Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 *
  3 * Copyright (c) 2009, Microsoft Corporation.
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms and conditions of the GNU General Public License,
  7 * version 2, as published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope it will be useful, but WITHOUT
 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 12 * more details.
 13 *
 14 * You should have received a copy of the GNU General Public License along with
 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 16 * Place - Suite 330, Boston, MA 02111-1307 USA.
 17 *
 18 * Authors:
 19 *   Haiyang Zhang <haiyangz@microsoft.com>
 20 *   Hank Janssen  <hjanssen@microsoft.com>
 21 *   K. Y. Srinivasan <kys@microsoft.com>
 22 *
 23 */
 24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 25
 26#include <linux/kernel.h>
 27#include <linux/mm.h>
 28#include <linux/hyperv.h>
 29#include <linux/uio.h>
 
 
 
 30
 31#include "hyperv_vmbus.h"
 32
 33void hv_begin_read(struct hv_ring_buffer_info *rbi)
 34{
 35	rbi->ring_buffer->interrupt_mask = 1;
 36	mb();
 37}
 38
 39u32 hv_end_read(struct hv_ring_buffer_info *rbi)
 40{
 41	u32 read;
 42	u32 write;
 43
 44	rbi->ring_buffer->interrupt_mask = 0;
 45	mb();
 46
 47	/*
 48	 * Now check to see if the ring buffer is still empty.
 49	 * If it is not, we raced and we need to process new
 50	 * incoming messages.
 51	 */
 52	hv_get_ringbuffer_availbytes(rbi, &read, &write);
 53
 54	return read;
 55}
 56
 57/*
 58 * When we write to the ring buffer, check if the host needs to
 59 * be signaled. Here is the details of this protocol:
 60 *
 61 *	1. The host guarantees that while it is draining the
 62 *	   ring buffer, it will set the interrupt_mask to
 63 *	   indicate it does not need to be interrupted when
 64 *	   new data is placed.
 65 *
 66 *	2. The host guarantees that it will completely drain
 67 *	   the ring buffer before exiting the read loop. Further,
 68 *	   once the ring buffer is empty, it will clear the
 69 *	   interrupt_mask and re-check to see if new data has
 70 *	   arrived.
 71 */
 72
 73static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
 74{
 75	mb();
 76	if (rbi->ring_buffer->interrupt_mask)
 77		return false;
 
 
 
 
 
 
 
 
 
 
 
 78
 79	/* check interrupt_mask before read_index */
 80	rmb();
 81	/*
 82	 * This is the only case we need to signal when the
 83	 * ring transitions from being empty to non-empty.
 84	 */
 85	if (old_write == rbi->ring_buffer->read_index)
 86		return true;
 87
 88	return false;
 89}
 90
 91/*
 92 * To optimize the flow management on the send-side,
 93 * when the sender is blocked because of lack of
 94 * sufficient space in the ring buffer, potential the
 95 * consumer of the ring buffer can signal the producer.
 96 * This is controlled by the following parameters:
 97 *
 98 * 1. pending_send_sz: This is the size in bytes that the
 99 *    producer is trying to send.
100 * 2. The feature bit feat_pending_send_sz set to indicate if
101 *    the consumer of the ring will signal when the ring
102 *    state transitions from being full to a state where
103 *    there is room for the producer to send the pending packet.
104 */
105
106static bool hv_need_to_signal_on_read(u32 old_rd,
107					 struct hv_ring_buffer_info *rbi)
108{
109	u32 prev_write_sz;
110	u32 cur_write_sz;
111	u32 r_size;
112	u32 write_loc = rbi->ring_buffer->write_index;
113	u32 read_loc = rbi->ring_buffer->read_index;
114	u32 pending_sz = rbi->ring_buffer->pending_send_sz;
115
116	/*
117	 * If the other end is not blocked on write don't bother.
118	 */
119	if (pending_sz == 0)
120		return false;
121
122	r_size = rbi->ring_datasize;
123	cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
124			read_loc - write_loc;
125
126	prev_write_sz = write_loc >= old_rd ? r_size - (write_loc - old_rd) :
127			old_rd - write_loc;
128
129
130	if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz))
131		return true;
132
133	return false;
134}
135
136/*
137 * hv_get_next_write_location()
138 *
139 * Get the next write location for the specified ring buffer
140 *
141 */
142static inline u32
143hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
144{
145	u32 next = ring_info->ring_buffer->write_index;
146
147	return next;
148}
149
150/*
151 * hv_set_next_write_location()
152 *
153 * Set the next write location for the specified ring buffer
154 *
155 */
156static inline void
157hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
158		     u32 next_write_location)
159{
160	ring_info->ring_buffer->write_index = next_write_location;
161}
162
163/*
164 * hv_get_next_read_location()
165 *
166 * Get the next read location for the specified ring buffer
167 */
168static inline u32
169hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
170{
171	u32 next = ring_info->ring_buffer->read_index;
172
173	return next;
174}
175
176/*
177 * hv_get_next_readlocation_withoffset()
178 *
179 * Get the next read location + offset for the specified ring buffer.
180 * This allows the caller to skip
181 */
182static inline u32
183hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
184				 u32 offset)
185{
186	u32 next = ring_info->ring_buffer->read_index;
187
188	next += offset;
189	next %= ring_info->ring_datasize;
190
191	return next;
192}
193
194/*
195 *
196 * hv_set_next_read_location()
197 *
198 * Set the next read location for the specified ring buffer
199 *
200 */
201static inline void
202hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
203		    u32 next_read_location)
204{
205	ring_info->ring_buffer->read_index = next_read_location;
 
