Loading...
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/buffer_head.h>
37#include <linux/writeback.h>
38#include <linux/slab.h>
39#include <linux/crc-itu-t.h>
40#include <linux/mpage.h>
41#include <linux/aio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46MODULE_AUTHOR("Ben Fennema");
47MODULE_DESCRIPTION("Universal Disk Format Filesystem");
48MODULE_LICENSE("GPL");
49
50#define EXTENT_MERGE_SIZE 5
51
52static umode_t udf_convert_permissions(struct fileEntry *);
53static int udf_update_inode(struct inode *, int);
54static void udf_fill_inode(struct inode *, struct buffer_head *);
55static int udf_sync_inode(struct inode *inode);
56static int udf_alloc_i_data(struct inode *inode, size_t size);
57static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
58static int8_t udf_insert_aext(struct inode *, struct extent_position,
59 struct kernel_lb_addr, uint32_t);
60static void udf_split_extents(struct inode *, int *, int, int,
61 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
62static void udf_prealloc_extents(struct inode *, int, int,
63 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
64static void udf_merge_extents(struct inode *,
65 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
66static void udf_update_extents(struct inode *,
67 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
68 struct extent_position *);
69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71static void __udf_clear_extent_cache(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79}
80
81/* Invalidate extent cache */
82static void udf_clear_extent_cache(struct inode *inode)
83{
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89}
90
91/* Return contents of extent cache */
92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94{
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111}
112
113/* Add extent to extent cache */
114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos, int next_epos)
116{
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos,
125 sizeof(struct extent_position));
126 iinfo->cached_extent.lstart = estart;
127 if (next_epos)
128 switch (iinfo->i_alloc_type) {
129 case ICBTAG_FLAG_AD_SHORT:
130 iinfo->cached_extent.epos.offset -=
131 sizeof(struct short_ad);
132 break;
133 case ICBTAG_FLAG_AD_LONG:
134 iinfo->cached_extent.epos.offset -=
135 sizeof(struct long_ad);
136 }
137 spin_unlock(&iinfo->i_extent_cache_lock);
138}
139
140void udf_evict_inode(struct inode *inode)
141{
142 struct udf_inode_info *iinfo = UDF_I(inode);
143 int want_delete = 0;
144
145 if (!inode->i_nlink && !is_bad_inode(inode)) {
146 want_delete = 1;
147 udf_setsize(inode, 0);
148 udf_update_inode(inode, IS_SYNC(inode));
149 }
150 truncate_inode_pages_final(&inode->i_data);
151 invalidate_inode_buffers(inode);
152 clear_inode(inode);
153 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
154 inode->i_size != iinfo->i_lenExtents) {
155 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
156 inode->i_ino, inode->i_mode,
157 (unsigned long long)inode->i_size,
158 (unsigned long long)iinfo->i_lenExtents);
159 }
160 kfree(iinfo->i_ext.i_data);
161 iinfo->i_ext.i_data = NULL;
162 udf_clear_extent_cache(inode);
163 if (want_delete) {
164 udf_free_inode(inode);
165 }
166}
167
168static void udf_write_failed(struct address_space *mapping, loff_t to)
169{
170 struct inode *inode = mapping->host;
171 struct udf_inode_info *iinfo = UDF_I(inode);
172 loff_t isize = inode->i_size;
173
174 if (to > isize) {
175 truncate_pagecache(inode, isize);
176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 down_write(&iinfo->i_data_sem);
178 udf_clear_extent_cache(inode);
179 udf_truncate_extents(inode);
180 up_write(&iinfo->i_data_sem);
181 }
182 }
183}
184
185static int udf_writepage(struct page *page, struct writeback_control *wbc)
186{
187 return block_write_full_page(page, udf_get_block, wbc);
188}
189
190static int udf_writepages(struct address_space *mapping,
191 struct writeback_control *wbc)
192{
193 return mpage_writepages(mapping, wbc, udf_get_block);
194}
195
196static int udf_readpage(struct file *file, struct page *page)
197{
198 return mpage_readpage(page, udf_get_block);
199}
200
201static int udf_readpages(struct file *file, struct address_space *mapping,
202 struct list_head *pages, unsigned nr_pages)
203{
204 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
205}
206
207static int udf_write_begin(struct file *file, struct address_space *mapping,
208 loff_t pos, unsigned len, unsigned flags,
209 struct page **pagep, void **fsdata)
210{
211 int ret;
212
213 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
214 if (unlikely(ret))
215 udf_write_failed(mapping, pos + len);
216 return ret;
217}
218
219static ssize_t udf_direct_IO(int rw, struct kiocb *iocb,
220 const struct iovec *iov,
221 loff_t offset, unsigned long nr_segs)
222{
223 struct file *file = iocb->ki_filp;
224 struct address_space *mapping = file->f_mapping;
225 struct inode *inode = mapping->host;
226 ssize_t ret;
227
228 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
229 udf_get_block);
230 if (unlikely(ret < 0 && (rw & WRITE)))
231 udf_write_failed(mapping, offset + iov_length(iov, nr_segs));
232 return ret;
233}
234
235static sector_t udf_bmap(struct address_space *mapping, sector_t block)
236{
237 return generic_block_bmap(mapping, block, udf_get_block);
238}
239
240const struct address_space_operations udf_aops = {
241 .readpage = udf_readpage,
242 .readpages = udf_readpages,
243 .writepage = udf_writepage,
244 .writepages = udf_writepages,
245 .write_begin = udf_write_begin,
246 .write_end = generic_write_end,
247 .direct_IO = udf_direct_IO,
248 .bmap = udf_bmap,
249};
250
251/*
252 * Expand file stored in ICB to a normal one-block-file
253 *
254 * This function requires i_data_sem for writing and releases it.
255 * This function requires i_mutex held
256 */
257int udf_expand_file_adinicb(struct inode *inode)
258{
259 struct page *page;
260 char *kaddr;
261 struct udf_inode_info *iinfo = UDF_I(inode);
262 int err;
263 struct writeback_control udf_wbc = {
264 .sync_mode = WB_SYNC_NONE,
265 .nr_to_write = 1,
266 };
267
268 WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex));
269 if (!iinfo->i_lenAlloc) {
270 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
271 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
272 else
273 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
274 /* from now on we have normal address_space methods */
275 inode->i_data.a_ops = &udf_aops;
276 up_write(&iinfo->i_data_sem);
277 mark_inode_dirty(inode);
278 return 0;
279 }
280 /*
281 * Release i_data_sem so that we can lock a page - page lock ranks
282 * above i_data_sem. i_mutex still protects us against file changes.
283 */
284 up_write(&iinfo->i_data_sem);
285
286 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
287 if (!page)
288 return -ENOMEM;
289
290 if (!PageUptodate(page)) {
291 kaddr = kmap(page);
292 memset(kaddr + iinfo->i_lenAlloc, 0x00,
293 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
294 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
295 iinfo->i_lenAlloc);
296 flush_dcache_page(page);
297 SetPageUptodate(page);
298 kunmap(page);
299 }
300 down_write(&iinfo->i_data_sem);
301 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
302 iinfo->i_lenAlloc);
303 iinfo->i_lenAlloc = 0;
304 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
305 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
306 else
307 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
308 /* from now on we have normal address_space methods */
309 inode->i_data.a_ops = &udf_aops;
310 up_write(&iinfo->i_data_sem);
311 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
312 if (err) {
313 /* Restore everything back so that we don't lose data... */
314 lock_page(page);
315 kaddr = kmap(page);
316 down_write(&iinfo->i_data_sem);
317 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
318 inode->i_size);
319 kunmap(page);
320 unlock_page(page);
321 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
322 inode->i_data.a_ops = &udf_adinicb_aops;
323 up_write(&iinfo->i_data_sem);
324 }
325 page_cache_release(page);
326 mark_inode_dirty(inode);
327
328 return err;
329}
330
331struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
332 int *err)
333{
334 int newblock;
335 struct buffer_head *dbh = NULL;
336 struct kernel_lb_addr eloc;
337 uint8_t alloctype;
338 struct extent_position epos;
339
340 struct udf_fileident_bh sfibh, dfibh;
341 loff_t f_pos = udf_ext0_offset(inode);
342 int size = udf_ext0_offset(inode) + inode->i_size;
343 struct fileIdentDesc cfi, *sfi, *dfi;
344 struct udf_inode_info *iinfo = UDF_I(inode);
345
346 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
347 alloctype = ICBTAG_FLAG_AD_SHORT;
348 else
349 alloctype = ICBTAG_FLAG_AD_LONG;
350
351 if (!inode->i_size) {
352 iinfo->i_alloc_type = alloctype;
353 mark_inode_dirty(inode);
354 return NULL;
355 }
356
357 /* alloc block, and copy data to it */
358 *block = udf_new_block(inode->i_sb, inode,
359 iinfo->i_location.partitionReferenceNum,
360 iinfo->i_location.logicalBlockNum, err);
361 if (!(*block))
362 return NULL;
363 newblock = udf_get_pblock(inode->i_sb, *block,
364 iinfo->i_location.partitionReferenceNum,
365 0);
366 if (!newblock)
367 return NULL;
368 dbh = udf_tgetblk(inode->i_sb, newblock);
369 if (!dbh)
370 return NULL;
371 lock_buffer(dbh);
372 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
373 set_buffer_uptodate(dbh);
374 unlock_buffer(dbh);
375 mark_buffer_dirty_inode(dbh, inode);
376
377 sfibh.soffset = sfibh.eoffset =
378 f_pos & (inode->i_sb->s_blocksize - 1);
379 sfibh.sbh = sfibh.ebh = NULL;
380 dfibh.soffset = dfibh.eoffset = 0;
381 dfibh.sbh = dfibh.ebh = dbh;
382 while (f_pos < size) {
383 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
384 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
385 NULL, NULL, NULL);
386 if (!sfi) {
387 brelse(dbh);
388 return NULL;
389 }
390 iinfo->i_alloc_type = alloctype;
391 sfi->descTag.tagLocation = cpu_to_le32(*block);
392 dfibh.soffset = dfibh.eoffset;
393 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
394 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
395 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
396 sfi->fileIdent +
397 le16_to_cpu(sfi->lengthOfImpUse))) {
398 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
399 brelse(dbh);
400 return NULL;
401 }
402 }
403 mark_buffer_dirty_inode(dbh, inode);
404
405 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
406 iinfo->i_lenAlloc);
407 iinfo->i_lenAlloc = 0;
408 eloc.logicalBlockNum = *block;
409 eloc.partitionReferenceNum =
410 iinfo->i_location.partitionReferenceNum;
411 iinfo->i_lenExtents = inode->i_size;
412 epos.bh = NULL;
413 epos.block = iinfo->i_location;
414 epos.offset = udf_file_entry_alloc_offset(inode);
415 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
416 /* UniqueID stuff */
417
418 brelse(epos.bh);
419 mark_inode_dirty(inode);
420 return dbh;
421}
422
423static int udf_get_block(struct inode *inode, sector_t block,
424 struct buffer_head *bh_result, int create)
425{
426 int err, new;
427 sector_t phys = 0;
428 struct udf_inode_info *iinfo;
429
430 if (!create) {
431 phys = udf_block_map(inode, block);
432 if (phys)
433 map_bh(bh_result, inode->i_sb, phys);
434 return 0;
435 }
436
437 err = -EIO;
438 new = 0;
439 iinfo = UDF_I(inode);
440
441 down_write(&iinfo->i_data_sem);
442 if (block == iinfo->i_next_alloc_block + 1) {
443 iinfo->i_next_alloc_block++;
444 iinfo->i_next_alloc_goal++;
445 }
446
447 udf_clear_extent_cache(inode);
448 phys = inode_getblk(inode, block, &err, &new);
449 if (!phys)
450 goto abort;
451
452 if (new)
453 set_buffer_new(bh_result);
454 map_bh(bh_result, inode->i_sb, phys);
455
456abort:
457 up_write(&iinfo->i_data_sem);
458 return err;
459}
460
461static struct buffer_head *udf_getblk(struct inode *inode, long block,
462 int create, int *err)
463{
464 struct buffer_head *bh;
465 struct buffer_head dummy;
466
467 dummy.b_state = 0;
468 dummy.b_blocknr = -1000;
469 *err = udf_get_block(inode, block, &dummy, create);
470 if (!*err && buffer_mapped(&dummy)) {
471 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
472 if (buffer_new(&dummy)) {
473 lock_buffer(bh);
474 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
475 set_buffer_uptodate(bh);
476 unlock_buffer(bh);
477 mark_buffer_dirty_inode(bh, inode);
478 }
479 return bh;
480 }
481
482 return NULL;
483}
484
485/* Extend the file by 'blocks' blocks, return the number of extents added */
486static int udf_do_extend_file(struct inode *inode,
487 struct extent_position *last_pos,
488 struct kernel_long_ad *last_ext,
489 sector_t blocks)
490{
491 sector_t add;
492 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
493 struct super_block *sb = inode->i_sb;
494 struct kernel_lb_addr prealloc_loc = {};
495 int prealloc_len = 0;
496 struct udf_inode_info *iinfo;
497 int err;
498
499 /* The previous extent is fake and we should not extend by anything
500 * - there's nothing to do... */
501 if (!blocks && fake)
502 return 0;
503
504 iinfo = UDF_I(inode);
505 /* Round the last extent up to a multiple of block size */
506 if (last_ext->extLength & (sb->s_blocksize - 1)) {
507 last_ext->extLength =
508 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
509 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
510 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
511 iinfo->i_lenExtents =
512 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
513 ~(sb->s_blocksize - 1);
514 }
515
516 /* Last extent are just preallocated blocks? */
517 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
518 EXT_NOT_RECORDED_ALLOCATED) {
519 /* Save the extent so that we can reattach it to the end */
520 prealloc_loc = last_ext->extLocation;
521 prealloc_len = last_ext->extLength;
522 /* Mark the extent as a hole */
523 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
524 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
525 last_ext->extLocation.logicalBlockNum = 0;
526 last_ext->extLocation.partitionReferenceNum = 0;
527 }
528
529 /* Can we merge with the previous extent? */
530 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
531 EXT_NOT_RECORDED_NOT_ALLOCATED) {
532 add = ((1 << 30) - sb->s_blocksize -
533 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
534 sb->s_blocksize_bits;
535 if (add > blocks)
536 add = blocks;
537 blocks -= add;
538 last_ext->extLength += add << sb->s_blocksize_bits;
539 }
540
541 if (fake) {
542 udf_add_aext(inode, last_pos, &last_ext->extLocation,
543 last_ext->extLength, 1);
544 count++;
545 } else
546 udf_write_aext(inode, last_pos, &last_ext->extLocation,
547 last_ext->extLength, 1);
548
549 /* Managed to do everything necessary? */
550 if (!blocks)
551 goto out;
552
553 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
554 last_ext->extLocation.logicalBlockNum = 0;
555 last_ext->extLocation.partitionReferenceNum = 0;
556 add = (1 << (30-sb->s_blocksize_bits)) - 1;
557 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
558 (add << sb->s_blocksize_bits);
559
560 /* Create enough extents to cover the whole hole */
561 while (blocks > add) {
562 blocks -= add;
563 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
564 last_ext->extLength, 1);
565 if (err)
566 return err;
567 count++;
568 }
569 if (blocks) {
570 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
571 (blocks << sb->s_blocksize_bits);
572 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
573 last_ext->extLength, 1);
574 if (err)
575 return err;
576 count++;
577 }
578
579out:
580 /* Do we have some preallocated blocks saved? */
581 if (prealloc_len) {
582 err = udf_add_aext(inode, last_pos, &prealloc_loc,
583 prealloc_len, 1);
584 if (err)
585 return err;
586 last_ext->extLocation = prealloc_loc;
587 last_ext->extLength = prealloc_len;
588 count++;
589 }
590
591 /* last_pos should point to the last written extent... */
592 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
593 last_pos->offset -= sizeof(struct short_ad);
594 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
595 last_pos->offset -= sizeof(struct long_ad);
596 else
597 return -EIO;
598
599 return count;
600}
601
602static int udf_extend_file(struct inode *inode, loff_t newsize)
603{
604
605 struct extent_position epos;
606 struct kernel_lb_addr eloc;
607 uint32_t elen;
608 int8_t etype;
609 struct super_block *sb = inode->i_sb;
610 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
611 int adsize;
612 struct udf_inode_info *iinfo = UDF_I(inode);
613 struct kernel_long_ad extent;
614 int err;
615
616 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
617 adsize = sizeof(struct short_ad);
618 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
619 adsize = sizeof(struct long_ad);
620 else
621 BUG();
622
623 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
624
625 /* File has extent covering the new size (could happen when extending
626 * inside a block)? */
627 if (etype != -1)
628 return 0;
629 if (newsize & (sb->s_blocksize - 1))
630 offset++;
631 /* Extended file just to the boundary of the last file block? */
632 if (offset == 0)
633 return 0;
634
635 /* Truncate is extending the file by 'offset' blocks */
636 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
637 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
638 /* File has no extents at all or has empty last
639 * indirect extent! Create a fake extent... */
640 extent.extLocation.logicalBlockNum = 0;
641 extent.extLocation.partitionReferenceNum = 0;
642 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
643 } else {
644 epos.offset -= adsize;
645 etype = udf_next_aext(inode, &epos, &extent.extLocation,
646 &extent.extLength, 0);
647 extent.extLength |= etype << 30;
648 }
649 err = udf_do_extend_file(inode, &epos, &extent, offset);
650 if (err < 0)
651 goto out;
652 err = 0;
653 iinfo->i_lenExtents = newsize;
654out:
655 brelse(epos.bh);
656 return err;
657}
658
659static sector_t inode_getblk(struct inode *inode, sector_t block,
660 int *err, int *new)
661{
662 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
663 struct extent_position prev_epos, cur_epos, next_epos;
664 int count = 0, startnum = 0, endnum = 0;
665 uint32_t elen = 0, tmpelen;
666 struct kernel_lb_addr eloc, tmpeloc;
667 int c = 1;
668 loff_t lbcount = 0, b_off = 0;
669 uint32_t newblocknum, newblock;
670 sector_t offset = 0;
671 int8_t etype;
672 struct udf_inode_info *iinfo = UDF_I(inode);
673 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
674 int lastblock = 0;
675 bool isBeyondEOF;
676
677 *err = 0;
678 *new = 0;
679 prev_epos.offset = udf_file_entry_alloc_offset(inode);
680 prev_epos.block = iinfo->i_location;
681 prev_epos.bh = NULL;
682 cur_epos = next_epos = prev_epos;
683 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
684
685 /* find the extent which contains the block we are looking for.
