Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 
 20#include "xfs_log_format.h"
 21#include "xfs_trans_resv.h"
 22#include "xfs_sb.h"
 23#include "xfs_ag.h"
 24#include "xfs_mount.h"
 
 
 25#include "xfs_trans.h"
 26#include "xfs_trans_priv.h"
 27#include "xfs_buf_item.h"
 28#include "xfs_extfree_item.h"
 29#include "xfs_log.h"
 
 
 
 
 
 
 
 
 
 
 
 
 30
 
 
 31
 32kmem_zone_t	*xfs_efi_zone;
 33kmem_zone_t	*xfs_efd_zone;
 34
 35static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
 36{
 37	return container_of(lip, struct xfs_efi_log_item, efi_item);
 38}
 39
 40void
 41xfs_efi_item_free(
 42	struct xfs_efi_log_item	*efip)
 43{
 
 44	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
 45		kmem_free(efip);
 46	else
 47		kmem_zone_free(xfs_efi_zone, efip);
 48}
 49
 50/*
 51 * Freeing the efi requires that we remove it from the AIL if it has already
 52 * been placed there. However, the EFI may not yet have been placed in the AIL
 53 * when called by xfs_efi_release() from EFD processing due to the ordering of
 54 * committed vs unpin operations in bulk insert operations. Hence the reference
 55 * count to ensure only the last caller frees the EFI.
 56 */
 57STATIC void
 58__xfs_efi_release(
 59	struct xfs_efi_log_item	*efip)
 60{
 61	struct xfs_ail		*ailp = efip->efi_item.li_ailp;
 62
 63	if (atomic_dec_and_test(&efip->efi_refcount)) {
 64		spin_lock(&ailp->xa_lock);
 65		/* xfs_trans_ail_delete() drops the AIL lock. */
 66		xfs_trans_ail_delete(ailp, &efip->efi_item,
 67				     SHUTDOWN_LOG_IO_ERROR);
 68		xfs_efi_item_free(efip);
 69	}
 70}
 71
 72/*
 73 * This returns the number of iovecs needed to log the given efi item.
 74 * We only need 1 iovec for an efi item.  It just logs the efi_log_format
 75 * structure.
 76 */
 77static inline int
 78xfs_efi_item_sizeof(
 79	struct xfs_efi_log_item *efip)
 80{
 81	return sizeof(struct xfs_efi_log_format) +
 82	       (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
 83}
 84
 85STATIC void
 86xfs_efi_item_size(
 87	struct xfs_log_item	*lip,
 88	int			*nvecs,
 89	int			*nbytes)
 90{
 
 
 91	*nvecs += 1;
 92	*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
 93}
 94
 95/*
 96 * This is called to fill in the vector of log iovecs for the
 97 * given efi log item. We use only 1 iovec, and we point that
 98 * at the efi_log_format structure embedded in the efi item.
 99 * It is at this point that we assert that all of the extent
100 * slots in the efi item have been filled.
101 */
102STATIC void
103xfs_efi_item_format(
104	struct xfs_log_item	*lip,
105	struct xfs_log_vec	*lv)
106{
107	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
108	struct xfs_log_iovec	*vecp = NULL;
109
110	ASSERT(atomic_read(&efip->efi_next_extent) ==
111				efip->efi_format.efi_nextents);
 
112
113	efip->efi_format.efi_type = XFS_LI_EFI;
114	efip->efi_format.efi_size = 1;
115
116	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
117			&efip->efi_format,
118			xfs_efi_item_sizeof(efip));
119}
120
121
122/*
123 * Pinning has no meaning for an efi item, so just return.
124 */
125STATIC void
126xfs_efi_item_pin(
127	struct xfs_log_item	*lip)
128{
129}
130
131/*
132 * While EFIs cannot really be pinned, the unpin operation is the last place at
133 * which the EFI is manipulated during a transaction.  If we are being asked to
134 * remove the EFI it's because the transaction has been cancelled and by
135 * definition that means the EFI cannot be in the AIL so remove it from the
136 * transaction and free it.  Otherwise coordinate with xfs_efi_release()
137 * to determine who gets to free the EFI.
138 */
139STATIC void
140xfs_efi_item_unpin(
141	struct xfs_log_item	*lip,
142	int			remove)
143{
144	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
145
146	if (remove) {
147		ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
148		if (lip->li_desc)
149			xfs_trans_del_item(lip);
150		xfs_efi_item_free(efip);
151		return;
152	}
153	__xfs_efi_release(efip);
154}
155
156/*
157 * Efi items have no locking or pushing.  However, since EFIs are pulled from
158 * the AIL when their corresponding EFDs are committed to disk, their situation
159 * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
160 * will eventually flush the log.  This should help in getting the EFI out of
161 * the AIL.
162 */
163STATIC uint
164xfs_efi_item_push(
165	struct xfs_log_item	*lip,
166	struct list_head	*buffer_list)
167{
168	return XFS_ITEM_PINNED;
169}
170
171STATIC void
172xfs_efi_item_unlock(
173	struct xfs_log_item	*lip)
174{
175	if (lip->li_flags & XFS_LI_ABORTED)
176		xfs_efi_item_free(EFI_ITEM(lip));
177}
178
179/*
180 * The EFI is logged only once and cannot be moved in the log, so simply return
181 * the lsn at which it's been logged.
182 */
183STATIC xfs_lsn_t
184xfs_efi_item_committed(
185	struct xfs_log_item	*lip,
186	xfs_lsn_t		lsn)
187{
188	return lsn;
189}
190
191/*
192 * The EFI dependency tracking op doesn't do squat.  It can't because
193 * it doesn't know where the free extent is coming from.  The dependency
194 * tracking has to be handled by the "enclosing" metadata object.  For
195 * example, for inodes, the inode is locked throughout the extent freeing
196 * so the dependency should be recorded there.
197 */
198STATIC void
199xfs_efi_item_committing(
200	struct xfs_log_item	*lip,
201	xfs_lsn_t		lsn)
202{
203}
204
205/*
206 * This is the ops vector shared by all efi log items.
207 */
208static const struct xfs_item_ops xfs_efi_item_ops = {
209	.iop_size	= xfs_efi_item_size,
210	.iop_format	= xfs_efi_item_format,
211	.iop_pin	= xfs_efi_item_pin,
212	.iop_unpin	= xfs_efi_item_unpin,
213	.iop_unlock	= xfs_efi_item_unlock,
214	.iop_committed	= xfs_efi_item_committed,
215	.iop_push	= xfs_efi_item_push,
216	.iop_committing = xfs_efi_item_committing
217};
218
219
220/*
221 * Allocate and initialize an efi item with the given number of extents.
222 */
223struct xfs_efi_log_item *
224xfs_efi_init(
225	struct xfs_mount	*mp,
 
