(&tmc->lock); tmc->online = false; WRITE_ONCE(tmc->wakeup, KTIME_MAX); /* * CPU has to handle the local events on his own, when on the way to * offline; Therefore nextevt value is set to KTIME_MAX */ firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX); trace_tmigr_cpu_offline(tmc); raw_spin_unlock_irq(&tmc->lock); if (firstexp != KTIME_MAX) { migrator = cpumask_any_but(cpu_online_mask, cpu); work_on_cpu(migrator, tmigr_trigger_active, NULL); } return 0; } static int __init tmigr_init(void) { unsigned int cpulvl, nodelvl, cpus_per_node, i; unsigned int nnodes = num_possible_nodes(); unsigned int ncpus = num_possible_cpus(); int ret = -ENOMEM; BUILD_BUG_ON_NOT_POWER_OF_2(TMIGR_CHILDREN_PER_GROUP); /* Nothing to do if running on UP */ if (ncpus == 1) return 0; /* * Calculate the required hierarchy levels. Unfortunately there is no * reliable information available, unless all possible CPUs have been * brought up and all NUMA nodes are populated. * * Estimate the number of levels with the number of possible nodes and * the number of possible CPUs. Assume CPUs are spread evenly across * nodes. We cannot rely on cpumask_of_node() because it only works for * online CPUs. */ cpus_per_node = DIV_ROUND_UP(ncpus, nnodes); /* Calc the hierarchy levels required to hold the CPUs of a node */ cpulvl = DIV_ROUND_UP(order_base_2(cpus_per_node), ilog2(TMIGR_CHILDREN_PER_GROUP)); /* Calculate the extra levels to connect all nodes */ nodelvl = DIV_ROUND_UP(order_base_2(nnodes), ilog2(TMIGR_CHILDREN_PER_GROUP)); tmigr_hierarchy_levels = cpulvl + nodelvl; /* * If a NUMA node spawns more than one CPU level group then the next * level(s) of the hierarchy contains groups which handle all CPU groups * of the same NUMA node. The level above goes across NUMA nodes. Store * this information for the setup code to decide in which level node * matching is no longer required. */ tmigr_crossnode_level = cpulvl; tmigr_level_list = kcalloc(tmigr_hierarchy_levels, sizeof(struct list_head), GFP_KERNEL); if (!tmigr_level_list) goto err; for (i = 0; i < tmigr_hierarchy_levels; i++) INIT_LIST_HEAD(&tmigr_level_list[i]); pr_info("Timer migration: %d hierarchy levels; %d children per group;" " %d crossnode level\n", tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP, tmigr_crossnode_level); ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online", tmigr_cpu_online, tmigr_cpu_offline); if (ret) goto err; return 0; err: pr_err("Timer migration setup failed\n"); return ret; } late_initcall(tmigr_init); |