Loading...
1/*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18*/
19#include <linux/export.h>
20#include <linux/moduleloader.h>
21#include <linux/ftrace_event.h>
22#include <linux/init.h>
23#include <linux/kallsyms.h>
24#include <linux/file.h>
25#include <linux/fs.h>
26#include <linux/sysfs.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/vmalloc.h>
30#include <linux/elf.h>
31#include <linux/proc_fs.h>
32#include <linux/security.h>
33#include <linux/seq_file.h>
34#include <linux/syscalls.h>
35#include <linux/fcntl.h>
36#include <linux/rcupdate.h>
37#include <linux/capability.h>
38#include <linux/cpu.h>
39#include <linux/moduleparam.h>
40#include <linux/errno.h>
41#include <linux/err.h>
42#include <linux/vermagic.h>
43#include <linux/notifier.h>
44#include <linux/sched.h>
45#include <linux/stop_machine.h>
46#include <linux/device.h>
47#include <linux/string.h>
48#include <linux/mutex.h>
49#include <linux/rculist.h>
50#include <asm/uaccess.h>
51#include <asm/cacheflush.h>
52#include <asm/mmu_context.h>
53#include <linux/license.h>
54#include <asm/sections.h>
55#include <linux/tracepoint.h>
56#include <linux/ftrace.h>
57#include <linux/async.h>
58#include <linux/percpu.h>
59#include <linux/kmemleak.h>
60#include <linux/jump_label.h>
61#include <linux/pfn.h>
62#include <linux/bsearch.h>
63#include <linux/fips.h>
64#include <uapi/linux/module.h>
65#include "module-internal.h"
66
67#define CREATE_TRACE_POINTS
68#include <trace/events/module.h>
69
70#ifndef ARCH_SHF_SMALL
71#define ARCH_SHF_SMALL 0
72#endif
73
74/*
75 * Modules' sections will be aligned on page boundaries
76 * to ensure complete separation of code and data, but
77 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
78 */
79#ifdef CONFIG_DEBUG_SET_MODULE_RONX
80# define debug_align(X) ALIGN(X, PAGE_SIZE)
81#else
82# define debug_align(X) (X)
83#endif
84
85/*
86 * Given BASE and SIZE this macro calculates the number of pages the
87 * memory regions occupies
88 */
89#define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
90 (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
91 PFN_DOWN((unsigned long)BASE) + 1) \
92 : (0UL))
93
94/* If this is set, the section belongs in the init part of the module */
95#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
96
97/*
98 * Mutex protects:
99 * 1) List of modules (also safely readable with preempt_disable),
100 * 2) module_use links,
101 * 3) module_addr_min/module_addr_max.
102 * (delete uses stop_machine/add uses RCU list operations). */
103DEFINE_MUTEX(module_mutex);
104EXPORT_SYMBOL_GPL(module_mutex);
105static LIST_HEAD(modules);
106#ifdef CONFIG_KGDB_KDB
107struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
108#endif /* CONFIG_KGDB_KDB */
109
110#ifdef CONFIG_MODULE_SIG
111#ifdef CONFIG_MODULE_SIG_FORCE
112static bool sig_enforce = true;
113#else
114static bool sig_enforce = false;
115
116static int param_set_bool_enable_only(const char *val,
117 const struct kernel_param *kp)
118{
119 int err;
120 bool test;
121 struct kernel_param dummy_kp = *kp;
122
123 dummy_kp.arg = &test;
124
125 err = param_set_bool(val, &dummy_kp);
126 if (err)
127 return err;
128
129 /* Don't let them unset it once it's set! */
130 if (!test && sig_enforce)
131 return -EROFS;
132
133 if (test)
134 sig_enforce = true;
135 return 0;
136}
137
138static const struct kernel_param_ops param_ops_bool_enable_only = {
139 .flags = KERNEL_PARAM_FL_NOARG,
140 .set = param_set_bool_enable_only,
141 .get = param_get_bool,
142};
143#define param_check_bool_enable_only param_check_bool
144
145module_param(sig_enforce, bool_enable_only, 0644);
146#endif /* !CONFIG_MODULE_SIG_FORCE */
147#endif /* CONFIG_MODULE_SIG */
148
149/* Block module loading/unloading? */
150int modules_disabled = 0;
151core_param(nomodule, modules_disabled, bint, 0);
152
153/* Waiting for a module to finish initializing? */
154static DECLARE_WAIT_QUEUE_HEAD(module_wq);
155
156static BLOCKING_NOTIFIER_HEAD(module_notify_list);
157
158/* Bounds of module allocation, for speeding __module_address.
159 * Protected by module_mutex. */
160static unsigned long module_addr_min = -1UL, module_addr_max = 0;
161
162int register_module_notifier(struct notifier_block * nb)
163{
164 return blocking_notifier_chain_register(&module_notify_list, nb);
165}
166EXPORT_SYMBOL(register_module_notifier);
167
168int unregister_module_notifier(struct notifier_block * nb)
169{
170 return blocking_notifier_chain_unregister(&module_notify_list, nb);
171}
172EXPORT_SYMBOL(unregister_module_notifier);
173
174struct load_info {
175 Elf_Ehdr *hdr;
176 unsigned long len;
177 Elf_Shdr *sechdrs;
178 char *secstrings, *strtab;
179 unsigned long symoffs, stroffs;
180 struct _ddebug *debug;
181 unsigned int num_debug;
182 bool sig_ok;
183 struct {
184 unsigned int sym, str, mod, vers, info, pcpu;
185 } index;
186};
187
188/* We require a truly strong try_module_get(): 0 means failure due to
189 ongoing or failed initialization etc. */
190static inline int strong_try_module_get(struct module *mod)
191{
192 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
193 if (mod && mod->state == MODULE_STATE_COMING)
194 return -EBUSY;
195 if (try_module_get(mod))
196 return 0;
197 else
198 return -ENOENT;
199}
200
201static inline void add_taint_module(struct module *mod, unsigned flag,
202 enum lockdep_ok lockdep_ok)
203{
204 add_taint(flag, lockdep_ok);
205 mod->taints |= (1U << flag);
206}
207
208/*
209 * A thread that wants to hold a reference to a module only while it
210 * is running can call this to safely exit. nfsd and lockd use this.
211 */
212void __module_put_and_exit(struct module *mod, long code)
213{
214 module_put(mod);
215 do_exit(code);
216}
217EXPORT_SYMBOL(__module_put_and_exit);
218
219/* Find a module section: 0 means not found. */
220static unsigned int find_sec(const struct load_info *info, const char *name)
221{
222 unsigned int i;
223
224 for (i = 1; i < info->hdr->e_shnum; i++) {
225 Elf_Shdr *shdr = &info->sechdrs[i];
226 /* Alloc bit cleared means "ignore it." */
227 if ((shdr->sh_flags & SHF_ALLOC)
228 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
229 return i;
230 }
231 return 0;
232}
233
234/* Find a module section, or NULL. */
235static void *section_addr(const struct load_info *info, const char *name)
236{
237 /* Section 0 has sh_addr 0. */
238 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
239}
240
241/* Find a module section, or NULL. Fill in number of "objects" in section. */
242static void *section_objs(const struct load_info *info,
243 const char *name,
244 size_t object_size,
245 unsigned int *num)
246{
247 unsigned int sec = find_sec(info, name);
248
249 /* Section 0 has sh_addr 0 and sh_size 0. */
250 *num = info->sechdrs[sec].sh_size / object_size;
251 return (void *)info->sechdrs[sec].sh_addr;
252}
253
254/* Provided by the linker */
255extern const struct kernel_symbol __start___ksymtab[];
256extern const struct kernel_symbol __stop___ksymtab[];
257extern const struct kernel_symbol __start___ksymtab_gpl[];
258extern const struct kernel_symbol __stop___ksymtab_gpl[];
259extern const struct kernel_symbol __start___ksymtab_gpl_future[];
260extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
261extern const unsigned long __start___kcrctab[];
262extern const unsigned long __start___kcrctab_gpl[];
263extern const unsigned long __start___kcrctab_gpl_future[];
264#ifdef CONFIG_UNUSED_SYMBOLS
265extern const struct kernel_symbol __start___ksymtab_unused[];
266extern const struct kernel_symbol __stop___ksymtab_unused[];
267extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
268extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
269extern const unsigned long __start___kcrctab_unused[];
270extern const unsigned long __start___kcrctab_unused_gpl[];
271#endif
272
273#ifndef CONFIG_MODVERSIONS
274#define symversion(base, idx) NULL
275#else
276#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
277#endif
278
279static bool each_symbol_in_section(const struct symsearch *arr,
280 unsigned int arrsize,
281 struct module *owner,
282 bool (*fn)(const struct symsearch *syms,
283 struct module *owner,
284 void *data),
285 void *data)
286{
287 unsigned int j;
288
289 for (j = 0; j < arrsize; j++) {
290 if (fn(&arr[j], owner, data))
291 return true;
292 }
293
294 return false;
295}
296
297/* Returns true as soon as fn returns true, otherwise false. */
298bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
299 struct module *owner,
300 void *data),
301 void *data)
302{
303 struct module *mod;
304 static const struct symsearch arr[] = {
305 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
306 NOT_GPL_ONLY, false },
307 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
308 __start___kcrctab_gpl,
309 GPL_ONLY, false },
310 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
311 __start___kcrctab_gpl_future,
312 WILL_BE_GPL_ONLY, false },
313#ifdef CONFIG_UNUSED_SYMBOLS
314 { __start___ksymtab_unused, __stop___ksymtab_unused,
315 __start___kcrctab_unused,
316 NOT_GPL_ONLY, true },
317 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
318 __start___kcrctab_unused_gpl,
319 GPL_ONLY, true },
320#endif
321 };
322
323 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
324 return true;
325
326 list_for_each_entry_rcu(mod, &modules, list) {
327 struct symsearch arr[] = {
328 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
329 NOT_GPL_ONLY, false },
330 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
331 mod->gpl_crcs,
332 GPL_ONLY, false },
333 { mod->gpl_future_syms,
334 mod->gpl_future_syms + mod->num_gpl_future_syms,
335 mod->gpl_future_crcs,
336 WILL_BE_GPL_ONLY, false },
337#ifdef CONFIG_UNUSED_SYMBOLS
338 { mod->unused_syms,
339 mod->unused_syms + mod->num_unused_syms,
340 mod->unused_crcs,
341 NOT_GPL_ONLY, true },
342 { mod->unused_gpl_syms,
343 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
344 mod->unused_gpl_crcs,
345 GPL_ONLY, true },
346#endif
347 };
348
349 if (mod->state == MODULE_STATE_UNFORMED)
350 continue;
351
352 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
353 return true;
354 }
355 return false;
356}
357EXPORT_SYMBOL_GPL(each_symbol_section);
358
359struct find_symbol_arg {
360 /* Input */
361 const char *name;
362 bool gplok;
363 bool warn;
364
365 /* Output */
366 struct module *owner;
367 const unsigned long *crc;
368 const struct kernel_symbol *sym;
369};
370
371static bool check_symbol(const struct symsearch *syms,
372 struct module *owner,
373 unsigned int symnum, void *data)
374{
375 struct find_symbol_arg *fsa = data;
376
377 if (!fsa->gplok) {
378 if (syms->licence == GPL_ONLY)
379 return false;
380 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
381 pr_warn("Symbol %s is being used by a non-GPL module, "
382 "which will not be allowed in the future\n",
383 fsa->name);
384 }
385 }
386
387#ifdef CONFIG_UNUSED_SYMBOLS
388 if (syms->unused && fsa->warn) {
389 pr_warn("Symbol %s is marked as UNUSED, however this module is "
390 "using it.\n", fsa->name);
391 pr_warn("This symbol will go away in the future.\n");
392 pr_warn("Please evalute if this is the right api to use and if "
393 "it really is, submit a report the linux kernel "
394 "mailinglist together with submitting your code for "
395 "inclusion.\n");
396 }
397#endif
398
399 fsa->owner = owner;
400 fsa->crc = symversion(syms->crcs, symnum);
401 fsa->sym = &syms->start[symnum];
402 return true;
403}
404
405static int cmp_name(const void *va, const void *vb)
406{
407 const char *a;
408 const struct kernel_symbol *b;
409 a = va; b = vb;
410 return strcmp(a, b->name);
411}
412
413static bool find_symbol_in_section(const struct symsearch *syms,
414 struct module *owner,
415 void *data)
416{
417 struct find_symbol_arg *fsa = data;
418 struct kernel_symbol *sym;
419
420 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
421 sizeof(struct kernel_symbol), cmp_name);
422
423 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
424 return true;
425
426 return false;
427}
428
429/* Find a symbol and return it, along with, (optional) crc and
430 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
431const struct kernel_symbol *find_symbol(const char *name,
432 struct module **owner,
433 const unsigned long **crc,
434 bool gplok,
435 bool warn)
436{
437 struct find_symbol_arg fsa;
438
439 fsa.name = name;
440 fsa.gplok = gplok;
441 fsa.warn = warn;
442
443 if (each_symbol_section(find_symbol_in_section, &fsa)) {
444 if (owner)
445 *owner = fsa.owner;
446 if (crc)
447 *crc = fsa.crc;
448 return fsa.sym;
449 }
450
451 pr_debug("Failed to find symbol %s\n", name);
452 return NULL;
453}
454EXPORT_SYMBOL_GPL(find_symbol);
455
456/* Search for module by name: must hold module_mutex. */
457static struct module *find_module_all(const char *name, size_t len,
458 bool even_unformed)
459{
460 struct module *mod;
461
462 list_for_each_entry(mod, &modules, list) {
463 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
464 continue;
465 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
466 return mod;
467 }
468 return NULL;
469}
470
471struct module *find_module(const char *name)
472{
473 return find_module_all(name, strlen(name), false);
474}
475EXPORT_SYMBOL_GPL(find_module);
476
477#ifdef CONFIG_SMP
478
479static inline void __percpu *mod_percpu(struct module *mod)
480{
481 return mod->percpu;
482}
483
484static int percpu_modalloc(struct module *mod, struct load_info *info)
485{
486 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
487 unsigned long align = pcpusec->sh_addralign;
488
489 if (!pcpusec->sh_size)
490 return 0;
491
492 if (align > PAGE_SIZE) {
493 pr_warn("%s: per-cpu alignment %li > %li\n",
494 mod->name, align, PAGE_SIZE);
495 align = PAGE_SIZE;
496 }
497
498 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
499 if (!mod->percpu) {
500 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
501 mod->name, (unsigned long)pcpusec->sh_size);
502 return -ENOMEM;
503 }
504 mod->percpu_size = pcpusec->sh_size;
505 return 0;
506}
507
508static void percpu_modfree(struct module *mod)
509{
510 free_percpu(mod->percpu);
511}
512
513static unsigned int find_pcpusec(struct load_info *info)
514{
515 return find_sec(info, ".data..percpu");
516}
517
518static void percpu_modcopy(struct module *mod,
519 const void *from, unsigned long size)
520{
521 int cpu;
522
523 for_each_possible_cpu(cpu)
524 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
525}
526
527/**
528 * is_module_percpu_address - test whether address is from module static percpu
529 * @addr: address to test
530 *
531 * Test whether @addr belongs to module static percpu area.
532 *
533 * RETURNS:
534 * %true if @addr is from module static percpu area
535 */
536bool is_module_percpu_address(unsigned long addr)
537{
538 struct module *mod;
539 unsigned int cpu;
540
541 preempt_disable();
542
543 list_for_each_entry_rcu(mod, &modules, list) {
544 if (mod->state == MODULE_STATE_UNFORMED)
545 continue;
546 if (!mod->percpu_size)
547 continue;
548 for_each_possible_cpu(cpu) {
549 void *start = per_cpu_ptr(mod->percpu, cpu);
550
551 if ((void *)addr >= start &&
552 (void *)addr < start + mod->percpu_size) {
553 preempt_enable();
554 return true;
555 }
556 }
557 }
558
559 preempt_enable();
560 return false;
561}
562
563#else /* ... !CONFIG_SMP */
564
565static inline void __percpu *mod_percpu(struct module *mod)
566{
567 return NULL;
568}
569static int percpu_modalloc(struct module *mod, struct load_info *info)
570{
571 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
572 if (info->sechdrs[info->index.pcpu].sh_size != 0)
573 return -ENOMEM;
574 return 0;
575}
576static inline void percpu_modfree(struct module *mod)
577{
578}
579static unsigned int find_pcpusec(struct load_info *info)
580{
581 return 0;
582}
583static inline void percpu_modcopy(struct module *mod,
584 const void *from, unsigned long size)
585{
586 /* pcpusec should be 0, and size of that section should be 0. */
587 BUG_ON(size != 0);
588}
589bool is_module_percpu_address(unsigned long addr)
590{
591 return false;
592}
593
594#endif /* CONFIG_SMP */
595
596#define MODINFO_ATTR(field) \
597static void setup_modinfo_##field(struct module *mod, const char *s) \
598{ \
599 mod->field = kstrdup(s, GFP_KERNEL); \
600} \
601static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
602 struct module_kobject *mk, char *buffer) \
603{ \
604 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
605} \
606static int modinfo_##field##_exists(struct module *mod) \
607{ \
608 return mod->field != NULL; \
609} \
610static void free_modinfo_##field(struct module *mod) \
611{ \
612 kfree(mod->field); \
613 mod->field = NULL; \
614} \
615static struct module_attribute modinfo_##field = { \
616 .attr = { .name = __stringify(field), .mode = 0444 }, \
617 .show = show_modinfo_##field, \
618 .setup = setup_modinfo_##field, \
619 .test = modinfo_##field##_exists, \
620 .free = free_modinfo_##field, \
621};
622
623MODINFO_ATTR(version);
624MODINFO_ATTR(srcversion);
625
626static char last_unloaded_module[MODULE_NAME_LEN+1];
627
628#ifdef CONFIG_MODULE_UNLOAD
629
630EXPORT_TRACEPOINT_SYMBOL(module_get);
631
632/* Init the unload section of the module. */
633static int module_unload_init(struct module *mod)
634{
635 mod->refptr = alloc_percpu(struct module_ref);
636 if (!mod->refptr)
637 return -ENOMEM;
638
639 INIT_LIST_HEAD(&mod->source_list);
640 INIT_LIST_HEAD(&mod->target_list);
641
642 /* Hold reference count during initialization. */
643 raw_cpu_write(mod->refptr->incs, 1);
644
645 return 0;
646}
647
648/* Does a already use b? */
649static int already_uses(struct module *a, struct module *b)
650{
651 struct module_use *use;
652
653 list_for_each_entry(use, &b->source_list, source_list) {
654 if (use->source == a) {
655 pr_debug("%s uses %s!\n", a->name, b->name);
656 return 1;
657 }
658 }
659 pr_debug("%s does not use %s!\n", a->name, b->name);
660 return 0;
661}
662
663/*
664 * Module a uses b
665 * - we add 'a' as a "source", 'b' as a "target" of module use
666 * - the module_use is added to the list of 'b' sources (so
667 * 'b' can walk the list to see who sourced them), and of 'a'
668 * targets (so 'a' can see what modules it targets).
669 */
670static int add_module_usage(struct module *a, struct module *b)
671{
672 struct module_use *use;
673
674 pr_debug("Allocating new usage for %s.\n", a->name);
675 use = kmalloc(sizeof(*use), GFP_ATOMIC);
676 if (!use) {
677 pr_warn("%s: out of memory loading\n", a->name);
678 return -ENOMEM;
679 }
680
681 use->source = a;
682 use->target = b;
683 list_add(&use->source_list, &b->source_list);
684 list_add(&use->target_list, &a->target_list);
685 return 0;
686}
687
688/* Module a uses b: caller needs module_mutex() */
689int ref_module(struct module *a, struct module *b)
690{
691 int err;
692
693 if (b == NULL || already_uses(a, b))
694 return 0;
695
696 /* If module isn't available, we fail. */
697 err = strong_try_module_get(b);
698 if (err)
699 return err;
700
701 err = add_module_usage(a, b);
702 if (err) {
703 module_put(b);
704 return err;
705 }
706 return 0;
707}
708EXPORT_SYMBOL_GPL(ref_module);
709
710/* Clear the unload stuff of the module. */
711static void module_unload_free(struct module *mod)
712{
713 struct module_use *use, *tmp;
714
715 mutex_lock(&module_mutex);
716 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
717 struct module *i = use->target;
718 pr_debug("%s unusing %s\n", mod->name, i->name);
719 module_put(i);
720 list_del(&use->source_list);
721 list_del(&use->target_list);
722 kfree(use);
723 }
724 mutex_unlock(&module_mutex);
725
726 free_percpu(mod->refptr);
727}
728
729#ifdef CONFIG_MODULE_FORCE_UNLOAD
730static inline int try_force_unload(unsigned int flags)
731{
732 int ret = (flags & O_TRUNC);
733 if (ret)
734 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
735 return ret;
736}
737#else
738static inline int try_force_unload(unsigned int flags)
739{
740 return 0;
741}
742#endif /* CONFIG_MODULE_FORCE_UNLOAD */
743
744struct stopref
745{
746 struct module *mod;
747 int flags;
748 int *forced;
749};
750
751/* Whole machine is stopped with interrupts off when this runs. */
752static int __try_stop_module(void *_sref)
753{
754 struct stopref *sref = _sref;
755
756 /* If it's not unused, quit unless we're forcing. */
757 if (module_refcount(sref->mod) != 0) {
758 if (!(*sref->forced = try_force_unload(sref->flags)))
759 return -EWOULDBLOCK;
760 }
761
762 /* Mark it as dying. */
763 sref->mod->state = MODULE_STATE_GOING;
764 return 0;
765}
766
767static int try_stop_module(struct module *mod, int flags, int *forced)
768{
769 struct stopref sref = { mod, flags, forced };
770
771 return stop_machine(__try_stop_module, &sref, NULL);
772}
773
774unsigned long module_refcount(struct module *mod)
775{
776 unsigned long incs = 0, decs = 0;
777 int cpu;
778
779 for_each_possible_cpu(cpu)
780 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
781 /*
782 * ensure the incs are added up after the decs.
783 * module_put ensures incs are visible before decs with smp_wmb.
784 *
785 * This 2-count scheme avoids the situation where the refcount
786 * for CPU0 is read, then CPU0 increments the module refcount,
787 * then CPU1 drops that refcount, then the refcount for CPU1 is
788 * read. We would record a decrement but not its corresponding
789 * increment so we would see a low count (disaster).
790 *
791 * Rare situation? But module_refcount can be preempted, and we
792 * might be tallying up 4096+ CPUs. So it is not impossible.
793 */
794 smp_rmb();
795 for_each_possible_cpu(cpu)
796 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
797 return incs - decs;
798}
799EXPORT_SYMBOL(module_refcount);
800
801/* This exists whether we can unload or not */
802static void free_module(struct module *mod);
803
804SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
805 unsigned int, flags)
806{
807 struct module *mod;
808 char name[MODULE_NAME_LEN];
809 int ret, forced = 0;
810
811 if (!capable(CAP_SYS_MODULE) || modules_disabled)
812 return -EPERM;
813
814 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
815 return -EFAULT;
816 name[MODULE_NAME_LEN-1] = '\0';
817
818 if (mutex_lock_interruptible(&module_mutex) != 0)
819 return -EINTR;
820
821 mod = find_module(name);
822 if (!mod) {
823 ret = -ENOENT;
824 goto out;
825 }
826
827 if (!list_empty(&mod->source_list)) {
828 /* Other modules depend on us: get rid of them first. */
829 ret = -EWOULDBLOCK;
830 goto out;
831 }
832
833 /* Doing init or already dying? */
834 if (mod->state != MODULE_STATE_LIVE) {
835 /* FIXME: if (force), slam module count damn the torpedoes */
836 pr_debug("%s already dying\n", mod->name);
837 ret = -EBUSY;
838 goto out;
839 }
840
841 /* If it has an init func, it must have an exit func to unload */
842 if (mod->init && !mod->exit) {
843 forced = try_force_unload(flags);
844 if (!forced) {
845 /* This module can't be removed */
846 ret = -EBUSY;
847 goto out;
848 }
849 }
850
851 /* Stop the machine so refcounts can't move and disable module. */
852 ret = try_stop_module(mod, flags, &forced);
853 if (ret != 0)
854 goto out;
855
856 mutex_unlock(&module_mutex);
857 /* Final destruction now no one is using it. */
858 if (mod->exit != NULL)
859 mod->exit();
860 blocking_notifier_call_chain(&module_notify_list,
861 MODULE_STATE_GOING, mod);
862 async_synchronize_full();
863
864 /* Store the name of the last unloaded module for diagnostic purposes */
865 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
866
867 free_module(mod);
868 return 0;
869out:
870 mutex_unlock(&module_mutex);
871 return ret;
872}
873
874static inline void print_unload_info(struct seq_file *m, struct module *mod)
875{
876 struct module_use *use;
877 int printed_something = 0;
878
879 seq_printf(m, " %lu ", module_refcount(mod));
880
881 /* Always include a trailing , so userspace can differentiate
882 between this and the old multi-field proc format. */
883 list_for_each_entry(use, &mod->source_list, source_list) {
884 printed_something = 1;
885 seq_printf(m, "%s,", use->source->name);
886 }
887
888 if (mod->init != NULL && mod->exit == NULL) {
889 printed_something = 1;
890 seq_printf(m, "[permanent],");
891 }
892
893 if (!printed_something)
894 seq_printf(m, "-");
895}
896
897void __symbol_put(const char *symbol)
898{
899 struct module *owner;
900
901 preempt_disable();
902 if (!find_symbol(symbol, &owner, NULL, true, false))
903 BUG();
904 module_put(owner);
905 preempt_enable();
906}
907EXPORT_SYMBOL(__symbol_put);
908
909/* Note this assumes addr is a function, which it currently always is. */
910void symbol_put_addr(void *addr)
911{
912 struct module *modaddr;
913 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
914
915 if (core_kernel_text(a))
916 return;
917
918 /* module_text_address is safe here: we're supposed to have reference
919 * to module from symbol_get, so it can't go away. */
920 modaddr = __module_text_address(a);
921 BUG_ON(!modaddr);
922 module_put(modaddr);
923}
924EXPORT_SYMBOL_GPL(symbol_put_addr);
925
926static ssize_t show_refcnt(struct module_attribute *mattr,
927 struct module_kobject *mk, char *buffer)
928{
929 return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
930}
931
932static struct module_attribute modinfo_refcnt =
933 __ATTR(refcnt, 0444, show_refcnt, NULL);
934
935void __module_get(struct module *module)
936{
937 if (module) {
938 preempt_disable();
939 __this_cpu_inc(module->refptr->incs);
940 trace_module_get(module, _RET_IP_);
941 preempt_enable();
942 }
943}
944EXPORT_SYMBOL(__module_get);
945
946bool try_module_get(struct module *module)
947{
948 bool ret = true;
949
950 if (module) {
951 preempt_disable();
952
953 if (likely(module_is_live(module))) {
954 __this_cpu_inc(module->refptr->incs);
955 trace_module_get(module, _RET_IP_);
956 } else
957 ret = false;
958
959 preempt_enable();
960 }
961 return ret;
962}
963EXPORT_SYMBOL(try_module_get);
964
965void module_put(struct module *module)
966{
967 if (module) {
968 preempt_disable();
969 smp_wmb(); /* see comment in module_refcount */
970 __this_cpu_inc(module->refptr->decs);
971
972 trace_module_put(module, _RET_IP_);
973 preempt_enable();
974 }
975}
976EXPORT_SYMBOL(module_put);
977
978#else /* !CONFIG_MODULE_UNLOAD */
979static inline void print_unload_info(struct seq_file *m, struct module *mod)
980{
981 /* We don't know the usage count, or what modules are using. */
982 seq_printf(m, " - -");
983}
984
985static inline void module_unload_free(struct module *mod)
986{
987}
988
989int ref_module(struct module *a, struct module *b)
990{
991 return strong_try_module_get(b);
992}
993EXPORT_SYMBOL_GPL(ref_module);
994
995static inline int module_unload_init(struct module *mod)
996{
997 return 0;
998}
999#endif /* CONFIG_MODULE_UNLOAD */
1000
1001static size_t module_flags_taint(struct module *mod, char *buf)
1002{
1003 size_t l = 0;
1004
1005 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1006 buf[l++] = 'P';
1007 if (mod->taints & (1 << TAINT_OOT_MODULE))
1008 buf[l++] = 'O';
1009 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1010 buf[l++] = 'F';
1011 if (mod->taints & (1 << TAINT_CRAP))
1012 buf[l++] = 'C';
1013 if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1014 buf[l++] = 'E';
1015 /*
1016 * TAINT_FORCED_RMMOD: could be added.
1017 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1018 * apply to modules.
