Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * linux/fs/jbd/journal.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   5 *
   6 * Copyright 1998 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Generic filesystem journal-writing code; part of the ext2fs
  13 * journaling system.
  14 *
  15 * This file manages journals: areas of disk reserved for logging
  16 * transactional updates.  This includes the kernel journaling thread
  17 * which is responsible for scheduling updates to the log.
  18 *
  19 * We do not actually manage the physical storage of the journal in this
  20 * file: that is left to a per-journal policy function, which allows us
  21 * to store the journal within a filesystem-specified area for ext2
  22 * journaling (ext2 can use a reserved inode for storing the log).
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/time.h>
  27#include <linux/fs.h>
  28#include <linux/jbd.h>
  29#include <linux/errno.h>
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/mm.h>
  33#include <linux/freezer.h>
  34#include <linux/pagemap.h>
  35#include <linux/kthread.h>
  36#include <linux/poison.h>
  37#include <linux/proc_fs.h>
  38#include <linux/debugfs.h>
  39#include <linux/ratelimit.h>
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/jbd.h>
  43
  44#include <asm/uaccess.h>
  45#include <asm/page.h>
  46
  47EXPORT_SYMBOL(journal_start);
  48EXPORT_SYMBOL(journal_restart);
  49EXPORT_SYMBOL(journal_extend);
  50EXPORT_SYMBOL(journal_stop);
  51EXPORT_SYMBOL(journal_lock_updates);
  52EXPORT_SYMBOL(journal_unlock_updates);
  53EXPORT_SYMBOL(journal_get_write_access);
  54EXPORT_SYMBOL(journal_get_create_access);
  55EXPORT_SYMBOL(journal_get_undo_access);
  56EXPORT_SYMBOL(journal_dirty_data);
  57EXPORT_SYMBOL(journal_dirty_metadata);
  58EXPORT_SYMBOL(journal_release_buffer);
  59EXPORT_SYMBOL(journal_forget);
  60#if 0
  61EXPORT_SYMBOL(journal_sync_buffer);
  62#endif
  63EXPORT_SYMBOL(journal_flush);
  64EXPORT_SYMBOL(journal_revoke);
  65
  66EXPORT_SYMBOL(journal_init_dev);
  67EXPORT_SYMBOL(journal_init_inode);
  68EXPORT_SYMBOL(journal_update_format);
  69EXPORT_SYMBOL(journal_check_used_features);
  70EXPORT_SYMBOL(journal_check_available_features);
  71EXPORT_SYMBOL(journal_set_features);
  72EXPORT_SYMBOL(journal_create);
  73EXPORT_SYMBOL(journal_load);
  74EXPORT_SYMBOL(journal_destroy);
  75EXPORT_SYMBOL(journal_abort);
  76EXPORT_SYMBOL(journal_errno);
  77EXPORT_SYMBOL(journal_ack_err);
  78EXPORT_SYMBOL(journal_clear_err);
  79EXPORT_SYMBOL(log_wait_commit);
  80EXPORT_SYMBOL(log_start_commit);
  81EXPORT_SYMBOL(journal_start_commit);
  82EXPORT_SYMBOL(journal_force_commit_nested);
  83EXPORT_SYMBOL(journal_wipe);
  84EXPORT_SYMBOL(journal_blocks_per_page);
  85EXPORT_SYMBOL(journal_invalidatepage);
  86EXPORT_SYMBOL(journal_try_to_free_buffers);
  87EXPORT_SYMBOL(journal_force_commit);
  88
  89static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
  90static void __journal_abort_soft (journal_t *journal, int errno);
  91static const char *journal_dev_name(journal_t *journal, char *buffer);
  92
  93#ifdef CONFIG_JBD_DEBUG
  94void __jbd_debug(int level, const char *file, const char *func,
  95		 unsigned int line, const char *fmt, ...)
  96{
  97	struct va_format vaf;
  98	va_list args;
  99
 100	if (level > journal_enable_debug)
 101		return;
 102	va_start(args, fmt);
 103	vaf.fmt = fmt;
 104	vaf.va = &args;
 105	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
 106	va_end(args);
 107}
 108EXPORT_SYMBOL(__jbd_debug);
 109#endif
 110
 111/*
 112 * Helper function used to manage commit timeouts
 113 */
 114
 115static void commit_timeout(unsigned long __data)
 116{
 117	struct task_struct * p = (struct task_struct *) __data;
 118
 119	wake_up_process(p);
 120}
 121
 122/*
 123 * kjournald: The main thread function used to manage a logging device
 124 * journal.
 125 *
 126 * This kernel thread is responsible for two things:
 127 *
 128 * 1) COMMIT:  Every so often we need to commit the current state of the
 129 *    filesystem to disk.  The journal thread is responsible for writing
 130 *    all of the metadata buffers to disk.
 131 *
 132 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 133 *    of the data in that part of the log has been rewritten elsewhere on
 134 *    the disk.  Flushing these old buffers to reclaim space in the log is
 135 *    known as checkpointing, and this thread is responsible for that job.
 136 */
 137
 138static int kjournald(void *arg)
 139{
 140	journal_t *journal = arg;
 141	transaction_t *transaction;
 142
 143	/*
 144	 * Set up an interval timer which can be used to trigger a commit wakeup
 145	 * after the commit interval expires
 146	 */
 147	setup_timer(&journal->j_commit_timer, commit_timeout,
 148			(unsigned long)current);
 149
 150	set_freezable();
 151
 152	/* Record that the journal thread is running */
 153	journal->j_task = current;
 154	wake_up(&journal->j_wait_done_commit);
 155
 156	printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
 157			journal->j_commit_interval / HZ);
 158
 159	/*
 160	 * And now, wait forever for commit wakeup events.
 161	 */
 162	spin_lock(&journal->j_state_lock);
 163
 164loop:
 165	if (journal->j_flags & JFS_UNMOUNT)
 166		goto end_loop;
 167
 168	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
 169		journal->j_commit_sequence, journal->j_commit_request);
 170
 171	if (journal->j_commit_sequence != journal->j_commit_request) {
 172		jbd_debug(1, "OK, requests differ\n");
 173		spin_unlock(&journal->j_state_lock);
 174		del_timer_sync(&journal->j_commit_timer);
 175		journal_commit_transaction(journal);
 176		spin_lock(&journal->j_state_lock);
 177		goto loop;
 178	}
 179
 180	wake_up(&journal->j_wait_done_commit);
 181	if (freezing(current)) {
 182		/*
 183		 * The simpler the better. Flushing journal isn't a
 184		 * good idea, because that depends on threads that may
 185		 * be already stopped.
 186		 */
 187		jbd_debug(1, "Now suspending kjournald\n");
 188		spin_unlock(&journal->j_state_lock);
 189		try_to_freeze();
 190		spin_lock(&journal->j_state_lock);
 191	} else {
 192		/*
 193		 * We assume on resume that commits are already there,
 194		 * so we don't sleep
 195		 */
 196		DEFINE_WAIT(wait);
 197		int should_sleep = 1;
 198
 199		prepare_to_wait(&journal->j_wait_commit, &wait,
 200				TASK_INTERRUPTIBLE);
 201		if (journal->j_commit_sequence != journal->j_commit_request)
 202			should_sleep = 0;
 203		transaction = journal->j_running_transaction;
 204		if (transaction && time_after_eq(jiffies,
 205						transaction->t_expires))
 206			should_sleep = 0;
 207		if (journal->j_flags & JFS_UNMOUNT)
 208			should_sleep = 0;
 209		if (should_sleep) {
 210			spin_unlock(&journal->j_state_lock);
 211			schedule();
 212			spin_lock(&journal->j_state_lock);
 213		}
 214		finish_wait(&journal->j_wait_commit, &wait);
 215	}
 216
 217	jbd_debug(1, "kjournald wakes\n");
 218
 219	/*
 220	 * Were we woken up by a commit wakeup event?
 221	 */
 222	transaction = journal->j_running_transaction;
 223	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
 224		journal->j_commit_request = transaction->t_tid;
 225		jbd_debug(1, "woke because of timeout\n");
 226	}
 227	goto loop;
 228
 229end_loop:
 230	spin_unlock(&journal->j_state_lock);
 231	del_timer_sync(&journal->j_commit_timer);
 232	journal->j_task = NULL;
 233	wake_up(&journal->j_wait_done_commit);
 234	jbd_debug(1, "Journal thread exiting.\n");
 235	return 0;
 236}
 237
 238static int journal_start_thread(journal_t *journal)
 239{
 240	struct task_struct *t;
 241
 242	t = kthread_run(kjournald, journal, "kjournald");
 243	if (IS_ERR(t))
 244		return PTR_ERR(t);
 245
 246	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
 247	return 0;
 248}
 249
 250static void journal_kill_thread(journal_t *journal)
 251{
 252	spin_lock(&journal->j_state_lock);
 253	journal->j_flags |= JFS_UNMOUNT;
 254
 255	while (journal->j_task) {
 256		wake_up(&journal->j_wait_commit);
 257		spin_unlock(&journal->j_state_lock);
 258		wait_event(journal->j_wait_done_commit,
 259				journal->j_task == NULL);
 260		spin_lock(&journal->j_state_lock);
 261	}
 262	spin_unlock(&journal->j_state_lock);
 263}
 264
 265/*
 266 * journal_write_metadata_buffer: write a metadata buffer to the journal.
