Loading...
1/*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_log_format.h"
21#include "xfs_trans_resv.h"
22#include "xfs_sb.h"
23#include "xfs_ag.h"
24#include "xfs_mount.h"
25#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_buf_item.h"
28#include "xfs_extfree_item.h"
29#include "xfs_log.h"
30
31
32kmem_zone_t *xfs_efi_zone;
33kmem_zone_t *xfs_efd_zone;
34
35static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
36{
37 return container_of(lip, struct xfs_efi_log_item, efi_item);
38}
39
40void
41xfs_efi_item_free(
42 struct xfs_efi_log_item *efip)
43{
44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45 kmem_free(efip);
46 else
47 kmem_zone_free(xfs_efi_zone, efip);
48}
49
50/*
51 * Freeing the efi requires that we remove it from the AIL if it has already
52 * been placed there. However, the EFI may not yet have been placed in the AIL
53 * when called by xfs_efi_release() from EFD processing due to the ordering of
54 * committed vs unpin operations in bulk insert operations. Hence the reference
55 * count to ensure only the last caller frees the EFI.
56 */
57STATIC void
58__xfs_efi_release(
59 struct xfs_efi_log_item *efip)
60{
61 struct xfs_ail *ailp = efip->efi_item.li_ailp;
62
63 if (atomic_dec_and_test(&efip->efi_refcount)) {
64 spin_lock(&ailp->xa_lock);
65 /* xfs_trans_ail_delete() drops the AIL lock. */
66 xfs_trans_ail_delete(ailp, &efip->efi_item,
67 SHUTDOWN_LOG_IO_ERROR);
68 xfs_efi_item_free(efip);
69 }
70}
71
72/*
73 * This returns the number of iovecs needed to log the given efi item.
74 * We only need 1 iovec for an efi item. It just logs the efi_log_format
75 * structure.
76 */
77static inline int
78xfs_efi_item_sizeof(
79 struct xfs_efi_log_item *efip)
80{
81 return sizeof(struct xfs_efi_log_format) +
82 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
83}
84
85STATIC void
86xfs_efi_item_size(
87 struct xfs_log_item *lip,
88 int *nvecs,
89 int *nbytes)
90{
91 *nvecs += 1;
92 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
93}
94
95/*
96 * This is called to fill in the vector of log iovecs for the
97 * given efi log item. We use only 1 iovec, and we point that
98 * at the efi_log_format structure embedded in the efi item.
99 * It is at this point that we assert that all of the extent
100 * slots in the efi item have been filled.
101 */
102STATIC void
103xfs_efi_item_format(
104 struct xfs_log_item *lip,
105 struct xfs_log_vec *lv)
106{
107 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
108 struct xfs_log_iovec *vecp = NULL;
109
110 ASSERT(atomic_read(&efip->efi_next_extent) ==
111 efip->efi_format.efi_nextents);
112
113 efip->efi_format.efi_type = XFS_LI_EFI;
114 efip->efi_format.efi_size = 1;
115
116 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
117 &efip->efi_format,
118 xfs_efi_item_sizeof(efip));
119}
120
121
122/*
123 * Pinning has no meaning for an efi item, so just return.
124 */
125STATIC void
126xfs_efi_item_pin(
127 struct xfs_log_item *lip)
128{
129}
130
131/*
132 * While EFIs cannot really be pinned, the unpin operation is the last place at
133 * which the EFI is manipulated during a transaction. If we are being asked to
134 * remove the EFI it's because the transaction has been cancelled and by
135 * definition that means the EFI cannot be in the AIL so remove it from the
136 * transaction and free it. Otherwise coordinate with xfs_efi_release()
137 * to determine who gets to free the EFI.
138 */
139STATIC void
140xfs_efi_item_unpin(
141 struct xfs_log_item *lip,
142 int remove)
143{
144 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
145
146 if (remove) {
147 ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
148 if (lip->li_desc)
149 xfs_trans_del_item(lip);
150 xfs_efi_item_free(efip);
151 return;
152 }
153 __xfs_efi_release(efip);
154}
155
156/*
157 * Efi items have no locking or pushing. However, since EFIs are pulled from
158 * the AIL when their corresponding EFDs are committed to disk, their situation
159 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
160 * will eventually flush the log. This should help in getting the EFI out of
161 * the AIL.