686 alternate between laarr[0] and laarr[1] for locations of the
687 current extent, and the previous extent */
688 do {
689 if (prev_epos.bh != cur_epos.bh) {
690 brelse(prev_epos.bh);
691 get_bh(cur_epos.bh);
692 prev_epos.bh = cur_epos.bh;
693 }
694 if (cur_epos.bh != next_epos.bh) {
695 brelse(cur_epos.bh);
696 get_bh(next_epos.bh);
697 cur_epos.bh = next_epos.bh;
698 }
699
700 lbcount += elen;
701
702 prev_epos.block = cur_epos.block;
703 cur_epos.block = next_epos.block;
704
705 prev_epos.offset = cur_epos.offset;
706 cur_epos.offset = next_epos.offset;
707
708 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
709 if (etype == -1)
710 break;
711
712 c = !c;
713
714 laarr[c].extLength = (etype << 30) | elen;
715 laarr[c].extLocation = eloc;
716
717 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
718 pgoal = eloc.logicalBlockNum +
719 ((elen + inode->i_sb->s_blocksize - 1) >>
720 inode->i_sb->s_blocksize_bits);
721
722 count++;
723 } while (lbcount + elen <= b_off);
724
725 b_off -= lbcount;
726 offset = b_off >> inode->i_sb->s_blocksize_bits;
727 /*
728 * Move prev_epos and cur_epos into indirect extent if we are at
729 * the pointer to it
730 */
731 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
732 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
733
734 /* if the extent is allocated and recorded, return the block
735 if the extent is not a multiple of the blocksize, round up */
736
737 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
738 if (elen & (inode->i_sb->s_blocksize - 1)) {
739 elen = EXT_RECORDED_ALLOCATED |
740 ((elen + inode->i_sb->s_blocksize - 1) &
741 ~(inode->i_sb->s_blocksize - 1));
742 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
743 }
744 brelse(prev_epos.bh);
745 brelse(cur_epos.bh);
746 brelse(next_epos.bh);
747 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
748 return newblock;
749 }
750
751 /* Are we beyond EOF? */
752 if (etype == -1) {
753 int ret;
754 isBeyondEOF = 1;
755 if (count) {
756 if (c)
757 laarr[0] = laarr[1];
758 startnum = 1;
759 } else {
760 /* Create a fake extent when there's not one */
761 memset(&laarr[0].extLocation, 0x00,
762 sizeof(struct kernel_lb_addr));
763 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
764 /* Will udf_do_extend_file() create real extent from
765 a fake one? */
766 startnum = (offset > 0);
767 }
768 /* Create extents for the hole between EOF and offset */
769 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
770 if (ret < 0) {
771 brelse(prev_epos.bh);
772 brelse(cur_epos.bh);
773 brelse(next_epos.bh);
774 *err = ret;
775 return 0;
776 }
777 c = 0;
778 offset = 0;
779 count += ret;
780 /* We are not covered by a preallocated extent? */
781 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
782 EXT_NOT_RECORDED_ALLOCATED) {
783 /* Is there any real extent? - otherwise we overwrite
784 * the fake one... */
785 if (count)
786 c = !c;
787 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
788 inode->i_sb->s_blocksize;
789 memset(&laarr[c].extLocation, 0x00,
790 sizeof(struct kernel_lb_addr));
791 count++;
792 }
793 endnum = c + 1;
794 lastblock = 1;
795 } else {
796 isBeyondEOF = 0;
797 endnum = startnum = ((count > 2) ? 2 : count);
798
799 /* if the current extent is in position 0,
800 swap it with the previous */
801 if (!c && count != 1) {
802 laarr[2] = laarr[0];
803 laarr[0] = laarr[1];
804 laarr[1] = laarr[2];
805 c = 1;
806 }
807
808 /* if the current block is located in an extent,
809 read the next extent */
810 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
811 if (etype != -1) {
812 laarr[c + 1].extLength = (etype << 30) | elen;
813 laarr[c + 1].extLocation = eloc;
814 count++;
815 startnum++;
816 endnum++;
817 } else
818 lastblock = 1;
819 }
820
821 /* if the current extent is not recorded but allocated, get the
822 * block in the extent corresponding to the requested block */
823 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
824 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
825 else { /* otherwise, allocate a new block */
826 if (iinfo->i_next_alloc_block == block)
827 goal = iinfo->i_next_alloc_goal;
828
829 if (!goal) {
830 if (!(goal = pgoal)) /* XXX: what was intended here? */
831 goal = iinfo->i_location.logicalBlockNum + 1;
832 }
833
834 newblocknum = udf_new_block(inode->i_sb, inode,
835 iinfo->i_location.partitionReferenceNum,
836 goal, err);
837 if (!newblocknum) {
838 brelse(prev_epos.bh);
839 brelse(cur_epos.bh);
840 brelse(next_epos.bh);
841 *err = -ENOSPC;
842 return 0;
843 }
844 if (isBeyondEOF)
845 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
846 }
847
848 /* if the extent the requsted block is located in contains multiple
849 * blocks, split the extent into at most three extents. blocks prior
850 * to requested block, requested block, and blocks after requested
851 * block */
852 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
853
854#ifdef UDF_PREALLOCATE
855 /* We preallocate blocks only for regular files. It also makes sense
856 * for directories but there's a problem when to drop the
857 * preallocation. We might use some delayed work for that but I feel
858 * it's overengineering for a filesystem like UDF. */
859 if (S_ISREG(inode->i_mode))
860 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
861#endif
862
863 /* merge any continuous blocks in laarr */
864 udf_merge_extents(inode, laarr, &endnum);
865
866 /* write back the new extents, inserting new extents if the new number
867 * of extents is greater than the old number, and deleting extents if
868 * the new number of extents is less than the old number */
869 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
870
871 brelse(prev_epos.bh);
872 brelse(cur_epos.bh);
873 brelse(next_epos.bh);
874
875 newblock = udf_get_pblock(inode->i_sb, newblocknum,
876 iinfo->i_location.partitionReferenceNum, 0);
877 if (!newblock) {
878 *err = -EIO;
879 return 0;
880 }
881 *new = 1;
882 iinfo->i_next_alloc_block = block;
883 iinfo->i_next_alloc_goal = newblocknum;
884 inode->i_ctime = current_fs_time(inode->i_sb);
885
886 if (IS_SYNC(inode))
887 udf_sync_inode(inode);
888 else
889 mark_inode_dirty(inode);
890
891 return newblock;
892}
893
894static void udf_split_extents(struct inode *inode, int *c, int offset,
895 int newblocknum,
896 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
897 int *endnum)
898{
899 unsigned long blocksize = inode->i_sb->s_blocksize;
900 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
901
902 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
903 (laarr[*c].extLength >> 30) ==
904 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
905 int curr = *c;
906 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
907 blocksize - 1) >> blocksize_bits;
908 int8_t etype = (laarr[curr].extLength >> 30);
909
910 if (blen == 1)
911 ;
912 else if (!offset || blen == offset + 1) {
913 laarr[curr + 2] = laarr[curr + 1];
914 laarr[curr + 1] = laarr[curr];
915 } else {
916 laarr[curr + 3] = laarr[curr + 1];
917 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
918 }
919
920 if (offset) {
921 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
922 udf_free_blocks(inode->i_sb, inode,
923 &laarr[curr].extLocation,
924 0, offset);
925 laarr[curr].extLength =
926 EXT_NOT_RECORDED_NOT_ALLOCATED |
927 (offset << blocksize_bits);
928 laarr[curr].extLocation.logicalBlockNum = 0;
929 laarr[curr].extLocation.
930 partitionReferenceNum = 0;
931 } else
932 laarr[curr].extLength = (etype << 30) |
933 (offset << blocksize_bits);
934 curr++;
935 (*c)++;
936 (*endnum)++;
937 }
938
939 laarr[curr].extLocation.logicalBlockNum = newblocknum;
940 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
941 laarr[curr].extLocation.partitionReferenceNum =
942 UDF_I(inode)->i_location.partitionReferenceNum;
943 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
944 blocksize;
945 curr++;
946
947 if (blen != offset + 1) {
948 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
949 laarr[curr].extLocation.logicalBlockNum +=
950 offset + 1;
951 laarr[curr].extLength = (etype << 30) |
952 ((blen - (offset + 1)) << blocksize_bits);
953 curr++;
954 (*endnum)++;
955 }
956 }
957}
958
959static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
960 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
961 int *endnum)
962{
963 int start, length = 0, currlength = 0, i;
964
965 if (*endnum >= (c + 1)) {
966 if (!lastblock)
967 return;
968 else
969 start = c;
970 } else {
971 if ((laarr[c + 1].extLength >> 30) ==
972 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
973 start = c + 1;
974 length = currlength =
975 (((laarr[c + 1].extLength &
976 UDF_EXTENT_LENGTH_MASK) +
977 inode->i_sb->s_blocksize - 1) >>
978 inode->i_sb->s_blocksize_bits);
979 } else
980 start = c;
981 }
982
983 for (i = start + 1; i <= *endnum; i++) {
984 if (i == *endnum) {
985 if (lastblock)
986 length += UDF_DEFAULT_PREALLOC_BLOCKS;
987 } else if ((laarr[i].extLength >> 30) ==
988 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
989 length += (((laarr[i].extLength &
990 UDF_EXTENT_LENGTH_MASK) +
991 inode->i_sb->s_blocksize - 1) >>
992 inode->i_sb->s_blocksize_bits);
993 } else
994 break;
995 }
996
997 if (length) {
998 int next = laarr[start].extLocation.logicalBlockNum +
999 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1000 inode->i_sb->s_blocksize - 1) >>
1001 inode->i_sb->s_blocksize_bits);
1002 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1003 laarr[start].extLocation.partitionReferenceNum,
1004 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1005 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1006 currlength);
1007 if (numalloc) {
1008 if (start == (c + 1))
1009 laarr[start].extLength +=
1010 (numalloc <<
1011 inode->i_sb->s_blocksize_bits);
1012 else {
1013 memmove(&laarr[c + 2], &laarr[c + 1],
1014 sizeof(struct long_ad) * (*endnum - (c + 1)));
1015 (*endnum)++;
1016 laarr[c + 1].extLocation.logicalBlockNum = next;
1017 laarr[c + 1].extLocation.partitionReferenceNum =
1018 laarr[c].extLocation.
1019 partitionReferenceNum;
1020 laarr[c + 1].extLength =
1021 EXT_NOT_RECORDED_ALLOCATED |
1022 (numalloc <<
1023 inode->i_sb->s_blocksize_bits);
1024 start = c + 1;
1025 }
1026
1027 for (i = start + 1; numalloc && i < *endnum; i++) {
1028 int elen = ((laarr[i].extLength &
1029 UDF_EXTENT_LENGTH_MASK) +
1030 inode->i_sb->s_blocksize - 1) >>
1031 inode->i_sb->s_blocksize_bits;
1032
1033 if (elen > numalloc) {
1034 laarr[i].extLength -=
1035 (numalloc <<
1036 inode->i_sb->s_blocksize_bits);
1037 numalloc = 0;
1038 } else {
1039 numalloc -= elen;
1040 if (*endnum > (i + 1))
1041 memmove(&laarr[i],
1042 &laarr[i + 1],
1043 sizeof(struct long_ad) *
1044 (*endnum - (i + 1)));
1045 i--;
1046 (*endnum)--;
1047 }
1048 }
1049 UDF_I(inode)->i_lenExtents +=
1050 numalloc << inode->i_sb->s_blocksize_bits;
1051 }
1052 }
1053}
1054
1055static void udf_merge_extents(struct inode *inode,
1056 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1057 int *endnum)
1058{
1059 int i;
1060 unsigned long blocksize = inode->i_sb->s_blocksize;
1061 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1062
1063 for (i = 0; i < (*endnum - 1); i++) {
1064 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1065 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1066
1067 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1068 (((li->extLength >> 30) ==
1069 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1070 ((lip1->extLocation.logicalBlockNum -
1071 li->extLocation.logicalBlockNum) ==
1072 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1073 blocksize - 1) >> blocksize_bits)))) {
1074
1075 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1076 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1077 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1078 lip1->extLength = (lip1->extLength -
1079 (li->extLength &
1080 UDF_EXTENT_LENGTH_MASK) +
1081 UDF_EXTENT_LENGTH_MASK) &
1082 ~(blocksize - 1);
1083 li->extLength = (li->extLength &
1084 UDF_EXTENT_FLAG_MASK) +
1085 (UDF_EXTENT_LENGTH_MASK + 1) -
1086 blocksize;
1087 lip1->extLocation.logicalBlockNum =
1088 li->extLocation.logicalBlockNum +
1089 ((li->extLength &
1090 UDF_EXTENT_LENGTH_MASK) >>
1091 blocksize_bits);
1092 } else {
1093 li->extLength = lip1->extLength +
1094 (((li->extLength &
1095 UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) & ~(blocksize - 1));
1097 if (*endnum > (i + 2))
1098 memmove(&laarr[i + 1], &laarr[i + 2],
1099 sizeof(struct long_ad) *
1100 (*endnum - (i + 2)));
1101 i--;
1102 (*endnum)--;
1103 }
1104 } else if (((li->extLength >> 30) ==
1105 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1106 ((lip1->extLength >> 30) ==
1107 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1108 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1109 ((li->extLength &
1110 UDF_EXTENT_LENGTH_MASK) +
1111 blocksize - 1) >> blocksize_bits);
1112 li->extLocation.logicalBlockNum = 0;
1113 li->extLocation.partitionReferenceNum = 0;
1114
1115 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1116 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1117 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1118 lip1->extLength = (lip1->extLength -
1119 (li->extLength &
1120 UDF_EXTENT_LENGTH_MASK) +
1121 UDF_EXTENT_LENGTH_MASK) &
1122 ~(blocksize - 1);
1123 li->extLength = (li->extLength &
1124 UDF_EXTENT_FLAG_MASK) +
1125 (UDF_EXTENT_LENGTH_MASK + 1) -
1126 blocksize;
1127 } else {
1128 li->extLength = lip1->extLength +
1129 (((li->extLength &
1130 UDF_EXTENT_LENGTH_MASK) +
1131 blocksize - 1) & ~(blocksize - 1));
1132 if (*endnum > (i + 2))
1133 memmove(&laarr[i + 1], &laarr[i + 2],
1134 sizeof(struct long_ad) *
1135 (*endnum - (i + 2)));
1136 i--;
1137 (*endnum)--;
1138 }
1139 } else if ((li->extLength >> 30) ==
1140 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1141 udf_free_blocks(inode->i_sb, inode,
1142 &li->extLocation, 0,
1143 ((li->extLength &
1144 UDF_EXTENT_LENGTH_MASK) +
1145 blocksize - 1) >> blocksize_bits);
1146 li->extLocation.logicalBlockNum = 0;
1147 li->extLocation.partitionReferenceNum = 0;
1148 li->extLength = (li->extLength &
1149 UDF_EXTENT_LENGTH_MASK) |
1150 EXT_NOT_RECORDED_NOT_ALLOCATED;
1151 }
1152 }
1153}
1154
1155static void udf_update_extents(struct inode *inode,
1156 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1157 int startnum, int endnum,
1158 struct extent_position *epos)
1159{
1160 int start = 0, i;
1161 struct kernel_lb_addr tmploc;
1162 uint32_t tmplen;
1163
1164 if (startnum > endnum) {
1165 for (i = 0; i < (startnum - endnum); i++)
1166 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1167 laarr[i].extLength);
1168 } else if (startnum < endnum) {
1169 for (i = 0; i < (endnum - startnum); i++) {
1170 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1171 laarr[i].extLength);
1172 udf_next_aext(inode, epos, &laarr[i].extLocation,
1173 &laarr[i].extLength, 1);
1174 start++;
1175 }
1176 }
1177
1178 for (i = start; i < endnum; i++) {
1179 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1180 udf_write_aext(inode, epos, &laarr[i].extLocation,
1181 laarr[i].extLength, 1);
1182 }
1183}
1184
1185struct buffer_head *udf_bread(struct inode *inode, int block,
1186 int create, int *err)
1187{
1188 struct buffer_head *bh = NULL;
1189
1190 bh = udf_getblk(inode, block, create, err);
1191 if (!bh)
1192 return NULL;
1193
1194 if (buffer_uptodate(bh))
1195 return bh;
1196
1197 ll_rw_block(READ, 1, &bh);
1198
1199 wait_on_buffer(bh);
1200 if (buffer_uptodate(bh))
1201 return bh;
1202
1203 brelse(bh);
1204 *err = -EIO;
1205 return NULL;
1206}
1207
1208int udf_setsize(struct inode *inode, loff_t newsize)
1209{
1210 int err;
1211 struct udf_inode_info *iinfo;
1212 int bsize = 1 << inode->i_blkbits;
1213
1214 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1215 S_ISLNK(inode->i_mode)))
1216 return -EINVAL;
1217 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1218 return -EPERM;
1219
1220 iinfo = UDF_I(inode);
1221 if (newsize > inode->i_size) {
1222 down_write(&iinfo->i_data_sem);
1223 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1224 if (bsize <
1225 (udf_file_entry_alloc_offset(inode) + newsize)) {
1226 err = udf_expand_file_adinicb(inode);
1227 if (err)
1228 return err;
1229 down_write(&iinfo->i_data_sem);
1230 } else {
1231 iinfo->i_lenAlloc = newsize;
1232 goto set_size;
1233 }
1234 }
1235 err = udf_extend_file(inode, newsize);
1236 if (err) {
1237 up_write(&iinfo->i_data_sem);
1238 return err;
1239 }
1240set_size:
1241 truncate_setsize(inode, newsize);
1242 up_write(&iinfo->i_data_sem);
1243 } else {
1244 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1245 down_write(&iinfo->i_data_sem);
1246 udf_clear_extent_cache(inode);
1247 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1248 0x00, bsize - newsize -
1249 udf_file_entry_alloc_offset(inode));
1250 iinfo->i_lenAlloc = newsize;
1251 truncate_setsize(inode, newsize);
1252 up_write(&iinfo->i_data_sem);
1253 goto update_time;
1254 }
1255 err = block_truncate_page(inode->i_mapping, newsize,
1256 udf_get_block);
1257 if (err)
1258 return err;
1259 down_write(&iinfo->i_data_sem);
1260 udf_clear_extent_cache(inode);
1261 truncate_setsize(inode, newsize);
1262 udf_truncate_extents(inode);
1263 up_write(&iinfo->i_data_sem);
1264 }
1265update_time:
1266 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1267 if (IS_SYNC(inode))
1268 udf_sync_inode(inode);
1269 else
1270 mark_inode_dirty(inode);
1271 return 0;
1272}
1273
1274static void __udf_read_inode(struct inode *inode)
1275{
1276 struct buffer_head *bh = NULL;
1277 struct fileEntry *fe;
1278 uint16_t ident;
1279 struct udf_inode_info *iinfo = UDF_I(inode);
1280
1281 /*
1282 * Set defaults, but the inode is still incomplete!