 267 *
 268 * Writes a metadata buffer to a given disk block.  The actual IO is not
 269 * performed but a new buffer_head is constructed which labels the data
 270 * to be written with the correct destination disk block.
 271 *
 272 * Any magic-number escaping which needs to be done will cause a
 273 * copy-out here.  If the buffer happens to start with the
 274 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
 275 * magic number is only written to the log for descripter blocks.  In
 276 * this case, we copy the data and replace the first word with 0, and we
 277 * return a result code which indicates that this buffer needs to be
 278 * marked as an escaped buffer in the corresponding log descriptor
 279 * block.  The missing word can then be restored when the block is read
 280 * during recovery.
 281 *
 282 * If the source buffer has already been modified by a new transaction
 283 * since we took the last commit snapshot, we use the frozen copy of
 284 * that data for IO.  If we end up using the existing buffer_head's data
 285 * for the write, then we *have* to lock the buffer to prevent anyone
 286 * else from using and possibly modifying it while the IO is in
 287 * progress.
 288 *
 289 * The function returns a pointer to the buffer_heads to be used for IO.
 290 *
 291 * We assume that the journal has already been locked in this function.
 292 *
 293 * Return value:
 294 *  <0: Error
 295 * >=0: Finished OK
 296 *
 297 * On success:
 298 * Bit 0 set == escape performed on the data
 299 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 300 */
 301
 302int journal_write_metadata_buffer(transaction_t *transaction,
 303				  struct journal_head  *jh_in,
 304				  struct journal_head **jh_out,
 305				  unsigned int blocknr)
 306{
 307	int need_copy_out = 0;
 308	int done_copy_out = 0;
 309	int do_escape = 0;
 310	char *mapped_data;
 311	struct buffer_head *new_bh;
 312	struct journal_head *new_jh;
 313	struct page *new_page;
 314	unsigned int new_offset;
 315	struct buffer_head *bh_in = jh2bh(jh_in);
 316	journal_t *journal = transaction->t_journal;
 317
 318	/*
 319	 * The buffer really shouldn't be locked: only the current committing
 320	 * transaction is allowed to write it, so nobody else is allowed
 321	 * to do any IO.
 322	 *
 323	 * akpm: except if we're journalling data, and write() output is
 324	 * also part of a shared mapping, and another thread has
 325	 * decided to launch a writepage() against this buffer.
 326	 */
 327	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
 328
 329	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
 330	/* keep subsequent assertions sane */
 331	atomic_set(&new_bh->b_count, 1);
 332	new_jh = journal_add_journal_head(new_bh);	/* This sleeps */
 333
 334	/*
 335	 * If a new transaction has already done a buffer copy-out, then
 336	 * we use that version of the data for the commit.
 337	 */
 338	jbd_lock_bh_state(bh_in);
 339repeat:
 340	if (jh_in->b_frozen_data) {
 341		done_copy_out = 1;
 342		new_page = virt_to_page(jh_in->b_frozen_data);
 343		new_offset = offset_in_page(jh_in->b_frozen_data);
 344	} else {
 345		new_page = jh2bh(jh_in)->b_page;
 346		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
 347	}
 348
 349	mapped_data = kmap_atomic(new_page);
 350	/*
 351	 * Check for escaping
 352	 */
 353	if (*((__be32 *)(mapped_data + new_offset)) ==
 354				cpu_to_be32(JFS_MAGIC_NUMBER)) {
 355		need_copy_out = 1;
 356		do_escape = 1;
 357	}
 358	kunmap_atomic(mapped_data);
 359
 360	/*
 361	 * Do we need to do a data copy?
 362	 */
 363	if (need_copy_out && !done_copy_out) {
 364		char *tmp;
 365
 366		jbd_unlock_bh_state(bh_in);
 367		tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
 368		jbd_lock_bh_state(bh_in);
 369		if (jh_in->b_frozen_data) {
 370			jbd_free(tmp, bh_in->b_size);
 371			goto repeat;
 372		}
 373
 374		jh_in->b_frozen_data = tmp;
 375		mapped_data = kmap_atomic(new_page);
 376		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
 377		kunmap_atomic(mapped_data);
 378
 379		new_page = virt_to_page(tmp);
 380		new_offset = offset_in_page(tmp);
 381		done_copy_out = 1;
 382	}
 383
 384	/*
 385	 * Did we need to do an escaping?  Now we've done all the
 386	 * copying, we can finally do so.
 387	 */
 388	if (do_escape) {
 389		mapped_data = kmap_atomic(new_page);
 390		*((unsigned int *)(mapped_data + new_offset)) = 0;
 391		kunmap_atomic(mapped_data);
 392	}
 393
 394	set_bh_page(new_bh, new_page, new_offset);
 395	new_jh->b_transaction = NULL;
 396	new_bh->b_size = jh2bh(jh_in)->b_size;
 397	new_bh->b_bdev = transaction->t_journal->j_dev;
 398	new_bh->b_blocknr = blocknr;
 399	set_buffer_mapped(new_bh);
 400	set_buffer_dirty(new_bh);
 401
 402	*jh_out = new_jh;
 403
 404	/*
 405	 * The to-be-written buffer needs to get moved to the io queue,
 406	 * and the original buffer whose contents we are shadowing or
 407	 * copying is moved to the transaction's shadow queue.
 408	 */
 409	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
 410	spin_lock(&journal->j_list_lock);
 411	__journal_file_buffer(jh_in, transaction, BJ_Shadow);
 412	spin_unlock(&journal->j_list_lock);
 413	jbd_unlock_bh_state(bh_in);
 414
 415	JBUFFER_TRACE(new_jh, "file as BJ_IO");
 416	journal_file_buffer(new_jh, transaction, BJ_IO);
 417
 418	return do_escape | (done_copy_out << 1);
 419}
 420
 421/*
 422 * Allocation code for the journal file.  Manage the space left in the
 423 * journal, so that we can begin checkpointing when appropriate.
 424 */
 425
 426/*
 427 * __log_space_left: Return the number of free blocks left in the journal.
 428 *
 429 * Called with the journal already locked.
 430 *
 431 * Called under j_state_lock
 432 */
 433
 434int __log_space_left(journal_t *journal)
 435{
 436	int left = journal->j_free;
 437
 438	assert_spin_locked(&journal->j_state_lock);
 439
 440	/*
 441	 * Be pessimistic here about the number of those free blocks which
 442	 * might be required for log descriptor control blocks.
 443	 */
 444
 445#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
 446
 447	left -= MIN_LOG_RESERVED_BLOCKS;
 448
 449	if (left <= 0)
 450		return 0;
 451	left -= (left >> 3);
 452	return left;
 453}
 454
 455/*
 456 * Called under j_state_lock.  Returns true if a transaction commit was started.
 457 */
 458int __log_start_commit(journal_t *journal, tid_t target)
 459{
 460	/*
 461	 * The only transaction we can possibly wait upon is the
 462	 * currently running transaction (if it exists).  Otherwise,
 463	 * the target tid must be an old one.
 464	 */
 465	if (journal->j_commit_request != target &&
 466	    journal->j_running_transaction &&
 467	    journal->j_running_transaction->t_tid == target) {
 468		/*
 469		 * We want a new commit: OK, mark the request and wakeup the
 470		 * commit thread.  We do _not_ do the commit ourselves.
 471		 */
 472
 473		journal->j_commit_request = target;
 474		jbd_debug(1, "JBD: requesting commit %d/%d\n",
 475			  journal->j_commit_request,
 476			  journal->j_commit_sequence);
 477		wake_up(&journal->j_wait_commit);
 478		return 1;
 479	} else if (!tid_geq(journal->j_commit_request, target))
 480		/* This should never happen, but if it does, preserve
 481		   the evidence before kjournald goes into a loop and
 482		   increments j_commit_sequence beyond all recognition. */
 483		WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
 484		    journal->j_commit_request, journal->j_commit_sequence,
 485		    target, journal->j_running_transaction ?
 486		    journal->j_running_transaction->t_tid : 0);
 487	return 0;
 488}
 489
 490int log_start_commit(journal_t *journal, tid_t tid)
 491{
 492	int ret;
 493
 494	spin_lock(&journal->j_state_lock);
 495	ret = __log_start_commit(journal, tid);
 496	spin_unlock(&journal->j_state_lock);
 497	return ret;
 498}
 499
 500/*
 501 * Force and wait upon a commit if the calling process is not within
 502 * transaction.  This is used for forcing out undo-protected data which contains
 503 * bitmaps, when the fs is running out of space.
