Linux Audio

Check our new training course

Loading...
   1/*
   2 * linux/fs/jbd/journal.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   5 *
   6 * Copyright 1998 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Generic filesystem journal-writing code; part of the ext2fs
  13 * journaling system.
  14 *
  15 * This file manages journals: areas of disk reserved for logging
  16 * transactional updates.  This includes the kernel journaling thread
  17 * which is responsible for scheduling updates to the log.
  18 *
  19 * We do not actually manage the physical storage of the journal in this
  20 * file: that is left to a per-journal policy function, which allows us
  21 * to store the journal within a filesystem-specified area for ext2
  22 * journaling (ext2 can use a reserved inode for storing the log).
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/time.h>
  27#include <linux/fs.h>
  28#include <linux/jbd.h>
  29#include <linux/errno.h>
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/mm.h>
  33#include <linux/freezer.h>
  34#include <linux/pagemap.h>
  35#include <linux/kthread.h>
  36#include <linux/poison.h>
  37#include <linux/proc_fs.h>
  38#include <linux/debugfs.h>
  39#include <linux/ratelimit.h>
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/jbd.h>
  43
  44#include <asm/uaccess.h>
  45#include <asm/page.h>
  46
  47EXPORT_SYMBOL(journal_start);
  48EXPORT_SYMBOL(journal_restart);
  49EXPORT_SYMBOL(journal_extend);
  50EXPORT_SYMBOL(journal_stop);
  51EXPORT_SYMBOL(journal_lock_updates);
  52EXPORT_SYMBOL(journal_unlock_updates);
  53EXPORT_SYMBOL(journal_get_write_access);
  54EXPORT_SYMBOL(journal_get_create_access);
  55EXPORT_SYMBOL(journal_get_undo_access);
  56EXPORT_SYMBOL(journal_dirty_data);
  57EXPORT_SYMBOL(journal_dirty_metadata);
  58EXPORT_SYMBOL(journal_release_buffer);
  59EXPORT_SYMBOL(journal_forget);
  60#if 0
  61EXPORT_SYMBOL(journal_sync_buffer);
  62#endif
  63EXPORT_SYMBOL(journal_flush);
  64EXPORT_SYMBOL(journal_revoke);
  65
  66EXPORT_SYMBOL(journal_init_dev);
  67EXPORT_SYMBOL(journal_init_inode);
  68EXPORT_SYMBOL(journal_update_format);
  69EXPORT_SYMBOL(journal_check_used_features);
  70EXPORT_SYMBOL(journal_check_available_features);
  71EXPORT_SYMBOL(journal_set_features);
  72EXPORT_SYMBOL(journal_create);
  73EXPORT_SYMBOL(journal_load);
  74EXPORT_SYMBOL(journal_destroy);
  75EXPORT_SYMBOL(journal_abort);
  76EXPORT_SYMBOL(journal_errno);
  77EXPORT_SYMBOL(journal_ack_err);
  78EXPORT_SYMBOL(journal_clear_err);
  79EXPORT_SYMBOL(log_wait_commit);
  80EXPORT_SYMBOL(log_start_commit);
  81EXPORT_SYMBOL(journal_start_commit);
  82EXPORT_SYMBOL(journal_force_commit_nested);
  83EXPORT_SYMBOL(journal_wipe);
  84EXPORT_SYMBOL(journal_blocks_per_page);
  85EXPORT_SYMBOL(journal_invalidatepage);
  86EXPORT_SYMBOL(journal_try_to_free_buffers);
  87EXPORT_SYMBOL(journal_force_commit);
  88
  89static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
  90static void __journal_abort_soft (journal_t *journal, int errno);
  91static const char *journal_dev_name(journal_t *journal, char *buffer);
  92
  93/*
  94 * Helper function used to manage commit timeouts
  95 */
  96
  97static void commit_timeout(unsigned long __data)
  98{
  99	struct task_struct * p = (struct task_struct *) __data;
 100
 101	wake_up_process(p);
 102}
 103
 104/*
 105 * kjournald: The main thread function used to manage a logging device
 106 * journal.
 107 *
 108 * This kernel thread is responsible for two things:
 109 *
 110 * 1) COMMIT:  Every so often we need to commit the current state of the
 111 *    filesystem to disk.  The journal thread is responsible for writing
 112 *    all of the metadata buffers to disk.
 113 *
 114 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 115 *    of the data in that part of the log has been rewritten elsewhere on
 116 *    the disk.  Flushing these old buffers to reclaim space in the log is
 117 *    known as checkpointing, and this thread is responsible for that job.
 118 */
 119
 120static int kjournald(void *arg)
 121{
 122	journal_t *journal = arg;
 123	transaction_t *transaction;
 124
 125	/*
 126	 * Set up an interval timer which can be used to trigger a commit wakeup
 127	 * after the commit interval expires
 128	 */
 129	setup_timer(&journal->j_commit_timer, commit_timeout,
 130			(unsigned long)current);
 131
 132	set_freezable();
 133
 134	/* Record that the journal thread is running */
 135	journal->j_task = current;
 136	wake_up(&journal->j_wait_done_commit);
 137
 138	printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
 139			journal->j_commit_interval / HZ);
 140
 141	/*
 142	 * And now, wait forever for commit wakeup events.
 143	 */
 144	spin_lock(&journal->j_state_lock);
 145
 146loop:
 147	if (journal->j_flags & JFS_UNMOUNT)
 148		goto end_loop;
 149
 150	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
 151		journal->j_commit_sequence, journal->j_commit_request);
 152
 153	if (journal->j_commit_sequence != journal->j_commit_request) {
 154		jbd_debug(1, "OK, requests differ\n");
 155		spin_unlock(&journal->j_state_lock);
 156		del_timer_sync(&journal->j_commit_timer);
 157		journal_commit_transaction(journal);
 158		spin_lock(&journal->j_state_lock);
 159		goto loop;
 160	}
 161
 162	wake_up(&journal->j_wait_done_commit);
 163	if (freezing(current)) {
 164		/*
 165		 * The simpler the better. Flushing journal isn't a
 166		 * good idea, because that depends on threads that may
 167		 * be already stopped.
 168		 */
 169		jbd_debug(1, "Now suspending kjournald\n");
 170		spin_unlock(&journal->j_state_lock);
 171		try_to_freeze();
 172		spin_lock(&journal->j_state_lock);
 173	} else {
 174		/*
 175		 * We assume on resume that commits are already there,
 176		 * so we don't sleep
 177		 */
 178		DEFINE_WAIT(wait);
 179		int should_sleep = 1;
 180
 181		prepare_to_wait(&journal->j_wait_commit, &wait,
 182				TASK_INTERRUPTIBLE);
 183		if (journal->j_commit_sequence != journal->j_commit_request)
 184			should_sleep = 0;
 185		transaction = journal->j_running_transaction;
 186		if (transaction && time_after_eq(jiffies,
 187						transaction->t_expires))
 188			should_sleep = 0;
 189		if (journal->j_flags & JFS_UNMOUNT)
 190			should_sleep = 0;
 191		if (should_sleep) {
 192			spin_unlock(&journal->j_state_lock);
 193			schedule();
 194			spin_lock(&journal->j_state_lock);
 195		}
 196		finish_wait(&journal->j_wait_commit, &wait);
 197	}
 198
 199	jbd_debug(1, "kjournald wakes\n");
 200
 201	/*
 202	 * Were we woken up by a commit wakeup event?
 203	 */
 204	transaction = journal->j_running_transaction;
 205	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
 206		journal->j_commit_request = transaction->t_tid;
 207		jbd_debug(1, "woke because of timeout\n");
 208	}
 209	goto loop;
 210
 211end_loop:
 212	spin_unlock(&journal->j_state_lock);
 213	del_timer_sync(&journal->j_commit_timer);
 214	journal->j_task = NULL;
 215	wake_up(&journal->j_wait_done_commit);
 216	jbd_debug(1, "Journal thread exiting.\n");
 217	return 0;
 218}
 219
 220static int journal_start_thread(journal_t *journal)
 221{
 222	struct task_struct *t;
 223
 224	t = kthread_run(kjournald, journal, "kjournald");
 225	if (IS_ERR(t))
 226		return PTR_ERR(t);
 227
 228	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
 229	return 0;
 230}
 231
 232static void journal_kill_thread(journal_t *journal)
 233{
 234	spin_lock(&journal->j_state_lock);
 235	journal->j_flags |= JFS_UNMOUNT;
 236
 237	while (journal->j_task) {
 238		wake_up(&journal->j_wait_commit);
 239		spin_unlock(&journal->j_state_lock);
 240		wait_event(journal->j_wait_done_commit,
 241				journal->j_task == NULL);
 242		spin_lock(&journal->j_state_lock);
 243	}
 244	spin_unlock(&journal->j_state_lock);
 245}
 246
 247/*
 248 * journal_write_metadata_buffer: write a metadata buffer to the journal.