1283 * Note: get_new_inode() sets the following on a new inode:
1284 * i_sb = sb
1285 * i_no = ino
1286 * i_flags = sb->s_flags
1287 * i_state = 0
1288 * clean_inode(): zero fills and sets
1289 * i_count = 1
1290 * i_nlink = 1
1291 * i_op = NULL;
1292 */
1293 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1294 if (!bh) {
1295 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1296 make_bad_inode(inode);
1297 return;
1298 }
1299
1300 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1301 ident != TAG_IDENT_USE) {
1302 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1303 inode->i_ino, ident);
1304 brelse(bh);
1305 make_bad_inode(inode);
1306 return;
1307 }
1308
1309 fe = (struct fileEntry *)bh->b_data;
1310
1311 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1312 struct buffer_head *ibh;
1313
1314 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1315 &ident);
1316 if (ident == TAG_IDENT_IE && ibh) {
1317 struct buffer_head *nbh = NULL;
1318 struct kernel_lb_addr loc;
1319 struct indirectEntry *ie;
1320
1321 ie = (struct indirectEntry *)ibh->b_data;
1322 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1323
1324 if (ie->indirectICB.extLength &&
1325 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1326 &ident))) {
1327 if (ident == TAG_IDENT_FE ||
1328 ident == TAG_IDENT_EFE) {
1329 memcpy(&iinfo->i_location,
1330 &loc,
1331 sizeof(struct kernel_lb_addr));
1332 brelse(bh);
1333 brelse(ibh);
1334 brelse(nbh);
1335 __udf_read_inode(inode);
1336 return;
1337 }
1338 brelse(nbh);
1339 }
1340 }
1341 brelse(ibh);
1342 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1343 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1344 le16_to_cpu(fe->icbTag.strategyType));
1345 brelse(bh);
1346 make_bad_inode(inode);
1347 return;
1348 }
1349 udf_fill_inode(inode, bh);
1350
1351 brelse(bh);
1352}
1353
1354static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1355{
1356 struct fileEntry *fe;
1357 struct extendedFileEntry *efe;
1358 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1359 struct udf_inode_info *iinfo = UDF_I(inode);
1360 unsigned int link_count;
1361
1362 fe = (struct fileEntry *)bh->b_data;
1363 efe = (struct extendedFileEntry *)bh->b_data;
1364
1365 if (fe->icbTag.strategyType == cpu_to_le16(4))
1366 iinfo->i_strat4096 = 0;
1367 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1368 iinfo->i_strat4096 = 1;
1369
1370 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1371 ICBTAG_FLAG_AD_MASK;
1372 iinfo->i_unique = 0;
1373 iinfo->i_lenEAttr = 0;
1374 iinfo->i_lenExtents = 0;
1375 iinfo->i_lenAlloc = 0;
1376 iinfo->i_next_alloc_block = 0;
1377 iinfo->i_next_alloc_goal = 0;
1378 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1379 iinfo->i_efe = 1;
1380 iinfo->i_use = 0;
1381 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1382 sizeof(struct extendedFileEntry))) {
1383 make_bad_inode(inode);
1384 return;
1385 }
1386 memcpy(iinfo->i_ext.i_data,
1387 bh->b_data + sizeof(struct extendedFileEntry),
1388 inode->i_sb->s_blocksize -
1389 sizeof(struct extendedFileEntry));
1390 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1391 iinfo->i_efe = 0;
1392 iinfo->i_use = 0;
1393 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1394 sizeof(struct fileEntry))) {
1395 make_bad_inode(inode);
1396 return;
1397 }
1398 memcpy(iinfo->i_ext.i_data,
1399 bh->b_data + sizeof(struct fileEntry),
1400 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1401 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1402 iinfo->i_efe = 0;
1403 iinfo->i_use = 1;
1404 iinfo->i_lenAlloc = le32_to_cpu(
1405 ((struct unallocSpaceEntry *)bh->b_data)->
1406 lengthAllocDescs);
1407 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1408 sizeof(struct unallocSpaceEntry))) {
1409 make_bad_inode(inode);
1410 return;
1411 }
1412 memcpy(iinfo->i_ext.i_data,
1413 bh->b_data + sizeof(struct unallocSpaceEntry),
1414 inode->i_sb->s_blocksize -
1415 sizeof(struct unallocSpaceEntry));
1416 return;
1417 }
1418
1419 read_lock(&sbi->s_cred_lock);
1420 i_uid_write(inode, le32_to_cpu(fe->uid));
1421 if (!uid_valid(inode->i_uid) ||
1422 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1423 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1424 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1425
1426 i_gid_write(inode, le32_to_cpu(fe->gid));
1427 if (!gid_valid(inode->i_gid) ||
1428 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1429 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1430 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1431
1432 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1433 sbi->s_fmode != UDF_INVALID_MODE)
1434 inode->i_mode = sbi->s_fmode;
1435 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1436 sbi->s_dmode != UDF_INVALID_MODE)
1437 inode->i_mode = sbi->s_dmode;
1438 else
1439 inode->i_mode = udf_convert_permissions(fe);
1440 inode->i_mode &= ~sbi->s_umask;
1441 read_unlock(&sbi->s_cred_lock);
1442
1443 link_count = le16_to_cpu(fe->fileLinkCount);
1444 if (!link_count)
1445 link_count = 1;
1446 set_nlink(inode, link_count);
1447
1448 inode->i_size = le64_to_cpu(fe->informationLength);
1449 iinfo->i_lenExtents = inode->i_size;
1450
1451 if (iinfo->i_efe == 0) {
1452 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1453 (inode->i_sb->s_blocksize_bits - 9);
1454
1455 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1456 inode->i_atime = sbi->s_record_time;
1457
1458 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1459 fe->modificationTime))
1460 inode->i_mtime = sbi->s_record_time;
1461
1462 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1463 inode->i_ctime = sbi->s_record_time;
1464
1465 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1466 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1467 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1468 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1469 } else {
1470 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1471 (inode->i_sb->s_blocksize_bits - 9);
1472
1473 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1474 inode->i_atime = sbi->s_record_time;
1475
1476 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1477 efe->modificationTime))
1478 inode->i_mtime = sbi->s_record_time;
1479
1480 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1481 iinfo->i_crtime = sbi->s_record_time;
1482
1483 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1484 inode->i_ctime = sbi->s_record_time;
1485
1486 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1487 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1488 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1489 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1490 }
1491
1492 switch (fe->icbTag.fileType) {
1493 case ICBTAG_FILE_TYPE_DIRECTORY:
1494 inode->i_op = &udf_dir_inode_operations;
1495 inode->i_fop = &udf_dir_operations;
1496 inode->i_mode |= S_IFDIR;
1497 inc_nlink(inode);
1498 break;
1499 case ICBTAG_FILE_TYPE_REALTIME:
1500 case ICBTAG_FILE_TYPE_REGULAR:
1501 case ICBTAG_FILE_TYPE_UNDEF:
1502 case ICBTAG_FILE_TYPE_VAT20:
1503 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1504 inode->i_data.a_ops = &udf_adinicb_aops;
1505 else
1506 inode->i_data.a_ops = &udf_aops;
1507 inode->i_op = &udf_file_inode_operations;
1508 inode->i_fop = &udf_file_operations;
1509 inode->i_mode |= S_IFREG;
1510 break;
1511 case ICBTAG_FILE_TYPE_BLOCK:
1512 inode->i_mode |= S_IFBLK;
1513 break;
1514 case ICBTAG_FILE_TYPE_CHAR:
1515 inode->i_mode |= S_IFCHR;
1516 break;
1517 case ICBTAG_FILE_TYPE_FIFO:
1518 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1519 break;
1520 case ICBTAG_FILE_TYPE_SOCKET:
1521 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1522 break;
1523 case ICBTAG_FILE_TYPE_SYMLINK:
1524 inode->i_data.a_ops = &udf_symlink_aops;
1525 inode->i_op = &udf_symlink_inode_operations;
1526 inode->i_mode = S_IFLNK | S_IRWXUGO;
1527 break;
1528 case ICBTAG_FILE_TYPE_MAIN:
1529 udf_debug("METADATA FILE-----\n");
1530 break;
1531 case ICBTAG_FILE_TYPE_MIRROR:
1532 udf_debug("METADATA MIRROR FILE-----\n");
1533 break;
1534 case ICBTAG_FILE_TYPE_BITMAP:
1535 udf_debug("METADATA BITMAP FILE-----\n");
1536 break;
1537 default:
1538 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1539 inode->i_ino, fe->icbTag.fileType);
1540 make_bad_inode(inode);
1541 return;
1542 }
1543 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1544 struct deviceSpec *dsea =
1545 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1546 if (dsea) {
1547 init_special_inode(inode, inode->i_mode,
1548 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1549 le32_to_cpu(dsea->minorDeviceIdent)));
1550 /* Developer ID ??? */
1551 } else
1552 make_bad_inode(inode);
1553 }
1554}
1555
1556static int udf_alloc_i_data(struct inode *inode, size_t size)
1557{
1558 struct udf_inode_info *iinfo = UDF_I(inode);
1559 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1560
1561 if (!iinfo->i_ext.i_data) {
1562 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1563 inode->i_ino);
1564 return -ENOMEM;
1565 }
1566
1567 return 0;
1568}
1569
1570static umode_t udf_convert_permissions(struct fileEntry *fe)
1571{
1572 umode_t mode;
1573 uint32_t permissions;
1574 uint32_t flags;
1575
1576 permissions = le32_to_cpu(fe->permissions);
1577 flags = le16_to_cpu(fe->icbTag.flags);
1578
1579 mode = ((permissions) & S_IRWXO) |
1580 ((permissions >> 2) & S_IRWXG) |
1581 ((permissions >> 4) & S_IRWXU) |
1582 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1583 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1584 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1585
1586 return mode;
1587}
1588
1589int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1590{
1591 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1592}
1593
1594static int udf_sync_inode(struct inode *inode)
1595{
1596 return udf_update_inode(inode, 1);
1597}
1598
1599static int udf_update_inode(struct inode *inode, int do_sync)
1600{
1601 struct buffer_head *bh = NULL;
1602 struct fileEntry *fe;
1603 struct extendedFileEntry *efe;
1604 uint64_t lb_recorded;
1605 uint32_t udfperms;
1606 uint16_t icbflags;
1607 uint16_t crclen;
1608 int err = 0;
1609 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1610 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1611 struct udf_inode_info *iinfo = UDF_I(inode);
1612
1613 bh = udf_tgetblk(inode->i_sb,
1614 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1615 if (!bh) {
1616 udf_debug("getblk failure\n");
1617 return -ENOMEM;
1618 }
1619
1620 lock_buffer(bh);
1621 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1622 fe = (struct fileEntry *)bh->b_data;
1623 efe = (struct extendedFileEntry *)bh->b_data;
1624
1625 if (iinfo->i_use) {
1626 struct unallocSpaceEntry *use =
1627 (struct unallocSpaceEntry *)bh->b_data;
1628
1629 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1630 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1631 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1632 sizeof(struct unallocSpaceEntry));
1633 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1634 use->descTag.tagLocation =
1635 cpu_to_le32(iinfo->i_location.logicalBlockNum);
1636 crclen = sizeof(struct unallocSpaceEntry) +
1637 iinfo->i_lenAlloc - sizeof(struct tag);
1638 use->descTag.descCRCLength = cpu_to_le16(crclen);
1639 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1640 sizeof(struct tag),
1641 crclen));
1642 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1643
1644 goto out;
1645 }
1646
1647 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1648 fe->uid = cpu_to_le32(-1);
1649 else
1650 fe->uid = cpu_to_le32(i_uid_read(inode));
1651
1652 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1653 fe->gid = cpu_to_le32(-1);
1654 else
1655 fe->gid = cpu_to_le32(i_gid_read(inode));
1656
1657 udfperms = ((inode->i_mode & S_IRWXO)) |
1658 ((inode->i_mode & S_IRWXG) << 2) |
1659 ((inode->i_mode & S_IRWXU) << 4);
1660
1661 udfperms |= (le32_to_cpu(fe->permissions) &
1662 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1663 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1664 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1665 fe->permissions = cpu_to_le32(udfperms);
1666
1667 if (S_ISDIR(inode->i_mode))
1668 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1669 else
1670 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1671
1672 fe->informationLength = cpu_to_le64(inode->i_size);
1673
1674 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1675 struct regid *eid;
1676 struct deviceSpec *dsea =
1677 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1678 if (!dsea) {
1679 dsea = (struct deviceSpec *)
1680 udf_add_extendedattr(inode,
1681 sizeof(struct deviceSpec) +
1682 sizeof(struct regid), 12, 0x3);
1683 dsea->attrType = cpu_to_le32(12);
1684 dsea->attrSubtype = 1;
1685 dsea->attrLength = cpu_to_le32(
1686 sizeof(struct deviceSpec) +
1687 sizeof(struct regid));
1688 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1689 }
1690 eid = (struct regid *)dsea->impUse;
1691 memset(eid, 0, sizeof(struct regid));
1692 strcpy(eid->ident, UDF_ID_DEVELOPER);
1693 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1694 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1695 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1696 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1697 }
1698
1699 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1700 lb_recorded = 0; /* No extents => no blocks! */
1701 else
1702 lb_recorded =
1703 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1704 (blocksize_bits - 9);
1705
1706 if (iinfo->i_efe == 0) {
1707 memcpy(bh->b_data + sizeof(struct fileEntry),
1708 iinfo->i_ext.i_data,
1709 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1710 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1711
1712 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1713 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1714 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1715 memset(&(fe->impIdent), 0, sizeof(struct regid));
1716 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1717 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1718 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1719 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1720 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1721 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1722 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1723 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1724 crclen = sizeof(struct fileEntry);
1725 } else {
1726 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1727 iinfo->i_ext.i_data,
1728 inode->i_sb->s_blocksize -
1729 sizeof(struct extendedFileEntry));
1730 efe->objectSize = cpu_to_le64(inode->i_size);
1731 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1732
1733 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1734 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1735 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1736 iinfo->i_crtime = inode->i_atime;
1737
1738 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1739 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1740 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1741 iinfo->i_crtime = inode->i_mtime;
1742
1743 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1744 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1745 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1746 iinfo->i_crtime = inode->i_ctime;
1747
1748 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1749 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1750 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1751 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1752
1753 memset(&(efe->impIdent), 0, sizeof(struct regid));
1754 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1755 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1756 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1757 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1758 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1759 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1760 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1761 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1762 crclen = sizeof(struct extendedFileEntry);