1019 */
1020 return l;
1021}
1022
1023static ssize_t show_initstate(struct module_attribute *mattr,
1024 struct module_kobject *mk, char *buffer)
1025{
1026 const char *state = "unknown";
1027
1028 switch (mk->mod->state) {
1029 case MODULE_STATE_LIVE:
1030 state = "live";
1031 break;
1032 case MODULE_STATE_COMING:
1033 state = "coming";
1034 break;
1035 case MODULE_STATE_GOING:
1036 state = "going";
1037 break;
1038 default:
1039 BUG();
1040 }
1041 return sprintf(buffer, "%s\n", state);
1042}
1043
1044static struct module_attribute modinfo_initstate =
1045 __ATTR(initstate, 0444, show_initstate, NULL);
1046
1047static ssize_t store_uevent(struct module_attribute *mattr,
1048 struct module_kobject *mk,
1049 const char *buffer, size_t count)
1050{
1051 enum kobject_action action;
1052
1053 if (kobject_action_type(buffer, count, &action) == 0)
1054 kobject_uevent(&mk->kobj, action);
1055 return count;
1056}
1057
1058struct module_attribute module_uevent =
1059 __ATTR(uevent, 0200, NULL, store_uevent);
1060
1061static ssize_t show_coresize(struct module_attribute *mattr,
1062 struct module_kobject *mk, char *buffer)
1063{
1064 return sprintf(buffer, "%u\n", mk->mod->core_size);
1065}
1066
1067static struct module_attribute modinfo_coresize =
1068 __ATTR(coresize, 0444, show_coresize, NULL);
1069
1070static ssize_t show_initsize(struct module_attribute *mattr,
1071 struct module_kobject *mk, char *buffer)
1072{
1073 return sprintf(buffer, "%u\n", mk->mod->init_size);
1074}
1075
1076static struct module_attribute modinfo_initsize =
1077 __ATTR(initsize, 0444, show_initsize, NULL);
1078
1079static ssize_t show_taint(struct module_attribute *mattr,
1080 struct module_kobject *mk, char *buffer)
1081{
1082 size_t l;
1083
1084 l = module_flags_taint(mk->mod, buffer);
1085 buffer[l++] = '\n';
1086 return l;
1087}
1088
1089static struct module_attribute modinfo_taint =
1090 __ATTR(taint, 0444, show_taint, NULL);
1091
1092static struct module_attribute *modinfo_attrs[] = {
1093 &module_uevent,
1094 &modinfo_version,
1095 &modinfo_srcversion,
1096 &modinfo_initstate,
1097 &modinfo_coresize,
1098 &modinfo_initsize,
1099 &modinfo_taint,
1100#ifdef CONFIG_MODULE_UNLOAD
1101 &modinfo_refcnt,
1102#endif
1103 NULL,
1104};
1105
1106static const char vermagic[] = VERMAGIC_STRING;
1107
1108static int try_to_force_load(struct module *mod, const char *reason)
1109{
1110#ifdef CONFIG_MODULE_FORCE_LOAD
1111 if (!test_taint(TAINT_FORCED_MODULE))
1112 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1113 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1114 return 0;
1115#else
1116 return -ENOEXEC;
1117#endif
1118}
1119
1120#ifdef CONFIG_MODVERSIONS
1121/* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1122static unsigned long maybe_relocated(unsigned long crc,
1123 const struct module *crc_owner)
1124{
1125#ifdef ARCH_RELOCATES_KCRCTAB
1126 if (crc_owner == NULL)
1127 return crc - (unsigned long)reloc_start;
1128#endif
1129 return crc;
1130}
1131
1132static int check_version(Elf_Shdr *sechdrs,
1133 unsigned int versindex,
1134 const char *symname,
1135 struct module *mod,
1136 const unsigned long *crc,
1137 const struct module *crc_owner)
1138{
1139 unsigned int i, num_versions;
1140 struct modversion_info *versions;
1141
1142 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1143 if (!crc)
1144 return 1;
1145
1146 /* No versions at all? modprobe --force does this. */
1147 if (versindex == 0)
1148 return try_to_force_load(mod, symname) == 0;
1149
1150 versions = (void *) sechdrs[versindex].sh_addr;
1151 num_versions = sechdrs[versindex].sh_size
1152 / sizeof(struct modversion_info);
1153
1154 for (i = 0; i < num_versions; i++) {
1155 if (strcmp(versions[i].name, symname) != 0)
1156 continue;
1157
1158 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1159 return 1;
1160 pr_debug("Found checksum %lX vs module %lX\n",
1161 maybe_relocated(*crc, crc_owner), versions[i].crc);
1162 goto bad_version;
1163 }
1164
1165 pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1166 return 0;
1167
1168bad_version:
1169 printk("%s: disagrees about version of symbol %s\n",
1170 mod->name, symname);
1171 return 0;
1172}
1173
1174static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1175 unsigned int versindex,
1176 struct module *mod)
1177{
1178 const unsigned long *crc;
1179
1180 /* Since this should be found in kernel (which can't be removed),
1181 * no locking is necessary. */
1182 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1183 &crc, true, false))
1184 BUG();
1185 return check_version(sechdrs, versindex,
1186 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1187 NULL);
1188}
1189
1190/* First part is kernel version, which we ignore if module has crcs. */
1191static inline int same_magic(const char *amagic, const char *bmagic,
1192 bool has_crcs)
1193{
1194 if (has_crcs) {
1195 amagic += strcspn(amagic, " ");
1196 bmagic += strcspn(bmagic, " ");
1197 }
1198 return strcmp(amagic, bmagic) == 0;
1199}
1200#else
1201static inline int check_version(Elf_Shdr *sechdrs,
1202 unsigned int versindex,
1203 const char *symname,
1204 struct module *mod,
1205 const unsigned long *crc,
1206 const struct module *crc_owner)
1207{
1208 return 1;
1209}
1210
1211static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1212 unsigned int versindex,
1213 struct module *mod)
1214{
1215 return 1;
1216}
1217
1218static inline int same_magic(const char *amagic, const char *bmagic,
1219 bool has_crcs)
1220{
1221 return strcmp(amagic, bmagic) == 0;
1222}
1223#endif /* CONFIG_MODVERSIONS */
1224
1225/* Resolve a symbol for this module. I.e. if we find one, record usage. */
1226static const struct kernel_symbol *resolve_symbol(struct module *mod,
1227 const struct load_info *info,
1228 const char *name,
1229 char ownername[])
1230{
1231 struct module *owner;
1232 const struct kernel_symbol *sym;
1233 const unsigned long *crc;
1234 int err;
1235
1236 mutex_lock(&module_mutex);
1237 sym = find_symbol(name, &owner, &crc,
1238 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1239 if (!sym)
1240 goto unlock;
1241
1242 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1243 owner)) {
1244 sym = ERR_PTR(-EINVAL);
1245 goto getname;
1246 }
1247
1248 err = ref_module(mod, owner);
1249 if (err) {
1250 sym = ERR_PTR(err);
1251 goto getname;
1252 }
1253
1254getname:
1255 /* We must make copy under the lock if we failed to get ref. */
1256 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1257unlock:
1258 mutex_unlock(&module_mutex);
1259 return sym;
1260}
1261
1262static const struct kernel_symbol *
1263resolve_symbol_wait(struct module *mod,
1264 const struct load_info *info,
1265 const char *name)
1266{
1267 const struct kernel_symbol *ksym;
1268 char owner[MODULE_NAME_LEN];
1269
1270 if (wait_event_interruptible_timeout(module_wq,
1271 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1272 || PTR_ERR(ksym) != -EBUSY,
1273 30 * HZ) <= 0) {
1274 pr_warn("%s: gave up waiting for init of module %s.\n",
1275 mod->name, owner);
1276 }
1277 return ksym;
1278}
1279
1280/*
1281 * /sys/module/foo/sections stuff
1282 * J. Corbet <corbet@lwn.net>
1283 */
1284#ifdef CONFIG_SYSFS
1285
1286#ifdef CONFIG_KALLSYMS
1287static inline bool sect_empty(const Elf_Shdr *sect)
1288{
1289 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1290}
1291
1292struct module_sect_attr
1293{
1294 struct module_attribute mattr;
1295 char *name;
1296 unsigned long address;
1297};
1298
1299struct module_sect_attrs
1300{
1301 struct attribute_group grp;
1302 unsigned int nsections;
1303 struct module_sect_attr attrs[0];
1304};
1305
1306static ssize_t module_sect_show(struct module_attribute *mattr,
1307 struct module_kobject *mk, char *buf)
1308{
1309 struct module_sect_attr *sattr =
1310 container_of(mattr, struct module_sect_attr, mattr);
1311 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1312}
1313
1314static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1315{
1316 unsigned int section;
1317
1318 for (section = 0; section < sect_attrs->nsections; section++)
1319 kfree(sect_attrs->attrs[section].name);
1320 kfree(sect_attrs);
1321}
1322
1323static void add_sect_attrs(struct module *mod, const struct load_info *info)
1324{
1325 unsigned int nloaded = 0, i, size[2];
1326 struct module_sect_attrs *sect_attrs;
1327 struct module_sect_attr *sattr;
1328 struct attribute **gattr;
1329
1330 /* Count loaded sections and allocate structures */
1331 for (i = 0; i < info->hdr->e_shnum; i++)
1332 if (!sect_empty(&info->sechdrs[i]))
1333 nloaded++;
1334 size[0] = ALIGN(sizeof(*sect_attrs)
1335 + nloaded * sizeof(sect_attrs->attrs[0]),
1336 sizeof(sect_attrs->grp.attrs[0]));
1337 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1338 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1339 if (sect_attrs == NULL)
1340 return;
1341
1342 /* Setup section attributes. */
1343 sect_attrs->grp.name = "sections";
1344 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1345
1346 sect_attrs->nsections = 0;
1347 sattr = §_attrs->attrs[0];
1348 gattr = §_attrs->grp.attrs[0];
1349 for (i = 0; i < info->hdr->e_shnum; i++) {
1350 Elf_Shdr *sec = &info->sechdrs[i];
1351 if (sect_empty(sec))
1352 continue;
1353 sattr->address = sec->sh_addr;
1354 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1355 GFP_KERNEL);
1356 if (sattr->name == NULL)
1357 goto out;
1358 sect_attrs->nsections++;
1359 sysfs_attr_init(&sattr->mattr.attr);
1360 sattr->mattr.show = module_sect_show;
1361 sattr->mattr.store = NULL;
1362 sattr->mattr.attr.name = sattr->name;
1363 sattr->mattr.attr.mode = S_IRUGO;
1364 *(gattr++) = &(sattr++)->mattr.attr;
1365 }
1366 *gattr = NULL;
1367
1368 if (sysfs_create_group(&mod->mkobj.kobj, §_attrs->grp))
1369 goto out;
1370
1371 mod->sect_attrs = sect_attrs;
1372 return;
1373 out:
1374 free_sect_attrs(sect_attrs);
1375}
1376
1377static void remove_sect_attrs(struct module *mod)
1378{
1379 if (mod->sect_attrs) {
1380 sysfs_remove_group(&mod->mkobj.kobj,
1381 &mod->sect_attrs->grp);
1382 /* We are positive that no one is using any sect attrs
1383 * at this point. Deallocate immediately. */
1384 free_sect_attrs(mod->sect_attrs);
1385 mod->sect_attrs = NULL;
1386 }
1387}
1388
1389/*
1390 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1391 */
1392
1393struct module_notes_attrs {
1394 struct kobject *dir;
1395 unsigned int notes;
1396 struct bin_attribute attrs[0];
1397};
1398
1399static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1400 struct bin_attribute *bin_attr,
1401 char *buf, loff_t pos, size_t count)
1402{
1403 /*
1404 * The caller checked the pos and count against our size.
1405 */
1406 memcpy(buf, bin_attr->private + pos, count);
1407 return count;
1408}
1409
1410static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1411 unsigned int i)
1412{
1413 if (notes_attrs->dir) {
1414 while (i-- > 0)
1415 sysfs_remove_bin_file(notes_attrs->dir,
1416 ¬es_attrs->attrs[i]);
1417 kobject_put(notes_attrs->dir);
1418 }
1419 kfree(notes_attrs);
1420}
1421
1422static void add_notes_attrs(struct module *mod, const struct load_info *info)
1423{
1424 unsigned int notes, loaded, i;
1425 struct module_notes_attrs *notes_attrs;
1426 struct bin_attribute *nattr;
1427
1428 /* failed to create section attributes, so can't create notes */
1429 if (!mod->sect_attrs)
1430 return;
1431
1432 /* Count notes sections and allocate structures. */
1433 notes = 0;
1434 for (i = 0; i < info->hdr->e_shnum; i++)
1435 if (!sect_empty(&info->sechdrs[i]) &&
1436 (info->sechdrs[i].sh_type == SHT_NOTE))
1437 ++notes;
1438
1439 if (notes == 0)
1440 return;
1441
1442 notes_attrs = kzalloc(sizeof(*notes_attrs)
1443 + notes * sizeof(notes_attrs->attrs[0]),
1444 GFP_KERNEL);
1445 if (notes_attrs == NULL)
1446 return;
1447
1448 notes_attrs->notes = notes;
1449 nattr = ¬es_attrs->attrs[0];
1450 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1451 if (sect_empty(&info->sechdrs[i]))
1452 continue;
1453 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1454 sysfs_bin_attr_init(nattr);
1455 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1456 nattr->attr.mode = S_IRUGO;
1457 nattr->size = info->sechdrs[i].sh_size;
1458 nattr->private = (void *) info->sechdrs[i].sh_addr;
1459 nattr->read = module_notes_read;
1460 ++nattr;
1461 }
1462 ++loaded;
1463 }
1464
1465 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1466 if (!notes_attrs->dir)
1467 goto out;
1468
1469 for (i = 0; i < notes; ++i)
1470 if (sysfs_create_bin_file(notes_attrs->dir,
1471 ¬es_attrs->attrs[i]))
1472 goto out;
1473
1474 mod->notes_attrs = notes_attrs;
1475 return;
1476
1477 out:
1478 free_notes_attrs(notes_attrs, i);
1479}
1480
1481static void remove_notes_attrs(struct module *mod)
1482{
1483 if (mod->notes_attrs)
1484 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1485}
1486
1487#else
1488
1489static inline void add_sect_attrs(struct module *mod,
1490 const struct load_info *info)
1491{
1492}
1493
1494static inline void remove_sect_attrs(struct module *mod)
1495{
1496}
1497
1498static inline void add_notes_attrs(struct module *mod,
1499 const struct load_info *info)
1500{
1501}
1502
1503static inline void remove_notes_attrs(struct module *mod)
1504{
1505}
1506#endif /* CONFIG_KALLSYMS */
1507
1508static void add_usage_links(struct module *mod)
1509{
1510#ifdef CONFIG_MODULE_UNLOAD
1511 struct module_use *use;
1512 int nowarn;
1513
1514 mutex_lock(&module_mutex);
1515 list_for_each_entry(use, &mod->target_list, target_list) {
1516 nowarn = sysfs_create_link(use->target->holders_dir,
1517 &mod->mkobj.kobj, mod->name);
1518 }
1519 mutex_unlock(&module_mutex);
1520#endif
1521}
1522
1523static void del_usage_links(struct module *mod)
1524{
1525#ifdef CONFIG_MODULE_UNLOAD
1526 struct module_use *use;
1527
1528 mutex_lock(&module_mutex);
1529 list_for_each_entry(use, &mod->target_list, target_list)
1530 sysfs_remove_link(use->target->holders_dir, mod->name);
1531 mutex_unlock(&module_mutex);
1532#endif
1533}
1534
1535static int module_add_modinfo_attrs(struct module *mod)
1536{
1537 struct module_attribute *attr;
1538 struct module_attribute *temp_attr;
1539 int error = 0;
1540 int i;
1541
1542 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1543 (ARRAY_SIZE(modinfo_attrs) + 1)),
1544 GFP_KERNEL);
1545 if (!mod->modinfo_attrs)
1546 return -ENOMEM;
1547
1548 temp_attr = mod->modinfo_attrs;
1549 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1550 if (!attr->test ||
1551 (attr->test && attr->test(mod))) {
1552 memcpy(temp_attr, attr, sizeof(*temp_attr));
1553 sysfs_attr_init(&temp_attr->attr);
1554 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1555 ++temp_attr;
1556 }
1557 }
1558 return error;
1559}
1560
1561static void module_remove_modinfo_attrs(struct module *mod)
1562{
1563 struct module_attribute *attr;
1564 int i;
1565
1566 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1567 /* pick a field to test for end of list */
1568 if (!attr->attr.name)
1569 break;
1570 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1571 if (attr->free)
1572 attr->free(mod);
1573 }
1574 kfree(mod->modinfo_attrs);
1575}
1576
1577static void mod_kobject_put(struct module *mod)
1578{
1579 DECLARE_COMPLETION_ONSTACK(c);
1580 mod->mkobj.kobj_completion = &c;
1581 kobject_put(&mod->mkobj.kobj);
1582 wait_for_completion(&c);
1583}
1584
1585static int mod_sysfs_init(struct module *mod)
1586{
1587 int err;
1588 struct kobject *kobj;
1589
1590 if (!module_sysfs_initialized) {
1591 pr_err("%s: module sysfs not initialized\n", mod->name);
1592 err = -EINVAL;
1593 goto out;
1594 }
1595
1596 kobj = kset_find_obj(module_kset, mod->name);
1597 if (kobj) {
1598 pr_err("%s: module is already loaded\n", mod->name);
1599 kobject_put(kobj);
1600 err = -EINVAL;
1601 goto out;
1602 }
1603
1604 mod->mkobj.mod = mod;
1605
1606 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1607 mod->mkobj.kobj.kset = module_kset;
1608 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1609 "%s", mod->name);
1610 if (err)
1611 mod_kobject_put(mod);
1612
1613 /* delay uevent until full sysfs population */
1614out:
1615 return err;
1616}
1617
1618static int mod_sysfs_setup(struct module *mod,
1619 const struct load_info *info,
1620 struct kernel_param *kparam,
1621 unsigned int num_params)
1622{
1623 int err;
1624
1625 err = mod_sysfs_init(mod);
1626 if (err)
1627 goto out;
1628
1629 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1630 if (!mod->holders_dir) {
1631 err = -ENOMEM;
1632 goto out_unreg;
1633 }
1634
1635 err = module_param_sysfs_setup(mod, kparam, num_params);
1636 if (err)
1637 goto out_unreg_holders;
1638
1639 err = module_add_modinfo_attrs(mod);
1640 if (err)
1641 goto out_unreg_param;
1642
1643 add_usage_links(mod);
1644 add_sect_attrs(mod, info);
1645 add_notes_attrs(mod, info);
1646
1647 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1648 return 0;
1649
1650out_unreg_param:
1651 module_param_sysfs_remove(mod);
1652out_unreg_holders:
1653 kobject_put(mod->holders_dir);
1654out_unreg:
1655 mod_kobject_put(mod);
1656out:
1657 return err;
1658}
1659
1660static void mod_sysfs_fini(struct module *mod)
1661{
1662 remove_notes_attrs(mod);
1663 remove_sect_attrs(mod);
1664 mod_kobject_put(mod);
1665}
1666
1667#else /* !CONFIG_SYSFS */
1668
1669static int mod_sysfs_setup(struct module *mod,
1670 const struct load_info *info,
1671 struct kernel_param *kparam,
1672 unsigned int num_params)
1673{
1674 return 0;
1675}
1676
1677static void mod_sysfs_fini(struct module *mod)
1678{
1679}
1680
1681static void module_remove_modinfo_attrs(struct module *mod)
1682{
1683}
1684
1685static void del_usage_links(struct module *mod)
1686{
1687}
1688
1689#endif /* CONFIG_SYSFS */
1690
1691static void mod_sysfs_teardown(struct module *mod)
1692{
1693 del_usage_links(mod);
1694 module_remove_modinfo_attrs(mod);
1695 module_param_sysfs_remove(mod);
1696 kobject_put(mod->mkobj.drivers_dir);
1697 kobject_put(mod->holders_dir);
1698 mod_sysfs_fini(mod);
1699}
1700
1701/*
1702 * unlink the module with the whole machine is stopped with interrupts off
1703 * - this defends against kallsyms not taking locks
1704 */
1705static int __unlink_module(void *_mod)
1706{
1707 struct module *mod = _mod;
1708 list_del(&mod->list);
1709 module_bug_cleanup(mod);
1710 return 0;
1711}
1712
1713#ifdef CONFIG_DEBUG_SET_MODULE_RONX
1714/*
1715 * LKM RO/NX protection: protect module's text/ro-data
1716 * from modification and any data from execution.
1717 */
1718void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1719{
1720 unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1721 unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1722
1723 if (end_pfn > begin_pfn)
1724 set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1725}
1726
1727static void set_section_ro_nx(void *base,
1728 unsigned long text_size,
1729 unsigned long ro_size,
1730 unsigned long total_size)
1731{
1732 /* begin and end PFNs of the current subsection */
1733 unsigned long begin_pfn;
1734 unsigned long end_pfn;
1735
1736 /*
1737 * Set RO for module text and RO-data:
1738 * - Always protect first page.
1739 * - Do not protect last partial page.
1740 */
1741 if (ro_size > 0)
1742 set_page_attributes(base, base + ro_size, set_memory_ro);
1743
1744 /*
1745 * Set NX permissions for module data:
1746 * - Do not protect first partial page.
1747 * - Always protect last page.
1748 */
1749 if (total_size > text_size) {
1750 begin_pfn = PFN_UP((unsigned long)base + text_size);
1751 end_pfn = PFN_UP((unsigned long)base + total_size);
1752 if (end_pfn > begin_pfn)
1753 set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1754 }
1755}
1756
1757static void unset_module_core_ro_nx(struct module *mod)
1758{
1759 set_page_attributes(mod->module_core + mod->core_text_size,
1760 mod->module_core + mod->core_size,
1761 set_memory_x);
1762 set_page_attributes(mod->module_core,
1763 mod->module_core + mod->core_ro_size,
1764 set_memory_rw);
1765}
1766
1767static void unset_module_init_ro_nx(struct module *mod)
1768{
1769 set_page_attributes(mod->module_init + mod->init_text_size,
1770 mod->module_init + mod->init_size,
1771 set_memory_x);
1772 set_page_attributes(mod->module_init,
1773 mod->module_init + mod->init_ro_size,
1774 set_memory_rw);
1775}
1776
1777/* Iterate through all modules and set each module's text as RW */
1778void set_all_modules_text_rw(void)
1779{
1780 struct module *mod;
1781
1782 mutex_lock(&module_mutex);
1783 list_for_each_entry_rcu(mod, &modules, list) {
1784 if (mod->state == MODULE_STATE_UNFORMED)
1785 continue;
1786 if ((mod->module_core) && (mod->core_text_size)) {
1787 set_page_attributes(mod->module_core,
1788 mod->module_core + mod->core_text_size,
1789 set_memory_rw);
1790 }
1791 if ((mod->module_init) && (mod->init_text_size)) {
1792 set_page_attributes(mod->module_init,
1793 mod->module_init + mod->init_text_size,
1794 set_memory_rw);
1795 }
1796 }
1797 mutex_unlock(&module_mutex);
1798}
1799
1800/* Iterate through all modules and set each module's text as RO */
1801void set_all_modules_text_ro(void)
1802{
1803 struct module *mod;
1804
1805 mutex_lock(&module_mutex);
1806 list_for_each_entry_rcu(mod, &modules, list) {
1807 if (mod->state == MODULE_STATE_UNFORMED)
1808 continue;
1809 if ((mod->module_core) && (mod->core_text_size)) {
1810 set_page_attributes(mod->module_core,
1811 mod->module_core + mod->core_text_size,
1812 set_memory_ro);
1813 }
1814 if ((mod->module_init) && (mod->init_text_size)) {
1815 set_page_attributes(mod->module_init,
1816 mod->module_init + mod->init_text_size,
1817 set_memory_ro);
1818 }
1819 }
1820 mutex_unlock(&module_mutex);
1821}
1822#else
1823static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1824static void unset_module_core_ro_nx(struct module *mod) { }
1825static void unset_module_init_ro_nx(struct module *mod) { }
1826#endif
1827
1828void __weak module_free(struct module *mod, void *module_region)
1829{
1830 vfree(module_region);
1831}
1832
1833void __weak module_arch_cleanup(struct module *mod)
1834{
1835}
1836
1837/* Free a module, remove from lists, etc. */
1838static void free_module(struct module *mod)
1839{
1840 trace_module_free(mod);
1841
1842 mod_sysfs_teardown(mod);
1843
1844 /* We leave it in list to prevent duplicate loads, but make sure
1845 * that noone uses it while it's being deconstructed. */
1846 mod->state = MODULE_STATE_UNFORMED;
1847
1848 /* Remove dynamic debug info */
1849 ddebug_remove_module(mod->name);
1850
1851 /* Arch-specific cleanup. */
1852 module_arch_cleanup(mod);
1853
1854 /* Module unload stuff */
1855 module_unload_free(mod);
1856
1857 /* Free any allocated parameters. */
1858 destroy_params(mod->kp, mod->num_kp);
1859
1860 /* Now we can delete it from the lists */
1861 mutex_lock(&module_mutex);
1862 stop_machine(__unlink_module, mod, NULL);
1863 mutex_unlock(&module_mutex);
1864
1865 /* This may be NULL, but that's OK */
1866 unset_module_init_ro_nx(mod);
1867 module_free(mod, mod->module_init);
1868 kfree(mod->args);
1869 percpu_modfree(mod);
1870
1871 /* Free lock-classes: */
1872 lockdep_free_key_range(mod->module_core, mod->core_size);
1873
1874 /* Finally, free the core (containing the module structure) */
1875 unset_module_core_ro_nx(mod);
1876 module_free(mod, mod->module_core);
1877
1878#ifdef CONFIG_MPU
1879 update_protections(current->mm);
1880#endif
1881}
1882
1883void *__symbol_get(const char *symbol)
1884{
1885 struct module *owner;
1886 const struct kernel_symbol *sym;
1887
1888 preempt_disable();
1889 sym = find_symbol(symbol, &owner, NULL, true, true);
1890 if (sym && strong_try_module_get(owner))
1891 sym = NULL;
1892 preempt_enable();
1893
1894 return sym ? (void *)sym->value : NULL;
1895}
1896EXPORT_SYMBOL_GPL(__symbol_get);
1897
1898/*
1899 * Ensure that an exported symbol [global namespace] does not already exist
1900 * in the kernel or in some other module's exported symbol table.
1901 *
1902 * You must hold the module_mutex.
