Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_log_format.h"
 21#include "xfs_trans_resv.h"
 
 
 22#include "xfs_sb.h"
 23#include "xfs_ag.h"
 24#include "xfs_mount.h"
 25#include "xfs_trans.h"
 26#include "xfs_trans_priv.h"
 27#include "xfs_buf_item.h"
 28#include "xfs_extfree_item.h"
 29#include "xfs_log.h"
 30
 31
 32kmem_zone_t	*xfs_efi_zone;
 33kmem_zone_t	*xfs_efd_zone;
 34
 35static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
 36{
 37	return container_of(lip, struct xfs_efi_log_item, efi_item);
 38}
 39
 40void
 41xfs_efi_item_free(
 42	struct xfs_efi_log_item	*efip)
 43{
 44	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
 45		kmem_free(efip);
 46	else
 47		kmem_zone_free(xfs_efi_zone, efip);
 48}
 49
 50/*
 51 * Freeing the efi requires that we remove it from the AIL if it has already
 52 * been placed there. However, the EFI may not yet have been placed in the AIL
 53 * when called by xfs_efi_release() from EFD processing due to the ordering of
 54 * committed vs unpin operations in bulk insert operations. Hence the reference
 55 * count to ensure only the last caller frees the EFI.
 
 56 */
 57STATIC void
 58__xfs_efi_release(
 59	struct xfs_efi_log_item	*efip)
 60{
 61	struct xfs_ail		*ailp = efip->efi_item.li_ailp;
 62
 63	if (atomic_dec_and_test(&efip->efi_refcount)) {
 64		spin_lock(&ailp->xa_lock);
 65		/* xfs_trans_ail_delete() drops the AIL lock. */
 66		xfs_trans_ail_delete(ailp, &efip->efi_item,
 67				     SHUTDOWN_LOG_IO_ERROR);
 68		xfs_efi_item_free(efip);
 69	}
 70}
 71
 72/*
 73 * This returns the number of iovecs needed to log the given efi item.
 74 * We only need 1 iovec for an efi item.  It just logs the efi_log_format
 75 * structure.
 76 */
 77static inline int
 78xfs_efi_item_sizeof(
 79	struct xfs_efi_log_item *efip)
 80{
 81	return sizeof(struct xfs_efi_log_format) +
 82	       (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
 83}
 84
 85STATIC void
 86xfs_efi_item_size(
 87	struct xfs_log_item	*lip,
 88	int			*nvecs,
 89	int			*nbytes)
 90{
 91	*nvecs += 1;
 92	*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
 93}
 94
 95/*
 96 * This is called to fill in the vector of log iovecs for the
 97 * given efi log item. We use only 1 iovec, and we point that
 98 * at the efi_log_format structure embedded in the efi item.
 99 * It is at this point that we assert that all of the extent
100 * slots in the efi item have been filled.
101 */
102STATIC void
103xfs_efi_item_format(
104	struct xfs_log_item	*lip,
105	struct xfs_log_vec	*lv)
106{
107	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
108	struct xfs_log_iovec	*vecp = NULL;
109
110	ASSERT(atomic_read(&efip->efi_next_extent) ==
111				efip->efi_format.efi_nextents);
112
113	efip->efi_format.efi_type = XFS_LI_EFI;
 
 
 
114	efip->efi_format.efi_size = 1;
115
116	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
117			&efip->efi_format,
118			xfs_efi_item_sizeof(efip));
 
