Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 *
  3 * Copyright (c) 2009, Microsoft Corporation.
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms and conditions of the GNU General Public License,
  7 * version 2, as published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope it will be useful, but WITHOUT
 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 12 * more details.
 13 *
 14 * You should have received a copy of the GNU General Public License along with
 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 16 * Place - Suite 330, Boston, MA 02111-1307 USA.
 17 *
 18 * Authors:
 19 *   Haiyang Zhang <haiyangz@microsoft.com>
 20 *   Hank Janssen  <hjanssen@microsoft.com>
 21 *   K. Y. Srinivasan <kys@microsoft.com>
 22 *
 23 */
 24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 25
 26#include <linux/kernel.h>
 27#include <linux/mm.h>
 28#include <linux/hyperv.h>
 29#include <linux/uio.h>
 
 
 30
 31#include "hyperv_vmbus.h"
 32
 33void hv_begin_read(struct hv_ring_buffer_info *rbi)
 34{
 35	rbi->ring_buffer->interrupt_mask = 1;
 36	mb();
 37}
 38
 39u32 hv_end_read(struct hv_ring_buffer_info *rbi)
 40{
 41	u32 read;
 42	u32 write;
 43
 44	rbi->ring_buffer->interrupt_mask = 0;
 45	mb();
 46
 47	/*
 48	 * Now check to see if the ring buffer is still empty.
 49	 * If it is not, we raced and we need to process new
 50	 * incoming messages.
 51	 */
 52	hv_get_ringbuffer_availbytes(rbi, &read, &write);
 53
 54	return read;
 55}
 56
 57/*
 58 * When we write to the ring buffer, check if the host needs to
 59 * be signaled. Here is the details of this protocol:
 60 *
 61 *	1. The host guarantees that while it is draining the
 62 *	   ring buffer, it will set the interrupt_mask to
 63 *	   indicate it does not need to be interrupted when
 64 *	   new data is placed.
 65 *
 66 *	2. The host guarantees that it will completely drain
 67 *	   the ring buffer before exiting the read loop. Further,
 68 *	   once the ring buffer is empty, it will clear the
 69 *	   interrupt_mask and re-check to see if new data has
 70 *	   arrived.
 71 */
 72
 73static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
 74{
 75	mb();
 76	if (rbi->ring_buffer->interrupt_mask)
 77		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 78
 79	/* check interrupt_mask before read_index */
 80	rmb();
 81	/*
 82	 * This is the only case we need to signal when the
 83	 * ring transitions from being empty to non-empty.
 84	 */
 85	if (old_write == rbi->ring_buffer->read_index)
 86		return true;
 87
 88	return false;
 89}
 90
 91/*
 92 * To optimize the flow management on the send-side,
 93 * when the sender is blocked because of lack of
 94 * sufficient space in the ring buffer, potential the
 95 * consumer of the ring buffer can signal the producer.
 96 * This is controlled by the following parameters:
 97 *
 98 * 1. pending_send_sz: This is the size in bytes that the
 99 *    producer is trying to send.
100 * 2. The feature bit feat_pending_send_sz set to indicate if
101 *    the consumer of the ring will signal when the ring
102 *    state transitions from being full to a state where
103 *    there is room for the producer to send the pending packet.
104 */
105
106static bool hv_need_to_signal_on_read(u32 old_rd,
107					 struct hv_ring_buffer_info *rbi)
108{
109	u32 prev_write_sz;
110	u32 cur_write_sz;
111	u32 r_size;
112	u32 write_loc = rbi->ring_buffer->write_index;
113	u32 read_loc = rbi->ring_buffer->read_index;
114	u32 pending_sz = rbi->ring_buffer->pending_send_sz;
115
116	/*
117	 * If the other end is not blocked on write don't bother.
118	 */
119	if (pending_sz == 0)
120		return false;
121
122	r_size = rbi->ring_datasize;
123	cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
124			read_loc - write_loc;
125
126	prev_write_sz = write_loc >= old_rd ? r_size - (write_loc - old_rd) :
127			old_rd - write_loc;
128
129
130	if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz))
131		return true;
132
133	return false;
134}
135
136/*
137 * hv_get_next_write_location()
138 *
139 * Get the next write location for the specified ring buffer
140 *
141 */
142static inline u32
143hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
144{
145	u32 next = ring_info->ring_buffer->write_index;
146
147	return next;
148}
149
150/*
151 * hv_set_next_write_location()
152 *
153 * Set the next write location for the specified ring buffer
154 *
155 */
156static inline void
157hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
158		     u32 next_write_location)
159{
160	ring_info->ring_buffer->write_index = next_write_location;
161}
162
163/*
164 * hv_get_next_read_location()
165 *
166 * Get the next read location for the specified ring buffer
167 */
168static inline u32
169hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
170{
171	u32 next = ring_info->ring_buffer->read_index;
172
173	return next;
174}
175
176/*
177 * hv_get_next_readlocation_withoffset()
178 *
179 * Get the next read location + offset for the specified ring buffer.
180 * This allows the caller to skip
181 */
182static inline u32
183hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
184				 u32 offset)
185{
186	u32 next = ring_info->ring_buffer->read_index;
187
188	next += offset;
189	next %= ring_info->ring_datasize;
190
191	return next;
192}
193
194/*
195 *
196 * hv_set_next_read_location()
197 *
198 * Set the next read location for the specified ring buffer
199 *
200 */
201static inline void
202hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
203		    u32 next_read_location)
204{
205	ring_info->ring_buffer->read_index = next_read_location;
 