1903 */
1904static int verify_export_symbols(struct module *mod)
1905{
1906 unsigned int i;
1907 struct module *owner;
1908 const struct kernel_symbol *s;
1909 struct {
1910 const struct kernel_symbol *sym;
1911 unsigned int num;
1912 } arr[] = {
1913 { mod->syms, mod->num_syms },
1914 { mod->gpl_syms, mod->num_gpl_syms },
1915 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1916#ifdef CONFIG_UNUSED_SYMBOLS
1917 { mod->unused_syms, mod->num_unused_syms },
1918 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1919#endif
1920 };
1921
1922 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1923 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1924 if (find_symbol(s->name, &owner, NULL, true, false)) {
1925 pr_err("%s: exports duplicate symbol %s"
1926 " (owned by %s)\n",
1927 mod->name, s->name, module_name(owner));
1928 return -ENOEXEC;
1929 }
1930 }
1931 }
1932 return 0;
1933}
1934
1935/* Change all symbols so that st_value encodes the pointer directly. */
1936static int simplify_symbols(struct module *mod, const struct load_info *info)
1937{
1938 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1939 Elf_Sym *sym = (void *)symsec->sh_addr;
1940 unsigned long secbase;
1941 unsigned int i;
1942 int ret = 0;
1943 const struct kernel_symbol *ksym;
1944
1945 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1946 const char *name = info->strtab + sym[i].st_name;
1947
1948 switch (sym[i].st_shndx) {
1949 case SHN_COMMON:
1950 /* Ignore common symbols */
1951 if (!strncmp(name, "__gnu_lto", 9))
1952 break;
1953
1954 /* We compiled with -fno-common. These are not
1955 supposed to happen. */
1956 pr_debug("Common symbol: %s\n", name);
1957 printk("%s: please compile with -fno-common\n",
1958 mod->name);
1959 ret = -ENOEXEC;
1960 break;
1961
1962 case SHN_ABS:
1963 /* Don't need to do anything */
1964 pr_debug("Absolute symbol: 0x%08lx\n",
1965 (long)sym[i].st_value);
1966 break;
1967
1968 case SHN_UNDEF:
1969 ksym = resolve_symbol_wait(mod, info, name);
1970 /* Ok if resolved. */
1971 if (ksym && !IS_ERR(ksym)) {
1972 sym[i].st_value = ksym->value;
1973 break;
1974 }
1975
1976 /* Ok if weak. */
1977 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1978 break;
1979
1980 pr_warn("%s: Unknown symbol %s (err %li)\n",
1981 mod->name, name, PTR_ERR(ksym));
1982 ret = PTR_ERR(ksym) ?: -ENOENT;
1983 break;
1984
1985 default:
1986 /* Divert to percpu allocation if a percpu var. */
1987 if (sym[i].st_shndx == info->index.pcpu)
1988 secbase = (unsigned long)mod_percpu(mod);
1989 else
1990 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1991 sym[i].st_value += secbase;
1992 break;
1993 }
1994 }
1995
1996 return ret;
1997}
1998
1999static int apply_relocations(struct module *mod, const struct load_info *info)
2000{
2001 unsigned int i;
2002 int err = 0;
2003
2004 /* Now do relocations. */
2005 for (i = 1; i < info->hdr->e_shnum; i++) {
2006 unsigned int infosec = info->sechdrs[i].sh_info;
2007
2008 /* Not a valid relocation section? */
2009 if (infosec >= info->hdr->e_shnum)
2010 continue;
2011
2012 /* Don't bother with non-allocated sections */
2013 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2014 continue;
2015
2016 if (info->sechdrs[i].sh_type == SHT_REL)
2017 err = apply_relocate(info->sechdrs, info->strtab,
2018 info->index.sym, i, mod);
2019 else if (info->sechdrs[i].sh_type == SHT_RELA)
2020 err = apply_relocate_add(info->sechdrs, info->strtab,
2021 info->index.sym, i, mod);
2022 if (err < 0)
2023 break;
2024 }
2025 return err;
2026}
2027
2028/* Additional bytes needed by arch in front of individual sections */
2029unsigned int __weak arch_mod_section_prepend(struct module *mod,
2030 unsigned int section)
2031{
2032 /* default implementation just returns zero */
2033 return 0;
2034}
2035
2036/* Update size with this section: return offset. */
2037static long get_offset(struct module *mod, unsigned int *size,
2038 Elf_Shdr *sechdr, unsigned int section)
2039{
2040 long ret;
2041
2042 *size += arch_mod_section_prepend(mod, section);
2043 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2044 *size = ret + sechdr->sh_size;
2045 return ret;
2046}
2047
2048/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2049 might -- code, read-only data, read-write data, small data. Tally
2050 sizes, and place the offsets into sh_entsize fields: high bit means it
2051 belongs in init. */
2052static void layout_sections(struct module *mod, struct load_info *info)
2053{
2054 static unsigned long const masks[][2] = {
2055 /* NOTE: all executable code must be the first section
2056 * in this array; otherwise modify the text_size
2057 * finder in the two loops below */
2058 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2059 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2060 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2061 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2062 };
2063 unsigned int m, i;
2064
2065 for (i = 0; i < info->hdr->e_shnum; i++)
2066 info->sechdrs[i].sh_entsize = ~0UL;
2067
2068 pr_debug("Core section allocation order:\n");
2069 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2070 for (i = 0; i < info->hdr->e_shnum; ++i) {
2071 Elf_Shdr *s = &info->sechdrs[i];
2072 const char *sname = info->secstrings + s->sh_name;
2073
2074 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2075 || (s->sh_flags & masks[m][1])
2076 || s->sh_entsize != ~0UL
2077 || strstarts(sname, ".init"))
2078 continue;
2079 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2080 pr_debug("\t%s\n", sname);
2081 }
2082 switch (m) {
2083 case 0: /* executable */
2084 mod->core_size = debug_align(mod->core_size);
2085 mod->core_text_size = mod->core_size;
2086 break;
2087 case 1: /* RO: text and ro-data */
2088 mod->core_size = debug_align(mod->core_size);
2089 mod->core_ro_size = mod->core_size;
2090 break;
2091 case 3: /* whole core */
2092 mod->core_size = debug_align(mod->core_size);
2093 break;
2094 }
2095 }
2096
2097 pr_debug("Init section allocation order:\n");
2098 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2099 for (i = 0; i < info->hdr->e_shnum; ++i) {
2100 Elf_Shdr *s = &info->sechdrs[i];
2101 const char *sname = info->secstrings + s->sh_name;
2102
2103 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2104 || (s->sh_flags & masks[m][1])
2105 || s->sh_entsize != ~0UL
2106 || !strstarts(sname, ".init"))
2107 continue;
2108 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2109 | INIT_OFFSET_MASK);
2110 pr_debug("\t%s\n", sname);
2111 }
2112 switch (m) {
2113 case 0: /* executable */
2114 mod->init_size = debug_align(mod->init_size);
2115 mod->init_text_size = mod->init_size;
2116 break;
2117 case 1: /* RO: text and ro-data */
2118 mod->init_size = debug_align(mod->init_size);
2119 mod->init_ro_size = mod->init_size;
2120 break;
2121 case 3: /* whole init */
2122 mod->init_size = debug_align(mod->init_size);
2123 break;
2124 }
2125 }
2126}
2127
2128static void set_license(struct module *mod, const char *license)
2129{
2130 if (!license)
2131 license = "unspecified";
2132
2133 if (!license_is_gpl_compatible(license)) {
2134 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2135 pr_warn("%s: module license '%s' taints kernel.\n",
2136 mod->name, license);
2137 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2138 LOCKDEP_NOW_UNRELIABLE);
2139 }
2140}
2141
2142/* Parse tag=value strings from .modinfo section */
2143static char *next_string(char *string, unsigned long *secsize)
2144{
2145 /* Skip non-zero chars */
2146 while (string[0]) {
2147 string++;
2148 if ((*secsize)-- <= 1)
2149 return NULL;
2150 }
2151
2152 /* Skip any zero padding. */
2153 while (!string[0]) {
2154 string++;
2155 if ((*secsize)-- <= 1)
2156 return NULL;
2157 }
2158 return string;
2159}
2160
2161static char *get_modinfo(struct load_info *info, const char *tag)
2162{
2163 char *p;
2164 unsigned int taglen = strlen(tag);
2165 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2166 unsigned long size = infosec->sh_size;
2167
2168 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2169 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2170 return p + taglen + 1;
2171 }
2172 return NULL;
2173}
2174
2175static void setup_modinfo(struct module *mod, struct load_info *info)
2176{
2177 struct module_attribute *attr;
2178 int i;
2179
2180 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2181 if (attr->setup)
2182 attr->setup(mod, get_modinfo(info, attr->attr.name));
2183 }
2184}
2185
2186static void free_modinfo(struct module *mod)
2187{
2188 struct module_attribute *attr;
2189 int i;
2190
2191 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2192 if (attr->free)
2193 attr->free(mod);
2194 }
2195}
2196
2197#ifdef CONFIG_KALLSYMS
2198
2199/* lookup symbol in given range of kernel_symbols */
2200static const struct kernel_symbol *lookup_symbol(const char *name,
2201 const struct kernel_symbol *start,
2202 const struct kernel_symbol *stop)
2203{
2204 return bsearch(name, start, stop - start,
2205 sizeof(struct kernel_symbol), cmp_name);
2206}
2207
2208static int is_exported(const char *name, unsigned long value,
2209 const struct module *mod)
2210{
2211 const struct kernel_symbol *ks;
2212 if (!mod)
2213 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2214 else
2215 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2216 return ks != NULL && ks->value == value;
2217}
2218
2219/* As per nm */
2220static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2221{
2222 const Elf_Shdr *sechdrs = info->sechdrs;
2223
2224 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2225 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2226 return 'v';
2227 else
2228 return 'w';
2229 }
2230 if (sym->st_shndx == SHN_UNDEF)
2231 return 'U';
2232 if (sym->st_shndx == SHN_ABS)
2233 return 'a';
2234 if (sym->st_shndx >= SHN_LORESERVE)
2235 return '?';
2236 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2237 return 't';
2238 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2239 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2240 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2241 return 'r';
2242 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2243 return 'g';
2244 else
2245 return 'd';
2246 }
2247 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2248 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2249 return 's';
2250 else
2251 return 'b';
2252 }
2253 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2254 ".debug")) {
2255 return 'n';
2256 }
2257 return '?';
2258}
2259
2260static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2261 unsigned int shnum)
2262{
2263 const Elf_Shdr *sec;
2264
2265 if (src->st_shndx == SHN_UNDEF
2266 || src->st_shndx >= shnum
2267 || !src->st_name)
2268 return false;
2269
2270 sec = sechdrs + src->st_shndx;
2271 if (!(sec->sh_flags & SHF_ALLOC)
2272#ifndef CONFIG_KALLSYMS_ALL
2273 || !(sec->sh_flags & SHF_EXECINSTR)
2274#endif
2275 || (sec->sh_entsize & INIT_OFFSET_MASK))
2276 return false;
2277
2278 return true;
2279}
2280
2281/*
2282 * We only allocate and copy the strings needed by the parts of symtab
2283 * we keep. This is simple, but has the effect of making multiple
2284 * copies of duplicates. We could be more sophisticated, see
2285 * linux-kernel thread starting with
2286 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2287 */
2288static void layout_symtab(struct module *mod, struct load_info *info)
2289{
2290 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2291 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2292 const Elf_Sym *src;
2293 unsigned int i, nsrc, ndst, strtab_size = 0;
2294
2295 /* Put symbol section at end of init part of module. */
2296 symsect->sh_flags |= SHF_ALLOC;
2297 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2298 info->index.sym) | INIT_OFFSET_MASK;
2299 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2300
2301 src = (void *)info->hdr + symsect->sh_offset;
2302 nsrc = symsect->sh_size / sizeof(*src);
2303
2304 /* Compute total space required for the core symbols' strtab. */
2305 for (ndst = i = 0; i < nsrc; i++) {
2306 if (i == 0 ||
2307 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2308 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2309 ndst++;
2310 }
2311 }
2312
2313 /* Append room for core symbols at end of core part. */
2314 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2315 info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2316 mod->core_size += strtab_size;
2317
2318 /* Put string table section at end of init part of module. */
2319 strsect->sh_flags |= SHF_ALLOC;
2320 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2321 info->index.str) | INIT_OFFSET_MASK;
2322 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2323}
2324
2325static void add_kallsyms(struct module *mod, const struct load_info *info)
2326{
2327 unsigned int i, ndst;
2328 const Elf_Sym *src;
2329 Elf_Sym *dst;
2330 char *s;
2331 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2332
2333 mod->symtab = (void *)symsec->sh_addr;
2334 mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2335 /* Make sure we get permanent strtab: don't use info->strtab. */
2336 mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2337
2338 /* Set types up while we still have access to sections. */
2339 for (i = 0; i < mod->num_symtab; i++)
2340 mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2341
2342 mod->core_symtab = dst = mod->module_core + info->symoffs;
2343 mod->core_strtab = s = mod->module_core + info->stroffs;
2344 src = mod->symtab;
2345 for (ndst = i = 0; i < mod->num_symtab; i++) {
2346 if (i == 0 ||
2347 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2348 dst[ndst] = src[i];
2349 dst[ndst++].st_name = s - mod->core_strtab;
2350 s += strlcpy(s, &mod->strtab[src[i].st_name],
2351 KSYM_NAME_LEN) + 1;
2352 }
2353 }
2354 mod->core_num_syms = ndst;
2355}
2356#else
2357static inline void layout_symtab(struct module *mod, struct load_info *info)
2358{
2359}
2360
2361static void add_kallsyms(struct module *mod, const struct load_info *info)
2362{
2363}
2364#endif /* CONFIG_KALLSYMS */
2365
2366static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2367{
2368 if (!debug)
2369 return;
2370#ifdef CONFIG_DYNAMIC_DEBUG
2371 if (ddebug_add_module(debug, num, debug->modname))
2372 pr_err("dynamic debug error adding module: %s\n",
2373 debug->modname);
2374#endif
2375}
2376
2377static void dynamic_debug_remove(struct _ddebug *debug)
2378{
2379 if (debug)
2380 ddebug_remove_module(debug->modname);
2381}
2382
2383void * __weak module_alloc(unsigned long size)
2384{
2385 return vmalloc_exec(size);
2386}
2387
2388static void *module_alloc_update_bounds(unsigned long size)
2389{
2390 void *ret = module_alloc(size);
2391
2392 if (ret) {
2393 mutex_lock(&module_mutex);
2394 /* Update module bounds. */
2395 if ((unsigned long)ret < module_addr_min)
2396 module_addr_min = (unsigned long)ret;
2397 if ((unsigned long)ret + size > module_addr_max)
2398 module_addr_max = (unsigned long)ret + size;
2399 mutex_unlock(&module_mutex);
2400 }
2401 return ret;
2402}
2403
2404#ifdef CONFIG_DEBUG_KMEMLEAK
2405static void kmemleak_load_module(const struct module *mod,
2406 const struct load_info *info)
2407{
2408 unsigned int i;
2409
2410 /* only scan the sections containing data */
2411 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2412
2413 for (i = 1; i < info->hdr->e_shnum; i++) {
2414 /* Scan all writable sections that's not executable */
2415 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2416 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2417 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2418 continue;
2419
2420 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2421 info->sechdrs[i].sh_size, GFP_KERNEL);
2422 }
2423}
2424#else
2425static inline void kmemleak_load_module(const struct module *mod,
2426 const struct load_info *info)
2427{
2428}
2429#endif
2430
2431#ifdef CONFIG_MODULE_SIG
2432static int module_sig_check(struct load_info *info)
2433{
2434 int err = -ENOKEY;
2435 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2436 const void *mod = info->hdr;
2437
2438 if (info->len > markerlen &&
2439 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2440 /* We truncate the module to discard the signature */
2441 info->len -= markerlen;
2442 err = mod_verify_sig(mod, &info->len);
2443 }
2444
2445 if (!err) {
2446 info->sig_ok = true;
2447 return 0;
2448 }
2449
2450 /* Not having a signature is only an error if we're strict. */
2451 if (err < 0 && fips_enabled)
2452 panic("Module verification failed with error %d in FIPS mode\n",
2453 err);
2454 if (err == -ENOKEY && !sig_enforce)
2455 err = 0;
2456
2457 return err;
2458}
2459#else /* !CONFIG_MODULE_SIG */
2460static int module_sig_check(struct load_info *info)
2461{
2462 return 0;
2463}
2464#endif /* !CONFIG_MODULE_SIG */
2465
2466/* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2467static int elf_header_check(struct load_info *info)
2468{
2469 if (info->len < sizeof(*(info->hdr)))
2470 return -ENOEXEC;
2471
2472 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2473 || info->hdr->e_type != ET_REL
2474 || !elf_check_arch(info->hdr)
2475 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2476 return -ENOEXEC;
2477
2478 if (info->hdr->e_shoff >= info->len
2479 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2480 info->len - info->hdr->e_shoff))
2481 return -ENOEXEC;
2482
2483 return 0;
2484}
2485
2486/* Sets info->hdr and info->len. */
2487static int copy_module_from_user(const void __user *umod, unsigned long len,
2488 struct load_info *info)
2489{
2490 int err;
2491
2492 info->len = len;
2493 if (info->len < sizeof(*(info->hdr)))
2494 return -ENOEXEC;
2495
2496 err = security_kernel_module_from_file(NULL);
2497 if (err)
2498 return err;
2499
2500 /* Suck in entire file: we'll want most of it. */
2501 info->hdr = vmalloc(info->len);
2502 if (!info->hdr)
2503 return -ENOMEM;
2504
2505 if (copy_from_user(info->hdr, umod, info->len) != 0) {
2506 vfree(info->hdr);
2507 return -EFAULT;
2508 }
2509
2510 return 0;
2511}
2512
2513/* Sets info->hdr and info->len. */
2514static int copy_module_from_fd(int fd, struct load_info *info)
2515{
2516 struct fd f = fdget(fd);
2517 int err;
2518 struct kstat stat;
2519 loff_t pos;
2520 ssize_t bytes = 0;
2521
2522 if (!f.file)
2523 return -ENOEXEC;
2524
2525 err = security_kernel_module_from_file(f.file);
2526 if (err)
2527 goto out;
2528
2529 err = vfs_getattr(&f.file->f_path, &stat);
2530 if (err)
2531 goto out;
2532
2533 if (stat.size > INT_MAX) {
2534 err = -EFBIG;
2535 goto out;
2536 }
2537
2538 /* Don't hand 0 to vmalloc, it whines. */
2539 if (stat.size == 0) {
2540 err = -EINVAL;
2541 goto out;
2542 }
2543
2544 info->hdr = vmalloc(stat.size);
2545 if (!info->hdr) {
2546 err = -ENOMEM;
2547 goto out;
2548 }
2549
2550 pos = 0;
2551 while (pos < stat.size) {
2552 bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
2553 stat.size - pos);
2554 if (bytes < 0) {
2555 vfree(info->hdr);
2556 err = bytes;
2557 goto out;
2558 }
2559 if (bytes == 0)
2560 break;
2561 pos += bytes;
2562 }
2563 info->len = pos;
2564
2565out:
2566 fdput(f);
2567 return err;
2568}
2569
2570static void free_copy(struct load_info *info)
2571{
2572 vfree(info->hdr);
2573}
2574
2575static int rewrite_section_headers(struct load_info *info, int flags)
2576{
2577 unsigned int i;
2578
2579 /* This should always be true, but let's be sure. */
2580 info->sechdrs[0].sh_addr = 0;
2581
2582 for (i = 1; i < info->hdr->e_shnum; i++) {
2583 Elf_Shdr *shdr = &info->sechdrs[i];
2584 if (shdr->sh_type != SHT_NOBITS
2585 && info->len < shdr->sh_offset + shdr->sh_size) {
2586 pr_err("Module len %lu truncated\n", info->len);
2587 return -ENOEXEC;
2588 }
2589
2590 /* Mark all sections sh_addr with their address in the
2591 temporary image. */
2592 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2593
2594#ifndef CONFIG_MODULE_UNLOAD
2595 /* Don't load .exit sections */
2596 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2597 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2598#endif
2599 }
2600
2601 /* Track but don't keep modinfo and version sections. */
2602 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2603 info->index.vers = 0; /* Pretend no __versions section! */
2604 else
2605 info->index.vers = find_sec(info, "__versions");
2606 info->index.info = find_sec(info, ".modinfo");
2607 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2608 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2609 return 0;
2610}
2611
2612/*
2613 * Set up our basic convenience variables (pointers to section headers,
2614 * search for module section index etc), and do some basic section
2615 * verification.
2616 *
2617 * Return the temporary module pointer (we'll replace it with the final
2618 * one when we move the module sections around).
2619 */
2620static struct module *setup_load_info(struct load_info *info, int flags)
2621{
2622 unsigned int i;
2623 int err;
2624 struct module *mod;
2625
2626 /* Set up the convenience variables */
2627 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2628 info->secstrings = (void *)info->hdr
2629 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2630
2631 err = rewrite_section_headers(info, flags);
2632 if (err)
2633 return ERR_PTR(err);
2634
2635 /* Find internal symbols and strings. */
2636 for (i = 1; i < info->hdr->e_shnum; i++) {
2637 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2638 info->index.sym = i;
2639 info->index.str = info->sechdrs[i].sh_link;
2640 info->strtab = (char *)info->hdr
2641 + info->sechdrs[info->index.str].sh_offset;
2642 break;
2643 }
2644 }
2645
2646 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2647 if (!info->index.mod) {
2648 pr_warn("No module found in object\n");
2649 return ERR_PTR(-ENOEXEC);
2650 }
2651 /* This is temporary: point mod into copy of data. */
2652 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2653
2654 if (info->index.sym == 0) {
2655 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2656 return ERR_PTR(-ENOEXEC);
2657 }
2658
2659 info->index.pcpu = find_pcpusec(info);
2660
2661 /* Check module struct version now, before we try to use module. */
2662 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2663 return ERR_PTR(-ENOEXEC);
2664
2665 return mod;
2666}
2667
2668static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2669{
2670 const char *modmagic = get_modinfo(info, "vermagic");
2671 int err;
2672
2673 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2674 modmagic = NULL;
2675
2676 /* This is allowed: modprobe --force will invalidate it. */
2677 if (!modmagic) {
2678 err = try_to_force_load(mod, "bad vermagic");
2679 if (err)
2680 return err;
2681 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2682 pr_err("%s: version magic '%s' should be '%s'\n",
2683 mod->name, modmagic, vermagic);
2684 return -ENOEXEC;
2685 }
2686
2687 if (!get_modinfo(info, "intree"))
2688 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2689
2690 if (get_modinfo(info, "staging")) {
2691 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2692 pr_warn("%s: module is from the staging directory, the quality "
2693 "is unknown, you have been warned.\n", mod->name);
2694 }
2695
2696 /* Set up license info based on the info section */
2697 set_license(mod, get_modinfo(info, "license"));
2698
2699 return 0;
2700}
2701
2702static int find_module_sections(struct module *mod, struct load_info *info)
2703{
2704 mod->kp = section_objs(info, "__param",
2705 sizeof(*mod->kp), &mod->num_kp);
2706 mod->syms = section_objs(info, "__ksymtab",
2707 sizeof(*mod->syms), &mod->num_syms);
2708 mod->crcs = section_addr(info, "__kcrctab");
2709 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2710 sizeof(*mod->gpl_syms),
2711 &mod->num_gpl_syms);
2712 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2713 mod->gpl_future_syms = section_objs(info,
2714 "__ksymtab_gpl_future",
2715 sizeof(*mod->gpl_future_syms),
2716 &mod->num_gpl_future_syms);
2717 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2718
2719#ifdef CONFIG_UNUSED_SYMBOLS
2720 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2721 sizeof(*mod->unused_syms),
2722 &mod->num_unused_syms);
2723 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2724 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2725 sizeof(*mod->unused_gpl_syms),
2726 &mod->num_unused_gpl_syms);
2727 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2728#endif
2729#ifdef CONFIG_CONSTRUCTORS
2730 mod->ctors = section_objs(info, ".ctors",
2731 sizeof(*mod->ctors), &mod->num_ctors);
2732 if (!mod->ctors)
2733 mod->ctors = section_objs(info, ".init_array",
2734 sizeof(*mod->ctors), &mod->num_ctors);
2735 else if (find_sec(info, ".init_array")) {
2736 /*
2737 * This shouldn't happen with same compiler and binutils
2738 * building all parts of the module.
2739 */
2740 printk(KERN_WARNING "%s: has both .ctors and .init_array.\n",
2741 mod->name);
2742 return -EINVAL;
2743 }
2744#endif
2745
2746#ifdef CONFIG_TRACEPOINTS
2747 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2748 sizeof(*mod->tracepoints_ptrs),
2749 &mod->num_tracepoints);
2750#endif
2751#ifdef HAVE_JUMP_LABEL
2752 mod->jump_entries = section_objs(info, "__jump_table",
2753 sizeof(*mod->jump_entries),
2754 &mod->num_jump_entries);
2755#endif
2756#ifdef CONFIG_EVENT_TRACING
2757 mod->trace_events = section_objs(info, "_ftrace_events",
2758 sizeof(*mod->trace_events),
2759 &mod->num_trace_events);
2760#endif
2761#ifdef CONFIG_TRACING
2762 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2763 sizeof(*mod->trace_bprintk_fmt_start),
2764 &mod->num_trace_bprintk_fmt);
2765#endif
2766#ifdef CONFIG_FTRACE_MCOUNT_RECORD
2767 /* sechdrs[0].sh_size is always zero */
2768 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2769 sizeof(*mod->ftrace_callsites),
2770 &mod->num_ftrace_callsites);
2771#endif
2772
2773 mod->extable = section_objs(info, "__ex_table",
2774 sizeof(*mod->extable), &mod->num_exentries);
2775
2776 if (section_addr(info, "__obsparm"))
2777 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2778
2779 info->debug = section_objs(info, "__verbose",
2780 sizeof(*info->debug), &info->num_debug);
2781
2782 return 0;
2783}
2784
2785static int move_module(struct module *mod, struct load_info *info)
2786{
2787 int i;
2788 void *ptr;
2789
2790 /* Do the allocs. */
2791 ptr = module_alloc_update_bounds(mod->core_size);
2792 /*
2793 * The pointer to this block is stored in the module structure
2794 * which is inside the block. Just mark it as not being a
2795 * leak.
2796 */
2797 kmemleak_not_leak(ptr);
2798 if (!ptr)
2799 return -ENOMEM;
2800
2801 memset(ptr, 0, mod->core_size);
2802 mod->module_core = ptr;
2803
2804 if (mod->init_size) {
2805 ptr = module_alloc_update_bounds(mod->init_size);
2806 /*
2807 * The pointer to this block is stored in the module structure
2808 * which is inside the block. This block doesn't need to be
2809 * scanned as it contains data and code that will be freed
2810 * after the module is initialized.
2811 */
2812 kmemleak_ignore(ptr);
2813 if (!ptr) {
2814 module_free(mod, mod->module_core);
2815 return -ENOMEM;
2816 }
2817 memset(ptr, 0, mod->init_size);
2818 mod->module_init = ptr;
2819 } else
2820 mod->module_init = NULL;
2821
2822 /* Transfer each section which specifies SHF_ALLOC */
2823 pr_debug("final section addresses:\n");
2824 for (i = 0; i < info->hdr->e_shnum; i++) {
2825 void *dest;
2826 Elf_Shdr *shdr = &info->sechdrs[i];
2827
2828 if (!(shdr->sh_flags & SHF_ALLOC))
2829 continue;
2830
2831 if (shdr->sh_entsize & INIT_OFFSET_MASK)
2832 dest = mod->module_init
2833 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2834 else
2835 dest = mod->module_core + shdr->sh_entsize;
2836
2837 if (shdr->sh_type != SHT_NOBITS)
2838 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2839 /* Update sh_addr to point to copy in image. */
2840 shdr->sh_addr = (unsigned long)dest;
2841 pr_debug("\t0x%lx %s\n",
2842 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2843 }
2844
2845 return 0;
2846}
2847
2848static int check_module_license_and_versions(struct module *mod)
2849{
2850 /*
2851 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2852 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2853 * using GPL-only symbols it needs.
2854 */
2855 if (strcmp(mod->name, "ndiswrapper") == 0)
2856 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2857
2858 /* driverloader was caught wrongly pretending to be under GPL */
2859 if (strcmp(mod->name, "driverloader") == 0)
2860 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2861 LOCKDEP_NOW_UNRELIABLE);
2862
2863 /* lve claims to be GPL but upstream won't provide source */
2864 if (strcmp(mod->name, "lve") == 0)
2865 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2866 LOCKDEP_NOW_UNRELIABLE);
2867
2868#ifdef CONFIG_MODVERSIONS
2869 if ((mod->num_syms && !mod->crcs)
2870 || (mod->num_gpl_syms && !mod->gpl_crcs)
2871 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2872#ifdef CONFIG_UNUSED_SYMBOLS
2873 || (mod->num_unused_syms && !mod->unused_crcs)
2874 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2875#endif
2876 ) {
2877 return try_to_force_load(mod,
2878 "no versions for exported symbols");
2879 }
2880#endif
2881 return 0;
2882}
2883
2884static void flush_module_icache(const struct module *mod)
2885{
2886 mm_segment_t old_fs;
2887
2888 /* flush the icache in correct context */
2889 old_fs = get_fs();
2890 set_fs(KERNEL_DS);
2891
2892 /*
2893 * Flush the instruction cache, since we've played with text.
2894 * Do it before processing of module parameters, so the module
2895 * can provide parameter accessor functions of its own.
2896 */
2897 if (mod->module_init)
2898 flush_icache_range((unsigned long)mod->module_init,
2899 (unsigned long)mod->module_init
2900 + mod->init_size);
2901 flush_icache_range((unsigned long)mod->module_core,
2902 (unsigned long)mod->module_core + mod->core_size);
2903
2904 set_fs(old_fs);
2905}
2906
2907int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2908 Elf_Shdr *sechdrs,
2909 char *secstrings,
2910 struct module *mod)
2911{
2912 return 0;
2913}
2914
2915static struct module *layout_and_allocate(struct load_info *info, int flags)
2916{
2917 /* Module within temporary copy. */
2918 struct module *mod;
2919 int err;
2920
2921 mod = setup_load_info(info, flags);
2922 if (IS_ERR(mod))
2923 return mod;
2924
2925 err = check_modinfo(mod, info, flags);
2926 if (err)
2927 return ERR_PTR(err);
2928
2929 /* Allow arches to frob section contents and sizes. */
2930 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2931 info->secstrings, mod);
2932 if (err < 0)
2933 return ERR_PTR(err);
2934
2935 /* We will do a special allocation for per-cpu sections later. */
2936 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2937
2938 /* Determine total sizes, and put offsets in sh_entsize. For now
2939 this is done generically; there doesn't appear to be any
2940 special cases for the architectures. */
2941 layout_sections(mod, info);
2942 layout_symtab(mod, info);
2943
2944 /* Allocate and move to the final place */
2945 err = move_module(mod, info);
2946 if (err)
2947 return ERR_PTR(err);
2948
2949 /* Module has been copied to its final place now: return it. */
2950 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2951 kmemleak_load_module(mod, info);
2952 return mod;
2953}
2954
2955/* mod is no longer valid after this! */
2956static void module_deallocate(struct module *mod, struct load_info *info)
2957{
2958 percpu_modfree(mod);
2959 module_free(mod, mod->module_init);
2960 module_free(mod, mod->module_core);
2961}
2962
2963int __weak module_finalize(const Elf_Ehdr *hdr,
2964 const Elf_Shdr *sechdrs,
2965 struct module *me)
2966{
2967 return 0;
2968}
2969
2970static int post_relocation(struct module *mod, const struct load_info *info)
2971{
2972 /* Sort exception table now relocations are done. */
2973 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2974
2975 /* Copy relocated percpu area over. */
2976 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2977 info->sechdrs[info->index.pcpu].sh_size);
2978
2979 /* Setup kallsyms-specific fields. */
2980 add_kallsyms(mod, info);
2981
2982 /* Arch-specific module finalizing. */
2983 return module_finalize(info->hdr, info->sechdrs, mod);
2984}
2985
2986/* Is this module of this name done loading? No locks held. */
2987static bool finished_loading(const char *name)
2988{
2989 struct module *mod;
2990 bool ret;
2991
2992 mutex_lock(&module_mutex);
2993 mod = find_module_all(name, strlen(name), true);
2994 ret = !mod || mod->state == MODULE_STATE_LIVE
2995 || mod->state == MODULE_STATE_GOING;
2996 mutex_unlock(&module_mutex);
2997
2998 return ret;
2999}
3000
3001/* Call module constructors. */
3002static void do_mod_ctors(struct module *mod)
3003{
3004#ifdef CONFIG_CONSTRUCTORS
3005 unsigned long i;
3006
3007 for (i = 0; i < mod->num_ctors; i++)
3008 mod->ctors[i]();
3009#endif
3010}
3011
3012/* This is where the real work happens */
3013static int do_init_module(struct module *mod)
3014{
3015 int ret = 0;
3016
3017 /*
3018 * We want to find out whether @mod uses async during init. Clear
3019 * PF_USED_ASYNC. async_schedule*() will set it.
3020 */
3021 current->flags &= ~PF_USED_ASYNC;
3022
3023 blocking_notifier_call_chain(&module_notify_list,
3024 MODULE_STATE_COMING, mod);
3025
3026 /* Set RO and NX regions for core */
3027 set_section_ro_nx(mod->module_core,
3028 mod->core_text_size,
3029 mod->core_ro_size,
3030 mod->core_size);
3031
3032 /* Set RO and NX regions for init */
3033 set_section_ro_nx(mod->module_init,
3034 mod->init_text_size,
3035 mod->init_ro_size,
3036 mod->init_size);
3037
3038 do_mod_ctors(mod);
3039 /* Start the module */
3040 if (mod->init != NULL)
3041 ret = do_one_initcall(mod->init);
3042 if (ret < 0) {
3043 /* Init routine failed: abort. Try to protect us from
3044 buggy refcounters. */
3045 mod->state = MODULE_STATE_GOING;
3046 synchronize_sched();
3047 module_put(mod);
3048 blocking_notifier_call_chain(&module_notify_list,
3049 MODULE_STATE_GOING, mod);
3050 free_module(mod);
3051 wake_up_all(&module_wq);
3052 return ret;
3053 }
3054 if (ret > 0) {
3055 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3056 "follow 0/-E convention\n"
3057 "%s: loading module anyway...\n",
3058 __func__, mod->name, ret, __func__);
3059 dump_stack();
3060 }
3061
3062 /* Now it's a first class citizen! */
3063 mod->state = MODULE_STATE_LIVE;
3064 blocking_notifier_call_chain(&module_notify_list,
3065 MODULE_STATE_LIVE, mod);
3066
3067 /*
3068 * We need to finish all async code before the module init sequence
3069 * is done. This has potential to deadlock. For example, a newly
3070 * detected block device can trigger request_module() of the
3071 * default iosched from async probing task. Once userland helper
3072 * reaches here, async_synchronize_full() will wait on the async
3073 * task waiting on request_module() and deadlock.
3074 *
3075 * This deadlock is avoided by perfomring async_synchronize_full()
3076 * iff module init queued any async jobs. This isn't a full
3077 * solution as it will deadlock the same if module loading from
3078 * async jobs nests more than once; however, due to the various
3079 * constraints, this hack seems to be the best option for now.
3080 * Please refer to the following thread for details.
3081 *
3082 * http://thread.gmane.org/gmane.linux.kernel/1420814
3083 */
3084 if (current->flags & PF_USED_ASYNC)
3085 async_synchronize_full();
3086
3087 mutex_lock(&module_mutex);
3088 /* Drop initial reference. */
3089 module_put(mod);
3090 trim_init_extable(mod);
3091#ifdef CONFIG_KALLSYMS
3092 mod->num_symtab = mod->core_num_syms;
3093 mod->symtab = mod->core_symtab;
3094 mod->strtab = mod->core_strtab;
3095#endif
3096 unset_module_init_ro_nx(mod);
3097 module_free(mod, mod->module_init);
3098 mod->module_init = NULL;
3099 mod->init_size = 0;
3100 mod->init_ro_size = 0;
3101 mod->init_text_size = 0;
3102 mutex_unlock(&module_mutex);
3103 wake_up_all(&module_wq);
3104
3105 return 0;
3106}
3107
3108static int may_init_module(void)
3109{
3110 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3111 return -EPERM;
3112
3113 return 0;
3114}
3115
3116/*
3117 * We try to place it in the list now to make sure it's unique before
3118 * we dedicate too many resources. In particular, temporary percpu
3119 * memory exhaustion.