119}
120
121
122/*
123 * Pinning has no meaning for an efi item, so just return.
124 */
125STATIC void
126xfs_efi_item_pin(
127	struct xfs_log_item	*lip)
128{
129}
130
131/*
132 * While EFIs cannot really be pinned, the unpin operation is the last place at
133 * which the EFI is manipulated during a transaction.  If we are being asked to
134 * remove the EFI it's because the transaction has been cancelled and by
135 * definition that means the EFI cannot be in the AIL so remove it from the
136 * transaction and free it.  Otherwise coordinate with xfs_efi_release()
137 * to determine who gets to free the EFI.
138 */
139STATIC void
140xfs_efi_item_unpin(
141	struct xfs_log_item	*lip,
142	int			remove)
143{
144	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
145
146	if (remove) {
147		ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
148		if (lip->li_desc)
149			xfs_trans_del_item(lip);
150		xfs_efi_item_free(efip);
151		return;
152	}
153	__xfs_efi_release(efip);
154}
155
156/*
157 * Efi items have no locking or pushing.  However, since EFIs are pulled from
158 * the AIL when their corresponding EFDs are committed to disk, their situation
159 * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
160 * will eventually flush the log.  This should help in getting the EFI out of
161 * the AIL.
162 */
163STATIC uint
164xfs_efi_item_push(
165	struct xfs_log_item	*lip,
166	struct list_head	*buffer_list)
167{
168	return XFS_ITEM_PINNED;
169}
170
171STATIC void
172xfs_efi_item_unlock(
173	struct xfs_log_item	*lip)
174{
175	if (lip->li_flags & XFS_LI_ABORTED)
176		xfs_efi_item_free(EFI_ITEM(lip));
177}
178
179/*
180 * The EFI is logged only once and cannot be moved in the log, so simply return
181 * the lsn at which it's been logged.
 
 
 
182 */
183STATIC xfs_lsn_t
184xfs_efi_item_committed(
185	struct xfs_log_item	*lip,
186	xfs_lsn_t		lsn)
187{
 
 
 
188	return lsn;
189}
190
191/*
192 * The EFI dependency tracking op doesn't do squat.  It can't because
193 * it doesn't know where the free extent is coming from.  The dependency
194 * tracking has to be handled by the "enclosing" metadata object.  For
195 * example, for inodes, the inode is locked throughout the extent freeing
196 * so the dependency should be recorded there.
197 */
198STATIC void
199xfs_efi_item_committing(
200	struct xfs_log_item	*lip,
201	xfs_lsn_t		lsn)
202{
203}
204
205/*
206 * This is the ops vector shared by all efi log items.
207 */
208static const struct xfs_item_ops xfs_efi_item_ops = {
209	.iop_size	= xfs_efi_item_size,
210	.iop_format	= xfs_efi_item_format,
211	.iop_pin	= xfs_efi_item_pin,
212	.iop_unpin	= xfs_efi_item_unpin,
213	.iop_unlock	= xfs_efi_item_unlock,
214	.iop_committed	= xfs_efi_item_committed,
215	.iop_push	= xfs_efi_item_push,
216	.iop_committing = xfs_efi_item_committing
217};
218
219
220/*
221 * Allocate and initialize an efi item with the given number of extents.
222 */
223struct xfs_efi_log_item *
224xfs_efi_init(
225	struct xfs_mount	*mp,
226	uint			nextents)
227
228{
229	struct xfs_efi_log_item	*efip;
230	uint			size;
231
232	ASSERT(nextents > 0);
233	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
234		size = (uint)(sizeof(xfs_efi_log_item_t) +
235			((nextents - 1) * sizeof(xfs_extent_t)));
236		efip = kmem_zalloc(size, KM_SLEEP);
237	} else {
238		efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
239	}
240
241	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
242	efip->efi_format.efi_nextents = nextents;
243	efip->efi_format.efi_id = (__psint_t)(void*)efip;
244	atomic_set(&efip->efi_next_extent, 0);
245	atomic_set(&efip->efi_refcount, 2);
246
247	return efip;
248}
249
250/*
251 * Copy an EFI format buffer from the given buf, and into the destination
252 * EFI format structure.
253 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
254 * one of which will be the native format for this kernel.
255 * It will handle the conversion of formats if necessary.
256 */
257int
258xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
259{
260	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