206}
207
208
209/*
210 *
211 * hv_get_ring_buffer()
212 *
213 * Get the start of the ring buffer
214 */
215static inline void *
216hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
217{
218	return (void *)ring_info->ring_buffer->buffer;
219}
220
221
222/*
223 *
224 * hv_get_ring_buffersize()
225 *
226 * Get the size of the ring buffer
227 */
228static inline u32
229hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
230{
231	return ring_info->ring_datasize;
232}
233
234/*
235 *
236 * hv_get_ring_bufferindices()
237 *
238 * Get the read and write indices as u64 of the specified ring buffer
239 *
240 */
241static inline u64
242hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
243{
244	return (u64)ring_info->ring_buffer->write_index << 32;
245}
246
247/*
248 *
249 * hv_copyfrom_ringbuffer()
250 *
251 * Helper routine to copy to source from ring buffer.
252 * Assume there is enough room. Handles wrap-around in src case only!!
253 *
254 */
255static u32 hv_copyfrom_ringbuffer(
256	struct hv_ring_buffer_info	*ring_info,
257	void				*dest,
258	u32				destlen,
259	u32				start_read_offset)
260{
261	void *ring_buffer = hv_get_ring_buffer(ring_info);
262	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
263
264	u32 frag_len;
265
266	/* wrap-around detected at the src */
267	if (destlen > ring_buffer_size - start_read_offset) {
268		frag_len = ring_buffer_size - start_read_offset;
269
270		memcpy(dest, ring_buffer + start_read_offset, frag_len);
271		memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
272	} else
273
274		memcpy(dest, ring_buffer + start_read_offset, destlen);
275
276
277	start_read_offset += destlen;
278	start_read_offset %= ring_buffer_size;
279
280	return start_read_offset;
281}
282
283
284/*
285 *
286 * hv_copyto_ringbuffer()
287 *
288 * Helper routine to copy from source to ring buffer.
289 * Assume there is enough room. Handles wrap-around in dest case only!!
290 *
291 */
292static u32 hv_copyto_ringbuffer(
293	struct hv_ring_buffer_info	*ring_info,
294	u32				start_write_offset,
295	void				*src,
296	u32				srclen)
297{
298	void *ring_buffer = hv_get_ring_buffer(ring_info);
299	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
300	u32 frag_len;
301
302	/* wrap-around detected! */
303	if (srclen > ring_buffer_size - start_write_offset) {
304		frag_len = ring_buffer_size - start_write_offset;
305		memcpy(ring_buffer + start_write_offset, src, frag_len);
306		memcpy(ring_buffer, src + frag_len, srclen - frag_len);
307	} else
308		memcpy(ring_buffer + start_write_offset, src, srclen);
309
310	start_write_offset += srclen;
311	start_write_offset %= ring_buffer_size;
312
313	return start_write_offset;
314}
315
316/*
317 *
318 * hv_ringbuffer_get_debuginfo()
319 *
320 * Get various debug metrics for the specified ring buffer
321 *
322 */
323void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
324			    struct hv_ring_buffer_debug_info *debug_info)
325{
326	u32 bytes_avail_towrite;
327	u32 bytes_avail_toread;
328
329	if (ring_info->ring_buffer) {
330		hv_get_ringbuffer_availbytes(ring_info,
331					&bytes_avail_toread,
332					&bytes_avail_towrite);
333
334		debug_info->bytes_avail_toread = bytes_avail_toread;
335		debug_info->bytes_avail_towrite = bytes_avail_towrite;
336		debug_info->current_read_index =
337			ring_info->ring_buffer->read_index;
338		debug_info->current_write_index =
339			ring_info->ring_buffer->write_index;
340		debug_info->current_interrupt_mask =
341			ring_info->ring_buffer->interrupt_mask;
342	}
343}
344
345/*
346 *
347 * hv_ringbuffer_init()
348 *
349 *Initialize the ring buffer
350 *
351 */
352int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
353		   void *buffer, u32 buflen)
354{
355	if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
356		return -EINVAL;
 