162 */
163STATIC uint
164xfs_efi_item_push(
165 struct xfs_log_item *lip,
166 struct list_head *buffer_list)
167{
168 return XFS_ITEM_PINNED;
169}
170
171STATIC void
172xfs_efi_item_unlock(
173 struct xfs_log_item *lip)
174{
175 if (lip->li_flags & XFS_LI_ABORTED)
176 xfs_efi_item_free(EFI_ITEM(lip));
177}
178
179/*
180 * The EFI is logged only once and cannot be moved in the log, so simply return
181 * the lsn at which it's been logged.
182 */
183STATIC xfs_lsn_t
184xfs_efi_item_committed(
185 struct xfs_log_item *lip,
186 xfs_lsn_t lsn)
187{
188 return lsn;
189}
190
191/*
192 * The EFI dependency tracking op doesn't do squat. It can't because
193 * it doesn't know where the free extent is coming from. The dependency
194 * tracking has to be handled by the "enclosing" metadata object. For
195 * example, for inodes, the inode is locked throughout the extent freeing
196 * so the dependency should be recorded there.
197 */
198STATIC void
199xfs_efi_item_committing(
200 struct xfs_log_item *lip,
201 xfs_lsn_t lsn)
202{
203}
204
205/*
206 * This is the ops vector shared by all efi log items.
207 */
208static const struct xfs_item_ops xfs_efi_item_ops = {
209 .iop_size = xfs_efi_item_size,
210 .iop_format = xfs_efi_item_format,
211 .iop_pin = xfs_efi_item_pin,
212 .iop_unpin = xfs_efi_item_unpin,
213 .iop_unlock = xfs_efi_item_unlock,
214 .iop_committed = xfs_efi_item_committed,
215 .iop_push = xfs_efi_item_push,
216 .iop_committing = xfs_efi_item_committing
217};
218
219
220/*
221 * Allocate and initialize an efi item with the given number of extents.
222 */
223struct xfs_efi_log_item *
224xfs_efi_init(
225 struct xfs_mount *mp,
226 uint nextents)
227
228{
229 struct xfs_efi_log_item *efip;
230 uint size;
231
232 ASSERT(nextents > 0);
233 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
234 size = (uint)(sizeof(xfs_efi_log_item_t) +
235 ((nextents - 1) * sizeof(xfs_extent_t)));
236 efip = kmem_zalloc(size, KM_SLEEP);
237 } else {
238 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
239 }
240
241 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
242 efip->efi_format.efi_nextents = nextents;
243 efip->efi_format.efi_id = (__psint_t)(void*)efip;
244 atomic_set(&efip->efi_next_extent, 0);
245 atomic_set(&efip->efi_refcount, 2);
246
247 return efip;
248}
249
250/*
251 * Copy an EFI format buffer from the given buf, and into the destination
252 * EFI format structure.
253 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
254 * one of which will be the native format for this kernel.
255 * It will handle the conversion of formats if necessary.
256 */
257int
258xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
259{
260 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
261 uint i;
262 uint len = sizeof(xfs_efi_log_format_t) +
263 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
264 uint len32 = sizeof(xfs_efi_log_format_32_t) +
265 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
266 uint len64 = sizeof(xfs_efi_log_format_64_t) +
267 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
268
269 if (buf->i_len == len) {
270 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
271 return 0;
272 } else if (buf->i_len == len32) {
273 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
274
275 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
276 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
277 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
278 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
279 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
280 dst_efi_fmt->efi_extents[i].ext_start =
281 src_efi_fmt_32->efi_extents[i].ext_start;
282 dst_efi_fmt->efi_extents[i].ext_len =
283 src_efi_fmt_32->efi_extents[i].ext_len;
284 }
285 return 0;
286 } else if (buf->i_len == len64) {
287 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
288
289 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
290 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
291 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
292 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
293 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
294 dst_efi_fmt->efi_extents[i].ext_start =
295 src_efi_fmt_64->efi_extents[i].ext_start;
296 dst_efi_fmt->efi_extents[i].ext_len =
297 src_efi_fmt_64->efi_extents[i].ext_len;
298 }
299 return 0;
300 }
301 return EFSCORRUPTED;
302}
303
304/*
305 * This is called by the efd item code below to release references to the given
306 * efi item. Each efd calls this with the number of extents that it has
307 * logged, and when the sum of these reaches the total number of extents logged
308 * by this efi item we can free the efi item.