 504 *
 505 * We can only force the running transaction if we don't have an active handle;
 506 * otherwise, we will deadlock.
 507 *
 508 * Returns true if a transaction was started.
 509 */
 510int journal_force_commit_nested(journal_t *journal)
 511{
 512	transaction_t *transaction = NULL;
 513	tid_t tid;
 514
 515	spin_lock(&journal->j_state_lock);
 516	if (journal->j_running_transaction && !current->journal_info) {
 517		transaction = journal->j_running_transaction;
 518		__log_start_commit(journal, transaction->t_tid);
 519	} else if (journal->j_committing_transaction)
 520		transaction = journal->j_committing_transaction;
 521
 522	if (!transaction) {
 523		spin_unlock(&journal->j_state_lock);
 524		return 0;	/* Nothing to retry */
 525	}
 526
 527	tid = transaction->t_tid;
 528	spin_unlock(&journal->j_state_lock);
 529	log_wait_commit(journal, tid);
 530	return 1;
 531}
 532
 533/*
 534 * Start a commit of the current running transaction (if any).  Returns true
 535 * if a transaction is going to be committed (or is currently already
 536 * committing), and fills its tid in at *ptid
 537 */
 538int journal_start_commit(journal_t *journal, tid_t *ptid)
 539{
 540	int ret = 0;
 541
 542	spin_lock(&journal->j_state_lock);
 543	if (journal->j_running_transaction) {
 544		tid_t tid = journal->j_running_transaction->t_tid;
 545
 546		__log_start_commit(journal, tid);
 547		/* There's a running transaction and we've just made sure
 548		 * it's commit has been scheduled. */
 549		if (ptid)
 550			*ptid = tid;
 551		ret = 1;
 552	} else if (journal->j_committing_transaction) {
 553		/*
 554		 * If commit has been started, then we have to wait for
 555		 * completion of that transaction.
 556		 */
 557		if (ptid)
 558			*ptid = journal->j_committing_transaction->t_tid;
 559		ret = 1;
 560	}
 561	spin_unlock(&journal->j_state_lock);
 562	return ret;
 563}
 564
 565/*
 566 * Wait for a specified commit to complete.
 567 * The caller may not hold the journal lock.
 568 */
 569int log_wait_commit(journal_t *journal, tid_t tid)
 570{
 571	int err = 0;
 572
 573#ifdef CONFIG_JBD_DEBUG
 574	spin_lock(&journal->j_state_lock);
 575	if (!tid_geq(journal->j_commit_request, tid)) {
 576		printk(KERN_ERR
 577		       "%s: error: j_commit_request=%d, tid=%d\n",
 578		       __func__, journal->j_commit_request, tid);
 579	}
 580	spin_unlock(&journal->j_state_lock);
 581#endif
 582	spin_lock(&journal->j_state_lock);
 583	/*
 584	 * Not running or committing trans? Must be already committed. This
 585	 * saves us from waiting for a *long* time when tid overflows.
 586	 */
 587	if (!((journal->j_running_transaction &&
 588	       journal->j_running_transaction->t_tid == tid) ||
 589	      (journal->j_committing_transaction &&
 590	       journal->j_committing_transaction->t_tid == tid)))
 591		goto out_unlock;
 592
 593	if (!tid_geq(journal->j_commit_waited, tid))
 594		journal->j_commit_waited = tid;
 595	while (tid_gt(tid, journal->j_commit_sequence)) {
 596		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
 597				  tid, journal->j_commit_sequence);
 598		wake_up(&journal->j_wait_commit);
 599		spin_unlock(&journal->j_state_lock);
 600		wait_event(journal->j_wait_done_commit,
 601				!tid_gt(tid, journal->j_commit_sequence));
 602		spin_lock(&journal->j_state_lock);
 603	}
 604out_unlock:
 605	spin_unlock(&journal->j_state_lock);
 606
 607	if (unlikely(is_journal_aborted(journal)))
 608		err = -EIO;
 609	return err;
 610}
 611
 612/*
 613 * Return 1 if a given transaction has not yet sent barrier request
 614 * connected with a transaction commit. If 0 is returned, transaction
 615 * may or may not have sent the barrier. Used to avoid sending barrier
 616 * twice in common cases.
 617 */
 618int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
 619{
 620	int ret = 0;
 621	transaction_t *commit_trans;
 622
 623	if (!(journal->j_flags & JFS_BARRIER))
 624		return 0;
 625	spin_lock(&journal->j_state_lock);
 626	/* Transaction already committed? */
 627	if (tid_geq(journal->j_commit_sequence, tid))
 628		goto out;
 629	/*
 630	 * Transaction is being committed and we already proceeded to
 631	 * writing commit record?
 632	 */
 633	commit_trans = journal->j_committing_transaction;
 634	if (commit_trans && commit_trans->t_tid == tid &&
 635	    commit_trans->t_state >= T_COMMIT_RECORD)
 636		goto out;
 637	ret = 1;
 638out:
 639	spin_unlock(&journal->j_state_lock);
 640	return ret;
 641}
 642EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
 643
 644/*
 645 * Log buffer allocation routines:
 646 */
 647
 648int journal_next_log_block(journal_t *journal, unsigned int *retp)
 649{
 650	unsigned int blocknr;
 651
 652	spin_lock(&journal->j_state_lock);
 653	J_ASSERT(journal->j_free > 1);
 654
 655	blocknr = journal->j_head;
 656	journal->j_head++;
 657	journal->j_free--;
 658	if (journal->j_head == journal->j_last)
 659		journal->j_head = journal->j_first;
 660	spin_unlock(&journal->j_state_lock);
 661	return journal_bmap(journal, blocknr, retp);
 662}
 663
 664/*
 665 * Conversion of logical to physical block numbers for the journal
 666 *
 667 * On external journals the journal blocks are identity-mapped, so
 668 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 669 * ready.
 670 */
 671int journal_bmap(journal_t *journal, unsigned int blocknr,
 672		 unsigned int *retp)
 673{
 674	int err = 0;
 675	unsigned int ret;
 676
 677	if (journal->j_inode) {
 678		ret = bmap(journal->j_inode, blocknr);
 679		if (ret)
 680			*retp = ret;
 681		else {
 682			char b[BDEVNAME_SIZE];
 683
 684			printk(KERN_ALERT "%s: journal block not found "
 685					"at offset %u on %s\n",
 686				__func__,
 687				blocknr,
 688				bdevname(journal->j_dev, b));
 689			err = -EIO;
 690			__journal_abort_soft(journal, err);
 691		}
 692	} else {
 693		*retp = blocknr; /* +journal->j_blk_offset */
 694	}
 695	return err;
 696}
 697
 698/*
 699 * We play buffer_head aliasing tricks to write data/metadata blocks to
 700 * the journal without copying their contents, but for journal
 701 * descriptor blocks we do need to generate bona fide buffers.
 702 *
 703 * After the caller of journal_get_descriptor_buffer() has finished modifying
 704 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 705 * But we don't bother doing that, so there will be coherency problems with
 706 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 707 */
 708struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
 709{
 710	struct buffer_head *bh;
 711	unsigned int blocknr;
 712	int err;
 713
 714	err = journal_next_log_block(journal, &blocknr);
 715
 716	if (err)
 717		return NULL;
 718
 719	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 720	if (!bh)
 721		return NULL;
 722	lock_buffer(bh);
 723	memset(bh->b_data, 0, journal->j_blocksize);
 724	set_buffer_uptodate(bh);
 725	unlock_buffer(bh);
 726	BUFFER_TRACE(bh, "return this buffer");
 727	return journal_add_journal_head(bh);
 728}
 729
 730/*
 731 * Management for journal control blocks: functions to create and
 732 * destroy journal_t structures, and to initialise and read existing
 733 * journal blocks from disk.  */
 734
 735/* First: create and setup a journal_t object in memory.  We initialise
 736 * very few fields yet: that has to wait until we have created the
 737 * journal structures from from scratch, or loaded them from disk. */
 738
 739static journal_t * journal_init_common (void)
 740{
 741	journal_t *journal;
 742	int err;
 743
 744	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
 745	if (!journal)
 746		goto fail;
 747
 748	init_waitqueue_head(&journal->j_wait_transaction_locked);
 749	init_waitqueue_head(&journal->j_wait_logspace);
 750	init_waitqueue_head(&journal->j_wait_done_commit);
 751	init_waitqueue_head(&journal->j_wait_checkpoint);
 752	init_waitqueue_head(&journal->j_wait_commit);
 753	init_waitqueue_head(&journal->j_wait_updates);
 754	mutex_init(&journal->j_checkpoint_mutex);
 755	spin_lock_init(&journal->j_revoke_lock);
 756	spin_lock_init(&journal->j_list_lock);
 757	spin_lock_init(&journal->j_state_lock);
 758
 759	journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
 760
 761	/* The journal is marked for error until we succeed with recovery! */
 762	journal->j_flags = JFS_ABORT;
 763
 764	/* Set up a default-sized revoke table for the new mount. */
 765	err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
 766	if (err) {
 767		kfree(journal);
 768		goto fail;
 769	}
 770	return journal;
 771fail:
 772	return NULL;
 773}
 774
 775/* journal_init_dev and journal_init_inode:
 776 *
 777 * Create a journal structure assigned some fixed set of disk blocks to
 778 * the journal.  We don't actually touch those disk blocks yet, but we
 779 * need to set up all of the mapping information to tell the journaling
 780 * system where the journal blocks are.