206}
207
208
209/*
210 *
211 * hv_get_ring_buffer()
212 *
213 * Get the start of the ring buffer
214 */
215static inline void *
216hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
217{
218	return (void *)ring_info->ring_buffer->buffer;
219}
220
221
222/*
223 *
224 * hv_get_ring_buffersize()
225 *
226 * Get the size of the ring buffer
227 */
228static inline u32
229hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
230{
231	return ring_info->ring_datasize;
232}
233
234/*
235 *
236 * hv_get_ring_bufferindices()
237 *
238 * Get the read and write indices as u64 of the specified ring buffer
239 *
240 */
241static inline u64
242hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
243{
244	return (u64)ring_info->ring_buffer->write_index << 32;
245}
246
247/*
248 *
249 * hv_copyfrom_ringbuffer()
250 *
251 * Helper routine to copy to source from ring buffer.
252 * Assume there is enough room. Handles wrap-around in src case only!!
253 *
254 */
255static u32 hv_copyfrom_ringbuffer(
256	struct hv_ring_buffer_info	*ring_info,
257	void				*dest,
258	u32				destlen,
259	u32				start_read_offset)
260{
261	void *ring_buffer = hv_get_ring_buffer(ring_info);
262	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
263
264	u32 frag_len;
265
266	/* wrap-around detected at the src */
267	if (destlen > ring_buffer_size - start_read_offset) {
268		frag_len = ring_buffer_size - start_read_offset;
269
270		memcpy(dest, ring_buffer + start_read_offset, frag_len);
271		memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
272	} else
273
274		memcpy(dest, ring_buffer + start_read_offset, destlen);
275
276
277	start_read_offset += destlen;
278	start_read_offset %= ring_buffer_size;
279
280	return start_read_offset;
281}
282
283
284/*
285 *
286 * hv_copyto_ringbuffer()
287 *
288 * Helper routine to copy from source to ring buffer.
289 * Assume there is enough room. Handles wrap-around in dest case only!!
290 *
291 */
292static u32 hv_copyto_ringbuffer(
293	struct hv_ring_buffer_info	*ring_info,
294	u32				start_write_offset,
295	void				*src,
296	u32				srclen)
297{
298	void *ring_buffer = hv_get_ring_buffer(ring_info);
299	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
300	u32 frag_len;
301
302	/* wrap-around detected! */
303	if (srclen > ring_buffer_size - start_write_offset) {
304		frag_len = ring_buffer_size - start_write_offset;
305		memcpy(ring_buffer + start_write_offset, src, frag_len);
306		memcpy(ring_buffer, src + frag_len, srclen - frag_len);
307	} else
308		memcpy(ring_buffer + start_write_offset, src, srclen);
309
310	start_write_offset += srclen;
311	start_write_offset %= ring_buffer_size;
 