1763 }
1764 if (iinfo->i_strat4096) {
1765 fe->icbTag.strategyType = cpu_to_le16(4096);
1766 fe->icbTag.strategyParameter = cpu_to_le16(1);
1767 fe->icbTag.numEntries = cpu_to_le16(2);
1768 } else {
1769 fe->icbTag.strategyType = cpu_to_le16(4);
1770 fe->icbTag.numEntries = cpu_to_le16(1);
1771 }
1772
1773 if (S_ISDIR(inode->i_mode))
1774 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1775 else if (S_ISREG(inode->i_mode))
1776 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1777 else if (S_ISLNK(inode->i_mode))
1778 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1779 else if (S_ISBLK(inode->i_mode))
1780 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1781 else if (S_ISCHR(inode->i_mode))
1782 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1783 else if (S_ISFIFO(inode->i_mode))
1784 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1785 else if (S_ISSOCK(inode->i_mode))
1786 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1787
1788 icbflags = iinfo->i_alloc_type |
1789 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1790 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1791 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1792 (le16_to_cpu(fe->icbTag.flags) &
1793 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1794 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1795
1796 fe->icbTag.flags = cpu_to_le16(icbflags);
1797 if (sbi->s_udfrev >= 0x0200)
1798 fe->descTag.descVersion = cpu_to_le16(3);
1799 else
1800 fe->descTag.descVersion = cpu_to_le16(2);
1801 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1802 fe->descTag.tagLocation = cpu_to_le32(
1803 iinfo->i_location.logicalBlockNum);
1804 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1805 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1806 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1807 crclen));
1808 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1809
1810out:
1811 set_buffer_uptodate(bh);
1812 unlock_buffer(bh);
1813
1814 /* write the data blocks */
1815 mark_buffer_dirty(bh);
1816 if (do_sync) {
1817 sync_dirty_buffer(bh);
1818 if (buffer_write_io_error(bh)) {
1819 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1820 inode->i_ino);
1821 err = -EIO;
1822 }
1823 }
1824 brelse(bh);
1825
1826 return err;
1827}
1828
1829struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1830{
1831 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1832 struct inode *inode = iget_locked(sb, block);
1833
1834 if (!inode)
1835 return NULL;
1836
1837 if (inode->i_state & I_NEW) {
1838 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1839 __udf_read_inode(inode);
1840 unlock_new_inode(inode);
1841 }
1842
1843 if (is_bad_inode(inode))
1844 goto out_iput;
1845
1846 if (ino->logicalBlockNum >= UDF_SB(sb)->
1847 s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1848 udf_debug("block=%d, partition=%d out of range\n",
1849 ino->logicalBlockNum, ino->partitionReferenceNum);
1850 make_bad_inode(inode);
1851 goto out_iput;
1852 }
1853
1854 return inode;
1855
1856 out_iput:
1857 iput(inode);
1858 return NULL;
1859}
1860
1861int udf_add_aext(struct inode *inode, struct extent_position *epos,
1862 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1863{
1864 int adsize;
1865 struct short_ad *sad = NULL;
1866 struct long_ad *lad = NULL;
1867 struct allocExtDesc *aed;
1868 uint8_t *ptr;
1869 struct udf_inode_info *iinfo = UDF_I(inode);
1870
1871 if (!epos->bh)
1872 ptr = iinfo->i_ext.i_data + epos->offset -
1873 udf_file_entry_alloc_offset(inode) +
1874 iinfo->i_lenEAttr;
1875 else
1876 ptr = epos->bh->b_data + epos->offset;
1877
1878 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1879 adsize = sizeof(struct short_ad);
1880 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1881 adsize = sizeof(struct long_ad);
1882 else
1883 return -EIO;
1884
1885 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1886 unsigned char *sptr, *dptr;
1887 struct buffer_head *nbh;
1888 int err, loffset;
1889 struct kernel_lb_addr obloc = epos->block;
1890
1891 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1892 obloc.partitionReferenceNum,
1893 obloc.logicalBlockNum, &err);
1894 if (!epos->block.logicalBlockNum)
1895 return -ENOSPC;
1896 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1897 &epos->block,
1898 0));
1899 if (!nbh)
1900 return -EIO;
1901 lock_buffer(nbh);
1902 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1903 set_buffer_uptodate(nbh);
1904 unlock_buffer(nbh);
1905 mark_buffer_dirty_inode(nbh, inode);
1906
1907 aed = (struct allocExtDesc *)(nbh->b_data);
1908 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1909 aed->previousAllocExtLocation =
1910 cpu_to_le32(obloc.logicalBlockNum);
1911 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1912 loffset = epos->offset;
1913 aed->lengthAllocDescs = cpu_to_le32(adsize);
1914 sptr = ptr - adsize;
1915 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1916 memcpy(dptr, sptr, adsize);
1917 epos->offset = sizeof(struct allocExtDesc) + adsize;
1918 } else {
1919 loffset = epos->offset + adsize;
1920 aed->lengthAllocDescs = cpu_to_le32(0);
1921 sptr = ptr;
1922 epos->offset = sizeof(struct allocExtDesc);
1923
1924 if (epos->bh) {
1925 aed = (struct allocExtDesc *)epos->bh->b_data;
1926 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1927 } else {
1928 iinfo->i_lenAlloc += adsize;
1929 mark_inode_dirty(inode);
1930 }
1931 }
1932 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1933 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1934 epos->block.logicalBlockNum, sizeof(struct tag));
1935 else
1936 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1937 epos->block.logicalBlockNum, sizeof(struct tag));
1938 switch (iinfo->i_alloc_type) {
1939 case ICBTAG_FLAG_AD_SHORT:
1940 sad = (struct short_ad *)sptr;
1941 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1942 inode->i_sb->s_blocksize);
1943 sad->extPosition =
1944 cpu_to_le32(epos->block.logicalBlockNum);
1945 break;
1946 case ICBTAG_FLAG_AD_LONG:
1947 lad = (struct long_ad *)sptr;
1948 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1949 inode->i_sb->s_blocksize);
1950 lad->extLocation = cpu_to_lelb(epos->block);
1951 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1952 break;
1953 }
1954 if (epos->bh) {
1955 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1956 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1957 udf_update_tag(epos->bh->b_data, loffset);
1958 else
1959 udf_update_tag(epos->bh->b_data,
1960 sizeof(struct allocExtDesc));
1961 mark_buffer_dirty_inode(epos->bh, inode);
1962 brelse(epos->bh);
1963 } else {
1964 mark_inode_dirty(inode);
1965 }
1966 epos->bh = nbh;
1967 }
1968
1969 udf_write_aext(inode, epos, eloc, elen, inc);
1970
1971 if (!epos->bh) {
1972 iinfo->i_lenAlloc += adsize;
1973 mark_inode_dirty(inode);
1974 } else {
1975 aed = (struct allocExtDesc *)epos->bh->b_data;
1976 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1977 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1978 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1979 udf_update_tag(epos->bh->b_data,
1980 epos->offset + (inc ? 0 : adsize));
1981 else
1982 udf_update_tag(epos->bh->b_data,
1983 sizeof(struct allocExtDesc));
1984 mark_buffer_dirty_inode(epos->bh, inode);
1985 }
1986
1987 return 0;
1988}
1989
1990void udf_write_aext(struct inode *inode, struct extent_position *epos,
1991 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1992{
1993 int adsize;
1994 uint8_t *ptr;
1995 struct short_ad *sad;
1996 struct long_ad *lad;
1997 struct udf_inode_info *iinfo = UDF_I(inode);
1998
1999 if (!epos->bh)
2000 ptr = iinfo->i_ext.i_data + epos->offset -
2001 udf_file_entry_alloc_offset(inode) +
2002 iinfo->i_lenEAttr;
2003 else
2004 ptr = epos->bh->b_data + epos->offset;
2005
2006 switch (iinfo->i_alloc_type) {
2007 case ICBTAG_FLAG_AD_SHORT:
2008 sad = (struct short_ad *)ptr;
2009 sad->extLength = cpu_to_le32(elen);
2010 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2011 adsize = sizeof(struct short_ad);
2012 break;
2013 case ICBTAG_FLAG_AD_LONG:
2014 lad = (struct long_ad *)ptr;
2015 lad->extLength = cpu_to_le32(elen);
2016 lad->extLocation = cpu_to_lelb(*eloc);
2017 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2018 adsize = sizeof(struct long_ad);
2019 break;
2020 default:
2021 return;
2022 }
2023
2024 if (epos->bh) {
2025 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2026 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2027 struct allocExtDesc *aed =
2028 (struct allocExtDesc *)epos->bh->b_data;
2029 udf_update_tag(epos->bh->b_data,
2030 le32_to_cpu(aed->lengthAllocDescs) +
2031 sizeof(struct allocExtDesc));
2032 }
2033 mark_buffer_dirty_inode(epos->bh, inode);
2034 } else {
2035 mark_inode_dirty(inode);
2036 }
2037
2038 if (inc)
2039 epos->offset += adsize;
2040}
2041
2042int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2043 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2044{
2045 int8_t etype;
2046
2047 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2048 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2049 int block;
2050 epos->block = *eloc;
2051 epos->offset = sizeof(struct allocExtDesc);
2052 brelse(epos->bh);
2053 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2054 epos->bh = udf_tread(inode->i_sb, block);
2055 if (!epos->bh) {
2056 udf_debug("reading block %d failed!\n", block);
2057 return -1;
2058 }
2059 }
2060
2061 return etype;
2062}
2063
2064int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2065 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2066{
2067 int alen;
2068 int8_t etype;
2069 uint8_t *ptr;
2070 struct short_ad *sad;
2071 struct long_ad *lad;
2072 struct udf_inode_info *iinfo = UDF_I(inode);
2073
2074 if (!epos->bh) {
2075 if (!epos->offset)
2076 epos->offset = udf_file_entry_alloc_offset(inode);
2077 ptr = iinfo->i_ext.i_data + epos->offset -
2078 udf_file_entry_alloc_offset(inode) +
2079 iinfo->i_lenEAttr;
2080 alen = udf_file_entry_alloc_offset(inode) +
2081 iinfo->i_lenAlloc;
2082 } else {
2083 if (!epos->offset)
2084 epos->offset = sizeof(struct allocExtDesc);
2085 ptr = epos->bh->b_data + epos->offset;
2086 alen = sizeof(struct allocExtDesc) +
2087 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2088 lengthAllocDescs);
2089 }
2090
2091 switch (iinfo->i_alloc_type) {
2092 case ICBTAG_FLAG_AD_SHORT:
2093 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2094 if (!sad)
2095 return -1;
2096 etype = le32_to_cpu(sad->extLength) >> 30;
2097 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2098 eloc->partitionReferenceNum =
2099 iinfo->i_location.partitionReferenceNum;
2100 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2101 break;
2102 case ICBTAG_FLAG_AD_LONG:
2103 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2104 if (!lad)
2105 return -1;
2106 etype = le32_to_cpu(lad->extLength) >> 30;
2107 *eloc = lelb_to_cpu(lad->extLocation);
2108 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2109 break;
2110 default:
2111 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2112 return -1;
2113 }
2114
2115 return etype;
2116}
2117
2118static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2119 struct kernel_lb_addr neloc, uint32_t nelen)
2120{
2121 struct kernel_lb_addr oeloc;
2122 uint32_t oelen;
2123 int8_t etype;
2124
2125 if (epos.bh)
2126 get_bh(epos.bh);
2127
2128 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2129 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2130 neloc = oeloc;
2131 nelen = (etype << 30) | oelen;
2132 }
2133 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2134 brelse(epos.bh);
2135
2136 return (nelen >> 30);
2137}
2138
2139int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2140 struct kernel_lb_addr eloc, uint32_t elen)
2141{
2142 struct extent_position oepos;
2143 int adsize;
2144 int8_t etype;
2145 struct allocExtDesc *aed;
2146 struct udf_inode_info *iinfo;
2147
2148 if (epos.bh) {
2149 get_bh(epos.bh);
2150 get_bh(epos.bh);
2151 }
2152
2153 iinfo = UDF_I(inode);
2154 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2155 adsize = sizeof(struct short_ad);
2156 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2157 adsize = sizeof(struct long_ad);
2158 else
2159 adsize = 0;
2160
2161 oepos = epos;
2162 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2163 return -1;
2164
2165 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2166 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2167 if (oepos.bh != epos.bh) {
2168 oepos.block = epos.block;
2169 brelse(oepos.bh);
2170 get_bh(epos.bh);
2171 oepos.bh = epos.bh;
2172 oepos.offset = epos.offset - adsize;
2173 }
2174 }
2175 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2176 elen = 0;
2177
2178 if (epos.bh != oepos.bh) {
2179 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2180 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2181 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2182 if (!oepos.bh) {
2183 iinfo->i_lenAlloc -= (adsize * 2);
2184 mark_inode_dirty(inode);
2185 } else {
2186 aed = (struct allocExtDesc *)oepos.bh->b_data;
2187 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2188 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2189 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2190 udf_update_tag(oepos.bh->b_data,
2191 oepos.offset - (2 * adsize));
2192 else
2193 udf_update_tag(oepos.bh->b_data,
2194 sizeof(struct allocExtDesc));
2195 mark_buffer_dirty_inode(oepos.bh, inode);
2196 }
2197 } else {
2198 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2199 if (!oepos.bh) {
2200 iinfo->i_lenAlloc -= adsize;
2201 mark_inode_dirty(inode);
2202 } else {
2203 aed = (struct allocExtDesc *)oepos.bh->b_data;
2204 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2205 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2206 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2207 udf_update_tag(oepos.bh->b_data,
2208 epos.offset - adsize);
2209 else
2210 udf_update_tag(oepos.bh->b_data,
2211 sizeof(struct allocExtDesc));
2212 mark_buffer_dirty_inode(oepos.bh, inode);
2213 }
2214 }
2215
2216 brelse(epos.bh);
2217 brelse(oepos.bh);
2218
2219 return (elen >> 30);
2220}
2221
2222int8_t inode_bmap(struct inode *inode, sector_t block,
2223 struct extent_position *pos, struct kernel_lb_addr *eloc,
2224 uint32_t *elen, sector_t *offset)
2225{
2226 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2227 loff_t lbcount = 0, bcount =
2228 (loff_t) block << blocksize_bits;
2229 int8_t etype;
2230 struct udf_inode_info *iinfo;
2231
2232 iinfo = UDF_I(inode);
2233 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2234 pos->offset = 0;
2235 pos->block = iinfo->i_location;
2236 pos->bh = NULL;
2237 }
2238 *elen = 0;
2239 do {
2240 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2241 if (etype == -1) {
2242 *offset = (bcount - lbcount) >> blocksize_bits;
2243 iinfo->i_lenExtents = lbcount;
2244 return -1;
2245 }
2246 lbcount += *elen;
2247 } while (lbcount <= bcount);
2248 /* update extent cache */
2249 udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2250 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2251
2252 return etype;
2253}
2254
2255long udf_block_map(struct inode *inode, sector_t block)
2256{
2257 struct kernel_lb_addr eloc;
2258 uint32_t elen;
2259 sector_t offset;
2260 struct extent_position epos = {};
2261 int ret;
2262
2263 down_read(&UDF_I(inode)->i_data_sem);
2264
2265 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2266 (EXT_RECORDED_ALLOCATED >> 30))
2267 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2268 else
2269 ret = 0;
2270
2271 up_read(&UDF_I(inode)->i_data_sem);
2272 brelse(epos.bh);
2273
2274 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2275 return udf_fixed_to_variable(ret);
2276 else
2277 return ret;
2278}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * inode.c
4 *
5 * PURPOSE
6 * Inode handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 * (C) 1998 Dave Boynton
10 * (C) 1998-2004 Ben Fennema
11 * (C) 1999-2000 Stelias Computing Inc
12 *
13 * HISTORY
14 *
15 * 10/04/98 dgb Added rudimentary directory functions
16 * 10/07/98 Fully working udf_block_map! It works!