261	uint i;
262	uint len = sizeof(xfs_efi_log_format_t) + 
263		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);  
264	uint len32 = sizeof(xfs_efi_log_format_32_t) + 
265		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);  
266	uint len64 = sizeof(xfs_efi_log_format_64_t) + 
267		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);  
268
269	if (buf->i_len == len) {
270		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
271		return 0;
272	} else if (buf->i_len == len32) {
273		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
274
275		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
276		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
277		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
278		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
279		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
280			dst_efi_fmt->efi_extents[i].ext_start =
281				src_efi_fmt_32->efi_extents[i].ext_start;
282			dst_efi_fmt->efi_extents[i].ext_len =
283				src_efi_fmt_32->efi_extents[i].ext_len;
284		}
285		return 0;
286	} else if (buf->i_len == len64) {
287		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
288
289		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
290		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
291		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
292		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
293		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
294			dst_efi_fmt->efi_extents[i].ext_start =
295				src_efi_fmt_64->efi_extents[i].ext_start;
296			dst_efi_fmt->efi_extents[i].ext_len =
297				src_efi_fmt_64->efi_extents[i].ext_len;
298		}
299		return 0;
300	}
301	return EFSCORRUPTED;
302}
303
304/*
305 * This is called by the efd item code below to release references to the given
306 * efi item.  Each efd calls this with the number of extents that it has
307 * logged, and when the sum of these reaches the total number of extents logged
308 * by this efi item we can free the efi item.
309 */
310void
311xfs_efi_release(xfs_efi_log_item_t	*efip,
312		uint			nextents)
313{
314	ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
315	if (atomic_sub_and_test(nextents, &efip->efi_next_extent)) {
316		/* recovery needs us to drop the EFI reference, too */
317		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
318			__xfs_efi_release(efip);
319
320		__xfs_efi_release(efip);
321		/* efip may now have been freed, do not reference it again. */
322	}
323}
324
325static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
326{
327	return container_of(lip, struct xfs_efd_log_item, efd_item);
328}
329
330STATIC void
331xfs_efd_item_free(struct xfs_efd_log_item *efdp)
332{
333	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
334		kmem_free(efdp);
335	else
336		kmem_zone_free(xfs_efd_zone, efdp);
337}
338
339/*
340 * This returns the number of iovecs needed to log the given efd item.
341 * We only need 1 iovec for an efd item.  It just logs the efd_log_format
342 * structure.
343 */
344static inline int
345xfs_efd_item_sizeof(
346	struct xfs_efd_log_item *efdp)
347{
348	return sizeof(xfs_efd_log_format_t) +
349	       (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
350}
351
352STATIC void
353xfs_efd_item_size(
354	struct xfs_log_item	*lip,
355	int			*nvecs,
356	int			*nbytes)
357{
358	*nvecs += 1;
359	*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
360}
361
362/*
363 * This is called to fill in the vector of log iovecs for the
364 * given efd log item. We use only 1 iovec, and we point that
365 * at the efd_log_format structure embedded in the efd item.
366 * It is at this point that we assert that all of the extent
367 * slots in the efd item have been filled.
368 */
369STATIC void
370xfs_efd_item_format(
371	struct xfs_log_item	*lip,
372	struct xfs_log_vec	*lv)
373{
374	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
375	struct xfs_log_iovec	*vecp = NULL;
376
377	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
378
379	efdp->efd_format.efd_type = XFS_LI_EFD;
 