 249 *
 250 * Writes a metadata buffer to a given disk block.  The actual IO is not
 251 * performed but a new buffer_head is constructed which labels the data
 252 * to be written with the correct destination disk block.
 253 *
 254 * Any magic-number escaping which needs to be done will cause a
 255 * copy-out here.  If the buffer happens to start with the
 256 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
 257 * magic number is only written to the log for descripter blocks.  In
 258 * this case, we copy the data and replace the first word with 0, and we
 259 * return a result code which indicates that this buffer needs to be
 260 * marked as an escaped buffer in the corresponding log descriptor
 261 * block.  The missing word can then be restored when the block is read
 262 * during recovery.
 263 *
 264 * If the source buffer has already been modified by a new transaction
 265 * since we took the last commit snapshot, we use the frozen copy of
 266 * that data for IO.  If we end up using the existing buffer_head's data
 267 * for the write, then we *have* to lock the buffer to prevent anyone
 268 * else from using and possibly modifying it while the IO is in
 269 * progress.
 270 *
 271 * The function returns a pointer to the buffer_heads to be used for IO.
 272 *
 273 * We assume that the journal has already been locked in this function.
 274 *
 275 * Return value:
 276 *  <0: Error
 277 * >=0: Finished OK
 278 *
 279 * On success:
 280 * Bit 0 set == escape performed on the data
 281 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 282 */
 283
 284int journal_write_metadata_buffer(transaction_t *transaction,
 285				  struct journal_head  *jh_in,
 286				  struct journal_head **jh_out,
 287				  unsigned int blocknr)
 288{
 289	int need_copy_out = 0;
 290	int done_copy_out = 0;
 291	int do_escape = 0;
 292	char *mapped_data;
 293	struct buffer_head *new_bh;
 294	struct journal_head *new_jh;
 295	struct page *new_page;
 296	unsigned int new_offset;
 297	struct buffer_head *bh_in = jh2bh(jh_in);
 298	journal_t *journal = transaction->t_journal;
 299
 300	/*
 301	 * The buffer really shouldn't be locked: only the current committing
 302	 * transaction is allowed to write it, so nobody else is allowed
 303	 * to do any IO.
 304	 *
 305	 * akpm: except if we're journalling data, and write() output is
 306	 * also part of a shared mapping, and another thread has
 307	 * decided to launch a writepage() against this buffer.
 308	 */
 309	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
 310
 311	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
 312	/* keep subsequent assertions sane */
 313	new_bh->b_state = 0;
 314	init_buffer(new_bh, NULL, NULL);
 315	atomic_set(&new_bh->b_count, 1);
 316	new_jh = journal_add_journal_head(new_bh);	/* This sleeps */
 317
 318	/*
 319	 * If a new transaction has already done a buffer copy-out, then
 320	 * we use that version of the data for the commit.
 321	 */
 322	jbd_lock_bh_state(bh_in);
 323repeat:
 324	if (jh_in->b_frozen_data) {
 325		done_copy_out = 1;
 326		new_page = virt_to_page(jh_in->b_frozen_data);
 327		new_offset = offset_in_page(jh_in->b_frozen_data);
 328	} else {
 329		new_page = jh2bh(jh_in)->b_page;
 330		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
 331	}
 332
 333	mapped_data = kmap_atomic(new_page);
 334	/*
 335	 * Check for escaping
 336	 */
 337	if (*((__be32 *)(mapped_data + new_offset)) ==
 338				cpu_to_be32(JFS_MAGIC_NUMBER)) {
 339		need_copy_out = 1;
 340		do_escape = 1;
 341	}
 342	kunmap_atomic(mapped_data);
 343
 344	/*
 345	 * Do we need to do a data copy?
 346	 */
 347	if (need_copy_out && !done_copy_out) {
 348		char *tmp;
 349
 350		jbd_unlock_bh_state(bh_in);
 351		tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
 352		jbd_lock_bh_state(bh_in);
 353		if (jh_in->b_frozen_data) {
 354			jbd_free(tmp, bh_in->b_size);
 355			goto repeat;
 356		}
 357
 358		jh_in->b_frozen_data = tmp;
 359		mapped_data = kmap_atomic(new_page);
 360		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
 361		kunmap_atomic(mapped_data);
 362
 363		new_page = virt_to_page(tmp);
 364		new_offset = offset_in_page(tmp);
 365		done_copy_out = 1;
 366	}
 367
 368	/*
 369	 * Did we need to do an escaping?  Now we've done all the
 370	 * copying, we can finally do so.
 371	 */
 372	if (do_escape) {
 373		mapped_data = kmap_atomic(new_page);
 374		*((unsigned int *)(mapped_data + new_offset)) = 0;
 375		kunmap_atomic(mapped_data);
 376	}
 377
 378	set_bh_page(new_bh, new_page, new_offset);
 379	new_jh->b_transaction = NULL;
 380	new_bh->b_size = jh2bh(jh_in)->b_size;
 381	new_bh->b_bdev = transaction->t_journal->j_dev;
 382	new_bh->b_blocknr = blocknr;
 383	set_buffer_mapped(new_bh);
 384	set_buffer_dirty(new_bh);
 385
 386	*jh_out = new_jh;
 387
 388	/*
 389	 * The to-be-written buffer needs to get moved to the io queue,
 390	 * and the original buffer whose contents we are shadowing or
 391	 * copying is moved to the transaction's shadow queue.
 392	 */
 393	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
 394	spin_lock(&journal->j_list_lock);
 395	__journal_file_buffer(jh_in, transaction, BJ_Shadow);
 396	spin_unlock(&journal->j_list_lock);
 397	jbd_unlock_bh_state(bh_in);
 398
 399	JBUFFER_TRACE(new_jh, "file as BJ_IO");
 400	journal_file_buffer(new_jh, transaction, BJ_IO);
 401
 402	return do_escape | (done_copy_out << 1);
 403}
 404
 405/*
 406 * Allocation code for the journal file.  Manage the space left in the
 407 * journal, so that we can begin checkpointing when appropriate.
 408 */
 409
 410/*
 411 * __log_space_left: Return the number of free blocks left in the journal.
 412 *
 413 * Called with the journal already locked.
 414 *
 415 * Called under j_state_lock
 416 */
 417
 418int __log_space_left(journal_t *journal)
 419{
 420	int left = journal->j_free;
 421
 422	assert_spin_locked(&journal->j_state_lock);
 423
 424	/*
 425	 * Be pessimistic here about the number of those free blocks which
 426	 * might be required for log descriptor control blocks.
 427	 */
 428
 429#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
 430
 431	left -= MIN_LOG_RESERVED_BLOCKS;
 432
 433	if (left <= 0)
 434		return 0;
 435	left -= (left >> 3);
 436	return left;
 437}
 438
 439/*
 440 * Called under j_state_lock.  Returns true if a transaction commit was started.
 441 */
 442int __log_start_commit(journal_t *journal, tid_t target)
 443{
 444	/*
 445	 * The only transaction we can possibly wait upon is the
 446	 * currently running transaction (if it exists).  Otherwise,
 447	 * the target tid must be an old one.
 448	 */
 449	if (journal->j_running_transaction &&
 450	    journal->j_running_transaction->t_tid == target) {
 451		/*
 452		 * We want a new commit: OK, mark the request and wakeup the
 453		 * commit thread.  We do _not_ do the commit ourselves.
 454		 */
 455
 456		journal->j_commit_request = target;
 457		jbd_debug(1, "JBD: requesting commit %d/%d\n",
 458			  journal->j_commit_request,
 459			  journal->j_commit_sequence);
 460		wake_up(&journal->j_wait_commit);
 461		return 1;
 462	} else if (!tid_geq(journal->j_commit_request, target))
 463		/* This should never happen, but if it does, preserve
 464		   the evidence before kjournald goes into a loop and
 465		   increments j_commit_sequence beyond all recognition. */
 466		WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
 467		    journal->j_commit_request, journal->j_commit_sequence,
 468		    target, journal->j_running_transaction ?
 469		    journal->j_running_transaction->t_tid : 0);
 470	return 0;
 471}
 472
 473int log_start_commit(journal_t *journal, tid_t tid)
 474{
 475	int ret;
 476
 477	spin_lock(&journal->j_state_lock);
 478	ret = __log_start_commit(journal, tid);
 479	spin_unlock(&journal->j_state_lock);
 480	return ret;
 481}
 482
 483/*
 484 * Force and wait upon a commit if the calling process is not within
 485 * transaction.  This is used for forcing out undo-protected data which contains
 486 * bitmaps, when the fs is running out of space.
 487 *
 488 * We can only force the running transaction if we don't have an active handle;
 489 * otherwise, we will deadlock.
 490 *
 491 * Returns true if a transaction was started.