 781 *
 782 */
 783
 784/**
 785 *  journal_t * journal_init_dev() - creates and initialises a journal structure
 786 *  @bdev: Block device on which to create the journal
 787 *  @fs_dev: Device which hold journalled filesystem for this journal.
 788 *  @start: Block nr Start of journal.
 789 *  @len:  Length of the journal in blocks.
 790 *  @blocksize: blocksize of journalling device
 791 *
 792 *  Returns: a newly created journal_t *
 793 *
 794 *  journal_init_dev creates a journal which maps a fixed contiguous
 795 *  range of blocks on an arbitrary block device.
 796 *
 797 */
 798journal_t * journal_init_dev(struct block_device *bdev,
 799			struct block_device *fs_dev,
 800			int start, int len, int blocksize)
 801{
 802	journal_t *journal = journal_init_common();
 803	struct buffer_head *bh;
 804	int n;
 805
 806	if (!journal)
 807		return NULL;
 808
 809	/* journal descriptor can store up to n blocks -bzzz */
 810	journal->j_blocksize = blocksize;
 811	n = journal->j_blocksize / sizeof(journal_block_tag_t);
 812	journal->j_wbufsize = n;
 813	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
 814	if (!journal->j_wbuf) {
 815		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
 816			__func__);
 817		goto out_err;
 818	}
 819	journal->j_dev = bdev;
 820	journal->j_fs_dev = fs_dev;
 821	journal->j_blk_offset = start;
 822	journal->j_maxlen = len;
 823
 824	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
 825	if (!bh) {
 826		printk(KERN_ERR
 827		       "%s: Cannot get buffer for journal superblock\n",
 828		       __func__);
 829		goto out_err;
 830	}
 831	journal->j_sb_buffer = bh;
 832	journal->j_superblock = (journal_superblock_t *)bh->b_data;
 833
 834	return journal;
 835out_err:
 836	kfree(journal->j_wbuf);
 837	kfree(journal);
 838	return NULL;
 839}
 840
 841/**
 842 *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
 843 *  @inode: An inode to create the journal in
 844 *
 845 * journal_init_inode creates a journal which maps an on-disk inode as
 846 * the journal.  The inode must exist already, must support bmap() and
 847 * must have all data blocks preallocated.
 848 */
 849journal_t * journal_init_inode (struct inode *inode)
 850{
 851	struct buffer_head *bh;
 852	journal_t *journal = journal_init_common();
 853	int err;
 854	int n;
 855	unsigned int blocknr;
 856
 857	if (!journal)
 858		return NULL;
 859
 860	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
 861	journal->j_inode = inode;
 862	jbd_debug(1,
 863		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
 864		  journal, inode->i_sb->s_id, inode->i_ino,
 865		  (long long) inode->i_size,
 866		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
 867
 868	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
 869	journal->j_blocksize = inode->i_sb->s_blocksize;
 870
 871	/* journal descriptor can store up to n blocks -bzzz */
 872	n = journal->j_blocksize / sizeof(journal_block_tag_t);
 873	journal->j_wbufsize = n;
 874	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
 875	if (!journal->j_wbuf) {
 876		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
 877			__func__);
 878		goto out_err;
 879	}
 880
 881	err = journal_bmap(journal, 0, &blocknr);
 882	/* If that failed, give up */
 883	if (err) {
 884		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
 885		       __func__);
 886		goto out_err;
 887	}
 888
 889	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 890	if (!bh) {
 891		printk(KERN_ERR
 892		       "%s: Cannot get buffer for journal superblock\n",
 893		       __func__);
 894		goto out_err;
 895	}
 896	journal->j_sb_buffer = bh;
 897	journal->j_superblock = (journal_superblock_t *)bh->b_data;
 898
 899	return journal;
 900out_err:
 901	kfree(journal->j_wbuf);
 902	kfree(journal);
 903	return NULL;
 904}
 905
 906/*
 907 * If the journal init or create aborts, we need to mark the journal
 908 * superblock as being NULL to prevent the journal destroy from writing
 909 * back a bogus superblock.
 910 */
 911static void journal_fail_superblock (journal_t *journal)
 912{
 913	struct buffer_head *bh = journal->j_sb_buffer;
 914	brelse(bh);
 915	journal->j_sb_buffer = NULL;
 916}
 917
 918/*
 919 * Given a journal_t structure, initialise the various fields for
 920 * startup of a new journaling session.  We use this both when creating
 921 * a journal, and after recovering an old journal to reset it for
 922 * subsequent use.
 923 */
 924
 925static int journal_reset(journal_t *journal)
 926{
 927	journal_superblock_t *sb = journal->j_superblock;
 928	unsigned int first, last;
 929
 930	first = be32_to_cpu(sb->s_first);
 931	last = be32_to_cpu(sb->s_maxlen);
 932	if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
 933		printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
 934		       first, last);
 935		journal_fail_superblock(journal);
 936		return -EINVAL;
 937	}
 938
 939	journal->j_first = first;
 940	journal->j_last = last;
 941
 942	journal->j_head = first;
 943	journal->j_tail = first;
 944	journal->j_free = last - first;
 945
 946	journal->j_tail_sequence = journal->j_transaction_sequence;
 947	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
 948	journal->j_commit_request = journal->j_commit_sequence;
 949
 950	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
 951
 952	/*
 953	 * As a special case, if the on-disk copy is already marked as needing
 954	 * no recovery (s_start == 0), then we can safely defer the superblock
 955	 * update until the next commit by setting JFS_FLUSHED.  This avoids
 956	 * attempting a write to a potential-readonly device.
 957	 */
 958	if (sb->s_start == 0) {
 959		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
 960			"(start %u, seq %d, errno %d)\n",
 961			journal->j_tail, journal->j_tail_sequence,
 962			journal->j_errno);
 963		journal->j_flags |= JFS_FLUSHED;
 964	} else {
 965		/* Lock here to make assertions happy... */
 966		mutex_lock(&journal->j_checkpoint_mutex);
 967		/*
 968		 * Update log tail information. We use WRITE_FUA since new
 969		 * transaction will start reusing journal space and so we
 970		 * must make sure information about current log tail is on
 971		 * disk before that.
 972		 */
 973		journal_update_sb_log_tail(journal,
 974					   journal->j_tail_sequence,
 975					   journal->j_tail,
 976					   WRITE_FUA);
 977		mutex_unlock(&journal->j_checkpoint_mutex);
 978	}
 979	return journal_start_thread(journal);
 980}
 981
 982/**
 983 * int journal_create() - Initialise the new journal file
 984 * @journal: Journal to create. This structure must have been initialised
 985 *
 986 * Given a journal_t structure which tells us which disk blocks we can
 987 * use, create a new journal superblock and initialise all of the
 988 * journal fields from scratch.
 989 **/
 990int journal_create(journal_t *journal)
 991{
 992	unsigned int blocknr;
 993	struct buffer_head *bh;
 994	journal_superblock_t *sb;
 995	int i, err;
 996
 997	if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
 998		printk (KERN_ERR "Journal length (%d blocks) too short.\n",
 999			journal->j_maxlen);
1000		journal_fail_superblock(journal);
1001		return -EINVAL;
1002	}
1003
1004	if (journal->j_inode == NULL) {
1005		/*
1006		 * We don't know what block to start at!