 
357
358	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
359
360	ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361	ring_info->ring_buffer->read_index =
362		ring_info->ring_buffer->write_index = 0;
363
364	ring_info->ring_size = buflen;
365	ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
 
 
 
 
366
367	spin_lock_init(&ring_info->ring_lock);
368
369	return 0;
370}
371
372/*
373 *
374 * hv_ringbuffer_cleanup()
375 *
376 * Cleanup the ring buffer
377 *
378 */
379void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
380{
 
381}
382
383/*
384 *
385 * hv_ringbuffer_write()
386 *
387 * Write to the ring buffer
388 *
389 */
390int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
391		    struct kvec *kv_list, u32 kv_count, bool *signal)
392{
393	int i = 0;
394	u32 bytes_avail_towrite;
395	u32 bytes_avail_toread;
396	u32 totalbytes_towrite = 0;
397
398	u32 next_write_location;
399	u32 old_write;
400	u64 prev_indices = 0;
401	unsigned long flags;
 
 
 
 
402
403	for (i = 0; i < kv_count; i++)
404		totalbytes_towrite += kv_list[i].iov_len;
405
406	totalbytes_towrite += sizeof(u64);
407
408	spin_lock_irqsave(&outring_info->ring_lock, flags);
409
410	hv_get_ringbuffer_availbytes(outring_info,
411				&bytes_avail_toread,
412				&bytes_avail_towrite);
413
 
414
415	/* If there is only room for the packet, assume it is full. */
416	/* Otherwise, the next time around, we think the ring buffer */
417	/* is empty since the read index == write index */
 