312
313	return start_write_offset;
314}
315
316/*
317 *
318 * hv_ringbuffer_get_debuginfo()
319 *
320 * Get various debug metrics for the specified ring buffer
321 *
 
 
322 */
323void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
324			    struct hv_ring_buffer_debug_info *debug_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325{
326	u32 bytes_avail_towrite;
327	u32 bytes_avail_toread;
328
329	if (ring_info->ring_buffer) {
330		hv_get_ringbuffer_availbytes(ring_info,
331					&bytes_avail_toread,
332					&bytes_avail_towrite);
333
334		debug_info->bytes_avail_toread = bytes_avail_toread;
335		debug_info->bytes_avail_towrite = bytes_avail_towrite;
336		debug_info->current_read_index =
337			ring_info->ring_buffer->read_index;
338		debug_info->current_write_index =
339			ring_info->ring_buffer->write_index;
340		debug_info->current_interrupt_mask =
341			ring_info->ring_buffer->interrupt_mask;
342	}
 
 
 
 
 
 
 
 
 
 
 
 
 
343}
 
344
345/*
346 *
347 * hv_ringbuffer_init()
348 *
349 *Initialize the ring buffer
350 *
351 */
 
352int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
353		   void *buffer, u32 buflen)
354{
355	if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
356		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357
358	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
 
 
 
 
 
 
 
359
360	ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
361	ring_info->ring_buffer->read_index =
362		ring_info->ring_buffer->write_index = 0;
363
364	ring_info->ring_size = buflen;
365	ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
 
 
 
 
 
 
 
366
367	spin_lock_init(&ring_info->ring_lock);
368
369	return 0;
370}
371
372/*
373 *
374 * hv_ringbuffer_cleanup()
375 *
376 * Cleanup the ring buffer
377 *
378 */
379void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
380{
 
 
 
 
381}
382
383/*
384 *
385 * hv_ringbuffer_write()
386 *
387 * Write to the ring buffer
388 *
389 */
390int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
391		    struct kvec *kv_list, u32 kv_count, bool *signal)
392{
393	int i = 0;
394	u32 bytes_avail_towrite;
395	u32 bytes_avail_toread;
396	u32 totalbytes_towrite = 0;
397
398	u32 next_write_location;
399	u32 old_write;
400	u64 prev_indices = 0;
401	unsigned long flags;
 
 
 
 
402
403	for (i = 0; i < kv_count; i++)
404		totalbytes_towrite += kv_list[i].iov_len;
405
406	totalbytes_towrite += sizeof(u64);
407
408	spin_lock_irqsave(&outring_info->ring_lock, flags);
409
410	hv_get_ringbuffer_availbytes(outring_info,
411				&bytes_avail_toread,
412				&bytes_avail_towrite);
413
414
415	/* If there is only room for the packet, assume it is full. */
416	/* Otherwise, the next time around, we think the ring buffer */
417	/* is empty since the read index == write index */
 
 
418	if (bytes_avail_towrite <= totalbytes_towrite) {
 
 
 
 
 
 
 
419		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
420		return -EAGAIN;
421	}
422
 
 
423	/* Write to the ring buffer */
424	next_write_location = hv_get_next_write_location(outring_info);
425
426	old_write = next_write_location;
427
428	for (i = 0; i < kv_count; i++) {
429		next_write_location = hv_copyto_ringbuffer(outring_info,
430						     next_write_location,
431						     kv_list[i].iov_base,
432						     kv_list[i].iov_len);
433	}
434
435	/* Set previous packet start */
436	prev_indices = hv_get_ring_bufferindices(outring_info);
437
438	next_write_location = hv_copyto_ringbuffer(outring_info,
439					     next_write_location,
440					     &prev_indices,
441					     sizeof(u64));
442
443	/* Issue a full memory barrier before updating the write index */
444	mb();
445
446	/* Now, update the write location */
447	hv_set_next_write_location(outring_info, next_write_location);
448
449
450	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
451
452	*signal = hv_need_to_signal(old_write, outring_info);
 
 
 