226	uint			nextents)
227
228{
229	struct xfs_efi_log_item	*efip;
230	uint			size;
231
 
232	ASSERT(nextents > 0);
 
233	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
234		size = (uint)(sizeof(xfs_efi_log_item_t) +
235			((nextents - 1) * sizeof(xfs_extent_t)));
236		efip = kmem_zalloc(size, KM_SLEEP);
237	} else {
238		efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
 
239	}
240
241	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
242	efip->efi_format.efi_nextents = nextents;
243	efip->efi_format.efi_id = (__psint_t)(void*)efip;
244	atomic_set(&efip->efi_next_extent, 0);
245	atomic_set(&efip->efi_refcount, 2);
246
247	return efip;
248}
249
250/*
251 * Copy an EFI format buffer from the given buf, and into the destination
252 * EFI format structure.
253 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
254 * one of which will be the native format for this kernel.
255 * It will handle the conversion of formats if necessary.
256 */
257int
258xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
259{
260	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
261	uint i;
262	uint len = sizeof(xfs_efi_log_format_t) + 
263		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);  
264	uint len32 = sizeof(xfs_efi_log_format_32_t) + 
265		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);  
266	uint len64 = sizeof(xfs_efi_log_format_64_t) + 
267		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);  
268
269	if (buf->i_len == len) {
270		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
 
 
 
 
 
271		return 0;
272	} else if (buf->i_len == len32) {
273		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
274
275		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
276		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
277		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
278		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
279		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
280			dst_efi_fmt->efi_extents[i].ext_start =
281				src_efi_fmt_32->efi_extents[i].ext_start;
282			dst_efi_fmt->efi_extents[i].ext_len =
283				src_efi_fmt_32->efi_extents[i].ext_len;
284		}
285		return 0;
286	} else if (buf->i_len == len64) {
287		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
288
289		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
290		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
291		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
292		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
293		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
294			dst_efi_fmt->efi_extents[i].ext_start =
295				src_efi_fmt_64->efi_extents[i].ext_start;
296			dst_efi_fmt->efi_extents[i].ext_len =
297				src_efi_fmt_64->efi_extents[i].ext_len;
298		}
299		return 0;
300	}
301	return EFSCORRUPTED;
302}
303
304/*
305 * This is called by the efd item code below to release references to the given
306 * efi item.  Each efd calls this with the number of extents that it has
307 * logged, and when the sum of these reaches the total number of extents logged
308 * by this efi item we can free the efi item.
309 */
310void
311xfs_efi_release(xfs_efi_log_item_t	*efip,
312		uint			nextents)
313{
314	ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
315	if (atomic_sub_and_test(nextents, &efip->efi_next_extent)) {
316		/* recovery needs us to drop the EFI reference, too */
317		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
318			__xfs_efi_release(efip);
319
320		__xfs_efi_release(efip);
321		/* efip may now have been freed, do not reference it again. */
322	}
323}
324
325static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
326{
327	return container_of(lip, struct xfs_efd_log_item, efd_item);
328}
329
330STATIC void
331xfs_efd_item_free(struct xfs_efd_log_item *efdp)
332{
 
333	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
334		kmem_free(efdp);
335	else
336		kmem_zone_free(xfs_efd_zone, efdp);
337}
338
339/*
340 * This returns the number of iovecs needed to log the given efd item.
341 * We only need 1 iovec for an efd item.  It just logs the efd_log_format
342 * structure.
343 */
344static inline int
345xfs_efd_item_sizeof(
346	struct xfs_efd_log_item *efdp)
347{
348	return sizeof(xfs_efd_log_format_t) +
349	       (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
350}
351
352STATIC void
353xfs_efd_item_size(
354	struct xfs_log_item	*lip,
355	int			*nvecs,
356	int			*nbytes)
357{
 
 
358	*nvecs += 1;
359	*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
360}
361
362/*
363 * This is called to fill in the vector of log iovecs for the
364 * given efd log item. We use only 1 iovec, and we point that
365 * at the efd_log_format structure embedded in the efd item.
366 * It is at this point that we assert that all of the extent
367 * slots in the efd item have been filled.
368 */
369STATIC void
370xfs_efd_item_format(
371	struct xfs_log_item	*lip,
372	struct xfs_log_vec	*lv)
373{
374	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
375	struct xfs_log_iovec	*vecp = NULL;
376
377	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
 
378
379	efdp->efd_format.efd_type = XFS_LI_EFD;
380	efdp->efd_format.efd_size = 1;
381
382	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
383			&efdp->efd_format,
384			xfs_efd_item_sizeof(efdp));
385}
386
387/*
388 * Pinning has no meaning for an efd item, so just return.
 
389 */
390STATIC void
391xfs_efd_item_pin(
 
 
 
 
 
 
 
 
 
 
392	struct xfs_log_item	*lip)
393{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394}
395
396/*
397 * Since pinning has no meaning for an efd item, unpinning does
398 * not either.
399 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
400STATIC void
401xfs_efd_item_unpin(
402	struct xfs_log_item	*lip,
403	int			remove)
 
404{
 
 
 
 
 
 
 
 
 
 
 
 
 
405}
406
407/*
408 * There isn't much you can do to push on an efd item.  It is simply stuck
409 * waiting for the log to be flushed to disk.
410 */
411STATIC uint
412xfs_efd_item_push(
413	struct xfs_log_item	*lip,
414	struct list_head	*buffer_list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415{
416	return XFS_ITEM_PINNED;
 
417}
418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419STATIC void
420xfs_efd_item_unlock(
421	struct xfs_log_item	*lip)
422{
423	if (lip->li_flags & XFS_LI_ABORTED)
424		xfs_efd_item_free(EFD_ITEM(lip));
 
 
425}
426
427/*
428 * When the efd item is committed to disk, all we need to do
429 * is delete our reference to our partner efi item and then
430 * free ourselves.  Since we're freeing ourselves we must
431 * return -1 to keep the transaction code from further referencing
432 * this item.
433 */
434STATIC xfs_lsn_t
435xfs_efd_item_committed(
436	struct xfs_log_item	*lip,
437	xfs_lsn_t		lsn)
438{
439	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440
441	/*
442	 * If we got a log I/O error, it's always the case that the LR with the
443	 * EFI got unpinned and freed before the EFD got aborted.
 