 492 */
 493int journal_force_commit_nested(journal_t *journal)
 494{
 495	transaction_t *transaction = NULL;
 496	tid_t tid;
 497
 498	spin_lock(&journal->j_state_lock);
 499	if (journal->j_running_transaction && !current->journal_info) {
 500		transaction = journal->j_running_transaction;
 501		__log_start_commit(journal, transaction->t_tid);
 502	} else if (journal->j_committing_transaction)
 503		transaction = journal->j_committing_transaction;
 504
 505	if (!transaction) {
 506		spin_unlock(&journal->j_state_lock);
 507		return 0;	/* Nothing to retry */
 508	}
 509
 510	tid = transaction->t_tid;
 511	spin_unlock(&journal->j_state_lock);
 512	log_wait_commit(journal, tid);
 513	return 1;
 514}
 515
 516/*
 517 * Start a commit of the current running transaction (if any).  Returns true
 518 * if a transaction is going to be committed (or is currently already
 519 * committing), and fills its tid in at *ptid
 520 */
 521int journal_start_commit(journal_t *journal, tid_t *ptid)
 522{
 523	int ret = 0;
 524
 525	spin_lock(&journal->j_state_lock);
 526	if (journal->j_running_transaction) {
 527		tid_t tid = journal->j_running_transaction->t_tid;
 528
 529		__log_start_commit(journal, tid);
 530		/* There's a running transaction and we've just made sure
 531		 * it's commit has been scheduled. */
 532		if (ptid)
 533			*ptid = tid;
 534		ret = 1;
 535	} else if (journal->j_committing_transaction) {
 536		/*
 537		 * If ext3_write_super() recently started a commit, then we
 538		 * have to wait for completion of that transaction
 539		 */
 540		if (ptid)
 541			*ptid = journal->j_committing_transaction->t_tid;
 542		ret = 1;
 543	}
 544	spin_unlock(&journal->j_state_lock);
 545	return ret;
 546}
 547
 548/*
 549 * Wait for a specified commit to complete.
 550 * The caller may not hold the journal lock.
 551 */
 552int log_wait_commit(journal_t *journal, tid_t tid)
 553{
 554	int err = 0;
 555
 556#ifdef CONFIG_JBD_DEBUG
 557	spin_lock(&journal->j_state_lock);
 558	if (!tid_geq(journal->j_commit_request, tid)) {
 559		printk(KERN_EMERG
 560		       "%s: error: j_commit_request=%d, tid=%d\n",
 561		       __func__, journal->j_commit_request, tid);
 562	}
 563	spin_unlock(&journal->j_state_lock);
 564#endif
 565	spin_lock(&journal->j_state_lock);
 566	if (!tid_geq(journal->j_commit_waited, tid))
 567		journal->j_commit_waited = tid;
 568	while (tid_gt(tid, journal->j_commit_sequence)) {
 569		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
 570				  tid, journal->j_commit_sequence);
 571		wake_up(&journal->j_wait_commit);
 572		spin_unlock(&journal->j_state_lock);
 573		wait_event(journal->j_wait_done_commit,
 574				!tid_gt(tid, journal->j_commit_sequence));
 575		spin_lock(&journal->j_state_lock);
 576	}
 577	spin_unlock(&journal->j_state_lock);
 578
 579	if (unlikely(is_journal_aborted(journal))) {
 580		printk(KERN_EMERG "journal commit I/O error\n");
 581		err = -EIO;
 582	}
 583	return err;
 584}
 585
 586/*
 587 * Return 1 if a given transaction has not yet sent barrier request
 588 * connected with a transaction commit. If 0 is returned, transaction
 589 * may or may not have sent the barrier. Used to avoid sending barrier
 590 * twice in common cases.
 591 */
 592int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
 593{
 594	int ret = 0;
 595	transaction_t *commit_trans;
 596
 597	if (!(journal->j_flags & JFS_BARRIER))
 598		return 0;
 599	spin_lock(&journal->j_state_lock);
 600	/* Transaction already committed? */
 601	if (tid_geq(journal->j_commit_sequence, tid))
 602		goto out;
 603	/*
 604	 * Transaction is being committed and we already proceeded to
 605	 * writing commit record?
 606	 */
 607	commit_trans = journal->j_committing_transaction;
 608	if (commit_trans && commit_trans->t_tid == tid &&
 609	    commit_trans->t_state >= T_COMMIT_RECORD)
 610		goto out;
 611	ret = 1;
 612out:
 613	spin_unlock(&journal->j_state_lock);
 614	return ret;
 615}
 616EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
 617
 618/*
 619 * Log buffer allocation routines:
 620 */
 621
 622int journal_next_log_block(journal_t *journal, unsigned int *retp)
 623{
 624	unsigned int blocknr;
 625
 626	spin_lock(&journal->j_state_lock);
 627	J_ASSERT(journal->j_free > 1);
 628
 629	blocknr = journal->j_head;
 630	journal->j_head++;
 631	journal->j_free--;
 632	if (journal->j_head == journal->j_last)
 633		journal->j_head = journal->j_first;
 634	spin_unlock(&journal->j_state_lock);
 635	return journal_bmap(journal, blocknr, retp);
 636}
 637
 638/*
 639 * Conversion of logical to physical block numbers for the journal
 640 *
 641 * On external journals the journal blocks are identity-mapped, so
 642 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 643 * ready.
 644 */
 645int journal_bmap(journal_t *journal, unsigned int blocknr,
 646		 unsigned int *retp)
 647{
 648	int err = 0;
 649	unsigned int ret;
 650
 651	if (journal->j_inode) {
 652		ret = bmap(journal->j_inode, blocknr);
 653		if (ret)
 654			*retp = ret;
 655		else {
 656			char b[BDEVNAME_SIZE];
 657
 658			printk(KERN_ALERT "%s: journal block not found "
 659					"at offset %u on %s\n",
 660				__func__,
 661				blocknr,
 662				bdevname(journal->j_dev, b));
 663			err = -EIO;
 664			__journal_abort_soft(journal, err);
 665		}
 666	} else {
 667		*retp = blocknr; /* +journal->j_blk_offset */
 668	}
 669	return err;
 670}
 671
 672/*
 673 * We play buffer_head aliasing tricks to write data/metadata blocks to
 674 * the journal without copying their contents, but for journal
 675 * descriptor blocks we do need to generate bona fide buffers.
 676 *
 677 * After the caller of journal_get_descriptor_buffer() has finished modifying
 678 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 679 * But we don't bother doing that, so there will be coherency problems with
 680 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 681 */
 682struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
 683{
 684	struct buffer_head *bh;
 685	unsigned int blocknr;
 686	int err;
 687
 688	err = journal_next_log_block(journal, &blocknr);
 689
 690	if (err)
 691		return NULL;
 692
 693	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 694	if (!bh)
 695		return NULL;
 696	lock_buffer(bh);
 697	memset(bh->b_data, 0, journal->j_blocksize);
 698	set_buffer_uptodate(bh);
 699	unlock_buffer(bh);
 700	BUFFER_TRACE(bh, "return this buffer");
 701	return journal_add_journal_head(bh);
 702}
 703
 704/*
 705 * Management for journal control blocks: functions to create and
 706 * destroy journal_t structures, and to initialise and read existing
 707 * journal blocks from disk.  */
 708
 709/* First: create and setup a journal_t object in memory.  We initialise
 710 * very few fields yet: that has to wait until we have created the
 711 * journal structures from from scratch, or loaded them from disk. */
 712
 713static journal_t * journal_init_common (void)
 714{
 715	journal_t *journal;
 716	int err;
 717
 718	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
 719	if (!journal)
 720		goto fail;
 721
 722	init_waitqueue_head(&journal->j_wait_transaction_locked);
 723	init_waitqueue_head(&journal->j_wait_logspace);
 724	init_waitqueue_head(&journal->j_wait_done_commit);
 725	init_waitqueue_head(&journal->j_wait_checkpoint);
 726	init_waitqueue_head(&journal->j_wait_commit);
 727	init_waitqueue_head(&journal->j_wait_updates);
 728	mutex_init(&journal->j_checkpoint_mutex);
 729	spin_lock_init(&journal->j_revoke_lock);
 730	spin_lock_init(&journal->j_list_lock);
 731	spin_lock_init(&journal->j_state_lock);
 732
 733	journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
 734
 735	/* The journal is marked for error until we succeed with recovery! */
 736	journal->j_flags = JFS_ABORT;
 737
 738	/* Set up a default-sized revoke table for the new mount. */
 739	err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
 740	if (err) {
 741		kfree(journal);
 742		goto fail;
 743	}
 744	return journal;
 745fail:
 746	return NULL;
 747}
 748
 749/* journal_init_dev and journal_init_inode:
 750 *
 751 * Create a journal structure assigned some fixed set of disk blocks to
 752 * the journal.  We don't actually touch those disk blocks yet, but we
 753 * need to set up all of the mapping information to tell the journaling
 754 * system where the journal blocks are.