 
 
380	efdp->efd_format.efd_size = 1;
381
382	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
383			&efdp->efd_format,
384			xfs_efd_item_sizeof(efdp));
 
385}
386
387/*
388 * Pinning has no meaning for an efd item, so just return.
389 */
390STATIC void
391xfs_efd_item_pin(
392	struct xfs_log_item	*lip)
393{
394}
395
396/*
397 * Since pinning has no meaning for an efd item, unpinning does
398 * not either.
399 */
400STATIC void
401xfs_efd_item_unpin(
402	struct xfs_log_item	*lip,
403	int			remove)
404{
405}
406
407/*
408 * There isn't much you can do to push on an efd item.  It is simply stuck
409 * waiting for the log to be flushed to disk.
410 */
411STATIC uint
412xfs_efd_item_push(
413	struct xfs_log_item	*lip,
414	struct list_head	*buffer_list)
415{
416	return XFS_ITEM_PINNED;
417}
418
419STATIC void
420xfs_efd_item_unlock(
421	struct xfs_log_item	*lip)
422{
423	if (lip->li_flags & XFS_LI_ABORTED)
424		xfs_efd_item_free(EFD_ITEM(lip));
425}
426
427/*
428 * When the efd item is committed to disk, all we need to do
429 * is delete our reference to our partner efi item and then
430 * free ourselves.  Since we're freeing ourselves we must
431 * return -1 to keep the transaction code from further referencing
432 * this item.
433 */
434STATIC xfs_lsn_t
435xfs_efd_item_committed(
436	struct xfs_log_item	*lip,
437	xfs_lsn_t		lsn)
438{
439	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
440
441	/*
442	 * If we got a log I/O error, it's always the case that the LR with the
443	 * EFI got unpinned and freed before the EFD got aborted.
444	 */
445	if (!(lip->li_flags & XFS_LI_ABORTED))
446		xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
447
448	xfs_efd_item_free(efdp);
449	return (xfs_lsn_t)-1;
450}
451
452/*
453 * The EFD dependency tracking op doesn't do squat.  It can't because
454 * it doesn't know where the free extent is coming from.  The dependency
455 * tracking has to be handled by the "enclosing" metadata object.  For
456 * example, for inodes, the inode is locked throughout the extent freeing
457 * so the dependency should be recorded there.
458 */
459STATIC void
460xfs_efd_item_committing(
461	struct xfs_log_item	*lip,
462	xfs_lsn_t		lsn)
463{
464}
465
466/*
467 * This is the ops vector shared by all efd log items.
468 */
469static const struct xfs_item_ops xfs_efd_item_ops = {
470	.iop_size	= xfs_efd_item_size,
471	.iop_format	= xfs_efd_item_format,
472	.iop_pin	= xfs_efd_item_pin,
473	.iop_unpin	= xfs_efd_item_unpin,
474	.iop_unlock	= xfs_efd_item_unlock,
475	.iop_committed	= xfs_efd_item_committed,
476	.iop_push	= xfs_efd_item_push,
477	.iop_committing = xfs_efd_item_committing
478};
479
480/*
481 * Allocate and initialize an efd item with the given number of extents.
482 */
483struct xfs_efd_log_item *
484xfs_efd_init(
485	struct xfs_mount	*mp,
486	struct xfs_efi_log_item	*efip,
487	uint			nextents)
488
489{
490	struct xfs_efd_log_item	*efdp;
491	uint			size;
492
493	ASSERT(nextents > 0);
494	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
495		size = (uint)(sizeof(xfs_efd_log_item_t) +
496			((nextents - 1) * sizeof(xfs_extent_t)));
497		efdp = kmem_zalloc(size, KM_SLEEP);
498	} else {
499		efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
500	}
501
502	xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
503	efdp->efd_efip = efip;
504	efdp->efd_format.efd_nextents = nextents;
505	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
506
507	return efdp;
508}
v3.5.6
  1/*
  2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_types.h"
 21#include "xfs_log.h"
 22#include "xfs_trans.h"
 23#include "xfs_buf_item.h"
 24#include "xfs_sb.h"
 25#include "xfs_ag.h"
 26#include "xfs_mount.h"
 
 27#include "xfs_trans_priv.h"
 
 28#include "xfs_extfree_item.h"
 
 29
 30
 31kmem_zone_t	*xfs_efi_zone;
 32kmem_zone_t	*xfs_efd_zone;
 33
 34static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
 35{
 36	return container_of(lip, struct xfs_efi_log_item, efi_item);
 37}
 38
 39void
 40xfs_efi_item_free(
 41	struct xfs_efi_log_item	*efip)
 42{
 43	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
 44		kmem_free(efip);
 45	else
 46		kmem_zone_free(xfs_efi_zone, efip);
 47}
 48
 49/*
 50 * Freeing the efi requires that we remove it from the AIL if it has already
 51 * been placed there. However, the EFI may not yet have been placed in the AIL
 52 * when called by xfs_efi_release() from EFD processing due to the ordering of
 53 * committed vs unpin operations in bulk insert operations. Hence the
 54 * test_and_clear_bit(XFS_EFI_COMMITTED) to ensure only the last caller frees
 55 * the EFI.
 56 */
 57STATIC void
 58__xfs_efi_release(
 59	struct xfs_efi_log_item	*efip)
 60{
 61	struct xfs_ail		*ailp = efip->efi_item.li_ailp;
 62
 63	if (!test_and_clear_bit(XFS_EFI_COMMITTED, &efip->efi_flags)) {
 64		spin_lock(&ailp->xa_lock);
 65		/* xfs_trans_ail_delete() drops the AIL lock. */
 66		xfs_trans_ail_delete(ailp, &efip->efi_item,
 67				     SHUTDOWN_LOG_IO_ERROR);
 68		xfs_efi_item_free(efip);
 69	}
 70}
 71
 72/*
 73 * This returns the number of iovecs needed to log the given efi item.
 74 * We only need 1 iovec for an efi item.  It just logs the efi_log_format
 75 * structure.
 76 */
 77STATIC uint
 