 
444	 */
445	if (!(lip->li_flags & XFS_LI_ABORTED))
446		xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
 
 
 
 
 
 
447
448	xfs_efd_item_free(efdp);
449	return (xfs_lsn_t)-1;
 
450}
451
452/*
453 * The EFD dependency tracking op doesn't do squat.  It can't because
454 * it doesn't know where the free extent is coming from.  The dependency
455 * tracking has to be handled by the "enclosing" metadata object.  For
456 * example, for inodes, the inode is locked throughout the extent freeing
457 * so the dependency should be recorded there.
458 */
459STATIC void
460xfs_efd_item_committing(
461	struct xfs_log_item	*lip,
462	xfs_lsn_t		lsn)
463{
 
464}
465
466/*
467 * This is the ops vector shared by all efd log items.
 
468 */
469static const struct xfs_item_ops xfs_efd_item_ops = {
470	.iop_size	= xfs_efd_item_size,
471	.iop_format	= xfs_efd_item_format,
472	.iop_pin	= xfs_efd_item_pin,
473	.iop_unpin	= xfs_efd_item_unpin,
474	.iop_unlock	= xfs_efd_item_unlock,
475	.iop_committed	= xfs_efd_item_committed,
476	.iop_push	= xfs_efd_item_push,
477	.iop_committing = xfs_efd_item_committing
478};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479
480/*
481 * Allocate and initialize an efd item with the given number of extents.
 
482 */
483struct xfs_efd_log_item *
484xfs_efd_init(
485	struct xfs_mount	*mp,
486	struct xfs_efi_log_item	*efip,
487	uint			nextents)
 
 
 
 
 
 
 
 
488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
489{
490	struct xfs_efd_log_item	*efdp;
491	uint			size;
492
493	ASSERT(nextents > 0);
494	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
495		size = (uint)(sizeof(xfs_efd_log_item_t) +
496			((nextents - 1) * sizeof(xfs_extent_t)));
497		efdp = kmem_zalloc(size, KM_SLEEP);
498	} else {
499		efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500	}
501
502	xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
503	efdp->efd_efip = efip;
504	efdp->efd_format.efd_nextents = nextents;
505	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
 
 
 
506
507	return efdp;
 
 
508}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_format.h"
   9#include "xfs_log_format.h"
  10#include "xfs_trans_resv.h"
  11#include "xfs_bit.h"
  12#include "xfs_shared.h"
  13#include "xfs_mount.h"
  14#include "xfs_ag.h"
  15#include "xfs_defer.h"
  16#include "xfs_trans.h"
  17#include "xfs_trans_priv.h"
 
  18#include "xfs_extfree_item.h"
  19#include "xfs_log.h"
  20#include "xfs_btree.h"
  21#include "xfs_rmap.h"
  22#include "xfs_alloc.h"
  23#include "xfs_bmap.h"
  24#include "xfs_trace.h"
  25#include "xfs_error.h"
  26#include "xfs_log_priv.h"
  27#include "xfs_log_recover.h"
  28#include "xfs_rtalloc.h"
  29#include "xfs_inode.h"
  30#include "xfs_rtbitmap.h"
  31#include "xfs_rtgroup.h"
  32
  33struct kmem_cache	*xfs_efi_cache;
  34struct kmem_cache	*xfs_efd_cache;
  35
  36static const struct xfs_item_ops xfs_efi_item_ops;
 
  37
  38static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
  39{
  40	return container_of(lip, struct xfs_efi_log_item, efi_item);
  41}
  42
  43STATIC void
  44xfs_efi_item_free(
  45	struct xfs_efi_log_item	*efip)
  46{
  47	kvfree(efip->efi_item.li_lv_shadow);
  48	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
  49		kfree(efip);
  50	else
  51		kmem_cache_free(xfs_efi_cache, efip);
  52}
  53
  54/*
  55 * Freeing the efi requires that we remove it from the AIL if it has already
  56 * been placed there. However, the EFI may not yet have been placed in the AIL
  57 * when called by xfs_efi_release() from EFD processing due to the ordering of
  58 * committed vs unpin operations in bulk insert operations. Hence the reference
  59 * count to ensure only the last caller frees the EFI.
  60 */
  61STATIC void
  62xfs_efi_release(
  63	struct xfs_efi_log_item	*efip)
  64{
  65	ASSERT(atomic_read(&efip->efi_refcount) > 0);
  66	if (!atomic_dec_and_test(&efip->efi_refcount))
  67		return;
 
 
 
 
 
 
 
  68
  69	xfs_trans_ail_delete(&efip->efi_item, 0);
  70	xfs_efi_item_free(efip);
 
 
 
 
 
 
 
 
 
  71}
  72
  73STATIC void
  74xfs_efi_item_size(
  75	struct xfs_log_item	*lip,
  76	int			*nvecs,
  77	int			*nbytes)
  78{
  79	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
  80
  81	*nvecs += 1;
  82	*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
  83}
  84
  85/*
  86 * This is called to fill in the vector of log iovecs for the
  87 * given efi log item. We use only 1 iovec, and we point that
  88 * at the efi_log_format structure embedded in the efi item.
  89 * It is at this point that we assert that all of the extent
  90 * slots in the efi item have been filled.
  91 */
  92STATIC void
  93xfs_efi_item_format(
  94	struct xfs_log_item	*lip,
  95	struct xfs_log_vec	*lv)
  96{
  97	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
  98	struct xfs_log_iovec	*vecp = NULL;
  99
 100	ASSERT(atomic_read(&efip->efi_next_extent) ==
 101				efip->efi_format.efi_nextents);
 102	ASSERT(lip->li_type == XFS_LI_EFI || lip->li_type == XFS_LI_EFI_RT);
 103
 104	efip->efi_format.efi_type = lip->li_type;
 105	efip->efi_format.efi_size = 1;
 106
 107	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, &efip->efi_format,
 108			xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
 
 109}
 110
 
 111/*
 112 * The unpin operation is the last place an EFI is manipulated in the log. It is
 113 * either inserted in the AIL or aborted in the event of a log I/O error. In
 114 * either case, the EFI transaction has been successfully committed to make it
 115 * this far. Therefore, we expect whoever committed the EFI to either construct
 116 * and commit the EFD or drop the EFD's reference in the event of error. Simply
 117 * drop the log's EFI reference now that the log is done with it.
 