309 */
310void
311xfs_efi_release(xfs_efi_log_item_t *efip,
312 uint nextents)
313{
314 ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
315 if (atomic_sub_and_test(nextents, &efip->efi_next_extent)) {
316 /* recovery needs us to drop the EFI reference, too */
317 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
318 __xfs_efi_release(efip);
319
320 __xfs_efi_release(efip);
321 /* efip may now have been freed, do not reference it again. */
322 }
323}
324
325static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
326{
327 return container_of(lip, struct xfs_efd_log_item, efd_item);
328}
329
330STATIC void
331xfs_efd_item_free(struct xfs_efd_log_item *efdp)
332{
333 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
334 kmem_free(efdp);
335 else
336 kmem_zone_free(xfs_efd_zone, efdp);
337}
338
339/*
340 * This returns the number of iovecs needed to log the given efd item.
341 * We only need 1 iovec for an efd item. It just logs the efd_log_format
342 * structure.
343 */
344static inline int
345xfs_efd_item_sizeof(
346 struct xfs_efd_log_item *efdp)
347{
348 return sizeof(xfs_efd_log_format_t) +
349 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
350}
351
352STATIC void
353xfs_efd_item_size(
354 struct xfs_log_item *lip,
355 int *nvecs,
356 int *nbytes)
357{
358 *nvecs += 1;
359 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
360}
361
362/*
363 * This is called to fill in the vector of log iovecs for the
364 * given efd log item. We use only 1 iovec, and we point that
365 * at the efd_log_format structure embedded in the efd item.
366 * It is at this point that we assert that all of the extent
367 * slots in the efd item have been filled.
368 */
369STATIC void
370xfs_efd_item_format(
371 struct xfs_log_item *lip,
372 struct xfs_log_vec *lv)
373{
374 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
375 struct xfs_log_iovec *vecp = NULL;
376
377 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
378
379 efdp->efd_format.efd_type = XFS_LI_EFD;
380 efdp->efd_format.efd_size = 1;
381
382 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
383 &efdp->efd_format,
384 xfs_efd_item_sizeof(efdp));
385}
386
387/*
388 * Pinning has no meaning for an efd item, so just return.
389 */
390STATIC void
391xfs_efd_item_pin(
392 struct xfs_log_item *lip)
393{
394}
395
396/*
397 * Since pinning has no meaning for an efd item, unpinning does
398 * not either.
399 */
400STATIC void
401xfs_efd_item_unpin(
402 struct xfs_log_item *lip,
403 int remove)
404{
405}
406
407/*
408 * There isn't much you can do to push on an efd item. It is simply stuck
409 * waiting for the log to be flushed to disk.
410 */
411STATIC uint
412xfs_efd_item_push(
413 struct xfs_log_item *lip,
414 struct list_head *buffer_list)
415{
416 return XFS_ITEM_PINNED;
417}
418
419STATIC void
420xfs_efd_item_unlock(
421 struct xfs_log_item *lip)
422{
423 if (lip->li_flags & XFS_LI_ABORTED)
424 xfs_efd_item_free(EFD_ITEM(lip));
425}
426
427/*
428 * When the efd item is committed to disk, all we need to do
429 * is delete our reference to our partner efi item and then
430 * free ourselves. Since we're freeing ourselves we must
431 * return -1 to keep the transaction code from further referencing
432 * this item.
433 */
434STATIC xfs_lsn_t
435xfs_efd_item_committed(
436 struct xfs_log_item *lip,
437 xfs_lsn_t lsn)
438{
439 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
440
441 /*
442 * If we got a log I/O error, it's always the case that the LR with the
443 * EFI got unpinned and freed before the EFD got aborted.