1007		 */
1008		printk(KERN_EMERG
1009		       "%s: creation of journal on external device!\n",
1010		       __func__);
1011		BUG();
1012	}
1013
1014	/* Zero out the entire journal on disk.  We cannot afford to
1015	   have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
1016	jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
1017	for (i = 0; i < journal->j_maxlen; i++) {
1018		err = journal_bmap(journal, i, &blocknr);
1019		if (err)
1020			return err;
1021		bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1022		if (unlikely(!bh))
1023			return -ENOMEM;
1024		lock_buffer(bh);
1025		memset (bh->b_data, 0, journal->j_blocksize);
1026		BUFFER_TRACE(bh, "marking dirty");
1027		mark_buffer_dirty(bh);
1028		BUFFER_TRACE(bh, "marking uptodate");
1029		set_buffer_uptodate(bh);
1030		unlock_buffer(bh);
1031		__brelse(bh);
1032	}
1033
1034	sync_blockdev(journal->j_dev);
1035	jbd_debug(1, "JBD: journal cleared.\n");
1036
1037	/* OK, fill in the initial static fields in the new superblock */
1038	sb = journal->j_superblock;
1039
1040	sb->s_header.h_magic	 = cpu_to_be32(JFS_MAGIC_NUMBER);
1041	sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1042
1043	sb->s_blocksize	= cpu_to_be32(journal->j_blocksize);
1044	sb->s_maxlen	= cpu_to_be32(journal->j_maxlen);
1045	sb->s_first	= cpu_to_be32(1);
1046
1047	journal->j_transaction_sequence = 1;
1048
1049	journal->j_flags &= ~JFS_ABORT;
1050	journal->j_format_version = 2;
1051
1052	return journal_reset(journal);
1053}
1054
1055static void journal_write_superblock(journal_t *journal, int write_op)
1056{
1057	struct buffer_head *bh = journal->j_sb_buffer;
1058	int ret;
1059
1060	trace_journal_write_superblock(journal, write_op);
1061	if (!(journal->j_flags & JFS_BARRIER))
1062		write_op &= ~(REQ_FUA | REQ_FLUSH);
1063	lock_buffer(bh);
1064	if (buffer_write_io_error(bh)) {
1065		char b[BDEVNAME_SIZE];
1066		/*
1067		 * Oh, dear.  A previous attempt to write the journal
1068		 * superblock failed.  This could happen because the
1069		 * USB device was yanked out.  Or it could happen to
1070		 * be a transient write error and maybe the block will
1071		 * be remapped.  Nothing we can do but to retry the
1072		 * write and hope for the best.
1073		 */
1074		printk(KERN_ERR "JBD: previous I/O error detected "
1075		       "for journal superblock update for %s.\n",
1076		       journal_dev_name(journal, b));
1077		clear_buffer_write_io_error(bh);
1078		set_buffer_uptodate(bh);
1079	}
1080
1081	get_bh(bh);
1082	bh->b_end_io = end_buffer_write_sync;
1083	ret = submit_bh(write_op, bh);
1084	wait_on_buffer(bh);
1085	if (buffer_write_io_error(bh)) {
1086		clear_buffer_write_io_error(bh);
1087		set_buffer_uptodate(bh);
1088		ret = -EIO;
1089	}
1090	if (ret) {
1091		char b[BDEVNAME_SIZE];
1092		printk(KERN_ERR "JBD: Error %d detected "
1093		       "when updating journal superblock for %s.\n",
1094		       ret, journal_dev_name(journal, b));
1095	}
1096}
1097
1098/**
1099 * journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1100 * @journal: The journal to update.
1101 * @tail_tid: TID of the new transaction at the tail of the log
1102 * @tail_block: The first block of the transaction at the tail of the log
1103 * @write_op: With which operation should we write the journal sb
1104 *
1105 * Update a journal's superblock information about log tail and write it to
1106 * disk, waiting for the IO to complete.
1107 */
1108void journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1109				unsigned int tail_block, int write_op)
1110{
1111	journal_superblock_t *sb = journal->j_superblock;
1112
1113	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1114	jbd_debug(1,"JBD: updating superblock (start %u, seq %u)\n",
1115		  tail_block, tail_tid);
1116
1117	sb->s_sequence = cpu_to_be32(tail_tid);
1118	sb->s_start    = cpu_to_be32(tail_block);
1119
1120	journal_write_superblock(journal, write_op);
1121
1122	/* Log is no longer empty */
1123	spin_lock(&journal->j_state_lock);
1124	WARN_ON(!sb->s_sequence);
1125	journal->j_flags &= ~JFS_FLUSHED;
1126	spin_unlock(&journal->j_state_lock);
1127}
1128
1129/**
1130 * mark_journal_empty() - Mark on disk journal as empty.
1131 * @journal: The journal to update.
1132 *
1133 * Update a journal's dynamic superblock fields to show that journal is empty.
1134 * Write updated superblock to disk waiting for IO to complete.
1135 */
1136static void mark_journal_empty(journal_t *journal)
1137{
1138	journal_superblock_t *sb = journal->j_superblock;
1139
1140	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1141	spin_lock(&journal->j_state_lock);
1142	/* Is it already empty? */
1143	if (sb->s_start == 0) {
1144		spin_unlock(&journal->j_state_lock);
1145		return;
1146	}
1147	jbd_debug(1, "JBD: Marking journal as empty (seq %d)\n",
1148        	  journal->j_tail_sequence);
1149
1150	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1151	sb->s_start    = cpu_to_be32(0);
1152	spin_unlock(&journal->j_state_lock);
1153
1154	journal_write_superblock(journal, WRITE_FUA);
1155
1156	spin_lock(&journal->j_state_lock);
1157	/* Log is empty */
1158	journal->j_flags |= JFS_FLUSHED;
1159	spin_unlock(&journal->j_state_lock);
1160}
1161
1162/**
1163 * journal_update_sb_errno() - Update error in the journal.
1164 * @journal: The journal to update.
1165 *
1166 * Update a journal's errno.  Write updated superblock to disk waiting for IO
1167 * to complete.
1168 */
1169static void journal_update_sb_errno(journal_t *journal)
1170{
1171	journal_superblock_t *sb = journal->j_superblock;
1172
1173	spin_lock(&journal->j_state_lock);
1174	jbd_debug(1, "JBD: updating superblock error (errno %d)\n",
1175        	  journal->j_errno);
1176	sb->s_errno = cpu_to_be32(journal->j_errno);
1177	spin_unlock(&journal->j_state_lock);
1178
1179	journal_write_superblock(journal, WRITE_SYNC);
1180}
1181
1182/*
1183 * Read the superblock for a given journal, performing initial
1184 * validation of the format.
1185 */
1186
1187static int journal_get_superblock(journal_t *journal)
1188{
1189	struct buffer_head *bh;
1190	journal_superblock_t *sb;
1191	int err = -EIO;
1192
1193	bh = journal->j_sb_buffer;
1194
1195	J_ASSERT(bh != NULL);
1196	if (!buffer_uptodate(bh)) {
1197		ll_rw_block(READ, 1, &bh);
1198		wait_on_buffer(bh);
1199		if (!buffer_uptodate(bh)) {
1200			printk (KERN_ERR
1201				"JBD: IO error reading journal superblock\n");
1202			goto out;
1203		}
1204	}
1205
1206	sb = journal->j_superblock;
1207
1208	err = -EINVAL;
1209
1210	if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1211	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1212		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1213		goto out;
1214	}
1215
1216	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1217	case JFS_SUPERBLOCK_V1:
1218		journal->j_format_version = 1;
1219		break;
1220	case JFS_SUPERBLOCK_V2:
1221		journal->j_format_version = 2;
1222		break;
1223	default:
1224		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1225		goto out;
1226	}
1227
1228	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1229		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1230	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1231		printk (KERN_WARNING "JBD: journal file too short\n");
1232		goto out;
1233	}
1234
1235	if (be32_to_cpu(sb->s_first) == 0 ||
1236	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1237		printk(KERN_WARNING
1238			"JBD: Invalid start block of journal: %u\n",
1239			be32_to_cpu(sb->s_first));
1240		goto out;
1241	}
1242
1243	return 0;
1244
1245out:
1246	journal_fail_superblock(journal);
1247	return err;
1248}
1249
1250/*
1251 * Load the on-disk journal superblock and read the key fields into the
1252 * journal_t.
1253 */
1254
1255static int load_superblock(journal_t *journal)
1256{
1257	int err;
1258	journal_superblock_t *sb;
1259
1260	err = journal_get_superblock(journal);
1261	if (err)
1262		return err;
1263
1264	sb = journal->j_superblock;
1265
1266	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1267	journal->j_tail = be32_to_cpu(sb->s_start);
1268	journal->j_first = be32_to_cpu(sb->s_first);
1269	journal->j_last = be32_to_cpu(sb->s_maxlen);
1270	journal->j_errno = be32_to_cpu(sb->s_errno);
1271
1272	return 0;
1273}
1274
1275
1276/**
1277 * int journal_load() - Read journal from disk.
1278 * @journal: Journal to act on.
1279 *
1280 * Given a journal_t structure which tells us which disk blocks contain
1281 * a journal, read the journal from disk to initialise the in-memory
1282 * structures.