17 * 11/25/98 bmap altered to better support extents
18 * 12/06/98 blf partition support in udf_iget, udf_block_map
19 * and udf_read_inode
20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
21 * block boundaries (which is not actually allowed)
22 * 12/20/98 added support for strategy 4096
23 * 03/07/99 rewrote udf_block_map (again)
24 * New funcs, inode_bmap, udf_next_aext
25 * 04/19/99 Support for writing device EA's for major/minor #
26 */
27
28#include "udfdecl.h"
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/pagemap.h>
32#include <linux/writeback.h>
33#include <linux/slab.h>
34#include <linux/crc-itu-t.h>
35#include <linux/mpage.h>
36#include <linux/uio.h>
37#include <linux/bio.h>
38
39#include "udf_i.h"
40#include "udf_sb.h"
41
42#define EXTENT_MERGE_SIZE 5
43
44#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47
48#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49 FE_PERM_O_DELETE)
50
51struct udf_map_rq;
52
53static umode_t udf_convert_permissions(struct fileEntry *);
54static int udf_update_inode(struct inode *, int);
55static int udf_sync_inode(struct inode *inode);
56static int udf_alloc_i_data(struct inode *inode, size_t size);
57static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58static int udf_insert_aext(struct inode *, struct extent_position,
59 struct kernel_lb_addr, uint32_t);
60static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61 struct kernel_long_ad *, int *);
62static void udf_prealloc_extents(struct inode *, int, int,
63 struct kernel_long_ad *, int *);
64static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66 int, struct extent_position *);
67static int udf_get_block_wb(struct inode *inode, sector_t block,
68 struct buffer_head *bh_result, int create);
69
70static void __udf_clear_extent_cache(struct inode *inode)
71{
72 struct udf_inode_info *iinfo = UDF_I(inode);
73
74 if (iinfo->cached_extent.lstart != -1) {
75 brelse(iinfo->cached_extent.epos.bh);
76 iinfo->cached_extent.lstart = -1;
77 }
78}
79
80/* Invalidate extent cache */
81static void udf_clear_extent_cache(struct inode *inode)
82{
83 struct udf_inode_info *iinfo = UDF_I(inode);
84
85 spin_lock(&iinfo->i_extent_cache_lock);
86 __udf_clear_extent_cache(inode);
87 spin_unlock(&iinfo->i_extent_cache_lock);
88}
89
90/* Return contents of extent cache */
91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 loff_t *lbcount, struct extent_position *pos)
93{
94 struct udf_inode_info *iinfo = UDF_I(inode);
95 int ret = 0;
96
97 spin_lock(&iinfo->i_extent_cache_lock);
98 if ((iinfo->cached_extent.lstart <= bcount) &&
99 (iinfo->cached_extent.lstart != -1)) {
100 /* Cache hit */
101 *lbcount = iinfo->cached_extent.lstart;
102 memcpy(pos, &iinfo->cached_extent.epos,
103 sizeof(struct extent_position));
104 if (pos->bh)
105 get_bh(pos->bh);
106 ret = 1;
107 }
108 spin_unlock(&iinfo->i_extent_cache_lock);
109 return ret;
110}
111
112/* Add extent to extent cache */
113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 struct extent_position *pos)
115{
116 struct udf_inode_info *iinfo = UDF_I(inode);
117
118 spin_lock(&iinfo->i_extent_cache_lock);
119 /* Invalidate previously cached extent */
120 __udf_clear_extent_cache(inode);
121 if (pos->bh)
122 get_bh(pos->bh);
123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124 iinfo->cached_extent.lstart = estart;
125 switch (iinfo->i_alloc_type) {
126 case ICBTAG_FLAG_AD_SHORT:
127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128 break;
129 case ICBTAG_FLAG_AD_LONG:
130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131 break;
132 }
133 spin_unlock(&iinfo->i_extent_cache_lock);
134}
135
136void udf_evict_inode(struct inode *inode)
137{
138 struct udf_inode_info *iinfo = UDF_I(inode);
139 int want_delete = 0;
140
141 if (!is_bad_inode(inode)) {
142 if (!inode->i_nlink) {
143 want_delete = 1;
144 udf_setsize(inode, 0);
145 udf_update_inode(inode, IS_SYNC(inode));
146 }
147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148 inode->i_size != iinfo->i_lenExtents) {
149 udf_warn(inode->i_sb,
150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151 inode->i_ino, inode->i_mode,
152 (unsigned long long)inode->i_size,
153 (unsigned long long)iinfo->i_lenExtents);
154 }
155 }
156 truncate_inode_pages_final(&inode->i_data);
157 invalidate_inode_buffers(inode);
158 clear_inode(inode);
159 kfree(iinfo->i_data);
160 iinfo->i_data = NULL;
161 udf_clear_extent_cache(inode);
162 if (want_delete) {
163 udf_free_inode(inode);
164 }
165}
166
167static void udf_write_failed(struct address_space *mapping, loff_t to)
168{
169 struct inode *inode = mapping->host;
170 struct udf_inode_info *iinfo = UDF_I(inode);
171 loff_t isize = inode->i_size;
172
173 if (to > isize) {
174 truncate_pagecache(inode, isize);
175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 down_write(&iinfo->i_data_sem);
177 udf_clear_extent_cache(inode);
178 udf_truncate_extents(inode);
179 up_write(&iinfo->i_data_sem);
180 }
181 }
182}
183
184static int udf_adinicb_writepage(struct folio *folio,
185 struct writeback_control *wbc, void *data)
186{
187 struct inode *inode = folio->mapping->host;
188 struct udf_inode_info *iinfo = UDF_I(inode);
189
190 BUG_ON(!folio_test_locked(folio));
191 BUG_ON(folio->index != 0);
192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193 i_size_read(inode));
194 folio_unlock(folio);
195 mark_inode_dirty(inode);
196
197 return 0;
198}
199
200static int udf_writepages(struct address_space *mapping,
201 struct writeback_control *wbc)
202{
203 struct inode *inode = mapping->host;
204 struct udf_inode_info *iinfo = UDF_I(inode);
205
206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207 return mpage_writepages(mapping, wbc, udf_get_block_wb);
208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209}
210
211static void udf_adinicb_read_folio(struct folio *folio)
212{
213 struct inode *inode = folio->mapping->host;
214 struct udf_inode_info *iinfo = UDF_I(inode);
215 loff_t isize = i_size_read(inode);
216
217 folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize);
218 folio_mark_uptodate(folio);
219}
220
221static int udf_read_folio(struct file *file, struct folio *folio)
222{
223 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
224
225 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
226 udf_adinicb_read_folio(folio);
227 folio_unlock(folio);
228 return 0;
229 }
230 return mpage_read_folio(folio, udf_get_block);
231}
232
233static void udf_readahead(struct readahead_control *rac)
234{
235 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
236
237 /*
238 * No readahead needed for in-ICB files and udf_get_block() would get
239 * confused for such file anyway.
240 */
241 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
242 return;
243
244 mpage_readahead(rac, udf_get_block);
245}
246
247static int udf_write_begin(struct file *file, struct address_space *mapping,
248 loff_t pos, unsigned len,
249 struct folio **foliop, void **fsdata)
250{
251 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
252 struct folio *folio;
253 int ret;
254
255 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
256 ret = block_write_begin(mapping, pos, len, foliop,
257 udf_get_block);
258 if (unlikely(ret))
259 udf_write_failed(mapping, pos + len);
260 return ret;
261 }
262 if (WARN_ON_ONCE(pos >= PAGE_SIZE))
263 return -EIO;
264 folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN,
265 mapping_gfp_mask(mapping));
266 if (IS_ERR(folio))
267 return PTR_ERR(folio);
268 *foliop = folio;
269 if (!folio_test_uptodate(folio))
270 udf_adinicb_read_folio(folio);
271 return 0;
272}
273
274static int udf_write_end(struct file *file, struct address_space *mapping,
275 loff_t pos, unsigned len, unsigned copied,
276 struct folio *folio, void *fsdata)
277{
278 struct inode *inode = file_inode(file);
279 loff_t last_pos;
280
281 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
282 return generic_write_end(file, mapping, pos, len, copied, folio,
283 fsdata);
284 last_pos = pos + copied;
285 if (last_pos > inode->i_size)
286 i_size_write(inode, last_pos);
287 folio_mark_dirty(folio);
288 folio_unlock(folio);
289 folio_put(folio);
290
291 return copied;
292}
293
294static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
295{
296 struct file *file = iocb->ki_filp;
297 struct address_space *mapping = file->f_mapping;
298 struct inode *inode = mapping->host;
299 size_t count = iov_iter_count(iter);
300 ssize_t ret;
301
302 /* Fallback to buffered IO for in-ICB files */
303 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
304 return 0;
305 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
306 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
307 udf_write_failed(mapping, iocb->ki_pos + count);
308 return ret;
309}
310
311static sector_t udf_bmap(struct address_space *mapping, sector_t block)
312{
313 struct udf_inode_info *iinfo = UDF_I(mapping->host);
314
315 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
316 return -EINVAL;
317 return generic_block_bmap(mapping, block, udf_get_block);
318}
319
320const struct address_space_operations udf_aops = {
321 .dirty_folio = block_dirty_folio,
322 .invalidate_folio = block_invalidate_folio,
323 .read_folio = udf_read_folio,
324 .readahead = udf_readahead,
325 .writepages = udf_writepages,
326 .write_begin = udf_write_begin,
327 .write_end = udf_write_end,
328 .direct_IO = udf_direct_IO,
329 .bmap = udf_bmap,
330 .migrate_folio = buffer_migrate_folio,
331};
332
333/*
334 * Expand file stored in ICB to a normal one-block-file
335 *
336 * This function requires i_mutex held
337 */
338int udf_expand_file_adinicb(struct inode *inode)
339{
340 struct folio *folio;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342 int err;
343
344 WARN_ON_ONCE(!inode_is_locked(inode));
345 if (!iinfo->i_lenAlloc) {
346 down_write(&iinfo->i_data_sem);
347 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
348 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
349 else
350 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
351 up_write(&iinfo->i_data_sem);
352 mark_inode_dirty(inode);
353 return 0;
354 }
355
356 folio = __filemap_get_folio(inode->i_mapping, 0,
357 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
358 if (IS_ERR(folio))
359 return PTR_ERR(folio);
360
361 if (!folio_test_uptodate(folio))
362 udf_adinicb_read_folio(folio);
363 down_write(&iinfo->i_data_sem);
364 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
365 iinfo->i_lenAlloc);
366 iinfo->i_lenAlloc = 0;
367 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
368 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
369 else
370 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
371 folio_mark_dirty(folio);
372 folio_unlock(folio);
373 up_write(&iinfo->i_data_sem);
374 err = filemap_fdatawrite(inode->i_mapping);
375 if (err) {
376 /* Restore everything back so that we don't lose data... */
377 folio_lock(folio);
378 down_write(&iinfo->i_data_sem);
379 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
380 folio, 0, inode->i_size);
381 folio_unlock(folio);
382 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
383 iinfo->i_lenAlloc = inode->i_size;
384 up_write(&iinfo->i_data_sem);
385 }
386 folio_put(folio);
387 mark_inode_dirty(inode);
388
389 return err;
390}
391
392#define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */
393#define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */
394
395#define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */
396#define UDF_BLK_NEW 0x02 /* Block was freshly allocated */
397
398struct udf_map_rq {
399 sector_t lblk;
400 udf_pblk_t pblk;
401 int iflags; /* UDF_MAP_ flags determining behavior */
402 int oflags; /* UDF_BLK_ flags reporting results */
403};
404
405static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
406{
407 int ret;
408 struct udf_inode_info *iinfo = UDF_I(inode);
409
410 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
411 return -EFSCORRUPTED;
412
413 map->oflags = 0;
414 if (!(map->iflags & UDF_MAP_CREATE)) {
415 struct kernel_lb_addr eloc;
416 uint32_t elen;
417 sector_t offset;
418 struct extent_position epos = {};
419 int8_t etype;
420
421 down_read(&iinfo->i_data_sem);
422 ret = inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset,
423 &etype);
424 if (ret < 0)
425 goto out_read;
426 if (ret > 0 && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
427 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
428 offset);
429 map->oflags |= UDF_BLK_MAPPED;
430 ret = 0;
431 }
432out_read:
433 up_read(&iinfo->i_data_sem);
434 brelse(epos.bh);
435
436 return ret;
437 }
438
439 down_write(&iinfo->i_data_sem);
440 /*
441 * Block beyond EOF and prealloc extents? Just discard preallocation
442 * as it is not useful and complicates things.
443 */
444 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
445 udf_discard_prealloc(inode);
446 udf_clear_extent_cache(inode);
447 ret = inode_getblk(inode, map);
448 up_write(&iinfo->i_data_sem);
449 return ret;
450}
451
452static int __udf_get_block(struct inode *inode, sector_t block,
453 struct buffer_head *bh_result, int flags)
454{
455 int err;
456 struct udf_map_rq map = {
457 .lblk = block,
458 .iflags = flags,
459 };
460
461 err = udf_map_block(inode, &map);
462 if (err < 0)
463 return err;
464 if (map.oflags & UDF_BLK_MAPPED) {
465 map_bh(bh_result, inode->i_sb, map.pblk);
466 if (map.oflags & UDF_BLK_NEW)
467 set_buffer_new(bh_result);
468 }
469 return 0;
470}
471
472int udf_get_block(struct inode *inode, sector_t block,
473 struct buffer_head *bh_result, int create)
474{
475 int flags = create ? UDF_MAP_CREATE : 0;
476
477 /*
478 * We preallocate blocks only for regular files. It also makes sense
479 * for directories but there's a problem when to drop the
480 * preallocation. We might use some delayed work for that but I feel
481 * it's overengineering for a filesystem like UDF.
482 */
483 if (!S_ISREG(inode->i_mode))
484 flags |= UDF_MAP_NOPREALLOC;
485 return __udf_get_block(inode, block, bh_result, flags);
486}
487
488/*
489 * We shouldn't be allocating blocks on page writeback since we allocate them
490 * on page fault. We can spot dirty buffers without allocated blocks though
491 * when truncate expands file. These however don't have valid data so we can
492 * safely ignore them. So never allocate blocks from page writeback.
493 */
494static int udf_get_block_wb(struct inode *inode, sector_t block,
495 struct buffer_head *bh_result, int create)
496{
497 return __udf_get_block(inode, block, bh_result, 0);
498}
499
500/* Extend the file with new blocks totaling 'new_block_bytes',
501 * return the number of extents added
502 */
503static int udf_do_extend_file(struct inode *inode,
504 struct extent_position *last_pos,
505 struct kernel_long_ad *last_ext,
506 loff_t new_block_bytes)
507{
508 uint32_t add;
509 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
510 struct super_block *sb = inode->i_sb;
511 struct udf_inode_info *iinfo;
512 int err;
513
514 /* The previous extent is fake and we should not extend by anything
515 * - there's nothing to do... */
516 if (!new_block_bytes && fake)
517 return 0;
518
519 iinfo = UDF_I(inode);
520 /* Round the last extent up to a multiple of block size */
521 if (last_ext->extLength & (sb->s_blocksize - 1)) {
522 last_ext->extLength =
523 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
524 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
525 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
526 iinfo->i_lenExtents =
527 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
528 ~(sb->s_blocksize - 1);
529 }
530
531 add = 0;
532 /* Can we merge with the previous extent? */
533 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
534 EXT_NOT_RECORDED_NOT_ALLOCATED) {
535 add = (1 << 30) - sb->s_blocksize -
536 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
537 if (add > new_block_bytes)
538 add = new_block_bytes;
539 new_block_bytes -= add;
540 last_ext->extLength += add;
541 }
542
543 if (fake) {
544 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
545 last_ext->extLength, 1);
546 if (err < 0)
547 goto out_err;
548 count++;
549 } else {
550 struct kernel_lb_addr tmploc;
551 uint32_t tmplen;
552 int8_t tmptype;
553
554 udf_write_aext(inode, last_pos, &last_ext->extLocation,
555 last_ext->extLength, 1);
556
557 /*
558 * We've rewritten the last extent. If we are going to add
559 * more extents, we may need to enter possible following
560 * empty indirect extent.
561 */
562 if (new_block_bytes) {
563 err = udf_next_aext(inode, last_pos, &tmploc, &tmplen,
564 &tmptype, 0);
565 if (err < 0)
566 goto out_err;
567 }
568 }
569 iinfo->i_lenExtents += add;
570
571 /* Managed to do everything necessary? */
572 if (!new_block_bytes)
573 goto out;
574
575 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
576 last_ext->extLocation.logicalBlockNum = 0;
577 last_ext->extLocation.partitionReferenceNum = 0;
578 add = (1 << 30) - sb->s_blocksize;
579 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
580
581 /* Create enough extents to cover the whole hole */
582 while (new_block_bytes > add) {
583 new_block_bytes -= add;
584 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
585 last_ext->extLength, 1);
586 if (err)
587 goto out_err;
588 iinfo->i_lenExtents += add;
589 count++;
590 }
591 if (new_block_bytes) {
592 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
593 new_block_bytes;
594 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
595 last_ext->extLength, 1);
596 if (err)
597 goto out_err;
598 iinfo->i_lenExtents += new_block_bytes;
599 count++;
600 }
601
602out:
603 /* last_pos should point to the last written extent... */
604 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
605 last_pos->offset -= sizeof(struct short_ad);
606 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
607 last_pos->offset -= sizeof(struct long_ad);
608 else
609 return -EIO;
610
611 return count;
612out_err:
613 /* Remove extents we've created so far */
614 udf_clear_extent_cache(inode);
615 udf_truncate_extents(inode);
616 return err;
617}
618
619/* Extend the final block of the file to final_block_len bytes */
620static void udf_do_extend_final_block(struct inode *inode,
621 struct extent_position *last_pos,
622 struct kernel_long_ad *last_ext,
623 uint32_t new_elen)
624{
625 uint32_t added_bytes;
626
627 /*
628 * Extent already large enough? It may be already rounded up to block
629 * size...
630 */
631 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
632 return;
633 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
634 last_ext->extLength += added_bytes;
635 UDF_I(inode)->i_lenExtents += added_bytes;
636
637 udf_write_aext(inode, last_pos, &last_ext->extLocation,
638 last_ext->extLength, 1);
639}
640
641static int udf_extend_file(struct inode *inode, loff_t newsize)
642{
643
644 struct extent_position epos;
645 struct kernel_lb_addr eloc;
646 uint32_t elen;
647 int8_t etype;
648 struct super_block *sb = inode->i_sb;
649 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
650 loff_t new_elen;
651 int adsize;
652 struct udf_inode_info *iinfo = UDF_I(inode);
653 struct kernel_long_ad extent;
654 int err = 0;
655 bool within_last_ext;
656
657 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
658 adsize = sizeof(struct short_ad);
659 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
660 adsize = sizeof(struct long_ad);
661 else
662 BUG();
663
664 down_write(&iinfo->i_data_sem);
665 /*
666 * When creating hole in file, just don't bother with preserving
667 * preallocation. It likely won't be very useful anyway.
668 */
669 udf_discard_prealloc(inode);
670
671 err = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset, &etype);
672 if (err < 0)
673 goto out;
674 within_last_ext = (err == 1);
675 /* We don't expect extents past EOF... */
676 WARN_ON_ONCE(within_last_ext &&
677 elen > ((loff_t)offset + 1) << inode->i_blkbits);
678
679 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
680 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
681 /* File has no extents at all or has empty last
682 * indirect extent! Create a fake extent... */
683 extent.extLocation.logicalBlockNum = 0;
684 extent.extLocation.partitionReferenceNum = 0;
685 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
686 } else {
687 epos.offset -= adsize;
688 err = udf_next_aext(inode, &epos, &extent.extLocation,
689 &extent.extLength, &etype, 0);
690 if (err <= 0)
691 goto out;
692 extent.extLength |= etype << 30;
693 }
694
695 new_elen = ((loff_t)offset << inode->i_blkbits) |
696 (newsize & (sb->s_blocksize - 1));
697
698 /* File has extent covering the new size (could happen when extending
699 * inside a block)?
700 */
701 if (within_last_ext) {
702 /* Extending file within the last file block */
703 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
704 } else {
705 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
706 }
707
708 if (err < 0)
709 goto out;
710 err = 0;
711out:
712 brelse(epos.bh);
713 up_write(&iinfo->i_data_sem);
714 return err;
715}
716
717static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
718{
719 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
720 struct extent_position prev_epos, cur_epos, next_epos;
721 int count = 0, startnum = 0, endnum = 0;
722 uint32_t elen = 0, tmpelen;
723 struct kernel_lb_addr eloc, tmpeloc;
724 int c = 1;
725 loff_t lbcount = 0, b_off = 0;
726 udf_pblk_t newblocknum;
727 sector_t offset = 0;
728 int8_t etype, tmpetype;
729 struct udf_inode_info *iinfo = UDF_I(inode);
730 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
731 int lastblock = 0;
732 bool isBeyondEOF = false;
733 int ret = 0;
734
735 prev_epos.offset = udf_file_entry_alloc_offset(inode);
736 prev_epos.block = iinfo->i_location;
737 prev_epos.bh = NULL;
738 cur_epos = next_epos = prev_epos;
739 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
740
741 /* find the extent which contains the block we are looking for.