 
 
 
 
 
 
 
 
 118 */
 119STATIC void
 120xfs_efi_item_unpin(
 121	struct xfs_log_item	*lip,
 122	int			remove)
 123{
 124	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
 125	xfs_efi_release(efip);
 
 
 
 
 
 
 
 
 126}
 127
 128/*
 129 * The EFI has been either committed or aborted if the transaction has been
 130 * cancelled. If the transaction was cancelled, an EFD isn't going to be
 131 * constructed and thus we free the EFI here directly.
 
 
 132 */
 
 
 
 
 
 
 
 
 133STATIC void
 134xfs_efi_item_release(
 135	struct xfs_log_item	*lip)
 136{
 137	xfs_efi_release(EFI_ITEM(lip));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138}
 139
 140/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141 * Allocate and initialize an efi item with the given number of extents.
 142 */
 143STATIC struct xfs_efi_log_item *
 144xfs_efi_init(
 145	struct xfs_mount	*mp,
 146	unsigned short		item_type,
 147	uint			nextents)
 
 148{
 149	struct xfs_efi_log_item	*efip;
 
 150
 151	ASSERT(item_type == XFS_LI_EFI || item_type == XFS_LI_EFI_RT);
 152	ASSERT(nextents > 0);
 153
 154	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
 155		efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
 156				GFP_KERNEL | __GFP_NOFAIL);
 
 157	} else {
 158		efip = kmem_cache_zalloc(xfs_efi_cache,
 159					 GFP_KERNEL | __GFP_NOFAIL);
 160	}
 161
 162	xfs_log_item_init(mp, &efip->efi_item, item_type, &xfs_efi_item_ops);
 163	efip->efi_format.efi_nextents = nextents;
 164	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
 165	atomic_set(&efip->efi_next_extent, 0);
 166	atomic_set(&efip->efi_refcount, 2);
 167
 168	return efip;
 169}
 170
 171/*
 172 * Copy an EFI format buffer from the given buf, and into the destination
 173 * EFI format structure.
 174 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
 175 * one of which will be the native format for this kernel.
 176 * It will handle the conversion of formats if necessary.
 177 */
 178STATIC int
 179xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
 180{
 181	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
 182	uint i;
 183	uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
 184	uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
 185	uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
 
 
 
 186
 187	if (buf->i_len == len) {
 188		memcpy(dst_efi_fmt, src_efi_fmt,
 189		       offsetof(struct xfs_efi_log_format, efi_extents));
 190		for (i = 0; i < src_efi_fmt->efi_nextents; i++)
 191			memcpy(&dst_efi_fmt->efi_extents[i],
 192			       &src_efi_fmt->efi_extents[i],
 193			       sizeof(struct xfs_extent));
 194		return 0;
 195	} else if (buf->i_len == len32) {
 196		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
 197
 198		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
 199		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
 200		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
 201		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
 202		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
 203			dst_efi_fmt->efi_extents[i].ext_start =
 204				src_efi_fmt_32->efi_extents[i].ext_start;
 205			dst_efi_fmt->efi_extents[i].ext_len =
 206				src_efi_fmt_32->efi_extents[i].ext_len;
 207		}
 208		return 0;
 209	} else if (buf->i_len == len64) {
 210		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
 211
 212		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
 213		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
 214		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
 215		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
 216		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
 217			dst_efi_fmt->efi_extents[i].ext_start =
 218				src_efi_fmt_64->efi_extents[i].ext_start;
 219			dst_efi_fmt->efi_extents[i].ext_len =
 220				src_efi_fmt_64->efi_extents[i].ext_len;
 221		}
 222		return 0;
 223	}
 224	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
 225			buf->i_len);
 226	return -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227}
 228
 229static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
 230{
 231	return container_of(lip, struct xfs_efd_log_item, efd_item);
 232}
 233
 234STATIC void
 235xfs_efd_item_free(struct xfs_efd_log_item *efdp)
 236{
 237	kvfree(efdp->efd_item.li_lv_shadow);
 238	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
 239		kfree(efdp);
 240	else
 241		kmem_cache_free(xfs_efd_cache, efdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 242}
 243
 244STATIC void
 245xfs_efd_item_size(
 246	struct xfs_log_item	*lip,
 247	int			*nvecs,
 248	int			*nbytes)
 249{
 250	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
 251
 252	*nvecs += 1;
 253	*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
 254}
 255
 256/*
 257 * This is called to fill in the vector of log iovecs for the
 258 * given efd log item. We use only 1 iovec, and we point that
 259 * at the efd_log_format structure embedded in the efd item.
 260 * It is at this point that we assert that all of the extent
 261 * slots in the efd item have been filled.
 262 */
 263STATIC void
 264xfs_efd_item_format(
 265	struct xfs_log_item	*lip,
 266	struct xfs_log_vec	*lv)
 267{
 268	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
 269	struct xfs_log_iovec	*vecp = NULL;
 270
 271	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
 272	ASSERT(lip->li_type == XFS_LI_EFD || lip->li_type == XFS_LI_EFD_RT);
 273
 274	efdp->efd_format.efd_type = lip->li_type;
 275	efdp->efd_format.efd_size = 1;
 276
 277	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, &efdp->efd_format,
 278			xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
 