 
453	return 0;
454}
455
456
457/*
458 *
459 * hv_ringbuffer_peek()
460 *
461 * Read without advancing the read index
462 *
463 */
464int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info,
465		   void *Buffer, u32 buflen)
466{
467	u32 bytes_avail_towrite;
468	u32 bytes_avail_toread;
469	u32 next_read_location = 0;
470	unsigned long flags;
471
472	spin_lock_irqsave(&Inring_info->ring_lock, flags);
 
473
474	hv_get_ringbuffer_availbytes(Inring_info,
475				&bytes_avail_toread,
476				&bytes_avail_towrite);
477
478	/* Make sure there is something to read */
479	if (bytes_avail_toread < buflen) {
480
481		spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
482
483		return -EAGAIN;
 
 
484	}
485
486	/* Convert to byte offset */
487	next_read_location = hv_get_next_read_location(Inring_info);
 
 
 
 
 
 
 
 
488
489	next_read_location = hv_copyfrom_ringbuffer(Inring_info,
490						Buffer,
491						buflen,
492						next_read_location);
493
494	spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
 
495
496	return 0;
497}
498
499
500/*
 
 
501 *
502 * hv_ringbuffer_read()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503 *
504 * Read and advance the read index
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
505 *
 
 
506 */
507int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer,
508		   u32 buflen, u32 offset, bool *signal)
 
509{
510	u32 bytes_avail_towrite;
511	u32 bytes_avail_toread;
512	u32 next_read_location = 0;
513	u64 prev_indices = 0;
514	unsigned long flags;
515	u32 old_read;
516
517	if (buflen <= 0)
518		return -EINVAL;
 
 
 
519
520	spin_lock_irqsave(&inring_info->ring_lock, flags);
 
 
 
521
522	hv_get_ringbuffer_availbytes(inring_info,
523				&bytes_avail_toread,
524				&bytes_avail_towrite);
 
 
 
 
 
 
 
525
526	old_read = bytes_avail_toread;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527
528	/* Make sure there is something to read */
529	if (bytes_avail_toread < buflen) {
530		spin_unlock_irqrestore(&inring_info->ring_lock, flags);
 
 
 
 
 
531
532		return -EAGAIN;
533	}
 
 
 
 
 
534
535	next_read_location =
536		hv_get_next_readlocation_withoffset(inring_info, offset);
 
 
 
 
 
 
 
 
537
538	next_read_location = hv_copyfrom_ringbuffer(inring_info,
539						buffer,
540						buflen,
541						next_read_location);
542
543	next_read_location = hv_copyfrom_ringbuffer(inring_info,
544						&prev_indices,
545						sizeof(u64),
546						next_read_location);
547
548	/* Make sure all reads are done before we update the read index since */
549	/* the writer may start writing to the read area once the read index */
550	/*is updated */
551	mb();
552
553	/* Update the read index */
554	hv_set_next_read_location(inring_info, next_read_location);
 
 
 
 
 
555
556	spin_unlock_irqrestore(&inring_info->ring_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557
558	*signal = hv_need_to_signal_on_read(old_read, inring_info);
 
 
 
 
 
559
560	return 0;
 
561}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *
  4 * Copyright (c) 2009, Microsoft Corporation.
  5 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 * Authors:
  7 *   Haiyang Zhang <haiyangz@microsoft.com>
  8 *   Hank Janssen  <hjanssen@microsoft.com>
  9 *   K. Y. Srinivasan <kys@microsoft.com>
 