 
 
 
 
 
 
 
 78xfs_efi_item_size(
 79	struct xfs_log_item	*lip)
 
 
 80{
 81	return 1;
 
 82}
 83
 84/*
 85 * This is called to fill in the vector of log iovecs for the
 86 * given efi log item. We use only 1 iovec, and we point that
 87 * at the efi_log_format structure embedded in the efi item.
 88 * It is at this point that we assert that all of the extent
 89 * slots in the efi item have been filled.
 90 */
 91STATIC void
 92xfs_efi_item_format(
 93	struct xfs_log_item	*lip,
 94	struct xfs_log_iovec	*log_vector)
 95{
 96	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
 97	uint			size;
 98
 99	ASSERT(atomic_read(&efip->efi_next_extent) ==
100				efip->efi_format.efi_nextents);
101
102	efip->efi_format.efi_type = XFS_LI_EFI;
103
104	size = sizeof(xfs_efi_log_format_t);
105	size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
106	efip->efi_format.efi_size = 1;
107
108	log_vector->i_addr = &efip->efi_format;
109	log_vector->i_len = size;
110	log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT;
111	ASSERT(size >= sizeof(xfs_efi_log_format_t));
112}
113
114
115/*
116 * Pinning has no meaning for an efi item, so just return.
117 */
118STATIC void
119xfs_efi_item_pin(
120	struct xfs_log_item	*lip)
121{
122}
123
124/*
125 * While EFIs cannot really be pinned, the unpin operation is the last place at
126 * which the EFI is manipulated during a transaction.  If we are being asked to
127 * remove the EFI it's because the transaction has been cancelled and by
128 * definition that means the EFI cannot be in the AIL so remove it from the
129 * transaction and free it.  Otherwise coordinate with xfs_efi_release() (via
130 * XFS_EFI_COMMITTED) to determine who gets to free the EFI.
131 */
132STATIC void
133xfs_efi_item_unpin(
134	struct xfs_log_item	*lip,
135	int			remove)
136{
137	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
138
139	if (remove) {
140		ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
141		if (lip->li_desc)
142			xfs_trans_del_item(lip);
143		xfs_efi_item_free(efip);
144		return;
145	}
146	__xfs_efi_release(efip);
147}
148
149/*
150 * Efi items have no locking or pushing.  However, since EFIs are pulled from
151 * the AIL when their corresponding EFDs are committed to disk, their situation
152 * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
153 * will eventually flush the log.  This should help in getting the EFI out of
154 * the AIL.
155 */
156STATIC uint
157xfs_efi_item_push(
158	struct xfs_log_item	*lip,
159	struct list_head	*buffer_list)
160{
161	return XFS_ITEM_PINNED;
162}
163
164STATIC void
165xfs_efi_item_unlock(
166	struct xfs_log_item	*lip)
167{
168	if (lip->li_flags & XFS_LI_ABORTED)
169		xfs_efi_item_free(EFI_ITEM(lip));
170}
171
172/*
173 * The EFI is logged only once and cannot be moved in the log, so simply return
174 * the lsn at which it's been logged.  For bulk transaction committed
175 * processing, the EFI may be processed but not yet unpinned prior to the EFD
176 * being processed. Set the XFS_EFI_COMMITTED flag so this case can be detected
177 * when processing the EFD.
178 */
179STATIC xfs_lsn_t
180xfs_efi_item_committed(
181	struct xfs_log_item	*lip,
182	xfs_lsn_t		lsn)
183{
184	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
185
186	set_bit(XFS_EFI_COMMITTED, &efip->efi_flags);
187	return lsn;
188}
189
190/*
191 * The EFI dependency tracking op doesn't do squat.  It can't because
192 * it doesn't know where the free extent is coming from.  The dependency
193 * tracking has to be handled by the "enclosing" metadata object.  For
194 * example, for inodes, the inode is locked throughout the extent freeing
195 * so the dependency should be recorded there.
196 */
197STATIC void
198xfs_efi_item_committing(
199	struct xfs_log_item	*lip,
200	xfs_lsn_t		lsn)
201{
202}
203
204/*
205 * This is the ops vector shared by all efi log items.
206 */
207static const struct xfs_item_ops xfs_efi_item_ops = {
208	.iop_size	= xfs_efi_item_size,
209	.iop_format	= xfs_efi_item_format,
210	.iop_pin	= xfs_efi_item_pin,
211	.iop_unpin	= xfs_efi_item_unpin,
212	.iop_unlock	= xfs_efi_item_unlock,
213	.iop_committed	= xfs_efi_item_committed,
214	.iop_push	= xfs_efi_item_push,
215	.iop_committing = xfs_efi_item_committing
216};
217
218
219/*
220 * Allocate and initialize an efi item with the given number of extents.
221 */
222struct xfs_efi_log_item *
223xfs_efi_init(
224	struct xfs_mount	*mp,
225	uint			nextents)
226
227{
228	struct xfs_efi_log_item	*efip;
229	uint			size;
230
231	ASSERT(nextents > 0);
232	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
233		size = (uint)(sizeof(xfs_efi_log_item_t) +
234			((nextents - 1) * sizeof(xfs_extent_t)));
235		efip = kmem_zalloc(size, KM_SLEEP);
236	} else {
237		efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
238	}
239
240	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
241	efip->efi_format.efi_nextents = nextents;
242	efip->efi_format.efi_id = (__psint_t)(void*)efip;
243	atomic_set(&efip->efi_next_extent, 0);
 