 755 *
 756 */
 757
 758/**
 759 *  journal_t * journal_init_dev() - creates and initialises a journal structure
 760 *  @bdev: Block device on which to create the journal
 761 *  @fs_dev: Device which hold journalled filesystem for this journal.
 762 *  @start: Block nr Start of journal.
 763 *  @len:  Length of the journal in blocks.
 764 *  @blocksize: blocksize of journalling device
 765 *
 766 *  Returns: a newly created journal_t *
 767 *
 768 *  journal_init_dev creates a journal which maps a fixed contiguous
 769 *  range of blocks on an arbitrary block device.
 770 *
 771 */
 772journal_t * journal_init_dev(struct block_device *bdev,
 773			struct block_device *fs_dev,
 774			int start, int len, int blocksize)
 775{
 776	journal_t *journal = journal_init_common();
 777	struct buffer_head *bh;
 778	int n;
 779
 780	if (!journal)
 781		return NULL;
 782
 783	/* journal descriptor can store up to n blocks -bzzz */
 784	journal->j_blocksize = blocksize;
 785	n = journal->j_blocksize / sizeof(journal_block_tag_t);
 786	journal->j_wbufsize = n;
 787	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
 788	if (!journal->j_wbuf) {
 789		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
 790			__func__);
 791		goto out_err;
 792	}
 793	journal->j_dev = bdev;
 794	journal->j_fs_dev = fs_dev;
 795	journal->j_blk_offset = start;
 796	journal->j_maxlen = len;
 797
 798	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
 799	if (!bh) {
 800		printk(KERN_ERR
 801		       "%s: Cannot get buffer for journal superblock\n",
 802		       __func__);
 803		goto out_err;
 804	}
 805	journal->j_sb_buffer = bh;
 806	journal->j_superblock = (journal_superblock_t *)bh->b_data;
 807
 808	return journal;
 809out_err:
 810	kfree(journal->j_wbuf);
 811	kfree(journal);
 812	return NULL;
 813}
 814
 815/**
 816 *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
 817 *  @inode: An inode to create the journal in
 818 *
 819 * journal_init_inode creates a journal which maps an on-disk inode as
 820 * the journal.  The inode must exist already, must support bmap() and
 821 * must have all data blocks preallocated.
 822 */
 823journal_t * journal_init_inode (struct inode *inode)
 824{
 825	struct buffer_head *bh;
 826	journal_t *journal = journal_init_common();
 827	int err;
 828	int n;
 829	unsigned int blocknr;
 830
 831	if (!journal)
 832		return NULL;
 833
 834	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
 835	journal->j_inode = inode;
 836	jbd_debug(1,
 837		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
 838		  journal, inode->i_sb->s_id, inode->i_ino,
 839		  (long long) inode->i_size,
 840		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
 841
 842	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
 843	journal->j_blocksize = inode->i_sb->s_blocksize;
 844
 845	/* journal descriptor can store up to n blocks -bzzz */
 846	n = journal->j_blocksize / sizeof(journal_block_tag_t);
 847	journal->j_wbufsize = n;
 848	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
 849	if (!journal->j_wbuf) {
 850		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
 851			__func__);
 852		goto out_err;
 853	}
 854
 855	err = journal_bmap(journal, 0, &blocknr);
 856	/* If that failed, give up */
 857	if (err) {
 858		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
 859		       __func__);
 860		goto out_err;
 861	}
 862
 863	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 864	if (!bh) {
 865		printk(KERN_ERR
 866		       "%s: Cannot get buffer for journal superblock\n",
 867		       __func__);
 868		goto out_err;
 869	}
 870	journal->j_sb_buffer = bh;
 871	journal->j_superblock = (journal_superblock_t *)bh->b_data;
 872
 873	return journal;
 874out_err:
 875	kfree(journal->j_wbuf);
 876	kfree(journal);
 877	return NULL;
 878}
 879
 880/*
 881 * If the journal init or create aborts, we need to mark the journal
 882 * superblock as being NULL to prevent the journal destroy from writing
 883 * back a bogus superblock.
 884 */
 885static void journal_fail_superblock (journal_t *journal)
 886{
 887	struct buffer_head *bh = journal->j_sb_buffer;
 888	brelse(bh);
 889	journal->j_sb_buffer = NULL;
 890}
 891
 892/*
 893 * Given a journal_t structure, initialise the various fields for
 894 * startup of a new journaling session.  We use this both when creating
 895 * a journal, and after recovering an old journal to reset it for
 896 * subsequent use.
 897 */
 898
 899static int journal_reset(journal_t *journal)
 900{
 901	journal_superblock_t *sb = journal->j_superblock;
 902	unsigned int first, last;
 903
 904	first = be32_to_cpu(sb->s_first);
 905	last = be32_to_cpu(sb->s_maxlen);
 906	if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
 907		printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
 908		       first, last);
 909		journal_fail_superblock(journal);
 910		return -EINVAL;
 911	}
 912
 913	journal->j_first = first;
 914	journal->j_last = last;
 915
 916	journal->j_head = first;
 917	journal->j_tail = first;
 918	journal->j_free = last - first;
 919
 920	journal->j_tail_sequence = journal->j_transaction_sequence;
 921	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
 922	journal->j_commit_request = journal->j_commit_sequence;
 923
 924	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
 925
 926	/*
 927	 * As a special case, if the on-disk copy is already marked as needing
 928	 * no recovery (s_start == 0), then we can safely defer the superblock
 929	 * update until the next commit by setting JFS_FLUSHED.  This avoids
 930	 * attempting a write to a potential-readonly device.
 931	 */
 932	if (sb->s_start == 0) {
 933		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
 934			"(start %u, seq %d, errno %d)\n",
 935			journal->j_tail, journal->j_tail_sequence,
 936			journal->j_errno);
 937		journal->j_flags |= JFS_FLUSHED;
 938	} else {
 939		/* Lock here to make assertions happy... */
 940		mutex_lock(&journal->j_checkpoint_mutex);
 941		/*
 942		 * Update log tail information. We use WRITE_FUA since new
 943		 * transaction will start reusing journal space and so we
 944		 * must make sure information about current log tail is on
 945		 * disk before that.
 946		 */
 947		journal_update_sb_log_tail(journal,
 948					   journal->j_tail_sequence,
 949					   journal->j_tail,
 950					   WRITE_FUA);
 951		mutex_unlock(&journal->j_checkpoint_mutex);
 952	}
 953	return journal_start_thread(journal);
 954}
 955
 956/**
 957 * int journal_create() - Initialise the new journal file
 958 * @journal: Journal to create. This structure must have been initialised
 959 *
 960 * Given a journal_t structure which tells us which disk blocks we can
 961 * use, create a new journal superblock and initialise all of the
 962 * journal fields from scratch.
 963 **/
 964int journal_create(journal_t *journal)
 965{
 966	unsigned int blocknr;
 967	struct buffer_head *bh;
 968	journal_superblock_t *sb;
 969	int i, err;
 970
 971	if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
 972		printk (KERN_ERR "Journal length (%d blocks) too short.\n",
 973			journal->j_maxlen);
 974		journal_fail_superblock(journal);
 975		return -EINVAL;
 976	}
 977
 978	if (journal->j_inode == NULL) {
 979		/*
 980		 * We don't know what block to start at!
 981		 */
 982		printk(KERN_EMERG
 983		       "%s: creation of journal on external device!\n",
 984		       __func__);
 985		BUG();
 986	}
 987
 988	/* Zero out the entire journal on disk.  We cannot afford to
 989	   have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
 990	jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
 991	for (i = 0; i < journal->j_maxlen; i++) {
 992		err = journal_bmap(journal, i, &blocknr);
 993		if (err)
 994			return err;
 995		bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 996		if (unlikely(!bh))
 997			return -ENOMEM;
 998		lock_buffer(bh);
 999		memset (bh->b_data, 0, journal->j_blocksize);
1000		BUFFER_TRACE(bh, "marking dirty");
1001		mark_buffer_dirty(bh);
1002		BUFFER_TRACE(bh, "marking uptodate");
1003		set_buffer_uptodate(bh);
1004		unlock_buffer(bh);
1005		__brelse(bh);
1006	}
1007
1008	sync_blockdev(journal->j_dev);
1009	jbd_debug(1, "JBD: journal cleared.\n");
1010
1011	/* OK, fill in the initial static fields in the new superblock */
1012	sb = journal->j_superblock;
1013
1014	sb->s_header.h_magic	 = cpu_to_be32(JFS_MAGIC_NUMBER);
1015	sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1016
1017	sb->s_blocksize	= cpu_to_be32(journal->j_blocksize);
1018	sb->s_maxlen	= cpu_to_be32(journal->j_maxlen);
1019	sb->s_first	= cpu_to_be32(1);
1020
1021	journal->j_transaction_sequence = 1;
1022
1023	journal->j_flags &= ~JFS_ABORT;
1024	journal->j_format_version = 2;
1025
1026	return journal_reset(journal);
1027}
1028
1029static void journal_write_superblock(journal_t *journal, int write_op)
1030{
1031	struct buffer_head *bh = journal->j_sb_buffer;
1032	int ret;
1033
1034	trace_journal_write_superblock(journal, write_op);
1035	if (!(journal->j_flags & JFS_BARRIER))
1036		write_op &= ~(REQ_FUA | REQ_FLUSH);
1037	lock_buffer(bh);
1038	if (buffer_write_io_error(bh)) {
1039		char b[BDEVNAME_SIZE];
1040		/*
1041		 * Oh, dear.  A previous attempt to write the journal
1042		 * superblock failed.  This could happen because the
1043		 * USB device was yanked out.  Or it could happen to
1044		 * be a transient write error and maybe the block will
1045		 * be remapped.  Nothing we can do but to retry the
1046		 * write and hope for the best.