 279}
 280
 281/*
 282 * The EFD is either committed or aborted if the transaction is cancelled. If
 283 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
 284 */
 285STATIC void
 286xfs_efd_item_release(
 287	struct xfs_log_item	*lip)
 288{
 289	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
 290
 291	xfs_efi_release(efdp->efd_efip);
 292	xfs_efd_item_free(efdp);
 293}
 294
 295static struct xfs_log_item *
 296xfs_efd_item_intent(
 297	struct xfs_log_item	*lip)
 298{
 299	return &EFD_ITEM(lip)->efd_efip->efi_item;
 300}
 301
 302static const struct xfs_item_ops xfs_efd_item_ops = {
 303	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
 304			  XFS_ITEM_INTENT_DONE,
 305	.iop_size	= xfs_efd_item_size,
 306	.iop_format	= xfs_efd_item_format,
 307	.iop_release	= xfs_efd_item_release,
 308	.iop_intent	= xfs_efd_item_intent,
 309};
 310
 311static inline struct xfs_extent_free_item *xefi_entry(const struct list_head *e)
 312{
 313	return list_entry(e, struct xfs_extent_free_item, xefi_list);
 314}
 315
 316static inline bool
 317xfs_efi_item_isrt(const struct xfs_log_item *lip)
 318{
 319	ASSERT(lip->li_type == XFS_LI_EFI || lip->li_type == XFS_LI_EFI_RT);
 320
 321	return lip->li_type == XFS_LI_EFI_RT;
 322}
 323
 324/*
 325 * Fill the EFD with all extents from the EFI when we need to roll the
 326 * transaction and continue with a new EFI.
 327 *
 328 * This simply copies all the extents in the EFI to the EFD rather than make
 329 * assumptions about which extents in the EFI have already been processed. We
 330 * currently keep the xefi list in the same order as the EFI extent list, but
 331 * that may not always be the case. Copying everything avoids leaving a landmine
 332 * were we fail to cancel all the extents in an EFI if the xefi list is
 333 * processed in a different order to the extents in the EFI.
 334 */
 335static void
 336xfs_efd_from_efi(
 337	struct xfs_efd_log_item	*efdp)
 338{
 339	struct xfs_efi_log_item *efip = efdp->efd_efip;
 340	uint                    i;
 341
 342	ASSERT(efip->efi_format.efi_nextents > 0);
 343	ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
 344
 345	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
 346	       efdp->efd_format.efd_extents[i] =
 347		       efip->efi_format.efi_extents[i];
 348	}
 349	efdp->efd_next_extent = efip->efi_format.efi_nextents;
 350}
 351
 352static void
 353xfs_efd_add_extent(
 354	struct xfs_efd_log_item		*efdp,
 355	struct xfs_extent_free_item	*xefi)
 356{
 357	struct xfs_extent		*extp;
 358
 359	ASSERT(efdp->efd_next_extent < efdp->efd_format.efd_nextents);
 360
 361	extp = &efdp->efd_format.efd_extents[efdp->efd_next_extent];
 362	extp->ext_start = xefi->xefi_startblock;
 363	extp->ext_len = xefi->xefi_blockcount;
 364
 365	efdp->efd_next_extent++;
 366}
 367
 368/* Sort bmap items by AG. */
 369static int
 370xfs_extent_free_diff_items(
 371	void				*priv,
 372	const struct list_head		*a,
 373	const struct list_head		*b)
 374{
 375	struct xfs_extent_free_item	*ra = xefi_entry(a);
 376	struct xfs_extent_free_item	*rb = xefi_entry(b);
 377
 378	return ra->xefi_group->xg_gno - rb->xefi_group->xg_gno;
 379}
 380
 381/* Log a free extent to the intent item. */
 382STATIC void
 383xfs_extent_free_log_item(
 384	struct xfs_trans		*tp,
 385	struct xfs_efi_log_item		*efip,
 386	struct xfs_extent_free_item	*xefi)
 387{
 388	uint				next_extent;
 389	struct xfs_extent		*extp;
 390
 391	/*
 392	 * atomic_inc_return gives us the value after the increment;
 393	 * we want to use it as an array index so we need to subtract 1 from
 394	 * it.
 395	 */
 396	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
 397	ASSERT(next_extent < efip->efi_format.efi_nextents);
 398	extp = &efip->efi_format.efi_extents[next_extent];
 399	extp->ext_start = xefi->xefi_startblock;
 400	extp->ext_len = xefi->xefi_blockcount;
 401}
 402
 403static struct xfs_log_item *
 404__xfs_extent_free_create_intent(
 405	struct xfs_trans		*tp,
 406	struct list_head		*items,
 407	unsigned int			count,
 408	bool				sort,
 409	unsigned short			item_type)
 410{
 411	struct xfs_mount		*mp = tp->t_mountp;
 412	struct xfs_efi_log_item		*efip;
 413	struct xfs_extent_free_item	*xefi;
 414
 415	ASSERT(count > 0);
 416
 417	efip = xfs_efi_init(mp, item_type, count);
 418	if (sort)
 419		list_sort(mp, items, xfs_extent_free_diff_items);
 420	list_for_each_entry(xefi, items, xefi_list)
 421		xfs_extent_free_log_item(tp, efip, xefi);
 422	return &efip->efi_item;
 423}
 424
 425static struct xfs_log_item *
 426xfs_extent_free_create_intent(
 427	struct xfs_trans		*tp,
 428	struct list_head		*items,
 429	unsigned int			count,
 430	bool				sort)
 431{
 432	return __xfs_extent_free_create_intent(tp, items, count, sort,
 433			XFS_LI_EFI);
 434}
 435
 436static inline unsigned short
 437xfs_efd_type_from_efi(const struct xfs_efi_log_item *efip)
 438{
 439	return xfs_efi_item_isrt(&efip->efi_item) ?  XFS_LI_EFD_RT : XFS_LI_EFD;
 440}
 441
 442/* Get an EFD so we can process all the free extents. */
 443static struct xfs_log_item *
 444xfs_extent_free_create_done(
 445	struct xfs_trans		*tp,
 446	struct xfs_log_item		*intent,
 447	unsigned int			count)
 448{
 449	struct xfs_efi_log_item		*efip = EFI_ITEM(intent);
 450	struct xfs_efd_log_item		*efdp;
 451
 452	ASSERT(count > 0);
 453
 454	if (count > XFS_EFD_MAX_FAST_EXTENTS) {
 455		efdp = kzalloc(xfs_efd_log_item_sizeof(count),
 456				GFP_KERNEL | __GFP_NOFAIL);
 457	} else {
 458		efdp = kmem_cache_zalloc(xfs_efd_cache,
 459					GFP_KERNEL | __GFP_NOFAIL);
 460	}
 461
 462	xfs_log_item_init(tp->t_mountp, &efdp->efd_item,
 463			xfs_efd_type_from_efi(efip), &xfs_efd_item_ops);
 464	efdp->efd_efip = efip;
 465	efdp->efd_format.efd_nextents = count;
 466	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
 467
 468	return &efdp->efd_item;
 469}
 470
 471static inline const struct xfs_defer_op_type *
 472xefi_ops(
 473	struct xfs_extent_free_item	*xefi)
 474{
 475	if (xfs_efi_is_realtime(xefi))
 476		return &xfs_rtextent_free_defer_type;
 477	if (xefi->xefi_agresv == XFS_AG_RESV_AGFL)
 478		return &xfs_agfl_free_defer_type;
 479	return &xfs_extent_free_defer_type;
 480}
 481
 482/* Add this deferred EFI to the transaction. */
 483void
 484xfs_extent_free_defer_add(
 485	struct xfs_trans		*tp,
 486	struct xfs_extent_free_item	*xefi,
 487	struct xfs_defer_pending	**dfpp)
 488{
 489	struct xfs_mount		*mp = tp->t_mountp;
 490
 491	xefi->xefi_group = xfs_group_intent_get(mp, xefi->xefi_startblock,
 492			xfs_efi_is_realtime(xefi) ? XG_TYPE_RTG : XG_TYPE_AG);
 493
 494	trace_xfs_extent_free_defer(mp, xefi);
 495	*dfpp = xfs_defer_add(tp, &xefi->xefi_list, xefi_ops(xefi));
 496}
 497
 498/* Cancel a free extent. */
 499STATIC void
 500xfs_extent_free_cancel_item(
 501	struct list_head		*item)
 502{
 503	struct xfs_extent_free_item	*xefi = xefi_entry(item);
 504
 505	xfs_group_intent_put(xefi->xefi_group);
 506	kmem_cache_free(xfs_extfree_item_cache, xefi);
 507}
 508
 509/* Process a free extent. */
 510STATIC int
 511xfs_extent_free_finish_item(
 512	struct xfs_trans		*tp,
 513	struct xfs_log_item		*done,
 514	struct list_head		*item,
 515	struct xfs_btree_cur		**state)
 