3120 */
3121static int add_unformed_module(struct module *mod)
3122{
3123 int err;
3124 struct module *old;
3125
3126 mod->state = MODULE_STATE_UNFORMED;
3127
3128again:
3129 mutex_lock(&module_mutex);
3130 old = find_module_all(mod->name, strlen(mod->name), true);
3131 if (old != NULL) {
3132 if (old->state == MODULE_STATE_COMING
3133 || old->state == MODULE_STATE_UNFORMED) {
3134 /* Wait in case it fails to load. */
3135 mutex_unlock(&module_mutex);
3136 err = wait_event_interruptible(module_wq,
3137 finished_loading(mod->name));
3138 if (err)
3139 goto out_unlocked;
3140 goto again;
3141 }
3142 err = -EEXIST;
3143 goto out;
3144 }
3145 list_add_rcu(&mod->list, &modules);
3146 err = 0;
3147
3148out:
3149 mutex_unlock(&module_mutex);
3150out_unlocked:
3151 return err;
3152}
3153
3154static int complete_formation(struct module *mod, struct load_info *info)
3155{
3156 int err;
3157
3158 mutex_lock(&module_mutex);
3159
3160 /* Find duplicate symbols (must be called under lock). */
3161 err = verify_export_symbols(mod);
3162 if (err < 0)
3163 goto out;
3164
3165 /* This relies on module_mutex for list integrity. */
3166 module_bug_finalize(info->hdr, info->sechdrs, mod);
3167
3168 /* Mark state as coming so strong_try_module_get() ignores us,
3169 * but kallsyms etc. can see us. */
3170 mod->state = MODULE_STATE_COMING;
3171
3172out:
3173 mutex_unlock(&module_mutex);
3174 return err;
3175}
3176
3177static int unknown_module_param_cb(char *param, char *val, const char *modname)
3178{
3179 /* Check for magic 'dyndbg' arg */
3180 int ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3181 if (ret != 0)
3182 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3183 return 0;
3184}
3185
3186/* Allocate and load the module: note that size of section 0 is always
3187 zero, and we rely on this for optional sections. */
3188static int load_module(struct load_info *info, const char __user *uargs,
3189 int flags)
3190{
3191 struct module *mod;
3192 long err;
3193
3194 err = module_sig_check(info);
3195 if (err)
3196 goto free_copy;
3197
3198 err = elf_header_check(info);
3199 if (err)
3200 goto free_copy;
3201
3202 /* Figure out module layout, and allocate all the memory. */
3203 mod = layout_and_allocate(info, flags);
3204 if (IS_ERR(mod)) {
3205 err = PTR_ERR(mod);
3206 goto free_copy;
3207 }
3208
3209 /* Reserve our place in the list. */
3210 err = add_unformed_module(mod);
3211 if (err)
3212 goto free_module;
3213
3214#ifdef CONFIG_MODULE_SIG
3215 mod->sig_ok = info->sig_ok;
3216 if (!mod->sig_ok) {
3217 pr_notice_once("%s: module verification failed: signature "
3218 "and/or required key missing - tainting "
3219 "kernel\n", mod->name);
3220 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3221 }
3222#endif
3223
3224 /* To avoid stressing percpu allocator, do this once we're unique. */
3225 err = percpu_modalloc(mod, info);
3226 if (err)
3227 goto unlink_mod;
3228
3229 /* Now module is in final location, initialize linked lists, etc. */
3230 err = module_unload_init(mod);
3231 if (err)
3232 goto unlink_mod;
3233
3234 /* Now we've got everything in the final locations, we can
3235 * find optional sections. */
3236 err = find_module_sections(mod, info);
3237 if (err)
3238 goto free_unload;
3239
3240 err = check_module_license_and_versions(mod);
3241 if (err)
3242 goto free_unload;
3243
3244 /* Set up MODINFO_ATTR fields */
3245 setup_modinfo(mod, info);
3246
3247 /* Fix up syms, so that st_value is a pointer to location. */
3248 err = simplify_symbols(mod, info);
3249 if (err < 0)
3250 goto free_modinfo;
3251
3252 err = apply_relocations(mod, info);
3253 if (err < 0)
3254 goto free_modinfo;
3255
3256 err = post_relocation(mod, info);
3257 if (err < 0)
3258 goto free_modinfo;
3259
3260 flush_module_icache(mod);
3261
3262 /* Now copy in args */
3263 mod->args = strndup_user(uargs, ~0UL >> 1);
3264 if (IS_ERR(mod->args)) {
3265 err = PTR_ERR(mod->args);
3266 goto free_arch_cleanup;
3267 }
3268
3269 dynamic_debug_setup(info->debug, info->num_debug);
3270
3271 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3272 ftrace_module_init(mod);
3273
3274 /* Finally it's fully formed, ready to start executing. */
3275 err = complete_formation(mod, info);
3276 if (err)
3277 goto ddebug_cleanup;
3278
3279 /* Module is ready to execute: parsing args may do that. */
3280 err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3281 -32768, 32767, unknown_module_param_cb);
3282 if (err < 0)
3283 goto bug_cleanup;
3284
3285 /* Link in to syfs. */
3286 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3287 if (err < 0)
3288 goto bug_cleanup;
3289
3290 /* Get rid of temporary copy. */
3291 free_copy(info);
3292
3293 /* Done! */
3294 trace_module_load(mod);
3295
3296 return do_init_module(mod);
3297
3298 bug_cleanup:
3299 /* module_bug_cleanup needs module_mutex protection */
3300 mutex_lock(&module_mutex);
3301 module_bug_cleanup(mod);
3302 mutex_unlock(&module_mutex);
3303 ddebug_cleanup:
3304 dynamic_debug_remove(info->debug);
3305 synchronize_sched();
3306 kfree(mod->args);
3307 free_arch_cleanup:
3308 module_arch_cleanup(mod);
3309 free_modinfo:
3310 free_modinfo(mod);
3311 free_unload:
3312 module_unload_free(mod);
3313 unlink_mod:
3314 mutex_lock(&module_mutex);
3315 /* Unlink carefully: kallsyms could be walking list. */
3316 list_del_rcu(&mod->list);
3317 wake_up_all(&module_wq);
3318 mutex_unlock(&module_mutex);
3319 free_module:
3320 module_deallocate(mod, info);
3321 free_copy:
3322 free_copy(info);
3323 return err;
3324}
3325
3326SYSCALL_DEFINE3(init_module, void __user *, umod,
3327 unsigned long, len, const char __user *, uargs)
3328{
3329 int err;
3330 struct load_info info = { };
3331
3332 err = may_init_module();
3333 if (err)
3334 return err;
3335
3336 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3337 umod, len, uargs);
3338
3339 err = copy_module_from_user(umod, len, &info);
3340 if (err)
3341 return err;
3342
3343 return load_module(&info, uargs, 0);
3344}
3345
3346SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3347{
3348 int err;
3349 struct load_info info = { };
3350
3351 err = may_init_module();
3352 if (err)
3353 return err;
3354
3355 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3356
3357 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3358 |MODULE_INIT_IGNORE_VERMAGIC))
3359 return -EINVAL;
3360
3361 err = copy_module_from_fd(fd, &info);
3362 if (err)
3363 return err;
3364
3365 return load_module(&info, uargs, flags);
3366}
3367
3368static inline int within(unsigned long addr, void *start, unsigned long size)
3369{
3370 return ((void *)addr >= start && (void *)addr < start + size);
3371}
3372
3373#ifdef CONFIG_KALLSYMS
3374/*
3375 * This ignores the intensely annoying "mapping symbols" found
3376 * in ARM ELF files: $a, $t and $d.
3377 */
3378static inline int is_arm_mapping_symbol(const char *str)
3379{
3380 return str[0] == '$' && strchr("atd", str[1])
3381 && (str[2] == '\0' || str[2] == '.');
3382}
3383
3384static const char *get_ksymbol(struct module *mod,
3385 unsigned long addr,
3386 unsigned long *size,
3387 unsigned long *offset)
3388{
3389 unsigned int i, best = 0;
3390 unsigned long nextval;
3391
3392 /* At worse, next value is at end of module */
3393 if (within_module_init(addr, mod))
3394 nextval = (unsigned long)mod->module_init+mod->init_text_size;
3395 else
3396 nextval = (unsigned long)mod->module_core+mod->core_text_size;
3397
3398 /* Scan for closest preceding symbol, and next symbol. (ELF
3399 starts real symbols at 1). */
3400 for (i = 1; i < mod->num_symtab; i++) {
3401 if (mod->symtab[i].st_shndx == SHN_UNDEF)
3402 continue;
3403
3404 /* We ignore unnamed symbols: they're uninformative
3405 * and inserted at a whim. */
3406 if (mod->symtab[i].st_value <= addr
3407 && mod->symtab[i].st_value > mod->symtab[best].st_value
3408 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3409 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3410 best = i;
3411 if (mod->symtab[i].st_value > addr
3412 && mod->symtab[i].st_value < nextval
3413 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3414 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3415 nextval = mod->symtab[i].st_value;
3416 }
3417
3418 if (!best)
3419 return NULL;
3420
3421 if (size)
3422 *size = nextval - mod->symtab[best].st_value;
3423 if (offset)
3424 *offset = addr - mod->symtab[best].st_value;
3425 return mod->strtab + mod->symtab[best].st_name;
3426}
3427
3428/* For kallsyms to ask for address resolution. NULL means not found. Careful
3429 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3430const char *module_address_lookup(unsigned long addr,
3431 unsigned long *size,
3432 unsigned long *offset,
3433 char **modname,
3434 char *namebuf)
3435{
3436 struct module *mod;
3437 const char *ret = NULL;
3438
3439 preempt_disable();
3440 list_for_each_entry_rcu(mod, &modules, list) {
3441 if (mod->state == MODULE_STATE_UNFORMED)
3442 continue;
3443 if (within_module_init(addr, mod) ||
3444 within_module_core(addr, mod)) {
3445 if (modname)
3446 *modname = mod->name;
3447 ret = get_ksymbol(mod, addr, size, offset);
3448 break;
3449 }
3450 }
3451 /* Make a copy in here where it's safe */
3452 if (ret) {
3453 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3454 ret = namebuf;
3455 }
3456 preempt_enable();
3457 return ret;
3458}
3459
3460int lookup_module_symbol_name(unsigned long addr, char *symname)
3461{
3462 struct module *mod;
3463
3464 preempt_disable();
3465 list_for_each_entry_rcu(mod, &modules, list) {
3466 if (mod->state == MODULE_STATE_UNFORMED)
3467 continue;
3468 if (within_module_init(addr, mod) ||
3469 within_module_core(addr, mod)) {
3470 const char *sym;
3471
3472 sym = get_ksymbol(mod, addr, NULL, NULL);
3473 if (!sym)
3474 goto out;
3475 strlcpy(symname, sym, KSYM_NAME_LEN);
3476 preempt_enable();
3477 return 0;
3478 }
3479 }
3480out:
3481 preempt_enable();
3482 return -ERANGE;
3483}
3484
3485int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3486 unsigned long *offset, char *modname, char *name)
3487{
3488 struct module *mod;
3489
3490 preempt_disable();
3491 list_for_each_entry_rcu(mod, &modules, list) {
3492 if (mod->state == MODULE_STATE_UNFORMED)
3493 continue;
3494 if (within_module_init(addr, mod) ||
3495 within_module_core(addr, mod)) {
3496 const char *sym;
3497
3498 sym = get_ksymbol(mod, addr, size, offset);
3499 if (!sym)
3500 goto out;
3501 if (modname)
3502 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3503 if (name)
3504 strlcpy(name, sym, KSYM_NAME_LEN);
3505 preempt_enable();
3506 return 0;
3507 }
3508 }
3509out:
3510 preempt_enable();
3511 return -ERANGE;
3512}
3513
3514int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3515 char *name, char *module_name, int *exported)
3516{
3517 struct module *mod;
3518
3519 preempt_disable();
3520 list_for_each_entry_rcu(mod, &modules, list) {
3521 if (mod->state == MODULE_STATE_UNFORMED)
3522 continue;
3523 if (symnum < mod->num_symtab) {
3524 *value = mod->symtab[symnum].st_value;
3525 *type = mod->symtab[symnum].st_info;
3526 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3527 KSYM_NAME_LEN);
3528 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3529 *exported = is_exported(name, *value, mod);
3530 preempt_enable();
3531 return 0;
3532 }
3533 symnum -= mod->num_symtab;
3534 }
3535 preempt_enable();
3536 return -ERANGE;
3537}
3538
3539static unsigned long mod_find_symname(struct module *mod, const char *name)
3540{
3541 unsigned int i;
3542
3543 for (i = 0; i < mod->num_symtab; i++)
3544 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3545 mod->symtab[i].st_info != 'U')
3546 return mod->symtab[i].st_value;
3547 return 0;
3548}
3549
3550/* Look for this name: can be of form module:name. */
3551unsigned long module_kallsyms_lookup_name(const char *name)
3552{
3553 struct module *mod;
3554 char *colon;
3555 unsigned long ret = 0;
3556
3557 /* Don't lock: we're in enough trouble already. */
3558 preempt_disable();
3559 if ((colon = strchr(name, ':')) != NULL) {
3560 if ((mod = find_module_all(name, colon - name, false)) != NULL)
3561 ret = mod_find_symname(mod, colon+1);
3562 } else {
3563 list_for_each_entry_rcu(mod, &modules, list) {
3564 if (mod->state == MODULE_STATE_UNFORMED)
3565 continue;
3566 if ((ret = mod_find_symname(mod, name)) != 0)
3567 break;
3568 }
3569 }
3570 preempt_enable();
3571 return ret;
3572}
3573
3574int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3575 struct module *, unsigned long),
3576 void *data)
3577{
3578 struct module *mod;
3579 unsigned int i;
3580 int ret;
3581
3582 list_for_each_entry(mod, &modules, list) {
3583 if (mod->state == MODULE_STATE_UNFORMED)
3584 continue;
3585 for (i = 0; i < mod->num_symtab; i++) {
3586 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3587 mod, mod->symtab[i].st_value);
3588 if (ret != 0)
3589 return ret;
3590 }
3591 }
3592 return 0;
3593}
3594#endif /* CONFIG_KALLSYMS */
3595
3596static char *module_flags(struct module *mod, char *buf)
3597{
3598 int bx = 0;
3599
3600 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3601 if (mod->taints ||
3602 mod->state == MODULE_STATE_GOING ||
3603 mod->state == MODULE_STATE_COMING) {
3604 buf[bx++] = '(';
3605 bx += module_flags_taint(mod, buf + bx);
3606 /* Show a - for module-is-being-unloaded */
3607 if (mod->state == MODULE_STATE_GOING)
3608 buf[bx++] = '-';
3609 /* Show a + for module-is-being-loaded */
3610 if (mod->state == MODULE_STATE_COMING)
3611 buf[bx++] = '+';
3612 buf[bx++] = ')';
3613 }
3614 buf[bx] = '\0';
3615
3616 return buf;
3617}
3618
3619#ifdef CONFIG_PROC_FS
3620/* Called by the /proc file system to return a list of modules. */
3621static void *m_start(struct seq_file *m, loff_t *pos)
3622{
3623 mutex_lock(&module_mutex);
3624 return seq_list_start(&modules, *pos);
3625}
3626
3627static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3628{
3629 return seq_list_next(p, &modules, pos);
3630}
3631
3632static void m_stop(struct seq_file *m, void *p)
3633{
3634 mutex_unlock(&module_mutex);
3635}
3636
3637static int m_show(struct seq_file *m, void *p)
3638{
3639 struct module *mod = list_entry(p, struct module, list);
3640 char buf[8];
3641
3642 /* We always ignore unformed modules. */
3643 if (mod->state == MODULE_STATE_UNFORMED)
3644 return 0;
3645
3646 seq_printf(m, "%s %u",
3647 mod->name, mod->init_size + mod->core_size);
3648 print_unload_info(m, mod);
3649
3650 /* Informative for users. */
3651 seq_printf(m, " %s",
3652 mod->state == MODULE_STATE_GOING ? "Unloading":
3653 mod->state == MODULE_STATE_COMING ? "Loading":
3654 "Live");
3655 /* Used by oprofile and other similar tools. */
3656 seq_printf(m, " 0x%pK", mod->module_core);
3657
3658 /* Taints info */
3659 if (mod->taints)
3660 seq_printf(m, " %s", module_flags(mod, buf));
3661
3662 seq_printf(m, "\n");
3663 return 0;
3664}
3665
3666/* Format: modulename size refcount deps address
3667
3668 Where refcount is a number or -, and deps is a comma-separated list
3669 of depends or -.
3670*/
3671static const struct seq_operations modules_op = {
3672 .start = m_start,
3673 .next = m_next,
3674 .stop = m_stop,
3675 .show = m_show
3676};
3677
3678static int modules_open(struct inode *inode, struct file *file)
3679{
3680 return seq_open(file, &modules_op);
3681}
3682
3683static const struct file_operations proc_modules_operations = {
3684 .open = modules_open,
3685 .read = seq_read,
3686 .llseek = seq_lseek,
3687 .release = seq_release,
3688};
3689
3690static int __init proc_modules_init(void)
3691{
3692 proc_create("modules", 0, NULL, &proc_modules_operations);
3693 return 0;
3694}
3695module_init(proc_modules_init);
3696#endif
3697
3698/* Given an address, look for it in the module exception tables. */
3699const struct exception_table_entry *search_module_extables(unsigned long addr)
3700{
3701 const struct exception_table_entry *e = NULL;
3702 struct module *mod;
3703
3704 preempt_disable();
3705 list_for_each_entry_rcu(mod, &modules, list) {
3706 if (mod->state == MODULE_STATE_UNFORMED)
3707 continue;
3708 if (mod->num_exentries == 0)
3709 continue;
3710
3711 e = search_extable(mod->extable,
3712 mod->extable + mod->num_exentries - 1,
3713 addr);
3714 if (e)
3715 break;
3716 }
3717 preempt_enable();
3718
3719 /* Now, if we found one, we are running inside it now, hence
3720 we cannot unload the module, hence no refcnt needed. */
3721 return e;
3722}
3723
3724/*
3725 * is_module_address - is this address inside a module?
3726 * @addr: the address to check.
3727 *
3728 * See is_module_text_address() if you simply want to see if the address
3729 * is code (not data).
3730 */
3731bool is_module_address(unsigned long addr)
3732{
3733 bool ret;
3734
3735 preempt_disable();
3736 ret = __module_address(addr) != NULL;
3737 preempt_enable();
3738
3739 return ret;
3740}
3741
3742/*
3743 * __module_address - get the module which contains an address.
3744 * @addr: the address.
3745 *
3746 * Must be called with preempt disabled or module mutex held so that
3747 * module doesn't get freed during this.
3748 */
3749struct module *__module_address(unsigned long addr)
3750{
3751 struct module *mod;
3752
3753 if (addr < module_addr_min || addr > module_addr_max)
3754 return NULL;
3755
3756 list_for_each_entry_rcu(mod, &modules, list) {
3757 if (mod->state == MODULE_STATE_UNFORMED)
3758 continue;
3759 if (within_module_core(addr, mod)
3760 || within_module_init(addr, mod))
3761 return mod;
3762 }
3763 return NULL;
3764}
3765EXPORT_SYMBOL_GPL(__module_address);
3766
3767/*
3768 * is_module_text_address - is this address inside module code?
3769 * @addr: the address to check.
3770 *
3771 * See is_module_address() if you simply want to see if the address is
3772 * anywhere in a module. See kernel_text_address() for testing if an
3773 * address corresponds to kernel or module code.
3774 */
3775bool is_module_text_address(unsigned long addr)
3776{
3777 bool ret;
3778
3779 preempt_disable();
3780 ret = __module_text_address(addr) != NULL;
3781 preempt_enable();
3782
3783 return ret;
3784}
3785
3786/*
3787 * __module_text_address - get the module whose code contains an address.
3788 * @addr: the address.
3789 *
3790 * Must be called with preempt disabled or module mutex held so that
3791 * module doesn't get freed during this.
3792 */
3793struct module *__module_text_address(unsigned long addr)
3794{
3795 struct module *mod = __module_address(addr);
3796 if (mod) {
3797 /* Make sure it's within the text section. */
3798 if (!within(addr, mod->module_init, mod->init_text_size)
3799 && !within(addr, mod->module_core, mod->core_text_size))
3800 mod = NULL;
3801 }
3802 return mod;
3803}
3804EXPORT_SYMBOL_GPL(__module_text_address);
3805
3806/* Don't grab lock, we're oopsing. */
3807void print_modules(void)
3808{
3809 struct module *mod;
3810 char buf[8];
3811
3812 printk(KERN_DEFAULT "Modules linked in:");
3813 /* Most callers should already have preempt disabled, but make sure */
3814 preempt_disable();
3815 list_for_each_entry_rcu(mod, &modules, list) {
3816 if (mod->state == MODULE_STATE_UNFORMED)
3817 continue;
3818 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
3819 }
3820 preempt_enable();
3821 if (last_unloaded_module[0])
3822 pr_cont(" [last unloaded: %s]", last_unloaded_module);
3823 pr_cont("\n");
3824}
3825
3826#ifdef CONFIG_MODVERSIONS
3827/* Generate the signature for all relevant module structures here.
3828 * If these change, we don't want to try to parse the module. */
3829void module_layout(struct module *mod,
3830 struct modversion_info *ver,
3831 struct kernel_param *kp,
3832 struct kernel_symbol *ks,
3833 struct tracepoint * const *tp)
3834{
3835}
3836EXPORT_SYMBOL(module_layout);
3837#endif
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 Copyright (C) 2002 Richard Henderson
4 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5
6*/
7
8#define INCLUDE_VERMAGIC
9
10#include <linux/export.h>
11#include <linux/extable.h>
12#include <linux/moduleloader.h>
13#include <linux/module_signature.h>
14#include <linux/trace_events.h>
15#include <linux/init.h>
16#include <linux/kallsyms.h>
17#include <linux/file.h>
18#include <linux/fs.h>
19#include <linux/sysfs.h>
20#include <linux/kernel.h>
21#include <linux/slab.h>
22#include <linux/vmalloc.h>
23#include <linux/elf.h>
24#include <linux/proc_fs.h>
25#include <linux/security.h>
26#include <linux/seq_file.h>
27#include <linux/syscalls.h>
28#include <linux/fcntl.h>
29#include <linux/rcupdate.h>
30#include <linux/capability.h>
31#include <linux/cpu.h>
32#include <linux/moduleparam.h>
33#include <linux/errno.h>
34#include <linux/err.h>
35#include <linux/vermagic.h>
36#include <linux/notifier.h>
37#include <linux/sched.h>
38#include <linux/device.h>
39#include <linux/string.h>
40#include <linux/mutex.h>
41#include <linux/rculist.h>
42#include <linux/uaccess.h>
43#include <asm/cacheflush.h>
44#include <linux/set_memory.h>
45#include <asm/mmu_context.h>
46#include <linux/license.h>
47#include <asm/sections.h>
48#include <linux/tracepoint.h>
49#include <linux/ftrace.h>
50#include <linux/livepatch.h>
51#include <linux/async.h>
52#include <linux/percpu.h>
53#include <linux/kmemleak.h>
54#include <linux/jump_label.h>
55#include <linux/pfn.h>
56#include <linux/bsearch.h>
57#include <linux/dynamic_debug.h>
58#include <linux/audit.h>
59#include <uapi/linux/module.h>
60#include "module-internal.h"
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/module.h>
64
65#ifndef ARCH_SHF_SMALL
66#define ARCH_SHF_SMALL 0
67#endif
68
69/*
70 * Modules' sections will be aligned on page boundaries
71 * to ensure complete separation of code and data, but
72 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
73 */
74#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
75# define debug_align(X) ALIGN(X, PAGE_SIZE)
76#else
77# define debug_align(X) (X)
78#endif
79
80/* If this is set, the section belongs in the init part of the module */
81#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
82
83/*
84 * Mutex protects:
85 * 1) List of modules (also safely readable with preempt_disable),
86 * 2) module_use links,
87 * 3) module_addr_min/module_addr_max.
88 * (delete and add uses RCU list operations). */
89DEFINE_MUTEX(module_mutex);
90EXPORT_SYMBOL_GPL(module_mutex);
91static LIST_HEAD(modules);
92
93/* Work queue for freeing init sections in success case */
94static struct work_struct init_free_wq;
95static struct llist_head init_free_list;
96
97#ifdef CONFIG_MODULES_TREE_LOOKUP
98
99/*
100 * Use a latched RB-tree for __module_address(); this allows us to use
101 * RCU-sched lookups of the address from any context.
102 *
103 * This is conditional on PERF_EVENTS || TRACING because those can really hit
104 * __module_address() hard by doing a lot of stack unwinding; potentially from
105 * NMI context.
106 */
107
108static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
109{
110 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
111
112 return (unsigned long)layout->base;
113}
114
115static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
116{
117 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
118
119 return (unsigned long)layout->size;
120}
121
122static __always_inline bool
123mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
124{
125 return __mod_tree_val(a) < __mod_tree_val(b);
126}
127
128static __always_inline int
129mod_tree_comp(void *key, struct latch_tree_node *n)
130{
131 unsigned long val = (unsigned long)key;
132 unsigned long start, end;
133
134 start = __mod_tree_val(n);
135 if (val < start)
136 return -1;
137
138 end = start + __mod_tree_size(n);
139 if (val >= end)
140 return 1;
141
142 return 0;
143}
144
145static const struct latch_tree_ops mod_tree_ops = {
146 .less = mod_tree_less,
147 .comp = mod_tree_comp,
148};
149
150static struct mod_tree_root {
151 struct latch_tree_root root;
152 unsigned long addr_min;
153 unsigned long addr_max;
154} mod_tree __cacheline_aligned = {
155 .addr_min = -1UL,
156};
157
158#define module_addr_min mod_tree.addr_min
159#define module_addr_max mod_tree.addr_max
160
161static noinline void __mod_tree_insert(struct mod_tree_node *node)
162{
163 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
164}
165
166static void __mod_tree_remove(struct mod_tree_node *node)
167{
168 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
169}
170
171/*
172 * These modifications: insert, remove_init and remove; are serialized by the
173 * module_mutex.
174 */
175static void mod_tree_insert(struct module *mod)
176{
177 mod->core_layout.mtn.mod = mod;
178 mod->init_layout.mtn.mod = mod;
179
180 __mod_tree_insert(&mod->core_layout.mtn);
181 if (mod->init_layout.size)
182 __mod_tree_insert(&mod->init_layout.mtn);
183}
184
185static void mod_tree_remove_init(struct module *mod)
186{
187 if (mod->init_layout.size)
188 __mod_tree_remove(&mod->init_layout.mtn);
189}
190
191static void mod_tree_remove(struct module *mod)
192{
193 __mod_tree_remove(&mod->core_layout.mtn);
194 mod_tree_remove_init(mod);
195}
196
197static struct module *mod_find(unsigned long addr)
198{
199 struct latch_tree_node *ltn;
200
201 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
202 if (!ltn)
203 return NULL;
204
205 return container_of(ltn, struct mod_tree_node, node)->mod;
206}
207
208#else /* MODULES_TREE_LOOKUP */
209
210static unsigned long module_addr_min = -1UL, module_addr_max = 0;
211
212static void mod_tree_insert(struct module *mod) { }
213static void mod_tree_remove_init(struct module *mod) { }
214static void mod_tree_remove(struct module *mod) { }
215
216static struct module *mod_find(unsigned long addr)
217{
218 struct module *mod;
219
220 list_for_each_entry_rcu(mod, &modules, list,
221 lockdep_is_held(&module_mutex)) {
222 if (within_module(addr, mod))
223 return mod;
224 }
225
226 return NULL;
227}
228
229#endif /* MODULES_TREE_LOOKUP */
230
231/*
232 * Bounds of module text, for speeding up __module_address.
233 * Protected by module_mutex.
234 */
235static void __mod_update_bounds(void *base, unsigned int size)
236{
237 unsigned long min = (unsigned long)base;
238 unsigned long max = min + size;
239
240 if (min < module_addr_min)
241 module_addr_min = min;
242 if (max > module_addr_max)
243 module_addr_max = max;
244}
245
246static void mod_update_bounds(struct module *mod)
247{
248 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
249 if (mod->init_layout.size)
250 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
251}
252
253#ifdef CONFIG_KGDB_KDB
254struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
255#endif /* CONFIG_KGDB_KDB */
256
257static void module_assert_mutex(void)
258{
259 lockdep_assert_held(&module_mutex);
260}
261
262static void module_assert_mutex_or_preempt(void)
263{
264#ifdef CONFIG_LOCKDEP
265 if (unlikely(!debug_locks))
266 return;
267
268 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
269 !lockdep_is_held(&module_mutex));
270#endif
271}
272
273static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
274module_param(sig_enforce, bool_enable_only, 0644);
275
276/*
277 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
278 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
279 */
280bool is_module_sig_enforced(void)
281{
282 return sig_enforce;
283}
284EXPORT_SYMBOL(is_module_sig_enforced);
285
286void set_module_sig_enforced(void)
287{
288 sig_enforce = true;
289}
290
291/* Block module loading/unloading? */
292int modules_disabled = 0;
293core_param(nomodule, modules_disabled, bint, 0);
294
295/* Waiting for a module to finish initializing? */
296static DECLARE_WAIT_QUEUE_HEAD(module_wq);
297
298static BLOCKING_NOTIFIER_HEAD(module_notify_list);
299
300int register_module_notifier(struct notifier_block *nb)
301{
302 return blocking_notifier_chain_register(&module_notify_list, nb);
303}
304EXPORT_SYMBOL(register_module_notifier);
305
306int unregister_module_notifier(struct notifier_block *nb)
307{
308 return blocking_notifier_chain_unregister(&module_notify_list, nb);
309}
310EXPORT_SYMBOL(unregister_module_notifier);
311
312/*
313 * We require a truly strong try_module_get(): 0 means success.
314 * Otherwise an error is returned due to ongoing or failed
315 * initialization etc.
316 */
317static inline int strong_try_module_get(struct module *mod)
318{
319 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
320 if (mod && mod->state == MODULE_STATE_COMING)
321 return -EBUSY;
322 if (try_module_get(mod))
323 return 0;
324 else
325 return -ENOENT;
326}
327
328static inline void add_taint_module(struct module *mod, unsigned flag,
329 enum lockdep_ok lockdep_ok)
330{
331 add_taint(flag, lockdep_ok);
332 set_bit(flag, &mod->taints);
333}
334
335/*
336 * A thread that wants to hold a reference to a module only while it
337 * is running can call this to safely exit. nfsd and lockd use this.