1047		 */
1048		printk(KERN_ERR "JBD: previous I/O error detected "
1049		       "for journal superblock update for %s.\n",
1050		       journal_dev_name(journal, b));
1051		clear_buffer_write_io_error(bh);
1052		set_buffer_uptodate(bh);
1053	}
1054
1055	get_bh(bh);
1056	bh->b_end_io = end_buffer_write_sync;
1057	ret = submit_bh(write_op, bh);
1058	wait_on_buffer(bh);
1059	if (buffer_write_io_error(bh)) {
1060		clear_buffer_write_io_error(bh);
1061		set_buffer_uptodate(bh);
1062		ret = -EIO;
1063	}
1064	if (ret) {
1065		char b[BDEVNAME_SIZE];
1066		printk(KERN_ERR "JBD: Error %d detected "
1067		       "when updating journal superblock for %s.\n",
1068		       ret, journal_dev_name(journal, b));
1069	}
1070}
1071
1072/**
1073 * journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1074 * @journal: The journal to update.
1075 * @tail_tid: TID of the new transaction at the tail of the log
1076 * @tail_block: The first block of the transaction at the tail of the log
1077 * @write_op: With which operation should we write the journal sb
1078 *
1079 * Update a journal's superblock information about log tail and write it to
1080 * disk, waiting for the IO to complete.
1081 */
1082void journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1083				unsigned int tail_block, int write_op)
1084{
1085	journal_superblock_t *sb = journal->j_superblock;
1086
1087	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1088	jbd_debug(1,"JBD: updating superblock (start %u, seq %u)\n",
1089		  tail_block, tail_tid);
1090
1091	sb->s_sequence = cpu_to_be32(tail_tid);
1092	sb->s_start    = cpu_to_be32(tail_block);
1093
1094	journal_write_superblock(journal, write_op);
1095
1096	/* Log is no longer empty */
1097	spin_lock(&journal->j_state_lock);
1098	WARN_ON(!sb->s_sequence);
1099	journal->j_flags &= ~JFS_FLUSHED;
1100	spin_unlock(&journal->j_state_lock);
1101}
1102
1103/**
1104 * mark_journal_empty() - Mark on disk journal as empty.
1105 * @journal: The journal to update.
1106 *
1107 * Update a journal's dynamic superblock fields to show that journal is empty.
1108 * Write updated superblock to disk waiting for IO to complete.
1109 */
1110static void mark_journal_empty(journal_t *journal)
1111{
1112	journal_superblock_t *sb = journal->j_superblock;
1113
1114	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1115	spin_lock(&journal->j_state_lock);
1116	/* Is it already empty? */
1117	if (sb->s_start == 0) {
1118		spin_unlock(&journal->j_state_lock);
1119		return;
1120	}
1121	jbd_debug(1, "JBD: Marking journal as empty (seq %d)\n",
1122        	  journal->j_tail_sequence);
1123
1124	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1125	sb->s_start    = cpu_to_be32(0);
1126	spin_unlock(&journal->j_state_lock);
1127
1128	journal_write_superblock(journal, WRITE_FUA);
1129
1130	spin_lock(&journal->j_state_lock);
1131	/* Log is empty */
1132	journal->j_flags |= JFS_FLUSHED;
1133	spin_unlock(&journal->j_state_lock);
1134}
1135
1136/**
1137 * journal_update_sb_errno() - Update error in the journal.
1138 * @journal: The journal to update.
1139 *
1140 * Update a journal's errno.  Write updated superblock to disk waiting for IO
1141 * to complete.
1142 */
1143static void journal_update_sb_errno(journal_t *journal)
1144{
1145	journal_superblock_t *sb = journal->j_superblock;
1146
1147	spin_lock(&journal->j_state_lock);
1148	jbd_debug(1, "JBD: updating superblock error (errno %d)\n",
1149        	  journal->j_errno);
1150	sb->s_errno = cpu_to_be32(journal->j_errno);
1151	spin_unlock(&journal->j_state_lock);
1152
1153	journal_write_superblock(journal, WRITE_SYNC);
1154}
1155
1156/*
1157 * Read the superblock for a given journal, performing initial
1158 * validation of the format.
1159 */
1160
1161static int journal_get_superblock(journal_t *journal)
1162{
1163	struct buffer_head *bh;
1164	journal_superblock_t *sb;
1165	int err = -EIO;
1166
1167	bh = journal->j_sb_buffer;
1168
1169	J_ASSERT(bh != NULL);
1170	if (!buffer_uptodate(bh)) {
1171		ll_rw_block(READ, 1, &bh);
1172		wait_on_buffer(bh);
1173		if (!buffer_uptodate(bh)) {
1174			printk (KERN_ERR
1175				"JBD: IO error reading journal superblock\n");
1176			goto out;
1177		}
1178	}
1179
1180	sb = journal->j_superblock;
1181
1182	err = -EINVAL;
1183
1184	if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1185	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1186		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1187		goto out;
1188	}
1189
1190	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1191	case JFS_SUPERBLOCK_V1:
1192		journal->j_format_version = 1;
1193		break;
1194	case JFS_SUPERBLOCK_V2:
1195		journal->j_format_version = 2;
1196		break;
1197	default:
1198		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1199		goto out;
1200	}
1201
1202	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1203		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1204	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1205		printk (KERN_WARNING "JBD: journal file too short\n");
1206		goto out;
1207	}
1208
1209	if (be32_to_cpu(sb->s_first) == 0 ||
1210	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1211		printk(KERN_WARNING
1212			"JBD: Invalid start block of journal: %u\n",
1213			be32_to_cpu(sb->s_first));
1214		goto out;
1215	}
1216
1217	return 0;
1218
1219out:
1220	journal_fail_superblock(journal);
1221	return err;
1222}
1223
1224/*
1225 * Load the on-disk journal superblock and read the key fields into the
1226 * journal_t.
1227 */
1228
1229static int load_superblock(journal_t *journal)
1230{
1231	int err;
1232	journal_superblock_t *sb;
1233
1234	err = journal_get_superblock(journal);
1235	if (err)
1236		return err;
1237
1238	sb = journal->j_superblock;
1239
1240	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1241	journal->j_tail = be32_to_cpu(sb->s_start);
1242	journal->j_first = be32_to_cpu(sb->s_first);
1243	journal->j_last = be32_to_cpu(sb->s_maxlen);
1244	journal->j_errno = be32_to_cpu(sb->s_errno);
1245
1246	return 0;
1247}
1248
1249
1250/**
1251 * int journal_load() - Read journal from disk.
1252 * @journal: Journal to act on.
1253 *
1254 * Given a journal_t structure which tells us which disk blocks contain
1255 * a journal, read the journal from disk to initialise the in-memory
1256 * structures.
1257 */
1258int journal_load(journal_t *journal)
1259{
1260	int err;
1261	journal_superblock_t *sb;
1262
1263	err = load_superblock(journal);
1264	if (err)
1265		return err;
1266
1267	sb = journal->j_superblock;
1268	/* If this is a V2 superblock, then we have to check the
1269	 * features flags on it. */
1270
1271	if (journal->j_format_version >= 2) {
1272		if ((sb->s_feature_ro_compat &
1273		     ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1274		    (sb->s_feature_incompat &
1275		     ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1276			printk (KERN_WARNING
1277				"JBD: Unrecognised features on journal\n");
1278			return -EINVAL;
1279		}
1280	}
1281
1282	/* Let the recovery code check whether it needs to recover any
1283	 * data from the journal. */
1284	if (journal_recover(journal))
1285		goto recovery_error;
1286
1287	/* OK, we've finished with the dynamic journal bits:
1288	 * reinitialise the dynamic contents of the superblock in memory
1289	 * and reset them on disk. */
1290	if (journal_reset(journal))
1291		goto recovery_error;
1292
1293	journal->j_flags &= ~JFS_ABORT;
1294	journal->j_flags |= JFS_LOADED;
1295	return 0;
1296
1297recovery_error:
1298	printk (KERN_WARNING "JBD: recovery failed\n");
1299	return -EIO;
1300}
1301
1302/**
1303 * void journal_destroy() - Release a journal_t structure.