444 */
445 if (!(lip->li_flags & XFS_LI_ABORTED))
446 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
447
448 xfs_efd_item_free(efdp);
449 return (xfs_lsn_t)-1;
450}
451
452/*
453 * The EFD dependency tracking op doesn't do squat. It can't because
454 * it doesn't know where the free extent is coming from. The dependency
455 * tracking has to be handled by the "enclosing" metadata object. For
456 * example, for inodes, the inode is locked throughout the extent freeing
457 * so the dependency should be recorded there.
458 */
459STATIC void
460xfs_efd_item_committing(
461 struct xfs_log_item *lip,
462 xfs_lsn_t lsn)
463{
464}
465
466/*
467 * This is the ops vector shared by all efd log items.
468 */
469static const struct xfs_item_ops xfs_efd_item_ops = {
470 .iop_size = xfs_efd_item_size,
471 .iop_format = xfs_efd_item_format,
472 .iop_pin = xfs_efd_item_pin,
473 .iop_unpin = xfs_efd_item_unpin,
474 .iop_unlock = xfs_efd_item_unlock,
475 .iop_committed = xfs_efd_item_committed,
476 .iop_push = xfs_efd_item_push,
477 .iop_committing = xfs_efd_item_committing
478};
479
480/*
481 * Allocate and initialize an efd item with the given number of extents.
482 */
483struct xfs_efd_log_item *
484xfs_efd_init(
485 struct xfs_mount *mp,
486 struct xfs_efi_log_item *efip,
487 uint nextents)
488
489{
490 struct xfs_efd_log_item *efdp;
491 uint size;
492
493 ASSERT(nextents > 0);
494 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
495 size = (uint)(sizeof(xfs_efd_log_item_t) +
496 ((nextents - 1) * sizeof(xfs_extent_t)));
497 efdp = kmem_zalloc(size, KM_SLEEP);
498 } else {
499 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
500 }
501
502 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
503 efdp->efd_efip = efip;
504 efdp->efd_format.efd_nextents = nextents;
505 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
506
507 return efdp;
508}
1/*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_log.h"
22#include "xfs_trans.h"
23#include "xfs_buf_item.h"
24#include "xfs_sb.h"
25#include "xfs_ag.h"
26#include "xfs_mount.h"
27#include "xfs_trans_priv.h"
28#include "xfs_extfree_item.h"
29
30
31kmem_zone_t *xfs_efi_zone;
32kmem_zone_t *xfs_efd_zone;
33
34static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35{
36 return container_of(lip, struct xfs_efi_log_item, efi_item);
37}
38
39void
40xfs_efi_item_free(
41 struct xfs_efi_log_item *efip)
42{
43 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
44 kmem_free(efip);
45 else
46 kmem_zone_free(xfs_efi_zone, efip);
47}
48
49/*
50 * Freeing the efi requires that we remove it from the AIL if it has already
51 * been placed there. However, the EFI may not yet have been placed in the AIL
52 * when called by xfs_efi_release() from EFD processing due to the ordering of
53 * committed vs unpin operations in bulk insert operations. Hence the
54 * test_and_clear_bit(XFS_EFI_COMMITTED) to ensure only the last caller frees
55 * the EFI.
56 */
57STATIC void
58__xfs_efi_release(
59 struct xfs_efi_log_item *efip)
60{
61 struct xfs_ail *ailp = efip->efi_item.li_ailp;
62
63 if (!test_and_clear_bit(XFS_EFI_COMMITTED, &efip->efi_flags)) {
64 spin_lock(&ailp->xa_lock);
65 /* xfs_trans_ail_delete() drops the AIL lock. */
66 xfs_trans_ail_delete(ailp, &efip->efi_item,
67 SHUTDOWN_LOG_IO_ERROR);
68 xfs_efi_item_free(efip);
69 }
70}
71
72/*
73 * This returns the number of iovecs needed to log the given efi item.
74 * We only need 1 iovec for an efi item. It just logs the efi_log_format
75 * structure.