742 alternate between laarr[0] and laarr[1] for locations of the
743 current extent, and the previous extent */
744 do {
745 if (prev_epos.bh != cur_epos.bh) {
746 brelse(prev_epos.bh);
747 get_bh(cur_epos.bh);
748 prev_epos.bh = cur_epos.bh;
749 }
750 if (cur_epos.bh != next_epos.bh) {
751 brelse(cur_epos.bh);
752 get_bh(next_epos.bh);
753 cur_epos.bh = next_epos.bh;
754 }
755
756 lbcount += elen;
757
758 prev_epos.block = cur_epos.block;
759 cur_epos.block = next_epos.block;
760
761 prev_epos.offset = cur_epos.offset;
762 cur_epos.offset = next_epos.offset;
763
764 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 1);
765 if (ret < 0) {
766 goto out_free;
767 } else if (ret == 0) {
768 isBeyondEOF = true;
769 break;
770 }
771
772 c = !c;
773
774 laarr[c].extLength = (etype << 30) | elen;
775 laarr[c].extLocation = eloc;
776
777 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
778 pgoal = eloc.logicalBlockNum +
779 ((elen + inode->i_sb->s_blocksize - 1) >>
780 inode->i_sb->s_blocksize_bits);
781
782 count++;
783 } while (lbcount + elen <= b_off);
784
785 b_off -= lbcount;
786 offset = b_off >> inode->i_sb->s_blocksize_bits;
787 /*
788 * Move prev_epos and cur_epos into indirect extent if we are at
789 * the pointer to it
790 */
791 ret = udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
792 if (ret < 0)
793 goto out_free;
794 ret = udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
795 if (ret < 0)
796 goto out_free;
797
798 /* if the extent is allocated and recorded, return the block
799 if the extent is not a multiple of the blocksize, round up */
800
801 if (!isBeyondEOF && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
802 if (elen & (inode->i_sb->s_blocksize - 1)) {
803 elen = EXT_RECORDED_ALLOCATED |
804 ((elen + inode->i_sb->s_blocksize - 1) &
805 ~(inode->i_sb->s_blocksize - 1));
806 iinfo->i_lenExtents =
807 ALIGN(iinfo->i_lenExtents,
808 inode->i_sb->s_blocksize);
809 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
810 }
811 map->oflags = UDF_BLK_MAPPED;
812 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
813 goto out_free;
814 }
815
816 /* Are we beyond EOF and preallocated extent? */
817 if (isBeyondEOF) {
818 loff_t hole_len;
819
820 if (count) {
821 if (c)
822 laarr[0] = laarr[1];
823 startnum = 1;
824 } else {
825 /* Create a fake extent when there's not one */
826 memset(&laarr[0].extLocation, 0x00,
827 sizeof(struct kernel_lb_addr));
828 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
829 /* Will udf_do_extend_file() create real extent from
830 a fake one? */
831 startnum = (offset > 0);
832 }
833 /* Create extents for the hole between EOF and offset */
834 hole_len = (loff_t)offset << inode->i_blkbits;
835 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
836 if (ret < 0)
837 goto out_free;
838 c = 0;
839 offset = 0;
840 count += ret;
841 /*
842 * Is there any real extent? - otherwise we overwrite the fake
843 * one...
844 */
845 if (count)
846 c = !c;
847 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
848 inode->i_sb->s_blocksize;
849 memset(&laarr[c].extLocation, 0x00,
850 sizeof(struct kernel_lb_addr));
851 count++;
852 endnum = c + 1;
853 lastblock = 1;
854 } else {
855 endnum = startnum = ((count > 2) ? 2 : count);
856
857 /* if the current extent is in position 0,
858 swap it with the previous */
859 if (!c && count != 1) {
860 laarr[2] = laarr[0];
861 laarr[0] = laarr[1];
862 laarr[1] = laarr[2];
863 c = 1;
864 }
865
866 /* if the current block is located in an extent,
867 read the next extent */
868 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 0);
869 if (ret > 0) {
870 laarr[c + 1].extLength = (etype << 30) | elen;
871 laarr[c + 1].extLocation = eloc;
872 count++;
873 startnum++;
874 endnum++;
875 } else if (ret == 0)
876 lastblock = 1;
877 else
878 goto out_free;
879 }
880
881 /* if the current extent is not recorded but allocated, get the
882 * block in the extent corresponding to the requested block */
883 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
884 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
885 else { /* otherwise, allocate a new block */
886 if (iinfo->i_next_alloc_block == map->lblk)
887 goal = iinfo->i_next_alloc_goal;
888
889 if (!goal) {
890 if (!(goal = pgoal)) /* XXX: what was intended here? */
891 goal = iinfo->i_location.logicalBlockNum + 1;
892 }
893
894 newblocknum = udf_new_block(inode->i_sb, inode,
895 iinfo->i_location.partitionReferenceNum,
896 goal, &ret);
897 if (!newblocknum)
898 goto out_free;
899 if (isBeyondEOF)
900 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
901 }
902
903 /* if the extent the requsted block is located in contains multiple
904 * blocks, split the extent into at most three extents. blocks prior
905 * to requested block, requested block, and blocks after requested
906 * block */
907 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
908
909 if (!(map->iflags & UDF_MAP_NOPREALLOC))
910 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
911
912 /* merge any continuous blocks in laarr */
913 udf_merge_extents(inode, laarr, &endnum);
914
915 /* write back the new extents, inserting new extents if the new number
916 * of extents is greater than the old number, and deleting extents if
917 * the new number of extents is less than the old number */
918 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
919 if (ret < 0)
920 goto out_free;
921
922 map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
923 iinfo->i_location.partitionReferenceNum, 0);
924 if (!map->pblk) {
925 ret = -EFSCORRUPTED;
926 goto out_free;
927 }
928 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
929 iinfo->i_next_alloc_block = map->lblk + 1;
930 iinfo->i_next_alloc_goal = newblocknum + 1;
931 inode_set_ctime_current(inode);
932
933 if (IS_SYNC(inode))
934 udf_sync_inode(inode);
935 else
936 mark_inode_dirty(inode);
937 ret = 0;
938out_free:
939 brelse(prev_epos.bh);
940 brelse(cur_epos.bh);
941 brelse(next_epos.bh);
942 return ret;
943}
944
945static void udf_split_extents(struct inode *inode, int *c, int offset,
946 udf_pblk_t newblocknum,
947 struct kernel_long_ad *laarr, int *endnum)
948{
949 unsigned long blocksize = inode->i_sb->s_blocksize;
950 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
951
952 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
953 (laarr[*c].extLength >> 30) ==
954 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
955 int curr = *c;
956 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
957 blocksize - 1) >> blocksize_bits;
958 int8_t etype = (laarr[curr].extLength >> 30);
959
960 if (blen == 1)
961 ;
962 else if (!offset || blen == offset + 1) {
963 laarr[curr + 2] = laarr[curr + 1];
964 laarr[curr + 1] = laarr[curr];
965 } else {
966 laarr[curr + 3] = laarr[curr + 1];
967 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
968 }
969
970 if (offset) {
971 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
972 udf_free_blocks(inode->i_sb, inode,
973 &laarr[curr].extLocation,
974 0, offset);
975 laarr[curr].extLength =
976 EXT_NOT_RECORDED_NOT_ALLOCATED |
977 (offset << blocksize_bits);
978 laarr[curr].extLocation.logicalBlockNum = 0;
979 laarr[curr].extLocation.
980 partitionReferenceNum = 0;
981 } else
982 laarr[curr].extLength = (etype << 30) |
983 (offset << blocksize_bits);
984 curr++;
985 (*c)++;
986 (*endnum)++;
987 }
988
989 laarr[curr].extLocation.logicalBlockNum = newblocknum;
990 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
991 laarr[curr].extLocation.partitionReferenceNum =
992 UDF_I(inode)->i_location.partitionReferenceNum;
993 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
994 blocksize;
995 curr++;
996
997 if (blen != offset + 1) {
998 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
999 laarr[curr].extLocation.logicalBlockNum +=
1000 offset + 1;
1001 laarr[curr].extLength = (etype << 30) |
1002 ((blen - (offset + 1)) << blocksize_bits);
1003 curr++;
1004 (*endnum)++;
1005 }
1006 }
1007}
1008
1009static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
1010 struct kernel_long_ad *laarr,
1011 int *endnum)
1012{
1013 int start, length = 0, currlength = 0, i;
1014
1015 if (*endnum >= (c + 1)) {
1016 if (!lastblock)
1017 return;
1018 else
1019 start = c;
1020 } else {
1021 if ((laarr[c + 1].extLength >> 30) ==
1022 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1023 start = c + 1;
1024 length = currlength =
1025 (((laarr[c + 1].extLength &
1026 UDF_EXTENT_LENGTH_MASK) +
1027 inode->i_sb->s_blocksize - 1) >>
1028 inode->i_sb->s_blocksize_bits);
1029 } else
1030 start = c;
1031 }
1032
1033 for (i = start + 1; i <= *endnum; i++) {
1034 if (i == *endnum) {
1035 if (lastblock)
1036 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1037 } else if ((laarr[i].extLength >> 30) ==
1038 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1039 length += (((laarr[i].extLength &
1040 UDF_EXTENT_LENGTH_MASK) +
1041 inode->i_sb->s_blocksize - 1) >>
1042 inode->i_sb->s_blocksize_bits);
1043 } else
1044 break;
1045 }
1046
1047 if (length) {
1048 int next = laarr[start].extLocation.logicalBlockNum +
1049 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1050 inode->i_sb->s_blocksize - 1) >>
1051 inode->i_sb->s_blocksize_bits);
1052 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1053 laarr[start].extLocation.partitionReferenceNum,
1054 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1055 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1056 currlength);
1057 if (numalloc) {
1058 if (start == (c + 1))
1059 laarr[start].extLength +=
1060 (numalloc <<
1061 inode->i_sb->s_blocksize_bits);
1062 else {
1063 memmove(&laarr[c + 2], &laarr[c + 1],
1064 sizeof(struct long_ad) * (*endnum - (c + 1)));
1065 (*endnum)++;
1066 laarr[c + 1].extLocation.logicalBlockNum = next;
1067 laarr[c + 1].extLocation.partitionReferenceNum =
1068 laarr[c].extLocation.
1069 partitionReferenceNum;
1070 laarr[c + 1].extLength =
1071 EXT_NOT_RECORDED_ALLOCATED |
1072 (numalloc <<
1073 inode->i_sb->s_blocksize_bits);
1074 start = c + 1;
1075 }
1076
1077 for (i = start + 1; numalloc && i < *endnum; i++) {
1078 int elen = ((laarr[i].extLength &
1079 UDF_EXTENT_LENGTH_MASK) +
1080 inode->i_sb->s_blocksize - 1) >>
1081 inode->i_sb->s_blocksize_bits;
1082
1083 if (elen > numalloc) {
1084 laarr[i].extLength -=
1085 (numalloc <<
1086 inode->i_sb->s_blocksize_bits);
1087 numalloc = 0;
1088 } else {
1089 numalloc -= elen;
1090 if (*endnum > (i + 1))
1091 memmove(&laarr[i],
1092 &laarr[i + 1],
1093 sizeof(struct long_ad) *
1094 (*endnum - (i + 1)));
1095 i--;
1096 (*endnum)--;
1097 }
1098 }
1099 UDF_I(inode)->i_lenExtents +=
1100 numalloc << inode->i_sb->s_blocksize_bits;
1101 }
1102 }
1103}
1104
1105static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1106 int *endnum)
1107{
1108 int i;
1109 unsigned long blocksize = inode->i_sb->s_blocksize;
1110 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1111
1112 for (i = 0; i < (*endnum - 1); i++) {
1113 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1114 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1115
1116 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1117 (((li->extLength >> 30) ==
1118 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1119 ((lip1->extLocation.logicalBlockNum -
1120 li->extLocation.logicalBlockNum) ==
1121 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1122 blocksize - 1) >> blocksize_bits)))) {
1123
1124 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1125 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1126 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1127 li->extLength = lip1->extLength +
1128 (((li->extLength &
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) & ~(blocksize - 1));
1131 if (*endnum > (i + 2))
1132 memmove(&laarr[i + 1], &laarr[i + 2],
1133 sizeof(struct long_ad) *
1134 (*endnum - (i + 2)));
1135 i--;
1136 (*endnum)--;
1137 }
1138 } else if (((li->extLength >> 30) ==
1139 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1140 ((lip1->extLength >> 30) ==
1141 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1142 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1143 ((li->extLength &
1144 UDF_EXTENT_LENGTH_MASK) +
1145 blocksize - 1) >> blocksize_bits);
1146 li->extLocation.logicalBlockNum = 0;
1147 li->extLocation.partitionReferenceNum = 0;
1148
1149 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1150 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1151 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1152 lip1->extLength = (lip1->extLength -
1153 (li->extLength &
1154 UDF_EXTENT_LENGTH_MASK) +
1155 UDF_EXTENT_LENGTH_MASK) &
1156 ~(blocksize - 1);
1157 li->extLength = (li->extLength &
1158 UDF_EXTENT_FLAG_MASK) +
1159 (UDF_EXTENT_LENGTH_MASK + 1) -
1160 blocksize;
1161 } else {
1162 li->extLength = lip1->extLength +
1163 (((li->extLength &
1164 UDF_EXTENT_LENGTH_MASK) +
1165 blocksize - 1) & ~(blocksize - 1));
1166 if (*endnum > (i + 2))
1167 memmove(&laarr[i + 1], &laarr[i + 2],
1168 sizeof(struct long_ad) *
1169 (*endnum - (i + 2)));
1170 i--;
1171 (*endnum)--;
1172 }
1173 } else if ((li->extLength >> 30) ==
1174 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1175 udf_free_blocks(inode->i_sb, inode,
1176 &li->extLocation, 0,
1177 ((li->extLength &
1178 UDF_EXTENT_LENGTH_MASK) +
1179 blocksize - 1) >> blocksize_bits);
1180 li->extLocation.logicalBlockNum = 0;
1181 li->extLocation.partitionReferenceNum = 0;
1182 li->extLength = (li->extLength &
1183 UDF_EXTENT_LENGTH_MASK) |
1184 EXT_NOT_RECORDED_NOT_ALLOCATED;
1185 }
1186 }
1187}
1188
1189static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1190 int startnum, int endnum,
1191 struct extent_position *epos)
1192{
1193 int start = 0, i;
1194 struct kernel_lb_addr tmploc;
1195 uint32_t tmplen;
1196 int8_t tmpetype;
1197 int err;
1198
1199 if (startnum > endnum) {
1200 for (i = 0; i < (startnum - endnum); i++)
1201 udf_delete_aext(inode, *epos);
1202 } else if (startnum < endnum) {
1203 for (i = 0; i < (endnum - startnum); i++) {
1204 err = udf_insert_aext(inode, *epos,
1205 laarr[i].extLocation,
1206 laarr[i].extLength);
1207 /*
1208 * If we fail here, we are likely corrupting the extent
1209 * list and leaking blocks. At least stop early to
1210 * limit the damage.
1211 */
1212 if (err < 0)
1213 return err;
1214 err = udf_next_aext(inode, epos, &laarr[i].extLocation,
1215 &laarr[i].extLength, &tmpetype, 1);
1216 if (err < 0)
1217 return err;
1218 start++;
1219 }
1220 }
1221
1222 for (i = start; i < endnum; i++) {
1223 err = udf_next_aext(inode, epos, &tmploc, &tmplen, &tmpetype, 0);
1224 if (err < 0)
1225 return err;
1226
1227 udf_write_aext(inode, epos, &laarr[i].extLocation,
1228 laarr[i].extLength, 1);
1229 }
1230 return 0;
1231}
1232
1233struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1234 int create, int *err)
1235{
1236 struct buffer_head *bh = NULL;
1237 struct udf_map_rq map = {
1238 .lblk = block,
1239 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1240 };
1241
1242 *err = udf_map_block(inode, &map);
1243 if (*err || !(map.oflags & UDF_BLK_MAPPED))
1244 return NULL;
1245
1246 bh = sb_getblk(inode->i_sb, map.pblk);
1247 if (!bh) {
1248 *err = -ENOMEM;
1249 return NULL;
1250 }
1251 if (map.oflags & UDF_BLK_NEW) {
1252 lock_buffer(bh);
1253 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1254 set_buffer_uptodate(bh);
1255 unlock_buffer(bh);
1256 mark_buffer_dirty_inode(bh, inode);
1257 return bh;
1258 }
1259
1260 if (bh_read(bh, 0) >= 0)
1261 return bh;
1262
1263 brelse(bh);
1264 *err = -EIO;
1265 return NULL;
1266}
1267
1268int udf_setsize(struct inode *inode, loff_t newsize)
1269{
1270 int err = 0;
1271 struct udf_inode_info *iinfo;
1272 unsigned int bsize = i_blocksize(inode);
1273
1274 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1275 S_ISLNK(inode->i_mode)))
1276 return -EINVAL;
1277
1278 iinfo = UDF_I(inode);
1279 if (newsize > inode->i_size) {
1280 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1281 if (bsize >=
1282 (udf_file_entry_alloc_offset(inode) + newsize)) {
1283 down_write(&iinfo->i_data_sem);
1284 iinfo->i_lenAlloc = newsize;
1285 up_write(&iinfo->i_data_sem);
1286 goto set_size;
1287 }
1288 err = udf_expand_file_adinicb(inode);
1289 if (err)
1290 return err;
1291 }
1292 err = udf_extend_file(inode, newsize);
1293 if (err)
1294 return err;
1295set_size:
1296 truncate_setsize(inode, newsize);
1297 } else {
1298 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1299 down_write(&iinfo->i_data_sem);
1300 udf_clear_extent_cache(inode);
1301 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1302 0x00, bsize - newsize -
1303 udf_file_entry_alloc_offset(inode));
1304 iinfo->i_lenAlloc = newsize;
1305 truncate_setsize(inode, newsize);
1306 up_write(&iinfo->i_data_sem);
1307 goto update_time;
1308 }
1309 err = block_truncate_page(inode->i_mapping, newsize,
1310 udf_get_block);
1311 if (err)
1312 return err;
1313 truncate_setsize(inode, newsize);
1314 down_write(&iinfo->i_data_sem);
1315 udf_clear_extent_cache(inode);
1316 err = udf_truncate_extents(inode);
1317 up_write(&iinfo->i_data_sem);
1318 if (err)
1319 return err;
1320 }
1321update_time:
1322 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1323 if (IS_SYNC(inode))
1324 udf_sync_inode(inode);
1325 else
1326 mark_inode_dirty(inode);
1327 return err;
1328}
1329
1330/*
1331 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1332 * arbitrary - just that we hopefully don't limit any real use of rewritten
1333 * inode on write-once media but avoid looping for too long on corrupted media.