338 */
339void __noreturn __module_put_and_exit(struct module *mod, long code)
340{
341 module_put(mod);
342 do_exit(code);
343}
344EXPORT_SYMBOL(__module_put_and_exit);
345
346/* Find a module section: 0 means not found. */
347static unsigned int find_sec(const struct load_info *info, const char *name)
348{
349 unsigned int i;
350
351 for (i = 1; i < info->hdr->e_shnum; i++) {
352 Elf_Shdr *shdr = &info->sechdrs[i];
353 /* Alloc bit cleared means "ignore it." */
354 if ((shdr->sh_flags & SHF_ALLOC)
355 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
356 return i;
357 }
358 return 0;
359}
360
361/* Find a module section, or NULL. */
362static void *section_addr(const struct load_info *info, const char *name)
363{
364 /* Section 0 has sh_addr 0. */
365 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
366}
367
368/* Find a module section, or NULL. Fill in number of "objects" in section. */
369static void *section_objs(const struct load_info *info,
370 const char *name,
371 size_t object_size,
372 unsigned int *num)
373{
374 unsigned int sec = find_sec(info, name);
375
376 /* Section 0 has sh_addr 0 and sh_size 0. */
377 *num = info->sechdrs[sec].sh_size / object_size;
378 return (void *)info->sechdrs[sec].sh_addr;
379}
380
381/* Provided by the linker */
382extern const struct kernel_symbol __start___ksymtab[];
383extern const struct kernel_symbol __stop___ksymtab[];
384extern const struct kernel_symbol __start___ksymtab_gpl[];
385extern const struct kernel_symbol __stop___ksymtab_gpl[];
386extern const struct kernel_symbol __start___ksymtab_gpl_future[];
387extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
388extern const s32 __start___kcrctab[];
389extern const s32 __start___kcrctab_gpl[];
390extern const s32 __start___kcrctab_gpl_future[];
391#ifdef CONFIG_UNUSED_SYMBOLS
392extern const struct kernel_symbol __start___ksymtab_unused[];
393extern const struct kernel_symbol __stop___ksymtab_unused[];
394extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
395extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
396extern const s32 __start___kcrctab_unused[];
397extern const s32 __start___kcrctab_unused_gpl[];
398#endif
399
400#ifndef CONFIG_MODVERSIONS
401#define symversion(base, idx) NULL
402#else
403#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
404#endif
405
406static bool each_symbol_in_section(const struct symsearch *arr,
407 unsigned int arrsize,
408 struct module *owner,
409 bool (*fn)(const struct symsearch *syms,
410 struct module *owner,
411 void *data),
412 void *data)
413{
414 unsigned int j;
415
416 for (j = 0; j < arrsize; j++) {
417 if (fn(&arr[j], owner, data))
418 return true;
419 }
420
421 return false;
422}
423
424/* Returns true as soon as fn returns true, otherwise false. */
425static bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
426 struct module *owner,
427 void *data),
428 void *data)
429{
430 struct module *mod;
431 static const struct symsearch arr[] = {
432 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
433 NOT_GPL_ONLY, false },
434 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
435 __start___kcrctab_gpl,
436 GPL_ONLY, false },
437 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
438 __start___kcrctab_gpl_future,
439 WILL_BE_GPL_ONLY, false },
440#ifdef CONFIG_UNUSED_SYMBOLS
441 { __start___ksymtab_unused, __stop___ksymtab_unused,
442 __start___kcrctab_unused,
443 NOT_GPL_ONLY, true },
444 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
445 __start___kcrctab_unused_gpl,
446 GPL_ONLY, true },
447#endif
448 };
449
450 module_assert_mutex_or_preempt();
451
452 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
453 return true;
454
455 list_for_each_entry_rcu(mod, &modules, list,
456 lockdep_is_held(&module_mutex)) {
457 struct symsearch arr[] = {
458 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
459 NOT_GPL_ONLY, false },
460 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
461 mod->gpl_crcs,
462 GPL_ONLY, false },
463 { mod->gpl_future_syms,
464 mod->gpl_future_syms + mod->num_gpl_future_syms,
465 mod->gpl_future_crcs,
466 WILL_BE_GPL_ONLY, false },
467#ifdef CONFIG_UNUSED_SYMBOLS
468 { mod->unused_syms,
469 mod->unused_syms + mod->num_unused_syms,
470 mod->unused_crcs,
471 NOT_GPL_ONLY, true },
472 { mod->unused_gpl_syms,
473 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
474 mod->unused_gpl_crcs,
475 GPL_ONLY, true },
476#endif
477 };
478
479 if (mod->state == MODULE_STATE_UNFORMED)
480 continue;
481
482 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
483 return true;
484 }
485 return false;
486}
487
488struct find_symbol_arg {
489 /* Input */
490 const char *name;
491 bool gplok;
492 bool warn;
493
494 /* Output */
495 struct module *owner;
496 const s32 *crc;
497 const struct kernel_symbol *sym;
498 enum mod_license license;
499};
500
501static bool check_exported_symbol(const struct symsearch *syms,
502 struct module *owner,
503 unsigned int symnum, void *data)
504{
505 struct find_symbol_arg *fsa = data;
506
507 if (!fsa->gplok) {
508 if (syms->license == GPL_ONLY)
509 return false;
510 if (syms->license == WILL_BE_GPL_ONLY && fsa->warn) {
511 pr_warn("Symbol %s is being used by a non-GPL module, "
512 "which will not be allowed in the future\n",
513 fsa->name);
514 }
515 }
516
517#ifdef CONFIG_UNUSED_SYMBOLS
518 if (syms->unused && fsa->warn) {
519 pr_warn("Symbol %s is marked as UNUSED, however this module is "
520 "using it.\n", fsa->name);
521 pr_warn("This symbol will go away in the future.\n");
522 pr_warn("Please evaluate if this is the right api to use and "
523 "if it really is, submit a report to the linux kernel "
524 "mailing list together with submitting your code for "
525 "inclusion.\n");
526 }
527#endif
528
529 fsa->owner = owner;
530 fsa->crc = symversion(syms->crcs, symnum);
531 fsa->sym = &syms->start[symnum];
532 fsa->license = syms->license;
533 return true;
534}
535
536static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
537{
538#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
539 return (unsigned long)offset_to_ptr(&sym->value_offset);
540#else
541 return sym->value;
542#endif
543}
544
545static const char *kernel_symbol_name(const struct kernel_symbol *sym)
546{
547#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
548 return offset_to_ptr(&sym->name_offset);
549#else
550 return sym->name;
551#endif
552}
553
554static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
555{
556#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
557 if (!sym->namespace_offset)
558 return NULL;
559 return offset_to_ptr(&sym->namespace_offset);
560#else
561 return sym->namespace;
562#endif
563}
564
565static int cmp_name(const void *name, const void *sym)
566{
567 return strcmp(name, kernel_symbol_name(sym));
568}
569
570static bool find_exported_symbol_in_section(const struct symsearch *syms,
571 struct module *owner,
572 void *data)
573{
574 struct find_symbol_arg *fsa = data;
575 struct kernel_symbol *sym;
576
577 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
578 sizeof(struct kernel_symbol), cmp_name);
579
580 if (sym != NULL && check_exported_symbol(syms, owner,
581 sym - syms->start, data))
582 return true;
583
584 return false;
585}
586
587/* Find an exported symbol and return it, along with, (optional) crc and
588 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
589static const struct kernel_symbol *find_symbol(const char *name,
590 struct module **owner,
591 const s32 **crc,
592 enum mod_license *license,
593 bool gplok,
594 bool warn)
595{
596 struct find_symbol_arg fsa;
597
598 fsa.name = name;
599 fsa.gplok = gplok;
600 fsa.warn = warn;
601
602 if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
603 if (owner)
604 *owner = fsa.owner;
605 if (crc)
606 *crc = fsa.crc;
607 if (license)
608 *license = fsa.license;
609 return fsa.sym;
610 }
611
612 pr_debug("Failed to find symbol %s\n", name);
613 return NULL;
614}
615
616/*
617 * Search for module by name: must hold module_mutex (or preempt disabled
618 * for read-only access).
619 */
620static struct module *find_module_all(const char *name, size_t len,
621 bool even_unformed)
622{
623 struct module *mod;
624
625 module_assert_mutex_or_preempt();
626
627 list_for_each_entry_rcu(mod, &modules, list,
628 lockdep_is_held(&module_mutex)) {
629 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
630 continue;
631 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
632 return mod;
633 }
634 return NULL;
635}
636
637struct module *find_module(const char *name)
638{
639 module_assert_mutex();
640 return find_module_all(name, strlen(name), false);
641}
642EXPORT_SYMBOL_GPL(find_module);
643
644#ifdef CONFIG_SMP
645
646static inline void __percpu *mod_percpu(struct module *mod)
647{
648 return mod->percpu;
649}
650
651static int percpu_modalloc(struct module *mod, struct load_info *info)
652{
653 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
654 unsigned long align = pcpusec->sh_addralign;
655
656 if (!pcpusec->sh_size)
657 return 0;
658
659 if (align > PAGE_SIZE) {
660 pr_warn("%s: per-cpu alignment %li > %li\n",
661 mod->name, align, PAGE_SIZE);
662 align = PAGE_SIZE;
663 }
664
665 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
666 if (!mod->percpu) {
667 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
668 mod->name, (unsigned long)pcpusec->sh_size);
669 return -ENOMEM;
670 }
671 mod->percpu_size = pcpusec->sh_size;
672 return 0;
673}
674
675static void percpu_modfree(struct module *mod)
676{
677 free_percpu(mod->percpu);
678}
679
680static unsigned int find_pcpusec(struct load_info *info)
681{
682 return find_sec(info, ".data..percpu");
683}
684
685static void percpu_modcopy(struct module *mod,
686 const void *from, unsigned long size)
687{
688 int cpu;
689
690 for_each_possible_cpu(cpu)
691 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
692}
693
694bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
695{
696 struct module *mod;
697 unsigned int cpu;
698
699 preempt_disable();
700
701 list_for_each_entry_rcu(mod, &modules, list) {
702 if (mod->state == MODULE_STATE_UNFORMED)
703 continue;
704 if (!mod->percpu_size)
705 continue;
706 for_each_possible_cpu(cpu) {
707 void *start = per_cpu_ptr(mod->percpu, cpu);
708 void *va = (void *)addr;
709
710 if (va >= start && va < start + mod->percpu_size) {
711 if (can_addr) {
712 *can_addr = (unsigned long) (va - start);
713 *can_addr += (unsigned long)
714 per_cpu_ptr(mod->percpu,
715 get_boot_cpu_id());
716 }
717 preempt_enable();
718 return true;
719 }
720 }
721 }
722
723 preempt_enable();
724 return false;
725}
726
727/**
728 * is_module_percpu_address - test whether address is from module static percpu
729 * @addr: address to test
730 *
731 * Test whether @addr belongs to module static percpu area.
732 *
733 * RETURNS:
734 * %true if @addr is from module static percpu area
735 */
736bool is_module_percpu_address(unsigned long addr)
737{
738 return __is_module_percpu_address(addr, NULL);
739}
740
741#else /* ... !CONFIG_SMP */
742
743static inline void __percpu *mod_percpu(struct module *mod)
744{
745 return NULL;
746}
747static int percpu_modalloc(struct module *mod, struct load_info *info)
748{
749 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
750 if (info->sechdrs[info->index.pcpu].sh_size != 0)
751 return -ENOMEM;
752 return 0;
753}
754static inline void percpu_modfree(struct module *mod)
755{
756}
757static unsigned int find_pcpusec(struct load_info *info)
758{
759 return 0;
760}
761static inline void percpu_modcopy(struct module *mod,
762 const void *from, unsigned long size)
763{
764 /* pcpusec should be 0, and size of that section should be 0. */
765 BUG_ON(size != 0);
766}
767bool is_module_percpu_address(unsigned long addr)
768{
769 return false;
770}
771
772bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
773{
774 return false;
775}
776
777#endif /* CONFIG_SMP */
778
779#define MODINFO_ATTR(field) \
780static void setup_modinfo_##field(struct module *mod, const char *s) \
781{ \
782 mod->field = kstrdup(s, GFP_KERNEL); \
783} \
784static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
785 struct module_kobject *mk, char *buffer) \
786{ \
787 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
788} \
789static int modinfo_##field##_exists(struct module *mod) \
790{ \
791 return mod->field != NULL; \
792} \
793static void free_modinfo_##field(struct module *mod) \
794{ \
795 kfree(mod->field); \
796 mod->field = NULL; \
797} \
798static struct module_attribute modinfo_##field = { \
799 .attr = { .name = __stringify(field), .mode = 0444 }, \
800 .show = show_modinfo_##field, \
801 .setup = setup_modinfo_##field, \
802 .test = modinfo_##field##_exists, \
803 .free = free_modinfo_##field, \
804};
805
806MODINFO_ATTR(version);
807MODINFO_ATTR(srcversion);
808
809static char last_unloaded_module[MODULE_NAME_LEN+1];
810
811#ifdef CONFIG_MODULE_UNLOAD
812
813EXPORT_TRACEPOINT_SYMBOL(module_get);
814
815/* MODULE_REF_BASE is the base reference count by kmodule loader. */
816#define MODULE_REF_BASE 1
817
818/* Init the unload section of the module. */
819static int module_unload_init(struct module *mod)
820{
821 /*
822 * Initialize reference counter to MODULE_REF_BASE.
823 * refcnt == 0 means module is going.
824 */
825 atomic_set(&mod->refcnt, MODULE_REF_BASE);
826
827 INIT_LIST_HEAD(&mod->source_list);
828 INIT_LIST_HEAD(&mod->target_list);
829
830 /* Hold reference count during initialization. */
831 atomic_inc(&mod->refcnt);
832
833 return 0;
834}
835
836/* Does a already use b? */
837static int already_uses(struct module *a, struct module *b)
838{
839 struct module_use *use;
840
841 list_for_each_entry(use, &b->source_list, source_list) {
842 if (use->source == a) {
843 pr_debug("%s uses %s!\n", a->name, b->name);
844 return 1;
845 }
846 }
847 pr_debug("%s does not use %s!\n", a->name, b->name);
848 return 0;
849}
850
851/*
852 * Module a uses b
853 * - we add 'a' as a "source", 'b' as a "target" of module use
854 * - the module_use is added to the list of 'b' sources (so
855 * 'b' can walk the list to see who sourced them), and of 'a'
856 * targets (so 'a' can see what modules it targets).
857 */
858static int add_module_usage(struct module *a, struct module *b)
859{
860 struct module_use *use;
861
862 pr_debug("Allocating new usage for %s.\n", a->name);
863 use = kmalloc(sizeof(*use), GFP_ATOMIC);
864 if (!use)
865 return -ENOMEM;
866
867 use->source = a;
868 use->target = b;
869 list_add(&use->source_list, &b->source_list);
870 list_add(&use->target_list, &a->target_list);
871 return 0;
872}
873
874/* Module a uses b: caller needs module_mutex() */
875static int ref_module(struct module *a, struct module *b)
876{
877 int err;
878
879 if (b == NULL || already_uses(a, b))
880 return 0;
881
882 /* If module isn't available, we fail. */
883 err = strong_try_module_get(b);
884 if (err)
885 return err;
886
887 err = add_module_usage(a, b);
888 if (err) {
889 module_put(b);
890 return err;
891 }
892 return 0;
893}
894
895/* Clear the unload stuff of the module. */
896static void module_unload_free(struct module *mod)
897{
898 struct module_use *use, *tmp;
899
900 mutex_lock(&module_mutex);
901 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
902 struct module *i = use->target;
903 pr_debug("%s unusing %s\n", mod->name, i->name);
904 module_put(i);
905 list_del(&use->source_list);
906 list_del(&use->target_list);
907 kfree(use);
908 }
909 mutex_unlock(&module_mutex);
910}
911
912#ifdef CONFIG_MODULE_FORCE_UNLOAD
913static inline int try_force_unload(unsigned int flags)
914{
915 int ret = (flags & O_TRUNC);
916 if (ret)
917 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
918 return ret;
919}
920#else
921static inline int try_force_unload(unsigned int flags)
922{
923 return 0;
924}
925#endif /* CONFIG_MODULE_FORCE_UNLOAD */
926
927/* Try to release refcount of module, 0 means success. */
928static int try_release_module_ref(struct module *mod)
929{
930 int ret;
931
932 /* Try to decrement refcnt which we set at loading */
933 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
934 BUG_ON(ret < 0);
935 if (ret)
936 /* Someone can put this right now, recover with checking */
937 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
938
939 return ret;
940}
941
942static int try_stop_module(struct module *mod, int flags, int *forced)
943{
944 /* If it's not unused, quit unless we're forcing. */
945 if (try_release_module_ref(mod) != 0) {
946 *forced = try_force_unload(flags);
947 if (!(*forced))
948 return -EWOULDBLOCK;
949 }
950
951 /* Mark it as dying. */
952 mod->state = MODULE_STATE_GOING;
953
954 return 0;
955}
956
957/**
958 * module_refcount - return the refcount or -1 if unloading
959 *
960 * @mod: the module we're checking
961 *
962 * Returns:
963 * -1 if the module is in the process of unloading
964 * otherwise the number of references in the kernel to the module
965 */
966int module_refcount(struct module *mod)
967{
968 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
969}
970EXPORT_SYMBOL(module_refcount);
971
972/* This exists whether we can unload or not */
973static void free_module(struct module *mod);
974
975SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
976 unsigned int, flags)
977{
978 struct module *mod;
979 char name[MODULE_NAME_LEN];
980 int ret, forced = 0;
981
982 if (!capable(CAP_SYS_MODULE) || modules_disabled)
983 return -EPERM;
984
985 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
986 return -EFAULT;
987 name[MODULE_NAME_LEN-1] = '\0';
988
989 audit_log_kern_module(name);
990
991 if (mutex_lock_interruptible(&module_mutex) != 0)
992 return -EINTR;
993
994 mod = find_module(name);
995 if (!mod) {
996 ret = -ENOENT;
997 goto out;
998 }
999
1000 if (!list_empty(&mod->source_list)) {
1001 /* Other modules depend on us: get rid of them first. */
1002 ret = -EWOULDBLOCK;
1003 goto out;
1004 }
1005
1006 /* Doing init or already dying? */
1007 if (mod->state != MODULE_STATE_LIVE) {
1008 /* FIXME: if (force), slam module count damn the torpedoes */
1009 pr_debug("%s already dying\n", mod->name);
1010 ret = -EBUSY;
1011 goto out;
1012 }
1013
1014 /* If it has an init func, it must have an exit func to unload */
1015 if (mod->init && !mod->exit) {
1016 forced = try_force_unload(flags);
1017 if (!forced) {
1018 /* This module can't be removed */
1019 ret = -EBUSY;
1020 goto out;
1021 }
1022 }
1023
1024 /* Stop the machine so refcounts can't move and disable module. */
1025 ret = try_stop_module(mod, flags, &forced);
1026 if (ret != 0)
1027 goto out;
1028
1029 mutex_unlock(&module_mutex);
1030 /* Final destruction now no one is using it. */
1031 if (mod->exit != NULL)
1032 mod->exit();
1033 blocking_notifier_call_chain(&module_notify_list,
1034 MODULE_STATE_GOING, mod);
1035 klp_module_going(mod);
1036 ftrace_release_mod(mod);
1037
1038 async_synchronize_full();
1039
1040 /* Store the name of the last unloaded module for diagnostic purposes */
1041 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1042
1043 free_module(mod);
1044 /* someone could wait for the module in add_unformed_module() */
1045 wake_up_all(&module_wq);
1046 return 0;
1047out:
1048 mutex_unlock(&module_mutex);
1049 return ret;
1050}
1051
1052static inline void print_unload_info(struct seq_file *m, struct module *mod)
1053{
1054 struct module_use *use;
1055 int printed_something = 0;
1056
1057 seq_printf(m, " %i ", module_refcount(mod));
1058
1059 /*
1060 * Always include a trailing , so userspace can differentiate
1061 * between this and the old multi-field proc format.
1062 */
1063 list_for_each_entry(use, &mod->source_list, source_list) {
1064 printed_something = 1;
1065 seq_printf(m, "%s,", use->source->name);
1066 }
1067
1068 if (mod->init != NULL && mod->exit == NULL) {
1069 printed_something = 1;
1070 seq_puts(m, "[permanent],");
1071 }
1072
1073 if (!printed_something)
1074 seq_puts(m, "-");
1075}
1076
1077void __symbol_put(const char *symbol)
1078{
1079 struct module *owner;
1080
1081 preempt_disable();
1082 if (!find_symbol(symbol, &owner, NULL, NULL, true, false))
1083 BUG();
1084 module_put(owner);
1085 preempt_enable();
1086}
1087EXPORT_SYMBOL(__symbol_put);
1088
1089/* Note this assumes addr is a function, which it currently always is. */
1090void symbol_put_addr(void *addr)
1091{
1092 struct module *modaddr;
1093 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1094
1095 if (core_kernel_text(a))
1096 return;
1097
1098 /*
1099 * Even though we hold a reference on the module; we still need to
1100 * disable preemption in order to safely traverse the data structure.
1101 */
1102 preempt_disable();
1103 modaddr = __module_text_address(a);
1104 BUG_ON(!modaddr);
1105 module_put(modaddr);
1106 preempt_enable();
1107}
1108EXPORT_SYMBOL_GPL(symbol_put_addr);
1109
1110static ssize_t show_refcnt(struct module_attribute *mattr,
1111 struct module_kobject *mk, char *buffer)
1112{
1113 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1114}
1115
1116static struct module_attribute modinfo_refcnt =
1117 __ATTR(refcnt, 0444, show_refcnt, NULL);
1118
1119void __module_get(struct module *module)
1120{
1121 if (module) {
1122 preempt_disable();
1123 atomic_inc(&module->refcnt);
1124 trace_module_get(module, _RET_IP_);
1125 preempt_enable();
1126 }
1127}
1128EXPORT_SYMBOL(__module_get);
1129
1130bool try_module_get(struct module *module)
1131{
1132 bool ret = true;
1133
1134 if (module) {
1135 preempt_disable();
1136 /* Note: here, we can fail to get a reference */
1137 if (likely(module_is_live(module) &&
1138 atomic_inc_not_zero(&module->refcnt) != 0))
1139 trace_module_get(module, _RET_IP_);
1140 else
1141 ret = false;
1142
1143 preempt_enable();
1144 }
1145 return ret;
1146}
1147EXPORT_SYMBOL(try_module_get);
1148
1149void module_put(struct module *module)
1150{
1151 int ret;
1152
1153 if (module) {
1154 preempt_disable();
1155 ret = atomic_dec_if_positive(&module->refcnt);
1156 WARN_ON(ret < 0); /* Failed to put refcount */
1157 trace_module_put(module, _RET_IP_);
1158 preempt_enable();
1159 }
1160}
1161EXPORT_SYMBOL(module_put);
1162
1163#else /* !CONFIG_MODULE_UNLOAD */
1164static inline void print_unload_info(struct seq_file *m, struct module *mod)
1165{
1166 /* We don't know the usage count, or what modules are using. */
1167 seq_puts(m, " - -");
1168}
1169
1170static inline void module_unload_free(struct module *mod)
1171{
1172}
1173
1174static int ref_module(struct module *a, struct module *b)
1175{
1176 return strong_try_module_get(b);
1177}
1178
1179static inline int module_unload_init(struct module *mod)
1180{
1181 return 0;
1182}
1183#endif /* CONFIG_MODULE_UNLOAD */
1184
1185static size_t module_flags_taint(struct module *mod, char *buf)
1186{
1187 size_t l = 0;
1188 int i;
1189
1190 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1191 if (taint_flags[i].module && test_bit(i, &mod->taints))
1192 buf[l++] = taint_flags[i].c_true;
1193 }
1194
1195 return l;
1196}
1197
1198static ssize_t show_initstate(struct module_attribute *mattr,
1199 struct module_kobject *mk, char *buffer)
1200{
1201 const char *state = "unknown";
1202
1203 switch (mk->mod->state) {
1204 case MODULE_STATE_LIVE:
1205 state = "live";
1206 break;
1207 case MODULE_STATE_COMING:
1208 state = "coming";
1209 break;
1210 case MODULE_STATE_GOING:
1211 state = "going";
1212 break;
1213 default:
1214 BUG();
1215 }
1216 return sprintf(buffer, "%s\n", state);
1217}
1218
1219static struct module_attribute modinfo_initstate =
1220 __ATTR(initstate, 0444, show_initstate, NULL);
1221
1222static ssize_t store_uevent(struct module_attribute *mattr,
1223 struct module_kobject *mk,
1224 const char *buffer, size_t count)
1225{
1226 int rc;
1227
1228 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1229 return rc ? rc : count;
1230}
1231
1232struct module_attribute module_uevent =
1233 __ATTR(uevent, 0200, NULL, store_uevent);
1234
1235static ssize_t show_coresize(struct module_attribute *mattr,
1236 struct module_kobject *mk, char *buffer)
1237{
1238 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1239}
1240
1241static struct module_attribute modinfo_coresize =
1242 __ATTR(coresize, 0444, show_coresize, NULL);
1243
1244static ssize_t show_initsize(struct module_attribute *mattr,
1245 struct module_kobject *mk, char *buffer)
1246{
1247 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1248}
1249
1250static struct module_attribute modinfo_initsize =
1251 __ATTR(initsize, 0444, show_initsize, NULL);
1252
1253static ssize_t show_taint(struct module_attribute *mattr,
1254 struct module_kobject *mk, char *buffer)
1255{
1256 size_t l;
1257
1258 l = module_flags_taint(mk->mod, buffer);
1259 buffer[l++] = '\n';
1260 return l;
1261}
1262
1263static struct module_attribute modinfo_taint =
1264 __ATTR(taint, 0444, show_taint, NULL);
1265
1266static struct module_attribute *modinfo_attrs[] = {
1267 &module_uevent,
1268 &modinfo_version,
1269 &modinfo_srcversion,
1270 &modinfo_initstate,
1271 &modinfo_coresize,
1272 &modinfo_initsize,
1273 &modinfo_taint,
1274#ifdef CONFIG_MODULE_UNLOAD
1275 &modinfo_refcnt,
1276#endif
1277 NULL,
1278};
1279
1280static const char vermagic[] = VERMAGIC_STRING;
1281
1282static int try_to_force_load(struct module *mod, const char *reason)
1283{
1284#ifdef CONFIG_MODULE_FORCE_LOAD
1285 if (!test_taint(TAINT_FORCED_MODULE))
1286 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1287 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1288 return 0;
1289#else
1290 return -ENOEXEC;
1291#endif
1292}
1293
1294#ifdef CONFIG_MODVERSIONS
1295
1296static u32 resolve_rel_crc(const s32 *crc)
1297{
1298 return *(u32 *)((void *)crc + *crc);
1299}
1300
1301static int check_version(const struct load_info *info,
1302 const char *symname,
1303 struct module *mod,
1304 const s32 *crc)
1305{
1306 Elf_Shdr *sechdrs = info->sechdrs;
1307 unsigned int versindex = info->index.vers;
1308 unsigned int i, num_versions;
1309 struct modversion_info *versions;
1310
1311 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1312 if (!crc)
1313 return 1;
1314
1315 /* No versions at all? modprobe --force does this. */
1316 if (versindex == 0)
1317 return try_to_force_load(mod, symname) == 0;
1318
1319 versions = (void *) sechdrs[versindex].sh_addr;
1320 num_versions = sechdrs[versindex].sh_size
1321 / sizeof(struct modversion_info);
1322
1323 for (i = 0; i < num_versions; i++) {
1324 u32 crcval;
1325
1326 if (strcmp(versions[i].name, symname) != 0)
1327 continue;
1328
1329 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1330 crcval = resolve_rel_crc(crc);
1331 else
1332 crcval = *crc;
1333 if (versions[i].crc == crcval)
1334 return 1;
1335 pr_debug("Found checksum %X vs module %lX\n",
1336 crcval, versions[i].crc);
1337 goto bad_version;
1338 }
1339
1340 /* Broken toolchain. Warn once, then let it go.. */
1341 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1342 return 1;
1343
1344bad_version:
1345 pr_warn("%s: disagrees about version of symbol %s\n",
1346 info->name, symname);
1347 return 0;
1348}
1349
1350static inline int check_modstruct_version(const struct load_info *info,
1351 struct module *mod)
1352{
1353 const s32 *crc;
1354
1355 /*
1356 * Since this should be found in kernel (which can't be removed), no
1357 * locking is necessary -- use preempt_disable() to placate lockdep.
1358 */
1359 preempt_disable();
1360 if (!find_symbol("module_layout", NULL, &crc, NULL, true, false)) {
1361 preempt_enable();
1362 BUG();
1363 }
1364 preempt_enable();
1365 return check_version(info, "module_layout", mod, crc);
1366}
1367
1368/* First part is kernel version, which we ignore if module has crcs. */
1369static inline int same_magic(const char *amagic, const char *bmagic,
1370 bool has_crcs)
1371{
1372 if (has_crcs) {
1373 amagic += strcspn(amagic, " ");
1374 bmagic += strcspn(bmagic, " ");
1375 }
1376 return strcmp(amagic, bmagic) == 0;
1377}
1378#else
1379static inline int check_version(const struct load_info *info,
1380 const char *symname,
1381 struct module *mod,
1382 const s32 *crc)
1383{
1384 return 1;
1385}
1386
1387static inline int check_modstruct_version(const struct load_info *info,
1388 struct module *mod)
1389{
1390 return 1;
1391}
1392
1393static inline int same_magic(const char *amagic, const char *bmagic,
1394 bool has_crcs)
1395{
1396 return strcmp(amagic, bmagic) == 0;
1397}
1398#endif /* CONFIG_MODVERSIONS */
1399
1400static char *get_modinfo(const struct load_info *info, const char *tag);
1401static char *get_next_modinfo(const struct load_info *info, const char *tag,
1402 char *prev);
1403
1404static int verify_namespace_is_imported(const struct load_info *info,
1405 const struct kernel_symbol *sym,
1406 struct module *mod)
1407{
1408 const char *namespace;
1409 char *imported_namespace;
1410
1411 namespace = kernel_symbol_namespace(sym);
1412 if (namespace && namespace[0]) {
1413 imported_namespace = get_modinfo(info, "import_ns");
1414 while (imported_namespace) {
1415 if (strcmp(namespace, imported_namespace) == 0)
1416 return 0;
1417 imported_namespace = get_next_modinfo(
1418 info, "import_ns", imported_namespace);
1419 }
1420#ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1421 pr_warn(
1422#else
1423 pr_err(
1424#endif
1425 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1426 mod->name, kernel_symbol_name(sym), namespace);
1427#ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1428 return -EINVAL;
1429#endif
1430 }
1431 return 0;
1432}
1433
1434static bool inherit_taint(struct module *mod, struct module *owner)
1435{
1436 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1437 return true;
1438
1439 if (mod->using_gplonly_symbols) {
1440 pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1441 mod->name, owner->name);
1442 return false;
1443 }
1444
1445 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1446 pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1447 mod->name, owner->name);
1448 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1449 }
1450 return true;
1451}
1452
1453/* Resolve a symbol for this module. I.e. if we find one, record usage. */
1454static const struct kernel_symbol *resolve_symbol(struct module *mod,
1455 const struct load_info *info,
1456 const char *name,
1457 char ownername[])
1458{
1459 struct module *owner;
1460 const struct kernel_symbol *sym;
1461 const s32 *crc;
1462 enum mod_license license;
1463 int err;
1464
1465 /*
1466 * The module_mutex should not be a heavily contended lock;
1467 * if we get the occasional sleep here, we'll go an extra iteration
1468 * in the wait_event_interruptible(), which is harmless.