1304 * @journal: Journal to act on.
1305 *
1306 * Release a journal_t structure once it is no longer in use by the
1307 * journaled object.
1308 * Return <0 if we couldn't clean up the journal.
1309 */
1310int journal_destroy(journal_t *journal)
1311{
1312	int err = 0;
1313
1314	
1315	/* Wait for the commit thread to wake up and die. */
1316	journal_kill_thread(journal);
1317
1318	/* Force a final log commit */
1319	if (journal->j_running_transaction)
1320		journal_commit_transaction(journal);
1321
1322	/* Force any old transactions to disk */
1323
1324	/* We cannot race with anybody but must keep assertions happy */
1325	mutex_lock(&journal->j_checkpoint_mutex);
1326	/* Totally anal locking here... */
1327	spin_lock(&journal->j_list_lock);
1328	while (journal->j_checkpoint_transactions != NULL) {
1329		spin_unlock(&journal->j_list_lock);
1330		log_do_checkpoint(journal);
1331		spin_lock(&journal->j_list_lock);
1332	}
1333
1334	J_ASSERT(journal->j_running_transaction == NULL);
1335	J_ASSERT(journal->j_committing_transaction == NULL);
1336	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1337	spin_unlock(&journal->j_list_lock);
1338
1339	if (journal->j_sb_buffer) {
1340		if (!is_journal_aborted(journal)) {
1341			journal->j_tail_sequence =
1342				++journal->j_transaction_sequence;
1343			mark_journal_empty(journal);
1344		} else
1345			err = -EIO;
1346		brelse(journal->j_sb_buffer);
1347	}
1348	mutex_unlock(&journal->j_checkpoint_mutex);
1349
1350	if (journal->j_inode)
1351		iput(journal->j_inode);
1352	if (journal->j_revoke)
1353		journal_destroy_revoke(journal);
1354	kfree(journal->j_wbuf);
1355	kfree(journal);
1356
1357	return err;
1358}
1359
1360
1361/**
1362 *int journal_check_used_features () - Check if features specified are used.
1363 * @journal: Journal to check.
1364 * @compat: bitmask of compatible features
1365 * @ro: bitmask of features that force read-only mount
1366 * @incompat: bitmask of incompatible features
1367 *
1368 * Check whether the journal uses all of a given set of
1369 * features.  Return true (non-zero) if it does.
1370 **/
1371
1372int journal_check_used_features (journal_t *journal, unsigned long compat,
1373				 unsigned long ro, unsigned long incompat)
1374{
1375	journal_superblock_t *sb;
1376
1377	if (!compat && !ro && !incompat)
1378		return 1;
1379	if (journal->j_format_version == 1)
1380		return 0;
1381
1382	sb = journal->j_superblock;
1383
1384	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1385	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1386	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1387		return 1;
1388
1389	return 0;
1390}
1391
1392/**
1393 * int journal_check_available_features() - Check feature set in journalling layer
1394 * @journal: Journal to check.
1395 * @compat: bitmask of compatible features
1396 * @ro: bitmask of features that force read-only mount
1397 * @incompat: bitmask of incompatible features
1398 *
1399 * Check whether the journaling code supports the use of
1400 * all of a given set of features on this journal.  Return true
1401 * (non-zero) if it can. */
1402
1403int journal_check_available_features (journal_t *journal, unsigned long compat,
1404				      unsigned long ro, unsigned long incompat)
1405{
1406	if (!compat && !ro && !incompat)
1407		return 1;
1408
1409	/* We can support any known requested features iff the
1410	 * superblock is in version 2.  Otherwise we fail to support any
1411	 * extended sb features. */
1412
1413	if (journal->j_format_version != 2)
1414		return 0;
1415
1416	if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1417	    (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1418	    (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1419		return 1;
1420
1421	return 0;
1422}
1423
1424/**
1425 * int journal_set_features () - Mark a given journal feature in the superblock
1426 * @journal: Journal to act on.
1427 * @compat: bitmask of compatible features
1428 * @ro: bitmask of features that force read-only mount
1429 * @incompat: bitmask of incompatible features
1430 *
1431 * Mark a given journal feature as present on the
1432 * superblock.  Returns true if the requested features could be set.
1433 *
1434 */
1435
1436int journal_set_features (journal_t *journal, unsigned long compat,
1437			  unsigned long ro, unsigned long incompat)
1438{
1439	journal_superblock_t *sb;
1440
1441	if (journal_check_used_features(journal, compat, ro, incompat))
1442		return 1;
1443
1444	if (!journal_check_available_features(journal, compat, ro, incompat))
1445		return 0;
1446
1447	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1448		  compat, ro, incompat);
1449
1450	sb = journal->j_superblock;
1451
1452	sb->s_feature_compat    |= cpu_to_be32(compat);
1453	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1454	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1455
1456	return 1;
1457}
1458
1459
1460/**
1461 * int journal_update_format () - Update on-disk journal structure.
1462 * @journal: Journal to act on.
1463 *
1464 * Given an initialised but unloaded journal struct, poke about in the
1465 * on-disk structure to update it to the most recent supported version.
1466 */
1467int journal_update_format (journal_t *journal)
1468{
1469	journal_superblock_t *sb;
1470	int err;
1471
1472	err = journal_get_superblock(journal);
1473	if (err)
1474		return err;
1475
1476	sb = journal->j_superblock;
1477
1478	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1479	case JFS_SUPERBLOCK_V2:
1480		return 0;
1481	case JFS_SUPERBLOCK_V1:
1482		return journal_convert_superblock_v1(journal, sb);
1483	default:
1484		break;
1485	}
1486	return -EINVAL;
1487}
1488
1489static int journal_convert_superblock_v1(journal_t *journal,
1490					 journal_superblock_t *sb)
1491{
1492	int offset, blocksize;
1493	struct buffer_head *bh;
1494
1495	printk(KERN_WARNING
1496		"JBD: Converting superblock from version 1 to 2.\n");
1497
1498	/* Pre-initialise new fields to zero */
1499	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1500	blocksize = be32_to_cpu(sb->s_blocksize);
1501	memset(&sb->s_feature_compat, 0, blocksize-offset);
1502
1503	sb->s_nr_users = cpu_to_be32(1);
1504	sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1505	journal->j_format_version = 2;
1506
1507	bh = journal->j_sb_buffer;
1508	BUFFER_TRACE(bh, "marking dirty");
1509	mark_buffer_dirty(bh);
1510	sync_dirty_buffer(bh);
1511	return 0;
1512}
1513
1514
1515/**
1516 * int journal_flush () - Flush journal
1517 * @journal: Journal to act on.
1518 *
1519 * Flush all data for a given journal to disk and empty the journal.
1520 * Filesystems can use this when remounting readonly to ensure that
1521 * recovery does not need to happen on remount.
1522 */
1523
1524int journal_flush(journal_t *journal)
1525{
1526	int err = 0;
1527	transaction_t *transaction = NULL;
1528
1529	spin_lock(&journal->j_state_lock);
1530
1531	/* Force everything buffered to the log... */
1532	if (journal->j_running_transaction) {
1533		transaction = journal->j_running_transaction;
1534		__log_start_commit(journal, transaction->t_tid);
1535	} else if (journal->j_committing_transaction)
1536		transaction = journal->j_committing_transaction;
1537
1538	/* Wait for the log commit to complete... */
1539	if (transaction) {
1540		tid_t tid = transaction->t_tid;
1541
1542		spin_unlock(&journal->j_state_lock);
1543		log_wait_commit(journal, tid);
1544	} else {
1545		spin_unlock(&journal->j_state_lock);
1546	}
1547
1548	/* ...and flush everything in the log out to disk. */
1549	spin_lock(&journal->j_list_lock);
1550	while (!err && journal->j_checkpoint_transactions != NULL) {
1551		spin_unlock(&journal->j_list_lock);
1552		mutex_lock(&journal->j_checkpoint_mutex);
1553		err = log_do_checkpoint(journal);
1554		mutex_unlock(&journal->j_checkpoint_mutex);
1555		spin_lock(&journal->j_list_lock);
1556	}
1557	spin_unlock(&journal->j_list_lock);
1558
1559	if (is_journal_aborted(journal))
1560		return -EIO;
1561
1562	mutex_lock(&journal->j_checkpoint_mutex);
1563	cleanup_journal_tail(journal);
1564
1565	/* Finally, mark the journal as really needing no recovery.