1283 */
1284int journal_load(journal_t *journal)
1285{
1286	int err;
1287	journal_superblock_t *sb;
1288
1289	err = load_superblock(journal);
1290	if (err)
1291		return err;
1292
1293	sb = journal->j_superblock;
1294	/* If this is a V2 superblock, then we have to check the
1295	 * features flags on it. */
1296
1297	if (journal->j_format_version >= 2) {
1298		if ((sb->s_feature_ro_compat &
1299		     ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1300		    (sb->s_feature_incompat &
1301		     ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1302			printk (KERN_WARNING
1303				"JBD: Unrecognised features on journal\n");
1304			return -EINVAL;
1305		}
1306	}
1307
1308	/* Let the recovery code check whether it needs to recover any
1309	 * data from the journal. */
1310	if (journal_recover(journal))
1311		goto recovery_error;
1312
1313	/* OK, we've finished with the dynamic journal bits:
1314	 * reinitialise the dynamic contents of the superblock in memory
1315	 * and reset them on disk. */
1316	if (journal_reset(journal))
1317		goto recovery_error;
1318
1319	journal->j_flags &= ~JFS_ABORT;
1320	journal->j_flags |= JFS_LOADED;
1321	return 0;
1322
1323recovery_error:
1324	printk (KERN_WARNING "JBD: recovery failed\n");
1325	return -EIO;
1326}
1327
1328/**
1329 * void journal_destroy() - Release a journal_t structure.
1330 * @journal: Journal to act on.
1331 *
1332 * Release a journal_t structure once it is no longer in use by the
1333 * journaled object.
1334 * Return <0 if we couldn't clean up the journal.
1335 */
1336int journal_destroy(journal_t *journal)
1337{
1338	int err = 0;
1339
1340	
1341	/* Wait for the commit thread to wake up and die. */
1342	journal_kill_thread(journal);
1343
1344	/* Force a final log commit */
1345	if (journal->j_running_transaction)
1346		journal_commit_transaction(journal);
1347
1348	/* Force any old transactions to disk */
1349
1350	/* We cannot race with anybody but must keep assertions happy */
1351	mutex_lock(&journal->j_checkpoint_mutex);
1352	/* Totally anal locking here... */
1353	spin_lock(&journal->j_list_lock);
1354	while (journal->j_checkpoint_transactions != NULL) {
1355		spin_unlock(&journal->j_list_lock);
1356		log_do_checkpoint(journal);
1357		spin_lock(&journal->j_list_lock);
1358	}
1359
1360	J_ASSERT(journal->j_running_transaction == NULL);
1361	J_ASSERT(journal->j_committing_transaction == NULL);
1362	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1363	spin_unlock(&journal->j_list_lock);
1364
1365	if (journal->j_sb_buffer) {
1366		if (!is_journal_aborted(journal)) {
1367			journal->j_tail_sequence =
1368				++journal->j_transaction_sequence;
1369			mark_journal_empty(journal);
1370		} else
1371			err = -EIO;
1372		brelse(journal->j_sb_buffer);
1373	}
1374	mutex_unlock(&journal->j_checkpoint_mutex);
1375
1376	if (journal->j_inode)
1377		iput(journal->j_inode);
1378	if (journal->j_revoke)
1379		journal_destroy_revoke(journal);
1380	kfree(journal->j_wbuf);
1381	kfree(journal);
1382
1383	return err;
1384}
1385
1386
1387/**
1388 *int journal_check_used_features () - Check if features specified are used.
1389 * @journal: Journal to check.
1390 * @compat: bitmask of compatible features
1391 * @ro: bitmask of features that force read-only mount
1392 * @incompat: bitmask of incompatible features
1393 *
1394 * Check whether the journal uses all of a given set of
1395 * features.  Return true (non-zero) if it does.
1396 **/
1397
1398int journal_check_used_features (journal_t *journal, unsigned long compat,
1399				 unsigned long ro, unsigned long incompat)
1400{
1401	journal_superblock_t *sb;
1402
1403	if (!compat && !ro && !incompat)
1404		return 1;
1405	if (journal->j_format_version == 1)
1406		return 0;
1407
1408	sb = journal->j_superblock;
1409
1410	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1411	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1412	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1413		return 1;
1414
1415	return 0;
1416}
1417
1418/**
1419 * int journal_check_available_features() - Check feature set in journalling layer
1420 * @journal: Journal to check.
1421 * @compat: bitmask of compatible features
1422 * @ro: bitmask of features that force read-only mount
1423 * @incompat: bitmask of incompatible features
1424 *
1425 * Check whether the journaling code supports the use of
1426 * all of a given set of features on this journal.  Return true
1427 * (non-zero) if it can. */
1428
1429int journal_check_available_features (journal_t *journal, unsigned long compat,
1430				      unsigned long ro, unsigned long incompat)
1431{
1432	if (!compat && !ro && !incompat)
1433		return 1;
1434
1435	/* We can support any known requested features iff the
1436	 * superblock is in version 2.  Otherwise we fail to support any
1437	 * extended sb features. */
1438
1439	if (journal->j_format_version != 2)
1440		return 0;
1441
1442	if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1443	    (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1444	    (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1445		return 1;
1446
1447	return 0;
1448}
1449
1450/**
1451 * int journal_set_features () - Mark a given journal feature in the superblock
1452 * @journal: Journal to act on.
1453 * @compat: bitmask of compatible features
1454 * @ro: bitmask of features that force read-only mount
1455 * @incompat: bitmask of incompatible features
1456 *
1457 * Mark a given journal feature as present on the
1458 * superblock.  Returns true if the requested features could be set.
1459 *
1460 */
1461
1462int journal_set_features (journal_t *journal, unsigned long compat,
1463			  unsigned long ro, unsigned long incompat)
1464{
1465	journal_superblock_t *sb;
1466
1467	if (journal_check_used_features(journal, compat, ro, incompat))
1468		return 1;
1469
1470	if (!journal_check_available_features(journal, compat, ro, incompat))
1471		return 0;
1472
1473	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1474		  compat, ro, incompat);
1475
1476	sb = journal->j_superblock;
1477
1478	sb->s_feature_compat    |= cpu_to_be32(compat);
1479	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1480	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1481
1482	return 1;
1483}
1484
1485
1486/**
1487 * int journal_update_format () - Update on-disk journal structure.
1488 * @journal: Journal to act on.
1489 *
1490 * Given an initialised but unloaded journal struct, poke about in the
1491 * on-disk structure to update it to the most recent supported version.
1492 */
1493int journal_update_format (journal_t *journal)
1494{
1495	journal_superblock_t *sb;
1496	int err;
1497
1498	err = journal_get_superblock(journal);
1499	if (err)
1500		return err;
1501
1502	sb = journal->j_superblock;
1503
1504	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1505	case JFS_SUPERBLOCK_V2:
1506		return 0;
1507	case JFS_SUPERBLOCK_V1:
1508		return journal_convert_superblock_v1(journal, sb);
1509	default:
1510		break;
1511	}
1512	return -EINVAL;
1513}
1514
1515static int journal_convert_superblock_v1(journal_t *journal,
1516					 journal_superblock_t *sb)
1517{
1518	int offset, blocksize;
1519	struct buffer_head *bh;
1520
1521	printk(KERN_WARNING
1522		"JBD: Converting superblock from version 1 to 2.\n");
1523
1524	/* Pre-initialise new fields to zero */
1525	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1526	blocksize = be32_to_cpu(sb->s_blocksize);
1527	memset(&sb->s_feature_compat, 0, blocksize-offset);
1528
1529	sb->s_nr_users = cpu_to_be32(1);
1530	sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1531	journal->j_format_version = 2;
1532
1533	bh = journal->j_sb_buffer;
1534	BUFFER_TRACE(bh, "marking dirty");
1535	mark_buffer_dirty(bh);
1536	sync_dirty_buffer(bh);
1537	return 0;
1538}
1539
1540
1541/**
1542 * int journal_flush () - Flush journal
1543 * @journal: Journal to act on.
1544 *
1545 * Flush all data for a given journal to disk and empty the journal.
1546 * Filesystems can use this when remounting readonly to ensure that
1547 * recovery does not need to happen on remount.
1548 */
1549
1550int journal_flush(journal_t *journal)
1551{
1552	int err = 0;
1553	transaction_t *transaction = NULL;
1554
1555	spin_lock(&journal->j_state_lock);
1556
1557	/* Force everything buffered to the log... */
1558	if (journal->j_running_transaction) {
1559		transaction = journal->j_running_transaction;
1560		__log_start_commit(journal, transaction->t_tid);
1561	} else if (journal->j_committing_transaction)
1562		transaction = journal->j_committing_transaction;
1563
1564	/* Wait for the log commit to complete... */
1565	if (transaction) {
1566		tid_t tid = transaction->t_tid;
1567
1568		spin_unlock(&journal->j_state_lock);
1569		log_wait_commit(journal, tid);
1570	} else {
1571		spin_unlock(&journal->j_state_lock);
1572	}
1573
1574	/* ...and flush everything in the log out to disk. */
1575	spin_lock(&journal->j_list_lock);
1576	while (!err && journal->j_checkpoint_transactions != NULL) {
1577		spin_unlock(&journal->j_list_lock);
1578		mutex_lock(&journal->j_checkpoint_mutex);
1579		err = log_do_checkpoint(journal);
1580		mutex_unlock(&journal->j_checkpoint_mutex);
1581		spin_lock(&journal->j_list_lock);
1582	}
1583	spin_unlock(&journal->j_list_lock);
1584
1585	if (is_journal_aborted(journal))
1586		return -EIO;
1587
1588	mutex_lock(&journal->j_checkpoint_mutex);
1589	cleanup_journal_tail(journal);
1590
1591	/* Finally, mark the journal as really needing no recovery.