76 */
77STATIC uint
78xfs_efi_item_size(
79 struct xfs_log_item *lip)
80{
81 return 1;
82}
83
84/*
85 * This is called to fill in the vector of log iovecs for the
86 * given efi log item. We use only 1 iovec, and we point that
87 * at the efi_log_format structure embedded in the efi item.
88 * It is at this point that we assert that all of the extent
89 * slots in the efi item have been filled.
90 */
91STATIC void
92xfs_efi_item_format(
93 struct xfs_log_item *lip,
94 struct xfs_log_iovec *log_vector)
95{
96 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
97 uint size;
98
99 ASSERT(atomic_read(&efip->efi_next_extent) ==
100 efip->efi_format.efi_nextents);
101
102 efip->efi_format.efi_type = XFS_LI_EFI;
103
104 size = sizeof(xfs_efi_log_format_t);
105 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
106 efip->efi_format.efi_size = 1;
107
108 log_vector->i_addr = &efip->efi_format;
109 log_vector->i_len = size;
110 log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT;
111 ASSERT(size >= sizeof(xfs_efi_log_format_t));
112}
113
114
115/*
116 * Pinning has no meaning for an efi item, so just return.
117 */
118STATIC void
119xfs_efi_item_pin(
120 struct xfs_log_item *lip)
121{
122}
123
124/*
125 * While EFIs cannot really be pinned, the unpin operation is the last place at
126 * which the EFI is manipulated during a transaction. If we are being asked to
127 * remove the EFI it's because the transaction has been cancelled and by
128 * definition that means the EFI cannot be in the AIL so remove it from the
129 * transaction and free it. Otherwise coordinate with xfs_efi_release() (via
130 * XFS_EFI_COMMITTED) to determine who gets to free the EFI.
131 */
132STATIC void
133xfs_efi_item_unpin(
134 struct xfs_log_item *lip,
135 int remove)
136{
137 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
138
139 if (remove) {
140 ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
141 if (lip->li_desc)
142 xfs_trans_del_item(lip);
143 xfs_efi_item_free(efip);
144 return;
145 }
146 __xfs_efi_release(efip);
147}
148
149/*
150 * Efi items have no locking or pushing. However, since EFIs are pulled from
151 * the AIL when their corresponding EFDs are committed to disk, their situation
152 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
153 * will eventually flush the log. This should help in getting the EFI out of
154 * the AIL.
155 */
156STATIC uint
157xfs_efi_item_push(
158 struct xfs_log_item *lip,
159 struct list_head *buffer_list)
160{
161 return XFS_ITEM_PINNED;
162}
163
164STATIC void
165xfs_efi_item_unlock(
166 struct xfs_log_item *lip)
167{
168 if (lip->li_flags & XFS_LI_ABORTED)
169 xfs_efi_item_free(EFI_ITEM(lip));
170}
171
172/*
173 * The EFI is logged only once and cannot be moved in the log, so simply return
174 * the lsn at which it's been logged. For bulk transaction committed
175 * processing, the EFI may be processed but not yet unpinned prior to the EFD
176 * being processed. Set the XFS_EFI_COMMITTED flag so this case can be detected
177 * when processing the EFD.
178 */
179STATIC xfs_lsn_t
180xfs_efi_item_committed(
181 struct xfs_log_item *lip,
182 xfs_lsn_t lsn)
183{
184 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
185
186 set_bit(XFS_EFI_COMMITTED, &efip->efi_flags);
187 return lsn;
188}
189
190/*
191 * The EFI dependency tracking op doesn't do squat. It can't because
192 * it doesn't know where the free extent is coming from. The dependency
193 * tracking has to be handled by the "enclosing" metadata object. For
194 * example, for inodes, the inode is locked throughout the extent freeing
195 * so the dependency should be recorded there.
196 */
197STATIC void
198xfs_efi_item_committing(
199 struct xfs_log_item *lip,
200 xfs_lsn_t lsn)
201{
202}
203
204/*
205 * This is the ops vector shared by all efi log items.