 10 */
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/kernel.h>
 14#include <linux/mm.h>
 15#include <linux/hyperv.h>
 16#include <linux/uio.h>
 17#include <linux/vmalloc.h>
 18#include <linux/slab.h>
 19#include <linux/prefetch.h>
 20
 21#include "hyperv_vmbus.h"
 22
 23#define VMBUS_PKT_TRAILER	8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24
 25/*
 26 * When we write to the ring buffer, check if the host needs to
 27 * be signaled. Here is the details of this protocol:
 28 *
 29 *	1. The host guarantees that while it is draining the
 30 *	   ring buffer, it will set the interrupt_mask to
 31 *	   indicate it does not need to be interrupted when
 32 *	   new data is placed.
 33 *
 34 *	2. The host guarantees that it will completely drain
 35 *	   the ring buffer before exiting the read loop. Further,
 36 *	   once the ring buffer is empty, it will clear the
 37 *	   interrupt_mask and re-check to see if new data has
 38 *	   arrived.
 39 *
 40 * KYS: Oct. 30, 2016:
 41 * It looks like Windows hosts have logic to deal with DOS attacks that
 42 * can be triggered if it receives interrupts when it is not expecting
 43 * the interrupt. The host expects interrupts only when the ring
 44 * transitions from empty to non-empty (or full to non full on the guest
 45 * to host ring).
 46 * So, base the signaling decision solely on the ring state until the
 47 * host logic is fixed.
 48 */
 49
 50static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
 51{
 52	struct hv_ring_buffer_info *rbi = &channel->outbound;
 53
 54	virt_mb();
 55	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
 56		return;
 57
 58	/* check interrupt_mask before read_index */
 59	virt_rmb();
 60	/*
 61	 * This is the only case we need to signal when the
 62	 * ring transitions from being empty to non-empty.
 63	 */
 64	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
 65		++channel->intr_out_empty;
 66		vmbus_setevent(channel);
 67	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68}
 69
 70/* Get the next write location for the specified ring buffer. */
 
 
 
 
 
 71static inline u32
 72hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
 73{
 74	u32 next = ring_info->ring_buffer->write_index;
 75
 76	return next;
 77}
 78
 79/* Set the next write location for the specified ring buffer. */
 
 
 
 
 
 80static inline void
 81hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
 82		     u32 next_write_location)
 83{
 84	ring_info->ring_buffer->write_index = next_write_location;
 85}
 86
 87/* Set the next read location for the specified ring buffer. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88static inline void
 89hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
 90		    u32 next_read_location)
 91{
 92	ring_info->ring_buffer->read_index = next_read_location;
 93	ring_info->priv_read_index = next_read_location;
 94}
 95
 96/* Get the size of the ring buffer. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97static inline u32
 98hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
 99{
100	return ring_info->ring_datasize;
101}
102
103/* Get the read and write indices as u64 of the specified ring buffer. */
 
 
 
 
 
 
104static inline u64
105hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
106{
107	return (u64)ring_info->ring_buffer->write_index << 32;
108}
109
110/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111 * Helper routine to copy from source to ring buffer.
112 * Assume there is enough room. Handles wrap-around in dest case only!!
 
113 */
114static u32 hv_copyto_ringbuffer(
115	struct hv_ring_buffer_info	*ring_info,
116	u32				start_write_offset,
117	const void			*src,
118	u32				srclen)
119{
120	void *ring_buffer = hv_get_ring_buffer(ring_info);
121	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
 
122
123	memcpy(ring_buffer + start_write_offset, src, srclen);
 
 
 
 
 
 
124
125	start_write_offset += srclen;
126	if (start_write_offset >= ring_buffer_size)
127		start_write_offset -= ring_buffer_size;
128
129	return start_write_offset;
130}
131
132/*
133 *
134 * hv_get_ringbuffer_availbytes()
 
 
135 *
136 * Get number of bytes available to read and to write to
137 * for the specified ring buffer
138 */
139static void
140hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
141			     u32 *read, u32 *write)
142{
143	u32 read_loc, write_loc, dsize;
144
145	/* Capture the read/write indices before they changed */
146	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
147	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
148	dsize = rbi->ring_datasize;
149
150	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
151		read_loc - write_loc;
152	*read = dsize - *write;
153}
154
155/* Get various debug metrics for the specified ring buffer. */
156int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
157				struct hv_ring_buffer_debug_info *debug_info)
158{
159	u32 bytes_avail_towrite;
160	u32 bytes_avail_toread;
161
162	mutex_lock(&ring_info->ring_buffer_mutex);
163
164	if (!ring_info->ring_buffer) {
165		mutex_unlock(&ring_info->ring_buffer_mutex);
166		return -EINVAL;
 
 
 
 
 
 
 