1334 */
1335#define UDF_MAX_ICB_NESTING 1024
1336
1337static int udf_read_inode(struct inode *inode, bool hidden_inode)
1338{
1339 struct buffer_head *bh = NULL;
1340 struct fileEntry *fe;
1341 struct extendedFileEntry *efe;
1342 uint16_t ident;
1343 struct udf_inode_info *iinfo = UDF_I(inode);
1344 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1345 struct kernel_lb_addr *iloc = &iinfo->i_location;
1346 unsigned int link_count;
1347 unsigned int indirections = 0;
1348 int bs = inode->i_sb->s_blocksize;
1349 int ret = -EIO;
1350 uint32_t uid, gid;
1351 struct timespec64 ts;
1352
1353reread:
1354 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1355 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1356 iloc->partitionReferenceNum, sbi->s_partitions);
1357 return -EIO;
1358 }
1359
1360 if (iloc->logicalBlockNum >=
1361 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1362 udf_debug("block=%u, partition=%u out of range\n",
1363 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1364 return -EIO;
1365 }
1366
1367 /*
1368 * Set defaults, but the inode is still incomplete!
1369 * Note: get_new_inode() sets the following on a new inode:
1370 * i_sb = sb
1371 * i_no = ino
1372 * i_flags = sb->s_flags
1373 * i_state = 0
1374 * clean_inode(): zero fills and sets
1375 * i_count = 1
1376 * i_nlink = 1
1377 * i_op = NULL;
1378 */
1379 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1380 if (!bh) {
1381 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1382 return -EIO;
1383 }
1384
1385 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1386 ident != TAG_IDENT_USE) {
1387 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1388 inode->i_ino, ident);
1389 goto out;
1390 }
1391
1392 fe = (struct fileEntry *)bh->b_data;
1393 efe = (struct extendedFileEntry *)bh->b_data;
1394
1395 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1396 struct buffer_head *ibh;
1397
1398 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1399 if (ident == TAG_IDENT_IE && ibh) {
1400 struct kernel_lb_addr loc;
1401 struct indirectEntry *ie;
1402
1403 ie = (struct indirectEntry *)ibh->b_data;
1404 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1405
1406 if (ie->indirectICB.extLength) {
1407 brelse(ibh);
1408 memcpy(&iinfo->i_location, &loc,
1409 sizeof(struct kernel_lb_addr));
1410 if (++indirections > UDF_MAX_ICB_NESTING) {
1411 udf_err(inode->i_sb,
1412 "too many ICBs in ICB hierarchy"
1413 " (max %d supported)\n",
1414 UDF_MAX_ICB_NESTING);
1415 goto out;
1416 }
1417 brelse(bh);
1418 goto reread;
1419 }
1420 }
1421 brelse(ibh);
1422 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1423 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1424 le16_to_cpu(fe->icbTag.strategyType));
1425 goto out;
1426 }
1427 if (fe->icbTag.strategyType == cpu_to_le16(4))
1428 iinfo->i_strat4096 = 0;
1429 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1430 iinfo->i_strat4096 = 1;
1431
1432 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1433 ICBTAG_FLAG_AD_MASK;
1434 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1435 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1436 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1437 ret = -EIO;
1438 goto out;
1439 }
1440 iinfo->i_hidden = hidden_inode;
1441 iinfo->i_unique = 0;
1442 iinfo->i_lenEAttr = 0;
1443 iinfo->i_lenExtents = 0;
1444 iinfo->i_lenAlloc = 0;
1445 iinfo->i_next_alloc_block = 0;
1446 iinfo->i_next_alloc_goal = 0;
1447 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1448 iinfo->i_efe = 1;
1449 iinfo->i_use = 0;
1450 ret = udf_alloc_i_data(inode, bs -
1451 sizeof(struct extendedFileEntry));
1452 if (ret)
1453 goto out;
1454 memcpy(iinfo->i_data,
1455 bh->b_data + sizeof(struct extendedFileEntry),
1456 bs - sizeof(struct extendedFileEntry));
1457 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1458 iinfo->i_efe = 0;
1459 iinfo->i_use = 0;
1460 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1461 if (ret)
1462 goto out;
1463 memcpy(iinfo->i_data,
1464 bh->b_data + sizeof(struct fileEntry),
1465 bs - sizeof(struct fileEntry));
1466 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1467 iinfo->i_efe = 0;
1468 iinfo->i_use = 1;
1469 iinfo->i_lenAlloc = le32_to_cpu(
1470 ((struct unallocSpaceEntry *)bh->b_data)->
1471 lengthAllocDescs);
1472 ret = udf_alloc_i_data(inode, bs -
1473 sizeof(struct unallocSpaceEntry));
1474 if (ret)
1475 goto out;
1476 memcpy(iinfo->i_data,
1477 bh->b_data + sizeof(struct unallocSpaceEntry),
1478 bs - sizeof(struct unallocSpaceEntry));
1479 return 0;
1480 }
1481
1482 ret = -EIO;
1483 read_lock(&sbi->s_cred_lock);
1484 uid = le32_to_cpu(fe->uid);
1485 if (uid == UDF_INVALID_ID ||
1486 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1487 inode->i_uid = sbi->s_uid;
1488 else
1489 i_uid_write(inode, uid);
1490
1491 gid = le32_to_cpu(fe->gid);
1492 if (gid == UDF_INVALID_ID ||
1493 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1494 inode->i_gid = sbi->s_gid;
1495 else
1496 i_gid_write(inode, gid);
1497
1498 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1499 sbi->s_fmode != UDF_INVALID_MODE)
1500 inode->i_mode = sbi->s_fmode;
1501 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1502 sbi->s_dmode != UDF_INVALID_MODE)
1503 inode->i_mode = sbi->s_dmode;
1504 else
1505 inode->i_mode = udf_convert_permissions(fe);
1506 inode->i_mode &= ~sbi->s_umask;
1507 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1508
1509 read_unlock(&sbi->s_cred_lock);
1510
1511 link_count = le16_to_cpu(fe->fileLinkCount);
1512 if (!link_count) {
1513 if (!hidden_inode) {
1514 ret = -ESTALE;
1515 goto out;
1516 }
1517 link_count = 1;
1518 }
1519 set_nlink(inode, link_count);
1520
1521 inode->i_size = le64_to_cpu(fe->informationLength);
1522 iinfo->i_lenExtents = inode->i_size;
1523
1524 if (iinfo->i_efe == 0) {
1525 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1526 (inode->i_sb->s_blocksize_bits - 9);
1527
1528 udf_disk_stamp_to_time(&ts, fe->accessTime);
1529 inode_set_atime_to_ts(inode, ts);
1530 udf_disk_stamp_to_time(&ts, fe->modificationTime);
1531 inode_set_mtime_to_ts(inode, ts);
1532 udf_disk_stamp_to_time(&ts, fe->attrTime);
1533 inode_set_ctime_to_ts(inode, ts);
1534
1535 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1536 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1537 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1538 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1539 iinfo->i_streamdir = 0;
1540 iinfo->i_lenStreams = 0;
1541 } else {
1542 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1543 (inode->i_sb->s_blocksize_bits - 9);
1544
1545 udf_disk_stamp_to_time(&ts, efe->accessTime);
1546 inode_set_atime_to_ts(inode, ts);
1547 udf_disk_stamp_to_time(&ts, efe->modificationTime);
1548 inode_set_mtime_to_ts(inode, ts);
1549 udf_disk_stamp_to_time(&ts, efe->attrTime);
1550 inode_set_ctime_to_ts(inode, ts);
1551 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1552
1553 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1554 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1555 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1556 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1557
1558 /* Named streams */
1559 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1560 iinfo->i_locStreamdir =
1561 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1562 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1563 if (iinfo->i_lenStreams >= inode->i_size)
1564 iinfo->i_lenStreams -= inode->i_size;
1565 else
1566 iinfo->i_lenStreams = 0;
1567 }
1568 inode->i_generation = iinfo->i_unique;
1569
1570 /*
1571 * Sanity check length of allocation descriptors and extended attrs to
1572 * avoid integer overflows
1573 */
1574 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1575 goto out;
1576 /* Now do exact checks */
1577 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1578 goto out;
1579 /* Sanity checks for files in ICB so that we don't get confused later */
1580 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1581 /*
1582 * For file in ICB data is stored in allocation descriptor
1583 * so sizes should match
1584 */
1585 if (iinfo->i_lenAlloc != inode->i_size)
1586 goto out;
1587 /* File in ICB has to fit in there... */
1588 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1589 goto out;
1590 }
1591
1592 switch (fe->icbTag.fileType) {
1593 case ICBTAG_FILE_TYPE_DIRECTORY:
1594 inode->i_op = &udf_dir_inode_operations;
1595 inode->i_fop = &udf_dir_operations;
1596 inode->i_mode |= S_IFDIR;
1597 inc_nlink(inode);
1598 break;
1599 case ICBTAG_FILE_TYPE_REALTIME:
1600 case ICBTAG_FILE_TYPE_REGULAR:
1601 case ICBTAG_FILE_TYPE_UNDEF:
1602 case ICBTAG_FILE_TYPE_VAT20:
1603 inode->i_data.a_ops = &udf_aops;
1604 inode->i_op = &udf_file_inode_operations;
1605 inode->i_fop = &udf_file_operations;
1606 inode->i_mode |= S_IFREG;
1607 break;
1608 case ICBTAG_FILE_TYPE_BLOCK:
1609 inode->i_mode |= S_IFBLK;
1610 break;
1611 case ICBTAG_FILE_TYPE_CHAR:
1612 inode->i_mode |= S_IFCHR;
1613 break;
1614 case ICBTAG_FILE_TYPE_FIFO:
1615 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1616 break;
1617 case ICBTAG_FILE_TYPE_SOCKET:
1618 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1619 break;
1620 case ICBTAG_FILE_TYPE_SYMLINK:
1621 inode->i_data.a_ops = &udf_symlink_aops;
1622 inode->i_op = &udf_symlink_inode_operations;
1623 inode_nohighmem(inode);
1624 inode->i_mode = S_IFLNK | 0777;
1625 break;
1626 case ICBTAG_FILE_TYPE_MAIN:
1627 udf_debug("METADATA FILE-----\n");
1628 break;
1629 case ICBTAG_FILE_TYPE_MIRROR:
1630 udf_debug("METADATA MIRROR FILE-----\n");
1631 break;
1632 case ICBTAG_FILE_TYPE_BITMAP:
1633 udf_debug("METADATA BITMAP FILE-----\n");
1634 break;
1635 default:
1636 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1637 inode->i_ino, fe->icbTag.fileType);
1638 goto out;
1639 }
1640 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1641 struct deviceSpec *dsea =
1642 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1643 if (dsea) {
1644 init_special_inode(inode, inode->i_mode,
1645 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1646 le32_to_cpu(dsea->minorDeviceIdent)));
1647 /* Developer ID ??? */
1648 } else
1649 goto out;
1650 }
1651 ret = 0;
1652out:
1653 brelse(bh);
1654 return ret;
1655}
1656
1657static int udf_alloc_i_data(struct inode *inode, size_t size)
1658{
1659 struct udf_inode_info *iinfo = UDF_I(inode);
1660 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1661 if (!iinfo->i_data)
1662 return -ENOMEM;
1663 return 0;
1664}
1665
1666static umode_t udf_convert_permissions(struct fileEntry *fe)
1667{
1668 umode_t mode;
1669 uint32_t permissions;
1670 uint32_t flags;
1671
1672 permissions = le32_to_cpu(fe->permissions);
1673 flags = le16_to_cpu(fe->icbTag.flags);
1674
1675 mode = ((permissions) & 0007) |
1676 ((permissions >> 2) & 0070) |
1677 ((permissions >> 4) & 0700) |
1678 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1679 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1680 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1681
1682 return mode;
1683}
1684
1685void udf_update_extra_perms(struct inode *inode, umode_t mode)
1686{
1687 struct udf_inode_info *iinfo = UDF_I(inode);
1688
1689 /*
1690 * UDF 2.01 sec. 3.3.3.3 Note 2:
1691 * In Unix, delete permission tracks write
1692 */
1693 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1694 if (mode & 0200)
1695 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1696 if (mode & 0020)
1697 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1698 if (mode & 0002)
1699 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1700}
1701
1702int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1703{
1704 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1705}
1706
1707static int udf_sync_inode(struct inode *inode)
1708{
1709 return udf_update_inode(inode, 1);
1710}
1711
1712static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1713{
1714 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1715 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1716 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1717 iinfo->i_crtime = time;
1718}
1719
1720static int udf_update_inode(struct inode *inode, int do_sync)
1721{
1722 struct buffer_head *bh = NULL;
1723 struct fileEntry *fe;
1724 struct extendedFileEntry *efe;
1725 uint64_t lb_recorded;
1726 uint32_t udfperms;
1727 uint16_t icbflags;
1728 uint16_t crclen;
1729 int err = 0;
1730 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1731 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1732 struct udf_inode_info *iinfo = UDF_I(inode);
1733
1734 bh = sb_getblk(inode->i_sb,
1735 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1736 if (!bh) {
1737 udf_debug("getblk failure\n");
1738 return -EIO;
1739 }
1740
1741 lock_buffer(bh);
1742 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1743 fe = (struct fileEntry *)bh->b_data;
1744 efe = (struct extendedFileEntry *)bh->b_data;
1745
1746 if (iinfo->i_use) {
1747 struct unallocSpaceEntry *use =
1748 (struct unallocSpaceEntry *)bh->b_data;
1749
1750 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1751 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1752 iinfo->i_data, inode->i_sb->s_blocksize -
1753 sizeof(struct unallocSpaceEntry));
1754 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1755 crclen = sizeof(struct unallocSpaceEntry);
1756
1757 goto finish;
1758 }
1759
1760 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1761 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1762 else
1763 fe->uid = cpu_to_le32(i_uid_read(inode));
1764
1765 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1766 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1767 else
1768 fe->gid = cpu_to_le32(i_gid_read(inode));
1769
1770 udfperms = ((inode->i_mode & 0007)) |
1771 ((inode->i_mode & 0070) << 2) |
1772 ((inode->i_mode & 0700) << 4);
1773
1774 udfperms |= iinfo->i_extraPerms;
1775 fe->permissions = cpu_to_le32(udfperms);
1776
1777 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1778 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1779 else {
1780 if (iinfo->i_hidden)
1781 fe->fileLinkCount = cpu_to_le16(0);
1782 else
1783 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1784 }
1785
1786 fe->informationLength = cpu_to_le64(inode->i_size);
1787
1788 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1789 struct regid *eid;
1790 struct deviceSpec *dsea =
1791 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1792 if (!dsea) {
1793 dsea = (struct deviceSpec *)
1794 udf_add_extendedattr(inode,
1795 sizeof(struct deviceSpec) +
1796 sizeof(struct regid), 12, 0x3);
1797 dsea->attrType = cpu_to_le32(12);
1798 dsea->attrSubtype = 1;
1799 dsea->attrLength = cpu_to_le32(
1800 sizeof(struct deviceSpec) +
1801 sizeof(struct regid));
1802 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1803 }
1804 eid = (struct regid *)dsea->impUse;
1805 memset(eid, 0, sizeof(*eid));
1806 strcpy(eid->ident, UDF_ID_DEVELOPER);
1807 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1808 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1809 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1810 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1811 }
1812
1813 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1814 lb_recorded = 0; /* No extents => no blocks! */
1815 else
1816 lb_recorded =
1817 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1818 (blocksize_bits - 9);
1819
1820 if (iinfo->i_efe == 0) {
1821 memcpy(bh->b_data + sizeof(struct fileEntry),
1822 iinfo->i_data,
1823 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1824 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1825
1826 udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode));
1827 udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode));
1828 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1829 memset(&(fe->impIdent), 0, sizeof(struct regid));
1830 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1831 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1832 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1833 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1834 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1835 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1836 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1837 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1838 crclen = sizeof(struct fileEntry);
1839 } else {
1840 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1841 iinfo->i_data,
1842 inode->i_sb->s_blocksize -
1843 sizeof(struct extendedFileEntry));
1844 efe->objectSize =
1845 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1846 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1847
1848 if (iinfo->i_streamdir) {
1849 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1850
1851 icb_lad->extLocation =
1852 cpu_to_lelb(iinfo->i_locStreamdir);
1853 icb_lad->extLength =
1854 cpu_to_le32(inode->i_sb->s_blocksize);
1855 }
1856
1857 udf_adjust_time(iinfo, inode_get_atime(inode));
1858 udf_adjust_time(iinfo, inode_get_mtime(inode));
1859 udf_adjust_time(iinfo, inode_get_ctime(inode));
1860
1861 udf_time_to_disk_stamp(&efe->accessTime,
1862 inode_get_atime(inode));
1863 udf_time_to_disk_stamp(&efe->modificationTime,
1864 inode_get_mtime(inode));
1865 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1866 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1867
1868 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1869 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1870 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1871 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1872 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1873 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1874 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1875 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1876 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1877 crclen = sizeof(struct extendedFileEntry);
1878 }
1879
1880finish:
1881 if (iinfo->i_strat4096) {
1882 fe->icbTag.strategyType = cpu_to_le16(4096);
1883 fe->icbTag.strategyParameter = cpu_to_le16(1);
1884 fe->icbTag.numEntries = cpu_to_le16(2);
1885 } else {
1886 fe->icbTag.strategyType = cpu_to_le16(4);
1887 fe->icbTag.numEntries = cpu_to_le16(1);
1888 }
1889
1890 if (iinfo->i_use)
1891 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1892 else if (S_ISDIR(inode->i_mode))
1893 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1894 else if (S_ISREG(inode->i_mode))
1895 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1896 else if (S_ISLNK(inode->i_mode))
1897 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1898 else if (S_ISBLK(inode->i_mode))
1899 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1900 else if (S_ISCHR(inode->i_mode))
1901 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1902 else if (S_ISFIFO(inode->i_mode))
1903 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1904 else if (S_ISSOCK(inode->i_mode))
1905 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1906
1907 icbflags = iinfo->i_alloc_type |
1908 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1909 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1910 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1911 (le16_to_cpu(fe->icbTag.flags) &
1912 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1913 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1914
1915 fe->icbTag.flags = cpu_to_le16(icbflags);
1916 if (sbi->s_udfrev >= 0x0200)
1917 fe->descTag.descVersion = cpu_to_le16(3);
1918 else
1919 fe->descTag.descVersion = cpu_to_le16(2);
1920 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1921 fe->descTag.tagLocation = cpu_to_le32(
1922 iinfo->i_location.logicalBlockNum);
1923 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1924 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1925 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1926 crclen));
1927 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1928
1929 set_buffer_uptodate(bh);
1930 unlock_buffer(bh);
1931
1932 /* write the data blocks */
1933 mark_buffer_dirty(bh);
1934 if (do_sync) {
1935 sync_dirty_buffer(bh);
1936 if (buffer_write_io_error(bh)) {
1937 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1938 inode->i_ino);
1939 err = -EIO;
1940 }
1941 }
1942 brelse(bh);
1943
1944 return err;
1945}
1946
1947struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1948 bool hidden_inode)
1949{
1950 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1951 struct inode *inode = iget_locked(sb, block);
1952 int err;
1953
1954 if (!inode)
1955 return ERR_PTR(-ENOMEM);
1956
1957 if (!(inode->i_state & I_NEW)) {
1958 if (UDF_I(inode)->i_hidden != hidden_inode) {
1959 iput(inode);
1960 return ERR_PTR(-EFSCORRUPTED);
1961 }
1962 return inode;
1963 }
1964
1965 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1966 err = udf_read_inode(inode, hidden_inode);
1967 if (err < 0) {
1968 iget_failed(inode);
1969 return ERR_PTR(err);
1970 }
1971 unlock_new_inode(inode);
1972
1973 return inode;
1974}
1975
1976int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1977 struct extent_position *epos)
1978{
1979 struct super_block *sb = inode->i_sb;
1980 struct buffer_head *bh;
1981 struct allocExtDesc *aed;
1982 struct extent_position nepos;
1983 struct kernel_lb_addr neloc;
1984 int ver, adsize;
1985 int err = 0;
1986
1987 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1988 adsize = sizeof(struct short_ad);
1989 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1990 adsize = sizeof(struct long_ad);
1991 else
1992 return -EIO;
1993
1994 neloc.logicalBlockNum = block;
1995 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1996
1997 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1998 if (!bh)
1999 return -EIO;
2000 lock_buffer(bh);
2001 memset(bh->b_data, 0x00, sb->s_blocksize);
2002 set_buffer_uptodate(bh);
2003 unlock_buffer(bh);
2004 mark_buffer_dirty_inode(bh, inode);
2005
2006 aed = (struct allocExtDesc *)(bh->b_data);
2007 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
2008 aed->previousAllocExtLocation =
2009 cpu_to_le32(epos->block.logicalBlockNum);
2010 }
2011 aed->lengthAllocDescs = cpu_to_le32(0);
2012 if (UDF_SB(sb)->s_udfrev >= 0x0200)
2013 ver = 3;
2014 else
2015 ver = 2;
2016 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
2017 sizeof(struct tag));
2018
2019 nepos.block = neloc;
2020 nepos.offset = sizeof(struct allocExtDesc);
2021 nepos.bh = bh;
2022
2023 /*
2024 * Do we have to copy current last extent to make space for indirect
2025 * one?