 
 
 
 516{
 517	struct xfs_owner_info		oinfo = { };
 518	struct xfs_extent_free_item	*xefi = xefi_entry(item);
 519	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
 520	struct xfs_mount		*mp = tp->t_mountp;
 521	xfs_agblock_t			agbno;
 522	int				error = 0;
 523
 524	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
 525
 526	oinfo.oi_owner = xefi->xefi_owner;
 527	if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
 528		oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
 529	if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
 530		oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
 531
 532	trace_xfs_extent_free_deferred(mp, xefi);
 533
 534	/*
 535	 * If we need a new transaction to make progress, the caller will log a
 536	 * new EFI with the current contents. It will also log an EFD to cancel
 537	 * the existing EFI, and so we need to copy all the unprocessed extents
 538	 * in this EFI to the EFD so this works correctly.
 539	 */
 540	if (!(xefi->xefi_flags & XFS_EFI_CANCELLED))
 541		error = __xfs_free_extent(tp, to_perag(xefi->xefi_group), agbno,
 542				xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
 543				xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
 544	if (error == -EAGAIN) {
 545		xfs_efd_from_efi(efdp);
 546		return error;
 547	}
 548
 549	xfs_efd_add_extent(efdp, xefi);
 550	xfs_extent_free_cancel_item(item);
 551	return error;
 552}
 553
 554/* Abort all pending EFIs. */
 
 
 
 
 
 
 555STATIC void
 556xfs_extent_free_abort_intent(
 557	struct xfs_log_item		*intent)
 