 
167	}
168
169	hv_get_ringbuffer_availbytes(ring_info,
170				     &bytes_avail_toread,
171				     &bytes_avail_towrite);
172	debug_info->bytes_avail_toread = bytes_avail_toread;
173	debug_info->bytes_avail_towrite = bytes_avail_towrite;
174	debug_info->current_read_index = ring_info->ring_buffer->read_index;
175	debug_info->current_write_index = ring_info->ring_buffer->write_index;
176	debug_info->current_interrupt_mask
177		= ring_info->ring_buffer->interrupt_mask;
178	mutex_unlock(&ring_info->ring_buffer_mutex);
179
180	return 0;
181}
182EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
183
184/* Initialize a channel's ring buffer info mutex locks */
185void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
186{
187	mutex_init(&channel->inbound.ring_buffer_mutex);
188	mutex_init(&channel->outbound.ring_buffer_mutex);
189}
190
191/* Initialize the ring buffer. */
192int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
193		       struct page *pages, u32 page_cnt)
194{
195	int i;
196	struct page **pages_wraparound;
197
198	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
199
200	/*
201	 * First page holds struct hv_ring_buffer, do wraparound mapping for
202	 * the rest.
203	 */
204	pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
205				   GFP_KERNEL);
206	if (!pages_wraparound)
207		return -ENOMEM;
208
209	pages_wraparound[0] = pages;
210	for (i = 0; i < 2 * (page_cnt - 1); i++)
211		pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
212
213	ring_info->ring_buffer = (struct hv_ring_buffer *)
214		vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
215
216	kfree(pages_wraparound);
217
218
219	if (!ring_info->ring_buffer)
220		return -ENOMEM;
221
 
222	ring_info->ring_buffer->read_index =
223		ring_info->ring_buffer->write_index = 0;
224
225	/* Set the feature bit for enabling flow control. */
226	ring_info->ring_buffer->feature_bits.value = 1;
227
228	ring_info->ring_size = page_cnt << PAGE_SHIFT;
229	ring_info->ring_size_div10_reciprocal =
230		reciprocal_value(ring_info->ring_size / 10);
231	ring_info->ring_datasize = ring_info->ring_size -
232		sizeof(struct hv_ring_buffer);
233	ring_info->priv_read_index = 0;
234
235	spin_lock_init(&ring_info->ring_lock);
236
237	return 0;
238}
239
240/* Cleanup the ring buffer. */
 
 
 
 
 
 
241void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
242{
243	mutex_lock(&ring_info->ring_buffer_mutex);
244	vunmap(ring_info->ring_buffer);
245	ring_info->ring_buffer = NULL;
246	mutex_unlock(&ring_info->ring_buffer_mutex);
247}
248
249/* Write to the ring buffer. */
250int hv_ringbuffer_write(struct vmbus_channel *channel,
251			const struct kvec *kv_list, u32 kv_count)
 
 
 
 
 
 
252{
253	int i;
254	u32 bytes_avail_towrite;
255	u32 totalbytes_towrite = sizeof(u64);
 
 
256	u32 next_write_location;
257	u32 old_write;
258	u64 prev_indices;
259	unsigned long flags;
260	struct hv_ring_buffer_info *outring_info = &channel->outbound;
261
262	if (channel->rescind)
263		return -ENODEV;
264
265	for (i = 0; i < kv_count; i++)
266		totalbytes_towrite += kv_list[i].iov_len;
267
 
 
268	spin_lock_irqsave(&outring_info->ring_lock, flags);
269
270	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
 
 
 