2026 */
2027 if (epos->offset + adsize > sb->s_blocksize) {
2028 struct kernel_lb_addr cp_loc;
2029 uint32_t cp_len;
2030 int8_t cp_type;
2031
2032 epos->offset -= adsize;
2033 err = udf_current_aext(inode, epos, &cp_loc, &cp_len, &cp_type, 0);
2034 if (err <= 0)
2035 goto err_out;
2036 cp_len |= ((uint32_t)cp_type) << 30;
2037
2038 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2039 udf_write_aext(inode, epos, &nepos.block,
2040 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2041 } else {
2042 __udf_add_aext(inode, epos, &nepos.block,
2043 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2044 }
2045
2046 brelse(epos->bh);
2047 *epos = nepos;
2048
2049 return 0;
2050err_out:
2051 brelse(bh);
2052 return err;
2053}
2054
2055/*
2056 * Append extent at the given position - should be the first free one in inode
2057 * / indirect extent. This function assumes there is enough space in the inode
2058 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2059 */
2060int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2061 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2062{
2063 struct udf_inode_info *iinfo = UDF_I(inode);
2064 struct allocExtDesc *aed;
2065 int adsize;
2066
2067 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2068 adsize = sizeof(struct short_ad);
2069 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2070 adsize = sizeof(struct long_ad);
2071 else
2072 return -EIO;
2073
2074 if (!epos->bh) {
2075 WARN_ON(iinfo->i_lenAlloc !=
2076 epos->offset - udf_file_entry_alloc_offset(inode));
2077 } else {
2078 aed = (struct allocExtDesc *)epos->bh->b_data;
2079 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2080 epos->offset - sizeof(struct allocExtDesc));
2081 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2082 }
2083
2084 udf_write_aext(inode, epos, eloc, elen, inc);
2085
2086 if (!epos->bh) {
2087 iinfo->i_lenAlloc += adsize;
2088 mark_inode_dirty(inode);
2089 } else {
2090 aed = (struct allocExtDesc *)epos->bh->b_data;
2091 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2092 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2093 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2094 udf_update_tag(epos->bh->b_data,
2095 epos->offset + (inc ? 0 : adsize));
2096 else
2097 udf_update_tag(epos->bh->b_data,
2098 sizeof(struct allocExtDesc));
2099 mark_buffer_dirty_inode(epos->bh, inode);
2100 }
2101
2102 return 0;
2103}
2104
2105/*
2106 * Append extent at given position - should be the first free one in inode
2107 * / indirect extent. Takes care of allocating and linking indirect blocks.
2108 */
2109int udf_add_aext(struct inode *inode, struct extent_position *epos,
2110 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2111{
2112 int adsize;
2113 struct super_block *sb = inode->i_sb;
2114
2115 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2116 adsize = sizeof(struct short_ad);
2117 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2118 adsize = sizeof(struct long_ad);
2119 else
2120 return -EIO;
2121
2122 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2123 int err;
2124 udf_pblk_t new_block;
2125
2126 new_block = udf_new_block(sb, NULL,
2127 epos->block.partitionReferenceNum,
2128 epos->block.logicalBlockNum, &err);
2129 if (!new_block)
2130 return -ENOSPC;
2131
2132 err = udf_setup_indirect_aext(inode, new_block, epos);
2133 if (err)
2134 return err;
2135 }
2136
2137 return __udf_add_aext(inode, epos, eloc, elen, inc);
2138}
2139
2140void udf_write_aext(struct inode *inode, struct extent_position *epos,
2141 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2142{
2143 int adsize;
2144 uint8_t *ptr;
2145 struct short_ad *sad;
2146 struct long_ad *lad;
2147 struct udf_inode_info *iinfo = UDF_I(inode);
2148
2149 if (!epos->bh)
2150 ptr = iinfo->i_data + epos->offset -
2151 udf_file_entry_alloc_offset(inode) +
2152 iinfo->i_lenEAttr;
2153 else
2154 ptr = epos->bh->b_data + epos->offset;
2155
2156 switch (iinfo->i_alloc_type) {
2157 case ICBTAG_FLAG_AD_SHORT:
2158 sad = (struct short_ad *)ptr;
2159 sad->extLength = cpu_to_le32(elen);
2160 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2161 adsize = sizeof(struct short_ad);
2162 break;
2163 case ICBTAG_FLAG_AD_LONG:
2164 lad = (struct long_ad *)ptr;
2165 lad->extLength = cpu_to_le32(elen);
2166 lad->extLocation = cpu_to_lelb(*eloc);
2167 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2168 adsize = sizeof(struct long_ad);
2169 break;
2170 default:
2171 return;
2172 }
2173
2174 if (epos->bh) {
2175 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2176 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2177 struct allocExtDesc *aed =
2178 (struct allocExtDesc *)epos->bh->b_data;
2179 udf_update_tag(epos->bh->b_data,
2180 le32_to_cpu(aed->lengthAllocDescs) +
2181 sizeof(struct allocExtDesc));
2182 }
2183 mark_buffer_dirty_inode(epos->bh, inode);
2184 } else {
2185 mark_inode_dirty(inode);
2186 }
2187
2188 if (inc)
2189 epos->offset += adsize;
2190}
2191
2192/*
2193 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2194 * someone does some weird stuff.
2195 */
2196#define UDF_MAX_INDIR_EXTS 16
2197
2198/*
2199 * Returns 1 on success, -errno on error, 0 on hit EOF.
2200 */
2201int udf_next_aext(struct inode *inode, struct extent_position *epos,
2202 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2203 int inc)
2204{
2205 unsigned int indirections = 0;
2206 int ret = 0;
2207 udf_pblk_t block;
2208
2209 while (1) {
2210 ret = udf_current_aext(inode, epos, eloc, elen,
2211 etype, inc);
2212 if (ret <= 0)
2213 return ret;
2214 if (*etype != (EXT_NEXT_EXTENT_ALLOCDESCS >> 30))
2215 return ret;
2216
2217 if (++indirections > UDF_MAX_INDIR_EXTS) {
2218 udf_err(inode->i_sb,
2219 "too many indirect extents in inode %lu\n",
2220 inode->i_ino);
2221 return -EFSCORRUPTED;
2222 }
2223
2224 epos->block = *eloc;
2225 epos->offset = sizeof(struct allocExtDesc);
2226 brelse(epos->bh);
2227 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2228 epos->bh = sb_bread(inode->i_sb, block);
2229 if (!epos->bh) {
2230 udf_debug("reading block %u failed!\n", block);
2231 return -EIO;
2232 }
2233 }
2234}
2235
2236/*
2237 * Returns 1 on success, -errno on error, 0 on hit EOF.
2238 */
2239int udf_current_aext(struct inode *inode, struct extent_position *epos,
2240 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2241 int inc)
2242{
2243 int alen;
2244 uint8_t *ptr;
2245 struct short_ad *sad;
2246 struct long_ad *lad;
2247 struct udf_inode_info *iinfo = UDF_I(inode);
2248
2249 if (!epos->bh) {
2250 if (!epos->offset)
2251 epos->offset = udf_file_entry_alloc_offset(inode);
2252 ptr = iinfo->i_data + epos->offset -
2253 udf_file_entry_alloc_offset(inode) +
2254 iinfo->i_lenEAttr;
2255 alen = udf_file_entry_alloc_offset(inode) +
2256 iinfo->i_lenAlloc;
2257 } else {
2258 struct allocExtDesc *header =
2259 (struct allocExtDesc *)epos->bh->b_data;
2260
2261 if (!epos->offset)
2262 epos->offset = sizeof(struct allocExtDesc);
2263 ptr = epos->bh->b_data + epos->offset;
2264 if (check_add_overflow(sizeof(struct allocExtDesc),
2265 le32_to_cpu(header->lengthAllocDescs), &alen))
2266 return -1;
2267 }
2268
2269 switch (iinfo->i_alloc_type) {
2270 case ICBTAG_FLAG_AD_SHORT:
2271 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2272 if (!sad)
2273 return 0;
2274 *etype = le32_to_cpu(sad->extLength) >> 30;
2275 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2276 eloc->partitionReferenceNum =
2277 iinfo->i_location.partitionReferenceNum;
2278 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2279 break;
2280 case ICBTAG_FLAG_AD_LONG:
2281 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2282 if (!lad)
2283 return 0;
2284 *etype = le32_to_cpu(lad->extLength) >> 30;
2285 *eloc = lelb_to_cpu(lad->extLocation);
2286 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2287 break;
2288 default:
2289 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2290 return -EINVAL;
2291 }
2292
2293 return 1;
2294}
2295
2296static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2297 struct kernel_lb_addr neloc, uint32_t nelen)
2298{
2299 struct kernel_lb_addr oeloc;
2300 uint32_t oelen;
2301 int8_t etype;
2302 int ret;
2303
2304 if (epos.bh)
2305 get_bh(epos.bh);
2306
2307 while (1) {
2308 ret = udf_next_aext(inode, &epos, &oeloc, &oelen, &etype, 0);
2309 if (ret <= 0)
2310 break;
2311 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2312 neloc = oeloc;
2313 nelen = (etype << 30) | oelen;
2314 }
2315 if (ret == 0)
2316 ret = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2317 brelse(epos.bh);
2318
2319 return ret;
2320}
2321
2322int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2323{
2324 struct extent_position oepos;
2325 int adsize;
2326 int8_t etype;
2327 struct allocExtDesc *aed;
2328 struct udf_inode_info *iinfo;
2329 struct kernel_lb_addr eloc;
2330 uint32_t elen;
2331 int ret;
2332
2333 if (epos.bh) {
2334 get_bh(epos.bh);
2335 get_bh(epos.bh);
2336 }
2337
2338 iinfo = UDF_I(inode);
2339 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2340 adsize = sizeof(struct short_ad);
2341 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2342 adsize = sizeof(struct long_ad);
2343 else
2344 adsize = 0;
2345
2346 oepos = epos;
2347 if (udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1) <= 0)
2348 return -1;
2349
2350 while (1) {
2351 ret = udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1);
2352 if (ret < 0) {
2353 brelse(epos.bh);
2354 brelse(oepos.bh);
2355 return -1;
2356 }
2357 if (ret == 0)
2358 break;
2359 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2360 if (oepos.bh != epos.bh) {
2361 oepos.block = epos.block;
2362 brelse(oepos.bh);
2363 get_bh(epos.bh);
2364 oepos.bh = epos.bh;
2365 oepos.offset = epos.offset - adsize;
2366 }
2367 }
2368 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2369 elen = 0;
2370
2371 if (epos.bh != oepos.bh) {
2372 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2373 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2374 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2375 if (!oepos.bh) {
2376 iinfo->i_lenAlloc -= (adsize * 2);
2377 mark_inode_dirty(inode);
2378 } else {
2379 aed = (struct allocExtDesc *)oepos.bh->b_data;
2380 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2381 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2382 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2383 udf_update_tag(oepos.bh->b_data,
2384 oepos.offset - (2 * adsize));
2385 else
2386 udf_update_tag(oepos.bh->b_data,
2387 sizeof(struct allocExtDesc));
2388 mark_buffer_dirty_inode(oepos.bh, inode);
2389 }
2390 } else {
2391 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2392 if (!oepos.bh) {
2393 iinfo->i_lenAlloc -= adsize;
2394 mark_inode_dirty(inode);
2395 } else {
2396 aed = (struct allocExtDesc *)oepos.bh->b_data;
2397 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2398 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2399 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2400 udf_update_tag(oepos.bh->b_data,
2401 epos.offset - adsize);
2402 else
2403 udf_update_tag(oepos.bh->b_data,
2404 sizeof(struct allocExtDesc));
2405 mark_buffer_dirty_inode(oepos.bh, inode);
2406 }
2407 }
2408
2409 brelse(epos.bh);
2410 brelse(oepos.bh);
2411
2412 return (elen >> 30);
2413}
2414
2415/*
2416 * Returns 1 on success, -errno on error, 0 on hit EOF.
2417 */
2418int inode_bmap(struct inode *inode, sector_t block, struct extent_position *pos,
2419 struct kernel_lb_addr *eloc, uint32_t *elen, sector_t *offset,
2420 int8_t *etype)
2421{
2422 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2423 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2424 struct udf_inode_info *iinfo;
2425 int err = 0;
2426
2427 iinfo = UDF_I(inode);
2428 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2429 pos->offset = 0;
2430 pos->block = iinfo->i_location;
2431 pos->bh = NULL;
2432 }
2433 *elen = 0;
2434 do {
2435 err = udf_next_aext(inode, pos, eloc, elen, etype, 1);
2436 if (err <= 0) {
2437 if (err == 0) {
2438 *offset = (bcount - lbcount) >> blocksize_bits;
2439 iinfo->i_lenExtents = lbcount;
2440 }
2441 return err;
2442 }
2443 lbcount += *elen;
2444 } while (lbcount <= bcount);
2445 /* update extent cache */
2446 udf_update_extent_cache(inode, lbcount - *elen, pos);
2447 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2448
2449 return 1;
2450}