206 */
207static const struct xfs_item_ops xfs_efi_item_ops = {
208 .iop_size = xfs_efi_item_size,
209 .iop_format = xfs_efi_item_format,
210 .iop_pin = xfs_efi_item_pin,
211 .iop_unpin = xfs_efi_item_unpin,
212 .iop_unlock = xfs_efi_item_unlock,
213 .iop_committed = xfs_efi_item_committed,
214 .iop_push = xfs_efi_item_push,
215 .iop_committing = xfs_efi_item_committing
216};
217
218
219/*
220 * Allocate and initialize an efi item with the given number of extents.
221 */
222struct xfs_efi_log_item *
223xfs_efi_init(
224 struct xfs_mount *mp,
225 uint nextents)
226
227{
228 struct xfs_efi_log_item *efip;
229 uint size;
230
231 ASSERT(nextents > 0);
232 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
233 size = (uint)(sizeof(xfs_efi_log_item_t) +
234 ((nextents - 1) * sizeof(xfs_extent_t)));
235 efip = kmem_zalloc(size, KM_SLEEP);
236 } else {
237 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
238 }
239
240 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
241 efip->efi_format.efi_nextents = nextents;
242 efip->efi_format.efi_id = (__psint_t)(void*)efip;
243 atomic_set(&efip->efi_next_extent, 0);
244
245 return efip;
246}
247
248/*
249 * Copy an EFI format buffer from the given buf, and into the destination
250 * EFI format structure.
251 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
252 * one of which will be the native format for this kernel.
253 * It will handle the conversion of formats if necessary.
254 */
255int
256xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
257{
258 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
259 uint i;
260 uint len = sizeof(xfs_efi_log_format_t) +
261 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
262 uint len32 = sizeof(xfs_efi_log_format_32_t) +
263 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
264 uint len64 = sizeof(xfs_efi_log_format_64_t) +
265 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
266
267 if (buf->i_len == len) {
268 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
269 return 0;
270 } else if (buf->i_len == len32) {
271 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
272
273 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
274 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
275 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
276 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
277 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
278 dst_efi_fmt->efi_extents[i].ext_start =
279 src_efi_fmt_32->efi_extents[i].ext_start;
280 dst_efi_fmt->efi_extents[i].ext_len =
281 src_efi_fmt_32->efi_extents[i].ext_len;
282 }
283 return 0;
284 } else if (buf->i_len == len64) {
285 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
286
287 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
288 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
289 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
290 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
291 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
292 dst_efi_fmt->efi_extents[i].ext_start =
293 src_efi_fmt_64->efi_extents[i].ext_start;
294 dst_efi_fmt->efi_extents[i].ext_len =
295 src_efi_fmt_64->efi_extents[i].ext_len;
296 }
297 return 0;
298 }
299 return EFSCORRUPTED;
300}
301
302/*
303 * This is called by the efd item code below to release references to the given
304 * efi item. Each efd calls this with the number of extents that it has
305 * logged, and when the sum of these reaches the total number of extents logged
306 * by this efi item we can free the efi item.
307 */
308void
309xfs_efi_release(xfs_efi_log_item_t *efip,
310 uint nextents)
311{
312 ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
313 if (atomic_sub_and_test(nextents, &efip->efi_next_extent))
314 __xfs_efi_release(efip);
315}
316
317static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
318{
319 return container_of(lip, struct xfs_efd_log_item, efd_item);
320}
321
322STATIC void
323xfs_efd_item_free(struct xfs_efd_log_item *efdp)
324{
325 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
326 kmem_free(efdp);
327 else
328 kmem_zone_free(xfs_efd_zone, efdp);
329}
330
331/*
332 * This returns the number of iovecs needed to log the given efd item.
333 * We only need 1 iovec for an efd item. It just logs the efd_log_format
334 * structure.
335 */
336STATIC uint
337xfs_efd_item_size(
338 struct xfs_log_item *lip)
339{
340 return 1;
341}
342
343/*
344 * This is called to fill in the vector of log iovecs for the
345 * given efd log item. We use only 1 iovec, and we point that
346 * at the efd_log_format structure embedded in the efd item.
347 * It is at this point that we assert that all of the extent
348 * slots in the efd item have been filled.