271
272	/*
273	 * If there is only room for the packet, assume it is full.
274	 * Otherwise, the next time around, we think the ring buffer
275	 * is empty since the read index == write index.
276	 */
277	if (bytes_avail_towrite <= totalbytes_towrite) {
278		++channel->out_full_total;
279
280		if (!channel->out_full_flag) {
281			++channel->out_full_first;
282			channel->out_full_flag = true;
283		}
284
285		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
286		return -EAGAIN;
287	}
288
289	channel->out_full_flag = false;
290
291	/* Write to the ring buffer */
292	next_write_location = hv_get_next_write_location(outring_info);
293
294	old_write = next_write_location;
295
296	for (i = 0; i < kv_count; i++) {
297		next_write_location = hv_copyto_ringbuffer(outring_info,
298						     next_write_location,
299						     kv_list[i].iov_base,
300						     kv_list[i].iov_len);
301	}
302
303	/* Set previous packet start */
304	prev_indices = hv_get_ring_bufferindices(outring_info);
305
306	next_write_location = hv_copyto_ringbuffer(outring_info,
307					     next_write_location,
308					     &prev_indices,
309					     sizeof(u64));
310
311	/* Issue a full memory barrier before updating the write index */
312	virt_mb();
313
314	/* Now, update the write location */
315	hv_set_next_write_location(outring_info, next_write_location);
316
317
318	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
319
320	hv_signal_on_write(old_write, channel);
321
322	if (channel->rescind)
323		return -ENODEV;
324
325	return 0;
326}
327
328int hv_ringbuffer_read(struct vmbus_channel *channel,
329		       void *buffer, u32 buflen, u32 *buffer_actual_len,
330		       u64 *requestid, bool raw)
 
 
 
 
 
 
 
331{
332	struct vmpacket_descriptor *desc;
333	u32 packetlen, offset;
 
 
334
335	if (unlikely(buflen == 0))
336		return -EINVAL;
337
338	*buffer_actual_len = 0;
339	*requestid = 0;
 
340
341	/* Make sure there is something to read */
342	desc = hv_pkt_iter_first(channel);
343	if (desc == NULL) {
344		/*
345		 * No error is set when there is even no header, drivers are
346		 * supposed to analyze buffer_actual_len.
347		 */
348		return 0;
349	}
350
351	offset = raw ? 0 : (desc->offset8 << 3);
352	packetlen = (desc->len8 << 3) - offset;
353	*buffer_actual_len = packetlen;
354	*requestid = desc->trans_id;
355
356	if (unlikely(packetlen > buflen))
357		return -ENOBUFS;
358
359	/* since ring is double mapped, only one copy is necessary */
360	memcpy(buffer, (const char *)desc + offset, packetlen);
361
362	/* Advance ring index to next packet descriptor */
363	__hv_pkt_iter_next(channel, desc);
 
 
364
365	/* Notify host of update */
366	hv_pkt_iter_close(channel);
367
368	return 0;
369}
370
 
371/*
372 * Determine number of bytes available in ring buffer after
373 * the current iterator (priv_read_index) location.
374 *
375 * This is similar to hv_get_bytes_to_read but with private
376 * read index instead.
377 */
378static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
379{
380	u32 priv_read_loc = rbi->priv_read_index;
381	u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
382
383	if (write_loc >= priv_read_loc)
384		return write_loc - priv_read_loc;
385	else
386		return (rbi->ring_datasize - priv_read_loc) + write_loc;
387}
388
389/*
390 * Get first vmbus packet from ring buffer after read_index
391 *
392 * If ring buffer is empty, returns NULL and no other action needed.
393 */
394struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
395{
396	struct hv_ring_buffer_info *rbi = &channel->inbound;
397	struct vmpacket_descriptor *desc;
398
399	hv_debug_delay_test(channel, MESSAGE_DELAY);
400	if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
401		return NULL;
402
403	desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index;
404	if (desc)
405		prefetch((char *)desc + (desc->len8 << 3));
406
407	return desc;
408}
409EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
410
411/*
412 * Get next vmbus packet from ring buffer.
413 *
414 * Advances the current location (priv_read_index) and checks for more
415 * data. If the end of the ring buffer is reached, then return NULL.
416 */
417struct vmpacket_descriptor *
418__hv_pkt_iter_next(struct vmbus_channel *channel,
419		   const struct vmpacket_descriptor *desc)
420{
421	struct hv_ring_buffer_info *rbi = &channel->inbound;
422	u32 packetlen = desc->len8 << 3;
423	u32 dsize = rbi->ring_datasize;
 
 
 