 558{
 559	xfs_efi_release(EFI_ITEM(intent));
 560}
 561
 562/*
 563 * AGFL blocks are accounted differently in the reserve pools and are not
 564 * inserted into the busy extent list.
 565 */
 566STATIC int
 567xfs_agfl_free_finish_item(
 568	struct xfs_trans		*tp,
 569	struct xfs_log_item		*done,
 570	struct list_head		*item,
 571	struct xfs_btree_cur		**state)
 572{
 573	struct xfs_owner_info		oinfo = { };
 574	struct xfs_mount		*mp = tp->t_mountp;
 575	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
 576	struct xfs_extent_free_item	*xefi = xefi_entry(item);
 577	struct xfs_buf			*agbp;
 578	int				error;
 579	xfs_agblock_t			agbno;
 580
 581	ASSERT(xefi->xefi_blockcount == 1);
 582	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
 583	oinfo.oi_owner = xefi->xefi_owner;
 584
 585	trace_xfs_agfl_free_deferred(mp, xefi);
 586
 587	error = xfs_alloc_read_agf(to_perag(xefi->xefi_group), tp, 0, &agbp);
 588	if (!error)
 589		error = xfs_free_ag_extent(tp, agbp, agbno, 1, &oinfo,
 590				XFS_AG_RESV_AGFL);
 591
 592	xfs_efd_add_extent(efdp, xefi);
 593	xfs_extent_free_cancel_item(&xefi->xefi_list);
 594	return error;
 595}
 596
 597/* Is this recovered EFI ok? */
 598static inline bool
 599xfs_efi_validate_ext(
 600	struct xfs_mount		*mp,
 601	bool				isrt,
 602	struct xfs_extent		*extp)
 603{
 604	if (isrt)
 605		return xfs_verify_rtbext(mp, extp->ext_start, extp->ext_len);
 606
 607	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
 608}
 609
 610static inline void
 611xfs_efi_recover_work(
 612	struct xfs_mount		*mp,
 613	struct xfs_defer_pending	*dfp,
 614	bool				isrt,
 615	struct xfs_extent		*extp)
 616{
 617	struct xfs_extent_free_item	*xefi;
 618
 619	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
 620			       GFP_KERNEL | __GFP_NOFAIL);
 621	xefi->xefi_startblock = extp->ext_start;
 622	xefi->xefi_blockcount = extp->ext_len;
 623	xefi->xefi_agresv = XFS_AG_RESV_NONE;
 624	xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN;
 625	xefi->xefi_group = xfs_group_intent_get(mp, extp->ext_start,
 626			isrt ? XG_TYPE_RTG : XG_TYPE_AG);
 627	if (isrt)
 628		xefi->xefi_flags |= XFS_EFI_REALTIME;
 629
 630	xfs_defer_add_item(dfp, &xefi->xefi_list);
 631}
 632
 633/*
 634 * Process an extent free intent item that was recovered from
 635 * the log.  We need to free the extents that it describes.
 636 */
 637STATIC int
 638xfs_extent_free_recover_work(
 639	struct xfs_defer_pending	*dfp,
 640	struct list_head		*capture_list)
 641{
 642	struct xfs_trans_res		resv;
 643	struct xfs_log_item		*lip = dfp->dfp_intent;
 644	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
 645	struct xfs_mount		*mp = lip->li_log->l_mp;
 646	struct xfs_trans		*tp;
 647	int				i;
 648	int				error = 0;
 649	bool				isrt = xfs_efi_item_isrt(lip);
 650
 651	/*
 652	 * First check the validity of the extents described by the EFI.  If
 653	 * any are bad, then assume that all are bad and just toss the EFI.
 654	 * Mixing RT and non-RT extents in the same EFI item is not allowed.
 655	 */
 656	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
 657		if (!xfs_efi_validate_ext(mp, isrt,
 658					&efip->efi_format.efi_extents[i])) {
 659			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
 660					&efip->efi_format,
 661					sizeof(efip->efi_format));
 662			return -EFSCORRUPTED;
 663		}
 664
 665		xfs_efi_recover_work(mp, dfp, isrt,
 666				&efip->efi_format.efi_extents[i]);
 667	}
 668
 669	resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
 670	error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
 671	if (error)
 672		return error;
 673
 674	error = xlog_recover_finish_intent(tp, dfp);
 675	if (error == -EFSCORRUPTED)
 676		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
 677				&efip->efi_format,
 678				sizeof(efip->efi_format));
 679	if (error)
 680		goto abort_error;
 681
 682	return xfs_defer_ops_capture_and_commit(tp, capture_list);
 683
 684abort_error:
 685	xfs_trans_cancel(tp);
 686	return error;
 687}
 688
 689/* Relog an intent item to push the log tail forward. */
 690static struct xfs_log_item *
 691xfs_extent_free_relog_intent(
 692	struct xfs_trans		*tp,
 693	struct xfs_log_item		*intent,
 694	struct xfs_log_item		*done_item)
 695{
 696	struct xfs_efd_log_item		*efdp = EFD_ITEM(done_item);
 697	struct xfs_efi_log_item		*efip;
 698	struct xfs_extent		*extp;
 699	unsigned int			count;
 700
 701	count = EFI_ITEM(intent)->efi_format.efi_nextents;
 702	extp = EFI_ITEM(intent)->efi_format.efi_extents;
 703
 704	ASSERT(intent->li_type == XFS_LI_EFI || intent->li_type == XFS_LI_EFI_RT);
 705
 706	efdp->efd_next_extent = count;
 707	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
 708
 709	efip = xfs_efi_init(tp->t_mountp, intent->li_type, count);
 710	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
 711	atomic_set(&efip->efi_next_extent, count);
 712
 713	return &efip->efi_item;
 714}
 715
 716const struct xfs_defer_op_type xfs_extent_free_defer_type = {
 717	.name		= "extent_free",
 718	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
 719	.create_intent	= xfs_extent_free_create_intent,
 720	.abort_intent	= xfs_extent_free_abort_intent,
 721	.create_done	= xfs_extent_free_create_done,
 722	.finish_item	= xfs_extent_free_finish_item,
 723	.cancel_item	= xfs_extent_free_cancel_item,
 724	.recover_work	= xfs_extent_free_recover_work,
 725	.relog_intent	= xfs_extent_free_relog_intent,
 726};
 727
 728/* sub-type with special handling for AGFL deferred frees */
 729const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
 730	.name		= "agfl_free",
 731	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
 732	.create_intent	= xfs_extent_free_create_intent,
 733	.abort_intent	= xfs_extent_free_abort_intent,
 734	.create_done	= xfs_extent_free_create_done,
 735	.finish_item	= xfs_agfl_free_finish_item,
 736	.cancel_item	= xfs_extent_free_cancel_item,
 737	.recover_work	= xfs_extent_free_recover_work,
 738	.relog_intent	= xfs_extent_free_relog_intent,
 739};
 740
 741#ifdef CONFIG_XFS_RT
 742/* Create a realtime extent freeing */
 743static struct xfs_log_item *
 744xfs_rtextent_free_create_intent(
 745	struct xfs_trans		*tp,
 746	struct list_head		*items,
 747	unsigned int			count,
 748	bool				sort)
 749{
 750	return __xfs_extent_free_create_intent(tp, items, count, sort,
 751			XFS_LI_EFI_RT);
 752}
 753
 754/* Process a free realtime extent. */
 755STATIC int
 756xfs_rtextent_free_finish_item(
 757	struct xfs_trans		*tp,
 758	struct xfs_log_item		*done,
 759	struct list_head		*item,
 760	struct xfs_btree_cur		**state)
 761{
 762	struct xfs_mount		*mp = tp->t_mountp;
 763	struct xfs_extent_free_item	*xefi = xefi_entry(item);
 764	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
 765	struct xfs_rtgroup		**rtgp = (struct xfs_rtgroup **)state;
 766	int				error = 0;
 767
 768	trace_xfs_extent_free_deferred(mp, xefi);
 769
 770	if (!(xefi->xefi_flags & XFS_EFI_CANCELLED)) {
 771		if (*rtgp != to_rtg(xefi->xefi_group)) {
 772			*rtgp = to_rtg(xefi->xefi_group);
 773			xfs_rtgroup_lock(*rtgp, XFS_RTGLOCK_BITMAP);
 774			xfs_rtgroup_trans_join(tp, *rtgp,
 775					XFS_RTGLOCK_BITMAP);