 
418	if (bytes_avail_towrite <= totalbytes_towrite) {
419		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 
420		return -EAGAIN;
421	}
422
423	/* Write to the ring buffer */
424	next_write_location = hv_get_next_write_location(outring_info);
425
426	old_write = next_write_location;
427
428	for (i = 0; i < kv_count; i++) {
429		next_write_location = hv_copyto_ringbuffer(outring_info,
430						     next_write_location,
431						     kv_list[i].iov_base,
432						     kv_list[i].iov_len);
433	}
434
435	/* Set previous packet start */
436	prev_indices = hv_get_ring_bufferindices(outring_info);
437
438	next_write_location = hv_copyto_ringbuffer(outring_info,
439					     next_write_location,
440					     &prev_indices,
441					     sizeof(u64));
442
443	/* Issue a full memory barrier before updating the write index */
444	mb();
445
446	/* Now, update the write location */
447	hv_set_next_write_location(outring_info, next_write_location);
448
449
450	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
451
452	*signal = hv_need_to_signal(old_write, outring_info);
453	return 0;
454}
455
456
457/*
458 *
459 * hv_ringbuffer_peek()
460 *
461 * Read without advancing the read index
462 *
463 */
464int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info,
465		   void *Buffer, u32 buflen)
466{
467	u32 bytes_avail_towrite;
468	u32 bytes_avail_toread;
469	u32 next_read_location = 0;
470	unsigned long flags;
471
472	spin_lock_irqsave(&Inring_info->ring_lock, flags);
473
474	hv_get_ringbuffer_availbytes(Inring_info,
475				&bytes_avail_toread,
476				&bytes_avail_towrite);
477
478	/* Make sure there is something to read */
479	if (bytes_avail_toread < buflen) {
480
481		spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
482
483		return -EAGAIN;
484	}
485
486	/* Convert to byte offset */
487	next_read_location = hv_get_next_read_location(Inring_info);
488
489	next_read_location = hv_copyfrom_ringbuffer(Inring_info,
490						Buffer,
491						buflen,
492						next_read_location);
493
494	spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
495
496	return 0;
497}
498
499
500/*
501 *
502 * hv_ringbuffer_read()
503 *
504 * Read and advance the read index
505 *
506 */
507int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer,
508		   u32 buflen, u32 offset, bool *signal)
509{
510	u32 bytes_avail_towrite;
511	u32 bytes_avail_toread;
512	u32 next_read_location = 0;
513	u64 prev_indices = 0;
514	unsigned long flags;
515	u32 old_read;
 
 
 
516
517	if (buflen <= 0)
518		return -EINVAL;
519
520	spin_lock_irqsave(&inring_info->ring_lock, flags);
521
522	hv_get_ringbuffer_availbytes(inring_info,
523				&bytes_avail_toread,
524				&bytes_avail_towrite);
525
526	old_read = bytes_avail_toread;
 
527
 
528	/* Make sure there is something to read */
529	if (bytes_avail_toread < buflen) {
530		spin_unlock_irqrestore(&inring_info->ring_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531
 
532		return -EAGAIN;
533	}
 
 
534
535	next_read_location =
536		hv_get_next_readlocation_withoffset(inring_info, offset);
537
538	next_read_location = hv_copyfrom_ringbuffer(inring_info,
539						buffer,
540						buflen,
541						next_read_location);
542
543	next_read_location = hv_copyfrom_ringbuffer(inring_info,
544						&prev_indices,
545						sizeof(u64),
546						next_read_location);
547
548	/* Make sure all reads are done before we update the read index since */
549	/* the writer may start writing to the read area once the read index */
550	/*is updated */
551	mb();
 
 
552
553	/* Update the read index */
554	hv_set_next_read_location(inring_info, next_read_location);
555
556	spin_unlock_irqrestore(&inring_info->ring_lock, flags);
557
558	*signal = hv_need_to_signal_on_read(old_read, inring_info);
559
560	return 0;
561}
v4.10.11
  1/*
  2 *
  3 * Copyright (c) 2009, Microsoft Corporation.
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms and conditions of the GNU General Public License,
  7 * version 2, as published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope it will be useful, but WITHOUT
 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 12 * more details.
 13 *
 14 * You should have received a copy of the GNU General Public License along with
 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 16 * Place - Suite 330, Boston, MA 02111-1307 USA.
 17 *
 18 * Authors:
 19 *   Haiyang Zhang <haiyangz@microsoft.com>
 20 *   Hank Janssen  <hjanssen@microsoft.com>
 21 *   K. Y. Srinivasan <kys@microsoft.com>
 22 *
 23 */
 24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 25
 26#include <linux/kernel.h>
 27#include <linux/mm.h>
 28#include <linux/hyperv.h>
 29#include <linux/uio.h>
 30#include <linux/vmalloc.h>
 31#include <linux/slab.h>
 32
 33#include "hyperv_vmbus.h"
 34
 35void hv_begin_read(struct hv_ring_buffer_info *rbi)
 36{
 37	rbi->ring_buffer->interrupt_mask = 1;
 38	virt_mb();
 39}
 40
 41u32 hv_end_read(struct hv_ring_buffer_info *rbi)
 42{
 