244
245	return efip;
246}
247
248/*
249 * Copy an EFI format buffer from the given buf, and into the destination
250 * EFI format structure.
251 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
252 * one of which will be the native format for this kernel.
253 * It will handle the conversion of formats if necessary.
254 */
255int
256xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
257{
258	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
259	uint i;
260	uint len = sizeof(xfs_efi_log_format_t) + 
261		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);  
262	uint len32 = sizeof(xfs_efi_log_format_32_t) + 
263		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);  
264	uint len64 = sizeof(xfs_efi_log_format_64_t) + 
265		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);  
266
267	if (buf->i_len == len) {
268		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
269		return 0;
270	} else if (buf->i_len == len32) {
271		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
272
273		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
274		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
275		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
276		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
277		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
278			dst_efi_fmt->efi_extents[i].ext_start =
279				src_efi_fmt_32->efi_extents[i].ext_start;
280			dst_efi_fmt->efi_extents[i].ext_len =
281				src_efi_fmt_32->efi_extents[i].ext_len;
282		}
283		return 0;
284	} else if (buf->i_len == len64) {
285		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
286
287		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
288		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
289		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
290		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
291		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
292			dst_efi_fmt->efi_extents[i].ext_start =
293				src_efi_fmt_64->efi_extents[i].ext_start;
294			dst_efi_fmt->efi_extents[i].ext_len =
295				src_efi_fmt_64->efi_extents[i].ext_len;
296		}
297		return 0;
298	}
299	return EFSCORRUPTED;
300}
301
302/*
303 * This is called by the efd item code below to release references to the given
304 * efi item.  Each efd calls this with the number of extents that it has
305 * logged, and when the sum of these reaches the total number of extents logged
306 * by this efi item we can free the efi item.
307 */
308void
309xfs_efi_release(xfs_efi_log_item_t	*efip,
310		uint			nextents)
311{
312	ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
313	if (atomic_sub_and_test(nextents, &efip->efi_next_extent))
 
 
 
 
314		__xfs_efi_release(efip);
 
 
315}
316
317static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
318{
319	return container_of(lip, struct xfs_efd_log_item, efd_item);
320}
321
322STATIC void
323xfs_efd_item_free(struct xfs_efd_log_item *efdp)
324{
325	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
326		kmem_free(efdp);
327	else
328		kmem_zone_free(xfs_efd_zone, efdp);
329}
330
331/*
332 * This returns the number of iovecs needed to log the given efd item.
333 * We only need 1 iovec for an efd item.  It just logs the efd_log_format
334 * structure.
335 */
336STATIC uint
 
 
 
 
 
 
 
 
337xfs_efd_item_size(
338	struct xfs_log_item	*lip)
 
 
339{
340	return 1;
 