1469 */
1470 sched_annotate_sleep();
1471 mutex_lock(&module_mutex);
1472 sym = find_symbol(name, &owner, &crc, &license,
1473 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1474 if (!sym)
1475 goto unlock;
1476
1477 if (license == GPL_ONLY)
1478 mod->using_gplonly_symbols = true;
1479
1480 if (!inherit_taint(mod, owner)) {
1481 sym = NULL;
1482 goto getname;
1483 }
1484
1485 if (!check_version(info, name, mod, crc)) {
1486 sym = ERR_PTR(-EINVAL);
1487 goto getname;
1488 }
1489
1490 err = verify_namespace_is_imported(info, sym, mod);
1491 if (err) {
1492 sym = ERR_PTR(err);
1493 goto getname;
1494 }
1495
1496 err = ref_module(mod, owner);
1497 if (err) {
1498 sym = ERR_PTR(err);
1499 goto getname;
1500 }
1501
1502getname:
1503 /* We must make copy under the lock if we failed to get ref. */
1504 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1505unlock:
1506 mutex_unlock(&module_mutex);
1507 return sym;
1508}
1509
1510static const struct kernel_symbol *
1511resolve_symbol_wait(struct module *mod,
1512 const struct load_info *info,
1513 const char *name)
1514{
1515 const struct kernel_symbol *ksym;
1516 char owner[MODULE_NAME_LEN];
1517
1518 if (wait_event_interruptible_timeout(module_wq,
1519 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1520 || PTR_ERR(ksym) != -EBUSY,
1521 30 * HZ) <= 0) {
1522 pr_warn("%s: gave up waiting for init of module %s.\n",
1523 mod->name, owner);
1524 }
1525 return ksym;
1526}
1527
1528/*
1529 * /sys/module/foo/sections stuff
1530 * J. Corbet <corbet@lwn.net>
1531 */
1532#ifdef CONFIG_SYSFS
1533
1534#ifdef CONFIG_KALLSYMS
1535static inline bool sect_empty(const Elf_Shdr *sect)
1536{
1537 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1538}
1539
1540struct module_sect_attr {
1541 struct bin_attribute battr;
1542 unsigned long address;
1543};
1544
1545struct module_sect_attrs {
1546 struct attribute_group grp;
1547 unsigned int nsections;
1548 struct module_sect_attr attrs[];
1549};
1550
1551#define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
1552static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1553 struct bin_attribute *battr,
1554 char *buf, loff_t pos, size_t count)
1555{
1556 struct module_sect_attr *sattr =
1557 container_of(battr, struct module_sect_attr, battr);
1558 char bounce[MODULE_SECT_READ_SIZE + 1];
1559 size_t wrote;
1560
1561 if (pos != 0)
1562 return -EINVAL;
1563
1564 /*
1565 * Since we're a binary read handler, we must account for the
1566 * trailing NUL byte that sprintf will write: if "buf" is
1567 * too small to hold the NUL, or the NUL is exactly the last
1568 * byte, the read will look like it got truncated by one byte.
1569 * Since there is no way to ask sprintf nicely to not write
1570 * the NUL, we have to use a bounce buffer.
1571 */
1572 wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1573 kallsyms_show_value(file->f_cred)
1574 ? (void *)sattr->address : NULL);
1575 count = min(count, wrote);
1576 memcpy(buf, bounce, count);
1577
1578 return count;
1579}
1580
1581static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1582{
1583 unsigned int section;
1584
1585 for (section = 0; section < sect_attrs->nsections; section++)
1586 kfree(sect_attrs->attrs[section].battr.attr.name);
1587 kfree(sect_attrs);
1588}
1589
1590static void add_sect_attrs(struct module *mod, const struct load_info *info)
1591{
1592 unsigned int nloaded = 0, i, size[2];
1593 struct module_sect_attrs *sect_attrs;
1594 struct module_sect_attr *sattr;
1595 struct bin_attribute **gattr;
1596
1597 /* Count loaded sections and allocate structures */
1598 for (i = 0; i < info->hdr->e_shnum; i++)
1599 if (!sect_empty(&info->sechdrs[i]))
1600 nloaded++;
1601 size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1602 sizeof(sect_attrs->grp.bin_attrs[0]));
1603 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1604 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1605 if (sect_attrs == NULL)
1606 return;
1607
1608 /* Setup section attributes. */
1609 sect_attrs->grp.name = "sections";
1610 sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1611
1612 sect_attrs->nsections = 0;
1613 sattr = §_attrs->attrs[0];
1614 gattr = §_attrs->grp.bin_attrs[0];
1615 for (i = 0; i < info->hdr->e_shnum; i++) {
1616 Elf_Shdr *sec = &info->sechdrs[i];
1617 if (sect_empty(sec))
1618 continue;
1619 sysfs_bin_attr_init(&sattr->battr);
1620 sattr->address = sec->sh_addr;
1621 sattr->battr.attr.name =
1622 kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1623 if (sattr->battr.attr.name == NULL)
1624 goto out;
1625 sect_attrs->nsections++;
1626 sattr->battr.read = module_sect_read;
1627 sattr->battr.size = MODULE_SECT_READ_SIZE;
1628 sattr->battr.attr.mode = 0400;
1629 *(gattr++) = &(sattr++)->battr;
1630 }
1631 *gattr = NULL;
1632
1633 if (sysfs_create_group(&mod->mkobj.kobj, §_attrs->grp))
1634 goto out;
1635
1636 mod->sect_attrs = sect_attrs;
1637 return;
1638 out:
1639 free_sect_attrs(sect_attrs);
1640}
1641
1642static void remove_sect_attrs(struct module *mod)
1643{
1644 if (mod->sect_attrs) {
1645 sysfs_remove_group(&mod->mkobj.kobj,
1646 &mod->sect_attrs->grp);
1647 /* We are positive that no one is using any sect attrs
1648 * at this point. Deallocate immediately. */
1649 free_sect_attrs(mod->sect_attrs);
1650 mod->sect_attrs = NULL;
1651 }
1652}
1653
1654/*
1655 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1656 */
1657
1658struct module_notes_attrs {
1659 struct kobject *dir;
1660 unsigned int notes;
1661 struct bin_attribute attrs[];
1662};
1663
1664static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1665 struct bin_attribute *bin_attr,
1666 char *buf, loff_t pos, size_t count)
1667{
1668 /*
1669 * The caller checked the pos and count against our size.
1670 */
1671 memcpy(buf, bin_attr->private + pos, count);
1672 return count;
1673}
1674
1675static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1676 unsigned int i)
1677{
1678 if (notes_attrs->dir) {
1679 while (i-- > 0)
1680 sysfs_remove_bin_file(notes_attrs->dir,
1681 ¬es_attrs->attrs[i]);
1682 kobject_put(notes_attrs->dir);
1683 }
1684 kfree(notes_attrs);
1685}
1686
1687static void add_notes_attrs(struct module *mod, const struct load_info *info)
1688{
1689 unsigned int notes, loaded, i;
1690 struct module_notes_attrs *notes_attrs;
1691 struct bin_attribute *nattr;
1692
1693 /* failed to create section attributes, so can't create notes */
1694 if (!mod->sect_attrs)
1695 return;
1696
1697 /* Count notes sections and allocate structures. */
1698 notes = 0;
1699 for (i = 0; i < info->hdr->e_shnum; i++)
1700 if (!sect_empty(&info->sechdrs[i]) &&
1701 (info->sechdrs[i].sh_type == SHT_NOTE))
1702 ++notes;
1703
1704 if (notes == 0)
1705 return;
1706
1707 notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1708 GFP_KERNEL);
1709 if (notes_attrs == NULL)
1710 return;
1711
1712 notes_attrs->notes = notes;
1713 nattr = ¬es_attrs->attrs[0];
1714 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1715 if (sect_empty(&info->sechdrs[i]))
1716 continue;
1717 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1718 sysfs_bin_attr_init(nattr);
1719 nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1720 nattr->attr.mode = S_IRUGO;
1721 nattr->size = info->sechdrs[i].sh_size;
1722 nattr->private = (void *) info->sechdrs[i].sh_addr;
1723 nattr->read = module_notes_read;
1724 ++nattr;
1725 }
1726 ++loaded;
1727 }
1728
1729 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1730 if (!notes_attrs->dir)
1731 goto out;
1732
1733 for (i = 0; i < notes; ++i)
1734 if (sysfs_create_bin_file(notes_attrs->dir,
1735 ¬es_attrs->attrs[i]))
1736 goto out;
1737
1738 mod->notes_attrs = notes_attrs;
1739 return;
1740
1741 out:
1742 free_notes_attrs(notes_attrs, i);
1743}
1744
1745static void remove_notes_attrs(struct module *mod)
1746{
1747 if (mod->notes_attrs)
1748 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1749}
1750
1751#else
1752
1753static inline void add_sect_attrs(struct module *mod,
1754 const struct load_info *info)
1755{
1756}
1757
1758static inline void remove_sect_attrs(struct module *mod)
1759{
1760}
1761
1762static inline void add_notes_attrs(struct module *mod,
1763 const struct load_info *info)
1764{
1765}
1766
1767static inline void remove_notes_attrs(struct module *mod)
1768{
1769}
1770#endif /* CONFIG_KALLSYMS */
1771
1772static void del_usage_links(struct module *mod)
1773{
1774#ifdef CONFIG_MODULE_UNLOAD
1775 struct module_use *use;
1776
1777 mutex_lock(&module_mutex);
1778 list_for_each_entry(use, &mod->target_list, target_list)
1779 sysfs_remove_link(use->target->holders_dir, mod->name);
1780 mutex_unlock(&module_mutex);
1781#endif
1782}
1783
1784static int add_usage_links(struct module *mod)
1785{
1786 int ret = 0;
1787#ifdef CONFIG_MODULE_UNLOAD
1788 struct module_use *use;
1789
1790 mutex_lock(&module_mutex);
1791 list_for_each_entry(use, &mod->target_list, target_list) {
1792 ret = sysfs_create_link(use->target->holders_dir,
1793 &mod->mkobj.kobj, mod->name);
1794 if (ret)
1795 break;
1796 }
1797 mutex_unlock(&module_mutex);
1798 if (ret)
1799 del_usage_links(mod);
1800#endif
1801 return ret;
1802}
1803
1804static void module_remove_modinfo_attrs(struct module *mod, int end);
1805
1806static int module_add_modinfo_attrs(struct module *mod)
1807{
1808 struct module_attribute *attr;
1809 struct module_attribute *temp_attr;
1810 int error = 0;
1811 int i;
1812
1813 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1814 (ARRAY_SIZE(modinfo_attrs) + 1)),
1815 GFP_KERNEL);
1816 if (!mod->modinfo_attrs)
1817 return -ENOMEM;
1818
1819 temp_attr = mod->modinfo_attrs;
1820 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1821 if (!attr->test || attr->test(mod)) {
1822 memcpy(temp_attr, attr, sizeof(*temp_attr));
1823 sysfs_attr_init(&temp_attr->attr);
1824 error = sysfs_create_file(&mod->mkobj.kobj,
1825 &temp_attr->attr);
1826 if (error)
1827 goto error_out;
1828 ++temp_attr;
1829 }
1830 }
1831
1832 return 0;
1833
1834error_out:
1835 if (i > 0)
1836 module_remove_modinfo_attrs(mod, --i);
1837 else
1838 kfree(mod->modinfo_attrs);
1839 return error;
1840}
1841
1842static void module_remove_modinfo_attrs(struct module *mod, int end)
1843{
1844 struct module_attribute *attr;
1845 int i;
1846
1847 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1848 if (end >= 0 && i > end)
1849 break;
1850 /* pick a field to test for end of list */
1851 if (!attr->attr.name)
1852 break;
1853 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1854 if (attr->free)
1855 attr->free(mod);
1856 }
1857 kfree(mod->modinfo_attrs);
1858}
1859
1860static void mod_kobject_put(struct module *mod)
1861{
1862 DECLARE_COMPLETION_ONSTACK(c);
1863 mod->mkobj.kobj_completion = &c;
1864 kobject_put(&mod->mkobj.kobj);
1865 wait_for_completion(&c);
1866}
1867
1868static int mod_sysfs_init(struct module *mod)
1869{
1870 int err;
1871 struct kobject *kobj;
1872
1873 if (!module_sysfs_initialized) {
1874 pr_err("%s: module sysfs not initialized\n", mod->name);
1875 err = -EINVAL;
1876 goto out;
1877 }
1878
1879 kobj = kset_find_obj(module_kset, mod->name);
1880 if (kobj) {
1881 pr_err("%s: module is already loaded\n", mod->name);
1882 kobject_put(kobj);
1883 err = -EINVAL;
1884 goto out;
1885 }
1886
1887 mod->mkobj.mod = mod;
1888
1889 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1890 mod->mkobj.kobj.kset = module_kset;
1891 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1892 "%s", mod->name);
1893 if (err)
1894 mod_kobject_put(mod);
1895
1896 /* delay uevent until full sysfs population */
1897out:
1898 return err;
1899}
1900
1901static int mod_sysfs_setup(struct module *mod,
1902 const struct load_info *info,
1903 struct kernel_param *kparam,
1904 unsigned int num_params)
1905{
1906 int err;
1907
1908 err = mod_sysfs_init(mod);
1909 if (err)
1910 goto out;
1911
1912 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1913 if (!mod->holders_dir) {
1914 err = -ENOMEM;
1915 goto out_unreg;
1916 }
1917
1918 err = module_param_sysfs_setup(mod, kparam, num_params);
1919 if (err)
1920 goto out_unreg_holders;
1921
1922 err = module_add_modinfo_attrs(mod);
1923 if (err)
1924 goto out_unreg_param;
1925
1926 err = add_usage_links(mod);
1927 if (err)
1928 goto out_unreg_modinfo_attrs;
1929
1930 add_sect_attrs(mod, info);
1931 add_notes_attrs(mod, info);
1932
1933 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1934 return 0;
1935
1936out_unreg_modinfo_attrs:
1937 module_remove_modinfo_attrs(mod, -1);
1938out_unreg_param:
1939 module_param_sysfs_remove(mod);
1940out_unreg_holders:
1941 kobject_put(mod->holders_dir);
1942out_unreg:
1943 mod_kobject_put(mod);
1944out:
1945 return err;
1946}
1947
1948static void mod_sysfs_fini(struct module *mod)
1949{
1950 remove_notes_attrs(mod);
1951 remove_sect_attrs(mod);
1952 mod_kobject_put(mod);
1953}
1954
1955static void init_param_lock(struct module *mod)
1956{
1957 mutex_init(&mod->param_lock);
1958}
1959#else /* !CONFIG_SYSFS */
1960
1961static int mod_sysfs_setup(struct module *mod,
1962 const struct load_info *info,
1963 struct kernel_param *kparam,
1964 unsigned int num_params)
1965{
1966 return 0;
1967}
1968
1969static void mod_sysfs_fini(struct module *mod)
1970{
1971}
1972
1973static void module_remove_modinfo_attrs(struct module *mod, int end)
1974{
1975}
1976
1977static void del_usage_links(struct module *mod)
1978{
1979}
1980
1981static void init_param_lock(struct module *mod)
1982{
1983}
1984#endif /* CONFIG_SYSFS */
1985
1986static void mod_sysfs_teardown(struct module *mod)
1987{
1988 del_usage_links(mod);
1989 module_remove_modinfo_attrs(mod, -1);
1990 module_param_sysfs_remove(mod);
1991 kobject_put(mod->mkobj.drivers_dir);
1992 kobject_put(mod->holders_dir);
1993 mod_sysfs_fini(mod);
1994}
1995
1996/*
1997 * LKM RO/NX protection: protect module's text/ro-data
1998 * from modification and any data from execution.
1999 *
2000 * General layout of module is:
2001 * [text] [read-only-data] [ro-after-init] [writable data]
2002 * text_size -----^ ^ ^ ^
2003 * ro_size ------------------------| | |
2004 * ro_after_init_size -----------------------------| |
2005 * size -----------------------------------------------------------|
2006 *
2007 * These values are always page-aligned (as is base)
2008 */
2009
2010/*
2011 * Since some arches are moving towards PAGE_KERNEL module allocations instead
2012 * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
2013 * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
2014 * whether we are strict.
2015 */
2016#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
2017static void frob_text(const struct module_layout *layout,
2018 int (*set_memory)(unsigned long start, int num_pages))
2019{
2020 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2021 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2022 set_memory((unsigned long)layout->base,
2023 layout->text_size >> PAGE_SHIFT);
2024}
2025
2026static void module_enable_x(const struct module *mod)
2027{
2028 frob_text(&mod->core_layout, set_memory_x);
2029 frob_text(&mod->init_layout, set_memory_x);
2030}
2031#else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2032static void module_enable_x(const struct module *mod) { }
2033#endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2034
2035#ifdef CONFIG_STRICT_MODULE_RWX
2036static void frob_rodata(const struct module_layout *layout,
2037 int (*set_memory)(unsigned long start, int num_pages))
2038{
2039 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2040 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2041 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2042 set_memory((unsigned long)layout->base + layout->text_size,
2043 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
2044}
2045
2046static void frob_ro_after_init(const struct module_layout *layout,
2047 int (*set_memory)(unsigned long start, int num_pages))
2048{
2049 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2050 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2051 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2052 set_memory((unsigned long)layout->base + layout->ro_size,
2053 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
2054}
2055
2056static void frob_writable_data(const struct module_layout *layout,
2057 int (*set_memory)(unsigned long start, int num_pages))
2058{
2059 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2060 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2061 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2062 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2063 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2064}
2065
2066static void module_enable_ro(const struct module *mod, bool after_init)
2067{
2068 if (!rodata_enabled)
2069 return;
2070
2071 set_vm_flush_reset_perms(mod->core_layout.base);
2072 set_vm_flush_reset_perms(mod->init_layout.base);
2073 frob_text(&mod->core_layout, set_memory_ro);
2074
2075 frob_rodata(&mod->core_layout, set_memory_ro);
2076 frob_text(&mod->init_layout, set_memory_ro);
2077 frob_rodata(&mod->init_layout, set_memory_ro);
2078
2079 if (after_init)
2080 frob_ro_after_init(&mod->core_layout, set_memory_ro);
2081}
2082
2083static void module_enable_nx(const struct module *mod)
2084{
2085 frob_rodata(&mod->core_layout, set_memory_nx);
2086 frob_ro_after_init(&mod->core_layout, set_memory_nx);
2087 frob_writable_data(&mod->core_layout, set_memory_nx);
2088 frob_rodata(&mod->init_layout, set_memory_nx);
2089 frob_writable_data(&mod->init_layout, set_memory_nx);
2090}
2091
2092static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2093 char *secstrings, struct module *mod)
2094{
2095 const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2096 int i;
2097
2098 for (i = 0; i < hdr->e_shnum; i++) {
2099 if ((sechdrs[i].sh_flags & shf_wx) == shf_wx)
2100 return -ENOEXEC;
2101 }
2102
2103 return 0;
2104}
2105
2106#else /* !CONFIG_STRICT_MODULE_RWX */
2107static void module_enable_nx(const struct module *mod) { }
2108static void module_enable_ro(const struct module *mod, bool after_init) {}
2109static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2110 char *secstrings, struct module *mod)
2111{
2112 return 0;
2113}
2114#endif /* CONFIG_STRICT_MODULE_RWX */
2115
2116#ifdef CONFIG_LIVEPATCH
2117/*
2118 * Persist Elf information about a module. Copy the Elf header,
2119 * section header table, section string table, and symtab section
2120 * index from info to mod->klp_info.
2121 */
2122static int copy_module_elf(struct module *mod, struct load_info *info)
2123{
2124 unsigned int size, symndx;
2125 int ret;
2126
2127 size = sizeof(*mod->klp_info);
2128 mod->klp_info = kmalloc(size, GFP_KERNEL);
2129 if (mod->klp_info == NULL)
2130 return -ENOMEM;
2131
2132 /* Elf header */
2133 size = sizeof(mod->klp_info->hdr);
2134 memcpy(&mod->klp_info->hdr, info->hdr, size);
2135
2136 /* Elf section header table */
2137 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2138 mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2139 if (mod->klp_info->sechdrs == NULL) {
2140 ret = -ENOMEM;
2141 goto free_info;
2142 }
2143
2144 /* Elf section name string table */
2145 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2146 mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2147 if (mod->klp_info->secstrings == NULL) {
2148 ret = -ENOMEM;
2149 goto free_sechdrs;
2150 }
2151
2152 /* Elf symbol section index */
2153 symndx = info->index.sym;
2154 mod->klp_info->symndx = symndx;
2155
2156 /*
2157 * For livepatch modules, core_kallsyms.symtab is a complete
2158 * copy of the original symbol table. Adjust sh_addr to point
2159 * to core_kallsyms.symtab since the copy of the symtab in module
2160 * init memory is freed at the end of do_init_module().
2161 */
2162 mod->klp_info->sechdrs[symndx].sh_addr = \
2163 (unsigned long) mod->core_kallsyms.symtab;
2164
2165 return 0;
2166
2167free_sechdrs:
2168 kfree(mod->klp_info->sechdrs);
2169free_info:
2170 kfree(mod->klp_info);
2171 return ret;
2172}
2173
2174static void free_module_elf(struct module *mod)
2175{
2176 kfree(mod->klp_info->sechdrs);
2177 kfree(mod->klp_info->secstrings);
2178 kfree(mod->klp_info);
2179}
2180#else /* !CONFIG_LIVEPATCH */
2181static int copy_module_elf(struct module *mod, struct load_info *info)
2182{
2183 return 0;
2184}
2185
2186static void free_module_elf(struct module *mod)
2187{
2188}
2189#endif /* CONFIG_LIVEPATCH */
2190
2191void __weak module_memfree(void *module_region)
2192{
2193 /*
2194 * This memory may be RO, and freeing RO memory in an interrupt is not
2195 * supported by vmalloc.
2196 */
2197 WARN_ON(in_interrupt());
2198 vfree(module_region);
2199}
2200
2201void __weak module_arch_cleanup(struct module *mod)
2202{
2203}
2204
2205void __weak module_arch_freeing_init(struct module *mod)
2206{
2207}
2208
2209/* Free a module, remove from lists, etc. */
2210static void free_module(struct module *mod)
2211{
2212 trace_module_free(mod);
2213
2214 mod_sysfs_teardown(mod);
2215
2216 /* We leave it in list to prevent duplicate loads, but make sure
2217 * that noone uses it while it's being deconstructed. */
2218 mutex_lock(&module_mutex);
2219 mod->state = MODULE_STATE_UNFORMED;
2220 mutex_unlock(&module_mutex);
2221
2222 /* Remove dynamic debug info */
2223 ddebug_remove_module(mod->name);
2224
2225 /* Arch-specific cleanup. */
2226 module_arch_cleanup(mod);
2227
2228 /* Module unload stuff */
2229 module_unload_free(mod);
2230
2231 /* Free any allocated parameters. */
2232 destroy_params(mod->kp, mod->num_kp);
2233
2234 if (is_livepatch_module(mod))
2235 free_module_elf(mod);
2236
2237 /* Now we can delete it from the lists */
2238 mutex_lock(&module_mutex);
2239 /* Unlink carefully: kallsyms could be walking list. */
2240 list_del_rcu(&mod->list);
2241 mod_tree_remove(mod);
2242 /* Remove this module from bug list, this uses list_del_rcu */
2243 module_bug_cleanup(mod);
2244 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2245 synchronize_rcu();
2246 mutex_unlock(&module_mutex);
2247
2248 /* This may be empty, but that's OK */
2249 module_arch_freeing_init(mod);
2250 module_memfree(mod->init_layout.base);
2251 kfree(mod->args);
2252 percpu_modfree(mod);
2253
2254 /* Free lock-classes; relies on the preceding sync_rcu(). */
2255 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2256
2257 /* Finally, free the core (containing the module structure) */
2258 module_memfree(mod->core_layout.base);
2259}
2260
2261void *__symbol_get(const char *symbol)
2262{
2263 struct module *owner;
2264 const struct kernel_symbol *sym;
2265
2266 preempt_disable();
2267 sym = find_symbol(symbol, &owner, NULL, NULL, true, true);
2268 if (sym && strong_try_module_get(owner))
2269 sym = NULL;
2270 preempt_enable();
2271
2272 return sym ? (void *)kernel_symbol_value(sym) : NULL;
2273}
2274EXPORT_SYMBOL_GPL(__symbol_get);
2275
2276/*
2277 * Ensure that an exported symbol [global namespace] does not already exist
2278 * in the kernel or in some other module's exported symbol table.
2279 *
2280 * You must hold the module_mutex.
2281 */
2282static int verify_exported_symbols(struct module *mod)
2283{
2284 unsigned int i;
2285 struct module *owner;
2286 const struct kernel_symbol *s;
2287 struct {
2288 const struct kernel_symbol *sym;
2289 unsigned int num;
2290 } arr[] = {
2291 { mod->syms, mod->num_syms },
2292 { mod->gpl_syms, mod->num_gpl_syms },
2293 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2294#ifdef CONFIG_UNUSED_SYMBOLS
2295 { mod->unused_syms, mod->num_unused_syms },
2296 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2297#endif
2298 };
2299
2300 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2301 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2302 if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2303 NULL, true, false)) {
2304 pr_err("%s: exports duplicate symbol %s"
2305 " (owned by %s)\n",
2306 mod->name, kernel_symbol_name(s),
2307 module_name(owner));
2308 return -ENOEXEC;
2309 }
2310 }
2311 }
2312 return 0;
2313}
2314
2315/* Change all symbols so that st_value encodes the pointer directly. */
2316static int simplify_symbols(struct module *mod, const struct load_info *info)
2317{
2318 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2319 Elf_Sym *sym = (void *)symsec->sh_addr;
2320 unsigned long secbase;
2321 unsigned int i;
2322 int ret = 0;
2323 const struct kernel_symbol *ksym;
2324
2325 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2326 const char *name = info->strtab + sym[i].st_name;
2327
2328 switch (sym[i].st_shndx) {
2329 case SHN_COMMON:
2330 /* Ignore common symbols */
2331 if (!strncmp(name, "__gnu_lto", 9))
2332 break;
2333
2334 /* We compiled with -fno-common. These are not
2335 supposed to happen. */
2336 pr_debug("Common symbol: %s\n", name);
2337 pr_warn("%s: please compile with -fno-common\n",
2338 mod->name);
2339 ret = -ENOEXEC;
2340 break;
2341
2342 case SHN_ABS:
2343 /* Don't need to do anything */
2344 pr_debug("Absolute symbol: 0x%08lx\n",
2345 (long)sym[i].st_value);
2346 break;
2347
2348 case SHN_LIVEPATCH:
2349 /* Livepatch symbols are resolved by livepatch */
2350 break;
2351
2352 case SHN_UNDEF:
2353 ksym = resolve_symbol_wait(mod, info, name);
2354 /* Ok if resolved. */
2355 if (ksym && !IS_ERR(ksym)) {
2356 sym[i].st_value = kernel_symbol_value(ksym);
2357 break;
2358 }
2359
2360 /* Ok if weak. */
2361 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2362 break;
2363
2364 ret = PTR_ERR(ksym) ?: -ENOENT;
2365 pr_warn("%s: Unknown symbol %s (err %d)\n",
2366 mod->name, name, ret);
2367 break;
2368
2369 default:
2370 /* Divert to percpu allocation if a percpu var. */
2371 if (sym[i].st_shndx == info->index.pcpu)
2372 secbase = (unsigned long)mod_percpu(mod);
2373 else
2374 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2375 sym[i].st_value += secbase;
2376 break;
2377 }
2378 }
2379
2380 return ret;
2381}
2382
2383static int apply_relocations(struct module *mod, const struct load_info *info)
2384{
2385 unsigned int i;
2386 int err = 0;
2387
2388 /* Now do relocations. */
2389 for (i = 1; i < info->hdr->e_shnum; i++) {
2390 unsigned int infosec = info->sechdrs[i].sh_info;
2391
2392 /* Not a valid relocation section? */
2393 if (infosec >= info->hdr->e_shnum)
2394 continue;
2395
2396 /* Don't bother with non-allocated sections */
2397 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2398 continue;
2399
2400 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2401 err = klp_apply_section_relocs(mod, info->sechdrs,
2402 info->secstrings,
2403 info->strtab,
2404 info->index.sym, i,
2405 NULL);
2406 else if (info->sechdrs[i].sh_type == SHT_REL)
2407 err = apply_relocate(info->sechdrs, info->strtab,
2408 info->index.sym, i, mod);
2409 else if (info->sechdrs[i].sh_type == SHT_RELA)
2410 err = apply_relocate_add(info->sechdrs, info->strtab,
2411 info->index.sym, i, mod);
2412 if (err < 0)
2413 break;
2414 }
2415 return err;
2416}
2417
2418/* Additional bytes needed by arch in front of individual sections */
2419unsigned int __weak arch_mod_section_prepend(struct module *mod,
2420 unsigned int section)
2421{
2422 /* default implementation just returns zero */
2423 return 0;
2424}
2425
2426/* Update size with this section: return offset. */
2427static long get_offset(struct module *mod, unsigned int *size,
2428 Elf_Shdr *sechdr, unsigned int section)
2429{
2430 long ret;
2431
2432 *size += arch_mod_section_prepend(mod, section);
2433 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2434 *size = ret + sechdr->sh_size;
2435 return ret;
2436}
2437
2438/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2439 might -- code, read-only data, read-write data, small data. Tally
2440 sizes, and place the offsets into sh_entsize fields: high bit means it
2441 belongs in init. */
2442static void layout_sections(struct module *mod, struct load_info *info)
2443{
2444 static unsigned long const masks[][2] = {
2445 /* NOTE: all executable code must be the first section
2446 * in this array; otherwise modify the text_size
2447 * finder in the two loops below */
2448 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2449 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2450 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2451 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2452 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2453 };
2454 unsigned int m, i;
2455
2456 for (i = 0; i < info->hdr->e_shnum; i++)
2457 info->sechdrs[i].sh_entsize = ~0UL;
2458
2459 pr_debug("Core section allocation order:\n");
2460 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2461 for (i = 0; i < info->hdr->e_shnum; ++i) {
2462 Elf_Shdr *s = &info->sechdrs[i];
2463 const char *sname = info->secstrings + s->sh_name;
2464
2465 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2466 || (s->sh_flags & masks[m][1])
2467 || s->sh_entsize != ~0UL
2468 || module_init_section(sname))
2469 continue;
2470 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2471 pr_debug("\t%s\n", sname);
2472 }
2473 switch (m) {
2474 case 0: /* executable */
2475 mod->core_layout.size = debug_align(mod->core_layout.size);
2476 mod->core_layout.text_size = mod->core_layout.size;
2477 break;
2478 case 1: /* RO: text and ro-data */
2479 mod->core_layout.size = debug_align(mod->core_layout.size);
2480 mod->core_layout.ro_size = mod->core_layout.size;
2481 break;
2482 case 2: /* RO after init */
2483 mod->core_layout.size = debug_align(mod->core_layout.size);
2484 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2485 break;
2486 case 4: /* whole core */
2487 mod->core_layout.size = debug_align(mod->core_layout.size);
2488 break;
2489 }
2490 }
2491
2492 pr_debug("Init section allocation order:\n");
2493 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2494 for (i = 0; i < info->hdr->e_shnum; ++i) {
2495 Elf_Shdr *s = &info->sechdrs[i];
2496 const char *sname = info->secstrings + s->sh_name;
2497
2498 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2499 || (s->sh_flags & masks[m][1])
2500 || s->sh_entsize != ~0UL
2501 || !module_init_section(sname))
2502 continue;
2503 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2504 | INIT_OFFSET_MASK);
2505 pr_debug("\t%s\n", sname);
2506 }
2507 switch (m) {
2508 case 0: /* executable */
2509 mod->init_layout.size = debug_align(mod->init_layout.size);
2510 mod->init_layout.text_size = mod->init_layout.size;
2511 break;
2512 case 1: /* RO: text and ro-data */
2513 mod->init_layout.size = debug_align(mod->init_layout.size);
2514 mod->init_layout.ro_size = mod->init_layout.size;
2515 break;
2516 case 2:
2517 /*
2518 * RO after init doesn't apply to init_layout (only
2519 * core_layout), so it just takes the value of ro_size.