1592	 * This sets s_start==0 in the underlying superblock, which is
1593	 * the magic code for a fully-recovered superblock.  Any future
1594	 * commits of data to the journal will restore the current
1595	 * s_start value. */
1596	mark_journal_empty(journal);
1597	mutex_unlock(&journal->j_checkpoint_mutex);
1598	spin_lock(&journal->j_state_lock);
1599	J_ASSERT(!journal->j_running_transaction);
1600	J_ASSERT(!journal->j_committing_transaction);
1601	J_ASSERT(!journal->j_checkpoint_transactions);
1602	J_ASSERT(journal->j_head == journal->j_tail);
1603	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1604	spin_unlock(&journal->j_state_lock);
1605	return 0;
1606}
1607
1608/**
1609 * int journal_wipe() - Wipe journal contents
1610 * @journal: Journal to act on.
1611 * @write: flag (see below)
1612 *
1613 * Wipe out all of the contents of a journal, safely.  This will produce
1614 * a warning if the journal contains any valid recovery information.
1615 * Must be called between journal_init_*() and journal_load().
1616 *
1617 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1618 * we merely suppress recovery.
1619 */
1620
1621int journal_wipe(journal_t *journal, int write)
1622{
1623	int err = 0;
1624
1625	J_ASSERT (!(journal->j_flags & JFS_LOADED));
1626
1627	err = load_superblock(journal);
1628	if (err)
1629		return err;
1630
1631	if (!journal->j_tail)
1632		goto no_recovery;
1633
1634	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1635		write ? "Clearing" : "Ignoring");
1636
1637	err = journal_skip_recovery(journal);
1638	if (write) {
1639		/* Lock to make assertions happy... */
1640		mutex_lock(&journal->j_checkpoint_mutex);
1641		mark_journal_empty(journal);
1642		mutex_unlock(&journal->j_checkpoint_mutex);
1643	}
1644
1645 no_recovery:
1646	return err;
1647}
1648
1649/*
1650 * journal_dev_name: format a character string to describe on what
1651 * device this journal is present.
1652 */
1653
1654static const char *journal_dev_name(journal_t *journal, char *buffer)
1655{
1656	struct block_device *bdev;
1657
1658	if (journal->j_inode)
1659		bdev = journal->j_inode->i_sb->s_bdev;
1660	else
1661		bdev = journal->j_dev;
1662
1663	return bdevname(bdev, buffer);
1664}
1665
1666/*
1667 * Journal abort has very specific semantics, which we describe
1668 * for journal abort.
1669 *
1670 * Two internal function, which provide abort to te jbd layer
1671 * itself are here.
1672 */
1673
1674/*
1675 * Quick version for internal journal use (doesn't lock the journal).
1676 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1677 * and don't attempt to make any other journal updates.
1678 */
1679static void __journal_abort_hard(journal_t *journal)
1680{
1681	transaction_t *transaction;
1682	char b[BDEVNAME_SIZE];
1683
1684	if (journal->j_flags & JFS_ABORT)
1685		return;
1686
1687	printk(KERN_ERR "Aborting journal on device %s.\n",
1688		journal_dev_name(journal, b));
1689
1690	spin_lock(&journal->j_state_lock);
1691	journal->j_flags |= JFS_ABORT;
1692	transaction = journal->j_running_transaction;
1693	if (transaction)
1694		__log_start_commit(journal, transaction->t_tid);
1695	spin_unlock(&journal->j_state_lock);
1696}
1697
1698/* Soft abort: record the abort error status in the journal superblock,
1699 * but don't do any other IO. */
1700static void __journal_abort_soft (journal_t *journal, int errno)
1701{
1702	if (journal->j_flags & JFS_ABORT)
1703		return;
1704
1705	if (!journal->j_errno)
1706		journal->j_errno = errno;
1707
1708	__journal_abort_hard(journal);
1709
1710	if (errno)
1711		journal_update_sb_errno(journal);
1712}
1713
1714/**
1715 * void journal_abort () - Shutdown the journal immediately.
1716 * @journal: the journal to shutdown.
1717 * @errno:   an error number to record in the journal indicating
1718 *           the reason for the shutdown.
1719 *
1720 * Perform a complete, immediate shutdown of the ENTIRE
1721 * journal (not of a single transaction).  This operation cannot be
1722 * undone without closing and reopening the journal.
1723 *
1724 * The journal_abort function is intended to support higher level error
1725 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1726 * mode.
1727 *
1728 * Journal abort has very specific semantics.  Any existing dirty,
1729 * unjournaled buffers in the main filesystem will still be written to
1730 * disk by bdflush, but the journaling mechanism will be suspended
1731 * immediately and no further transaction commits will be honoured.
1732 *
1733 * Any dirty, journaled buffers will be written back to disk without
1734 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1735 * filesystem, but we _do_ attempt to leave as much data as possible
1736 * behind for fsck to use for cleanup.
1737 *
1738 * Any attempt to get a new transaction handle on a journal which is in
1739 * ABORT state will just result in an -EROFS error return.  A
1740 * journal_stop on an existing handle will return -EIO if we have
1741 * entered abort state during the update.
1742 *
1743 * Recursive transactions are not disturbed by journal abort until the
1744 * final journal_stop, which will receive the -EIO error.
1745 *
1746 * Finally, the journal_abort call allows the caller to supply an errno
1747 * which will be recorded (if possible) in the journal superblock.  This
1748 * allows a client to record failure conditions in the middle of a
1749 * transaction without having to complete the transaction to record the
1750 * failure to disk.  ext3_error, for example, now uses this
1751 * functionality.
1752 *
1753 * Errors which originate from within the journaling layer will NOT
1754 * supply an errno; a null errno implies that absolutely no further
1755 * writes are done to the journal (unless there are any already in
1756 * progress).
1757 *
1758 */
1759
1760void journal_abort(journal_t *journal, int errno)
1761{
1762	__journal_abort_soft(journal, errno);
1763}
1764
1765/**
1766 * int journal_errno () - returns the journal's error state.
1767 * @journal: journal to examine.
1768 *
1769 * This is the errno numbet set with journal_abort(), the last
1770 * time the journal was mounted - if the journal was stopped
1771 * without calling abort this will be 0.
1772 *
1773 * If the journal has been aborted on this mount time -EROFS will
1774 * be returned.
1775 */
1776int journal_errno(journal_t *journal)
1777{
1778	int err;
1779
1780	spin_lock(&journal->j_state_lock);
1781	if (journal->j_flags & JFS_ABORT)
1782		err = -EROFS;
1783	else
1784		err = journal->j_errno;
1785	spin_unlock(&journal->j_state_lock);
1786	return err;
1787}
1788
1789/**
1790 * int journal_clear_err () - clears the journal's error state
1791 * @journal: journal to act on.
1792 *
1793 * An error must be cleared or Acked to take a FS out of readonly
1794 * mode.
1795 */
1796int journal_clear_err(journal_t *journal)
1797{
1798	int err = 0;
1799
1800	spin_lock(&journal->j_state_lock);
1801	if (journal->j_flags & JFS_ABORT)
1802		err = -EROFS;
1803	else
1804		journal->j_errno = 0;
1805	spin_unlock(&journal->j_state_lock);
1806	return err;
1807}
1808
1809/**
1810 * void journal_ack_err() - Ack journal err.
1811 * @journal: journal to act on.
1812 *
1813 * An error must be cleared or Acked to take a FS out of readonly
1814 * mode.
1815 */
1816void journal_ack_err(journal_t *journal)
1817{
1818	spin_lock(&journal->j_state_lock);
1819	if (journal->j_errno)
1820		journal->j_flags |= JFS_ACK_ERR;
1821	spin_unlock(&journal->j_state_lock);
1822}
1823
1824int journal_blocks_per_page(struct inode *inode)
1825{
1826	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1827}
1828
1829/*
1830 * Journal_head storage management
1831 */
1832static struct kmem_cache *journal_head_cache;
1833#ifdef CONFIG_JBD_DEBUG
1834static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1835#endif
1836
1837static int journal_init_journal_head_cache(void)
1838{
1839	int retval;
1840
1841	J_ASSERT(journal_head_cache == NULL);
1842	journal_head_cache = kmem_cache_create("journal_head",
1843				sizeof(struct journal_head),
1844				0,		/* offset */
1845				SLAB_TEMPORARY,	/* flags */
1846				NULL);		/* ctor */
1847	retval = 0;
1848	if (!journal_head_cache) {
1849		retval = -ENOMEM;
1850		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1851	}
1852	return retval;
1853}
1854
1855static void journal_destroy_journal_head_cache(void)
1856{
1857	if (journal_head_cache) {
1858		kmem_cache_destroy(journal_head_cache);
1859		journal_head_cache = NULL;
1860	}
1861}
1862
1863/*
1864 * journal_head splicing and dicing
1865 */
1866static struct journal_head *journal_alloc_journal_head(void)
1867{
1868	struct journal_head *ret;
1869
1870#ifdef CONFIG_JBD_DEBUG
1871	atomic_inc(&nr_journal_heads);
1872#endif
1873	ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS);
1874	if (ret == NULL) {
1875		jbd_debug(1, "out of memory for journal_head\n");
1876		printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1877				   __func__);
1878
1879		while (ret == NULL) {
1880			yield();
1881			ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS);
1882		}
1883	}
1884	return ret;
1885}
1886
1887static void journal_free_journal_head(struct journal_head *jh)
1888{
1889#ifdef CONFIG_JBD_DEBUG
1890	atomic_dec(&nr_journal_heads);
1891	memset(jh, JBD_POISON_FREE, sizeof(*jh));
1892#endif
1893	kmem_cache_free(journal_head_cache, jh);
1894}
1895
1896/*
1897 * A journal_head is attached to a buffer_head whenever JBD has an
1898 * interest in the buffer.