 776		}
 777		error = xfs_rtfree_blocks(tp, *rtgp,
 778				xefi->xefi_startblock, xefi->xefi_blockcount);
 779	}
 780	if (error == -EAGAIN) {
 781		xfs_efd_from_efi(efdp);
 782		return error;
 783	}
 784
 785	xfs_efd_add_extent(efdp, xefi);
 786	xfs_extent_free_cancel_item(item);
 787	return error;
 788}
 789
 790const struct xfs_defer_op_type xfs_rtextent_free_defer_type = {
 791	.name		= "rtextent_free",
 792	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
 793	.create_intent	= xfs_rtextent_free_create_intent,
 794	.abort_intent	= xfs_extent_free_abort_intent,
 795	.create_done	= xfs_extent_free_create_done,
 796	.finish_item	= xfs_rtextent_free_finish_item,
 797	.cancel_item	= xfs_extent_free_cancel_item,
 798	.recover_work	= xfs_extent_free_recover_work,
 799	.relog_intent	= xfs_extent_free_relog_intent,
 800};
 801#else
 802const struct xfs_defer_op_type xfs_rtextent_free_defer_type = {
 803	.name		= "rtextent_free",
 804};
 805#endif /* CONFIG_XFS_RT */
 806
 807STATIC bool
 808xfs_efi_item_match(
 809	struct xfs_log_item	*lip,
 810	uint64_t		intent_id)
 811{
 812	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
 813}
 814
 815static const struct xfs_item_ops xfs_efi_item_ops = {
 816	.flags		= XFS_ITEM_INTENT,
 817	.iop_size	= xfs_efi_item_size,
 818	.iop_format	= xfs_efi_item_format,
 819	.iop_unpin	= xfs_efi_item_unpin,
 820	.iop_release	= xfs_efi_item_release,
 821	.iop_match	= xfs_efi_item_match,
 822};
 823
 824/*
 825 * This routine is called to create an in-core extent free intent
 826 * item from the efi format structure which was logged on disk.
 827 * It allocates an in-core efi, copies the extents from the format
 828 * structure into it, and adds the efi to the AIL with the given
 829 * LSN.
 830 */
 831STATIC int
 832xlog_recover_efi_commit_pass2(
 833	struct xlog			*log,
 834	struct list_head		*buffer_list,
 835	struct xlog_recover_item	*item,
 836	xfs_lsn_t			lsn)
 837{
 838	struct xfs_mount		*mp = log->l_mp;
 839	struct xfs_efi_log_item		*efip;
 840	struct xfs_efi_log_format	*efi_formatp;
 841	int				error;
 842
 843	efi_formatp = item->ri_buf[0].i_addr;
 844
 845	if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
 846		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
 847				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
 848		return -EFSCORRUPTED;
 849	}
 850
 851	efip = xfs_efi_init(mp, ITEM_TYPE(item), efi_formatp->efi_nextents);
 852	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
 853	if (error) {
 854		xfs_efi_item_free(efip);
 855		return error;
 856	}
 857	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
 858
 859	xlog_recover_intent_item(log, &efip->efi_item, lsn,
 860			&xfs_extent_free_defer_type);
 861	return 0;
 862}
 863
 864const struct xlog_recover_item_ops xlog_efi_item_ops = {
 865	.item_type		= XFS_LI_EFI,
 866	.commit_pass2		= xlog_recover_efi_commit_pass2,
 867};
 868
 869#ifdef CONFIG_XFS_RT
 870STATIC int
 871xlog_recover_rtefi_commit_pass2(
 872	struct xlog			*log,
 873	struct list_head		*buffer_list,
 874	struct xlog_recover_item	*item,
 875	xfs_lsn_t			lsn)
 876{
 877	struct xfs_mount		*mp = log->l_mp;
 878	struct xfs_efi_log_item		*efip;
 879	struct xfs_efi_log_format	*efi_formatp;
 880	int				error;
 881
 882	efi_formatp = item->ri_buf[0].i_addr;
 883
 884	if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
 885		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
 886				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
 887		return -EFSCORRUPTED;
 888	}
 889
 890	efip = xfs_efi_init(mp, ITEM_TYPE(item), efi_formatp->efi_nextents);
 891	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
 892	if (error) {
 893		xfs_efi_item_free(efip);
 894		return error;
 895	}
 896	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
 897
 898	xlog_recover_intent_item(log, &efip->efi_item, lsn,
 899			&xfs_rtextent_free_defer_type);
 900	return 0;
 901}
 902#else
 903STATIC int
 904xlog_recover_rtefi_commit_pass2(
 905	struct xlog			*log,
 906	struct list_head		*buffer_list,
 907	struct xlog_recover_item	*item,
 908	xfs_lsn_t			lsn)
 909{
 910	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
 911			item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
 912	return -EFSCORRUPTED;
 913}
 914#endif
 915
 916const struct xlog_recover_item_ops xlog_rtefi_item_ops = {
 917	.item_type		= XFS_LI_EFI_RT,
 918	.commit_pass2		= xlog_recover_rtefi_commit_pass2,
 919};
 920
 921/*
 922 * This routine is called when an EFD format structure is found in a committed
 923 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
 924 * was still in the log. To do this it searches the AIL for the EFI with an id
 925 * equal to that in the EFD format structure. If we find it we drop the EFD
 926 * reference, which removes the EFI from the AIL and frees it.
 927 */
 928STATIC int
 929xlog_recover_efd_commit_pass2(
 930	struct xlog			*log,
 931	struct list_head		*buffer_list,
 932	struct xlog_recover_item	*item,
 933	xfs_lsn_t			lsn)
 934{
 935	struct xfs_efd_log_format	*efd_formatp;
 936	int				buflen = item->ri_buf[0].i_len;
 937
 938	efd_formatp = item->ri_buf[0].i_addr;
 939
 940	if (buflen < sizeof(struct xfs_efd_log_format)) {
 941		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
 942				efd_formatp, buflen);
 943		return -EFSCORRUPTED;
 944	}
 945
 946	if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
 947						efd_formatp->efd_nextents) &&
 948	    item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
 949						efd_formatp->efd_nextents)) {
 950		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
 951				efd_formatp, buflen);
 952		return -EFSCORRUPTED;
 953	}
 954
 955	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
 956	return 0;
 957}
 958
 959const struct xlog_recover_item_ops xlog_efd_item_ops = {
 960	.item_type		= XFS_LI_EFD,
 961	.commit_pass2		= xlog_recover_efd_commit_pass2,
 962};
 963
 964#ifdef CONFIG_XFS_RT
 965STATIC int
 966xlog_recover_rtefd_commit_pass2(
 967	struct xlog			*log,
 968	struct list_head		*buffer_list,
 969	struct xlog_recover_item	*item,
 970	xfs_lsn_t			lsn)
 971{
 972	struct xfs_efd_log_format	*efd_formatp;
 973	int				buflen = item->ri_buf[0].i_len;
 974
 975	efd_formatp = item->ri_buf[0].i_addr;
 976
 977	if (buflen < sizeof(struct xfs_efd_log_format)) {
 978		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
 979				efd_formatp, buflen);
 980		return -EFSCORRUPTED;
 981	}
 982
 983	if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
 984						efd_formatp->efd_nextents) &&
 985	    item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
 986						efd_formatp->efd_nextents)) {
 987		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
 988				efd_formatp, buflen);
 989		return -EFSCORRUPTED;
 990	}
 991
 992	xlog_recover_release_intent(log, XFS_LI_EFI_RT,
 993			efd_formatp->efd_efi_id);
 994	return 0;
 995}
 996#else
 997# define xlog_recover_rtefd_commit_pass2	xlog_recover_rtefi_commit_pass2
 998#endif
 999
1000const struct xlog_recover_item_ops xlog_rtefd_item_ops = {
1001	.item_type		= XFS_LI_EFD_RT,
1002	.commit_pass2		= xlog_recover_rtefd_commit_pass2,
1003};