 
 43
 44	rbi->ring_buffer->interrupt_mask = 0;
 45	virt_mb();
 46
 47	/*
 48	 * Now check to see if the ring buffer is still empty.
 49	 * If it is not, we raced and we need to process new
 50	 * incoming messages.
 51	 */
 52	return hv_get_bytes_to_read(rbi);
 
 
 53}
 54
 55/*
 56 * When we write to the ring buffer, check if the host needs to
 57 * be signaled. Here is the details of this protocol:
 58 *
 59 *	1. The host guarantees that while it is draining the
 60 *	   ring buffer, it will set the interrupt_mask to
 61 *	   indicate it does not need to be interrupted when
 62 *	   new data is placed.
 63 *
 64 *	2. The host guarantees that it will completely drain
 65 *	   the ring buffer before exiting the read loop. Further,
 66 *	   once the ring buffer is empty, it will clear the
 67 *	   interrupt_mask and re-check to see if new data has
 68 *	   arrived.
 69 *
 70 * KYS: Oct. 30, 2016:
 71 * It looks like Windows hosts have logic to deal with DOS attacks that
 72 * can be triggered if it receives interrupts when it is not expecting
 73 * the interrupt. The host expects interrupts only when the ring
 74 * transitions from empty to non-empty (or full to non full on the guest
 75 * to host ring).
 76 * So, base the signaling decision solely on the ring state until the
 77 * host logic is fixed.
 78 */
 79
 80static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel,
 81			       bool kick_q)
 82{
 83	struct hv_ring_buffer_info *rbi = &channel->outbound;
 84
 85	virt_mb();
 86	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
 87		return;
 88
 89	/* check interrupt_mask before read_index */
 90	virt_rmb();
 91	/*
 92	 * This is the only case we need to signal when the
 93	 * ring transitions from being empty to non-empty.
 94	 */
 95	if (old_write == READ_ONCE(rbi->ring_buffer->read_index))
 96		vmbus_setevent(channel);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97
 98	return;
 
 
 
 
 99}
100
101/* Get the next write location for the specified ring buffer. */
 
 
 
 
 
102static inline u32
103hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
104{
105	u32 next = ring_info->ring_buffer->write_index;
106
107	return next;
108}
109
110/* Set the next write location for the specified ring buffer. */
 
 
 
 
 
111static inline void
112hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
113		     u32 next_write_location)
114{
115	ring_info->ring_buffer->write_index = next_write_location;
116}
117
118/* Get the next read location for the specified ring buffer. */
 
 
 
 
119static inline u32
120hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
121{
122	u32 next = ring_info->ring_buffer->read_index;
123
124	return next;
125}
126
127/*
 
 
128 * Get the next read location + offset for the specified ring buffer.
129 * This allows the caller to skip.
130 */
131static inline u32
132hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
133				 u32 offset)
134{
135	u32 next = ring_info->ring_buffer->read_index;
136
137	next += offset;
138	next %= ring_info->ring_datasize;
139
140	return next;
141}
142
143/* Set the next read location for the specified ring buffer. */
 
 
 
 
 
 
144static inline void
145hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
146		    u32 next_read_location)
147{
148	ring_info->ring_buffer->read_index = next_read_location;
149	ring_info->priv_read_index = next_read_location;
150}
151
152/* Get the size of the ring buffer. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153static inline u32
154hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
155{
156	return ring_info->ring_datasize;
157}
158
159/* Get the read and write indices as u64 of the specified ring buffer. */
 
 
 
 
 
 
160static inline u64
161hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
162{
163	return (u64)ring_info->ring_buffer->write_index << 32;
164}
165
166/*
 
 
 
167 * Helper routine to copy to source from ring buffer.
168 * Assume there is enough room. Handles wrap-around in src case only!!
 
169 */
170static u32 hv_copyfrom_ringbuffer(
171	struct hv_ring_buffer_info	*ring_info,
172	void				*dest,
173	u32				destlen,
174	u32				start_read_offset)
175{
176	void *ring_buffer = hv_get_ring_buffer(ring_info);
177	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
178
179	memcpy(dest, ring_buffer + start_read_offset, destlen);
 
 
 
 
 
 
 
 
 
 
 
180
181	start_read_offset += destlen;
182	start_read_offset %= ring_buffer_size;
183
184	return start_read_offset;
185}
186
187
188/*
 
 
 
189 * Helper routine to copy from source to ring buffer.
190 * Assume there is enough room. Handles wrap-around in dest case only!!
 