1899 *
1900 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1901 * is set.  This bit is tested in core kernel code where we need to take
1902 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1903 * there.
1904 *
1905 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1906 *
1907 * When a buffer has its BH_JBD bit set it is immune from being released by
1908 * core kernel code, mainly via ->b_count.
1909 *
1910 * A journal_head is detached from its buffer_head when the journal_head's
1911 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1912 * transaction (b_cp_transaction) hold their references to b_jcount.
1913 *
1914 * Various places in the kernel want to attach a journal_head to a buffer_head
1915 * _before_ attaching the journal_head to a transaction.  To protect the
1916 * journal_head in this situation, journal_add_journal_head elevates the
1917 * journal_head's b_jcount refcount by one.  The caller must call
1918 * journal_put_journal_head() to undo this.
1919 *
1920 * So the typical usage would be:
1921 *
1922 *	(Attach a journal_head if needed.  Increments b_jcount)
1923 *	struct journal_head *jh = journal_add_journal_head(bh);
1924 *	...
1925 *      (Get another reference for transaction)
1926 *      journal_grab_journal_head(bh);
1927 *      jh->b_transaction = xxx;
1928 *      (Put original reference)
1929 *      journal_put_journal_head(jh);
1930 */
1931
1932/*
1933 * Give a buffer_head a journal_head.
1934 *
1935 * May sleep.
1936 */
1937struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1938{
1939	struct journal_head *jh;
1940	struct journal_head *new_jh = NULL;
1941
1942repeat:
1943	if (!buffer_jbd(bh))
1944		new_jh = journal_alloc_journal_head();
1945
1946	jbd_lock_bh_journal_head(bh);
1947	if (buffer_jbd(bh)) {
1948		jh = bh2jh(bh);
1949	} else {
1950		J_ASSERT_BH(bh,
1951			(atomic_read(&bh->b_count) > 0) ||
1952			(bh->b_page && bh->b_page->mapping));
1953
1954		if (!new_jh) {
1955			jbd_unlock_bh_journal_head(bh);
1956			goto repeat;
1957		}
1958
1959		jh = new_jh;
1960		new_jh = NULL;		/* We consumed it */
1961		set_buffer_jbd(bh);
1962		bh->b_private = jh;
1963		jh->b_bh = bh;
1964		get_bh(bh);
1965		BUFFER_TRACE(bh, "added journal_head");
1966	}
1967	jh->b_jcount++;
1968	jbd_unlock_bh_journal_head(bh);
1969	if (new_jh)
1970		journal_free_journal_head(new_jh);
1971	return bh->b_private;
1972}
1973
1974/*
1975 * Grab a ref against this buffer_head's journal_head.  If it ended up not
1976 * having a journal_head, return NULL
1977 */
1978struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1979{
1980	struct journal_head *jh = NULL;
1981
1982	jbd_lock_bh_journal_head(bh);
1983	if (buffer_jbd(bh)) {
1984		jh = bh2jh(bh);
1985		jh->b_jcount++;
1986	}
1987	jbd_unlock_bh_journal_head(bh);
1988	return jh;
1989}
1990
1991static void __journal_remove_journal_head(struct buffer_head *bh)
1992{
1993	struct journal_head *jh = bh2jh(bh);
1994
1995	J_ASSERT_JH(jh, jh->b_jcount >= 0);
1996	J_ASSERT_JH(jh, jh->b_transaction == NULL);
1997	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1998	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
1999	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2000	J_ASSERT_BH(bh, buffer_jbd(bh));
2001	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2002	BUFFER_TRACE(bh, "remove journal_head");
2003	if (jh->b_frozen_data) {
2004		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2005		jbd_free(jh->b_frozen_data, bh->b_size);
2006	}
2007	if (jh->b_committed_data) {
2008		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2009		jbd_free(jh->b_committed_data, bh->b_size);
2010	}
2011	bh->b_private = NULL;
2012	jh->b_bh = NULL;	/* debug, really */
2013	clear_buffer_jbd(bh);
2014	journal_free_journal_head(jh);
2015}
2016
2017/*
2018 * Drop a reference on the passed journal_head.  If it fell to zero then
2019 * release the journal_head from the buffer_head.
2020 */
2021void journal_put_journal_head(struct journal_head *jh)
2022{
2023	struct buffer_head *bh = jh2bh(jh);
2024
2025	jbd_lock_bh_journal_head(bh);
2026	J_ASSERT_JH(jh, jh->b_jcount > 0);
2027	--jh->b_jcount;
2028	if (!jh->b_jcount) {
2029		__journal_remove_journal_head(bh);
2030		jbd_unlock_bh_journal_head(bh);
2031		__brelse(bh);
2032	} else
2033		jbd_unlock_bh_journal_head(bh);
2034}
2035
2036/*
2037 * debugfs tunables
2038 */
2039#ifdef CONFIG_JBD_DEBUG
2040
2041u8 journal_enable_debug __read_mostly;
2042EXPORT_SYMBOL(journal_enable_debug);
2043
2044static struct dentry *jbd_debugfs_dir;
2045static struct dentry *jbd_debug;
2046
2047static void __init jbd_create_debugfs_entry(void)
2048{
2049	jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
2050	if (jbd_debugfs_dir)
2051		jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
2052					       jbd_debugfs_dir,
2053					       &journal_enable_debug);
2054}
2055
2056static void __exit jbd_remove_debugfs_entry(void)
2057{
2058	debugfs_remove(jbd_debug);
2059	debugfs_remove(jbd_debugfs_dir);
2060}
2061
2062#else
2063
2064static inline void jbd_create_debugfs_entry(void)
2065{
2066}
2067
2068static inline void jbd_remove_debugfs_entry(void)
2069{
2070}
2071
2072#endif
2073
2074struct kmem_cache *jbd_handle_cache;
2075
2076static int __init journal_init_handle_cache(void)
2077{
2078	jbd_handle_cache = kmem_cache_create("journal_handle",
2079				sizeof(handle_t),
2080				0,		/* offset */
2081				SLAB_TEMPORARY,	/* flags */
2082				NULL);		/* ctor */
2083	if (jbd_handle_cache == NULL) {
2084		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2085		return -ENOMEM;
2086	}
2087	return 0;
2088}
2089
2090static void journal_destroy_handle_cache(void)
2091{
2092	if (jbd_handle_cache)
2093		kmem_cache_destroy(jbd_handle_cache);
2094}
2095
2096/*
2097 * Module startup and shutdown
2098 */
2099
2100static int __init journal_init_caches(void)
2101{
2102	int ret;
2103
2104	ret = journal_init_revoke_caches();
2105	if (ret == 0)
2106		ret = journal_init_journal_head_cache();
2107	if (ret == 0)
2108		ret = journal_init_handle_cache();
2109	return ret;
2110}
2111
2112static void journal_destroy_caches(void)
2113{
2114	journal_destroy_revoke_caches();
2115	journal_destroy_journal_head_cache();
2116	journal_destroy_handle_cache();
2117}
2118
2119static int __init journal_init(void)
2120{
2121	int ret;
2122
2123	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2124
2125	ret = journal_init_caches();
2126	if (ret != 0)
2127		journal_destroy_caches();
2128	jbd_create_debugfs_entry();
2129	return ret;
2130}
2131
2132static void __exit journal_exit(void)
2133{
2134#ifdef CONFIG_JBD_DEBUG
2135	int n = atomic_read(&nr_journal_heads);
2136	if (n)
2137		printk(KERN_ERR "JBD: leaked %d journal_heads!\n", n);
2138#endif
2139	jbd_remove_debugfs_entry();
2140	journal_destroy_caches();
2141}
2142
2143MODULE_LICENSE("GPL");
2144module_init(journal_init);
2145module_exit(journal_exit);
2146