2520 */
2521 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2522 break;
2523 case 4: /* whole init */
2524 mod->init_layout.size = debug_align(mod->init_layout.size);
2525 break;
2526 }
2527 }
2528}
2529
2530static void set_license(struct module *mod, const char *license)
2531{
2532 if (!license)
2533 license = "unspecified";
2534
2535 if (!license_is_gpl_compatible(license)) {
2536 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2537 pr_warn("%s: module license '%s' taints kernel.\n",
2538 mod->name, license);
2539 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2540 LOCKDEP_NOW_UNRELIABLE);
2541 }
2542}
2543
2544/* Parse tag=value strings from .modinfo section */
2545static char *next_string(char *string, unsigned long *secsize)
2546{
2547 /* Skip non-zero chars */
2548 while (string[0]) {
2549 string++;
2550 if ((*secsize)-- <= 1)
2551 return NULL;
2552 }
2553
2554 /* Skip any zero padding. */
2555 while (!string[0]) {
2556 string++;
2557 if ((*secsize)-- <= 1)
2558 return NULL;
2559 }
2560 return string;
2561}
2562
2563static char *get_next_modinfo(const struct load_info *info, const char *tag,
2564 char *prev)
2565{
2566 char *p;
2567 unsigned int taglen = strlen(tag);
2568 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2569 unsigned long size = infosec->sh_size;
2570
2571 /*
2572 * get_modinfo() calls made before rewrite_section_headers()
2573 * must use sh_offset, as sh_addr isn't set!
2574 */
2575 char *modinfo = (char *)info->hdr + infosec->sh_offset;
2576
2577 if (prev) {
2578 size -= prev - modinfo;
2579 modinfo = next_string(prev, &size);
2580 }
2581
2582 for (p = modinfo; p; p = next_string(p, &size)) {
2583 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2584 return p + taglen + 1;
2585 }
2586 return NULL;
2587}
2588
2589static char *get_modinfo(const struct load_info *info, const char *tag)
2590{
2591 return get_next_modinfo(info, tag, NULL);
2592}
2593
2594static void setup_modinfo(struct module *mod, struct load_info *info)
2595{
2596 struct module_attribute *attr;
2597 int i;
2598
2599 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2600 if (attr->setup)
2601 attr->setup(mod, get_modinfo(info, attr->attr.name));
2602 }
2603}
2604
2605static void free_modinfo(struct module *mod)
2606{
2607 struct module_attribute *attr;
2608 int i;
2609
2610 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2611 if (attr->free)
2612 attr->free(mod);
2613 }
2614}
2615
2616#ifdef CONFIG_KALLSYMS
2617
2618/* Lookup exported symbol in given range of kernel_symbols */
2619static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2620 const struct kernel_symbol *start,
2621 const struct kernel_symbol *stop)
2622{
2623 return bsearch(name, start, stop - start,
2624 sizeof(struct kernel_symbol), cmp_name);
2625}
2626
2627static int is_exported(const char *name, unsigned long value,
2628 const struct module *mod)
2629{
2630 const struct kernel_symbol *ks;
2631 if (!mod)
2632 ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2633 else
2634 ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2635
2636 return ks != NULL && kernel_symbol_value(ks) == value;
2637}
2638
2639/* As per nm */
2640static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2641{
2642 const Elf_Shdr *sechdrs = info->sechdrs;
2643
2644 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2645 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2646 return 'v';
2647 else
2648 return 'w';
2649 }
2650 if (sym->st_shndx == SHN_UNDEF)
2651 return 'U';
2652 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2653 return 'a';
2654 if (sym->st_shndx >= SHN_LORESERVE)
2655 return '?';
2656 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2657 return 't';
2658 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2659 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2660 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2661 return 'r';
2662 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2663 return 'g';
2664 else
2665 return 'd';
2666 }
2667 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2668 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2669 return 's';
2670 else
2671 return 'b';
2672 }
2673 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2674 ".debug")) {
2675 return 'n';
2676 }
2677 return '?';
2678}
2679
2680static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2681 unsigned int shnum, unsigned int pcpundx)
2682{
2683 const Elf_Shdr *sec;
2684
2685 if (src->st_shndx == SHN_UNDEF
2686 || src->st_shndx >= shnum
2687 || !src->st_name)
2688 return false;
2689
2690#ifdef CONFIG_KALLSYMS_ALL
2691 if (src->st_shndx == pcpundx)
2692 return true;
2693#endif
2694
2695 sec = sechdrs + src->st_shndx;
2696 if (!(sec->sh_flags & SHF_ALLOC)
2697#ifndef CONFIG_KALLSYMS_ALL
2698 || !(sec->sh_flags & SHF_EXECINSTR)
2699#endif
2700 || (sec->sh_entsize & INIT_OFFSET_MASK))
2701 return false;
2702
2703 return true;
2704}
2705
2706/*
2707 * We only allocate and copy the strings needed by the parts of symtab
2708 * we keep. This is simple, but has the effect of making multiple
2709 * copies of duplicates. We could be more sophisticated, see
2710 * linux-kernel thread starting with
2711 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2712 */
2713static void layout_symtab(struct module *mod, struct load_info *info)
2714{
2715 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2716 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2717 const Elf_Sym *src;
2718 unsigned int i, nsrc, ndst, strtab_size = 0;
2719
2720 /* Put symbol section at end of init part of module. */
2721 symsect->sh_flags |= SHF_ALLOC;
2722 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2723 info->index.sym) | INIT_OFFSET_MASK;
2724 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2725
2726 src = (void *)info->hdr + symsect->sh_offset;
2727 nsrc = symsect->sh_size / sizeof(*src);
2728
2729 /* Compute total space required for the core symbols' strtab. */
2730 for (ndst = i = 0; i < nsrc; i++) {
2731 if (i == 0 || is_livepatch_module(mod) ||
2732 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2733 info->index.pcpu)) {
2734 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2735 ndst++;
2736 }
2737 }
2738
2739 /* Append room for core symbols at end of core part. */
2740 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2741 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2742 mod->core_layout.size += strtab_size;
2743 info->core_typeoffs = mod->core_layout.size;
2744 mod->core_layout.size += ndst * sizeof(char);
2745 mod->core_layout.size = debug_align(mod->core_layout.size);
2746
2747 /* Put string table section at end of init part of module. */
2748 strsect->sh_flags |= SHF_ALLOC;
2749 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2750 info->index.str) | INIT_OFFSET_MASK;
2751 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2752
2753 /* We'll tack temporary mod_kallsyms on the end. */
2754 mod->init_layout.size = ALIGN(mod->init_layout.size,
2755 __alignof__(struct mod_kallsyms));
2756 info->mod_kallsyms_init_off = mod->init_layout.size;
2757 mod->init_layout.size += sizeof(struct mod_kallsyms);
2758 info->init_typeoffs = mod->init_layout.size;
2759 mod->init_layout.size += nsrc * sizeof(char);
2760 mod->init_layout.size = debug_align(mod->init_layout.size);
2761}
2762
2763/*
2764 * We use the full symtab and strtab which layout_symtab arranged to
2765 * be appended to the init section. Later we switch to the cut-down
2766 * core-only ones.
2767 */
2768static void add_kallsyms(struct module *mod, const struct load_info *info)
2769{
2770 unsigned int i, ndst;
2771 const Elf_Sym *src;
2772 Elf_Sym *dst;
2773 char *s;
2774 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2775
2776 /* Set up to point into init section. */
2777 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2778
2779 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2780 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2781 /* Make sure we get permanent strtab: don't use info->strtab. */
2782 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2783 mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2784
2785 /*
2786 * Now populate the cut down core kallsyms for after init
2787 * and set types up while we still have access to sections.
2788 */
2789 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2790 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2791 mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2792 src = mod->kallsyms->symtab;
2793 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2794 mod->kallsyms->typetab[i] = elf_type(src + i, info);
2795 if (i == 0 || is_livepatch_module(mod) ||
2796 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2797 info->index.pcpu)) {
2798 mod->core_kallsyms.typetab[ndst] =
2799 mod->kallsyms->typetab[i];
2800 dst[ndst] = src[i];
2801 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2802 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2803 KSYM_NAME_LEN) + 1;
2804 }
2805 }
2806 mod->core_kallsyms.num_symtab = ndst;
2807}
2808#else
2809static inline void layout_symtab(struct module *mod, struct load_info *info)
2810{
2811}
2812
2813static void add_kallsyms(struct module *mod, const struct load_info *info)
2814{
2815}
2816#endif /* CONFIG_KALLSYMS */
2817
2818static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2819{
2820 if (!debug)
2821 return;
2822 ddebug_add_module(debug, num, mod->name);
2823}
2824
2825static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2826{
2827 if (debug)
2828 ddebug_remove_module(mod->name);
2829}
2830
2831void * __weak module_alloc(unsigned long size)
2832{
2833 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2834 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2835 NUMA_NO_NODE, __builtin_return_address(0));
2836}
2837
2838bool __weak module_init_section(const char *name)
2839{
2840 return strstarts(name, ".init");
2841}
2842
2843bool __weak module_exit_section(const char *name)
2844{
2845 return strstarts(name, ".exit");
2846}
2847
2848#ifdef CONFIG_DEBUG_KMEMLEAK
2849static void kmemleak_load_module(const struct module *mod,
2850 const struct load_info *info)
2851{
2852 unsigned int i;
2853
2854 /* only scan the sections containing data */
2855 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2856
2857 for (i = 1; i < info->hdr->e_shnum; i++) {
2858 /* Scan all writable sections that's not executable */
2859 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2860 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2861 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2862 continue;
2863
2864 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2865 info->sechdrs[i].sh_size, GFP_KERNEL);
2866 }
2867}
2868#else
2869static inline void kmemleak_load_module(const struct module *mod,
2870 const struct load_info *info)
2871{
2872}
2873#endif
2874
2875#ifdef CONFIG_MODULE_SIG
2876static int module_sig_check(struct load_info *info, int flags)
2877{
2878 int err = -ENODATA;
2879 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2880 const char *reason;
2881 const void *mod = info->hdr;
2882
2883 /*
2884 * Require flags == 0, as a module with version information
2885 * removed is no longer the module that was signed
2886 */
2887 if (flags == 0 &&
2888 info->len > markerlen &&
2889 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2890 /* We truncate the module to discard the signature */
2891 info->len -= markerlen;
2892 err = mod_verify_sig(mod, info);
2893 }
2894
2895 switch (err) {
2896 case 0:
2897 info->sig_ok = true;
2898 return 0;
2899
2900 /* We don't permit modules to be loaded into trusted kernels
2901 * without a valid signature on them, but if we're not
2902 * enforcing, certain errors are non-fatal.
2903 */
2904 case -ENODATA:
2905 reason = "Loading of unsigned module";
2906 goto decide;
2907 case -ENOPKG:
2908 reason = "Loading of module with unsupported crypto";
2909 goto decide;
2910 case -ENOKEY:
2911 reason = "Loading of module with unavailable key";
2912 decide:
2913 if (is_module_sig_enforced()) {
2914 pr_notice("%s: %s is rejected\n", info->name, reason);
2915 return -EKEYREJECTED;
2916 }
2917
2918 return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2919
2920 /* All other errors are fatal, including nomem, unparseable
2921 * signatures and signature check failures - even if signatures
2922 * aren't required.
2923 */
2924 default:
2925 return err;
2926 }
2927}
2928#else /* !CONFIG_MODULE_SIG */
2929static int module_sig_check(struct load_info *info, int flags)
2930{
2931 return 0;
2932}
2933#endif /* !CONFIG_MODULE_SIG */
2934
2935/* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2936static int elf_header_check(struct load_info *info)
2937{
2938 if (info->len < sizeof(*(info->hdr)))
2939 return -ENOEXEC;
2940
2941 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2942 || info->hdr->e_type != ET_REL
2943 || !elf_check_arch(info->hdr)
2944 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2945 return -ENOEXEC;
2946
2947 if (info->hdr->e_shoff >= info->len
2948 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2949 info->len - info->hdr->e_shoff))
2950 return -ENOEXEC;
2951
2952 return 0;
2953}
2954
2955#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2956
2957static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2958{
2959 do {
2960 unsigned long n = min(len, COPY_CHUNK_SIZE);
2961
2962 if (copy_from_user(dst, usrc, n) != 0)
2963 return -EFAULT;
2964 cond_resched();
2965 dst += n;
2966 usrc += n;
2967 len -= n;
2968 } while (len);
2969 return 0;
2970}
2971
2972#ifdef CONFIG_LIVEPATCH
2973static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2974{
2975 if (get_modinfo(info, "livepatch")) {
2976 mod->klp = true;
2977 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2978 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2979 mod->name);
2980 }
2981
2982 return 0;
2983}
2984#else /* !CONFIG_LIVEPATCH */
2985static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2986{
2987 if (get_modinfo(info, "livepatch")) {
2988 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2989 mod->name);
2990 return -ENOEXEC;
2991 }
2992
2993 return 0;
2994}
2995#endif /* CONFIG_LIVEPATCH */
2996
2997static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2998{
2999 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3000 return;
3001
3002 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3003 mod->name);
3004}
3005
3006/* Sets info->hdr and info->len. */
3007static int copy_module_from_user(const void __user *umod, unsigned long len,
3008 struct load_info *info)
3009{
3010 int err;
3011
3012 info->len = len;
3013 if (info->len < sizeof(*(info->hdr)))
3014 return -ENOEXEC;
3015
3016 err = security_kernel_load_data(LOADING_MODULE);
3017 if (err)
3018 return err;
3019
3020 /* Suck in entire file: we'll want most of it. */
3021 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
3022 if (!info->hdr)
3023 return -ENOMEM;
3024
3025 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3026 vfree(info->hdr);
3027 return -EFAULT;
3028 }
3029
3030 return 0;
3031}
3032
3033static void free_copy(struct load_info *info)
3034{
3035 vfree(info->hdr);
3036}
3037
3038static int rewrite_section_headers(struct load_info *info, int flags)
3039{
3040 unsigned int i;
3041
3042 /* This should always be true, but let's be sure. */
3043 info->sechdrs[0].sh_addr = 0;
3044
3045 for (i = 1; i < info->hdr->e_shnum; i++) {
3046 Elf_Shdr *shdr = &info->sechdrs[i];
3047 if (shdr->sh_type != SHT_NOBITS
3048 && info->len < shdr->sh_offset + shdr->sh_size) {
3049 pr_err("Module len %lu truncated\n", info->len);
3050 return -ENOEXEC;
3051 }
3052
3053 /* Mark all sections sh_addr with their address in the
3054 temporary image. */
3055 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3056
3057#ifndef CONFIG_MODULE_UNLOAD
3058 /* Don't load .exit sections */
3059 if (module_exit_section(info->secstrings+shdr->sh_name))
3060 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
3061#endif
3062 }
3063
3064 /* Track but don't keep modinfo and version sections. */
3065 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3066 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3067
3068 return 0;
3069}
3070
3071/*
3072 * Set up our basic convenience variables (pointers to section headers,
3073 * search for module section index etc), and do some basic section
3074 * verification.
3075 *
3076 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3077 * will be allocated in move_module().
3078 */
3079static int setup_load_info(struct load_info *info, int flags)
3080{
3081 unsigned int i;
3082
3083 /* Set up the convenience variables */
3084 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3085 info->secstrings = (void *)info->hdr
3086 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
3087
3088 /* Try to find a name early so we can log errors with a module name */
3089 info->index.info = find_sec(info, ".modinfo");
3090 if (info->index.info)
3091 info->name = get_modinfo(info, "name");
3092
3093 /* Find internal symbols and strings. */
3094 for (i = 1; i < info->hdr->e_shnum; i++) {
3095 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3096 info->index.sym = i;
3097 info->index.str = info->sechdrs[i].sh_link;
3098 info->strtab = (char *)info->hdr
3099 + info->sechdrs[info->index.str].sh_offset;
3100 break;
3101 }
3102 }
3103
3104 if (info->index.sym == 0) {
3105 pr_warn("%s: module has no symbols (stripped?)\n",
3106 info->name ?: "(missing .modinfo section or name field)");
3107 return -ENOEXEC;
3108 }
3109
3110 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3111 if (!info->index.mod) {
3112 pr_warn("%s: No module found in object\n",
3113 info->name ?: "(missing .modinfo section or name field)");
3114 return -ENOEXEC;
3115 }
3116 /* This is temporary: point mod into copy of data. */
3117 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3118
3119 /*
3120 * If we didn't load the .modinfo 'name' field earlier, fall back to
3121 * on-disk struct mod 'name' field.
3122 */
3123 if (!info->name)
3124 info->name = info->mod->name;
3125
3126 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3127 info->index.vers = 0; /* Pretend no __versions section! */
3128 else
3129 info->index.vers = find_sec(info, "__versions");
3130
3131 info->index.pcpu = find_pcpusec(info);
3132
3133 return 0;
3134}
3135
3136static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3137{
3138 const char *modmagic = get_modinfo(info, "vermagic");
3139 int err;
3140
3141 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3142 modmagic = NULL;
3143
3144 /* This is allowed: modprobe --force will invalidate it. */
3145 if (!modmagic) {
3146 err = try_to_force_load(mod, "bad vermagic");
3147 if (err)
3148 return err;
3149 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3150 pr_err("%s: version magic '%s' should be '%s'\n",
3151 info->name, modmagic, vermagic);
3152 return -ENOEXEC;
3153 }
3154
3155 if (!get_modinfo(info, "intree")) {
3156 if (!test_taint(TAINT_OOT_MODULE))
3157 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3158 mod->name);
3159 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3160 }
3161
3162 check_modinfo_retpoline(mod, info);
3163
3164 if (get_modinfo(info, "staging")) {
3165 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3166 pr_warn("%s: module is from the staging directory, the quality "
3167 "is unknown, you have been warned.\n", mod->name);
3168 }
3169
3170 err = check_modinfo_livepatch(mod, info);
3171 if (err)
3172 return err;
3173
3174 /* Set up license info based on the info section */
3175 set_license(mod, get_modinfo(info, "license"));
3176
3177 return 0;
3178}
3179
3180static int find_module_sections(struct module *mod, struct load_info *info)
3181{
3182 mod->kp = section_objs(info, "__param",
3183 sizeof(*mod->kp), &mod->num_kp);
3184 mod->syms = section_objs(info, "__ksymtab",
3185 sizeof(*mod->syms), &mod->num_syms);
3186 mod->crcs = section_addr(info, "__kcrctab");
3187 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3188 sizeof(*mod->gpl_syms),
3189 &mod->num_gpl_syms);
3190 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3191 mod->gpl_future_syms = section_objs(info,
3192 "__ksymtab_gpl_future",
3193 sizeof(*mod->gpl_future_syms),
3194 &mod->num_gpl_future_syms);
3195 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3196
3197#ifdef CONFIG_UNUSED_SYMBOLS
3198 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3199 sizeof(*mod->unused_syms),
3200 &mod->num_unused_syms);
3201 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3202 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3203 sizeof(*mod->unused_gpl_syms),
3204 &mod->num_unused_gpl_syms);
3205 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3206#endif
3207#ifdef CONFIG_CONSTRUCTORS
3208 mod->ctors = section_objs(info, ".ctors",
3209 sizeof(*mod->ctors), &mod->num_ctors);
3210 if (!mod->ctors)
3211 mod->ctors = section_objs(info, ".init_array",
3212 sizeof(*mod->ctors), &mod->num_ctors);
3213 else if (find_sec(info, ".init_array")) {
3214 /*
3215 * This shouldn't happen with same compiler and binutils
3216 * building all parts of the module.
3217 */
3218 pr_warn("%s: has both .ctors and .init_array.\n",
3219 mod->name);
3220 return -EINVAL;
3221 }
3222#endif
3223
3224 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3225 &mod->noinstr_text_size);
3226
3227#ifdef CONFIG_TRACEPOINTS
3228 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3229 sizeof(*mod->tracepoints_ptrs),
3230 &mod->num_tracepoints);
3231#endif
3232#ifdef CONFIG_TREE_SRCU
3233 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3234 sizeof(*mod->srcu_struct_ptrs),
3235 &mod->num_srcu_structs);
3236#endif
3237#ifdef CONFIG_BPF_EVENTS
3238 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3239 sizeof(*mod->bpf_raw_events),
3240 &mod->num_bpf_raw_events);
3241#endif
3242#ifdef CONFIG_JUMP_LABEL
3243 mod->jump_entries = section_objs(info, "__jump_table",
3244 sizeof(*mod->jump_entries),
3245 &mod->num_jump_entries);
3246#endif
3247#ifdef CONFIG_EVENT_TRACING
3248 mod->trace_events = section_objs(info, "_ftrace_events",
3249 sizeof(*mod->trace_events),
3250 &mod->num_trace_events);
3251 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3252 sizeof(*mod->trace_evals),
3253 &mod->num_trace_evals);
3254#endif
3255#ifdef CONFIG_TRACING
3256 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3257 sizeof(*mod->trace_bprintk_fmt_start),
3258 &mod->num_trace_bprintk_fmt);
3259#endif
3260#ifdef CONFIG_FTRACE_MCOUNT_RECORD
3261 /* sechdrs[0].sh_size is always zero */
3262 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3263 sizeof(*mod->ftrace_callsites),
3264 &mod->num_ftrace_callsites);
3265#endif
3266#ifdef CONFIG_FUNCTION_ERROR_INJECTION
3267 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3268 sizeof(*mod->ei_funcs),
3269 &mod->num_ei_funcs);
3270#endif
3271#ifdef CONFIG_KPROBES
3272 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3273 &mod->kprobes_text_size);
3274 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3275 sizeof(unsigned long),
3276 &mod->num_kprobe_blacklist);
3277#endif
3278 mod->extable = section_objs(info, "__ex_table",
3279 sizeof(*mod->extable), &mod->num_exentries);
3280
3281 if (section_addr(info, "__obsparm"))
3282 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3283
3284 info->debug = section_objs(info, "__dyndbg",
3285 sizeof(*info->debug), &info->num_debug);
3286
3287 return 0;
3288}
3289
3290static int move_module(struct module *mod, struct load_info *info)
3291{
3292 int i;
3293 void *ptr;
3294
3295 /* Do the allocs. */
3296 ptr = module_alloc(mod->core_layout.size);
3297 /*
3298 * The pointer to this block is stored in the module structure
3299 * which is inside the block. Just mark it as not being a
3300 * leak.
3301 */
3302 kmemleak_not_leak(ptr);
3303 if (!ptr)
3304 return -ENOMEM;
3305
3306 memset(ptr, 0, mod->core_layout.size);
3307 mod->core_layout.base = ptr;
3308
3309 if (mod->init_layout.size) {
3310 ptr = module_alloc(mod->init_layout.size);
3311 /*
3312 * The pointer to this block is stored in the module structure
3313 * which is inside the block. This block doesn't need to be
3314 * scanned as it contains data and code that will be freed
3315 * after the module is initialized.
3316 */
3317 kmemleak_ignore(ptr);
3318 if (!ptr) {
3319 module_memfree(mod->core_layout.base);
3320 return -ENOMEM;
3321 }
3322 memset(ptr, 0, mod->init_layout.size);
3323 mod->init_layout.base = ptr;
3324 } else
3325 mod->init_layout.base = NULL;
3326
3327 /* Transfer each section which specifies SHF_ALLOC */
3328 pr_debug("final section addresses:\n");
3329 for (i = 0; i < info->hdr->e_shnum; i++) {
3330 void *dest;
3331 Elf_Shdr *shdr = &info->sechdrs[i];
3332
3333 if (!(shdr->sh_flags & SHF_ALLOC))
3334 continue;
3335
3336 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3337 dest = mod->init_layout.base
3338 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3339 else
3340 dest = mod->core_layout.base + shdr->sh_entsize;
3341
3342 if (shdr->sh_type != SHT_NOBITS)
3343 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3344 /* Update sh_addr to point to copy in image. */
3345 shdr->sh_addr = (unsigned long)dest;
3346 pr_debug("\t0x%lx %s\n",
3347 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3348 }
3349
3350 return 0;
3351}
3352
3353static int check_module_license_and_versions(struct module *mod)
3354{
3355 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3356
3357 /*
3358 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3359 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3360 * using GPL-only symbols it needs.
3361 */
3362 if (strcmp(mod->name, "ndiswrapper") == 0)
3363 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3364
3365 /* driverloader was caught wrongly pretending to be under GPL */
3366 if (strcmp(mod->name, "driverloader") == 0)
3367 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3368 LOCKDEP_NOW_UNRELIABLE);
3369
3370 /* lve claims to be GPL but upstream won't provide source */
3371 if (strcmp(mod->name, "lve") == 0)
3372 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3373 LOCKDEP_NOW_UNRELIABLE);
3374
3375 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3376 pr_warn("%s: module license taints kernel.\n", mod->name);
3377
3378#ifdef CONFIG_MODVERSIONS
3379 if ((mod->num_syms && !mod->crcs)
3380 || (mod->num_gpl_syms && !mod->gpl_crcs)
3381 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3382#ifdef CONFIG_UNUSED_SYMBOLS
3383 || (mod->num_unused_syms && !mod->unused_crcs)
3384 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3385#endif
3386 ) {
3387 return try_to_force_load(mod,
3388 "no versions for exported symbols");
3389 }
3390#endif
3391 return 0;
3392}
3393
3394static void flush_module_icache(const struct module *mod)
3395{
3396 /*
3397 * Flush the instruction cache, since we've played with text.
3398 * Do it before processing of module parameters, so the module
3399 * can provide parameter accessor functions of its own.
3400 */
3401 if (mod->init_layout.base)
3402 flush_icache_range((unsigned long)mod->init_layout.base,
3403 (unsigned long)mod->init_layout.base
3404 + mod->init_layout.size);
3405 flush_icache_range((unsigned long)mod->core_layout.base,
3406 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3407}
3408
3409int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3410 Elf_Shdr *sechdrs,
3411 char *secstrings,
3412 struct module *mod)
3413{
3414 return 0;
3415}
3416
3417/* module_blacklist is a comma-separated list of module names */
3418static char *module_blacklist;
3419static bool blacklisted(const char *module_name)
3420{
3421 const char *p;
3422 size_t len;
3423
3424 if (!module_blacklist)
3425 return false;
3426
3427 for (p = module_blacklist; *p; p += len) {
3428 len = strcspn(p, ",");
3429 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3430 return true;
3431 if (p[len] == ',')
3432 len++;
3433 }
3434 return false;
3435}
3436core_param(module_blacklist, module_blacklist, charp, 0400);
3437
3438static struct module *layout_and_allocate(struct load_info *info, int flags)
3439{
3440 struct module *mod;
3441 unsigned int ndx;
3442 int err;
3443
3444 err = check_modinfo(info->mod, info, flags);
3445 if (err)
3446 return ERR_PTR(err);
3447
3448 /* Allow arches to frob section contents and sizes. */
3449 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3450 info->secstrings, info->mod);
3451 if (err < 0)
3452 return ERR_PTR(err);
3453
3454 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3455 info->secstrings, info->mod);
3456 if (err < 0)
3457 return ERR_PTR(err);
3458
3459 /* We will do a special allocation for per-cpu sections later. */
3460 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3461
3462 /*
3463 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3464 * layout_sections() can put it in the right place.
3465 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3466 */
3467 ndx = find_sec(info, ".data..ro_after_init");
3468 if (ndx)
3469 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3470 /*
3471 * Mark the __jump_table section as ro_after_init as well: these data
3472 * structures are never modified, with the exception of entries that
3473 * refer to code in the __init section, which are annotated as such
3474 * at module load time.
3475 */
3476 ndx = find_sec(info, "__jump_table");
3477 if (ndx)
3478 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3479
3480 /* Determine total sizes, and put offsets in sh_entsize. For now
3481 this is done generically; there doesn't appear to be any
3482 special cases for the architectures. */
3483 layout_sections(info->mod, info);
3484 layout_symtab(info->mod, info);
3485
3486 /* Allocate and move to the final place */
3487 err = move_module(info->mod, info);
3488 if (err)
3489 return ERR_PTR(err);
3490
3491 /* Module has been copied to its final place now: return it. */
3492 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3493 kmemleak_load_module(mod, info);
3494 return mod;
3495}
3496
3497/* mod is no longer valid after this! */
3498static void module_deallocate(struct module *mod, struct load_info *info)
3499{
3500 percpu_modfree(mod);
3501 module_arch_freeing_init(mod);
3502 module_memfree(mod->init_layout.base);
3503 module_memfree(mod->core_layout.base);
3504}
3505
3506int __weak module_finalize(const Elf_Ehdr *hdr,
3507 const Elf_Shdr *sechdrs,
3508 struct module *me)
3509{
3510 return 0;
3511}
3512
3513static int post_relocation(struct module *mod, const struct load_info *info)
3514{
3515 /* Sort exception table now relocations are done. */
3516 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3517
3518 /* Copy relocated percpu area over. */
3519 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3520 info->sechdrs[info->index.pcpu].sh_size);
3521
3522 /* Setup kallsyms-specific fields. */
3523 add_kallsyms(mod, info);
3524
3525 /* Arch-specific module finalizing. */
3526 return module_finalize(info->hdr, info->sechdrs, mod);
3527}
3528
3529/* Is this module of this name done loading? No locks held. */
3530static bool finished_loading(const char *name)
3531{
3532 struct module *mod;
3533 bool ret;
3534
3535 /*
3536 * The module_mutex should not be a heavily contended lock;
3537 * if we get the occasional sleep here, we'll go an extra iteration
3538 * in the wait_event_interruptible(), which is harmless.