1566	 * This sets s_start==0 in the underlying superblock, which is
1567	 * the magic code for a fully-recovered superblock.  Any future
1568	 * commits of data to the journal will restore the current
1569	 * s_start value. */
1570	mark_journal_empty(journal);
1571	mutex_unlock(&journal->j_checkpoint_mutex);
1572	spin_lock(&journal->j_state_lock);
1573	J_ASSERT(!journal->j_running_transaction);
1574	J_ASSERT(!journal->j_committing_transaction);
1575	J_ASSERT(!journal->j_checkpoint_transactions);
1576	J_ASSERT(journal->j_head == journal->j_tail);
1577	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1578	spin_unlock(&journal->j_state_lock);
1579	return 0;
1580}
1581
1582/**
1583 * int journal_wipe() - Wipe journal contents
1584 * @journal: Journal to act on.
1585 * @write: flag (see below)
1586 *
1587 * Wipe out all of the contents of a journal, safely.  This will produce
1588 * a warning if the journal contains any valid recovery information.
1589 * Must be called between journal_init_*() and journal_load().
1590 *
1591 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1592 * we merely suppress recovery.
1593 */
1594
1595int journal_wipe(journal_t *journal, int write)
1596{
1597	int err = 0;
1598
1599	J_ASSERT (!(journal->j_flags & JFS_LOADED));
1600
1601	err = load_superblock(journal);
1602	if (err)
1603		return err;
1604
1605	if (!journal->j_tail)
1606		goto no_recovery;
1607
1608	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1609		write ? "Clearing" : "Ignoring");
1610
1611	err = journal_skip_recovery(journal);
1612	if (write) {
1613		/* Lock to make assertions happy... */
1614		mutex_lock(&journal->j_checkpoint_mutex);
1615		mark_journal_empty(journal);
1616		mutex_unlock(&journal->j_checkpoint_mutex);
1617	}
1618
1619 no_recovery:
1620	return err;
1621}
1622
1623/*
1624 * journal_dev_name: format a character string to describe on what
1625 * device this journal is present.
1626 */
1627
1628static const char *journal_dev_name(journal_t *journal, char *buffer)
1629{
1630	struct block_device *bdev;
1631
1632	if (journal->j_inode)
1633		bdev = journal->j_inode->i_sb->s_bdev;
1634	else
1635		bdev = journal->j_dev;
1636
1637	return bdevname(bdev, buffer);
1638}
1639
1640/*
1641 * Journal abort has very specific semantics, which we describe
1642 * for journal abort.
1643 *
1644 * Two internal function, which provide abort to te jbd layer
1645 * itself are here.
1646 */
1647
1648/*
1649 * Quick version for internal journal use (doesn't lock the journal).
1650 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1651 * and don't attempt to make any other journal updates.
1652 */
1653static void __journal_abort_hard(journal_t *journal)
1654{
1655	transaction_t *transaction;
1656	char b[BDEVNAME_SIZE];
1657
1658	if (journal->j_flags & JFS_ABORT)
1659		return;
1660
1661	printk(KERN_ERR "Aborting journal on device %s.\n",
1662		journal_dev_name(journal, b));
1663
1664	spin_lock(&journal->j_state_lock);
1665	journal->j_flags |= JFS_ABORT;
1666	transaction = journal->j_running_transaction;
1667	if (transaction)
1668		__log_start_commit(journal, transaction->t_tid);
1669	spin_unlock(&journal->j_state_lock);
1670}
1671
1672/* Soft abort: record the abort error status in the journal superblock,
1673 * but don't do any other IO. */
1674static void __journal_abort_soft (journal_t *journal, int errno)
1675{
1676	if (journal->j_flags & JFS_ABORT)
1677		return;
1678
1679	if (!journal->j_errno)
1680		journal->j_errno = errno;
1681
1682	__journal_abort_hard(journal);
1683
1684	if (errno)
1685		journal_update_sb_errno(journal);
1686}
1687
1688/**
1689 * void journal_abort () - Shutdown the journal immediately.
1690 * @journal: the journal to shutdown.
1691 * @errno:   an error number to record in the journal indicating
1692 *           the reason for the shutdown.
1693 *
1694 * Perform a complete, immediate shutdown of the ENTIRE
1695 * journal (not of a single transaction).  This operation cannot be
1696 * undone without closing and reopening the journal.
1697 *
1698 * The journal_abort function is intended to support higher level error
1699 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1700 * mode.
1701 *
1702 * Journal abort has very specific semantics.  Any existing dirty,
1703 * unjournaled buffers in the main filesystem will still be written to
1704 * disk by bdflush, but the journaling mechanism will be suspended
1705 * immediately and no further transaction commits will be honoured.
1706 *
1707 * Any dirty, journaled buffers will be written back to disk without
1708 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1709 * filesystem, but we _do_ attempt to leave as much data as possible
1710 * behind for fsck to use for cleanup.
1711 *
1712 * Any attempt to get a new transaction handle on a journal which is in
1713 * ABORT state will just result in an -EROFS error return.  A
1714 * journal_stop on an existing handle will return -EIO if we have
1715 * entered abort state during the update.
1716 *
1717 * Recursive transactions are not disturbed by journal abort until the
1718 * final journal_stop, which will receive the -EIO error.
1719 *
1720 * Finally, the journal_abort call allows the caller to supply an errno
1721 * which will be recorded (if possible) in the journal superblock.  This
1722 * allows a client to record failure conditions in the middle of a
1723 * transaction without having to complete the transaction to record the
1724 * failure to disk.  ext3_error, for example, now uses this
1725 * functionality.
1726 *
1727 * Errors which originate from within the journaling layer will NOT
1728 * supply an errno; a null errno implies that absolutely no further
1729 * writes are done to the journal (unless there are any already in
1730 * progress).
1731 *
1732 */
1733
1734void journal_abort(journal_t *journal, int errno)
1735{
1736	__journal_abort_soft(journal, errno);
1737}
1738
1739/**
1740 * int journal_errno () - returns the journal's error state.
1741 * @journal: journal to examine.
1742 *
1743 * This is the errno numbet set with journal_abort(), the last
1744 * time the journal was mounted - if the journal was stopped
1745 * without calling abort this will be 0.
1746 *
1747 * If the journal has been aborted on this mount time -EROFS will
1748 * be returned.
1749 */
1750int journal_errno(journal_t *journal)
1751{
1752	int err;
1753
1754	spin_lock(&journal->j_state_lock);
1755	if (journal->j_flags & JFS_ABORT)
1756		err = -EROFS;
1757	else
1758		err = journal->j_errno;
1759	spin_unlock(&journal->j_state_lock);
1760	return err;
1761}
1762
1763/**
1764 * int journal_clear_err () - clears the journal's error state
1765 * @journal: journal to act on.
1766 *
1767 * An error must be cleared or Acked to take a FS out of readonly
1768 * mode.
1769 */
1770int journal_clear_err(journal_t *journal)
1771{
1772	int err = 0;
1773
1774	spin_lock(&journal->j_state_lock);
1775	if (journal->j_flags & JFS_ABORT)
1776		err = -EROFS;
1777	else
1778		journal->j_errno = 0;
1779	spin_unlock(&journal->j_state_lock);
1780	return err;
1781}
1782
1783/**
1784 * void journal_ack_err() - Ack journal err.
1785 * @journal: journal to act on.
1786 *
1787 * An error must be cleared or Acked to take a FS out of readonly
1788 * mode.
1789 */
1790void journal_ack_err(journal_t *journal)
1791{
1792	spin_lock(&journal->j_state_lock);
1793	if (journal->j_errno)
1794		journal->j_flags |= JFS_ACK_ERR;
1795	spin_unlock(&journal->j_state_lock);
1796}
1797
1798int journal_blocks_per_page(struct inode *inode)
1799{
1800	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1801}
1802
1803/*
1804 * Journal_head storage management
1805 */
1806static struct kmem_cache *journal_head_cache;
1807#ifdef CONFIG_JBD_DEBUG
1808static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1809#endif
1810
1811static int journal_init_journal_head_cache(void)
1812{
1813	int retval;
1814
1815	J_ASSERT(journal_head_cache == NULL);
1816	journal_head_cache = kmem_cache_create("journal_head",
1817				sizeof(struct journal_head),
1818				0,		/* offset */
1819				SLAB_TEMPORARY,	/* flags */
1820				NULL);		/* ctor */
1821	retval = 0;
1822	if (!journal_head_cache) {
1823		retval = -ENOMEM;
1824		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1825	}
1826	return retval;
1827}
1828
1829static void journal_destroy_journal_head_cache(void)
1830{
1831	if (journal_head_cache) {
1832		kmem_cache_destroy(journal_head_cache);
1833		journal_head_cache = NULL;
1834	}
1835}
1836
1837/*
1838 * journal_head splicing and dicing
1839 */
1840static struct journal_head *journal_alloc_journal_head(void)
1841{
1842	struct journal_head *ret;
1843
1844#ifdef CONFIG_JBD_DEBUG
1845	atomic_inc(&nr_journal_heads);
1846#endif
1847	ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1848	if (ret == NULL) {
1849		jbd_debug(1, "out of memory for journal_head\n");
1850		printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1851				   __func__);
1852
1853		while (ret == NULL) {
1854			yield();
1855			ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1856		}
1857	}
1858	return ret;
1859}
1860
1861static void journal_free_journal_head(struct journal_head *jh)
1862{
1863#ifdef CONFIG_JBD_DEBUG
1864	atomic_dec(&nr_journal_heads);
1865	memset(jh, JBD_POISON_FREE, sizeof(*jh));
1866#endif
1867	kmem_cache_free(journal_head_cache, jh);
1868}
1869
1870/*
1871 * A journal_head is attached to a buffer_head whenever JBD has an
1872 * interest in the buffer.