191 */
192static u32 hv_copyto_ringbuffer(
193	struct hv_ring_buffer_info	*ring_info,
194	u32				start_write_offset,
195	void				*src,
196	u32				srclen)
197{
198	void *ring_buffer = hv_get_ring_buffer(ring_info);
199	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
 
200
201	memcpy(ring_buffer + start_write_offset, src, srclen);
 
 
 
 
 
 
202
203	start_write_offset += srclen;
204	start_write_offset %= ring_buffer_size;
205
206	return start_write_offset;
207}
208
209/* Get various debug metrics for the specified ring buffer. */
 
 
 
 
 
 
210void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
211			    struct hv_ring_buffer_debug_info *debug_info)
212{
213	u32 bytes_avail_towrite;
214	u32 bytes_avail_toread;
215
216	if (ring_info->ring_buffer) {
217		hv_get_ringbuffer_availbytes(ring_info,
218					&bytes_avail_toread,
219					&bytes_avail_towrite);
220
221		debug_info->bytes_avail_toread = bytes_avail_toread;
222		debug_info->bytes_avail_towrite = bytes_avail_towrite;
223		debug_info->current_read_index =
224			ring_info->ring_buffer->read_index;
225		debug_info->current_write_index =
226			ring_info->ring_buffer->write_index;
227		debug_info->current_interrupt_mask =
228			ring_info->ring_buffer->interrupt_mask;
229	}
230}
231
232/* Initialize the ring buffer. */
 
 
 
 
 
 
233int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
234		       struct page *pages, u32 page_cnt)
235{
236	int i;
237	struct page **pages_wraparound;
238
239	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
240
241	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
242
243	/*
244	 * First page holds struct hv_ring_buffer, do wraparound mapping for
245	 * the rest.
246	 */
247	pages_wraparound = kzalloc(sizeof(struct page *) * (page_cnt * 2 - 1),
248				   GFP_KERNEL);
249	if (!pages_wraparound)
250		return -ENOMEM;
251
252	pages_wraparound[0] = pages;
253	for (i = 0; i < 2 * (page_cnt - 1); i++)
254		pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
255
256	ring_info->ring_buffer = (struct hv_ring_buffer *)
257		vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
258
259	kfree(pages_wraparound);
260
261
262	if (!ring_info->ring_buffer)
263		return -ENOMEM;
264
265	ring_info->ring_buffer->read_index =
266		ring_info->ring_buffer->write_index = 0;
267
268	/* Set the feature bit for enabling flow control. */
269	ring_info->ring_buffer->feature_bits.value = 1;
270
271	ring_info->ring_size = page_cnt << PAGE_SHIFT;
272	ring_info->ring_datasize = ring_info->ring_size -
273		sizeof(struct hv_ring_buffer);
274
275	spin_lock_init(&ring_info->ring_lock);
276
277	return 0;
278}
279
280/* Cleanup the ring buffer. */
 
 
 
 
 
 
281void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
282{
283	vunmap(ring_info->ring_buffer);
284}
285
286/* Write to the ring buffer. */
287int hv_ringbuffer_write(struct vmbus_channel *channel,
288		    struct kvec *kv_list, u32 kv_count, bool lock,
289		    bool kick_q)
 
 
 
 
 
290{
291	int i = 0;
292	u32 bytes_avail_towrite;
 
293	u32 totalbytes_towrite = 0;
294
295	u32 next_write_location;
296	u32 old_write;
297	u64 prev_indices = 0;
298	unsigned long flags = 0;
299	struct hv_ring_buffer_info *outring_info = &channel->outbound;
300
301	if (channel->rescind)
302		return -ENODEV;
303
304	for (i = 0; i < kv_count; i++)
305		totalbytes_towrite += kv_list[i].iov_len;
306
307	totalbytes_towrite += sizeof(u64);
308
309	if (lock)
310		spin_lock_irqsave(&outring_info->ring_lock, flags);
 