341}
342
343/*
344 * This is called to fill in the vector of log iovecs for the
345 * given efd log item. We use only 1 iovec, and we point that
346 * at the efd_log_format structure embedded in the efd item.
347 * It is at this point that we assert that all of the extent
348 * slots in the efd item have been filled.
349 */
350STATIC void
351xfs_efd_item_format(
352	struct xfs_log_item	*lip,
353	struct xfs_log_iovec	*log_vector)
354{
355	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
356	uint			size;
357
358	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
359
360	efdp->efd_format.efd_type = XFS_LI_EFD;
361
362	size = sizeof(xfs_efd_log_format_t);
363	size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
364	efdp->efd_format.efd_size = 1;
365
366	log_vector->i_addr = &efdp->efd_format;
367	log_vector->i_len = size;
368	log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT;
369	ASSERT(size >= sizeof(xfs_efd_log_format_t));
370}
371
372/*
373 * Pinning has no meaning for an efd item, so just return.
374 */
375STATIC void
376xfs_efd_item_pin(
377	struct xfs_log_item	*lip)
378{
379}
380
381/*
382 * Since pinning has no meaning for an efd item, unpinning does
383 * not either.
384 */
385STATIC void
386xfs_efd_item_unpin(
387	struct xfs_log_item	*lip,
388	int			remove)
389{
390}
391
392/*
393 * There isn't much you can do to push on an efd item.  It is simply stuck
394 * waiting for the log to be flushed to disk.
395 */
396STATIC uint
397xfs_efd_item_push(
398	struct xfs_log_item	*lip,
399	struct list_head	*buffer_list)
400{
401	return XFS_ITEM_PINNED;
402}
403
404STATIC void
405xfs_efd_item_unlock(
406	struct xfs_log_item	*lip)
407{
408	if (lip->li_flags & XFS_LI_ABORTED)
409		xfs_efd_item_free(EFD_ITEM(lip));
410}
411
412/*
413 * When the efd item is committed to disk, all we need to do
414 * is delete our reference to our partner efi item and then
415 * free ourselves.  Since we're freeing ourselves we must
416 * return -1 to keep the transaction code from further referencing
417 * this item.
418 */
419STATIC xfs_lsn_t
420xfs_efd_item_committed(
421	struct xfs_log_item	*lip,
422	xfs_lsn_t		lsn)
423{
424	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
425
426	/*
427	 * If we got a log I/O error, it's always the case that the LR with the
428	 * EFI got unpinned and freed before the EFD got aborted.
429	 */
430	if (!(lip->li_flags & XFS_LI_ABORTED))
431		xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
432
433	xfs_efd_item_free(efdp);
434	return (xfs_lsn_t)-1;
435}
436
437/*
438 * The EFD dependency tracking op doesn't do squat.  It can't because
439 * it doesn't know where the free extent is coming from.  The dependency
440 * tracking has to be handled by the "enclosing" metadata object.  For
441 * example, for inodes, the inode is locked throughout the extent freeing
442 * so the dependency should be recorded there.
443 */
444STATIC void
445xfs_efd_item_committing(
446	struct xfs_log_item	*lip,
447	xfs_lsn_t		lsn)
448{
449}
450
451/*
452 * This is the ops vector shared by all efd log items.
453 */
454static const struct xfs_item_ops xfs_efd_item_ops = {
455	.iop_size	= xfs_efd_item_size,
456	.iop_format	= xfs_efd_item_format,
457	.iop_pin	= xfs_efd_item_pin,
458	.iop_unpin	= xfs_efd_item_unpin,
459	.iop_unlock	= xfs_efd_item_unlock,
460	.iop_committed	= xfs_efd_item_committed,
461	.iop_push	= xfs_efd_item_push,
462	.iop_committing = xfs_efd_item_committing
463};
464
465/*
466 * Allocate and initialize an efd item with the given number of extents.
467 */
468struct xfs_efd_log_item *
469xfs_efd_init(
470	struct xfs_mount	*mp,
471	struct xfs_efi_log_item	*efip,
472	uint			nextents)
473
474{
475	struct xfs_efd_log_item	*efdp;
476	uint			size;
477
478	ASSERT(nextents > 0);
479	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
480		size = (uint)(sizeof(xfs_efd_log_item_t) +
481			((nextents - 1) * sizeof(xfs_extent_t)));
482		efdp = kmem_zalloc(size, KM_SLEEP);
483	} else {
484		efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
485	}
486
487	xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
488	efdp->efd_efip = efip;
489	efdp->efd_format.efd_nextents = nextents;
490	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
491
492	return efdp;
493}