1873 *
1874 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1875 * is set.  This bit is tested in core kernel code where we need to take
1876 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1877 * there.
1878 *
1879 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1880 *
1881 * When a buffer has its BH_JBD bit set it is immune from being released by
1882 * core kernel code, mainly via ->b_count.
1883 *
1884 * A journal_head is detached from its buffer_head when the journal_head's
1885 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1886 * transaction (b_cp_transaction) hold their references to b_jcount.
1887 *
1888 * Various places in the kernel want to attach a journal_head to a buffer_head
1889 * _before_ attaching the journal_head to a transaction.  To protect the
1890 * journal_head in this situation, journal_add_journal_head elevates the
1891 * journal_head's b_jcount refcount by one.  The caller must call
1892 * journal_put_journal_head() to undo this.
1893 *
1894 * So the typical usage would be:
1895 *
1896 *	(Attach a journal_head if needed.  Increments b_jcount)
1897 *	struct journal_head *jh = journal_add_journal_head(bh);
1898 *	...
1899 *      (Get another reference for transaction)
1900 *      journal_grab_journal_head(bh);
1901 *      jh->b_transaction = xxx;
1902 *      (Put original reference)
1903 *      journal_put_journal_head(jh);
1904 */
1905
1906/*
1907 * Give a buffer_head a journal_head.
1908 *
1909 * May sleep.
1910 */
1911struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1912{
1913	struct journal_head *jh;
1914	struct journal_head *new_jh = NULL;
1915
1916repeat:
1917	if (!buffer_jbd(bh)) {
1918		new_jh = journal_alloc_journal_head();
1919		memset(new_jh, 0, sizeof(*new_jh));
1920	}
1921
1922	jbd_lock_bh_journal_head(bh);
1923	if (buffer_jbd(bh)) {
1924		jh = bh2jh(bh);
1925	} else {
1926		J_ASSERT_BH(bh,
1927			(atomic_read(&bh->b_count) > 0) ||
1928			(bh->b_page && bh->b_page->mapping));
1929
1930		if (!new_jh) {
1931			jbd_unlock_bh_journal_head(bh);
1932			goto repeat;
1933		}
1934
1935		jh = new_jh;
1936		new_jh = NULL;		/* We consumed it */
1937		set_buffer_jbd(bh);
1938		bh->b_private = jh;
1939		jh->b_bh = bh;
1940		get_bh(bh);
1941		BUFFER_TRACE(bh, "added journal_head");
1942	}
1943	jh->b_jcount++;
1944	jbd_unlock_bh_journal_head(bh);
1945	if (new_jh)
1946		journal_free_journal_head(new_jh);
1947	return bh->b_private;
1948}
1949
1950/*
1951 * Grab a ref against this buffer_head's journal_head.  If it ended up not
1952 * having a journal_head, return NULL
1953 */
1954struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1955{
1956	struct journal_head *jh = NULL;
1957
1958	jbd_lock_bh_journal_head(bh);
1959	if (buffer_jbd(bh)) {
1960		jh = bh2jh(bh);
1961		jh->b_jcount++;
1962	}
1963	jbd_unlock_bh_journal_head(bh);
1964	return jh;
1965}
1966
1967static void __journal_remove_journal_head(struct buffer_head *bh)
1968{
1969	struct journal_head *jh = bh2jh(bh);
1970
1971	J_ASSERT_JH(jh, jh->b_jcount >= 0);
1972	J_ASSERT_JH(jh, jh->b_transaction == NULL);
1973	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1974	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
1975	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1976	J_ASSERT_BH(bh, buffer_jbd(bh));
1977	J_ASSERT_BH(bh, jh2bh(jh) == bh);
1978	BUFFER_TRACE(bh, "remove journal_head");
1979	if (jh->b_frozen_data) {
1980		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
1981		jbd_free(jh->b_frozen_data, bh->b_size);
1982	}
1983	if (jh->b_committed_data) {
1984		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
1985		jbd_free(jh->b_committed_data, bh->b_size);
1986	}
1987	bh->b_private = NULL;
1988	jh->b_bh = NULL;	/* debug, really */
1989	clear_buffer_jbd(bh);
1990	journal_free_journal_head(jh);
1991}
1992
1993/*
1994 * Drop a reference on the passed journal_head.  If it fell to zero then
1995 * release the journal_head from the buffer_head.
1996 */
1997void journal_put_journal_head(struct journal_head *jh)
1998{
1999	struct buffer_head *bh = jh2bh(jh);
2000
2001	jbd_lock_bh_journal_head(bh);
2002	J_ASSERT_JH(jh, jh->b_jcount > 0);
2003	--jh->b_jcount;
2004	if (!jh->b_jcount) {
2005		__journal_remove_journal_head(bh);
2006		jbd_unlock_bh_journal_head(bh);
2007		__brelse(bh);
2008	} else
2009		jbd_unlock_bh_journal_head(bh);
2010}
2011
2012/*
2013 * debugfs tunables
2014 */
2015#ifdef CONFIG_JBD_DEBUG
2016
2017u8 journal_enable_debug __read_mostly;
2018EXPORT_SYMBOL(journal_enable_debug);
2019
2020static struct dentry *jbd_debugfs_dir;
2021static struct dentry *jbd_debug;
2022
2023static void __init jbd_create_debugfs_entry(void)
2024{
2025	jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
2026	if (jbd_debugfs_dir)
2027		jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
2028					       jbd_debugfs_dir,
2029					       &journal_enable_debug);
2030}
2031
2032static void __exit jbd_remove_debugfs_entry(void)
2033{
2034	debugfs_remove(jbd_debug);
2035	debugfs_remove(jbd_debugfs_dir);
2036}
2037
2038#else
2039
2040static inline void jbd_create_debugfs_entry(void)
2041{
2042}
2043
2044static inline void jbd_remove_debugfs_entry(void)
2045{
2046}
2047
2048#endif
2049
2050struct kmem_cache *jbd_handle_cache;
2051
2052static int __init journal_init_handle_cache(void)
2053{
2054	jbd_handle_cache = kmem_cache_create("journal_handle",
2055				sizeof(handle_t),
2056				0,		/* offset */
2057				SLAB_TEMPORARY,	/* flags */
2058				NULL);		/* ctor */
2059	if (jbd_handle_cache == NULL) {
2060		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2061		return -ENOMEM;
2062	}
2063	return 0;
2064}
2065
2066static void journal_destroy_handle_cache(void)
2067{
2068	if (jbd_handle_cache)
2069		kmem_cache_destroy(jbd_handle_cache);
2070}
2071
2072/*
2073 * Module startup and shutdown
2074 */
2075
2076static int __init journal_init_caches(void)
2077{
2078	int ret;
2079
2080	ret = journal_init_revoke_caches();
2081	if (ret == 0)
2082		ret = journal_init_journal_head_cache();
2083	if (ret == 0)
2084		ret = journal_init_handle_cache();
2085	return ret;
2086}
2087
2088static void journal_destroy_caches(void)
2089{
2090	journal_destroy_revoke_caches();
2091	journal_destroy_journal_head_cache();
2092	journal_destroy_handle_cache();
2093}
2094
2095static int __init journal_init(void)
2096{
2097	int ret;
2098
2099	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2100
2101	ret = journal_init_caches();
2102	if (ret != 0)
2103		journal_destroy_caches();
2104	jbd_create_debugfs_entry();
2105	return ret;
2106}
2107
2108static void __exit journal_exit(void)
2109{
2110#ifdef CONFIG_JBD_DEBUG
2111	int n = atomic_read(&nr_journal_heads);
2112	if (n)
2113		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2114#endif
2115	jbd_remove_debugfs_entry();
2116	journal_destroy_caches();
2117}
2118
2119MODULE_LICENSE("GPL");
2120module_init(journal_init);
2121module_exit(journal_exit);
2122