 
 
311
312	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
313
314	/*
315	 * If there is only room for the packet, assume it is full.
316	 * Otherwise, the next time around, we think the ring buffer
317	 * is empty since the read index == write index.
318	 */
319	if (bytes_avail_towrite <= totalbytes_towrite) {
320		if (lock)
321			spin_unlock_irqrestore(&outring_info->ring_lock, flags);
322		return -EAGAIN;
323	}
324
325	/* Write to the ring buffer */
326	next_write_location = hv_get_next_write_location(outring_info);
327
328	old_write = next_write_location;
329
330	for (i = 0; i < kv_count; i++) {
331		next_write_location = hv_copyto_ringbuffer(outring_info,
332						     next_write_location,
333						     kv_list[i].iov_base,
334						     kv_list[i].iov_len);
335	}
336
337	/* Set previous packet start */
338	prev_indices = hv_get_ring_bufferindices(outring_info);
339
340	next_write_location = hv_copyto_ringbuffer(outring_info,
341					     next_write_location,
342					     &prev_indices,
343					     sizeof(u64));
344
345	/* Issue a full memory barrier before updating the write index */
346	virt_mb();
347
348	/* Now, update the write location */
349	hv_set_next_write_location(outring_info, next_write_location);
350
351
352	if (lock)
353		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354
355	hv_signal_on_write(old_write, channel, kick_q);
 
356
357	if (channel->rescind)
358		return -ENODEV;
 
 
 
 
359
360	return 0;
361}
362
363int hv_ringbuffer_read(struct vmbus_channel *channel,
364		       void *buffer, u32 buflen, u32 *buffer_actual_len,
365		       u64 *requestid, bool raw)
 
 
 
 
 
 
 
366{
 
367	u32 bytes_avail_toread;
368	u32 next_read_location = 0;
369	u64 prev_indices = 0;
370	struct vmpacket_descriptor desc;
371	u32 offset;
372	u32 packetlen;
373	int ret = 0;
374	struct hv_ring_buffer_info *inring_info = &channel->inbound;
375
376	if (buflen <= 0)
377		return -EINVAL;
378
 
 
 
 
 
379
380	*buffer_actual_len = 0;
381	*requestid = 0;
382
383	bytes_avail_toread = hv_get_bytes_to_read(inring_info);
384	/* Make sure there is something to read */
385	if (bytes_avail_toread < sizeof(desc)) {
386		/*
387		 * No error is set when there is even no header, drivers are
388		 * supposed to analyze buffer_actual_len.
389		 */
390		return ret;
391	}
392
393	init_cached_read_index(channel);
394	next_read_location = hv_get_next_read_location(inring_info);
395	next_read_location = hv_copyfrom_ringbuffer(inring_info, &desc,
396						    sizeof(desc),
397						    next_read_location);
398
399	offset = raw ? 0 : (desc.offset8 << 3);
400	packetlen = (desc.len8 << 3) - offset;
401	*buffer_actual_len = packetlen;
402	*requestid = desc.trans_id;
403
404	if (bytes_avail_toread < packetlen + offset)
405		return -EAGAIN;
406
407	if (packetlen > buflen)
408		return -ENOBUFS;
409
410	next_read_location =
411		hv_get_next_readlocation_withoffset(inring_info, offset);
412
413	next_read_location = hv_copyfrom_ringbuffer(inring_info,
414						buffer,
415						packetlen,
416						next_read_location);
417
418	next_read_location = hv_copyfrom_ringbuffer(inring_info,
419						&prev_indices,
420						sizeof(u64),
421						next_read_location);
422
423	/*
424	 * Make sure all reads are done before we update the read index since
425	 * the writer may start writing to the read area once the read index
426	 * is updated.
427	 */
428	virt_mb();
429
430	/* Update the read index */
431	hv_set_next_read_location(inring_info, next_read_location);
432
433	hv_signal_on_read(channel);
434
435	return ret;
 
 
436}