424
425	hv_debug_delay_test(channel, MESSAGE_DELAY);
426	/* bump offset to next potential packet */
427	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
428	if (rbi->priv_read_index >= dsize)
429		rbi->priv_read_index -= dsize;
430
431	/* more data? */
432	return hv_pkt_iter_first(channel);
433}
434EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
435
436/* How many bytes were read in this iterator cycle */
437static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
438					u32 start_read_index)
439{
440	if (rbi->priv_read_index >= start_read_index)
441		return rbi->priv_read_index - start_read_index;
442	else
443		return rbi->ring_datasize - start_read_index +
444			rbi->priv_read_index;
445}
446
447/*
448 * Update host ring buffer after iterating over packets. If the host has
449 * stopped queuing new entries because it found the ring buffer full, and
450 * sufficient space is being freed up, signal the host. But be careful to
451 * only signal the host when necessary, both for performance reasons and
452 * because Hyper-V protects itself by throttling guests that signal
453 * inappropriately.
454 *
455 * Determining when to signal is tricky. There are three key data inputs
456 * that must be handled in this order to avoid race conditions:
457 *
458 * 1. Update the read_index
459 * 2. Read the pending_send_sz
460 * 3. Read the current write_index
461 *
462 * The interrupt_mask is not used to determine when to signal. The
463 * interrupt_mask is used only on the guest->host ring buffer when
464 * sending requests to the host. The host does not use it on the host->
465 * guest ring buffer to indicate whether it should be signaled.
466 */
467void hv_pkt_iter_close(struct vmbus_channel *channel)
468{
469	struct hv_ring_buffer_info *rbi = &channel->inbound;
470	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
471
472	/*
473	 * Make sure all reads are done before we update the read index since
474	 * the writer may start writing to the read area once the read index
475	 * is updated.
476	 */
477	virt_rmb();
478	start_read_index = rbi->ring_buffer->read_index;
479	rbi->ring_buffer->read_index = rbi->priv_read_index;
480
481	/*
482	 * Older versions of Hyper-V (before WS2102 and Win8) do not
483	 * implement pending_send_sz and simply poll if the host->guest
484	 * ring buffer is full.  No signaling is needed or expected.
485	 */
486	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
487		return;
488
489	/*
490	 * Issue a full memory barrier before making the signaling decision.
491	 * If reading pending_send_sz were to be reordered and happen
492	 * before we commit the new read_index, a race could occur.  If the
493	 * host were to set the pending_send_sz after we have sampled
494	 * pending_send_sz, and the ring buffer blocks before we commit the
495	 * read index, we could miss sending the interrupt. Issue a full
496	 * memory barrier to address this.
497	 */
498	virt_mb();
499
500	/*
501	 * If the pending_send_sz is zero, then the ring buffer is not
502	 * blocked and there is no need to signal.  This is far by the
503	 * most common case, so exit quickly for best performance.
504	 */
505	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
506	if (!pending_sz)
507		return;
 
 
 
 
 
 
508
509	/*
510	 * Ensure the read of write_index in hv_get_bytes_to_write()
511	 * happens after the read of pending_send_sz.
512	 */
513	virt_rmb();
514	curr_write_sz = hv_get_bytes_to_write(rbi);
515	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
516
517	/*
518	 * We want to signal the host only if we're transitioning
519	 * from a "not enough free space" state to a "enough free
520	 * space" state.  For example, it's possible that this function
521	 * could run and free up enough space to signal the host, and then
522	 * run again and free up additional space before the host has a
523	 * chance to clear the pending_send_sz.  The 2nd invocation would
524	 * be a null transition from "enough free space" to "enough free
525	 * space", which doesn't warrant a signal.
526	 *
527	 * Exactly filling the ring buffer is treated as "not enough
528	 * space". The ring buffer always must have at least one byte
529	 * empty so the empty and full conditions are distinguishable.
530	 * hv_get_bytes_to_write() doesn't fully tell the truth in
531	 * this regard.
532	 *
533	 * So first check if we were in the "enough free space" state
534	 * before we began the iteration. If so, the host was not
535	 * blocked, and there's no need to signal.
536	 */
537	if (curr_write_sz - bytes_read > pending_sz)
538		return;
539
540	/*
541	 * Similarly, if the new state is "not enough space", then
542	 * there's no need to signal.
543	 */
544	if (curr_write_sz <= pending_sz)
545		return;
546
547	++channel->intr_in_full;
548	vmbus_setevent(channel);
549}
550EXPORT_SYMBOL_GPL(hv_pkt_iter_close);