349 */
350STATIC void
351xfs_efd_item_format(
352 struct xfs_log_item *lip,
353 struct xfs_log_iovec *log_vector)
354{
355 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
356 uint size;
357
358 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
359
360 efdp->efd_format.efd_type = XFS_LI_EFD;
361
362 size = sizeof(xfs_efd_log_format_t);
363 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
364 efdp->efd_format.efd_size = 1;
365
366 log_vector->i_addr = &efdp->efd_format;
367 log_vector->i_len = size;
368 log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT;
369 ASSERT(size >= sizeof(xfs_efd_log_format_t));
370}
371
372/*
373 * Pinning has no meaning for an efd item, so just return.
374 */
375STATIC void
376xfs_efd_item_pin(
377 struct xfs_log_item *lip)
378{
379}
380
381/*
382 * Since pinning has no meaning for an efd item, unpinning does
383 * not either.
384 */
385STATIC void
386xfs_efd_item_unpin(
387 struct xfs_log_item *lip,
388 int remove)
389{
390}
391
392/*
393 * There isn't much you can do to push on an efd item. It is simply stuck
394 * waiting for the log to be flushed to disk.
395 */
396STATIC uint
397xfs_efd_item_push(
398 struct xfs_log_item *lip,
399 struct list_head *buffer_list)
400{
401 return XFS_ITEM_PINNED;
402}
403
404STATIC void
405xfs_efd_item_unlock(
406 struct xfs_log_item *lip)
407{
408 if (lip->li_flags & XFS_LI_ABORTED)
409 xfs_efd_item_free(EFD_ITEM(lip));
410}
411
412/*
413 * When the efd item is committed to disk, all we need to do
414 * is delete our reference to our partner efi item and then
415 * free ourselves. Since we're freeing ourselves we must
416 * return -1 to keep the transaction code from further referencing
417 * this item.
418 */
419STATIC xfs_lsn_t
420xfs_efd_item_committed(
421 struct xfs_log_item *lip,
422 xfs_lsn_t lsn)
423{
424 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
425
426 /*
427 * If we got a log I/O error, it's always the case that the LR with the
428 * EFI got unpinned and freed before the EFD got aborted.
429 */
430 if (!(lip->li_flags & XFS_LI_ABORTED))
431 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
432
433 xfs_efd_item_free(efdp);
434 return (xfs_lsn_t)-1;
435}
436
437/*
438 * The EFD dependency tracking op doesn't do squat. It can't because
439 * it doesn't know where the free extent is coming from. The dependency
440 * tracking has to be handled by the "enclosing" metadata object. For
441 * example, for inodes, the inode is locked throughout the extent freeing
442 * so the dependency should be recorded there.
443 */
444STATIC void
445xfs_efd_item_committing(
446 struct xfs_log_item *lip,
447 xfs_lsn_t lsn)
448{
449}
450
451/*
452 * This is the ops vector shared by all efd log items.
453 */
454static const struct xfs_item_ops xfs_efd_item_ops = {
455 .iop_size = xfs_efd_item_size,
456 .iop_format = xfs_efd_item_format,
457 .iop_pin = xfs_efd_item_pin,
458 .iop_unpin = xfs_efd_item_unpin,
459 .iop_unlock = xfs_efd_item_unlock,
460 .iop_committed = xfs_efd_item_committed,
461 .iop_push = xfs_efd_item_push,
462 .iop_committing = xfs_efd_item_committing
463};
464
465/*
466 * Allocate and initialize an efd item with the given number of extents.
467 */
468struct xfs_efd_log_item *
469xfs_efd_init(
470 struct xfs_mount *mp,
471 struct xfs_efi_log_item *efip,
472 uint nextents)
473
474{
475 struct xfs_efd_log_item *efdp;
476 uint size;
477
478 ASSERT(nextents > 0);
479 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
480 size = (uint)(sizeof(xfs_efd_log_item_t) +
481 ((nextents - 1) * sizeof(xfs_extent_t)));
482 efdp = kmem_zalloc(size, KM_SLEEP);
483 } else {
484 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
485 }
486
487 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
488 efdp->efd_efip = efip;
489 efdp->efd_format.efd_nextents = nextents;
490 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
491
492 return efdp;
493}