3539 */
3540 sched_annotate_sleep();
3541 mutex_lock(&module_mutex);
3542 mod = find_module_all(name, strlen(name), true);
3543 ret = !mod || mod->state == MODULE_STATE_LIVE;
3544 mutex_unlock(&module_mutex);
3545
3546 return ret;
3547}
3548
3549/* Call module constructors. */
3550static void do_mod_ctors(struct module *mod)
3551{
3552#ifdef CONFIG_CONSTRUCTORS
3553 unsigned long i;
3554
3555 for (i = 0; i < mod->num_ctors; i++)
3556 mod->ctors[i]();
3557#endif
3558}
3559
3560/* For freeing module_init on success, in case kallsyms traversing */
3561struct mod_initfree {
3562 struct llist_node node;
3563 void *module_init;
3564};
3565
3566static void do_free_init(struct work_struct *w)
3567{
3568 struct llist_node *pos, *n, *list;
3569 struct mod_initfree *initfree;
3570
3571 list = llist_del_all(&init_free_list);
3572
3573 synchronize_rcu();
3574
3575 llist_for_each_safe(pos, n, list) {
3576 initfree = container_of(pos, struct mod_initfree, node);
3577 module_memfree(initfree->module_init);
3578 kfree(initfree);
3579 }
3580}
3581
3582static int __init modules_wq_init(void)
3583{
3584 INIT_WORK(&init_free_wq, do_free_init);
3585 init_llist_head(&init_free_list);
3586 return 0;
3587}
3588module_init(modules_wq_init);
3589
3590/*
3591 * This is where the real work happens.
3592 *
3593 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3594 * helper command 'lx-symbols'.
3595 */
3596static noinline int do_init_module(struct module *mod)
3597{
3598 int ret = 0;
3599 struct mod_initfree *freeinit;
3600
3601 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3602 if (!freeinit) {
3603 ret = -ENOMEM;
3604 goto fail;
3605 }
3606 freeinit->module_init = mod->init_layout.base;
3607
3608 /*
3609 * We want to find out whether @mod uses async during init. Clear
3610 * PF_USED_ASYNC. async_schedule*() will set it.
3611 */
3612 current->flags &= ~PF_USED_ASYNC;
3613
3614 do_mod_ctors(mod);
3615 /* Start the module */
3616 if (mod->init != NULL)
3617 ret = do_one_initcall(mod->init);
3618 if (ret < 0) {
3619 goto fail_free_freeinit;
3620 }
3621 if (ret > 0) {
3622 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3623 "follow 0/-E convention\n"
3624 "%s: loading module anyway...\n",
3625 __func__, mod->name, ret, __func__);
3626 dump_stack();
3627 }
3628
3629 /* Now it's a first class citizen! */
3630 mod->state = MODULE_STATE_LIVE;
3631 blocking_notifier_call_chain(&module_notify_list,
3632 MODULE_STATE_LIVE, mod);
3633
3634 /*
3635 * We need to finish all async code before the module init sequence
3636 * is done. This has potential to deadlock. For example, a newly
3637 * detected block device can trigger request_module() of the
3638 * default iosched from async probing task. Once userland helper
3639 * reaches here, async_synchronize_full() will wait on the async
3640 * task waiting on request_module() and deadlock.
3641 *
3642 * This deadlock is avoided by perfomring async_synchronize_full()
3643 * iff module init queued any async jobs. This isn't a full
3644 * solution as it will deadlock the same if module loading from
3645 * async jobs nests more than once; however, due to the various
3646 * constraints, this hack seems to be the best option for now.
3647 * Please refer to the following thread for details.
3648 *
3649 * http://thread.gmane.org/gmane.linux.kernel/1420814
3650 */
3651 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3652 async_synchronize_full();
3653
3654 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3655 mod->init_layout.size);
3656 mutex_lock(&module_mutex);
3657 /* Drop initial reference. */
3658 module_put(mod);
3659 trim_init_extable(mod);
3660#ifdef CONFIG_KALLSYMS
3661 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3662 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3663#endif
3664 module_enable_ro(mod, true);
3665 mod_tree_remove_init(mod);
3666 module_arch_freeing_init(mod);
3667 mod->init_layout.base = NULL;
3668 mod->init_layout.size = 0;
3669 mod->init_layout.ro_size = 0;
3670 mod->init_layout.ro_after_init_size = 0;
3671 mod->init_layout.text_size = 0;
3672 /*
3673 * We want to free module_init, but be aware that kallsyms may be
3674 * walking this with preempt disabled. In all the failure paths, we
3675 * call synchronize_rcu(), but we don't want to slow down the success
3676 * path. module_memfree() cannot be called in an interrupt, so do the
3677 * work and call synchronize_rcu() in a work queue.
3678 *
3679 * Note that module_alloc() on most architectures creates W+X page
3680 * mappings which won't be cleaned up until do_free_init() runs. Any
3681 * code such as mark_rodata_ro() which depends on those mappings to
3682 * be cleaned up needs to sync with the queued work - ie
3683 * rcu_barrier()
3684 */
3685 if (llist_add(&freeinit->node, &init_free_list))
3686 schedule_work(&init_free_wq);
3687
3688 mutex_unlock(&module_mutex);
3689 wake_up_all(&module_wq);
3690
3691 return 0;
3692
3693fail_free_freeinit:
3694 kfree(freeinit);
3695fail:
3696 /* Try to protect us from buggy refcounters. */
3697 mod->state = MODULE_STATE_GOING;
3698 synchronize_rcu();
3699 module_put(mod);
3700 blocking_notifier_call_chain(&module_notify_list,
3701 MODULE_STATE_GOING, mod);
3702 klp_module_going(mod);
3703 ftrace_release_mod(mod);
3704 free_module(mod);
3705 wake_up_all(&module_wq);
3706 return ret;
3707}
3708
3709static int may_init_module(void)
3710{
3711 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3712 return -EPERM;
3713
3714 return 0;
3715}
3716
3717/*
3718 * We try to place it in the list now to make sure it's unique before
3719 * we dedicate too many resources. In particular, temporary percpu
3720 * memory exhaustion.
3721 */
3722static int add_unformed_module(struct module *mod)
3723{
3724 int err;
3725 struct module *old;
3726
3727 mod->state = MODULE_STATE_UNFORMED;
3728
3729again:
3730 mutex_lock(&module_mutex);
3731 old = find_module_all(mod->name, strlen(mod->name), true);
3732 if (old != NULL) {
3733 if (old->state != MODULE_STATE_LIVE) {
3734 /* Wait in case it fails to load. */
3735 mutex_unlock(&module_mutex);
3736 err = wait_event_interruptible(module_wq,
3737 finished_loading(mod->name));
3738 if (err)
3739 goto out_unlocked;
3740 goto again;
3741 }
3742 err = -EEXIST;
3743 goto out;
3744 }
3745 mod_update_bounds(mod);
3746 list_add_rcu(&mod->list, &modules);
3747 mod_tree_insert(mod);
3748 err = 0;
3749
3750out:
3751 mutex_unlock(&module_mutex);
3752out_unlocked:
3753 return err;
3754}
3755
3756static int complete_formation(struct module *mod, struct load_info *info)
3757{
3758 int err;
3759
3760 mutex_lock(&module_mutex);
3761
3762 /* Find duplicate symbols (must be called under lock). */
3763 err = verify_exported_symbols(mod);
3764 if (err < 0)
3765 goto out;
3766
3767 /* This relies on module_mutex for list integrity. */
3768 module_bug_finalize(info->hdr, info->sechdrs, mod);
3769
3770 module_enable_ro(mod, false);
3771 module_enable_nx(mod);
3772 module_enable_x(mod);
3773
3774 /* Mark state as coming so strong_try_module_get() ignores us,
3775 * but kallsyms etc. can see us. */
3776 mod->state = MODULE_STATE_COMING;
3777 mutex_unlock(&module_mutex);
3778
3779 return 0;
3780
3781out:
3782 mutex_unlock(&module_mutex);
3783 return err;
3784}
3785
3786static int prepare_coming_module(struct module *mod)
3787{
3788 int err;
3789
3790 ftrace_module_enable(mod);
3791 err = klp_module_coming(mod);
3792 if (err)
3793 return err;
3794
3795 blocking_notifier_call_chain(&module_notify_list,
3796 MODULE_STATE_COMING, mod);
3797 return 0;
3798}
3799
3800static int unknown_module_param_cb(char *param, char *val, const char *modname,
3801 void *arg)
3802{
3803 struct module *mod = arg;
3804 int ret;
3805
3806 if (strcmp(param, "async_probe") == 0) {
3807 mod->async_probe_requested = true;
3808 return 0;
3809 }
3810
3811 /* Check for magic 'dyndbg' arg */
3812 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3813 if (ret != 0)
3814 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3815 return 0;
3816}
3817
3818/* Allocate and load the module: note that size of section 0 is always
3819 zero, and we rely on this for optional sections. */
3820static int load_module(struct load_info *info, const char __user *uargs,
3821 int flags)
3822{
3823 struct module *mod;
3824 long err = 0;
3825 char *after_dashes;
3826
3827 err = elf_header_check(info);
3828 if (err)
3829 goto free_copy;
3830
3831 err = setup_load_info(info, flags);
3832 if (err)
3833 goto free_copy;
3834
3835 if (blacklisted(info->name)) {
3836 err = -EPERM;
3837 goto free_copy;
3838 }
3839
3840 err = module_sig_check(info, flags);
3841 if (err)
3842 goto free_copy;
3843
3844 err = rewrite_section_headers(info, flags);
3845 if (err)
3846 goto free_copy;
3847
3848 /* Check module struct version now, before we try to use module. */
3849 if (!check_modstruct_version(info, info->mod)) {
3850 err = -ENOEXEC;
3851 goto free_copy;
3852 }
3853
3854 /* Figure out module layout, and allocate all the memory. */
3855 mod = layout_and_allocate(info, flags);
3856 if (IS_ERR(mod)) {
3857 err = PTR_ERR(mod);
3858 goto free_copy;
3859 }
3860
3861 audit_log_kern_module(mod->name);
3862
3863 /* Reserve our place in the list. */
3864 err = add_unformed_module(mod);
3865 if (err)
3866 goto free_module;
3867
3868#ifdef CONFIG_MODULE_SIG
3869 mod->sig_ok = info->sig_ok;
3870 if (!mod->sig_ok) {
3871 pr_notice_once("%s: module verification failed: signature "
3872 "and/or required key missing - tainting "
3873 "kernel\n", mod->name);
3874 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3875 }
3876#endif
3877
3878 /* To avoid stressing percpu allocator, do this once we're unique. */
3879 err = percpu_modalloc(mod, info);
3880 if (err)
3881 goto unlink_mod;
3882
3883 /* Now module is in final location, initialize linked lists, etc. */
3884 err = module_unload_init(mod);
3885 if (err)
3886 goto unlink_mod;
3887
3888 init_param_lock(mod);
3889
3890 /* Now we've got everything in the final locations, we can
3891 * find optional sections. */
3892 err = find_module_sections(mod, info);
3893 if (err)
3894 goto free_unload;
3895
3896 err = check_module_license_and_versions(mod);
3897 if (err)
3898 goto free_unload;
3899
3900 /* Set up MODINFO_ATTR fields */
3901 setup_modinfo(mod, info);
3902
3903 /* Fix up syms, so that st_value is a pointer to location. */
3904 err = simplify_symbols(mod, info);
3905 if (err < 0)
3906 goto free_modinfo;
3907
3908 err = apply_relocations(mod, info);
3909 if (err < 0)
3910 goto free_modinfo;
3911
3912 err = post_relocation(mod, info);
3913 if (err < 0)
3914 goto free_modinfo;
3915
3916 flush_module_icache(mod);
3917
3918 /* Now copy in args */
3919 mod->args = strndup_user(uargs, ~0UL >> 1);
3920 if (IS_ERR(mod->args)) {
3921 err = PTR_ERR(mod->args);
3922 goto free_arch_cleanup;
3923 }
3924
3925 dynamic_debug_setup(mod, info->debug, info->num_debug);
3926
3927 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3928 ftrace_module_init(mod);
3929
3930 /* Finally it's fully formed, ready to start executing. */
3931 err = complete_formation(mod, info);
3932 if (err)
3933 goto ddebug_cleanup;
3934
3935 err = prepare_coming_module(mod);
3936 if (err)
3937 goto bug_cleanup;
3938
3939 /* Module is ready to execute: parsing args may do that. */
3940 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3941 -32768, 32767, mod,
3942 unknown_module_param_cb);
3943 if (IS_ERR(after_dashes)) {
3944 err = PTR_ERR(after_dashes);
3945 goto coming_cleanup;
3946 } else if (after_dashes) {
3947 pr_warn("%s: parameters '%s' after `--' ignored\n",
3948 mod->name, after_dashes);
3949 }
3950
3951 /* Link in to sysfs. */
3952 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3953 if (err < 0)
3954 goto coming_cleanup;
3955
3956 if (is_livepatch_module(mod)) {
3957 err = copy_module_elf(mod, info);
3958 if (err < 0)
3959 goto sysfs_cleanup;
3960 }
3961
3962 /* Get rid of temporary copy. */
3963 free_copy(info);
3964
3965 /* Done! */
3966 trace_module_load(mod);
3967
3968 return do_init_module(mod);
3969
3970 sysfs_cleanup:
3971 mod_sysfs_teardown(mod);
3972 coming_cleanup:
3973 mod->state = MODULE_STATE_GOING;
3974 destroy_params(mod->kp, mod->num_kp);
3975 blocking_notifier_call_chain(&module_notify_list,
3976 MODULE_STATE_GOING, mod);
3977 klp_module_going(mod);
3978 bug_cleanup:
3979 /* module_bug_cleanup needs module_mutex protection */
3980 mutex_lock(&module_mutex);
3981 module_bug_cleanup(mod);
3982 mutex_unlock(&module_mutex);
3983
3984 ddebug_cleanup:
3985 ftrace_release_mod(mod);
3986 dynamic_debug_remove(mod, info->debug);
3987 synchronize_rcu();
3988 kfree(mod->args);
3989 free_arch_cleanup:
3990 module_arch_cleanup(mod);
3991 free_modinfo:
3992 free_modinfo(mod);
3993 free_unload:
3994 module_unload_free(mod);
3995 unlink_mod:
3996 mutex_lock(&module_mutex);
3997 /* Unlink carefully: kallsyms could be walking list. */
3998 list_del_rcu(&mod->list);
3999 mod_tree_remove(mod);
4000 wake_up_all(&module_wq);
4001 /* Wait for RCU-sched synchronizing before releasing mod->list. */
4002 synchronize_rcu();
4003 mutex_unlock(&module_mutex);
4004 free_module:
4005 /* Free lock-classes; relies on the preceding sync_rcu() */
4006 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4007
4008 module_deallocate(mod, info);
4009 free_copy:
4010 free_copy(info);
4011 return err;
4012}
4013
4014SYSCALL_DEFINE3(init_module, void __user *, umod,
4015 unsigned long, len, const char __user *, uargs)
4016{
4017 int err;
4018 struct load_info info = { };
4019
4020 err = may_init_module();
4021 if (err)
4022 return err;
4023
4024 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4025 umod, len, uargs);
4026
4027 err = copy_module_from_user(umod, len, &info);
4028 if (err)
4029 return err;
4030
4031 return load_module(&info, uargs, 0);
4032}
4033
4034SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4035{
4036 struct load_info info = { };
4037 loff_t size;
4038 void *hdr;
4039 int err;
4040
4041 err = may_init_module();
4042 if (err)
4043 return err;
4044
4045 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4046
4047 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4048 |MODULE_INIT_IGNORE_VERMAGIC))
4049 return -EINVAL;
4050
4051 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
4052 READING_MODULE);
4053 if (err)
4054 return err;
4055 info.hdr = hdr;
4056 info.len = size;
4057
4058 return load_module(&info, uargs, flags);
4059}
4060
4061static inline int within(unsigned long addr, void *start, unsigned long size)
4062{
4063 return ((void *)addr >= start && (void *)addr < start + size);
4064}
4065
4066#ifdef CONFIG_KALLSYMS
4067/*
4068 * This ignores the intensely annoying "mapping symbols" found
4069 * in ARM ELF files: $a, $t and $d.
4070 */
4071static inline int is_arm_mapping_symbol(const char *str)
4072{
4073 if (str[0] == '.' && str[1] == 'L')
4074 return true;
4075 return str[0] == '$' && strchr("axtd", str[1])
4076 && (str[2] == '\0' || str[2] == '.');
4077}
4078
4079static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4080{
4081 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4082}
4083
4084/*
4085 * Given a module and address, find the corresponding symbol and return its name
4086 * while providing its size and offset if needed.
4087 */
4088static const char *find_kallsyms_symbol(struct module *mod,
4089 unsigned long addr,
4090 unsigned long *size,
4091 unsigned long *offset)
4092{
4093 unsigned int i, best = 0;
4094 unsigned long nextval, bestval;
4095 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4096
4097 /* At worse, next value is at end of module */
4098 if (within_module_init(addr, mod))
4099 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4100 else
4101 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4102
4103 bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4104
4105 /* Scan for closest preceding symbol, and next symbol. (ELF
4106 starts real symbols at 1). */
4107 for (i = 1; i < kallsyms->num_symtab; i++) {
4108 const Elf_Sym *sym = &kallsyms->symtab[i];
4109 unsigned long thisval = kallsyms_symbol_value(sym);
4110
4111 if (sym->st_shndx == SHN_UNDEF)
4112 continue;
4113
4114 /* We ignore unnamed symbols: they're uninformative
4115 * and inserted at a whim. */
4116 if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4117 || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4118 continue;
4119
4120 if (thisval <= addr && thisval > bestval) {
4121 best = i;
4122 bestval = thisval;
4123 }
4124 if (thisval > addr && thisval < nextval)
4125 nextval = thisval;
4126 }
4127
4128 if (!best)
4129 return NULL;
4130
4131 if (size)
4132 *size = nextval - bestval;
4133 if (offset)
4134 *offset = addr - bestval;
4135
4136 return kallsyms_symbol_name(kallsyms, best);
4137}
4138
4139void * __weak dereference_module_function_descriptor(struct module *mod,
4140 void *ptr)
4141{
4142 return ptr;
4143}
4144
4145/* For kallsyms to ask for address resolution. NULL means not found. Careful
4146 * not to lock to avoid deadlock on oopses, simply disable preemption. */
4147const char *module_address_lookup(unsigned long addr,
4148 unsigned long *size,
4149 unsigned long *offset,
4150 char **modname,
4151 char *namebuf)
4152{
4153 const char *ret = NULL;
4154 struct module *mod;
4155
4156 preempt_disable();
4157 mod = __module_address(addr);
4158 if (mod) {
4159 if (modname)
4160 *modname = mod->name;
4161
4162 ret = find_kallsyms_symbol(mod, addr, size, offset);
4163 }
4164 /* Make a copy in here where it's safe */
4165 if (ret) {
4166 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4167 ret = namebuf;
4168 }
4169 preempt_enable();
4170
4171 return ret;
4172}
4173
4174int lookup_module_symbol_name(unsigned long addr, char *symname)
4175{
4176 struct module *mod;
4177
4178 preempt_disable();
4179 list_for_each_entry_rcu(mod, &modules, list) {
4180 if (mod->state == MODULE_STATE_UNFORMED)
4181 continue;
4182 if (within_module(addr, mod)) {
4183 const char *sym;
4184
4185 sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4186 if (!sym)
4187 goto out;
4188
4189 strlcpy(symname, sym, KSYM_NAME_LEN);
4190 preempt_enable();
4191 return 0;
4192 }
4193 }
4194out:
4195 preempt_enable();
4196 return -ERANGE;
4197}
4198
4199int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4200 unsigned long *offset, char *modname, char *name)
4201{
4202 struct module *mod;
4203
4204 preempt_disable();
4205 list_for_each_entry_rcu(mod, &modules, list) {
4206 if (mod->state == MODULE_STATE_UNFORMED)
4207 continue;
4208 if (within_module(addr, mod)) {
4209 const char *sym;
4210
4211 sym = find_kallsyms_symbol(mod, addr, size, offset);
4212 if (!sym)
4213 goto out;
4214 if (modname)
4215 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4216 if (name)
4217 strlcpy(name, sym, KSYM_NAME_LEN);
4218 preempt_enable();
4219 return 0;
4220 }
4221 }
4222out:
4223 preempt_enable();
4224 return -ERANGE;
4225}
4226
4227int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4228 char *name, char *module_name, int *exported)
4229{
4230 struct module *mod;
4231
4232 preempt_disable();
4233 list_for_each_entry_rcu(mod, &modules, list) {
4234 struct mod_kallsyms *kallsyms;
4235
4236 if (mod->state == MODULE_STATE_UNFORMED)
4237 continue;
4238 kallsyms = rcu_dereference_sched(mod->kallsyms);
4239 if (symnum < kallsyms->num_symtab) {
4240 const Elf_Sym *sym = &kallsyms->symtab[symnum];
4241
4242 *value = kallsyms_symbol_value(sym);
4243 *type = kallsyms->typetab[symnum];
4244 strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4245 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4246 *exported = is_exported(name, *value, mod);
4247 preempt_enable();
4248 return 0;
4249 }
4250 symnum -= kallsyms->num_symtab;
4251 }
4252 preempt_enable();
4253 return -ERANGE;
4254}
4255
4256/* Given a module and name of symbol, find and return the symbol's value */
4257static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4258{
4259 unsigned int i;
4260 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4261
4262 for (i = 0; i < kallsyms->num_symtab; i++) {
4263 const Elf_Sym *sym = &kallsyms->symtab[i];
4264
4265 if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4266 sym->st_shndx != SHN_UNDEF)
4267 return kallsyms_symbol_value(sym);
4268 }
4269 return 0;
4270}
4271
4272/* Look for this name: can be of form module:name. */
4273unsigned long module_kallsyms_lookup_name(const char *name)
4274{
4275 struct module *mod;
4276 char *colon;
4277 unsigned long ret = 0;
4278
4279 /* Don't lock: we're in enough trouble already. */
4280 preempt_disable();
4281 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4282 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4283 ret = find_kallsyms_symbol_value(mod, colon+1);
4284 } else {
4285 list_for_each_entry_rcu(mod, &modules, list) {
4286 if (mod->state == MODULE_STATE_UNFORMED)
4287 continue;
4288 if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4289 break;
4290 }
4291 }
4292 preempt_enable();
4293 return ret;
4294}
4295
4296int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4297 struct module *, unsigned long),
4298 void *data)
4299{
4300 struct module *mod;
4301 unsigned int i;
4302 int ret;
4303
4304 module_assert_mutex();
4305
4306 list_for_each_entry(mod, &modules, list) {
4307 /* We hold module_mutex: no need for rcu_dereference_sched */
4308 struct mod_kallsyms *kallsyms = mod->kallsyms;
4309
4310 if (mod->state == MODULE_STATE_UNFORMED)
4311 continue;
4312 for (i = 0; i < kallsyms->num_symtab; i++) {
4313 const Elf_Sym *sym = &kallsyms->symtab[i];
4314
4315 if (sym->st_shndx == SHN_UNDEF)
4316 continue;
4317
4318 ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4319 mod, kallsyms_symbol_value(sym));
4320 if (ret != 0)
4321 return ret;
4322 }
4323 }
4324 return 0;
4325}
4326#endif /* CONFIG_KALLSYMS */
4327
4328/* Maximum number of characters written by module_flags() */
4329#define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4330
4331/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4332static char *module_flags(struct module *mod, char *buf)
4333{
4334 int bx = 0;
4335
4336 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4337 if (mod->taints ||
4338 mod->state == MODULE_STATE_GOING ||
4339 mod->state == MODULE_STATE_COMING) {
4340 buf[bx++] = '(';
4341 bx += module_flags_taint(mod, buf + bx);
4342 /* Show a - for module-is-being-unloaded */
4343 if (mod->state == MODULE_STATE_GOING)
4344 buf[bx++] = '-';
4345 /* Show a + for module-is-being-loaded */
4346 if (mod->state == MODULE_STATE_COMING)
4347 buf[bx++] = '+';
4348 buf[bx++] = ')';
4349 }
4350 buf[bx] = '\0';
4351
4352 return buf;
4353}
4354
4355#ifdef CONFIG_PROC_FS
4356/* Called by the /proc file system to return a list of modules. */
4357static void *m_start(struct seq_file *m, loff_t *pos)
4358{
4359 mutex_lock(&module_mutex);
4360 return seq_list_start(&modules, *pos);
4361}
4362
4363static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4364{
4365 return seq_list_next(p, &modules, pos);
4366}
4367
4368static void m_stop(struct seq_file *m, void *p)
4369{
4370 mutex_unlock(&module_mutex);
4371}
4372
4373static int m_show(struct seq_file *m, void *p)
4374{
4375 struct module *mod = list_entry(p, struct module, list);
4376 char buf[MODULE_FLAGS_BUF_SIZE];
4377 void *value;
4378
4379 /* We always ignore unformed modules. */
4380 if (mod->state == MODULE_STATE_UNFORMED)
4381 return 0;
4382
4383 seq_printf(m, "%s %u",
4384 mod->name, mod->init_layout.size + mod->core_layout.size);
4385 print_unload_info(m, mod);
4386
4387 /* Informative for users. */
4388 seq_printf(m, " %s",
4389 mod->state == MODULE_STATE_GOING ? "Unloading" :
4390 mod->state == MODULE_STATE_COMING ? "Loading" :
4391 "Live");
4392 /* Used by oprofile and other similar tools. */
4393 value = m->private ? NULL : mod->core_layout.base;
4394 seq_printf(m, " 0x%px", value);
4395
4396 /* Taints info */
4397 if (mod->taints)
4398 seq_printf(m, " %s", module_flags(mod, buf));
4399
4400 seq_puts(m, "\n");
4401 return 0;
4402}
4403
4404/* Format: modulename size refcount deps address
4405
4406 Where refcount is a number or -, and deps is a comma-separated list
4407 of depends or -.
4408*/
4409static const struct seq_operations modules_op = {
4410 .start = m_start,
4411 .next = m_next,
4412 .stop = m_stop,
4413 .show = m_show
4414};
4415
4416/*
4417 * This also sets the "private" pointer to non-NULL if the
4418 * kernel pointers should be hidden (so you can just test
4419 * "m->private" to see if you should keep the values private).
4420 *
4421 * We use the same logic as for /proc/kallsyms.
4422 */
4423static int modules_open(struct inode *inode, struct file *file)
4424{
4425 int err = seq_open(file, &modules_op);
4426
4427 if (!err) {
4428 struct seq_file *m = file->private_data;
4429 m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4430 }
4431
4432 return err;
4433}
4434
4435static const struct proc_ops modules_proc_ops = {
4436 .proc_flags = PROC_ENTRY_PERMANENT,
4437 .proc_open = modules_open,
4438 .proc_read = seq_read,
4439 .proc_lseek = seq_lseek,
4440 .proc_release = seq_release,
4441};
4442
4443static int __init proc_modules_init(void)
4444{
4445 proc_create("modules", 0, NULL, &modules_proc_ops);
4446 return 0;
4447}
4448module_init(proc_modules_init);
4449#endif
4450
4451/* Given an address, look for it in the module exception tables. */
4452const struct exception_table_entry *search_module_extables(unsigned long addr)
4453{
4454 const struct exception_table_entry *e = NULL;
4455 struct module *mod;
4456
4457 preempt_disable();
4458 mod = __module_address(addr);
4459 if (!mod)
4460 goto out;
4461
4462 if (!mod->num_exentries)
4463 goto out;
4464
4465 e = search_extable(mod->extable,
4466 mod->num_exentries,
4467 addr);
4468out:
4469 preempt_enable();
4470
4471 /*
4472 * Now, if we found one, we are running inside it now, hence
4473 * we cannot unload the module, hence no refcnt needed.
4474 */
4475 return e;
4476}
4477
4478/*
4479 * is_module_address - is this address inside a module?
4480 * @addr: the address to check.
4481 *
4482 * See is_module_text_address() if you simply want to see if the address
4483 * is code (not data).
4484 */
4485bool is_module_address(unsigned long addr)
4486{
4487 bool ret;
4488
4489 preempt_disable();
4490 ret = __module_address(addr) != NULL;
4491 preempt_enable();
4492
4493 return ret;
4494}
4495
4496/*
4497 * __module_address - get the module which contains an address.
4498 * @addr: the address.
4499 *
4500 * Must be called with preempt disabled or module mutex held so that
4501 * module doesn't get freed during this.
4502 */
4503struct module *__module_address(unsigned long addr)
4504{
4505 struct module *mod;
4506
4507 if (addr < module_addr_min || addr > module_addr_max)
4508 return NULL;
4509
4510 module_assert_mutex_or_preempt();
4511
4512 mod = mod_find(addr);
4513 if (mod) {
4514 BUG_ON(!within_module(addr, mod));
4515 if (mod->state == MODULE_STATE_UNFORMED)
4516 mod = NULL;
4517 }
4518 return mod;
4519}
4520
4521/*
4522 * is_module_text_address - is this address inside module code?
4523 * @addr: the address to check.
4524 *
4525 * See is_module_address() if you simply want to see if the address is
4526 * anywhere in a module. See kernel_text_address() for testing if an
4527 * address corresponds to kernel or module code.
4528 */
4529bool is_module_text_address(unsigned long addr)
4530{
4531 bool ret;
4532
4533 preempt_disable();
4534 ret = __module_text_address(addr) != NULL;
4535 preempt_enable();
4536
4537 return ret;
4538}
4539
4540/*
4541 * __module_text_address - get the module whose code contains an address.
4542 * @addr: the address.
4543 *
4544 * Must be called with preempt disabled or module mutex held so that
4545 * module doesn't get freed during this.
4546 */
4547struct module *__module_text_address(unsigned long addr)
4548{
4549 struct module *mod = __module_address(addr);
4550 if (mod) {
4551 /* Make sure it's within the text section. */
4552 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4553 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4554 mod = NULL;
4555 }
4556 return mod;
4557}
4558
4559/* Don't grab lock, we're oopsing. */
4560void print_modules(void)
4561{
4562 struct module *mod;
4563 char buf[MODULE_FLAGS_BUF_SIZE];
4564
4565 printk(KERN_DEFAULT "Modules linked in:");
4566 /* Most callers should already have preempt disabled, but make sure */
4567 preempt_disable();
4568 list_for_each_entry_rcu(mod, &modules, list) {
4569 if (mod->state == MODULE_STATE_UNFORMED)
4570 continue;
4571 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4572 }
4573 preempt_enable();
4574 if (last_unloaded_module[0])
4575 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4576 pr_cont("\n");
4577}
4578
4579#ifdef CONFIG_MODVERSIONS
4580/* Generate the signature for all relevant module structures here.
4581 * If these change, we don't want to try to parse the module. */
4582void module_layout(struct module *mod,
4583 struct modversion_info *ver,
4584 struct kernel_param *kp,
4585 struct kernel_symbol *ks,
4586 struct tracepoint * const *tp)
4587{
4588}
4589EXPORT_SYMBOL(module_layout);
4590#endif